electe

environmental bioinformatics Computational Toxicology Center

Introduction and Overview

William Welsh, Center Director Panos G. Georgopoulos, Center Associate Director

Consortium Members

Computational Chemodynamics Laboratory, Environmental & Occupational Health Sciences Institute Department of Environmental & Occupational Medicine Department of Pharmacology Informatics Institute

Department of Biomedical Engineering Department of Chemical & Biochemical Engineering Department of Environmental Sciences Department of Statistics

Computer Aided Systems Laboratory, Department of Chemical Engineering Department of Chemistry

Program in Applied and Computational Mathematics

Center for Toxicoinformatics, National Center for Toxicological Research

elcTC workplan

Objectives and General Approach

Objectives

- To address, in a systematic and integrative manner, multiple elements of the toxicant *Source-to-Outcome sequence (Investigational Area I)* through the development of an integrated, modular, computational framework
- To develop predictive cheminformatics tools for toxicant characterization and Hazard Identification (Investigational Area II)
- To demonstrate the above tools through applications in *Quantitative Risk* Assessment (Investigational Area III)
 - particular emphasis will be on methods that quantify and reduce uncertainties

General Approach

- A computational/engineering/systems perspective
 - team of computational scientists and engineers, with diverse backgrounds in bioinformatic, cheminformatic and enviroinformatic applications
- The new framework and tools will build upon an extensive base of past developments
- The research effort will emphasize interaction and collaboration
 - with existing centers and laboratories at the ebCTC investigators institutions
 - with USEPA centers and laboratories (internal and external)

Research activities of proposed effort will be organized in 5 projects

- Each project will develop a set of "stand-alone" components addressing specific CT problems
- Research Project 1 will provide an integrative framework for Investigational Area 1
- Project 4 will address the core issues of Area 2

Some Background Information

MENTOR & DORIAN Address the Source-to-Outcome Continuum

ebCTC: environmental bioinformatics and Computational Toxicology Center

DORIAN: DOse-Response Information Analysis system

The physiologically based toxicokinetic modules in MENTOR aim to characterize cumulative and aggregate exposure, uptake and target tissue dose

Application of MENTOR/SHEDS-4M for combined Arsenic (III) and Trichloroethylene (TCE) population exposure and dose calculation: NHEXAS-V Case Study

Comparison of cumulative distributions of total arsenic amount in urine from MENTOR/SHEDS-4M calculations and measurements from the NHEXAS study for 6 age groups in Franklin County, OH

SHEDS: Stochastic Human Exposure and Dose Simulation

Calculated profiles of liver doses of Arsenic and TCE from a 14 day hypothetical repeated exposure for a 27 year old female

Integrated Approach

Structure-based Design

Ligand-based Design

Shape Signatures Tool

elCTC workplan

overview

From Molecules to Mechanism

Shape Sigs PDB Ligands

- http://www.genome.ad.jp/kegg/metabolism.html
- EMP Enzymes and Metabolic Pathways:
 - http://emp.mcs.anl.gov/
- WIT Metabolic Reconstruction:
 - http://wit.mcs.anl.gov/WIT2/
- UM-BBD Microbial Biocatalysis/Biodegradatation:
 - http://umbbd.ahc.umn.edu/
- EcoCyc E. coli Genes and Metabolism:
 - http://www.ecocyc.org/
- Metalgen Genes and Metabolism:
 - http://indigo.genetique.uvsq.fr/
- Boehringer Mannheim Biochemical Pathways:
 - http://www.expasy.org/cgi-bin/search-biochem-index

Investigational Area 1 – Research Project 1: Development and Application of the DORIAN System

Dr. Panos Georgopoulos, P.I.,

Director, Computational Chemodynamics Laboratory Co-Director, Center for Exposure and Risk Modeling *Environmental and Occupational Health Sciences Institute (EOHSI), a joint institute of UMDNJ-RWJ Medical School and Rutgers University Department of Environmental and Occupational Medicine,*

UMDNJ-RWJ Medical School

Dr. Weida Tong, Co-P.I.

