Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills ## Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills Prepared by Eastern Research Group, Inc. 1600 Perimeter Park Dr. Morrisville, NC 27560 Contract Number: EP-C-07-015 Work Assignment Number: 0-4 #### **EPA Project Officer** Susan Thorneloe Air Pollution Prevention and Control Division National Risk Management Research Laboratory Research Triangle Park, NC 27711 Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460 #### **Notice** The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development performed and managed the research described in this report. It has been subjected to the Agency's peer and administrative review and has been approved for publication as an EPA document. Any opinions expressed in this report are those of the author and do not, necessarily, reflect the official positions and policies of the EPA. Any mention of products or trade names does not constitute recommendation for use by the EPA. #### **Abstract** This document was prepared for U.S. EPA's Office of Research and Development in support of EPA's Office of Air Quality Planning and Standards (OAQPS). The objective is to summarize available data used to update emissions factors for quantifying landfill gas emissions and combustion by-products using more up-to-date and representative data for U.S. municipal landfills. This document provides background information used in developing a draft of the AP-42 section 2.4 which provides guidance for developing estimates of landfill gas emissions for national, regional, and state emission inventories. EPA OAQPS will be conducting the review of Section 2.4. Once comments are addressed, the AP-42 section will be updated and available through EPA's Technology Transfer Network (TTN) Clearinghouse for Inventories & Emissions (http://www.epa.gov/ttn/chief/ap42/). This report is considered a stand-alone report providing details of available data and analysis for developing landfill gas emission factors and combustion by-products for a wider range of pollutants and technologies. The inputs that are described in this report are used in EPA's Landfill Gas Emission Model (LandGEM) for developing inputs for state, regional, and national emission inventories. Data from 62 LFG emissions tests from landfills with waste in place on or after 1992 were used to develop updated factors for use in LandGEM. This document also provides updated and additional emission factors for combustion byproducts for control devices such as flares, boilers, and engines. Of the 293 emissions tests submitted to EPA for this update, over 200 contained inadequate documentation or information for use in this update. The reports that were used included LFG composition data and, in some cases, emissions data on LFG combustion by-products. These emissions tests were screened for quality and compiled to create emission factors for non-methane organic compounds (NMOC), as well as speciated compounds in LFG. This update expands the list of emission factors for LFG constituents from 44 to 167 and provides many more "A" quality rated emission factors. Likewise, combustion by-product emission factors for dioxins/furans were added in this update, along with improved ratings of the other combustion by-product emission factors as a result of the addition of new data. Updated information is provided of changes in the design and operation of U.S. MSW landfills along with updated statistics on the amount of waste being landfilled. Information on quantifying area source emissions (OTM10) is provided based on the use of Optical Remote Sensing technology and Radial Plume Mapping (ORS-RPM). The first-order equation used to estimate LFG emissions has been modified to add a factor to account for LFG capture efficiency. Due to the increase in the use of leachate recirculation, a gas production rate to characterize emissions from wet landfills has been added. The rate constant is based on an optimum moisture content using data from about 30 landfills using leachate recirculation. Information on air emission concerns regarding construction/demolition waste landfills and landfill fires have also been added to the AP-42 section. #### **Foreword** The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels. This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients. Sally C. Gutierrez, Director National Risk Management Research Laboratory #### Acknowledgements We would like to thank those providing data and information used to help develop more up-to-date and credible emission factors for evaluating air emissions from landfills and combustion by-products from the control of landfill gas emissions. We would also like to thank those helping to review this report including Jim Topsale of EPA Region III; Tom Driscoll, K.C. Hustvedt, Ron Myers, and Hillary Ward of EPA's Office of Air Quality Planning and Standards; Rachel Goldstein of EPA's Landfill Methane Outreach Program (LMOP); and Bob Wright and Andy Miller of EPA's Office of Research and Development (ORD). We would also like to thank the Environmental Research and Education Foundation (EREF). Through a Cooperative Research and Development Agreement (#200-C-09) between EPA ORD and EREF, co-funding was provided which helped to complete data collection and analysis. Co-funding was also received from EPA's LMOP program to help complete the data analysis to update combustion by-products from technologies utilizing methane (i.e., internal combustion engines, boilers, and turbines). #### TABLE OF CONTENTS | | | | | Page | |-------|----------|----------|--|-------------| | Notic | e | | | ii | | Abstr | act | | | iii | | Forev | word | | | iv | | Ackn | owledge | ements | | V | | Appe | ndices . | | | vii | | | | | | | | 1.0 | INTR | ODUCT | ION | 1 | | 1.0 | IIII | ОВССТ | | ······ 1 | | 2.0 | | | LED LANDFILL GAS DATA ANALYSIS RESULTS | | | | 2.1 | | ion of Uncontrolled Landfill Gas Emissions | | | | 2.2 | | ımmary | | | | 2.3 | | and VOC | | | | 2.4 | | ed Organics and Reduced Sulfur Compounds | | | | 2.5 | | e, Carbon Dioxide, Carbon Monoxide, Oxygen and Nitrogen | | | | 2.6 | | en Chloride | | | | 2.7 | | l Gas Constituent Data for Landfills With Waste in Place Prior to 1992 | | | | | | Data Gathering and Review | | | | | 2.7.2 | Development of Default Concentrations | 32 | | 3.0 | CONT | ROLLE | D LANDFILL GAS DATA ANALYSIS RESULTS | 43 | | ••• | 3.1 | | | | | | 0.12 | 3.1.1 | Nitrogen Oxides | | | | | 3.1.2 | Carbon Monoxide | | | | | 3.1.3 | Particulate Matter | 45 | | | | 3.1.4 | Total Dioxin/Furan | 45 | | | | 3.1.5 | Flare Summary | 45 | | | 3.2 | Boilers, | , Engines and Turbines | | | | | 3.2.1 | Boiler Combustion By-Product Emissions – Source Characterization, Test | | | | | | Methods and Results | 53 | | | | 3.2.2 | Internal Combustion (IC) Engine Combustion By-Product Emissions – So | urce | | | | | Characterization, Test Methods and Results | 55 | | | | 3.2.3 | Gas Turbine Data Summary | 61 | | | 3.3 | | Device Efficiency Data | | | | 3.4 | Control | Device Carbon Dioxide, Sulfur Dioxide, and Hydrogen Chloride Emission | ıs64 | | 4.0 | MERO | CURY E | MISSIONS DATA ANALYSIS | 67 | | | 4.1 | | y in Raw Landfill Gas | | | | | 4.1.1 | Total Mercury | | | | | 4.1.2 | Elemental Mercury | | | | | 4.1.3 | Monomethyl Mercury | | | | | 4.1.4 | Dimethyl Mercury | | | | | 4.1.5 | Mercury Data Summary | 68 | | | 4.2 | Post-Co | ombustion Mercury Emissions | | #### 5.0 AP-42 SECTION 2.4......73(DRAFT) Appendix A: Supporting Information for Landfills with Waste in Place Prior to 1992 Appendix B: List of Emission Test Reports Evaluated in this Update Appendix C: Raw Landfill Gas
Constituents (Uncorrected for Air Infiltration) Appendix D: Background Data for VOC Emission Factor Calculation Appendix E: Raw Landfill Gas Data Plots and Statistics Appendix F: Control Device Efficiency Data and Analysis Appendix G: Example Combustion Product Calculations #### LIST OF TABLES | <u>Table</u> | <u>Page</u> | |----------------------|--| | Table 2-1 | Recommended Values for k for Use In Modeling Uncontrolled Landfill Gas Emissions5 | | Table 2-2 | Comparison of Modeled and Empirical LFG Generation Data6 | | Table 2-3 | Impact of Delays in Collecting Gas from Newer Landfill Cells | | Table 2-4 | Summary of Landfill Gas Emissions Tests | | Table 2-5 | Summary of Test Report Data Contents (Counts of Data Points within Test)11 | | Table 2-6 | Summary of Testing Results for Non-Methane Organic Compounds (NMOC) - | | | Corrected and Uncorrected for Air Infiltration | | Table 2-7 | Critieria Used to Determine Recommended Default Emission Factor Ratings17 | | Table 2-8 | Landfill Gas Constituents | | Table 2-9 | Summary of Methane, Carbon Monoxide, Carbon Dioxide, Nitrogen, and Oxygen | | T 11 2 10 | Concentrations of Raw Landfill Gas | | | Criteria Used to Determine Recommended Default Emission Factor Ratings | | Table 2-11 | Default Concentrations for LFG Constituents for Landfills with Waste in Place Prior to | | T 11 0 1 | 1992 | | Table 3-1 | Summary of Flare Types and Manufacturers for Landfill Gas Flare Combustion By-Product | | T. 1.1. 2.2 | Emissions Test Data 43 | | Table 3-2 | Criteria Used to Determine Recommended Default Emission Factor Ratings | | Table 3-3 | Recommended Default Emission Factor Ratings for NOx, CO, PM, and Total Dioxin/Furan | | T-1-1-2-4 | Landfill Flare Combustion By-Products | | Table 3-4 | Landfill Gas Flare NOx Emissions Data Used to Develop Combustion By-Product Emission | | T-1-1-2-5 | Factors | | Table 3-5 | Landfill Gas Flare CO Emissions Data Used to Develop Combustion By-Product Emission Factors. 