

ENERGY STAR® Calculating the Cost of Delay

An Introduction to the Cash Flow Opportunity (CFO)
Calculator

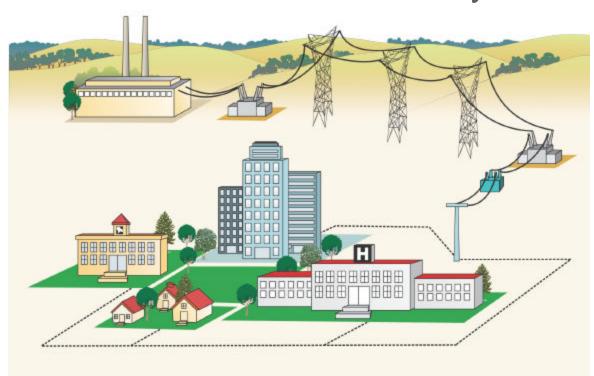
Presentation Overview

- About ENERGY STAR
- The challenge of energy waste
- CFO Calculator
 - Concepts
 - Operations and results
 - Building energy performance rating (benchmarking)

What is ENERGY STAR?

A voluntary partnership between organizations, businesses, consumers, and government, united in the pursuit of a common goal —

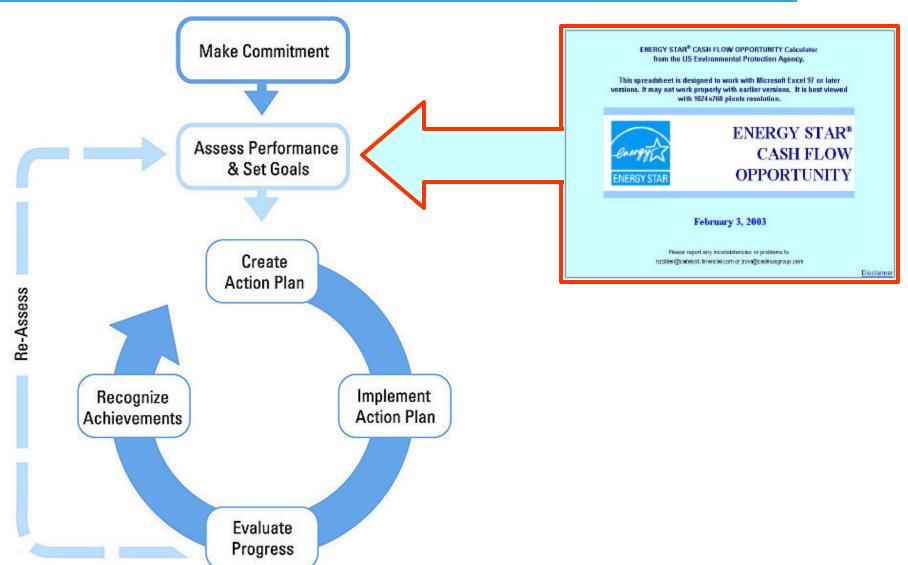
What is ENERGY STAR?


A voluntary partnership between organizations, businesses, consumers, and government, united in the pursuit of a common goal — to protect our environment for future generations by changing to energy-efficient products and practices today.

The Need for Energy Efficiency

Energy waste at home and at work will cost U.S. organizations and consumers billions of dollars in the next 10 years.

Wasted energy contributes to smog, acid rain, and greenhouse gases.


The Power of ENERGY STAR

In 2002 alone, Americans, with the help of ENERGY STAR, saved enough energy to power 15 million homes and reduce the greenhouse gas emissions equivalent to those of 14 million cars -- all while saving \$7 billion.

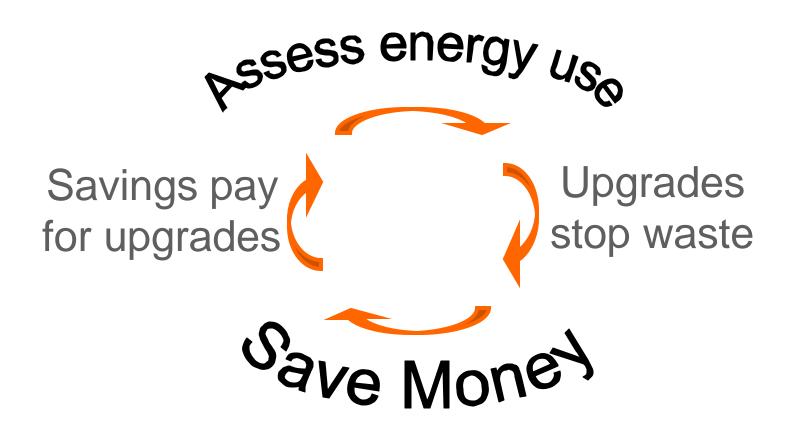
Energy Management Strategy

The Opportunity

How much new equipment could you buy from the dollars saved by installing energy efficiency equipment now?

