USGS
South Florida Information Access
SOFIA home
Help
Projects
by Title
by Investigator
by Region
by Topic
by Program
Results
Publications
Meetings
South Florida Restoration Science Forum
Synthesis
Information
Personnel
About SOFIA
USGS Science Strategy
DOI Science Plan
Education
Upcoming Events
Data
Data Exchange
Metadata
projects > across trophic level system simulation (atlss) > snail kite > abstract


Vegetative Habitats of Water Conservation Area-3A: Hydrologic Impacts of IOP

By Wiley M. Kitchens1, Paul Wetzel, and Erik Powers2

1U.S. Geological Survey, Florida Cooperative Fish and Wildlife Research Unit, Gainesville, FL., USA
2University of Florida, Gainesville, FL., USA

image of WCA-3A indicating IR and sample complex locations
Figure 1. Image of WCA-3A indicating IR and sample complex locations. [larger image]
A vegetation monitoring study has been initiated in Water Conservation Area-3A (WCA-3A) to document impacts of a new hydrologic regulation schedule implemented 1 July 2002 under the Interim Operation Plan for the Protection of the Cape Sable Seaside Sparrow, Everglades Park - Alternative 7R (IOP-Alt.7R). This study was implemented to address the concern that IOP-Alt.7R could adversely affect the endangered snail kite (Rostrhamus sociabilis) and their habitat in WCA-3A, the largest and most consistently utilized of designated critical habitats. Much of the area is already currently seriously degraded. Various studies have documented the conversion of wet prairies (preferred foraging habitat) to aquatic sloughs in that area along with losses of interspersed herbaceous and woody species essential for nesting habitat. The concern is carrying capacity (habitat quality) will be further impaired from elevated water depths and increased hydroperiods indicated by hydrological predictions.

The principal objective is to separate plant community responses due to typical seasonal and year-to-year variances from effects due to new and (or) predicted hydrologic regimes. The vegetative community structure of these sites is an expression of both recent past and current hydrological conditions. It is critically important to determine how the species associations within these communities respond differentially to changes in hydrology through time and over space. Given the immense area of WCA 3A, this study focuses on areas represented by two Indicator Regions (IR's 14 and 17). The areas include major gaging stations (GS 63, 64, and 65) and traditional foraging and nesting regions used by kites.

A multi-tiered approach was required to determine community change through time and space while differentiating seasonal responses from projected hydrologic changes.

1) Spatial Patterns and Change Detection at the Broad Vegetation Class Level- (example, sawgrass strands, tree islands, cattail patches, and wet prairie/slough). Aerial or satellite imagery will be used to remotely sense spatial distributions, extent, and patterning of broad major vegetation classes. Change detection will conducted on at least three sets of imagery, 4-5 years pre-project, at project onset, and 3-4 years post-project.

2) Development of "modeled-topographic" database and hydrologic characterization of Indicator Regions. Stage information generated by SFWMM model for the units comprising each Indicator Region is gridded 2 mi. on a side. Stage duration curves generated from this data are determined from estimated ground surface elevations generalized from a weighted mean over the 4 sq. mi. area of each grid. This level of detail is far too generalized for assessment impacts to habitat suitability of wetland vegetation for subtle changes in hydroperiods and inundation depth regimes. To resolve this issue, we have located 10 sample complexes (1 kilometer on a side) within each of the indicator regions (14 and 17) (Fig. 1) using a stratified random approach (peat depths, general elevation, and snail kite nest density). Water levels will be continuously monitored in each complex. Each complex is subdivided into a grid 100-m on a side. Replicate ground surface elevations will be measured (survey-grade GPS) in each major plant community types (as per vegetation maps as per above) near the intersection points in the grid. Elevations will be surveyed for each of the plant types separately in each grid by confining kreiging routines for the elevations for that plant type only within polygons labeled for that type. This is repeated for each plant type and each cell. Polygons are re-composited and merged in a GIS providing a topographic database driven by plant community types. Stage data for the sample complex will be related to elevation data specific to each plant community type creating stage duration curves for each vegetation type in the individual cells. Long term and predicted hydroperiod and depth duration data for each vegetation type in each cell will be generated by statistical regression with the nearest permanent gaging station.

3) Establishment of permanent transects plots across elevation gradient in each Indicator Region. Permanent monitoring plots (combinations of quadrats and transects) have been established in the sample complexes across the local elevation gradient in each complex. Regularly placed multiple or replicate quadrats arrayed as continuous belts along a transect perpendicular to the elevation gradient within each sample complex. Each site is sampled seasonally (3 times/yr) for species numbers, stem counts, and biomass (both living and standing dead). Water depths are monitored continuously within each sample complex for determinations of hydroperiods and depth duration curves. Each complex consists of three belt transect complexes, five plots of the principal habitat types (sawgrass, wet prairie, sloughs), and five permanent tree island/shrub heads plots sites typical of kite nest habitat. Multivariate techniques (NMS and multivariate regression tree, and structural equation models) will be used to resolve relation between plant community structure and hydrology. Structural equation modeling (SEM) will define statistical correlations among species and associated hydrologic and other environmental parameters and provide probabilistic measures for environmental mechanisms involved in plant community succession.

Contact: Kitchens, Wiley, Florida Cooperative Fish and Wildlife Research Unit, Bldg. 810, University of Florida, Gainesville, FL 326211- Phone: 352-836-0536, Fax: 352-846-0841, kitchensw@wec.ufl.edu, Ecology


(This abstract was taken from the Greater Everglades Ecosystem Restoration (GEER) Open File Report 03-54)

Back to Project Homepage




| Disclaimer | Privacy Statement | Accessibility |

U.S. Department of the Interior, U.S. Geological Survey
This page is: http://sofia.usgs.gov/projects/atlss/kite/hydroimpiop_03geerab.html
Comments and suggestions? Contact: Heather Henkel - Webmaster
Last updated: 03 September, 2003 @ 08:25 AM(KP)