47 | | Table 2.6 | | | Table 3-6 | Landfill Gas Flare PM and Total Dioxin/Furan Emissions Data Used to Develop Combustion By-Product Emission Factors | | Table 3-7 | Landfill Gas-fired Boiler Emissions Data Used To Develop Combustion By-Product | | Table 3-7 | Emission Factors | | Table 3-8 | Landfill Gas-fired IC Engine Emissions Data Used To Develop Combustion By-Product | | 1 able 3-8 | Emission Factors | | Table 3-9 | Landfill Gas-fired Boiler Emissions Data Used To Develop Combustion By-Product | | 1 4016 3-9 | Emission Factors | | Table 3 10 | Landfill Gas-fired IC Engine Emissions Data Used To Develop Combustion By-Product | | 1 4016 3-10 | Emission Factors | | Table 3-11 | NMOC Control Efficiency Data Analysis Summary 63 | | Table 3-11 Table 4-1 | Raw Landfill Gas Mercury Data Used To Determine AP-42 Default Concentrations | | 1 auto 4-1 | Naw Landini Gas McColly Data Oscu 10 Determine A1-42 Detaut Concentrations09 | #### 1.0 INTRODUCTION The document "Compilation of Air Pollutant Emission Factors" (AP-42) has been published periodically by the U.S. Environmental Protection Agency (EPA) since 1972. New emission source categories and updates to existing emission factors to supplement the AP-42 have been routinely published. These supplements are in response to the emission factor needs of the EPA, state, and local air pollution control programs, and industry. The prior update to this section was performed in 1998 (U.S. EPA, 1998). This background information document describes the data analysis undertaken to develop updated emission factors and guidance for the AP-42 section for Municipal Solid Waste (MSW) Landfills. The data being used for this update is from industry-supplied information and additional data collected from state and local regulatory agencies. The most comprehensive set of data from measurements of five landfills of the header pipe gas and combustion by-products was also used in developing updated factors. This data is from a field study by EPA's Office of Research and Development (U.S. EPA, 2007a) which was co-funded by the Environmental Research and Education Foundation. The data being used to update landfill gas emission factors is primarily from landfills with waste in place on or after 1992. Resource Conservation and Recovery Act (RCRA) Subtitle D regulations, specifically 40 CFR Part 258, were effective October 9, 1993, but applied to landfills accepting waste on or after October 9, 1991. It is, therefore, likely that landfills began instituting the provisions of Subtitle D during their operations around 1992. The regulatory provisions limited the types of waste that could be landfilled with municipal solid waste (MSW). For example, prior to RCRA Subtitle D, hazardous waste could be co-disposed with MSW. Therefore, a distinction is made between the landfill gas (LFG) constituents present in data from waste prior to 1992, and those that were measured at landfills with the majority of their waste in place on or after 1992. The previous update of AP-42 contained the data for LFG with waste in place on or before 1992. This document includes the addition of data for combustion by-products from flares, boilers, and engines (control data applies to both pre and post 1992 landfills). However, no additional data for gas turbines was received for this update. Therefore, the data present for turbines in the last AP-42 update were unchanged during this update. Chapter 2.7 presents the background information for the pre-1992 landfills, and supporting information from the previous version of the background information document is included as Appendix A for historical purposes. To assist the reader in determining where background information is located for a certain type of emission from a landfill or control device, the following table is provided to serve as a quick guide on where to go to obtain background information on the topics found in the AP-42 section: | AP-42 Chapter Topic: | Location in this Background Information | |--|---| | | Document: | | Calculating Uncontrolled Landfill Gas Emissions | Chapter 2.1 | | Landfill Gas Constituents From Landfills with | Chapters 2.2 through 2.6 | | Waste in Place On or After 1992 | | | Landfill Gas Constituents From Landfills with | Chapter 2.7 | | Waste in Place Before 1992 | | | Control Device Emissions (for both pre and post- | Chapter 3.0 | | 1992 Landfills) | | | Mercury Emissions From Landfills with Waste in | Chapter 4.0 | | Place on or After 1992 | | | 2008 Version of AP-42 Chapter 2.4 Municipal | Chapter 5.0 | | Solid Waste Landfills | | In addition to the new data analysis detailed in this background document, there were updates to the AP-42 chapter text which are briefly summarized below: - The introduction to the AP-42 section contains a description of MSW landfills and related landfill statistics that were developed prior to the last update in 1998. This information has been updated including update updated statistics on U.S. waste disposal. - Information was added on EPA's recommended approach for quantifying emissions from area sources (OTM 10; http://www.epa.gov/ttn/emc/tmethods.html). This approach uses optical remote sensing technology and radial plume mapping (ORS-RPM) to quantify uncontrolled emissions from landfills which includes leaks from header pipes, extraction wells, side slopes, and landfill cover material. (U.S. EPA, 2007b) Optical remote sensing technologies use an optical emission detector such as open-path Fourier transform infrared spectroscopy (FTIR), ultraviolet differential absorption spectroscopy (UV-DOAS), or open-path tunable diode laser absorption spectroscopy (OP-TDLAS); coupled with radial plume mapping software that processes path-integrated emission concentration data and meteorological data to yield an estimate of uncontrolled emissions. More information on ORS-RPM is described in the *Evaluation of Fugitive Emissions Using Ground-Based Optical Remote Sensing Technology* (EPA/600/R-07/032). Ongoing research is helping to develop additional guidance using OTM 10 for landfill applications which can be more complex than other area source emissions such as waste lagoons and surface impoundments. - Equation (1) in the AP-42 Section is used to estimate emissions from an uncontrolled landfill. In this update, a factor of 1.3 was added to Equation (1) to account for the fact that L_0 is determined by the amount of gas collected by LFG collection systems. The design of these systems will typically result in a gas capture efficiency of only 75%. Therefore, 25% of the gas generated by the landfill is not captured and included in the development of L_0 . The ratio of total gas to captured gas is a ratio of 100/75 or equivalent to 1.3. An analysis of the efficiency of typical LFG collection systems is presented in Appendix E. Previous equation being used did not account for total emissions which includes the quantity of gas that is collected plus any fugitive loss from leaks that can occur from header pipes, extraction wells, side slopes, and landfill cover material. - There has been an increase in the occurrence of landfills that recirculate leachate to accelerate waste decomposition. An additional 'k' was added for use in the first-order equation to account for the increase in gas production from wet landfills. This was derived from a study that evaluated data from 29 wet landfills (Reinhart, 2005). For the purpose of AP-42, wet landfills are defined as landfills which add large amounts of liquid to the waste from recycled landfill leachate, condensate from LFG collection, and other sources of water such as treated wastewater. - The use of petroleum contaminated soil or construction and demolition waste as daily cover may affect the characteristics of LFG. Primarily,
