

December 18, 2002

Money Isn't All You're Saving

About the Web Conferences

- Monthly
- Based on strategic approach
- Continually improve energy performance
- Opportunity to share ideas
- Open & interactive

Today's Web Conference

- Introductions
- Why assess energy performance?
- Key steps
- Partner examples
- Open discussion
- Wrap-up

Strategic Approach to Energy Management

Why assess performance?

- Provide an understanding of usage
- Establish a baseline
- Identify improvement opportunities
- Facilitate goals
- Initiate the planning process

Steps to Performance Assessment

- Measure
- Track
- Normalize
- Analyze
- Benchmark
- Identify

MEASURE all energy use

- Electric, oil, gas, steam, coal, etc.
- Purchased or produced
- Continuous and summarized
- Peaks and valleys
- Sites, buildings, processes, equipment, etc.

TRACK by keeping records

- Historical log
- Regular input
- Spreadsheet or database
- Graphs
- Consolidate

NORMALIZE to reflect drivers

- Degree-days
- Product
- Space
- \$ales

ANALYZE to determine

- Trends
- Peaks and valleys
- Relationships
- Key events
- Company strategies

BENCHMARK by comparing

- Standard industry, building, function, etc.
- Similar company facility
- Competitor
- Best practice

IDENTIFY SWOT

- Strengths
- Weaknesses
- Opportunities
- Threats

What comes next?

- Develop goals
- Implement plans
- Measure progress
- Etc.

energy

Industry partner examples

Quad/Graphics, Inc.

Kristin Mackus, Environmental Coordinator

ExxonMobil Corporation

Art Tenner, System Coordinator, ExxonMobil Research & Engineering

Pharmacia Corporation

Henry Molise, P.E., Corporate Energy Manager, Global Engineering, Maintenance & Utilities

Quad/Graphics, Inc.

Kristin Mackus, Environmental Coordinator

Corporate Energy Policy

- Energy efficiency, employee awareness and education:
 - "Energy efficiency is accomplished through a total management system which measures and balances costs, energy reductions, pollution prevention and production demands"
- Focus: Consumption not Cost!
- Energy security through diverse supplies of all forms with contingency plans in place to mitigate energy supply disruptions
- Increased measurement, "To measure is to manage"
- Remain active in local, state and national policy making

Corporate Mission

- Reduction on energy consumed, relative to output, by 10 percent?
- Educate all employees on the benefits of supporting energy management
- Develop an improved network of communication between production and maintenance to focus on energy
- Develop an "Energy Report Card" to measure results

Energy Report Card

		•	mergy respon	r cara				
		Electrical	Natural Gas	Propane	Total			
		Consumption	Consumption	Consumption	MMBTU	MMBTUs/		
Year 2000	Pages Produced	(kVVh)	(Therms)	(Gallons)	Consumed	1000 Pages	Energy Cost	
Jan	7,820,934,016	7,053,217	335,892	19,150	59,404	0.00760	420,707	
Feb	8,240,303,972	7,154,890	286,396	17,965	54,694	0.00664	409,551	
Mar	8,746,289,104	7,336,420	288,702	18,550	55,597	0.00636		
Apr	7,571,640,412		221,984	27,660	53,281	0.00704		
Мау	7,725,245,116		196,888	18,126	44,781	0.00580		
Jun	7,912,530,840		198,164	17,950	50,010			
Jul	9,770,167,552		226,178	27,907	54,541	0.00558		
Aug	9,327,244,064		236,000	18,475	52,767			
Sep	9,599,966,584		239,019	27,930	61,056			
Oct	10,557,401,288		265,362	30,470	57,446		520,763	
Nov	7,607,521,192		265,603	20,826	58,657			
Dec	8,386,939,800		330,133	66,106	64,750			
	103,266,183,940		3,090,321	311,115	666,983			
	100,200,100	1 00,000,001	3,000,021	011,110	220,200	0.55552	0,720,101	
		Electrical	Natural Gas	Propane	Total			Savin
		Consumption	Consumption	Consumption	MMBTU	MMBTUs/		(+)
Year 2001	Pages Produced	(kVVh)	(Therms)	(Gallons)	Consumed	1000 Pages	Energy Cost	Cost
Jan	7,880,690,288		318,841	28,499	57,852			\$23,
Feb	7,868,270,288		305,907	18,800	60,245			
Mar	7,813,338,480		254,565	18,322	50,010			-\$3,
Apr	6,577,562,004	6,969,412	168,646	18,705	42,363			\$40,
Мау	6,552,135,944		138,933	18,504	36,035			\$21,
Jun	7,379,700,480		172,805	9,051	45,308			\$14,
Jul	8,908,175,328		184,616	18,000	47,125			\$27
Aug	9,430,130,008		207,333	26,950	51,497			\$18,
Sep	8,258,315,788		184,677	36,874	55,366			
Oct	9,500,301,332		206,213	0	47,092		489,635	
Nov	5,764,074,228		171,517	18,850	40,050			\$46,
Dec	9,117,787,164		282,899	37,160	56,182			
	95,050,481,332		2,596,752	249,715	589,116		6,110,375	
	30,000,401,302	03,001,201	2,000,102	240,110	300,110	0.00023	0,110,010	Ψ200,
TD 2001 vs. TD 2000								
	Electrical	Natural Gas	Propane	MMBTUs	MMBTUs/			
Production	Consumption	Consumption	Consumption	Consumed	1000 Pages	Energy Cost		
-7.96%	-6.95%	-15.97%	-19.74%	-11.67%	-4.11%	0.067605935		
	Electrical Cost/	Natural Gas Cost/	Propane Cost/	Energy Cost/				
	MMBTU	MMBTU	MMBTU	1000 Pages				
	\$13.10	\$7.44	\$7.08	\$0.06				