"We are paying for energy efficiency projects whether or not we do the projects!"

The "Business" of Energy Efficiency



Energy efficiency projects are unlike other capital projects:

- Properly structured, they pay for themselves.
- They do not have to compete with other capital projects for funding.

The "Business" of Energy Efficiency

What is the CFO Calculator?

An energy efficiency financial decision-making tool, built on Microsoft Excel™

- Instructions
- Four analysis spread sheets
- A summary report

Helps quantifies the costs of delay.

What Does it Do?

Addresses three critical questions about installing energy efficiency projects:

- 1. How much new energy efficiency equipment can be purchased from the anticipated savings?
- 2. Should this equipment purchase be financed now or is it better to wait and use cash from a future budget? (avoid paying interest)
- 3. Is money being lost by waiting for a lower interest rate?

When Should it be Used?

- When decision making has been deferred or is controversial
- When opportunity losses are real and calculable

The CFO Calculator helps quantify the urgency of acting NOW!

Meet the CFO Calculator

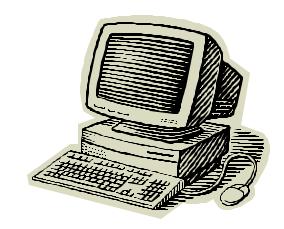
ENERGY STAR® CASH FLOW OPPORTUNITY Calculator from the US Environmental Protection Agency.

This spreadsheet is designed to work with Microsoft Excel 97 or later versions. It may not work properly with earlier versions. It is best viewed with 1024x768 pixels resolution.

ENERGY STAR® CASH FLOW OPPORTUNITY

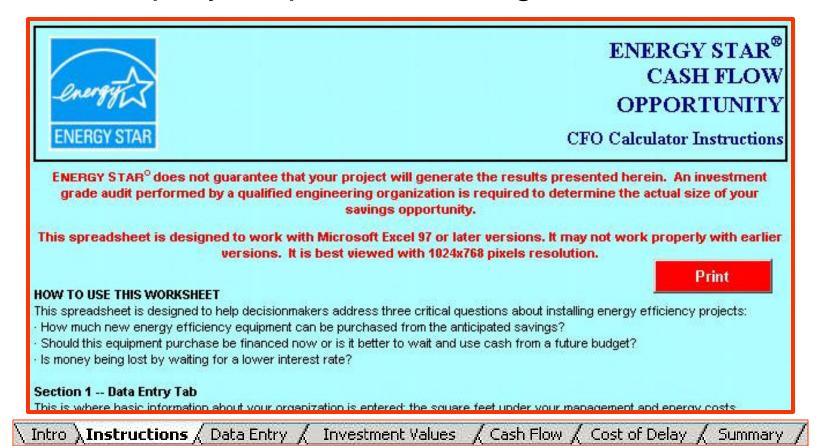
February 3, 2003

Please report any inconsistencies or problems to nzobler@catalyst-financial.com or jrovi@cadmusgroup.com


Disclaimer

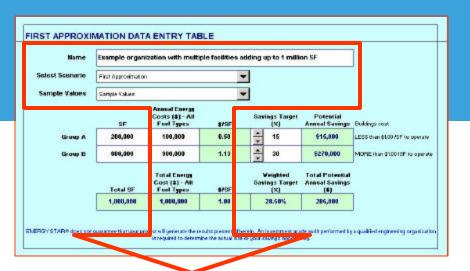
 \setminus **Intro** \bigwedge Instructions \bigwedge Data Entry \bigwedge Investment Values \bigwedge Cash Flow \bigwedge Cost of Delay \bigwedge Summary

The CFO Calculator's 7 Tabs


\Intro (Instructions (Data Entry (Investment Values (Cash Flow (Cost of Delay (Summary)