non-methane organic compounds (NMOC) concentrations may be much higher in landfills where petroleum contaminated soil is used as daily cover. Likewise, sometimes elevated hydrogen sulfide concentrations are observed where wall board has been landfilled or recovered gypsum is used as daily cover - Landfill fires, while uncommon, may occur from time to time. These fires may be significant sources of dioxins and other hazardous air pollutants resulting from incomplete combustion of material found in MSW. #### References Reinhart, Debra R., Ayman A. Faour, and Huaxin You, *First-Order Kinetic Gas Generation Model Parameters for Wet Landfills*, U. S. Environmental Protection Agency, (EPA-600/R-05/072), June 2005 - U.S. Environmental Protection Agency (2007a) Field Test Measurements at Five MSW Landfills with Combustion Control Technology for Landfill Gas Emissions, Prepared for EPA's Office of Research and Development (EPA/600/R-07/043, April 2007) Available at: http://www.epa.gov/ORD/NRMRL/pubs/600r07043/600r07043.pdf - U.S. Environmental Protection Agency. (2007b) Evaluation of Fugitive Emissions Using Ground-Based Optical Remote Sensing Technology (EPA/600/R-07/032, March 07) Available at: http://www.epa.gov/nrmrl/pubs/600r07032/600r07032.pdf. - U.S. Environmental Protection Agency (1998). Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Section 2.4 Municipal Solid Waste Landfills, Research Triangle Park, NC, November 1998. #### 2.0 UNCONTROLLED LANDFILL GAS DATA ANALYSIS RESULTS #### 2.1 ESTIMATION OF UNCONTROLLED LANDFILL GAS EMISSIONS To estimate uncontrolled emissions of the various compounds present in LFG, total uncontrolled LFG emissions must first be estimated. Emissions for uncontrolled LFG depend on several factors including: (1) the size, configuration, and operating conditions of the landfill; and (2) the characteristics of the refuse such as moisture content, age, and composition. Uncontrolled methane (CH₄) emissions may be estimated for individual landfills by using a theoretical first-order kinetic model of CH₄ production. This method of estimating emissions could result in conservative estimates of emissions, since it provides estimates of LFG generation and not LFG release to the atmosphere. Some capture and subsequent microbial degradation of organic LFG constituents within the landfill's surface layer may occur. However, LFG will take the path of least resistance so any leaks in the header pipe, extraction wells, side slopes, and cover material will be a potential source of fugitive loss. Although laboratory data is available, field test data on potential oxidation or biodegradation through the soil cover for individual constituents found in LFG was not available. Therefore the equation being used to estimate LFG emissions does not include a factor to account for potential reduction of emissions through soil cover. The first-order kinetic model of CH₄ production in landfills is based on the following equation (U.S. EPA, 1991): $$Q_{CH} = L_{o} R (e^{-kc} - e^{-kt})$$ (1) where: Q_{CH_4} = Methane generation rate at time t, m³/yr; L_0 = Methane generation potential, m³ CH₄/Mg refuse; R = Average annual refuse acceptance rate during active life, Mg/yr; e = Base log, unitless; k = Methane generation rate constant, yr⁻¹; c = Time since landfill closure, yrs (c = 0 for active landfills); and t = Time since the initial refuse placement, yrs. Site-specific landfill information is generally available for variables R, c, and t. When refuse acceptance rate information is scant or unknown, R can be estimated by dividing the refuse in place by the age of the landfill (U.S. EPA, 1991). If a facility has documentation that a certain segment (cell) of a landfill has received only nondegradable refuse, then the waste from this segment of the landfill can be excluded from the calculation of R. Nondegradable refuse includes, but is not limited to, concrete, brick, stone, glass, plaster, piping, plastics, and metal objects. The average annual acceptance rate should only be estimated by this method when there is inadequate information available on the actual annual acceptance rate. Values for the variables L_O and k must be estimated. The potential CH_4 generation capacity of refuse (L_O) is dependent on the organic (primarily cellulose) content of the refuse and can vary widely [6.2 to 270 m³ CH_4/Mg refuse (200 to 8670 ft³/ton)] (U.S. EPA, 1991). The value of the CH_4 generation constant (k) is dependent on moisture, pH, temperature, and other environmental factors, as well as landfill operating conditions (U.S. EPA, 1991). A computer program that uses the theoretical model discussed above was developed by EPA and is known as Landfill Gas Emission Model or LandGEM (U.S. EPA, 2005). This model and User's Guide can be accessed from the Office of Air Quality Planning and Standards Technology Transfer Network Website (OAQPS TTN Web) in the Clearinghouse for Inventories and Emission Factors (CHIEF) technical area (URL http://www.epa.gov/ttncatc1/products.html#software). LandGEM includes both regulatory default values and recommended AP-42 default values for $L_{\rm O}$ and k (see below). The regulatory defaults, called "CAA factors," were developed for regulatory compliance purposes [New Source Performance Standards (NSPS), National Emissions Standards for Hazardous Air Pollutants (NESHAP) and Emission Guidelines (EG)] and provide conservative default values for municipal landfills. As a result, the regulatory $L_{\rm O}$ and k default values may not be representative of specific landfills, and may not be appropriate for use in an emissions inventory. Therefore, the LandGEM also includes a set of factors called "inventory factors" that are recommended for use when estimating LFG emissions for inventory purposes. LandGEM computes the total CH_4 generation based on the age of each landfill segment. The recommended AP-42 defaults for k when estimating CH₄ emissions for inventory purposes are presented in Table 2-1. These recommendations are based on a comparison of gas-yield forecasts with LFG recovery data (U.S. EPA, 1991). TABLE 2-1. RECOMMENDED VALUES OF k FOR USE IN MODELING UNCONTROLLED LANDFILL GAS EMISSIONS | Landfill Conditions | Inventory k Value | |---|-------------------| | Areas receiving <25 inches/yr rainfall (U.S. EPA, 1991) | 0.02 | | Areas receiving >25 inches/yr rainfall (U.S. EPA, 1991) | 0.04 | | Wet landfills (Reinhart, 2005) | 0.3 | Based on work conducted in the late 1980's and early 1990's, a default $L_{\rm O}$ value of 100 m³/Mg (3,530 ft³/ton) refuse has been recommended for emission inventory purposes (Pelt, 1993). This $L_{\rm O}$ value was recommended because it provided the best agreement between emissions derived from empirical (measured) data to predicted emissions. The results of this comparison are depicted in Table 2-2. It must be emphasized that when complying with the NSPS and Emission Guideline, the regulatory defaults for k and $L_{\rm O}$ must be applied. As part of this update of landfill emission factors, additional guidance is provided for estimating the flow rate of LFG from both controlled and uncontrolled landfills. The $L_{\rm O}$ value mentioned above of $100~{\rm m}^3/{\rm Mg}$ was based on data obtained by EPA from tests at 40 landfills conducted in the late 1980's and early 1990's (U.S. EPA, 1991). When the data from these landfills was used to develop the constants for the first order decay equation, the amount of gas that is uncontrolled was not accounted for in the equation. To correct for this, a factor has been added to estimate total emissions (both collected and uncontrolled). The overall collection efficiency of a LFG collection system is affected by two factors: the specific collection efficiency of the gas collection system, and the portion and age of the waste that is excluded from the collection system. Specific collection efficiencies can range greatly based on the design of the landfill design and how well it is maintained and operated. A highly efficient collection system will include a liner under the waste and a cover over the waste that is comprised of a geomembrane and a thick layer of low-porosity clay. Each gas well in the high efficiency system is typically sealed to the geomembrane with a thick plug of bentonite clay material. Each gas well in the system is maintained under a strong vacuum and is monitored monthly. The landfill surface is also monitored frequently to identify leaks and initiate repairs immediately. Collection efficiencies as high as 95% have been reported for well designed and maintained LFG collection systems. However, the collection efficiencies for a landfill that is unlined, has only a soil or porous clay cap and does not employ an aggressive operation and maintenance program might easily be as low as 50% to 60%. TABLE 2-2. COMPARISON OF MODELED AND EMPIRICAL LFG GENERATION DATA WHEN L $_{\rm O}$ IS SET AT 100 m 3 /Mg $^{\rm a}$ | Landfill ^b | Predicted CH ₄ (10 ⁶ m ³ /yr) | Predicted/
Empirical CH ₄ | Landfill ^b | Predicted CH ₄ (10 ⁶ m ³ /yr) | Predicted/
Empirical CH ₄ | |-----------------------|--|---|-----------------------|--|---| | a | 37.6 | 0.68 | u | 4.62 | 0.63 | | b | 39.9 | 0.77 | V | 10.5 | 1.44 | | c | 31.8 | 0.73 | W | 4.28 | 0.72 | | d | 49.8 | 1.51 | X | 5.62 | 0.96 | | e | 12.1 | 0.53 | y | 2.39 | 0.44 | | f | 17.3 | 0.82 | Z | 9.59 | 1.84 | | g | 23.6 | 1.28 | aa | 5.08 | 1.08 | | h | 8.61 | 0.49 | bb | 4.93 | 1.15 | | i | 14.9 | 0.93
