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Overview
• Epistasis and its implications for genetic analysis
• GENN Method

– Optimization and dissection of the evolutionary
process

– Comparison to other NN applications
– Comparison the other methods used in genetic

epidemiology
– Power studies
– Application to an HIV Immunogenetics dataset

• Future directions



Genetics of Human Disease

Single Gene                 Single Disease

Multiple Genes                 Complex Disease



Epistasis

gene-gene or gene-
environment interactions;

two or more genes
interacting in a non-
additive manner to confer
a phenotype
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Epistasis
• Biologists believe bio-molecular interactions are

common

• Single locus studies do not replicate

• Identifying “the gene” associated with common
disease has not been successful like it has for
Mendelian disease

• Mendelian single-gene disorders are now being
considered complex traits with gene-gene
interactions (modifier genes)



“gene-gene interactions are commonly
found when properly investigated”

[Moore (2003)]



Traditional Statistical Approaches
• Typically one marker or SNP at a time to

detect loci exhibiting main effects

• Follow-up with an analysis to detect
interactions between the main effect loci

• Some studies attempt to detect pair-wise
interactions even without main effects

• Higher dimensions are usually not possible
with traditional methods



Traditional Statistical Approaches

• Logistic Regression
– Small sample size can result in biased

estimates of regression coefficients and can
result in spurious associations (Concato et al.
1993)

– Need at least 10 cases or controls per
independent variable to have enough
statistical power (Peduzzi et al 1996)

– Curse of dimensionality is the problem
(Bellman 1961)



Curse of Dimensionality
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Traditional Statistical Approaches

• Advantages
– Easily computed
– Easily interpreted
– Well documented and

accepted

• Disadvantages
– Susceptibility loci must

have significant main
effect

– Difficult to detect purely
interactive effects

– Need a very large
sample size to explore
interactions between
more than two
variables



Objectives for Novel Methods

• Variable Selection
– Choose a subset of variables from an

effectively infinite number of combinations

• Statistical Modeling

• Generate Testable Hypotheses



Objectives for Novel Methods

• Variable Selection
– Choose a subset of variables from an

effectively infinite number of combinations

• Statistical Modeling

• Generate Testable Hypotheses

GOAL : Detect genetic/environmental factors
associated with disease risk in the presence
or absence of main effects from a large pool
of potential factors



Methods to Detect Epistasis
• Multifactor Dimensionality Reduction (MDR)
• Random ForestsTM

• Restricted Partition Method (RPM)
• Classification and Regression Trees (CART)
• Symbolic Discriminant Analysis (SDA)
• Focused Interaction Testing Framework (FITF)
• Set Association
• Combinatorial Partitioning Method (CPM)
• Patterning and Recursive Partitioning (PRP)
• …………



Methods to Detect Epistasis

There are theoretical and/or practical
concerns with each!

• Multifactor Dimensionality Reduction (MDR)
• Random ForestsTM

• Restricted Partition Method (RPM)
• Classification and Regression Trees (CART)
• Symbolic Discriminant Analysis (SDA)
• Focused Interaction Testing Framework (FITF)
• Set Association
• Combinatorial Partitioning Method (CPM)
• Patterning and Recursive Partitioning (PRP)
• …………



• Genome-wide association studies
• ~500,000 SNPs to span the genome

SNPs in each subset
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• Genome-wide association studies
• ~500,000 SNPs to span the genome

SNPs in each subset
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2 x 1026 combinations

*     1 combination per second

*   86400 seconds per day

---------

3.0 x 1021 days to complete

(8.2 x 1018 years)

We need methods to detect epistatic
interactions without examining all

possible combinations!!!



Novel Approaches
• Pattern Recognition

– Considers full dimensionality of the data
– Aims to classify data based on information extracted

from the patterns
• Neural Networks (NN)
• Clustering Algorithms
• Self-Organizing Maps (SOM)
• Cellular Automata (CA)

Cases Controls
G1 G2 G3 G4 E1 E2 G1 G2 G3 G4 E1 E2

Subject 1 Subject 1

Subject 2 Subject 2

1 0



Neural Networks

• Developed 60 years ago
• Originally developed to model/mimic the human brain
• More recently, uses theory of neurons to do computation
• Applications

– Association, classification, categorization
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Neural Networks

• NNs multiply each input node (i.e. variable, genotype,
etc.) by a weight (a), the result of which is processed by
a function (Σ), and then compared to a threshold to yield
an output (0 or 1).