Instructions Page

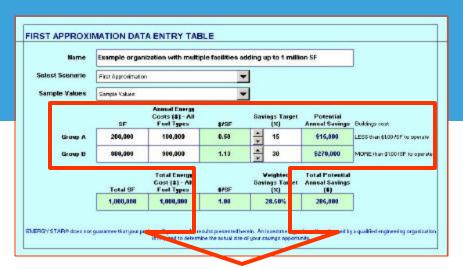
The instructions provide useful information and step-by-step how-to-use guidelines


A simplified general approach

Name	Example organ	ization with multipl	e facilities a	dding up to 1 millio	on SF	
Select Scenario	First Approximation			7		
Sample Values	Sample Values			2		
	SF	Annual Energy Costs (\$) - All Fuel Types	\$ISF	Savings Target (%)	Potential Annual Savings	Buildings cost
Group A	200,000	100,000	0.50	15	\$15,000	LESS than \$1.00 /SF to operate
Group B	800,000	900,000	1.13	30	\$270,000	MORE than \$1,00 /SF to opera
	Total SF	Total Energy Cost (\$) - All Fuel Types	\$ISF	Veighted Savings Target (%)	Total Potential Annual Savings (\$)	
	1,000,000	1,000,000	1.00	28.50%	285,000	

Data Entry (Investment Values (Cash Flow (Cost of Delay (Summary)

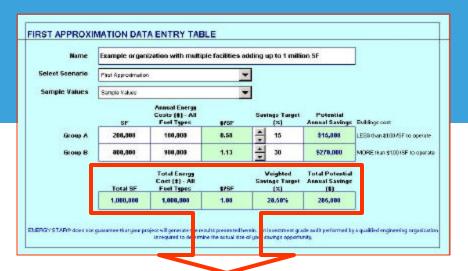
\ Intro / Instructions



Data Entry

Name	Example organization wi	th multiple facilities adding up to 1 million SF	(1)
Select Scenario	First Approximation	(2)	
Sample Values	Sample Values	(3)	

- (1) Enter name of organization
- (2) Select approximation
- (3) View a sample



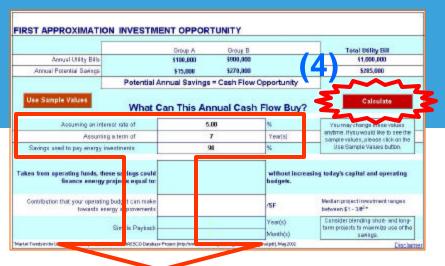
Data Entry

		Annual Energy Costs (\$) - All Fuel			Potential Annual	
	SF	Types	\$/SF	Savings Target (%)	Savings	_Buildings cost
Group A	(4) ^{200,000}	(5)100,000	0.50	15 (6)	\$15,000	LESS than \$1.00 /SF to operate
Group B	800,000	900,000	1.13	30	\$270,000	MORE than \$1.00 /SF to operate

- (4) Total square footage for each group
- (5) Annual energy costs for each group
- (6) Your best estimate of percent savings

Data Entry

Total SF	Total Energy Cost (\$) - All Fuel Types	\$/SF	Weighted Savings Target (%)	Total Potential Annual Savings (\$)
1,000,000	1,000,000	1.00	(7) 28.50%	(8) 285,000


- (7) Weighted Savings Target is the overall savings based on total square footage and dollars
 - (8) Based on your estimated savings target, this is the excess amount paid to the utility companies

Value of Your Investment

	Crown A	Group B		Total Hillit: Dill
Annual Utility Bills	Group A \$100,000	\$900,000		Total Utility Bill \$1,000,000
Annual Potential Savings	April 2003 Short			
Poten	tial Annual Saving	s = Cash Flow O	pportunity	
Use Sample Values Wh	at Can This A	nnual Cash I	low Buy?	Calculate
Assuming an interest rate of		5.00	%	You may change these values
Assuming a term of		7	Year(s)	anytime. If you would like to see the sample values, please click on the
Savings used to pay energy investments		90	%	Use Sample Values button.
aken from operating funds, these savings c finance energy projects equa	37.039.07.00		without incre budgets.	easing today's capital and operating
Contribution that your operating budget can r towards energy improvem			/SF	Median project investment ranges between \$1 - 3/ft².*
			Year(s)	Consider blending short- and long-

\ Intro \ Instructions \ Data Entry \ Investment Values \ Cash Flow \ Cost of Delay \ Summary

Investment Values

Assuming an interest rate of	(1) 5.0	00 %	
Assuming a term of	(2) 7	Yea	ır(s)
Savings used to pay energy investments	(3) 90) %	

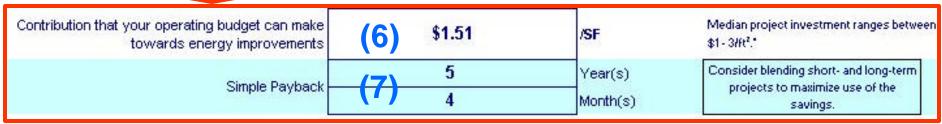
- (1) The rate your organization can obtain financing
- (2) Financing term acceptable to your organization and the lender
- (3) Percentage of savings to commit to pay for energy efficiency improvements

Dollars are buried in your utility bill!

