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From Data to Models: What is it?
Disclaimer: this a rather philosophical discussion so I would not necessarily spend too 

much time thinking about this page. However, it may be useful to set the stage 

From Data to Petterns
• It is an undeniable fact that data is everywhere and we have to do 

something with it … not sure what sometimes
- Beer and nappies – A data mining urban legend

• The idea of collecting, annotating, warehousing, and analyzing data for 
the purpose of unraveling possible patterns has been extensively 
discussed and will not be part of this talk

From Data to Models
• A pattern is simply a coincidence or a potentially useful observation, if 

repeated at a very high rate, unless it can be interpreted using
available laws or can be used to develop new laws that explain old 
behaviors and predict new

- Warning: This is an expression of my personal bias
• The model is a quantification, not necessarily in closed form, of a law
• Actions  and testable hypotheses in science and engineering are better 

designed with models rather than “knowledge”



What’s in a Pattern?

Post-doc MTS

After I left the company …

Informatics and Knowledge 
Capitalization Program Leader

www.finance.google.com



Complexity and emergence are old concepts, 
so why this suspicious interest?

Technological advances allowed the handling 
of overwhelming amounts of data

• Subsurface Imaging; GIS; Fraud 
Detection; HDHA; Oilfield Sensors

Complex systems require better management

From Data to Models: Why Now?



Two major innovations opened up major opportunities
• Decoding of the (human) genome State space definition
• High-throughout experimentation Measurement of coordinated changes

The system can be “systematically” probed and reverse-engineered to develop 
hypotheses for the next perturbation

Courtesy of Dr. A. DeMaio
Johns Hopkins University

in silico Biology ?



A Prototypical  Example: Systems Biology 

Basic module

Systems of modules

Networks of systems

Biological systems propagate 
external perturbations across 
a complex network of 
interacting elements



From Data to Models:
Some Important Problems

Which of the features capture the structure in the 
data?

Which of the samples increase the information 
content of the data?

Which of the modules are important?
Which of the interactions among the modules are 

important?
How are biological systems organized in the form 

of complex networks?
How can we develop models that explain the 

propagation of disturbances through the 
interaction of modules giving rise to observed 
emerging behaviors?

In this talk
• How to use computational thinking
• This is not a comprehensive review
• This is not the end of the story



High-throughput Measurement of Gene Expression



Feature Selection and Model Complexity
Oblique Multicategory Decision Tress

High dimensional spaces probably 
include redundant, i.e. 
uninformative, features

Formalize concept of model complexity
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Feature Selection and Model Complexity
Oblique Multicategory Decision Tress

CAV1: cell cycle dysregulation, 
key tumorigenesis component

NF2: key component in 
tumor formation, regulation 
of cell proliferation

SGCA, CD99, AF1Q: known to 
be involved in carcinogenesis



Sample Selection to Improve Clusterability

• Hypothesis: the more similar the promoter regions, the higher the 
possibility of coregulation

Promoter sets 
of clusters
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Sample Selection to Improve Clusterability
Consensus Clustering

Traditional clustering assumes that all 
samples must belong to classes

We explore the hypothesis that not 
all data should be clusterable but 
that a subset exists composed of 
all the pairs of samples that show a 
higher probability of either

• Belonging to the same cluster, 
or

• not belonging to the same 
cluster 

This “clusterable” subset of samples 
can potentially have a high 
probability of being relevant in 
terms of a coherent response

original dataset

Select a suggestive 
number of clusters

Build 
the agreement matrix

Gene selection

Consensus clustering

Cluster selection

Measure accuracy
by Randidx



Sample Selection to Improve Clusterability
Consensus Clustering

Sample selection



Synthesis and Analysis of Regulatory Networks

Transcriptionally regulated responses can be controlled by appropriate 
manipulation of critical putative targets
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Structurally Equivalent Modules of Regulatory 
Control

Knock-out experiments have demonstrated that equivalent structural alternatives 
are available to the cell largely contributing to the apparent robustness of 
biological systems, Kitano, Nature (2004)

Integer cuts allow for the systematic generation of potentially equivalent 
structural alternatives

Target gene Interchangeable TFs



Network Reconstruction
Overlapping Biclustering

Genes 

Conditions

A

B

C A B= ∩



Network Reconstruction
Overlapping Biclustering
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Network Quantification
Deconvolution of Dynamics
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Intrinsic Dynamics and Essential Responses
Clustering & Selection in Multidimensional Temporal Data
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Intrinsic Dynamics and Essential Responses
Clustering & Selection in Multidimensional Temporal Data
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Combining tissue -specific 
transcriptional dynamics 
and PBPK models 

Global Dynamic Models
Exploring Global Transcriptional Dynamics

TISSUE

BLOOD

TNF

N N*b

N*

TNFb

TNF and TNFb causes 
changes in tissue, 
which alerts N* to the 
infection.