Director, Center for Toxicoinformatics, National Center for Toxicological Research (NCTR) US Food and Drug Administration (FDA) Department of Pharmacology, UMDNJ-RWJ Medical School

Area 1 - Project 1: Development and Application of a <u>Dose-Response Information Analysis</u> (DORIAN) System

- **Component 1:** Development and deployment of an environmental bioinformatics Knowledge Base (ebKB)
- **Component 2:** Development of ebTrack system for integrated management of eb (genomic, transcriptomic, proteomic, metabonomic) data
 - *it will build upon (and ensure interoperability with) FDA's ArrayTrack*
 - *it will provide an interface to modules of DORIAN and linkages to components of MENTOR and other external (public and commercial) software systems*
- Development of DORIAN:
 - **Component 3:** Implementation of Bayesian tools for characterizing and reducing uncertainties in mechanistic modeling of toxicity pathways
 - **Component 4:** Development of diagnostic tools for sensitivity and stability analysis of mechanistic models and of statistical methods for data analysis
 - Component 5: Enhancement of tools for Quantitative Risk Assessment
 - cross-species extrapolation, chemical mixtures, and dose-response models
- **Component 6:** Support of applications (case studies) demonstrating enhanced Quantitative Risk Assessments

Research Focus Areas CERM/MENTOR and ebCTC/DORIAN

elcTC workplan

Investigational Area 1 – Research Project 1

An example application of using ArrayTrack/ebTrack for microarray data analysis, presenting all the important steps involved

elcTC workplan

Investigational Area 1 – Research Project 1

Investigational Area 1 – Research Project 2: Hepatocyte Metabolism Model for Xenobiotics

Dr. Marianthi lerapetritou, P.I. Department of Chemical & Biochemical Engineering, Rutgers University Dr. Ioannis Androulakis, Co-P.I.

Department of Chemical & Biochemical Engineering and Department of Biomedical Engineering, Rutgers University

Area 1 – Project 2: Hepatocyte Metabolism Modeling for Xenobiotics

- **Component 1:** Identification of maximally informative, minimal sets of toxicologically relevant genes
- **Component 2**: Development of toxicologically relevant regulatory networks
- **Component 3:** Expansion of the Rutgers hepatocyte model to incorporate xenobiotic metabolism
 - based on available experimental data (genomic and metabonomic) and developed mathematical tools
- **Component 4:** Incorporation of transcriptional regulation in order to assess the changes in hepatocyte phenotypic phase space

Framework for Systems Toxicology of Liver

elcTC workplan

Investigational Area 1 – Research Project 2

Interactions/Integration of Project 2 with Projects 3 and 5

elcTC workplan

Investigational Area 1 – Research Project 2

Metabolic Analysis of Hepatocyte Metabolism

Metabolites	HI	LI+AA	Optimal values						
Urea synthesis	2.7 ± 0.48	1.8 ± 0.99	2.76						
Arginine uptake	0.29 ± 0.008	0.16 ± 0.092	0.303						
$\begin{aligned} \max v_{urea} \\ \text{subject to:} & \sum_{j=1}^{N} S_{ij} v_j = 0, \ i = 1, \dots, M \\ & v_j^{\min} \le v_j \le v_j^{\max} \end{aligned}$									

2. Optimize cell response to specific perturbation

1. Metabolic Flux Analysis to determine internal flux distribution

3. Systematically consider the different cell function such as albumin and urea shown here

4. Account for uncertainty and the effects in system response

Important Pathways for Urea and Albumin Production

24 ARG + 32 ASP + 61 ALA + 24 SER + 35 CYS + 57 GLU + 17 GLY + 21 TYR + 33 THR + 53 LYS + 26 PHE + 25 GLN + 30 PRO + 15 HIS + 6 MET + 20 ASN + TRP + 35 VAL + 13 ISO + 56 LEU + 2332 ATP → albumin + 2332 ADP + 2332

$$\begin{bmatrix} \min_{\lambda_{j}} \Phi = \sum_{j=1}^{N} \lambda_{j} \\ \text{subject to:} \sum_{j=1}^{N} S_{ij} v_{j} = b_{i}, \quad i = 1, ..., M \\ v_{j}^{\min} \lambda_{j} \le v_{j} \le v_{j}^{\max} \lambda_{j}, \quad j = 1, ..., N \end{bmatrix}$$

5. Identify the important pathways

Thick red lines correspond to higher fluxes for Optimal Condition w Knockouts vs. w/o Knockouts.

Thick blue lines correspond to lower fluxes. Dotted red lines correspond to reactions not important in Optimal Condition.

Bold red amino acids in albumin synthesis reaction correspond to amino acids participating at a higher rate into albumin synthesis.