Taken from operating funds, these savings could finance energy projects equal to:

(5) \$1,512,000

without increasing today's capital and operating budgets.


(5) Estimated value of equipment that could be acquired without increasing existing Operating or Capital Budgets

Pay for energy efficiency improvements TODAY using the money saved from FUTURE bills!

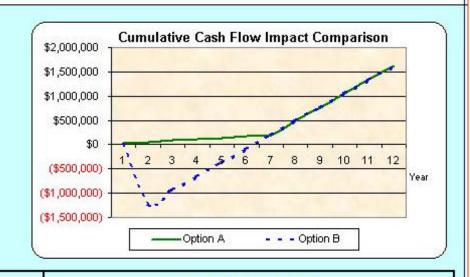
Investment Values

- (6) Contribution your operating budget can make toward energy improvements
- (7) Simple payback

Cash Flow

FIRST APPROXIMATION CASH FLOW OPPORTUNITY

Click this button if you would like to transfer values from Investment Values page, Year(s) postponed is given as 2 years.

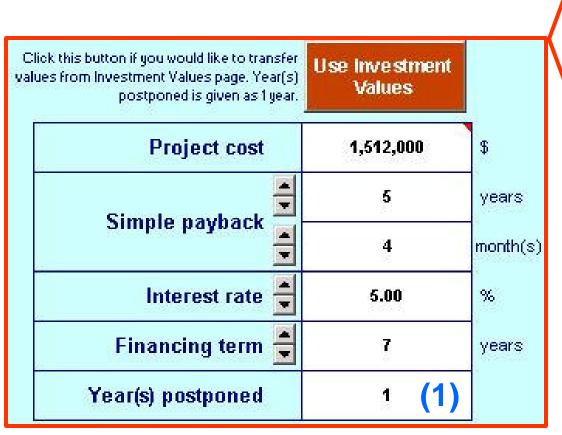

\ Intro

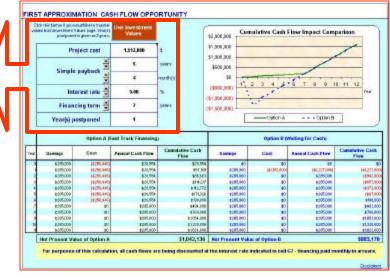
\ Instructions

Use Investment Values

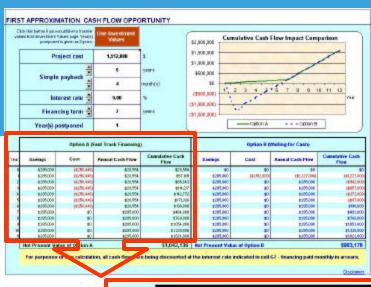
Data Entry

Project cost	1,512,000	\$
Simula made al	5	years
Simple payback	4	month(s)
Interest rate 🚔	5.00	%
Financing term 🕏	7	years
Year(s) postponed	1	

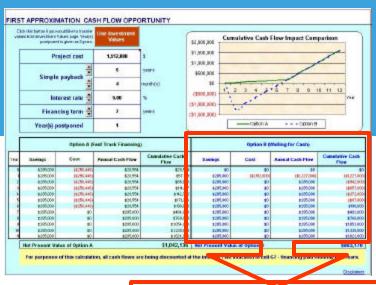



Investment Values \Cash Flow \(\) Cost of Delay \(\) Summary \(\).

