MARINE BOUNDARY LAYER CLOUD MACRO-SCALE STRUCTURE DURING THE AMF POINT REYES DEPLOYMENT

Michael Jensen¹, Andrew M. Vogelmann¹, Edward P. Luke¹, Patrick Minnis², Mark A. Miller³, Mandana Khaiyer⁴, Louis Nguyen² and Rabindra Palikonda^{2,4}

¹Brookhaven National Laboratory, Upton, New York, ²NASA Langley Research Center, Hampton, VA ³ Rutgers University, New Brunswick, NJ, ⁴ Science Systems and Applications, Inc., Hampton, VA Corresponding author: Mike Jensen, mjensen@bnl.gov, (631) 344-7021

1. OBJECTIVES

- Use satellite observations to place the AMF surface-based and aircraft observations into a larger-scale context relevant to GCM-sized grids (e.g. 300 x 300 km)
- Quantify the macro- and microphysical properties of California region marine boundary layer clouds.
- Quantify the diurnal cycle of MBL cloud properties from satellite observations
- Related the occurrence of pockets of open cells (POCs) to effective cloud diameter [C_p]

2. CLOUD SCREENING

 Identify GCM-sized boxes containing mainly MBL clouds (cloud fraction > 20%)

- Automated cloud identification algorithm screens to remove scenes containing overlying cirrus and other cloud types
- Compute scene-mean cloud macro- and µ-physical properties
- For details see: Jensen et al, 2008: Investigation of regional and seasonal variations in MBL cloud properties from MODIS observations, *J. Climate*, in press.

3. POCs and C_D

• Brightness Temperature Difference (BTD) = T_{10um} -T_{4um}

- Small values of BTD (< 2K) are observed for broken cloud scenes (including POCs)
- POCs tend to be populated with
- small C_D, Large S_D...but so are other

broken clouds

25

SUMMARY

- POCs identified by low BTD occupy a unique region on C_p-S_p space
- Coastal influences on cloud macrophysical properties are suggested by regional differences in the diurnal cycle of C_D
- Diurnal cycle of LWP/R_e suggests drizzle processes play important role thru solar noon

I. Diurnal cycle of cloud macro- and microphysical properties

- Diurnal cycle of optical depth, LWP and R_e similar to other MLB sudies
- Lack of longitudinal gradients in $\rm R_{e}$ (Reg 1,2 and Reg 3,4 and Reg 5,6) = Lack of coastal influences

- Longitudinal gradients in $\rm R_e$ (Reg 7,8,9 and Reg 10,11,12) suggest coastal influences on cloud microphysics

 \bullet Coastal influence on diurnal cycle of cloud macrophysics (C_{_D}) in Reg 8,9,11,12

5. Liquid Water Path and Effective Radius

Most regions show similar pattern

 Morning to local noon depleting LWP and decreasing R_e suggests importance of drizzle

 \bullet After local noon LWP increases with nearly constant $\rm R_{\rm e}$

Movie of C_D