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ABBSTRACT STRACT

Modeling children’s exposures is a complicated, data-in­
tensive process. Modeling longitudinal exposures, which 
are important for regulatory decision making, especially 

for most air toxics, adds another level of complexity and data 
requirements. Because it is difficult to model inter- and intra- per­
sonal variability for exposure model inputs, there is potential for 
inaccurate estimation of upper percentiles of longitudinal exposure 
distributions. In order to develop a scientifically sound exposure 
prediction model, we need to resolve how to do the following: (1) 
obtain longitudinal data needs for time activity and pollutant mea­
surements; (2) separate intra- and inter- person variability of model 
inputs; (3) link inputs from different data sources and fit those data 
as inputs for the model, which will preserve its variance-covariance 
structure; and (4) use cross-sectional data to simulate longitudinal 
data, which is difficult and expensive to collect. 

In this presentation, we address these issues by applying both an 
existing and a new technique for estimating personal ozone expo­
sures of school-age children living in two California communities. 
The first modeling analysis employed commonly used methods for 
estimating exposures using a microenvironmental exposure model 
that used independent distributions in simulations, which were fit 
to observed inputs for the model. In the new modeling methodol­
ogy, various variance components derived from the underlying data 
were put back into model, so that proper variance-covariance rela­
tionships in model inputs were maintained. Contribution of intra-
personal, inter-personal, seasonal, and area’s variances predicted by 
the new model, were: 38%, 19%, 39% and 4%, which were quite 
close to those derived from the original data while intra-personal 
variance is 91% for the old method without decomposition of the 
variance. The standard deviation and 99th percentile of overall 
personal ozone exposures from the model with the new method 
and the old method without decomposition of variance of intra, inter 
personal and other factors, were: 12 ppb, 53 ppb and 21 ppb, 89 ppb, 
respectively, and in comparison to 12 ppb, 52 ppb for the observed 
personal ozone data. Results show that this method not only can keep 
variance-covariance structures of inputs and output in a simulation, 
but also can accurately predict high percentiles of longitudinal 
exposures that are important for regulatory evaluations. 

A

IINNTRODUCTION TRODUCTION
General Modeling Questions 
•  How can we best determine children’s exposures to various envi­

ronmental agents by different life stages? 

• Which locations, sources, media, routes and pathways contribute 
greatest to exposures of interest? 

• What activities and behaviors influence the pollutant contact 
rates, exposures, uptake and dose? 

• What are the measures of exposures of health relevance (e.g., 
duration, intensity, timing, frequency)? 

•  How do exposure and physical factors vary by age, gender, sus­
ceptibility, personal habits (e.g., cooking and cleaning exposures, 
second hand smoke), housing type, consumer product usage? 

•  How do subject-specific longitudinal correlations of personal 
exposures with outdoor concentrations vary? 

•  How are microenvironmental concentrations of PM2.5, ozone, air 
toxics correlated? 

− Ambient central site vs. outdoor 

− Indoor residential vs. outdoor 

− Personal vs. outdoor 

Challenges 
•  Lack of longitudinal spatial and temporal concentration data 

•  Lack of longitudinal activity data 

•  How to simulate height and weight, activity patterns and breath­
ing rates for children as they grow older? 

•  How to use cross-sectional data to simulate longitudinal data? 

•  How to separate intra- and inter- person variability of model 
inputs? 

•  How to preserve variance-covariance structure of inputs when 
combining different data sources in exposure models (see Ozone 
Case Study)? 

  Indoor or outdoor combustion sources

  Nearby ETS and PM generating activities 

Ambient fine and ultrafi ne PM

VOCs from proximity to mobile sources/refueling/attached 
garages

Air toxics from consumer products and hobbies

  Indoor and outdoor aeroallergens

  High outdoor ozone/photochemical smog

What are the relevant microenvironments (see Figure 1)?

  Do children spend more time indoors (schools, daycare) or in 
other microenvironments than the adults in the population (see 
Figure 2)?

  Do children engage in fewer pollution generating activities than 
the other age groups?

  Do personal exposures of children correlate well with outdoor 
concentrations?