	Option A (Fast Track Financing)				Option B (Option B (Waiting for Cash)		
Year	Savings	Cost	Annual Cash Flow	Cumulative Cash Flow	Savings	Cost	Annual Cash Flow	Cumulative Cash Flow
0	\$285,000	(\$256,446)	\$28,554	\$28,554	\$0	\$0	\$0	\$0
1	\$285,000	(\$256,446)	\$28,554	\$57,109	\$285,000	(\$1,512,000)	(\$1,227,000)	(\$1,227,000)
2	\$285,000	(\$256,446)	\$28,554	\$85,663	\$285,000	\$0	\$285,000	(\$942,000)
3	\$285,000	(\$256,446)	\$28,554	\$114,217	\$285,000	\$0	\$285,000	(\$657,000)
4	\$285,000	(\$256,446)	\$28,554	\$142,772	\$285,000	\$0	\$285,000	(\$372,000)
5	\$285,000	(\$256,446)	\$28,554	\$171,326	\$285,000	\$0	\$285,000	(\$87,000)
6	\$285,000	(\$256,446)	\$28,554	\$199,880	\$285,000	\$0	\$285,000	\$198,000
7	\$285,000	\$0	\$285,000	\$484,880	\$285,000	\$0	\$285,000	\$483,000
8	\$285,000	\$0	\$285,000	\$769,880	\$285,000	\$0	\$285,000	\$768,000
9	\$285,000	\$0	\$285,000	\$1,054,880	\$285,000	\$0	\$285,000	\$1,053,000
10	\$285,000	\$0	\$285,000	\$1,339,880	\$285,000	\$0	\$285,000	\$1,338,000
11	\$285,000	\$0	\$285,000	\$1,624,880	\$285,000	\$0	\$285,000	\$1,623,000
	Net Present Valu	e of Option A		\$1,042,136	Net Present Value	of Option B		\$883,170


Cash Flow

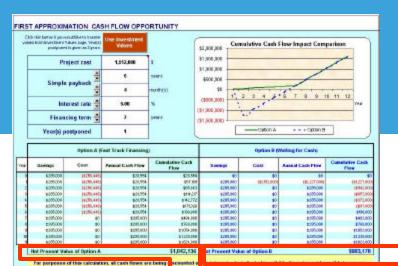
(1) Starting from Year 0 (now), this cell will contain the time period in which you delayed your energy efficiency improvements.



Should we do it now?

Pay as we use?

	Option A (Fast Track Financing)					
Year	Savings	Cost	Annual Cash Flow	Cumulative Cash Flow		
0	\$285,000	(\$256,446)	\$28,554	\$28,554		
1	\$285,000	(\$256,446)	\$28,554	\$57,109		
2	\$285,000	(\$256,446)	\$28,554	\$85,663		
3	\$285,000	(\$256,446)	\$28,554	\$114,217		
4	\$285,000	(\$256,446)	\$28,554	\$142,772		
5	\$285,000	(\$256,446)	\$28,554	\$171,326		
6	\$285,000	(\$256,446)	\$28,554	\$199,880		
7	\$285,000	\$0	\$285,000	\$484,880		
8	\$285,000	\$0	\$285,000	\$769,880		
9	\$285,000	\$0	\$285,000	\$1,054,880		
10	\$285,000	\$0	\$285,000	\$1,339,880		
11	\$285,000	\$0	\$285,000	\$1,624,880		

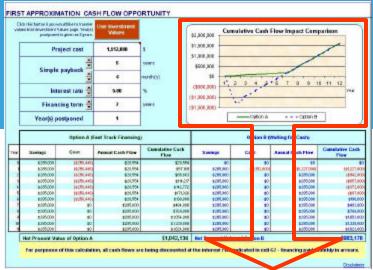


Should we wait until funds are available?

Pay as we go?

Option B (Waiting for Cash)					
Savings	Cost	Annual Cash Flow	Cumulative Cash Flow		
\$0	\$0	\$0	\$0		
\$285,000	(\$1,512,000)	(\$1,227,000)	(\$1,227,000)		
\$285,000	\$0	\$285,000	(\$942,000)		
\$285,000	\$0	\$285,000	(\$657,000)		
\$285,000	\$0	\$285,000	(\$372,000)		
\$285,000	\$0	\$285,000	(\$87,000)		
\$285,000	\$0	\$285,000	\$198,000		
\$285,000	\$0	\$285,000	\$483,000		
\$285,000	\$0	\$285,000	\$768,000		
\$285,000	\$0	\$285,000	\$1,053,000		
\$285,000	\$0	\$285,000	\$1,338,000		
\$285,000	\$0	\$285,000	\$1,623,000		

