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Organization of Center

• Three major Research Projects: (1) Biostatistics, 
(2) Cheminformatics, and (3) Computational 
Infrastructure for Systems Toxicology 

• Administrative Unit
• Public Outreach and Training Activity (POTA)
• “Functional areas” of Analysis, Methods

Development and Tools Development overseen 
by a panel of experienced investigators
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(1) Biostatistics in 
Computational Toxicology

• Emphasis on strengths in 
microarray analysis, 
elucidation of 
networks/pathways, 
Bayesian approaches

• Stresses existing 
capabilities
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(2) Chem-informatics
• seeks to establish a 

universally applicable and 
robust predictive toxicology 
modeling framework

• Focuses on Quantitative 
Structure Activity/Property 
Relationships (QSAR)

• Establishes a modeling 
workflow, toxicity 
prediction scheme and plan 
for software development

Figure 4. Predictive QSPR Modeling  Workflow
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(3) Computational 
Framework for 

Systems Toxicology
• Uses model for toxicity 

profiling in multiple strains 
of mice to set up 
computational infrastructure

• Some data mining activity
• will develop user-friendly 

software tools from methods 
in Projects 1 and 2 

Control               C57BL/10J              BUB/BnJ MSM/Ms

Liver Injury
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Project 1
Biostatistics in Computational Toxicology

• Fred Wright, Ph.D. (P.I.) –statistical genetics, genomic analysis
• Mayetri Gupta, Ph.D. – sequence analysis, motif detection
• Young Troung, Ph.D. – Bayesian network genetic analysis, SVM 

methods for metabolomic data
• Joseph Ibrahim, Ph.D. – Bayesian analysis of microarray data
• Danyu Lin, Ph.D. – haplotype-phenotype analysis, microarray

analysis
• Fei Zou, Ph.D. – statistical genetics, genomic analysis
• Andrew Nobel, Ph.D. – clustering, data dimensional reduction, 

genetic pathway analysis
• Master’s trained personnel
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Project 1 objectives

•to provide analysis capability to the environmental 
sciences community
•to develop appropriate new methods to apply to public 
data from the EPA and the broader community  
•to develop computational tools to further the 
objectives. 
•to disseminate research findings to the computational 
toxicology community, train students, and to 
coordinate additional statistical research in 
computational toxicology.  
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Methods (to name a few)

• Sample size estimation for high-throughput data
• P-value computation, significance testing
• Multiple-testing issues, false discovery rates
• Dose-response modeling
• New measures of differential expression
• Transcriptional regulation and motif discovery
• Network analysis, discrimination methods
• Pathway analysis
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Tools
• Much of initial code has been implemented in 

R/Bioconductor.  This is directly useful to other 
statistical investigators.

• Work with project 3 investigators and students to 
produce user-friendly web-based and/or 
standalone applications

• Work to increase utility of methods by integration 
with informatics and biological annotation

• We view the SAM software as a model for 
independent successful dissemination.  Project 3 
personnel are training to implement appropriate 
procedures in ArrayTrack
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Log(sample mean)

Expression measurements 
show a mean-variance 
relationship…

Which we can exploit to 
reduce the false discovery 
rate…

Grey envelope shows all 
the SAM procedures

Example 1. New ways of detecting 
differential expression

Hu and Wright, in press

Lowest curve is a new 
maximum likelihood 
procedure

Log(sample mean)
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Example 2. Significant genes/pathways/categories:  the 
Significance Analysis of Function and Expression 
procedure (honest pathway significance testing)

Category 
p-value

Genes in 
category

Shading 
indicates 
individually 
significant 
genes

Barry et al. Bioinformatics 21:1943-1949 , 2005



13

Key: blue (p<0.001) green (0.001<=p<0.01), red (0.01<=p<0.1).

nucleotide metabolism cell organization 
and biogenesis

GO Tree with significant nodes
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Example 3. A Bayesian approach for finding 
probabilities of transcription factor binding sites

