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Computer Aided Systems Laboratory

Research
Areas

Product & Process Systems Engineering   

Computational Biology & Genomics

Interface

• Chemical Engineering 
• Applied Mathematics
• Operations Research
• Computer Science
• Computational Chemistry
• Computational Biology

Unified Theory
and Research

Philosophy

• address fundamental problems and applications via mathematical
modeling of microscopic, mesoscopic and macroscopic level

• rigorous optimization theory and algorithms
• large scale computations in high performance clusters

Themes

Mathematical Modeling, Optimization Theory & Algortihms

Discovery at the Macroscopic Level                              

Discovery at the Microscopic Level                              
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Discovery at the Microscopic Level

Computational Biology and Genomics

Computational
Tools

• Structure Prediction in Protein Folding
• Secondary Structure
• Tertiary Structure

• Structure Refinement for NMR
• Dynamics of Protein Folding
• Protein-Protein Interactions
• De Novo Protein Design
• Topology of Signal Transduction Networks

and Metabolic Pathways
• Proteomics: Peptide & Protein Identification

Computer Aided Systems Laboratory



4

DNA
(genome)

RNA
(transcriptome)

Metabolic and Signal Transduction Networks

Protein - Ligand

Protein - Protein

Nucleic Acid - Protein

Design of Drugs 
and Inhibitors

Feedback

Nucleus

Cell

Phenotype

Protein
(proteome)

REVOLUTION OF GENOMICS



5

Computational Biology and Genomics
Structure Prediction in Lennard-Jones Clusters & Acyclic Molecules (90-95)

Structure Prediction in Protein Folding (95-)

Dynamics in Protein Folding (96-00)

Force Field Development (01-)

De Novo Protein Design (01-)

Protein-Peptide Interactions (95-03)

Metabolic and Signal Transduction Networks (95-)

Proteomics: Peptide & Protein Identification (05-)
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Computer Aided Systems LaboratoryComputer Aided Systems Laboratory

Professor Christodoulos A. Floudas – PI

CASL Members:

Scott R. McAllister, Ashwin Subramani – protein structure prediction
Ho Ki Fung, Meghan Bellows – de novo protein design
Rohit Rajgaria – high-resolution force field development
Peter A. DiMaggio – peptide and protein identification
Meng Piao Tan – signal transduction pathways

http://titan.princeton.edu

All components are aimed towards the development of 
optimization tools for in optimization tools for in silicosilico proteomicsproteomics
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Proteomics: Peptide and Protein Identification
via Tandem Mass Spectroscopy
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ProteomicsProteomics

Specific Aim 1:Specific Aim 1: Investigate and develop a de novode novo computational 
approach for peptide identification based exclusively on information of 
the ion peaks in the peptide spectrum

Specific Aim 2:Specific Aim 2: Study and develop a new hybridhybrid in silico method 
which will combine the de novo approach of Specific Aim 1 with 
database techniques for peptide identification

Specific Aim 3:Specific Aim 3: Incorporate uncertaintyuncertainty into the de novo framework 
to address experimental uncertainty in problem parameters

Specific Aim 4:Specific Aim 4: Study and develop computational methods for 
protein identificationprotein identification given the de novo prediction and/or hybrid 
prediction of the individual peptides

Specific Aim 5:Specific Aim 5: Research and develop computational methods and 
experimental protocols for protein quantificationprotein quantification
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Problem Definition and IntroductionProblem Definition and Introduction
Fundamental problem in proteomics: 

Protein and peptide identification and quantificationProtein and peptide identification and quantification

Advances in highhigh--throughputthroughput experimentation  

High-performance liquid chromatography (HPLCHPLC) coupled with   
tandem mass spectrometry (MS/MS)

Need for rigorous computational toolsrigorous computational tools for peptide/protein identification

Mass spec facilities at Princeton University
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Peptide & Protein Identification Peptide & Protein Identification 
via Tandem MSvia Tandem MS

• Database-based methods
• Correlate the experimental spectra with spectra 
of peptides/proteins which exist in the databases

• SEQUEST – Eng et al. (1994), Mascot – Perkins et. al (1999), SCOPE –
Bafna and Edwards (2001), MS-CONVOLUTION and MS-ALIGNMENT –
Pevzner et. al (2001), Poptiam – Hernandez et. al (2003)

