Hepatotoxicity Testing

Predictive Strengths and Weaknesses

May 20, 2008

Rich Miller GSK

Hepatotoxicity

Topic Overview

- Scope of problem/background
- Current approaches
 - strengths and weaknesses
- Emerging approaches and potential gap filling opportunities
- Summary/discussion

Scope of Problem

- Drug induced liver injury
 - leading cause of acute liver failure
 - major reason for late stage termination or withdrawal

- > patient impact
- > opportunity cost

Scope of Problem

- Hepatotoxicity detection paradigm
 - preclinical testing

> imperfect filter * (Olson *et al.* Reg.Tox.Pharmacol. 2000;32:56-67, Greaves P, *et al.* Nature Rev Drug Disc. 2004;3:226, others)

> difficulty in detecting impact of modifications, especially if incremental * *

- * however, many true positives discarded
- * * detection endpoints different, databases/assessments very unwieldy

Background

- Liver Structure
 - Lobed with capsule, blood supply arterial and portal, lobular architecture, biliary tree

• Liver Cells

- Kupffer, endothelial, biliary, natural killer (NK), stem (oval), stellate (lipocyte), hepatocyte
- Liver Function
 - Metabolism, detoxification, immune, storage, coagulation, energy, endocrine, bile formation.

Background - structure

- Glandular organ
 - One of the largest in the body

Rat Liver

Background - structure

- Glandular organ
 - One of the largest in the body
- Species differences in size
 - dependency on diet
 - > carnivores; 3- 4% of BW
 - > omnivores; 2% of BW
 - > herbivores; 1% of BW

Rat Liver

Background - structure NORMAL LIVER

Hepatocytes

Background – Morphologic (biochemical/molecular) effect

Centrilobular Hypertrophy PB (CYP2B) = SER

Background – Mechanisms of Toxicity

- Oxidative stress
- Protein synthesis inhibition (multiple levels)
- Macromolecular interactions (reactive metabolites)
- Fluid/ion imbalances
- Calcium shifts
- Mitochondrial respiration, permeability
- Signal transduction

Background – pan-species hepatic effects (concordance)

- APAP
- CCl₄
- **PB**
- St. John's Wort
- Mushrooms

Background - manifestations

How are we missing???

- Subtle (and not so subtle) species and individual variation (patient populations)
 - diet
 - age
 - concurrent medication
 - disease
 - metabolism
 - recreation
 - gender
 - exercise
 - race
 - etc, etc

How/what are we missing??

- Subtle (and not so subtle) species and individual variation (patients)
 - in many cases the differences don't matter (benign effect, adaptation, redundancies, recovery)
 - > how can we decipher those cases where it does matter? Or when there is absolutely no signal in routine endpoints?

...understanding the signal

- Hepatocellular integrity
 - ALT, AST, SDH, GDH, LDH, α GST
- Hepatobiliary (biliary)
 - ALP, *y*GT, 5'Nucleotidase
- Hepatic functional indicators

 bilirubin, bile acids, clearance tests, clotting cascade (APTT, PT), metabolism/secretion (urea, protein, cholesterol, triglycerides)

- As with any biomarker consider...
 - sensitivity
 - specificity (tissue, species)
 - utility in clinical trials/practice
 - physiologic variations (diet, strain, age, diurnal variation, gender, timing of food consumption)
 - value of pre-test assessment (especially if low n)
 - handling (animal, sample)
 - source of specimen

- As with any biomarker consider...
 - timing of sampling relative to known or suspected onset of liver injury

- > half-life
- > severity of effect

- Further considerations;
 - ALT induced by steroids
 - Muscle can be significant source of ALT (particularly primates)
 - AST is in muscle and rbcs (ratio to ALT can be helpful)
 - LDH not very specific, may be falling out of favor
 - ALP is inducible (dog), intestinal form detectable (rat)

- What does it mean?
 - adverse versus physiologic effect/induction
 - > integrated interpretation
 - } concordant clinical pathology endpoints
 - } anatomic pathology data
 - } exposure
 - } previous experience
 - } chemical/target knowledge
 - } injury or other effect in other tissues with relevant enzymes

- Species differences
 - in rat; intestinal form of ALP is major constituent
 - in dog; bilirubin readily excreted in urine
 - in human; ALT half life much longer than rat
 - in dog; corticosteroid inducible form of ALP (stress rather than hepatic injury)

Hepatotoxicity

- Chemical, species, and individual specific mechanisms
 - suggests multiple approaches needed to enhance predictivity

What can be done?