| сс | 3.93 | 0.93 | | j | 14.5 | 0.94 | dd | 2.74 | 1.03 | | k | 14.2 | 0.96 | ee | 8.37 | 3.23 | | 1 | 7.16 | 0.50 | ff | 117 | 0.83 | | m | 18.0 | 1.31 | gg | 14.4 | 0.58 | | n | 8.57 | 0.76 | hh | 23.0 | 1.44 | | 0 | 4.56 | 0.48 | ii | 29.6 | 2.19 | | p | 17.4 | 1.87 | jj | 19.3 | 1.47 | | q | 10.2 | 1.21 | kk | 22.4 | 1.71 | | r | 6.95 | 0.87 | 11 | 41.3 | 4.00 | | S | 2.29 | 0.29 | mm | 7.14 | 0.81 | | t | 3.49 | 0.45 | nn | 1.07 | 0.29 | | | Average | | | | 1.10 | | | Maximum | | | | 3.23 | | | Minimum | | | | 0.29 | | | Standard Dev. | | | | 0.73 | $^{^{}a} k = 0.04$ The second factor which has a very significant influence on collection efficiency is the portion and age of the waste that is excluded from the gas collection system. There is normally a lag time between the placement of waste in a new landfill cell and the installation of a gas collection system in the cell. Landfills that have reached a sufficient size (i.e., waste in place is equal or greater than 2.5 million tons of waste) and NMOC emissions equal or exceed 50 megagrams per year are required by NSPS and EG to install a gas collection system. The time table specified in the NSPS/EG is that gas collection is to ^b Landfill names are considered to be confidential. be installed in open cells within five years of initial waste placement and in cells that have been closed for two or more years. As a result, a typical landfill will not have the most recent two to five years of waste included within its gas collection system. The impact of excluding the most recent portions of their waste mass from the collection system is magnified by the fact that the LFG emission rate is greatest in the first years of the waste's life and drops rapidly with time. Therefore, a system capable of collecting 90% of the gas generated from the landfill cells in which it is installed is operating at reduced landfill-wide collection efficiency (i.e., less than 90%) due to the loss of uncollected gas from cells that have yet to be capped and connected to the collection system. All active landfills contain open cells and waste cells that have yet to be capped and fitted with a gas collection system. Table 2-3 demonstrates the impact of the delay in collecting gas from newer cells. The values in this table were generated using the first order decay model (Pelt, 1993) and assuming a $L_{\rm O}$ of 100 and a k of 0.04. The landfill was assumed to be operating (i.e., accepting waste) over a 20 year timeframe. The years of delay between the placement of waste in a cell and the installation of wells in the cell are presented in the first column of Table 2-3. The effective landfill-wide collection efficiency of the gas collection system is presented in the second and third columns for gas collection systems with efficiencies of 90% and 85%, respectively. Large active landfills will typically install gas collection systems within two to five years after waste placement in a given cell, as required by the NSPS. As shown in Table 2-3, the effective landfill-wide collection efficiency of a gas collection system which is installed in waste cells two to five years after they are filled varies from 57% to 77% for systems with 85% to 90% efficiency. If a landfill is closed, all cells will be capped and the landfill-wide collection efficiency will be the same as the specific efficiency of the collection system, or 85% to 90%. TABLE 2-3. IMPACT OF DELAYS IN COLLECTING GAS FROM NEWER LANDFILL CELLS | Time Between Waste Placement and Initial Gas | Effective Landfill-
wide Gas Collection
Efficiency | | | | | |---|--|---|--|--|--| | Collection for
Individual Cells
(years) | System
Collection
Efficiency
90% | System
Collection
Efficiency
85% | | | | | 1 | 84 | 79 | | | | | 2 | 77 | 73 | | | | | 3 | 72 | 68 | | | | | 4 | 66 | 62 | | | | | 5 | 60 | 57 | | | | | 6 | 55 | 52 | | | | It is assumed that the landfills used to develop $L_{\rm O}$ and k for use in the first order decay LFG generation equation included a similar number of both open and closed landfills. Typically these landfills in the late 1980's and early 1990's would have had specific collection efficiencies of 85% to 90% for the closed cells where the system was installed. The closed landfills might have an overall efficiency of 85%-90% and the open landfills might have an efficiency ranging from 57% to 77%. Based on these assumptions, the overall set of landfills used to develop $L_{\rm O}$ and k would have had overall collection efficiencies ranging from 57% to 90% and possibly averaging 75%. Using the analysis presented on the range in gas collection efficiency, a factor is added to account for the gas that is not collected given that empirical data was used to develop input for the first-order decomposition rate equation. If on average 75% gas generated at the landfills listed in Table 2-2 is collected, then actual gas production from landfills would then be 100/75 or 1.3 times greater than the gas flow measured in the gas collection systems. The first order decay model developed by the EPA (Pelt, 1993) would then be expressed as: $$Q_{CH_4} = 1.3L_o R (e^{-kc} - e^{-kt})$$ (2) where: $Q_{CH_{\perp}} = Methane generation rate at time t, m³/yr;$ L_o = Methane generation potential, m³ CH₄/Mg of "wet" or "as received" refuse; R = Average annual refuse acceptance rate during active life, Mg of "wet" or "as received" refuse /yr; e = Base log, unitless; k = Methane generation rate constant, yr⁻¹; c = Time since landfill closure, yrs (c = 0 for active landfills); and t = Time since the initial refuse placement, yrs. When annual refuse acceptance data is available, the following form of Equation (2) is used. This is the equation that is used in EPA's Landfill Gas Emissions Model (LandGEM). Due to the complexity of the double summation, Equation (2 alt) is normally implemented within a computer model. Equation (2 alt.) is more accurate because it accounts for the varying annual refuse flows and it calculates each year's gas flow in $^{1}/_{10th}$ year increments. $$Q_{CH_4} = 1.3 \sum_{i=1}^{n} \sum_{j=0.1}^{1} k \operatorname{Lo} \frac{R_i}{10} e^{-kt_{ij}}$$ (2 alternate) where: $Q_{CH_4} = Methane generation rate at time t, m³/yr;$ L₀ = Methane generation potential, m³ CH₄/Mg of "wet" or "as received" refuse; R_i = Annual refuse acceptance rate for year i, Mg of "wet" or "as received" refuse /yr; e = Base log, unitless; k = Methane generation rate constant, yr⁻¹; c = Time since landfill closure, yrs (c = 0 for active landfills); and t = Time since the initial refuse placement, yrs. i = year in life of the landfill $j = \frac{1}{100}$ year increment in the calculation. Equations (2) and (2 alt) are different from the equations used previously by EPA in AP-42 and in other models such as LandGEM, by the addition of the constant 1.3 at the front of the equation. This 1.3 constant compensates the value of $L_{\rm O}$ that had been developed based on systems nominally collecting only an estimated 75% of the LFG emissions. There is a significant level of uncertainty in Equation 2 and its recommended defaults values for k and $L_{\rm o}$. The recommended defaults k and $L_{\rm o}$ for conventional landfills, based upon the best fit to 40 different landfills, yielded predicted CH_4 emissions that ranged from ~30 to 400% of measured values and had a relative standard deviation of 0.73 (Table 2-2). The default values for wet landfills were based on a more limited set of data and are expected to contain even greater uncertainty. When gas generation reaches steady-state conditions, sampled LFG consists of approximately equal amounts of carbon dioxide (CO_2) and CH_4 ; and only trace amounts of NMOC (typically, less than two percent). Therefore, the estimate derived for CH_4 generation using the landfill model can also be used to estimate CO_2 generation (i.e., $CO_2 = CH_4$) (U.S. EPA, 1991). In addition, total LFG flow can be assumed to be equal to twice the CH_4 flow. #### References Pelt, R., Memorandum "Methodology Used to Revise the Model Inputs in the Solid Waste Landfills Input Data Bases (Revised)", to the Municipal Solid Waste Landfills Docket No. A-88-09, April 28, 1993. Reinhart, Debra R., Ayman A. Faour, and Huaxin You, *First-Order Kinetic Gas Generation Model Parameters for Wet Landfills*, U. S. Environmental Protection Agency, (EPA-600/R-05/072), June 2005. U.S. Environmental Protection Agency. Air Emissions from Municipal Solid Waste Landfills - Background Information for Proposed Standards and Guidelines, EPA-450/3-90-011a, Office of Air Quality Planning and Standards, Research Triangle Park, NC, March 1991. U.S. Environmental Protection Agency (2005) Landfill Gas Emission Model (LandGEM) - Software and Manual, EPA-600/R-05/047, May 2005. Available at: http://www.epa.gov/ORD/NRMRL/pubs/600r05047/600r05047.htm #### 2.2 DATA SUMMARY A total of 293 emission tests were submitted to EPA that included LFG composition data. As listed in Table 2-4, a portion of these were not used because either the report did not present actual test data (they were based on emission models) or the test report was too incomplete to evaluate the quality of the data. Of the potentially useful tests, several (22) analyze LFG obtained through use of a "punch-probe," while 62 tests contain data for gas samples from LFG collection system headers. The emissions data from the collection system headers are assumed to be representative of the gas generated by the entire landfill and not selected locations, as may be the case with punch probe analyses. Therefore, in developing default emission factors for updating AP-42, only the emissions test data for the 62 tests taken from gas collection system headers are analyzed in this report. The reference section to this chapter,