Alveolus
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c
ATD c

TADh
ATD h

TAD

h
BTD c

TBD c
BTDh

TBD
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BT TB BT TBD D D D, , , are functions of TNF

Hb high and Gb low



Extracting dynamics 
from liver microarray
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Global Dynamic Models 
Exploring Global Transcriptional Dynamics



Reverse Engineering of Mechanistic-based Models

Pro–inflammatory 
Response 

Anti–inflammatory Response 
Resolution of inflammation

Energetic Response 
Cellular bioenergetics



Reverse Engineering of Mechanistic-based Models
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Reverse Engineering of Mechanistic-based Models
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Reverse Engineering of Mechanistic-based Models

Enlarge the operating envelope 
based on available experimental data
Iterative process which improves 
model through the validation of 
rationally generated hypotheses

Intervention

Extracted intrinsic
responses

External signal Propagation of signal 
Dysregulation of response



Case Study I: in utero exposure to Dibutyl Phthalate (DBP)

E,PD,T (6)
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 CP:  Xenobiotic Metabolism Signaling
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- 18 hour - 6 hour - 3 hour - 1 hour Dose Durations

High
Low

Metabolic pathways grow into metabolic 
networks; DBP affects cholesterol biosynthesis 
before steroid hormone biosynthesis 

Gene networks allow us to predict putative TF’s

Case Study II: Triazole Conazole Fungicides

Colorectal cancer

Apoptosis

Phosphatidylinositol s ignaling system

Axon guidance

Glycan structures
C21-Steroid hormone metabolism

Hedgehog signaling pathway

Taste Transduction

Glycerolipid metabolism
Long-term depression

Parkinson's disease

Protein export

Ethylbenzene degradationN-Glycan biosynthesis

Notch s ignaling pathway

Insulin s ignaling pathway

Oxidative phosphorylation

Thyroid cancer

Alkaloid biosynthesis II
Biotin metabolism

Caprolactam degradation

Inositol phosphate metabolism
Basal transcription factors

Reductive carboxylate cycle 

Hematopoietic cell lineage

mTOR signaling pathway

Tight junction

Aminosugars metabolism

Glyoxylate and dicarboxylate metabolism

Glycosylphosphatidylinositol

PROP TRIA

Myclobutanil vs. Triadimefon
Myclobutanil vs. Propiconazole

Non-Tumorigenic vs Tumorigenic

Phylogenetics: Cross-species Extrapolation of MoA

Cross-species promoter conservation Cross-species pathway similarities

Annals of Biomedical  Eng., 2006; unpublished data, 2007

Steroidogenesis in rat, mouse and human

Corticosteroid response in rats

Arsenic Exposure – Zebra Fish
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ebCTC – An Integrative Approach

The focus today was on only one 
aspect of the activities taking place 
at ebCTC

We have a well-integrated network of 
interactions

• Physiomics, Toxicokinetics and 
Toxicodynamics –
Georgopoulos

• Systems Level – Androulakis
• Proteomics , Metabolomics 

and Metabolic Engineering –
Floudas, Ierapetritou

• Bio-network Modeling and 
Dynamics – Rabitz

• Receptors and Molecules -
Welsh
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Summary and Outlook
A systems approach to toxicogenomics allows the integration of multiple data sources in 

an attempt to place interpretation of experimental observations in a reasonable 
context

One the most challenging, yet promising, outcomes would be higher level models that 
allow developing associations and hypotheses

The examples and methodologies presented emphasized:
• Essential responses and PBPK models
• Context-specific regulators and controls
• Combining expression and relational data
• Cross-species extrapolations of MoA
• Metabolic context of expression data

Main conclusions: Significant opportunities related to optimization and modeling of 
complex systems and need for high-throughput data generation (multiple 
disturbances, time course data)

The wish list is well defined (data, promoters, annotations etc.). What we need to 
promote is the attitude that systems biology is a hypothesis generation framework 
closely interacting with and guiding experimental design rather that a test bed for 
algorithm development or software development



Possibilities and Limitations

Despite being in the genomics-era we are still seriously data limited
• We may have more analytical and computational capabilities that we 

have data …

Initiatives such as ToxCastTM (www.epa.gov/ncct/toxcast) can have 
significant impact

Relevant data is a critical enabler for any future success
• Relevant in terms of significance
• Relevant in terms of resolution

These activities should embrace and foster close collaboration 
between scientists and engineers with diverse background
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