• De Novo Methods
• Predict peptides without sequence databases
• Exhaustive listing; sub-sequencing; graphical
• Graph theory and shortest path algorithms
• Graph theory and dynamic programming
• Bayesian scoring of random peptides
• Lutefisk – Taylor and Johnson (1997,2001),  SHERENGA – Dancik et. al 
(1999), PEAKS – Ma et al. (2003),  NovoHMM – Fischer et al. (2005), 
PepNovo – Frank and Pevzner (2005),  EigenMS – Bern and Goldberg (2006)
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ChallengesChallenges

• Tandem MS are missing ion peaksmissing ion peaks due to incomplete incomplete 
fragmentationfragmentation and/or instruments with low mass-to-
charge ratio (m/z) cutoff (i.e., ion trap mass analyzers)

• Incorporating parametric uncertaintyuncertainty in the measured 
values for ion peaks during peptide identification

• Existing de novo techniques enumerate an exhaustive exhaustive 
number of candidate sequencesnumber of candidate sequences from the tandem mass 
spectrum 

• No straightforward method for including postpost--
translational modifications translational modifications into existing frameworks
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ObjectiveObjective:

Use these fragment ions to predict the amino acid sequence of 
the parent peptide

Tandem MS/MSTandem MS/MS

*Adapted from http://www.matrixscience.com/help/fragmentation_help.html

CollisionCollision--induced dissociationinduced dissociation (CID) causes a positively-charged 
peptide to fragment along its backbone and results in many types of 
fragment ionsfragment ions in the tandem mass spectrum (i.e., a, b, c, x, y, x, etc.)

IssuesIssues: Identifying ion types in the mass spectrum is nontrivial

Hypothetical 
parent peptide*
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Introduction to De Novo Peptide IdentificationIntroduction to De Novo Peptide Identification

Given the tandem mass spectrum (MS/MS) of 
a peptide, derive the primary sequence of the 
peptide without consulting other sources of 

information (i.e., protein databases)

The De Novo Peptide Identification Problem:The De Novo Peptide Identification Problem:

YLYKNAR

YLFPMTR

YLYELAR

YFEELAR

YEYLLAR

YLYKKGR

YFEKNAR

YLY[171.06]AAR

QQ: Which of these possible 
primary sequences 

corresponds to the correct 
peptide?

Derive candidate sequences by 
connecting the ion mass peaks by the 

weights of amino acids

mass-to-charge ratio
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Traditional De Novo MethodsTraditional De Novo Methods

Spectrum Graph ApproachSpectrum Graph Approach**

Solve via dynamic programmingdynamic programming

Nodes assigned probabilistic weights

Highest scoring path is selected
mass-to-charge ratio

* Taylor and Johnson (1997,2001), Dancik et. al (1999), Fernandez de Cossio et. al (2000), Chen et. al (2001), Lubeck et. al (2002), Cannon and Jarman
(2003), Chen and Bingwen (2003), Jarman et. al (2003), Frank and Pevzner (2005), Bern and Goldberg (2006)

paths on the graph =                                            
amino acid sequences

Transform tandem MS/MS into 
a spectrum graphspectrum graph, where:
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Database MethodsDatabase Methods

Raw Tandem MS/MS for 
YLYEIAR

Predicted* 
YLYEIAR

Predicted* 
YLYQNVK

Predicted* 
NRIISLLV

Which predicted predicted spectrum matches the 
experimental spectrum under question?

MP = 926.45 Da

Peptides From Protein Database

*Predicted spectra generated with MassAnalyzer 1.03
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Database Methods (contDatabase Methods (cont’’d)d)
CrossCross--CorrelationCorrelation (e.g., SEQUEST*)

Experimental Spectrum x Predicted Spectrum y

Displacement value Discrete Fourier Transforms

Determine 
“mathematical 

overlap”

*Eng et. al (1994)

Overlay of x & y
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Probabilistic Matching*Probabilistic Matching* (e.g., Mascot, SCOPE) 

Predict primarily y- and b-ions, and their offsets, based on the following formulae:

Q: Is ion matchmatch with experimental spectrum
Actual?

Random?