IISSSUES SUES
Pollutant Sources of Concern 
• 

• 

• 

• 

• 

• 

• 

Concentration-Related 
• 

• 

• 

• 

Figure 1. Relevant Indoor Microenvironments 
for Children 

Figure 2. Relevant Outdoor/In-Vehicle Microen-
vironments for Children 

Activity-Related 
• Where do children spend their time with respect to relevant 

pollutant-containing microenvironments (see Figure 3 for an 
example of a time-activity diary)?

•   Do children spend more time indoors (schools, daycare) or in 
other special microenvironments than the rest of the population?

•   Do children engage in fewer pollution generating activities than 
other cohorts?

• Are time-activity profiles of children appreciably different than 
those for the general population?

•   Do children engage in different types of personal activities which 
generate elevated indoor or personal exposures to PM, combus-
tion gases and air toxics?

•   How do children’s exposures differ as a function of childhood 
life stages?

Fig 3. Example Human Activity Diary from EPA’s 
Consolidated Human Activities Database (CHAD) 
(http://www.epa.gov/chadnet1/) 

Start Time Stop Time Location Activity 
… … … … 
06:00 am 
06:30 
06:50 

06:30 am 
06:50 
07:00 

Home-Bedroom 
Home-Bathroom 
Home-Bedroom 

Sleep 
Personal hygiene 
Personal care 

07:00 
07:10 

07:10 
07:20 

Home-Kitchen 
Home-Kitchen 

Prepare food 
Eat 

07:20 
07:21 

07:21 
07:55 

Outdoors 
In vehicle 

Walking 
Travel to work 

07:55 
07:56 
07:58 
07:59 
09:25 
09:26 
09:45 
09:46 
11:25 
11:28 am 

07:56 
07:58 
07:59 
09:25 
09:26 
09:45 
09:46 
11:25 
11:28 
12:15 pm 

Outdoors-Parking Lot 
Indoors-Office Bldg. 
Indoors-Office Bldg. 
Indoors-Office Bldg. 
Indoors-Office Bldg. 
Indoors-Office Bldg. 
Indoors-Office Bldg. 
Indoors-Office Bldg. 
Indoors-Office Bldg. 
Indoors-Office Bldg. 

Walking 
Climb stairs 
Walking 
Sitting 
Walking 
Standing 
Walking 
Sitting 
Standing 
Sitting 

… … … … 

Age-Grouping for Children 
•   EPA guidance on age grouping is supported by an underlying 

scientific rationale (Figure 4) 

•   Use in exposure and risk assessments for consistency

•   Foundation for future exposure factors and/or monitoring data 
generation/analysis

•   U.S. EPA (2005).  Guidance on selecting age groups for monitor-
ing and assessing childhood exposures to environmental contam-
inants.  Risk Assessment Forum, Office of Research and Devel-
opment, Washington, D.C.  EPA/630/P-03/003F. http://cfpub.epa.
gov/ncea/cfm/recordisplay.cfm?deid=146583

Fig. 4. EPA Guidance on Age Groups for 
Exposure Assessments 
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 Empirical models

−  Developed using empirical data from personal monitoring 
studies

−  Example:  Regression equations that explain measured 
exposures

 Deterministic/mechanistic models

−  Based on known or assumed physical relationships

−  Example:  Air quality models, pharmacokinetic models

 Stochastic/mechanistic models

−  Input data are distributions, not single value

−  Input distributions characterize
variability/uncertainty in the data

−  Use Monte Carlo or other random sampling techniques 

−  Produces output distributions (variability/uncertainty)

Identify cohorts and microenvironments of concern

Collect available time-activity data

− Locations spent time in and the activities performed while in a
 location

− Age, gender, region, etc.