References:

- Sharma, Ierapetritou, Yarmush, Biotechnology and Bioengineering 92(3), 321, 2005
- Ierapetritou et al. AIChE Annual Meeting, 2005.

Liver-specific Toxicologically Relevant Regulatory Networks

1. Temporal expression profiling of rat liver specific genes

4. Identification of regulatory mechanisms responsible for observed transcriptional dynamic responses

2. Identification of maximally informative expression motifs^a

References:

- (a) Vitolo, Roth and Androulakis, FOSBE Conference, 2005
- (b) Yang, Roth and Androulakis, AIChE Meeting, 2005

p(TF | cluster) = 0

p(TF | cluster) = 1

3. Regulatory network identification using TRAFAC and Genomatix and quantification using miNCA^b

$\min : \sum_{i} \sum_{t} eP(i,t) + eN(i,t)$
s.t. $eP(i,t) \ge 0 \forall i,t$ $eN(i,t) \ge 0 \forall i,t$ Objective definition through the use of positive slack variables
$E(i,t) = 0 \forall i,t \\ E(i,t) - \sum_{j} A(i,j)P(j,t) = eP(i,t) - eN(i,t) \forall i,t \\ \downarrow j$
$A_{\min} y(i,j) \le A(i,j) \le A_{\max} y(i,j) \forall i,j$
$A(i, j)^{2} - y(i, j)\varepsilon \ge 0 \forall i, j$ $\sum_{i} \sum_{j} y(i, j) = N$ Connections and Complexity Definition
$\sum_{j} 1 - y(i,j) \ge L - 1 \forall i$
$\sum_{i} y(i,j) \ge 1 \forall j$
$M = Y^T Y$ Linear Independence Criteria
$M = C^T C$ Cholesky Decomposition
$C(i,i) \ge 0 \forall i$
$(i,j) \notin Y^{SuperSet} \Rightarrow y(i,j) = 0 \forall i,j $ A in A ₀
$P(j,t)-P^{xx}(j,t) < \varepsilon$ Constraints on regulatory strength

Investigational Area 1 – Research Project 3: Development of Computational Tools for Optimal Identification of Biological Networks

Dr. Herschel Rabitz, P.I.

Department of Chemistry and Program in Applied and Computational Mathematics, Princeton University

Area 1 - Project 3: Tools for Optimal Identification of Biological Networks

- **Component 1**: Efficient biological network identification tools to infer network structure from available laboratory data
- **Component 2**: Robust optimization tools to extract quantitative information of system parameters (e.g., rate constants, diffusion coefficients, binding affinities, etc.)
- **Component 3**: Global sensitivity tools to identify the most effective molecular target or pathways of biological networks
 - for guiding the subsequent laboratory experiment in a reliable and cost-effective fashion
- **Component 4**: Optimal feedback control tools to infer networks with feedback loops

Structure of the biological network analysis for characterizing toxicity pathway by analyzing the high-throughput genomics, proteomics, and metabonomics data through the computational framework

General operation of the S-space Network Identification Procedure (SNIP) technique in identifying non-linear network connectivities

Circuit diagram of a synthetic transcriptional cascade. The SNIP technique was used to identify the functional connectivities between the two circuit inputs aTc, IPTG, and the output EYFP.

> Different amounts of aTc and IPTG inputs are being applied in a series of encoding experiments (a and b) into the E. coli cells containing the circuit. EYFP fluorescence levels (c) following the encoding were measured as the output and Fourier decoded (d) to reveal the regulatory input-output relationships.

Investigational Area 2 – Research Project 4: Cheminformatics Tools for Toxicant Characterization

Dr. William Welsh, P.I.

Director, UMDNJ Informatics Institute Department of Pharmacology, UMDNJ-RWJ Medical School

Area 2 – Project 4: Chemoinformatics Tools for Toxicant Characterization

- Component 1: Shape Signatures tool that rapidly matches organic and organometallic chemicals with each other or, alternatively, against target receptor sites/subsites
- **Component 2**: Polynomial Neural Network (PNN) that automatically generates physically-intuitive linear or non-linear QSAR models
- **Component 3**: Virtual high-throughput screening (vHTS) that predicts ligand binding affinity and provides mechanistic information (toxicity pathways)

Flowchart

Shape Signatures User Interface

• PDB-extracted ligand database

Novel Discovery Platform

Protein Data Bank (PDB): World Repository of 30K Protein-Ligand Crystal Structures (http://www.rcsb.org/pdb/)

eb TC workplan

Schematic of the hierarchical framework, using the EDKB as an example

Modules shaded blue will be implemented and integrated during the Project.