“A”: Likelihood ratioLikelihood ratio hypothesis testhypothesis test (Bafna and Edwards (2001),          
Havilio et. al (2003))

Null hypothesisNull hypothesis (Sadygov and Yates (2003))

Integration of spectral dependencies into model (Bafna and 
Edwards (2001), Havilio et. al (2003))

Empirically estimated probabilities
*Perkins et. al (1999), Bafna and Edwards (2001), Pevzner et. al (2001), Havilio et. al (2003), Hernandez et. al (2003), Sadygov and Yates (2003) 

Database Methods (contDatabase Methods (cont’’d)d)
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Drawbacks of Existing MethodsDrawbacks of Existing Methods

De Novo MethodsDe Novo Methods

Database MethodsDatabase Methods

False predictionsFalse predictions if missing protein in database

Difficult to identify post-translational modifications / mutationsmodifications / mutations

Often exhibit dependenciesdependencies on training data sets and 
databases

Exhibit variable prediction accuraciesaccuracies

Computationally intensiveintensive exhaustive enumeration

Many are instrument dependent
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Our Approach to Solve Peptide theOur Approach to Solve Peptide the
Identification ProblemIdentification Problem

Novel TechniqueNovel Technique: Using MixedMixed--Integer Linear OptimizationInteger Linear Optimization (MILP) to 
formulate the peptide sequencing problem

Binary variablesBinary variables {0-1 variables} define whether or not peaks (pi) and 
paths between peaks (wij) are used in the construction of the candidate 

sequence, where 1 indicates yes and 0 indicates no

P.A. DiMaggio and C.A. Floudas, AIChE Journal, 53(1), 160-173 (2007).
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Algorithmic OverviewAlgorithmic Overview

I. PreprocessingPreprocessing of       
Tandem MS Data

II. Mathematical ModelMathematical Model for 
Peptide Identification

III. PostprocessingPostprocessing of        
Candidate Sequences

Components of Framework:
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I. Preprocessing AlgorithmI. Preprocessing Algorithm
Determine the boundary conditionboundary condition (BCtail) for the NN--terminusterminus of the y-ion series 

For tryptictryptic peptides, 

CC--terminus terminus amino acid is

Identify multiply-charged ions

Identify neutral lossesneutral losses of

small molecules 

i.e., -H2O,  -NH3, etc.

KK 147 Da

RR 175 Da

High-resolution instrument?

Measure distance between isotopesisotopes

tail

tail

Threshold = 0.1* Maximum intensity peak in spectrum
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II. Mathematical Model: II. Mathematical Model: Objective FunctionObjective Function

Illustration using the yy--ionion series for 
YLYELAR

mass-to-charge ratio

Maximize the use of high intensity 
peaks in constructing the candidate 
sequence

Based on the observation that yy--
and bb--ionsions are consistently the most 
abundant peaks in intensity in MS/MS
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II. Mathematical Model: II. Mathematical Model: ConstraintsConstraints

Conservation of MassConservation of Mass

Boundary Conditions (BC)Boundary Conditions (BC)

Complementary IonsComplementary Ions

tolerance “relaxes” equality

BC elements are dependent on ion type

BC elements are checked in a
preprocessing algorithm

If elements missing then BC set is adjusted

b             y
a             x
c             z

Eliminates 
different ions of 
different type
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II. Mathematical Model: MILPII. Mathematical Model: MILP

Relationship 
between pi & wi,j

Flow conservation lawFlow conservation law

P.A. DiMaggio and C.A. Floudas, AIChE Journal, 53(1), 160-173 (2007).
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II. TwoII. Two--Stage FrameworkStage Framework

During the Stage IStage I calculations, 
the derivation of the candidate 
sequence is done using only 
single amino acid weightssingle amino acid weights

It is common that tandem MS are missing ion peaksmissing ion peaks due to 
incomplete fragmentation and/or instruments with low m/z
cutoff (i.e., ion trap mass analyzers)

Stage IIStage II calculations allow for combinations of amino acidscombinations of amino acids
to connect ion peaks

Combinations of amino acids are penalized in objective penalized in objective 
functionfunction to bias use of single amino acid weights in derivation 
of candidate sequences
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III. PostIII. Post--Processing AlgorithmProcessing Algorithm

Amino acid permutations substituted for weightsweights in 
candidate sequences from Stage II calculations

No current models exist for accurate prediction of ion 
intensity trendsintensity trends as a function of peptide composition for 
generalized mass analyzers