Extracted from Extracted from ExxonMobil Energy Management System

Previously Presented at ENERGY STAR Industrial Partnership Network Meeting June 19, 2002 – Bethesda, MD

Pareto Analysis Focus on Vital Few

 Petroleum Refining and Chemical Manufacturing Comprise Major Share of Corporation's Energy Costs

- Strategy
 - ✓ Target Initial Application in Major Business Lines
 - ✓ Address Interesting Many Business Lines Through Simpler, Less Intensive Approaches

Normalizing Data Enables Comparisons

External Benchmarking for Refining and Chemicals

- Third-party Service Provided by Solomon Associates
- Normalizing Index Spans Array of Different Types of Processes
 - **EII** = Energy Intensity Index
 - = (Actual Energy) ÷ (Standard Energy)
- Enables Quantifying Opportunities
 - Company-wide for Petroleum Refining and Olefins Plants
 - Size of the Prize for Justifying Initiative
 - Setting Aggressive Yet Realistic Targets

✓ Plant-by-Plant Comparisons for Implementation Strategy

Industry Benchmark Reveals Opportunity

Gap Relative to Best Performing Plant Sets Goals

475 M \$/Year savings estimated if each ExxonMobil refinery and olefins plant could economically achieve leading-edge efficiency

Energy & Utilities Performance Assessment

Henry C. Molise, P.E., C.E.M Corporate Energy Manager Pharmacia Corporation

Multi-plant Assessment

A spreadsheet of annual:

- Units of energy uses, and costs in \$US
- Production units or other performance ratio denominator (for energy use/widget produced)
- Implemented savings in energy and \$US
- Use uniformly understood energy units (eg. kilocalories or kilojoules if international)
- Can include calculations of:
 - Energy performance ratios (eg. kJoule/widget)
 - Emissions reductions data
 - Performance compared with corporate goals

Site Assessments

- Various assessment approaches:
 - Site self assessment
 - Cross assessment (between similar sites)
 - Internal corporate based assessment
 - Outside contractor's assessment
- Cross assessments have minimum bias, build internal relationships, and keep knowledge gained within the company

Site Assessments (continued)

- Develop the vision up front, such as:
 - Benchmark performance ratios expected
 - Documented "Best Practices"
- Use a documented assessment process
- Find out as much as possible before a site visit (records, practices, success stories)
- Assess site energy supply before energy demand
- End with an action plan

Example vision: Managing Energy & Utilities

- Performance level examples (can be more elaborate):
 - 1= getting by; 2=advanced; 3=exemplary
- Performance category examples (develop descriptions):
 - Utilities system planning (capital, personnel, load forecasting, etc.)
 - Compliance (environmental, safety, other)
 - O&M personnel training
 - Reliability (redundancy, spare parts, etc.)
 - Information management (eg. utility bills, maintenance records, etc).
 - Performance benchmarking
 - Demand side management
 - Maintenance philosophy
 - Procurement of energy related items (eg. fuels, electricity, chillers, boilers)
 - Risk management
 - Continuous improvement
- Ask site management to score their system before the site visit

"Best Practices" to Document, and Use as Assessment Checklist

- Steam systems
- Chilled water systems
- Compressed air systems
- Lighting systems
- Electrical distribution systems
- Plant utilities master planning
- Production or R&D facility design
- Managing energy & utilities systems
- Site assessment process

Continuous Improvement

- Use newly identified "best practices" seen during a site assessment to improve the "Best Practices" documents
- Those who are assessed make excellent future assessors
- Being on an assessment team is a great training experience for engineers and O&M people
- Use lessons learned in the design of new facilities

Open Discussion

Final thoughts

- Different and evolving
- Information and effectiveness
- Communication and recognition
- Continuous improvement

ENERGY STAR can help benchmark

- EPI for selected industrial plants
 - Developed for focus industries
- Portfolio Manager
 - On-line tool to track & benchmark
 - ENERGY STAR Label
 - www.energystar.gov/benchmark

Upcoming networking opportunities

Monthly Web casts

Networking Meetings

Thanks for participating!