- Extract more from routine approaches
 - e.g., transcriptomics, other biomarkers, imaging
- Supplemental approaches
 - in vitro
 - > cell systems, enzymes, GSH trapping, CYP inhibition, mitochondrial assays, transporters
 - in vivo
 - > LPS, Transgenics/KO (CYP), GSH depletion
- Further understand the patients
 - steatosis
 - pharmacogenomics

Routine endpoints	
Clinical Chemistry	Histopathology
↑ ALT	Necrosis
Bilirubin	Biliary effect
?	Hypertrophy
[↑] ALP	Cholestasis
?	Vacuolation

Ρ

Enhancing Liver Effect Predictivity

- Objective
 - apply novel and conventional technologies to create assays/tools that enhance decision making capability in non-clinical safety

assessment

- Expectation
 - better markers of safety in use
 - better problem solving tools in place

Strategy

Modification to Holistic 'omic' Approach

HepatoTaq[™]: Rat Liver Gene Panel

16 specifically focused subpanels Each subpanel has its own set of genes (4-18 genes per subpanel) and interpretative guidance

Manifestations

of Hepatotoxicity

- Hepatic Fibrosis
- Hepatic Phospholipidosis
- Hepatocellular Apoptosis
- Zonal Hepatocellular Necrosis
 - Hepatocellular Cell Cycle
- Cholestasis
- Biliary Hyperplasia
- Hepatic Peroxisome Proliferation
- Acute Phase Response

Potential Modes of

Hepatotoxicity

- Glutathione Depletion
- Lipid Peroxidation/ Mitochondrial Dysfunction
- Reactive Metabolites
- AhR-type inducer
- PXR-type inducer
- CAR-type inducer
- Increased Hepatic Thyroid Hormone Clearance

Understanding the signal

- Biliary effects
 - degeneration (probably not good)
 - hyperplasia (good or not good?)

Understanding the signal

- Biliary effects
 - degeneration (probably not good)
 - hyperplasia (good or not good?)
 - > response to previous biliary cell injury
 - > response to hepatocellular injury
 - > mitogenic response
 - > aging change (background lesion)
 - > cholestasis

Acute Response of Biliary Epithelium to ANIT-induced Injury

- Model toxicant
- SD rats
- 50 mg/kg ANIT orally, once
- 2, 6 and 48 hr time points

Acute Response of Biliary Epithelium

- Study designed to address cell specific response to bile duct toxicant
- Combine LCM with microarray analysis to analyze specific cell populations
 - novel approach to evaluate biliary toxicity
 - acquire baseline gene expression data for biliary epithelium
 - time course to characterize acute response versus repair/progression

Histopathology

Laser Capture Microdissection

Selected large rat bile ducts only >15 µm (Marzioni et al. 2002, Seminars in Liver Disease)

Biliary cell analyses/results

- LCM
- Gene array
 - Biliary cell gene expression alterations occurred prior to onset of clinical and anatomic pathology changes
 - > heat shock protein
 - > oxidative stress
 - > protein folding/Ubiquitination
 - > ER stress response genes

Heat shock chaperones

Proteasomal Genes in Protein Ubiquitination Pathway

Potential Application

- IHC or ISH in practice
- Gene panel

> add to weight of evidence

Understanding the signal

- Immunologic effects
 - many hepatotoxicities in people have immunologic component
 - very few hepatotoxicities in preclinical species have an immunologic component (we think!)
 - > could this be "better" adaptation in preclinical models (and can we detect it?)? } IL-6, IL-17, Th17 (penicillamine model)

- Difficulty and complexity of hepatotoxicity requires a multi-faceted approach
 - Biologic rationale for additional endpoints or assays may be sufficient to employ
- Further data/experience sharing
- Further collaborative research
- Bridge preclinical clinical knowledge

ACKNOWLEDGMENTS

Brenda Faiola, Holly Jordan, Greg Falls, Beth Romach, Roger Brown, Neal Cariello, Julie Holder, John Cullen, Daniela Ennulat, Lawrence Yoon, Rick Hailey, Chris Hunt