Assume normalized intensity distribution + reward reward / / 
penaltypenalty based on observation/absence of supporting 
ions

Cross-correlate of all theoreticaltheoretical mass spectra of 
candidate peptide sequences with experimentalexperimental
tandem mass spectrum
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De Novo Framework: De Novo Framework: PILOTPILOT

Peptide identification via Integer Linear Optimization and Tandem mass spectrometry
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Illustrative Example for PILOT: Illustrative Example for PILOT: DAFLGSFLYEYSRDAFLGSFLYEYSR

C-terminal amino acid R peak at 175 Da

N-terminus boundary 
conditions, BCtail

DA, AD, SV, VS, EG, or GE 
no supporting yn-1 ion

Preprocessing AlgorithmPreprocessing Algorithm

Adjust BCtail m/z(yn-2 ion) = 1381.69 Da

Candidate Sequence Objf

F(L/I)GSF(L/I)YHGANR 2.9850

F(L/I)GSF(L/I)YHAGNR 2.9674

F(L/I)GSF(L/I)YQHNR 2.9499

F(L/I)GSF(L/I)YHQNR 2.9374

F(L/I)GSF(L/I)YEYSR 2.8547

F(L/I)GSF(L/I)YEH(L/I)R 2.7544

F(L/I)GSF(L/I)YE(L/I)HR 2.7444

F(L/I)GSF(L/I)YYESR 2.6968

F(L/I)GSF(L/I)YYTDR 2.6391

Candidate Sequence Objf

F(L/I)GSF(L/I)Y[194.06]ANR 2.8323

F(L/I)GSF(L/I)Y[208.10]GNR 2.8148

F(L/I)GSF(L/I)Y[265.12]NR 2.7847

F(L/I)GSF(L/I)[172.04]QGANR 2.6501

F(L/I)GSF(L/I)[171.04]EGANR 2.6501

F(L/I)GSF(L/I)[171.04]SVANR 2.6351

F(L/I)GSF(L/I)[171.04]GEANR 2.6351

F(L/I)GSF(L/I)[171.04]DAANR 2.6351

F(L/I)GSF(L/I)[172.04]NAANR 2.6351

Stage I SequencesStage I Sequences Stage II SequencesStage II Sequences

PostProcessingPostProcessing:: DAFLGSFLYEYSRDAFLGSFLYEYSR

P.A. DiMaggio and C.A. Floudas, AIChE Journal, 53(1), 160-173 (2007).

Filtered spectrum

Identified peaks

Integer cuts

Stage I sequences

All 
sequences

Raw 
MS/MS 
spectrum

X = high confidence residue

X = low confidence residue
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Comparative StudyComparative Study
To benchmark the performance of PILOTPILOT, we tested it on 
several tandem mass spectra from

Quadrupole time-of-flight spectra, QTOF (higher resolution)

Ion trap spectra (lower resolution, low m/z cutoff)

and compared the predictions to other state-of-the-art
de novo methods, namely:

Lutefisk, LutefiskXP – J.A. Taylor and R.S. Johnson, Anal. Chem., 73, 
2594-2604 (2001).

PEAKS – B. Ma et al., Rapid Commun. Mass Spec., 17, 2337-2342 (2003).

NovoHMM – B. Fischer et al., Anal. Chem., 77, 7265-7273 (2005).

PepNovo – A. Frank and P. Pevzner, Anal. Chem., 77, 964-973 (2005).

EigenMS – M. Bern and D. Goldberg, J. Comp. Biol., 13(2), 364-378 (2006).
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Open Proteomics DatabaseOpen Proteomics Database*: contains MS/MS spectra for 5 
different organisms recorded with ESIESI--Ion TrapIon Trap mass spectrometers

Mass spectra accompanied with predictions from SEQUESTSEQUEST

Assignments examined on individual basis for quality

Organism studied:  Mycobacterium smegmatis

Which identifications are correct?