Net Present Values


\$883,170

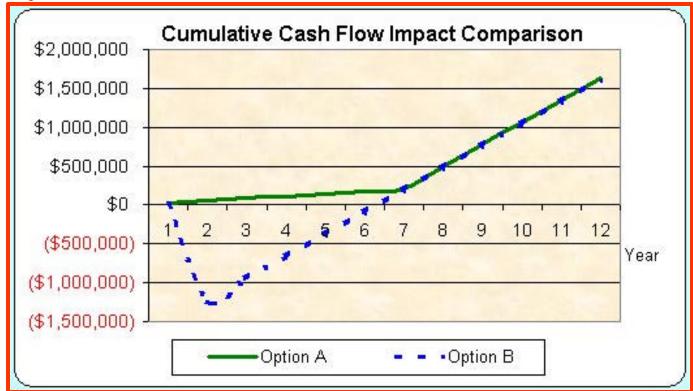
Net Present Value of Option A

\$1,042,136

Net Present Value of Option B

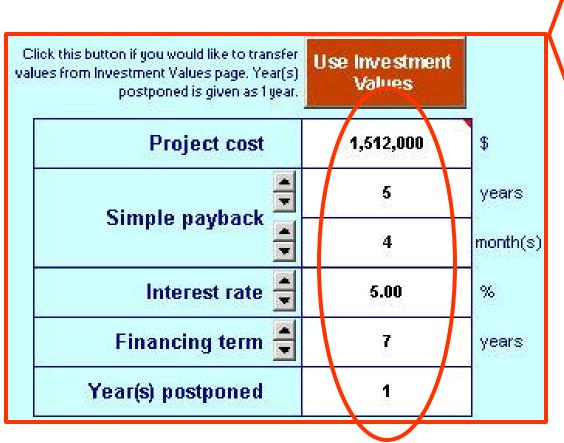
Whichever option generates the most present value dollars is the better financial decision.

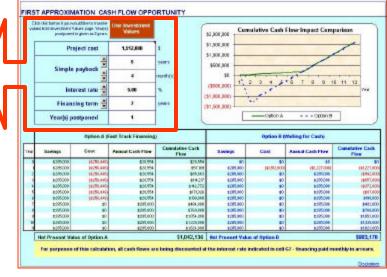
Manage Your Cash



Option A: Fast track financing

Option B: Waiting for cash/budget


approval etc.


Which option is easier to manage?

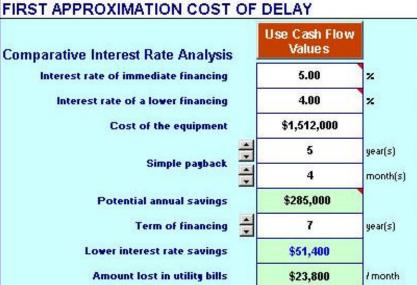
Play with Sensitivities

By playing with these numbers, you can structure your project to maximize the benefits of the energy dollars saved.

Recap

- 1) Energy waste is substantial; these dollars should be used to pay for new equipment.
- 2) Financing the equipment today, rather than postponing the installation until funds are available in future budgets, is a better financial decision.
- 3) If we can access lower cost financing, why should we consider a higher rate offering?

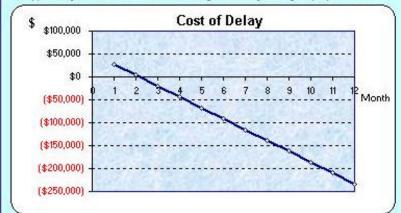
Cost of Delay


2.2

15.4%

month(s)

ENERGY STAR

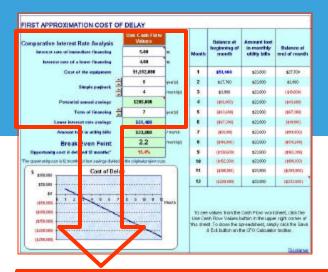


Month	Balance at beginning of month	Amount lost in monthly utility bills	Balance at end of month
1	\$51,400	\$23,800	\$27,700
2	\$27,700	\$23,800	\$3,900
3	\$3,900	\$23,800	(\$19,800)
4	(\$19,800)	\$23,800	(\$43,600)
5	(\$43,600)	\$23,800	(\$67,300)
6	(\$67,300)	\$23,800	(\$91,100)
7	(\$91,100)	\$23,800	(\$114,800)
8	(\$114,800)	\$23,800	(\$138,600)
9	(\$138,600)	\$23,800	(\$162,300)
10	(\$162,300)	\$23,800	(\$186,100)
11	(\$186,100)	\$23,800	(\$209,800)
12	(\$209,800)	\$23,800	(\$233,600)

The opportunity cost is 12 months of lost savings divided by the original project cost.