and in the AP-42 chapter, lists the specific emission tests from which data were utilized. Appendix B contains the list of all 293 emission tests that were reviewed as part of this update. | Number of emission test reports | 293 | |--|-----| | Number of reports that were not able to be used due to | 209 | | inadequate documentation or information | | | Number of punch-probe tests | 22 | | Number of gas collection header tests | 62 | TABLE 2-4. SUMMARY OF LANDFILL GAS EMISSIONS TESTS Landfill gas collection system header pipes were sampled for NMOC, reduced sulfur compounds, and speciated organics. Measured pollutant concentrations (i.e., as measured by EPA Reference Method 25C), must be corrected for air infiltration which can occur by two different mechanisms: LFG sample dilution and air intrusion into the landfill. These corrections require site-specific data for the LFG CH_4 , CO_2 , nitrogen (N_2) , and oxygen (O_2) content. If the ratio of N_2 to O_2 is less than or equal to 4.0 (as found in ambient air), then the total pollutant concentration is adjusted for sample dilution by assuming that CO_2 and CH_2 are the primary (100 percent) constituents of LFG, and the following equation is used: $$C_{P} \text{ (corrected for air infiltration)} = \frac{C_{P} \times (1 \times 10^{6})}{C_{CO_{2}} + C_{CH_{4}}}$$ (3) where: C_P = Concentration of pollutant P in LFG (i.e., NMOC as hexane), ppmv; C_{CO_2} = CO_2 concentration in LFG, ppmv; Q_{CH_4} = CH_4 Concentration in LFG, ppmv; and 1×10^6 = Constant used to correct concentration of P to units of ppmv. If the ratio of N_2 to O_2 concentrations (i.e., C_{N2} , C_{O2}) is greater than 4.0, then the total pollutant concentration should be adjusted for air intrusion into the landfill by using Equation (3) and adding the concentration of N_2 (i.e., C_{N2}) to the denominator. Values for C_{CO2} , C_{CH4} , C_{N2} , C_{O2} , can usually be found in the source test report for the particular landfill along with the total pollutant concentration data. Most of the tests contained data on O_2 , CO_2 , CH_4 and N_2 content of the gas, as shown in Table 2-5, so that corrected values may be calculated. (While no reports present corrected data, Table 2-5 contains those tests for which corrected values could be calculated.) Table 2-6 displays NMOC values both uncorrected (i.e., as reported) and corrected for air infiltration. For simplicity, the AP-42 chapter and Table 2-7 of this section present the data that has been corrected for air infiltration only. A summary of uncorrected data is presented in Appendix C. TABLE 2-5. SUMMARY OF TEST REPORT DATA CONTENTS (COUNTS OF DATA POINTS WITHIN TEST) | Test Report
ID | CH ₄ | CO ₂ | N ₂ | O ₂ | C | 0 | | MOC
nexane) | Organ
Sul | iated
ic and
fur
ounds | Т | otal | |-------------------|-----------------|-----------------|----------------|----------------|---|----|---|----------------|--------------|---------------------------------|----|-----------------| | | | | | | С | UC | C | UC | C | UC | С | UC ^a | | TR-076 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | | TR-084 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | | TR-086 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | | TR-114 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | | TR-115 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | | TR-134 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | | TR-141 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | | TR-145 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 28 | 28 | 30 | 34 | | TR-146 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 3 | 3 | 4 | 8 | | TR-147 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 3 | | TR-148 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 15 | 17 | 21 | | TR-153 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 5 | | TR-156 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 5 | | TR-157 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 5 | | TR-159 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 5 | | TR-160 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | | TR-165 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-167 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-168 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-169 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-171 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-173 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-175 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 27 | 27 | 29 | 33 | | TR-176 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 21 | 21 | 22 | 26 | | TR-178 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-179 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 27 | 0 | 31 | | TR-181 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | 11 TABLE 2-5 (CONTINUED). SUMMARY OF TEST REPORT DATA CONTENTS (COUNTS OF DATA POINTS WITHIN TEST) | Test Report
ID | CH ₄ | CO ₂ | N_2 | O ₂ | C | 0 | | MOC
nexane) | Organ
Sul | iated
iic and
fur
ounds | Т | otal | |-------------------|-----------------|-----------------|-------|----------------|---|----|---|----------------|--------------|----------------------------------|-----|-----------------| | | | | | | С | UC | C | UC | С | UC | С | UC ^a | | TR-182 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-183 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-187 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 47 | 47 | 48 | 52 | | TR-188 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 108 | 108 | 109 | 113 | | TR-189 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 113 | 113 | 114 | 118 | | TR-190 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 107 | 107 | 107 | 111 | | TR-191 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 107 | 107 | 107 | 111 | | TR-194 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 98 | 0 | 102 | | TR-195 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 526 | 0 | 526 | | TR-196 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-199 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 23 | 23 | 24 | 28 | | TR-205 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-207 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 25 | 25 | 26 | 30 | | TR-209 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 28 | 28 | 29 | 34 | | TR-220 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 22 | 22 | 23 | 27 | | TR-226 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 6 | | TR-229 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 30 | 30 | 31 | 35 | | TR-236 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 7 | | TR-241 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 5 | 5 | 5 | 9 | | TR-251 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-253 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-255 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-258 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | | TR-259 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-260 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 26 | 26 | 27 | 31 | | TR-261 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-264 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | | TR-266 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 9 | 9 | 10 | 14 | | TR-272 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 68 | 68 | 69 | 75 | | TR-273 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 67 | 67 | 68 | 74 | | TR-284 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 56 | 56 | 57 | 63 | | TR-287 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 56 | 56 | 57 | 63 | | TR-290 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 27 | 27 | 28 | 32 | TABLE 2-5 (CONTINUED). SUMMARY OF TEST REPORT DATA CONTENTS (COUNTS OF DATA POINTS WITHIN TEST) | Test Report
ID | СН4 | CO ₂ | N_2 | O_2 | со | | NMOC
(as hexane) | | Speciated
Organic and
Sulfur
Compounds | | Total | | |-------------------|-----|-----------------|-------|-------|----|----|---------------------|----|---|-------|-------|-------| | | | | | | C | UC | C | UC | C | UC | C | UCa | | TR-292 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 33 | 33 | 34 | 40 | | TR-293a | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 30 | 30 | 31 | 35 | | TR-293b | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 26 | 26 | 27 | 31 | | Total | 56 | 54 | 52 | 54 | 6 | 10 | 44 | 55 | 1,537 | 2,196 | 1,585 | 2,473 | C = Corrected for air infiltration UC = Uncorrected ^a Uncorrected Total includes CH₄, CO₂, N₂, and O₂ data points. #### 2.3 NMOC AND VOC Fifty-four test reports contained NMOC data. Forty-three of these contained sufficient data to calculate a value corrected for air infiltration. The corrected values were calculated using Equation 2. The data from the 54 test reports, corrected value (if possible to calculate), and the test method are reported in Table 2-6. In addition, summary statistics are presented at the bottom of the table. Based on guidance contained in EPA's Procedures for Preparing Emission Factor Documents (U.S. EPA, 1997a), each of the tests with the corrected value calculated are assumed to be rated as "A," because the tests were performed by a sound methodology and reported in enough detail for adequate validation. None of the NMOC concentrations were below the detection limit (BDL). Taking the mean value of the corrected NMOC data yields a default emission factor of 838 ppmv, which compares to the pre-1992 AP-42 default value of 595 ppmv for "No or Unknown co-disposal landfills" (see Table 2.4-2 in the AP-42 chapter, included as section 5.0 of this document). An overall emission factor ranking of "A" is recommended for NMOC. This rating exemplifies the fact that the default NMOC emission factors were developed using A-rated test data from a large number of facilities. The pre-1992 AP-42 default emission factor for NMOC at "No or Unknown co-disposal" landfills is ranked as "B." To determine the volatile organic compound (VOC) emission factor, the compounds listed in 40 CFR 51.100(s)(1) which have negligible chemical photoreactivity were removed from the overall NMOC concentration. This determination was possible for 34 emission tests that contained both speciated data and NMOC data. Consistent with the previous AP-42 update background document (U.S.
