Fermentation Biotechnology Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: NOVEL CARBOHYDRATE-BASED MATERIALS VIA BIOCONVERSION PROCESSES

Location: Fermentation Biotechnology Research

Title: Conformational Analysis of Chirally-Deuterated Tunicamycin As An Active Site Probe of Udp-N-Acetylhexosamine: Polyprenol-P-N-Acetylhexosamine-1-P Translocases

Authors
item Xu, Lin - UNIV ROCHESTER MED CENTER
item Appell, Michael
item Kennedy, Scott - UNIV ROCHESTER MED CENTER
item Momany, Frank
item Price, Neil

Submitted to: Biochemistry
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: August 20, 2004
Publication Date: October 26, 2004
Citation: Xu, L., Appell, M.D., Kennedy, S., Momany, F.A., Price, N.P. 2004. Conformational analysis of chirally-deuterated tunicamycin as an active site probe of UDP-N-acetylhexosamine: polyprenol-p-N-acetylhexosamine-1-p translocases. Biochemistry. 43:13248-13255.

Interpretive Summary: Antimicrobial compounds typically target essential functions in growing cells and produce their effects by disrupting these functions. A family of enzymes called HexNAc-1-P translocases are important in the synthesis of a variety of microbial carbohydrates, particularly cell wall polysaccharides. The compound tunicamycin targets these enzymes because of its structural similarity to the natural substrate and effectively blocks the reaction carried out by these enzymes. In our research, we showed how the tunicamycin structurally interacts with its target, and the mechanisms of this interaction are described for the first time. We also showed the binding of various divalent metal ions to tunicamycin, comparable to the binding that occurs in the translocase enzyme. The work provides a valuable tool for researchers that will impact our understanding of how microbial polysaccharides are made.

Technical Abstract: Tunicamycins are potent inhibitors of UDP-N-acetyl-D-hexosamine: polyprenol-phosphate N-acetylhexosamine-1-phosphate translocases (D-HexNAc-1-P translocases), a family of enzymes involved in bacterial cell wall synthesis and eukaryotic protein N-glycosylation. Structurally, tunicamycins consist of an 11-carbon dialdose core sugar called tunicamine that is N-linked at C-1' to uracil and O-linked at C-11' to N-acetylglucosamine (GlcNAc). The C-11' O-glycosidic linkage is highly unusual because it forms an alpha-beta anomeric-to-anomeric linkage to the 1-position of the GlcNAc residue. We have assigned the **1H- and **13C-NMR spectra of tunicamycin and have undertaken a conformational analysis from rotating angle nuclear Overhauser effect (ROESY) data. In addition, chirally-deuterated tunicamycins produced by fermentation of Streptomyces chartreusis on chemically-synthesized, mono-deuterated (S-6)-[**2H1]glucose has been used to assign the geminal H-6'a, H-6'b methylene bridge of the 11-carbon dialdose sugar, tunicamine. The tunicamine residue is shown to assume pseudo-D-ribofuranose and **4C1 pseudo-D-galactopyranosaminyl ring conformers. Conformation about the C-6' methylene bridge determines the relative orientation of these rings. The model predicts that tunicamycin forms a right-handed cupped structure, with the potential for divalent metal ion coordination at 5'-OH, 8'-OH, and the pseudo-galactopyranosyl 7'-O ring oxygen. The formation of tunicamycin complexes with various divalent metal ions was confirmed experimentally by MALDI-TOF mass spectrometry. Our data support the hypothesis that tunicamycin is a structural analog of the UDP-D-HexNAc substrate and is reversibly coordinated to the divalent metal cofactor in the D-HexNAc-1-P translocase active site.

   

 
Project Team
Cote, Gregory - Greg
Price, Neil
Leathers, Timothy - Tim
Cotta, Michael - Mike
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House