The complicated stuff (M. Gupta and 
colleagues)…



15Posterior probabilities

The simple results – each gene/transcript has a posterior probability of 
containing the motif.  Here are results for the Affy U95A array, 5000bp 
upstream sequences, using the JASPAR database

Consensus motif
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probabilities
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Example 4. Isotonic regression: gene expression dose-
response data

Model -

f should be 
strictly 
increasing or 
decreasing

Hu et al., 2005, Bioinformatics
21: 3524-3529).
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Pyrethroid Biomarker Project (J. Harrill, K. 
Crofton and colleagues, U.S. E.P.A)

• Problem:  Lack of a cost efficient biomarker of effect 
hampers assessments of the cumulative risk of
pyrethroid insecticides.

•Aim: Develop a biochemical biomarker of effect for 
pyrethroids that reflects changes in neuronal firing 
rates.

•Methods: Use gene arrays and RT-PCR to identify 
dose-responsive transcripts in rat CNS.  Permethrin 
and deltamethrin each examined at four doses, 
Affymetrix arrays.
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Dose-response, cont.: a statistic to rank genes…

Standard error estimate.  
Could be improved.

Dose-response data 
on pyrethroid in rat 
brains, courtesy of 
J. Harrill and K. 
Crofton, U.S. E.P.A.
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Project 2
Chem-informatics

• Alex Tropsha, Ph.D. (P.I.) –computational chemistry, QSAR
• Weifan Zheng, Ph.D. – computational methods in drug discovery, 

QSAR
• Alexander Golbraikh, Ph.D. – mathematical approaches in QSAR 

development
• Yufeng Liu, Ph.D. – Support vector machines, semi-supervised 

machine learning
• additional personnel
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Project 2 objectives
•to develop an innovative QSPR modeling workflow 
based on the principles of combinatorial QSPR 
modeling, model validation and consensus prediction

•to develop toxicity predictors using the workflow

•to integrate modeling tools and endpoint predictors 
using workflow design middleware and workflow 
deployment in a predictive toxicology web portal

•Applied to toxicology datasets
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• Project 2 builds on years of research in the Tropsha lab on 
QSAR/QSPR modeling and developing robust predictors

• Many of the machine learning and cross-validation ideas 
are used in statistical genomics

• Descriptors – topological molecular indices, size and 
shape, hydrophilic/phobic indices, physical propoerties, 
etc.

• Try to predict biological activity
• Analysis of the Carcinogenic Potency Database 

(collaboration with Dr. A. Richard, EPA) was performed, 
applied to 693 compounds, with classification kNN QSAR 
prediction accuracies estimated at 85%-90%.
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Flowchart of the 
combinatorial QSAR 
methodology
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Only accept models 
that have a 

q2 > 0.6
R2 > 0.6, etc.

Multiple 
Training Sets

Validated Predictive 
Models with High Internal 

& External Accuracy

Original 
Dataset

Multiple 
Test Sets

Combi-QSAR 
ModelingSplit into 

Training and 
Test Sets

Activity 
Prediction

Y-Randomization

Database 
Screening

Only accept models 
that have a 

q2 > 0.6
R2 > 0.6, etc.

Multiple 
Training Sets

Validated Predictive 
Models with High Internal 

& External Accuracy

Original 
Dataset

Multiple 
Test Sets

Combi-QSAR 
ModelingSplit into 

Training and 
Test Sets

Activity 
Prediction

Y-Randomization

Database 
Screening

Flowchart of predictive toxicology framework based on 
validated combi-QSAR models.  Numerous public datasets 
proposed.
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Figure 4. Predictive QSPR Modeling  Workflow
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Project 3
Computational Infrastructure for Systems Toxicology

• David Stotts, Ph.D. (co-P.I.) – computer science, software 
engineering

• Ivan Rusyn, Ph.D. (co-P.I.) – toxicology, genomics
• Wei Wang, Ph.D. – computer science, data mining
• Brad Hemminger, Ph.D. – informatics and metadata issues
• David Threadgill, Ph.D. – mammalian genetics, genomics
• Additional programmers and students
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Project 3 objectives

•Develop and implement algorithms that streamline the analysis 
of multi-dimensional data streams in dose-response assessment 
and cross-species extrapolation.