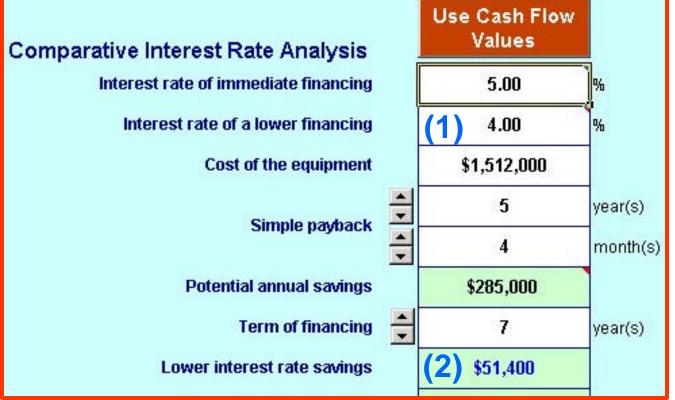
Break-Even Point

Opportunity cost if delayed 12 months"

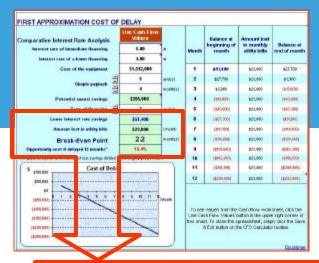

To see values from the Cash Flow worksheet, click the Use Cash Flow Values button in the upper right corner of this sheet. To close the spreadsheet, simply click the Save & Exit button on the CFO Calculator toolbar.

\ Intro Instructions

Data Entry


Investment Values

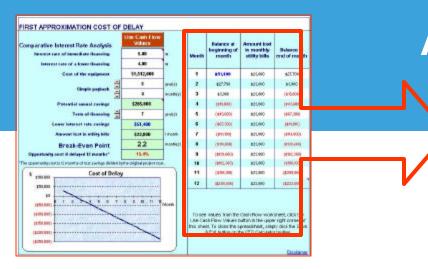
Cash Flow \ Cost of Delay \ Summary



Cost of Delay

- (1) Lower interest rate
- (2) Benefit of one financing versus another

Cost of Delay



(4) Percentage of the project cost lost by waiting 12 months

more expensive decision

\ Intro \bigwedge Instructions \bigwedge Data Entry \bigwedge Investment Values \bigwedge Cash Flow \bigwedge Cost of Delay \bigwedge Summary \bigwedge

How long you can wait until the lower interest rate becomes the

A 'better deal'?

KOO	k-E۱	10 D	10
	K=C1	/en	

After this point, the lost energy savings will consume the total savings realized from the lower interest rate financing.

Month	Balance at beginning of month	Amount lost in monthly utility bills	Balance at end of month	
1	\$51,400	\$23,800	\$27,700	
2	\$27,700	\$23,800	\$3,900	
3	\$3,900	\$23,80	(\$19,800)	
4	(\$19,800)	\$23,800	(\$43,600)	
5	(\$43,600)	\$23,800	(\$67,300)	
6	(\$67,300)	\$23,800	(\$91,100)	
7	(\$91,100)	\$23,800	(\$114,800)	
8	(\$114,800)	\$23,800	(\$138,600)	
9	(\$138,600)	\$23,800	(\$162,300)	
10	(\$162,300)	\$23,800	(\$186,100)	
11	(\$186,100)	\$23,800	(\$209,800)	
12	(\$209,800)	\$23,800	(\$233,600)	

Summary Report

ENERGY STAR®

CASH FLOW

OPPORTUNITY

CFO Calculator

FIRST APPROXIMATION SUMMARY of FINANCIAL CALCULATIONS

Print

Name: Example organization with multiple facilities adding up to 1 million SF

Select Scenario: FIRST APPROXIMATION

This information has been generated by a spreadsheet developed by ENERGY STAR. It helps address three critical questions about installing energy efficiency projects:

