

Retro Commissioning for Ramped Up Performance

September 19, 2007

Call-in Number: 1-866-299-3188

Conference Code: 202 343 9965

About The Web Conferences

- Monthly
- Topics are structured on a strategic approach to energy management
- Opportunity to share ideas with others
- Slides are a starting point for discussion
- Open & Interactive

Web Conference Tips

<u>Mute phone</u> when listening! Improves sound quality for everyone.

Use * 6 - to mute and # 6 to un-mute

- Hold & Music If your phone system has music-on-hold, please don't put the web conference on hold!
- Presentation slides will be sent by email to all participants following the web conference.

Today's Web Conference

Why Retro Commission?

"If you don't know where you are going, you will wind up somewhere else." – Yogi Berra

Speakers:

- Delbert Reed Shriner's Hospital
- Thomas A. Pagliuco Schering-Plough
- Allison Robbins & Dave Moser PECI
- Announcements

Retro-commissioning for ramped up performance

Delbert Reed,

Director of Engineering/Maintenance Shriners Hospital

Why RCx a new building?

Common Assumptions (at least by management)

- If it's a new building, it should be fine
- If it was commissioned, it must be OK
- Original design documents are accurate

Background

Shriners Hospital for Children Houston, Texas

- Built in 1996
- Re-commissioned in 2002
- Hospital began operations in 1996
- State of the Art Facility
- 247,755 Sq Ft.

Something's Not Right

- Signs and Symptoms of problems:
 - OR's could not control temps/humidity
 - Fifth floor too hot
 - Laundry room too hot
 - Energy bill seems too high
 - Staff complaining of headaches in the morning and late evening
 - Other examples of complaints

Initial Investigation

- Who did original commissioning?
 - What kind of reputation do they have...
- What did they do (or not do?)
 - No air balancing? Bad sign!!!
- Did documentation match what was there?
 - No we found…
- Do other design choice make sense?

Use benchmarking

Benchmarking can be persuasive in getting buy-in for assessments and RCx studies

What the doctor ordered

Building Improvements:

- Lighting
- Occupancy Sensors
- Laundry and Steam Tables
- Thermal blankets on equipment
- Energy efficient motors
- Split-HVAC system
- Continuous maintenance of equipment
- Training

Laundry and Steam Tables

Thermal Blankets

Energy Consumption (1997-2006)

Utility	1997	2006	Difference	% Reduction
Electrical – kWh	3,671,352	2,838,443	832,909	22.7%
Electrical Demand	7,623/12	6,659/12	964	12.7%
Ch-water – K-th	2,100.77	1,428.10	672.67	32.1%
Ch- Demand TH/Day	75.74/12	52.80/12	22.94	30.3%
Steam - K-lb	10,949.45	6,274.49	4,674.96	42.7%
Steam Demand LB/day	400.58/12	228.81/12	171.77	42.8%

Energy Savings (1998-2006)

Shriners Total Energy Savings

Shriners Hospital for Children Houston, Texas

- Key Equipment Upgrades
- Continuous Improvement
- Commitment

Final Words

"You'd be amazed at how many energy saving opportunities you walk by in a day"

Questions?

Delbert Reed Shriners Hospital

(713) 793-3855

DReed@shrinenet.org

Retro-Commissioning for Ramped-up performance

Some Lessons Learned

Thomas A. Pagliuco Director, Energy Schering-Plough

- Retro Commissioning Overview &Theory
- Why Retro-Cx?
- Finding a target for Pilot
- Retro-Commissioning Process
- Lessons Learned

Retro-Cx Overview & Theory Schering-Plough

- Retro-commissioning is the process of systematically evaluating existing buildings and systems (that were never commissioned) to ensure:
 - Original Design Intent
 - Current Operational Needs
 - Energy Conservation Opportunities (ECO)
- Retro-Cx focuses on the following:
 - Instrument Calibration
 - HVAC & Lighting Control Sequences
 - Mechanical Systems & Components
- You are a candidate for Retro-Cx if:
 - Unexplained increases in bldg energy cost & usage
 - A significant rise in occupant comfort complaints
 - Undocumented changes to building systems & structure
 - Maintenance staff overwhelmed with emergency calls.

Why do Retro-Commissioning?

- Energy savings & Greenhouse Gas emissions reduction
- Fits a No Cost Low Cost model
 - Expense vs capital fixes
 - Quicker & easier to implement (or so I thought!)
- Remediation of indoor air quality complaints (Temp, %RH, Pressurization, Filtration)
- Improved System performance, capacity & reliability
- Puts the focus on efficient operation and maintenance
- Wanted to see if it was a viable option for Schering-Plough
 - Establish Retro-Cx as a S-P Energy Best Practice

Target for Pilot Study

- Potential for big impact
 - Laboratory Building
 - once through air
 - high number of air changes
 - fume hoods
- Drug Discovery Building –
 Kenilworth, NJ
 - Big area
 - Many fume hoods
 - High energy cost
 - Moderately inefficient
 - High cost of energy electric in NJ

Retro-Cx Process

Phases of Retro-Cx

Pilot Study Results

Scoping study projected savings from annual cost

- "Traditional" RCx findings
 - calibration
 - Time of Day schedules
 - Maintenance items
- Lab hoods (exp & cap)
 - exhaust and supply flow sensors
- Capital opportunities
 - chiller plant