•Facilitate the development of an industry-standard workflow for 
(i) analysis of the -omics data, (ii) linkages to classical indicators 
of adverse health effects, and (iii) integration with other types of 
biological information such as genome sequences and genetic 
differences between species.
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Project 3 objectives, cont.

•Build web-based, open-source and user-friendly graphical 
interfaces associated with  interoperable computational tools for 
data analysis that facilitate incorporation of new data streams 
into basic research and decision-making pipelines (methods from 
Projects 1 and 2).

•Provide an interdisciplinary computer science resource to the 
environmental sciences and toxicology community

•Longer-term objectives include new software engineering 
methods for better execution and maintenance of above, and 
sharing and disseminating results
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A driving biological problem:

• Toxicogenetic analysis of susceptibility to 
toxicant-induced organ injury

• The model is being used by Drs. Threadgill and 
Rusyn involves extensive profiling of numerous 
mouse strains (over 40) for relevant organs

• Early data on acetominophen and alcohol on liver
• Proposals for trichloroethylene and other toxicants 

on liver, kidney, and other organs



30Image courtesy of D.W. Threadgill

The Mouse as a Model for Studying 
Genotype-Phenotype Interactions 
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Strain-specific susceptibility to 
acetaminophen (APAP)-induced 
liver injury. Serum ALT levels 
(top panel) and tissue 
histopathological changes 
(bottom panel) were assessed 
24 hrs after a single dose 
exposure to APAP (300
mg/kg, i.g., 24 hrs).

A large variation in response by 
genetic background…
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Toxicological and expression analysis of genotype-specific responses to 
ethanol in liver. Serum and liver tissues were collected from mice of 6 
different strains after acute (5 g/kg, 6 hrs; A) or subchronic (4 weeks, B) 
treatment with ethanol. 
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WebQTL can be used to select BXD strains that model genetic background-
dependent variability in metabolism genes across the population. The difference 
in background expression of Fmo3 across BXD strains is shown.

Variation in expression of potentially 
important genes...

Source: Ivan Rusyn and colleagues
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Unsupervised hierarchical clustering of liver gene
expression from APAP- (300 mg/kg, 24 hrs) or vehicle-
treated mice shows distinct grouping of samples that 
correlates with the degree of liver injury.
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Systems Biology Approach
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Transcriptome map of forebrain. The physical location of each gene 
on the microarrays (y-axis is plotted with the genetic location of 
QTLs that regulate the steady-state level of its transcripts. The 
three major patterns of regulation are marked.

Image courtesy of D.W. Threadgill
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Transcriptome map for the murine brain and liver.

Examination of genetic networks that regulate 
gene expression in liver (webQTL and beyond)

Source: Ivan Rusyn and colleagues
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Correlation between gene expression of CYP2C29 and several liver-
specific phenotypes recorded for BXD strains.

Source: Ivan Rusyn and colleagues
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Development of new methods for -omics data analysis:
Finding associations between gene expression profiles and 

strain-specific genotyping data 

SiZer

Smoothing 

approach
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• Data analysis procedures in concert with project 1, 
including principal component analyses, distance-
weighted discrimination, SAFE, etc.

• Specific data mining approaches also proposed, such 
as subspace clustering (SNPs vs. phenotypes, gene 
expression), that fall outside of typical statistical 
framework

• The computational challenges are immense when we 
compare different –omics platforms (e.g., 100,000 
SNPs X 30,000 transcripts)

• This requires serious computer science (activities of 
UNC SNP group).
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Solutions to a computational infrastructure

• Software technology – federated systems and 
architectures

• Execution platforms – workstations, grid 
computing, supercomputing

• UNC has access to resources of the Renaissance 
Computing Institute

• Data access and management – data mining, 
formats and data interchange, common 
abstractions/metadata issues