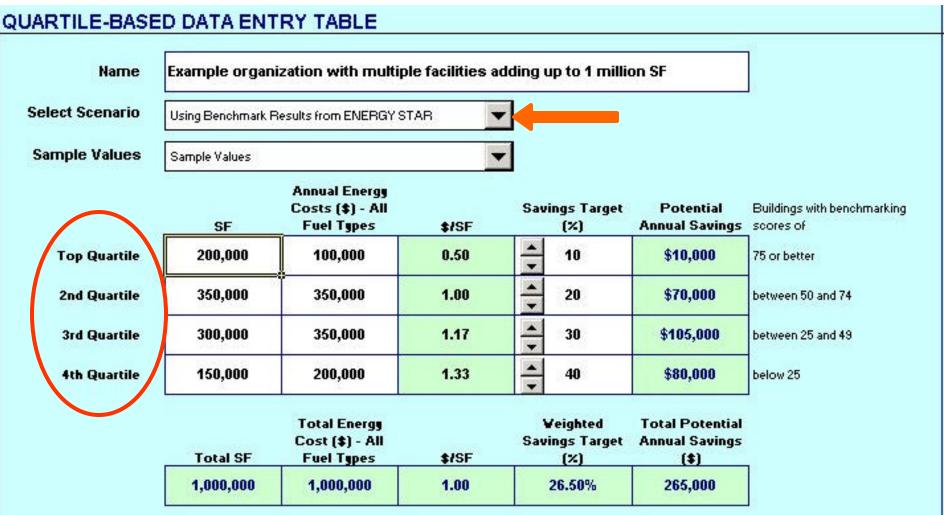
- -How much new energy efficiency equipment can be purchased from the anticipated savings?
- -Should this equipment purchase be financed now or is it better to wait and use cash from a future budget?
- -Is money being lost by waiting for a lower interest rate?

1. How much energy efficiency equipment can be purchased?

This section reflects the cost per square foot by building category, as follows:

_	SF	Annual Energy Costs (\$) - All Fuel Types	\$/SF	Savings Target (%)	Potential Annual Savings
Top Quartile	200,000	\$100,000	\$0.50	15	\$15,000
2nd Quartile	800,000	\$900,000	\$1.13	30	\$270,000

Buildings cost


LESS than \$1.00 /SF to operate

MORE than \$1.00 /SF to operate

\ Intro / Instructions / Data Entry / Investment Values / Cash Flow / Cost of Delay **\Summary** /

Using the ENERGY STAR Benchmarking Results

Reminder

An investment grade audit performed by a qualified engineering company will be required to determine the actual size of your savings opportunity.

Please help us...

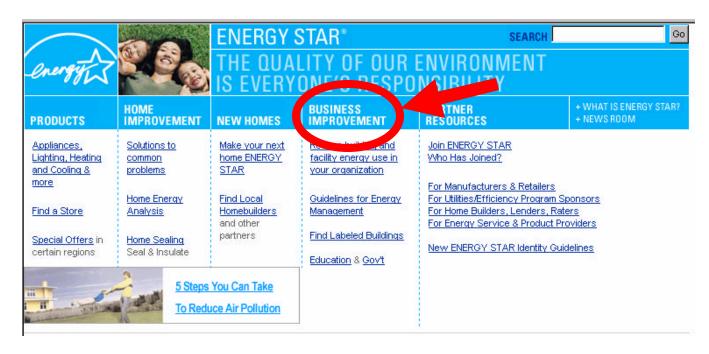
How might you use the CFO Calculator?

CFO Calculator Users

- Cities: Fort Worth, Orange County (FL), Miami-Dade County, Las Vegas, Los Angeles, San Diego
- States: CA, CT, GA, PA, TX, VA
- School Districts: Fairfax County, Clark County, Philadelphia, Houston, Dallas

Internet Presentations

Distance Learning Opportunities


- ENERGY STAR -Overview for Public Sector Organizations
- Higher Education ENERGY STAR Overview
- ENERGY STAR Overview for Service & Product Providers
- Benchmarking with ES Portfolio Manager
- Money for Your Energy Upgrades
- Introduction to The CFO Calculator
- Purchasing and Procurement
- PC Power Management
- Designing Top Energy Performing Building for Your Clients

To register, please visit ENERGY STAR Online Trainings and Presentations

www.energystar.gov

For More Information

For a copy of the CFO Calculator:

- 1. Go to www.energystar.gov
- 2. Select "Business Improvement"
- 3. Choose "Assess Financial Value."
- 4. Scroll down to "The CFO Calculator".

ENERGY STAR Contacts

- www.energystar.gov
- 1-888-STAR-YES (1-888-782-7937)
- Katy Hatcher
 ENERGY STAR National Manager, Public Sector Hatcher.Caterina@epa.gov
- Neil Zobler
 Catalyst Financial Group, Inc.
 Contractors to US EPA ENERGY STAR
 203-790-4177
 nzobler@catalyst-financial.com