Illustration of a Decision Forest

User interface for the Polynomial Neural Network (PNN)

🔒 Pnn Discovery Client - Untitled 📃 🗗											-			
Elle View Project Tools Help														
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)												Grid	View	•
	diameter	petitjean	petitjeanSC	radius	VDistEq	VDistMa	weinerPath	weinerPol	a_aro	a_count	a_IC	a_ICM	a_nH	b_1rot
1	10.000000	0.500000	1.000000	5.000000	3.159500	8.483900	920.000000	32.000000	Destant Co	No. and			0	.000
2	10.000000	0.500000	1.000000	5.000000	3.058800	8.188400	698.000000	28.000000	Project Se	rtings			ſ	000.
3	10.000000	0.500000	1.000000	5.000000	3.159500	8.483900	920.000000	32.000000	Settings	Robust Criteria	a l			.000
4	10.000000	0.500000	1.000000	5.000000	3.088000	8.494800	894.000000	34.000000	ockarige [noouse catera	1			.000
5	10.000000	0.500000	1.000000	5.000000	3.147200	8.770900	1126.000000	38.000000	Tvo	e of regression e	souation:	Linear		.000
6	10.000000	0.500000	1.000000	5.000000	3.016800	9.703700	2150.000000	58.000000				Trinedi		.000
7	10.000000	0.500000	1.000000	5.000000	3.027000	9.891000	2502.000000	64.000000	Ann	lied criteria tune	BSS	5	-	.000
8	11.000000	0.454500	0.833300	6.000000	3.320200	9.461900	2074.000000	49.000000	1 PP	ieo enteño (Jpo	1100			.000
9	11.000000	0.454500	0.833300	6.000000	3.325100	9.664800	2426.000000	55.000000	Max	imal terms numb	er in equation	ns: 40	141	.000
10	11.000000	0.454500	0.833300	6.000000	3.223300	9.259200	1688.000000	45.000000			in equation		-	.000
	11.000000	0.454500	0.833300	6.000000	3.281700	9.361800	1880.000000	47.000000	Mas	imal iterations n	mber	50	241	.000
12	10.000000	0.500000	1.000000	5.000000	3.151100	8.481900	914.000000	34.000000	Max	and relations n	unider.	100		.000
13	12.000000	0.500000	1.000000	6.000000	3.314500	8.747000	1205.000000	35.000000			100 000			.000
14	12.000000	0.500000	1.000000	6.000000	3.250900	0.466200	342.000000	32.000000	Max	imal number of a	saved models	3	-	.000
15	40.000000	0.500000	4.000000	7.000000	0.040000	0.333200	4000.000000	40.000000				-		000
<		2008-0200	2	and the second	NOTOPERE		W.2200054	-Marstan 24	Max	imal equations of	degree:	2	1	
-	× + E	122							100	100 200 2	en ar			
0. X 7 6 6								Rov	is number in tes	t subset:	4	÷		
									J			20. 20.		
						Setti	ngs			1	OK	Cancel	Apply	
										_				
			1	ype of reg	ession equ	ation:			L	inear equation	1			2
			1	Applied crite	eria type:				R	SS				
Maximal terms number in equations:						4	0							
Maximal equations degree:						3								
Maximal number of saved models:						3								
Maximal iterations number:							5	0						
Maximal iterations number used for robust coefficient esti							timation: 2	2						
Robust parameter value used for robust coefficient estimat						nation:	.00							
Total rows number in input sheet:						3	9							
Number of rows involved in models formation:						3	5							

- Produces linear or nonlinear QSAR models in parametric form
- User control of model complexity
- Insensitive to irrelevant variables and outliers
- Yields predictive models, even for sparse or noisy data sets
- Trains rapidly, thus amenable to large data sets
- Promising new tool for applications in computational toxicology

Investigational Area 2 – Research Project 5: Optimization Tools for In Silico Structural Proteomics

Dr. Christodoulos Floudas, P.I.