Collect available microenvironmental measurements

− Concentrations outdoors, indoors, in-vehicle

Estimate physical factors

− Source use and emissions

− Penetration, Infiltration, re-suspension, volatilization, decay
 Estimate exposure factors

− Contact/transfer/uptake/PBPK rates or parameters

Apply data and algorithms using a selected modeling structure to
predict exposure distributions (see Figure 5 for PM2.5 and Figure 6
for benzene exposures generated by the EPA s SHEDS model)

Compare estimates to available personal exposure measurements

MMEETHODS THODS
Model Types 
• 

• 

• 

Modeling Elements 
• 

• 

• 

• 

• 

’ 

• 

 ∑ 1 ⎛ ⎞ 
E =  Ej = ⎜ C ⎟ ⎜ j tj

j T ∑ ⎟⎝ j ⎠ 

Source: Burke et al. 2001

Figure 5. Distribution of Daily-average Total 
PM2.5  Exposure and Uncertainty for Selected 
Percentiles in Philadelphia, PA Predicted by the 
SHEDS-PM Model 
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Figure 6. Daily Inhalation Exposures to Benzene 
in Houston, Texas predicted by the SHEDS-Air-
Toxics Model 

Source: Graham et al. 2006

OOZZONE ONE CCAASE SE SSTTUDY UDY
Approach 
•  Extend an earlier analysis conducted by Xue et al. 2005 by 

applying both an existing and a new technique for estimating 
personal ozone exposures of school-age children living in two 
California communities 

•  The first modeling analysis employed commonly used methods 
for estimating exposures using a microenvironmental exposure 
model that used independent distributions in simulations, fit to 
observed indoor, outdoor and time-activity data 

• In the new modeling methodology, different variance components 
derived from the underlying data were put back into the model, so 
that proper variance-covariance relationships in model inputs were 
maintained: 2 

total = 2 2 2 
intra-person+  inter-person + 2season+  area 

•  SAS mixed effects model procedure was used to decompose the 
major variance components of each of the ozone and time activ­
ity measures 

Results 
• Intra-personal, inter-personal, seasonal, and area/location related 

variances predicted by the new model were close to those derived 
from the original data, while intra-personal variance was overly 
inflated by the basic method which did not consider proper decom­
position of the variance (Table 1) 

• New exposure simulation method successfully retains the vari­
ance-covariance structure of different inputs and outputs, and can 
accurately predict both the annual average and the high percentiles 
of longitudinal exposures that are important for scientific and regu­
latory evaluations (Figures 7 and 8) 

Table 1. Percent of Variance Explained by 
Intra-personal, Inter-personal, Season and Area 
Terms for Personal Ozone and Outdoor Time 

Variance decompostion (%) 
variables intra inter season area 
observed personal ozone concentration 41.8% 13.3% 44.0% 0.8% 
predicted personal ozone with observed data 32.6% 10.6% 50.2% 6.7% 
predicted personal ozone* 91.3% 8.6% 0.1% 0.0% 
predicted personal ozone with simulated inputs** 37.7% 18.7% 39.3% 4.3% 

actual outdoor time near home 59.8% 33.4% 6.8% 0.0% 

* Simulations without the decomposition of variances 

* Simulations with decomposition of major variance terms 

Figure 7. Measured and Modeled Annual Aver-
age Personal Ozone 
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Figure 8. Distributions of 95th Percentile Values 
of 7-Day AveragePersonal Ozone for each child 
over a Year 
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DDIISCUSSION SCUSSION
•  It is important to model exposures of children by critical life-

stages that represent both the developmental and the likely expo­
sure-related changes over the first 6 years of life 

•  Children are exposed to different sources and concentrations of 
pollutants in various indoor, outdoor and commuting environ­
ments 

• Additional data on physical, microenvironmental and exposure 
factors could improve current exposure predictions 

•  For modeling long-term exposures to air pollutants, age-specific 
longitudinal time-activity data and information on key determi­
nants and components (e.g., intra- and inter-personal factors) of 
the variance of personal exposures are needed 

•  Probabilistic exposure simulation modeling with decomposition 
of variance terms is a promising approach that addresses these 
issues 

• A case study based on data from Southern California, showed 
that by proper apportionment of the variance-covariance rela­
tionships in model inputs, it is possible to accurately predict the 
central values and the high percentiles of longitudinal personal 
ozone exposures of children 
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DDIISCLAIMER SCLAIMER

Although this work was reviewed by EPA and approved for 
publication, it may not necessarily reflect official Agency policy. 