• Weights are applied to each connection and optimized to
minimize the error in the data.
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Neural Networks
• Advantages

– Can handle large quantities
of data

– Universal function
approximators

– Model-free

• Limitations
– Must fix architecture prior

to analysis
– Only the weights are

optimized
– Weights are optimized

using hill-climbing
algorithms



Neural Networks
• Advantages

– Can handle large quantities
of data

– Universal function
approximators

– Model-free

• Limitations
– Must fix architecture prior

to analysis
– Only the weights are

optimized
– Weights are optimized

using hill-climbing
algorithms

• Solution: Evolutionary computation algorithms can be
used for the optimization of the inputs, architecture,
and weights of a NN to improve the power to identify
gene-gene interactions.



Grammatical Evolution
• Evolutionary computation algorithm inspired by

the biological process of transcription and
translation.

• Uses linear genomes and a grammar (set of
rules) to generate computer programs.

• GE separates the genotype from the phenotype
in the evolutionary process and allows greater
genetic diversity within the population than other
evolutionary algorithms.



DNA: The heritable material in GE is the
binary string chromosome.  The GE
chromosome is divided into codons,
undergoes crossover and mutation, and can
contain non-coding sequence just as
biological DNA.

RNA: In GE, the binary chromosome string in
transcribed into an integer string.  This integer
string is a linear copy message of the original
heritable material that can then be processed
further.

Polypeptide String: The integer string is
translated using the grammar provided into
the code for a functional NN.

Protein Folding: The grammar encoding is
then interpreted as a multi-dimensional NN.
This NN produces a classification error, just as
a protein produces a phenotype within an
organism.

Function: In GE a lower classification error
indicates higher fitness.  Natural selection will
work at the level of reproductive fitness,
forcing changes in the heritable material of
both biological organisms or GE individuals.



Step 1: A population of individuals is randomly
generated, where each individual is a binary string
chromosome (genetic material). The number of
individuals is user-specified.

Step 2:  Individuals are randomly chosen for
tournaments – where they compete with other
individuals for the highest fitness, and the
tournament winners get to pass on their genetic
material.

Step 3: Of the winners, user-specified proportions
participate in crossover, mutation, or duplication of
their genomes to produce offspring.

Step 4: When pooled together, these offspring will
become the initial population for the next generation
of evolution.

Steps 1-4 are repeated for a user-specified number
of generations, to produce offspring with the highest
possible fitness.



GE Neural Networks



Example Results
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PECEFactors in ModelCV
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Significance Testing

• Final Model is forced

• Average PE is
calculated

• Permutation testing
is used to ascribe
statistical
significance to the
model

÷
SNP_200 12.58

-2.38

SNP_1

Prediction Error: 15.4% 
p<0.01



Successes of GENN
• High power to detect a wide range of main effect and

interactive models
– Motsinger-Reif AA, Dudek SM, Hahn LW, and Ritchie MD. Comparison of approaches for machine-learning

optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genetic
Epidemiology 2008 Feb 8 [Epub ahead of print]

• Robust to changes in the evolutionary process
– Motsinger AA, Hahn LW, Dudek SM, Ryckman KK, Ritchie MD.  Alternative cross-over strategies and

selection techniques for Grammatical Evolution Optimized Neural Networks.  In: Maarten Keijzer et al, eds.
Proceeding of Genetic and Evolutionary Computation Conference 2006 Association for Computing
Machinery Press, New York, pp. 947-949.

• Higher power than traditional BPNN, GPNN, or random
search NN

– Motsinger AA, Dudek SM, Hahn LW, and Ritchie MD. Comparison of neural network optimization
approaches for studies of human genetics. Lecture Notes in Computer Science, 3907: 103-114 (2006).

– Motsinger-Reif AA, Dudek SM, Hahn LW, and Ritchie MD. Comparison of approaches for machine-learning
optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genetic
Epidemiology 2008 Feb 8 [Epub ahead of print]



Successes of GENN
• Robust to class imbalance

– Hardison NE, Fanelli TJ, Dudek SM, Ritchie MD, Reif DM, Motsinger-Reif AA.   Balanced accuracy as a
fitness function in Grammatical Evolution Neural Networks is robust to imbalanced data. Genetic and
Evolutionary Algorithm Conference. In Press.