1.1. XcorrXcorr > 2.2 and ΔΔCnCn > 0.1 for +2 charge state

2. Consistent identification with MascotMascot

3. Number of observed b and y ions
Number of predicted b and y ions

*http://bioinformatics.icmb.utexas.edu/OPD/

Comparative Study: Ion Trap MS/MSComparative Study: Ion Trap MS/MS

XcorrXcorr = cross correlation = cross correlation 
score computed by score computed by 
SEQUESTSEQUEST

ΔΔCnCn = normalized = normalized 
difference in crossdifference in cross--
correlation value correlation value 
between #1 and #2 hit  between #1 and #2 hit  
in the searchin the search
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Comparative Study: Ion Trap MS/MSComparative Study: Ion Trap MS/MS

P.A. DiMaggio and C.A. Floudas, Anal. Chem., 79, 1433-1446 (2007).
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Comparative Study: Ion Trap MS/MSComparative Study: Ion Trap MS/MS

P.A. DiMaggio and C.A. Floudas, Anal. Chem., 79, 1433-1446 (2007).
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Comparative Study: QTOF MS/MSComparative Study: QTOF MS/MS

Quadrupole time-of-flight (QTOF) spectra have better 
resolutionresolution that ion trap spectra   

Examined QTOF data for a mixture of 4 known proteinsknown proteins*:

Spectra were assessed for qualityquality based on the metric:

Alcohol dehydrogenase (yeast)

Myoglobin (horse)

Albumin (horse, BSA)

Cytochrome C (horse)

*http://www.csd.uwo.ca/~bma/peaks/

(λi = intensity of ion peak i)
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Comparative Study: QTOF MS/MSComparative Study: QTOF MS/MS

P.A. DiMaggio and C.A. Floudas, Anal. Chem., 79, 1433-1446 (2007).
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Comparative Study: QTOF MS/MSComparative Study: QTOF MS/MS

P.A. DiMaggio and C.A. Floudas, Anal. Chem., 79, 1433-1446 (2007).



36

Hybrid Approach for Peptide IdentificationHybrid Approach for Peptide Identification

In de novo predictions – incomplete fragmentationincomplete fragmentation can 
yield regions of ambiguity in peptide sequence 

Utilize proteinprotein databasedatabase to validate amino acid 
assignments to subsequences of low confidence

FASTAFASTA* – tool for locally aligning a peptide query with 
the protein sequences in a database

Modify traditional scoring matrices (i.e., BLOSUM or 
PAM) to emphasize mass conservation instead of 
evolutionary distance

301 CCDKPVLEKS HCIAEVDKDA VPENLPPLTA DFAEDKEVCK NYQEAKDVFL GSFLYEYSRR

DAFL GSFLYEYSR

HPEYAVEGLLR
??

mass(EG) = mass(SV) = mass(DA) = mass(W) = 186 Da

*W.R. Pearson and D.J. Lipman, PNAS, 85, 2444-2448 (1988).
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Hybrid Approach for Peptide Identification  Hybrid Approach for Peptide Identification  
Parallel ImplementationParallel Implementation

Beowulf ClusterBeowulf Cluster : 80 nodes with dual Intel Xeon 3.0 GHz processors
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Hybrid Results for QTOF SpectraHybrid Results for QTOF Spectra

Presented are the 38 QTOFQTOF
spectra accompanied by the best 
de novo and hybrid predictions

Recall the de novode novo method 
correctly identified 25 peptides 

The hybridhybrid method correctly correctly 
identifies 36 peptidesidentifies 36 peptides

Table continued
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ConclusionsConclusions

Developed accurate de novode novo and hybridhybrid framework, 
PILOTPILOT, for the identificationidentification of peptidesof peptides via tandem 
mass spectrometry (MS/MS)

PILOTPILOT outperformed several state-of-the-art de novo 
methods in a comparative studycomparative study for ion trap and QTOF 
tandem mass spectra. 

Key elementsKey elements of proposed method:
Novel mixed-integer linear optimization (MILP) 

formulation for peptide identification

Preprocessing algorithm for filtering spectra and 
identifying important ion peaks

Post-processing algorithm for cross-correlating 
theoretical tandem mass spectra with experimental 
tandem mass spectrum
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Preliminary studies validate prediction enhancements 
by integrating parametric uncertaintyparametric uncertainty into de novo 
framework

Enhance performance of hybridhybrid peptide identification 
method which combines the strengths of the proposed 
de novo method and protein database search algorithms

Incorporation of postpost--translational modificationstranslational modifications into 
current framework

Create workbenchworkbench to make PILOT available to the 
scientific community

Future DirectionsFuture Directions……
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