Director, Computer-Aided Systems Laboratory Department of Chemical Engineering and Program in Applied and Computational Mathematics, Princeton University

Area 2 – Project 5: Optimization Tools for *in Silico* Proteomics

- **Component 1:** Customized computational methods for protein structure prediction and *de novo* protein design
 - specific focus on the important families of Glutathione Transferases (GST) (cytosolic, mitochondrial and microsomal GST)
- **Component 2:** Computational methods for elucidating the topology of signal transduction networks
 - Emphasis on addressing uncertainties in experimental data and models
- **Component 3**: *De novo* computational proteomics methods for peptide and protein identification via tandem mass spectroscopy

Overall flowchart for first principles structure prediction using ASTRO-FOLD

Prediction of HLA class II molecules through deterministic global optimization: Comparison with crystallographic data

Superposition of the Predicted Pocket 1 of HLA-DR3 antigen vs Crystallographic Data

Superposition of the Predicted Pocket 1 of $I-E^k$ antigen vs Crystallographic Data

The structures shown were predicted from the crystallographic structural data of HLA-DR1 and deterministic global optimization. A selection of five "pockets" was identified at the binding site of HLA-DR1. Each of these pockets of HLA-DR1 differs from HLA-DR3 and I-*E*^k by one, two, three or four amino acids.

Binding affinity evaluation in HLA-DR1 pockets via the volume solvation method

Literature data on pocket 1 competitive binding assays. Global optimization data agree with these data.

Global (red) vs local (green) conformations of tyrosine in pocket 1, as estimated through the volume solvation method.

The global minimum conformation of tyrosine (as shown to the right) corresponds more closely to the crystallographically determined conformation than the corresponding local minimum conformation.

A schematic of Public Outreach **Quantitative Risk** major interactions and Translation Assessment Activities (POTA) among: (QRA) (a) Research **Projects**, (b) Projects and **Public Outreach RP03** and Translation **Tools for Optimal Cheminformatics Activities (POTA)** Identification of **Tools for Toxicant Biological** and Characterization **Networks** (c) Quantitative **RP01 Risk Assessment Development &** (QRA) **Application of Dose-Response** demonstration case **Information Analysis** studies (DORIAN) System **RP02 RP05 Hepatocyte Optimization Tools Metabolism Model** for In Silico for Xenobiotics **Proteomics**

RP04

Concluding/Commencing Comments

- Projects are "open"
 - Emphasis is on the development of computational tools
 - Case studies will allow testing and refinement for real-world biological application
- Interactions/collaborations are invited
 - An iterative process is expected for refining the definition of needs and solutions for specific toxicological problems
 - Demonstration/evaluation studies should be defined in a collaborative setting

ebCTC

We look forward to pursuing opportunities for productive and mutually beneficial collaborations

Quantitative Risk Assessment Resource Team

Paul J. Lioy

- Professor and Vice Chair of Environmental and Occupational Medicine, UMDNJ-RWJMS
- Deputy Director, EOHSI, UMDNJ-RWJMS
- Co-Director, Center for Exposure and Risk Modeling, EOHSI, UMDNJ-RWJMS

Daniel Wartenberg

- Professor of Environmental and Occupational Medicine, UMDNJ-RWJMS
- Director, Division of Environmental Epidemiology, EOHSI, UMDNJ-RWJMS

Alan Stern

- Chief of Risk Assessment, New Jersey Department of Environmental Protection (NJDEP)
- Adjunct Associate Professor, Department of Environmental and Occupational Medicine, UMDNJ-RWJMS

Jerold Fagliano

 Program Manager/Health Science Specialist, New Jersey Department of Health and Senior Services (NJDHSS)

Quantitative Risk Assessment Resource Team

Paul J. Lioy

- Professor and Vice Chair of Environmental and Occupational Medicine, UMDNJ-RWJMS
- Deputy Director, EOHSI, UMDNJ-RWJMS
- Co-Director, Center for Exposure and Risk Modeling, EOHSI, UMDNJ-RWJMS

Daniel Wartenberg

- Professor of Environmental and Occupational Medicine, UMDNJ-RWJMS
- Director, Division of Environmental Epidemiology, EOHSI, UMDNJ-RWJMS

Alan Stern

- Chief of Risk Assessment, New Jersey Department of Environmental Protection (NJDEP)
- Adjunct Associate Professor, Department of Environmental and Occupational Medicine, UMDNJ-RWJMS

Jerold Fagliano

 Program Manager/Health Science Specialist, New Jersey Department of Health and Senior Services (NJDHSS)

Executive Committee

William Welsh

- Norman H. Edelman Professor of Pharmacology in Bioinformatics and Computer-Aided Molecular Design, UMDNJ-RWJMS
- Director, UMDNJ Informatics Institute