• Scales linearly in regards to computation with the
number of variables

– Motsinger AA, Reif DM, Dudek SM, and Ritchie MD.  Dissecting the evolutionary process of Grammatical
Evolution Optimized Neural Networks. Proceedings of the IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology 2006 pp. 1-8.

• Robust to genotyping error, missing data, and
phenocopies

– Motsinger AA, Fanelli TJ, Ritchie MD. Power of Grammatical Evolution Neural Networks to detect gene-
gene interactions in the presence of error common to genetic epidemiological studies.  BMC Research
Notes In Press.



Successes of GENN
• Has higher power in the presence of heterogeneity than

MDR
– Motsinger AA, Fanelli TJ, Ritchie MD. Power of Grammatical Evolution Neural Networks to detect gene-

gene interactions in the presence of error common to genetic epidemiological studies.  BMC Research
Notes In Press.

• The presence of LD increases the power of GENN
– Motsinger AA, Reif DM, Fanelli TJ, Davis AC, Ritchie MD.  Linkage disequilibrium in genetic association

studies improves the power of Grammatical Evolution Neural Networks. Proceedings of the IEEE
Symposium on Computational Intelligence in Bioinformatics and Computational Biology  2007 pp. 1-8.

• Has been favorably compared to other methods in the
field in a range of genetic models

– Random Forests, Focused Interaction Testing Framework,
Multifactor Dimensionality Reduction, Logistic Regression

– Motsinger-Reif AA, Reif DM, Fanelli TJ, Ritchie MD.  Comparison of computational approaches for genetic
association studies.  Genetic Epidemiology  In Press.



Real Data Application:
HIV Immunogenetics

• Applied GENN to the
AIDS Clinical Trials
Group #384 dataset to
identify potential gene-
gene interactions that
predict EFV
pharmacokinetics and
long-term responses.



• Participants from ACTG 384, a multicenter trial that enrolled
from 1998-99.

• Participants were randomized to 3- or 4-drug therapy with
EFV, nelfinavir (NFV), or both EFV plus NFV, given with
ddI+d4T or ZDV+3TC.

• 340 were randomized to receive EFV (± NFV) had genetic
data available.

• 3 years follow up
• Baseline characteristics:

– 83% male
– 50% white, 32% black, 17% Hispanic, 1% other race/ethnicity
– CD4 count 270 ± 220 cells/mm3
– baseline HIV-1 RNA 5.0 ± 0.9 log10 copies/ml

Real Data Application:
HIV Immunogenetics



• Polymorphisms identified in the immune system and
drug metabolism gene

• Outcome of interest:
– CD4 increases in HIV patients undergoing potent

antiretroviral therapy
– <200 CD4 cells/mm3 increase from baseline with 48

weeks of virologic control

Real Data Application:
HIV Immunogenetics



0.54020.4198IL15_87435IL15RA_18856IL2RB_6844CD132_982310

0.48280.4262IL15_87191IL15_4526IL2RB_6844CD132_9823CD132_92769

0.48280.4109IL15RA_19029IL2RB_28628IL2RB_6844IL2RB_6844CD132_98238

0.44830.4160IL2RB_29015IL2RB_29015IL2RB_6844IL2RB_6443CD132_9823CD132_9276IL2_95117

0.58620.4122IL15_4526IL15RA_18856IL2RB_6844CD132_98236
0.42530.4186IL15RA_18856IL2RB_6844IL2RB_6395CD132_98235
0.43680.4173IL15_87710IL15RA_19371IL2RB_6844CD132_9823IL2_93524
0.42270.4140IL2RB_6844CD132_98233
0.40910.4268IL15RA_19411IL15RA_19029IL2RB_6844IL2RB_6844CD132_98232
0.40000.4153IL2RB_6844CD132_98231

PECEFactors in GENN ModelCV

Real Data Application:
HIV Immunogenetics

Avg PE = 32.3%
P<0.02



Real Data Application:
HIV Immunogenetics

IL2 Receptor beta chain
(IL2RB:16491)
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CD4 change 
>200 cells
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CD4 change 
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• Family data
• Both continuous and discrete input and

output variables
– Combine data types

• Empirical studies to aid in NN
interpretation

• Improve computation time and
evolutionary optimization

Future Directions
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Questions?