EPA, 1997b), the following compounds from 40 CFR 51.100(s)(1) were removed from the NMOC concentration to obtain a VOC fraction: ethane, chlorodifluoromethane, acetone, dichloromethane, 1,1,1-Trichloroethane (methyl chloroform), dichlorodifluoromethane, perchloroethylene. Note that 40 CFR 51.100(s)(1) contains more compounds than those listed above, but this list envelops the LFG constituents that are listed in 51.100(s)(1) that are most prevalent in LFG. Since NMOC is presented as hexane (i.e., six carbons), the non-VOC compound concentrations are converted to be on the same six-carbon basis also so that they may be subtracted from the NMOC concentration value. The data used to develop the VOC emission factor and the resulting VOC fraction calculations are presented in Appendix D. The resulting fraction of NMOC that is VOC is 0.997, based on data from 34 emission test reports (see Appendix D for data and calculation). All of these test reports are considered to be "A" quality. This fraction was multiplied by the corrected NMOC concentration value to obtain a VOC emission factor of 835 ppmv. The recommended emission factor ranking is "A" because a large number of "A" quality tests were used to develop the emission factor. Appendix E presents statistical data graphs of the NMOC data. TABLE 2-6. SUMMARY OF TESTING RESULTS FOR NON-METHANE ORGANIC COMPOUNDS (NMOC) – CORRECTED AND UNCORRECTED FOR AIR INFILTRATION | Test
Report
ID | Test Method | Corrected Average
Concentration
(ppm as hexane) | Average
Concentration
(ppm as hexane) | | |----------------------|----------------------------|---|---|--| | TR-076 | EPA Method 25C | | 157 | | | TR-084 | EPA Method 25C / Method 3C | | 117 | | | TR-086 | EPA Method 25C / Method 3C | | 121 | | ### TABLE 2-6 (CONTINUED). SUMMARY OF TESTING RESULTS FOR NON-METHANE ORGANIC COMPOUNDS (NMOC) – CORRECTED AND UNCORRECTED FOR AIR INFILTRATION | Test
Report
ID | Test Method | Corrected Average
Concentration
(ppm as hexane) | Average
Concentration
(ppm as hexane) | |----------------------|----------------------------------|---|---| | TR-114 | EPA Method 25C | , | 53 | | TR-115 | EPA Method 25C | | 82 | | TR-134 | EPA Method 25C | | 944 | | TR-141 | EPA Method 25C | | 180 | | TR-145 | EPA Method 25C | 635 | 628 | | TR-146 | SCAQMD Method 25.2 | 927 | 922 | | TR-147 | EPA Method 25C | | 298 | | TR-148 | EPA Method 18 / EPA Method 25C | 332 | 331 | | TR-153 | EPA Method 25C | 721 | 726 | | TR-156 | EPA Method 25C | 575 | 573 | | TR-157 | EPA Method 25C | 574 | 571 | | TR-159 | NJATM 3.9 | 31 | 31 | | TR-160 | EPA Method 18 | | 421 | | TR-165 | SCAQMD Method 25.2 | 713 | 698 | | TR-167 | SCAQMD Draft Method 25.2 | 673 | 665 | | TR-168 | SCAQMD Method 25.2 | 1,314 | 1,294 | | TR-169 | SCAQMD Draft Method 25.2 | 1,389 | 1,349 | | TR-171 | SCAQMD Draft Method 25.2 | 1,021 | 993 | | TR-173 | SCAQMD Method 25.1 | 1,425 | 1,400 | | TR-175 | SCAQMD Method 25.1 | 161 | 110 | | TR-176 | SCAQMD Draft Method 25.2 | 623 | 577 | | TR-178 | SCAQMD Method 25.1 | 1,947 | 1,882 | | TR-179 | SCAQMD Method 25.1 | | 1,244 | | TR-181 | SCAQMD Draft Method 25.2 | 649 | 627 | | TR-182 | SCAQMD Draft Method 25.2 | 596 | 578 | | TR-183 | SCAQMD Method 25.1 | 734 | 717 | | TR-187 | SCAQMD Method 25.2 | 870 | 847 | | TR-196 | EPA Method 25 Modified | 889 | 883 | | TR-199 | SCAQMD Method 25.1 | 193 | 176 | | TR-205 | SCAQMD Draft Method 25.2 | 647 | 627 | | TR-207 | SCAQMD Method 25.1 | 617 | 560 | | TR-209 | EPA Method TO-12 Modified | 536 | 529 | | TR-220 | SCAQMD Draft Method 25.2 | 704 | 668 | | TR-226 | NJDEP Method 3.9 (Modified) / GC | 167 | 145 | | TR-229 | SCAQMD Draft Method 25.2 | 564 | 527 | | TR-251 | SCAQMD Method 25.1 | 1,067 | 1,031 | | TR-253 | SCAQMD Draft Method 25.2 | 583 | 573 | | TR-255 | SCAQMD Method 25.1 | 1,122 | 1,104 | | TR-258 | EPA Method TO-12 | | 137 | | TR-259 | SCAQMD Draft Method 25.2 | 1,349 | 1,286 | | TR-260 | SCAQMD Draft Method 25.2 | 1,349 | 1,294 | | TR-261 | SCAQMD Draft Method 25.2 | 1,321 | 1,279 | TABLE 2-6 (CONTINUED). SUMMARY OF TESTING RESULTS FOR NON-METHANE ORGANIC COMPOUNDS (NMOC) – CORRECTED AND UNCORRECTED FOR AIR INFILTRATION | Test
Report
ID | Test Method | Corrected Average
Concentration
(ppm as hexane) | Average
Concentration
(ppm as hexane) | |----------------------|---------------------------------------|---|---| | TR-264 | SCAQMD Method 25.1 | 537 | 523 | | | SCAQMD Method 100.1 and EPA Methods | | | | TR-266 | 6C and 7E | 245 | 151 | | TR-272 | EPA Method 25C | 386 | 374 | | TR-273 | EPA Method 25C | 526 | 355 | | TR-284 | EPA Method 25C | 5,387 ^a | 5,870 ^a | | TR-287 | EPA Method 25C | 868 | 1,006 | | TR-290 | Fuel Gas Analysis (SCAQMD Draft 25.2) | 972 | 954 | | TR-292 | EPA Method 25C | 242 | 233 | | TR-293a | EPA Method 25C | 378 | 446 | | TR-293b | EPA Method 25C | 297 | 317 | | | Number of Test Reports | 44 | 55 | | | Minimum | 31 | 31 | | | Maximum | 5,387 | 5,870 | | | Mean | 838 | 731 | | | Standard Deviation | 811 | 824 | | 2 | 95% Confidence Interval | ± 240 | ± 218 | ^a The TR-284 landfill utilized petroleum-contaminated soil as daily cover, which helps illustrate the potential for increased emissions of NMOC when this daily cover is used at a landfill. To estimate uncontrolled emissions of NMOC or other LFG constituents, such as those listed in Table 2-7, the following equation should be used: $$Q_{P} = \frac{Q_{CH_4} \times C_{P}}{C_{CH_4} \times (1 \times 10^6)}$$ (4) where: Q_P = Emission rate of pollutant P (i.e., NMOC), m³/yr; Q_{CH4} = CH₄ generation rate, m³/yr (from Equation 1); C_P = Concentration of pollutant P in LFG, ppmv; and C_{CH_4} = Concentration of CH₄ in the LFG (assumed to be 50% expressed as 0.5) Uncontrolled mass emissions per year of total NMOC (as hexane) and speciated organic and inorganic