Barriers Become Lessons Learned

- Potential to embarrass someone
 - Maintenance? Facilities? etc.
 - the more the savings the more the embarrassment
- Accounting system issues; even for expense work
 - customer needs to see the benefit ASAP
 - Need to budget for costs
- TOD schedules
 - some resistance to change
- Calibrations
 - work order system

Barriers Become Lessons Learned

- Lab hoods
 - Safety
 - working in ceiling heights scaffold
 - working in operating lab
 - chemicals in duct
 - need safety plan
 - Shutdown lab 2 4 days
 - extends schedule work on weekends, wait for renovations
 - Desire to "make system right" increases cost and time
 - redesign the system variable volume fume hoods
 - accessible from ground without disturbing scientist

Lessons Learned

- Do it right the first time = Commissioning
- Design for accessibility
 - think about how to maintain systems with building fully occupied and operational
- Establish funding mechanism or at least pre-sell the cost potential
 - try to make the project "self funding"
- Consider safety requirements early
- Involve stakeholders early
- Building owner should be accountable for energy bill

Questions?

Developing a Retrocommissioning Plan:

Best practices & In-practice

Allie Robbins, Program Manager

Dave Moser, Engineer

Why Retrocommission?

- Building systems are not typically fully functional at initial occupancy
- Owners face increasing numbers of performance problems
- Buildings are more complex
- Current facility use may be dramatically different that original design
- Reduces energy, as well as operation and maintenance costs (improves net operating income)
- Provides a healthy and comfortable working environment for occupants

RCx's Energy Savings Potential

- Most projects see a 5 20% reduction in utility cost as the result of low-cost RCx efforts
- Paybacks of 2 years or less are common

See Retro-Commissioning's Greatest Hits, presented at ICEBO 2001 by Tudi Haasl, downloadable from www.peci.org

What Does it Typically Cost?

- ~\$3,000 to scope out a typical project
- \$0.10 to \$1.00 per square foot for the total RCx process depending on:

- Number of systems
- System complexity
- Number of zones
- Data logger rentals

- Owner's requirements
- Subcontractor requirements
- Implementation involvement
- Owner involvement

Best Practices in Retrocommissioning Process

Planning Phase

Investigation

• Implementation

• Hand off

Post-RCx

Strategies for a Successful RCx Program

- Involve facility staff to save time and money
- Screen for good candidate buildings
 - Benchmark with ENERGY STAR® Portfolio Manager
- Find a trusted RCx Provider
 - Select a provider well-suited to the project
- Designate an in-house champion
- Define Project Deliverables
- Develop a persistence plan to ensure lasting savings

Common RCx Opportunities

- Scheduling
 - Lighting, equipment
- Controls / Setpoints
 - Recalibrate sensors, revise control sequences, change setpoints
- Economizers
 - Re-enabling "free" cooling

Lighting Schedules

- **Finding:** most lights were on 24/7 on five floors
 - Occupants did not have access override switches located in locked closet
 - Zone names programmed into the system were unrecognizable by facility operating staff
 - Lighting sweep control system was disabled
- Problem identification
 - 15 minute utility interval data
 - System trend data
 - Walk by building at night!

Lighting Schedules

 Implemented Measure: move override switches to public areas; give appropriate zone names to lighting circuits

• Results:

Estimated annual electric savings	\$14,000 349,000 kWh
Implementation cost	\$9,800
Simple payback	0.7 years

Reduce Simultaneous Heating & Cooling

• **Finding**: a large air-handling unit was adequately maintaining the temperature & humidity requirements, but the AHU's individual heating & cooling components were operating simultaneously.

Reduce Simultaneous Heating & Cooling

Implemented Measure:

- The preheat coil shutoff valve was integrated with the main control system so that the valve shuts off steam to the coil when it is not needed.
- Temperature sensors that were out of calibration were replaced.
- The control sequence was revised for more stable and efficient operation.

Results

Estimated annual total gas and electric	\$84,000
savings	
Implementation cost	\$7,000
Simple payback	0.1 years

Disabled Economizer Control

- **Finding**: Outside air damper was locked at 30% open due to return fan operational issues, causing the system to request chilled water at outside air temperatures as low as 45°F.
- Implemented Measure: address the operational issues related to the return fan and return economizer to fully-modulating automatic control.

• Results:

Estimated annual electric savings	\$5,465 74,857 kWh
Implementation cost	\$2,800
Simple payback	0.5 years

Retrocommissioning Resources

General Information

- www.peci.org
- www.cacx.org
- www.bcxa.org

Coming soon....EPA's Retrocommissioning Guide for Building Owners

Utility Programs

- www.sce-rcx.com
- <u>www.sandiegorcx.com</u>
- <u>www.rcx-program.com</u>

Questions & Discussion

Upcoming Meetings

IEEE Industrial Energy Workshop
 Baltimore MD October 22 – 23

http://ieew2007.googlepages.com

Upcoming Web Conferences

October 17 – Energy and Greenhouse Gas Management

November 14 – Energy Strategy for the Road Ahead

January 16 – ENERGY STAR Program Update

February 21 – Green Power Strategies

Download past web conference presentations at:

www.energystar.gov/index.cfm?c=networking.bus_networking

Questions or comments? Contact: tunnessen.walt@epa.gov

Thank You!