Panos G. Georgopoulos

- Professor of Environmental and Occupational Medicine UMDNJ-RWJMS
- Director, Computational Chemodynamics Laboratory, EOHSI, UMDNJ-RWJMS
- Co-Director, Center for Exposure and Risk Modeling (CERM) EOHSI, UMDNJ-RWJMS

Weida Tong

- Director, Center for Toxicoinformatics, National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA)
- Adjunct Associate Professor, Department of Pharmacology, UMDNJ-RWJMS

Paul J. Lioy

- Professor and Vice Chair of Environmental and Occupational Medicine, UMDNJ-RWJMS
- Deputy Director, EOHSI, UMDNJ-RWJMS
- Co-Director, Center for Exposure and Risk Modeling, EOHSI, UMDNJ-RWJMS

Herschel Rabitz

- Professor of Chemistry, Princeton University
- Affiliated Member, Program in Applied and Computational Mathematics, Princeton University

Christodoulos Floudas

- Professor of Chemical Engineering, Princeton University
- Director, Computer-Aided Systems Laboratory, Princeton University

Marianthi Ierapetritou

• Associate Professor of Chemical & Biochemical Engineering, Rutgers University

Ioannis Androulakis

Assistant Professor, Chemical & Biochemical Engineering and Biomedical Engineering, Rutgers University

Biological Science Resource Panel

Deborah Cory-Slechta

- Professor and Chair, Department of Environmental and Occupational Medicine, UMDNJ-RWJMS
- Director, Environmental and Occupational Health Sciences Institute (EOHSI), UMDNJ-RWJMS

Michael Gallo

- Professor, Environmental and Occupational Medicine, UMDNJ-RWJMS
- Director, NIEHS Center of Excellence, EOHSI, UMDNJ-RWJMS
- Associate Director, Cancer Prevention, Control & Population Sciences, Cancer Institute of NJ, UMDNJ

Jay Tischfield

- Professor and Chair, Department of Genetics, Rutgers University
- Scientific Director, Rutgers University Cell and DNA Reporting

Scott Diehl

- Professor, Department of Oral Biology, NJ Dental School, UMDNJ
- Director, Center for Pharmacogenomics and Complex Disease Research, NJ Dental School, UMDNJ

Ronald Hart

• Professor of Cell Biology & Neuroscience, Rutgers University

Arnold Levine

- Professor, Pediatrics and Biochemistry, Cancer Institute of NJ, UMDNJ
- Professor, School of Natural Sciences, Institute for Advanced Study

William Hait

- Director, Cancer Institute of NJ, UMDNJ
- Associate Dean, Oncology Program, UMDNJ-RWJMS

Helen Berman

- Board of Governors Professor of Chemistry and Chemical Biology, Rutgers University
- Director, Protein Data Bank, Rutgers University

Patrick Sinko

Professor and Chair, Department of Pharmaceutics, School of Pharmacy, Rutgers University

Interaction/Coordination with:

- BIOMAPS Institute for Quantitative Biology, Rutgers
- Bionomics Center, EOHSI (UMDNJ/Rutgers)
- Cancer Institute, UMDNJ
- Cell and DNA Repository, Rutgers
- Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), Rutgers
- Center for Exposure and Risk Modeling (CERM), EOHSI (UMDNJ/Rutgers)
- Informatics Institute, UMDNJ
- Institute of Integrative Genomics, Princeton
- Molecular Bioinorganic Institute, Princeton
- National Institute for Environmental Health Sciences (NIEHS) Center, EOHSI (UMDNJ/Rutgers)
- Pharmacogenomics Center, UMDNJ
- Protein Data Bank, Rutgers
- Toxicoinformatics Center, FDA
- W.M. Keck Center for Collaborative Neuroscience, Rutgers

Administrative Core

Administrative Support

Outreach & Training

• Fred Roberts, Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University

Demonstration of Research Projects

Public Outreach and Training Activities (POTA)

will be handled by the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers University

- DIMACS is directed by Fred Roberts
 - Professor II of Mathematics, Rutgers
 - Biological Mathematical and Physical Sciences (BIOMAPS), Institute for Quantitative Biology

Research activities of proposed effort will be organized in 5 projects

- Each project will develop a set of "stand-alone" components addressing specific CT problems
- Research Project 1 will provide an integrative framework for Investigational Area 1
- Project 4 will address the core issues of Area 2