compounds can be estimated by the following equation: $$UM_{P} = Q_{P} x \frac{MW_{P} x 1 \text{ atm}}{(8.205 \text{x} 10^{-5} \text{ m}^{3} - \text{atm/gmol} - {}^{\circ}\text{K}) x (1000 \text{g/kg}) x (273 + \text{T})}$$ (5) where: UM_P = Uncontrolled mass emissions of pollutant P (i.e., NMOC), kg/yr; MW_P = Molecular weight of P, g/gmol (i.e., 86.18 for NMOC as hexane); Q_P = Emission rate of pollutant P, m³/yr; and #### T = Temperature of LFG, °C. This equation assumes that the operating pressure of the system is approximately 1 atmosphere. If the temperature of the LFG is not known, a temperature of 25 °C (77 °F) is recommended. #### 2.4 SPECIATED ORGANICS AND REDUCED SULFUR COMPOUNDS Forty-seven test reports contained speciated organic and reduced sulfur compound data that could be corrected for air infiltration. An additional 20 test reports contained data that were not able to be corrected. For the speciated organic data, EPA Method 25C was used to obtain the majority of the data. Other methods used to determine speciated organic concentrations were EPA Methods TO-14 and TO-15, and South Coast Air Quality Management District's (SCAQMD) Method 25.2. For reduced sulfur measurements, EPA Method 18 and SCAQMD Method 307 were used. EPA's Procedures for Preparing Emission Factor Documents (U.S. EPA, 1997a), were followed when addressing BDL test runs. In most cases, there were some runs that were below detection limit and others that were above. However, for a few compounds, there were no tests (or individual runs) that measured above the detection limit. Per the EPA's guidance (U.S. EPA, 1997a), in these cases the emission factor recorded is "BDL," with a reference to the range of method detection limits (MDL) reported. Table 2-8 presents the default emission factor information for the speciated organic compounds and reduced sulfur compounds that were corrected for air infiltration. As discussed earlier, these data will be presented in the AP-42 chapter. Therefore, only these data have recommended emission factor ratings. Since all of these tests are considered "A" quality, then the emission factor ranking becomes more of a function of the number of data points used for that compound. The following criteria, used in developing ratings in the 1997 AP-42 update (U.S. EPA, 1997b), were used to provide recommended default emission factor ratings. Statistical data graphs of several of the more prevalent speciated organic compounds and reduced sulfur compounds are presented in Appendix E. TABLE 2-7. CRITERIA USED TO DETERMINE RECOMMENDED DEFAULT EMISSION FACTOR RATINGS | Factor Rating | # of Data Points | |----------------------|------------------| | A | ≥ 20 | | В | 10-19 | | С | 6-9 | | D | 3-5 | | Е | <3 | Default emission factors for two compounds presented in Table 2-8 could not be calculated since the test values were all reported as BDL in the respective test reports. The data for acrylonitrile consisted of six BDL test values, and there was one BDL test value reported for hexachlorobutadiene. The acrylonitrile BDL data is consistent with information received from California Air Resources Board regarding testing for acrylonitrile at a San Diego landfill. Appendix C presents the data summary for data that is not corrected for air infiltration. While this uncorrected data will not be presented in AP-42, it is shown here to document that it is available and was extracted from the test reports. If, in the future, some methodology for assuming a correction factor is available or more information from specific tests is received, then these data may be corrected and incorporated into the final default emission factors. #### 2.5 METHANE, CARBON DIOXIDE, CARBON MONOXIDE, OXYGEN AND NITROGEN Table 2-9 presents a summary of the CH₄, CO₂, carbon monoxide (CO), O₂ and N₂ data. AP-42 presents
CO data, but not the other compounds. However, as discussed above, CH₄, CO₂, O₂ and N₂ are used to correct for air infiltration, per Equation 3. CO measurements were performed using various methods, including EPA Method 10, Modified Method TO-14. Ten emission tests contained data for CO (TR-145, TR-147, TR-148, TR-175, TR-188, TR-189, TR-194, TR-209, TR-226, TR-241, and TR-266) and six of these data points were correctable for air infiltration. The average of the emissions tests results in a CO default emission factor of 21 ppmv (corrected for air infilteration). Since there are only six data points, the recommended emission factor rating for CO is C. #### 2.6 HYDROGEN CHLORIDE One test report (TR-147) contained data for hydrogen chloride (HCl) present in the raw LFG. However, due to the lack of data for CH₄, CO₂, N₂, and O₂ the HCl data point could not be corrected for air infiltration. **TABLE 2-8. LANDFILL GAS CONSTITUENTS** | Compound | Number
of Test
Reports | Minimum
(ppm) | Maximum
(ppm) | Mean
(ppm) | Standard
Deviation
(ppm) | 95%
Confidence
Interval
(± ppm) | Recommended
Emission
Factor Rating | |---|------------------------------|------------------|------------------|---------------|--------------------------------|--|--| | 1,1,1-Trichloroethane | 33 | 5.15E-03 | 8.50E-01 | 2.43E-01 | 2.43E-01 | 8.30E-02 | A | | 1,1,2,2-Tetrachloroethane | 2 | 3.06E-02 | 1.04E+00 | 5.35E-01 | 7.14E-01 | 9.89E-01 | Е | | 1,1,2,3,4,4-Hexachloro-1,3-
butadiene
(Hexachlorobutadiene) | 3 | 1.03E-03 | 7.91E-03 | 3.49E-03 | 3.83E-03 | 4.33E-03 | D | | 1,1,2-Trichloro-1,2,2-
Trifluoroethane (Freon 113) | 9 | 2.06E-03 | 4.60E-01 | 6.72E-02 | 1.48E-01 | 9.64E-02 | С | | 1,1,2-Trichloroethane | 3 | 7.90E-03 | 4.08E-01 | 1.58E-01 | 2.18E-01 | 2.47E-01 | D | | 1,1-Dichloroethane | 36 | 2.56E-02 | 1.59E+01 | 2.08E+00 | 2.87E+00 | 9.38E-01 | A | | 1,1-Dichloroethene (1,1-
Dichloroethylene) | 34 | 2.06E-03 | 1.28E+00 | 1.60E-01 | 2.60E-01 | 8.74E-02 | A | | 1,2,3-Trimethylbenzene | 3 | 2.69E-01 | 5.20E-01 | 3.59E-01 | 1.40E-01 | 1.58E-01 | D | | 1,2,4-Trichlorobenzene | 6 | 1.01E-03 | 7.71E-03 | 5.51E-03 | 2.70E-03 | 2.16E-03 | С | | 1,2,4-Trimethylbenzene | 13 | 1.95E-01 | 2.99E+00 | 1.37E+00 | 9.45E-01 | 5.14E-01 | В | | 1,2-Dibromoethane
(Ethylene dibromide) | 11 | 1.37E-03 | 1.90E-02 | 4.80E-03 | 5.39E-03 | 3.18E-03 | В | | 1,2-Dichloro-1,1,2,2-
tetrafluoroethane (Freon 114) | 12 | 7.90E-03 | 4.23E-01 | 1.06E-01 | 1.15E-01 | 6.51E-02 | В | | 1,2-Dichloroethane (Ethylene dichloride) | 34 | 1.03E-03 | 2.60E+00 | 1.59E-01 | 4.36E-01 | 1.46E-01 | A | | 1,2-Dichloroethene | 1 | | | 1.14E+01 | | | E | | 1,2-Dichloropropane | 4 | 7.35E-04 | 1.99E-01 | 5.20E-02 | 9.78E-02 | 9.58E-02 | D | | 1,2-Diethylbenzene | 3 | 1.38E-02 | 2.52E-02 | 1.99E-02 | 5.75E-03 | 6.51E-03 | D | TABLE 2-8 (CONTINUED). LANDFILL GAS CONSTITUENTS | Compound | Number
of Test
Reports | Minimum (ppm) | Maximum
(ppm) | Mean
(ppm) | Standard
Deviation
(ppm) | 95%
Confidence
Interval
(± ppm) | Recommended
Emission
Factor Rating | |--|------------------------------|---------------|------------------|---------------|--------------------------------|--|--| | 1,3,5-Trimethylbenzene | 9 | 1.51E-01 | 1.09E+00 | 6.23E-01 | 3.59E-01 | 2.35E-01 | С | | 1,3-Butadiene (Vinyl ethylene) | 7 | 2.27E-02 | 5.89E-01 | 1.66E-01 | 2.07E-01 | 1.53E-01 | С | | 1,3-Diethylbenzene | 4 | 2.37E-02 | 1.30E-01 | 6.55E-02 | 4.53E-02 | 4.44E-02 | D | | 1,4-Diethylbenzene | 4 | 9.50E-02 | 5.49E-01 | 2.62E-01 | 2.03E-01 | 1.99E-01 | D | | 1,4-Dioxane (1,4-Diethylene dioxide) | 5 | 2.09E-03 | 1.39E-02 | 8.29E-03 | 4.50E-03 | 3.94E-03 | D | | 1-Butene / 2-Methylbutene | 3 | 8.57E-01 | 1.42E+00 | 1.22E+00 | 3.12E-01 | 3.53E-01 | D | | 1-Butene / 2-Methylpropene | 1 | | | 1.10E+00 | | | Е | | 1-Ethyl-4-methylbenzene (4-
Ethyl toluene) | 7 | 1.21E-01 | 2.85E+00 | 9.89E-01 | 1.21E+00 | 8.97E-01 | С | | 1-Ethyl-4-methylbenzene (4-
Ethyl toluene) + 1,3,5-
Trimethylbenzene | 4 | 8.17E-02 | 8.42E-01 | 5.79E-01 | 3.54E-01 | 3.46E-01 | D | | 1-Heptene | 2 | 4.48E-01 | 8.03E-01 | 6.25E-01 | 2.51E-01 | 3.48E-01 | Е | | 1-Hexene / 2-Methyl-1-
pentene | 3 | 1.26E-02 | 2.22E-01 | 8.88E-02 | 1.16E-01 | 1.31E-01 | D | | 1-Methylcyclohexene | 4 | 1.32E-02 | 3.89E-02 | 2.27E-02 | 1.16E-02 | 1.14E-02 | D | | 1-Methylcyclopentene | 4 | 1.55E-02 | 4.62E-02 | 2.52E-02 | 1.45E-02 | 1.42E-02 | D | | 1-Pentene | 4 | 3.23E-02 | 4.83E-01 | 2.20E-01 | 1.95E-01 | 1.91E-01 | D | | 1-Propanethiol (n-Propyl mercaptan) | 22 | 1.46E-04 | 4.86E-01 | 1.25E-01 | 1.22E-01 | 5.11E-02 | A | | 2,2,3-Trimethylbutane | 4 | 4.80E-03 | 1.41E-02 | 9.19E-03 | 3.86E-03 | 3.79E-03 | D | | 2,2,4-Trimethylpentane | 5 | 3.21E-01 | 8.12E-01 | 6.14E-01 | 2.27E-01 | 1.99E-01 | D | | 2,2,5-Trimethylhexane | 4 | 9.44E-02 | 2.50E-01 | 1.56E-01 | 7.29E-02 | 7.14E-02 | D | | 2,2-Dimethylbutane | 4 | 9.56E-02 | 2.28E-01 | 1.56E-01 | 5.49E-02 | 5.38E-02 | D | | 2,2-Dimethylpentane | 4 | 4.42E-02 | 7.30E-02 | 6.08E-02 | 1.27E-02 | 1.25E-02 | D | | 2,2-Dimethylpropane | 1 | | | 2.74E-02 | | | Е | | 2,3,4-Trimethylpentane | 4 | 1.78E-01 | 4.73E-01 | 3.12E-01 | 1.35E-01 | 1.32E-01 | D | | 2,3-Dimethylbutane | 4 | 1.43E-01 | 2.21E-01 | 1.67E-01 | 3.59E-02 | 3.52E-02 | D | | 2,3-Dimethylpentane | 4 | 2.03E-01 | 3.76E-01 | 3.10E-01 | 7.70E-02 | 7.54E-02 | D | | 2,4-Dimethylhexane | 4 | 1.74E-01 | 2.61E-01 | 2.22E-01 | 3.62E-02 | 3.54E-02 | D | | 2,4-Dimethylpentane | 4 | 6.55E-02 | 1.21E-01 | 1.00E-01 | 2.42E-02 | 2.37E-02 | D | | 2,5-Dimethylhexane | 4 | 1.33E-01 | 1.96E-01 | 1.66E-01 | 2.62E-02 | 2.57E-02 | D | | 2,5-Dimethylthiophene | 1 | | | 6.44E-02 | | | Е | | 2-Butanone (Methyl ethyl ketone) | 8 | 2.81E-01 | 9.54E+00 | 4.01E+00 | 3.07E+00 | 2.12E+00 | С | | 2-Ethyl-1-butene | 4 | 1.02E-02 | 2.68E-02 | 1.77E-02 | 6.98E-03 | 6.84E-03 | D | | 2-Ethylthiophene | 1 | | | 6.29E-02 | | | Е | | 2-Ethyltoluene | 4 | 1.38E-01 | 6.53E-01 | 3.23E-01 | 2.29E-01 | 2.25E-01 | D | TABLE 2-8 (CONTINUED). LANDFILL GAS CONSTITUENTS | Compound | Number
of Test
Reports | Minimum (ppm) | Maximum
(ppm) | Mean
(ppm) | Standard
Deviation
(ppm) | 95%
Confidence
Interval
(± ppm) | Recommended
Emission
Factor Rating | |--|------------------------------|---------------|------------------|------------------|--------------------------------|--|--| | 2-Hexanone (Methyl butyl ketone) | 2 | 5.73E-01 | 6.53E-01 | 6.13E-01 | 5.65E-02 | 7.83E-02 | Е | | 2-Methyl-1-butene | 4 | 7.17E-02 | 3.47E-01 | 1.79E-01 | 1.18E-01 | 1.16E-01 | D | | 2-Methyl-1-propanethiol
(Isobutyl mercaptan) | 1 | | | 1.70E-01 | | | Е | | 2-Methyl-2-butene | 4 | 2.07E-01 | 4.12E-01 | 3.03E-01 | 1.03E-01 | 1.01E-01 | D | | 2-Methyl-2-propanethiol
(tert-Butylmercaptan) | 1 | | | 3.25E-01 | | | E | | 2-Methylbutane | 4 | 2.80E-01 | 7.33E+00 | 2.26E+00 | 3.39E+00 | 3.32E+00 | D | | 2-Methylheptane | 4 | 6.01E-01 | 9.50E-01 | 7.16E-01 | 1.61E-01 | 1.57E-01 | D | | 2-Methylhexane | 4 | 5.58E-01 | 1.02E+00 | 8.16E-01 | 2.11E-01 | 2.07E-01 | D | | 2-Methylpentane | 4 | 5.51E-01 | 1.00E+00 | 6.88E-01 | 2.13E-01 | 2.09E-01 | D | | 2-Propanol (Isopropyl alcohol) | 6 | 1.17E-01 | 5.72E+00 | 1.80E+00 | 2.08E+00 | 1.66E+00 | С | | 3,6-Dimethyloctane | 4 | 5.38E-01 | 1.01E+00 | 7.85E-01 | 1.99E-01 | 1.95E-01 | D | | 3-Ethyltoluene | 4 | 3.55E-01 | 1.54E+00 | 7.80E-01 | 5.45E-01 | 5.34E-01 | D | | 3-Methyl-1-pentene | 3 | 4.33E-03 | 1.09E-02 | 6.99E-03 | 3.44E-03 | 3.89E-03 | D | | 3-Methylheptane | 4 | 6.25E-01 | 1.04E+00 | 7.63E-01 | 1.91E-01 | 1.87E-01 | D | | 3-Methylhexane | 4 | 7.44E-01 | 1.41E+00 | 1.13E+00 | 3.16E-01 | 3.10E-01 | D | | 3-Methylpentane | 4 | 5.72E-01 | 1.08E+00 | 7.40E-01 | 2.38E-01 | 2.34E-01 | D | | 3-Methylthiophene | 1 | | | 9.25E-02 | | | Е | | 4-Methyl-1-pentene | 1 | | | 2.33E-02 | | | Е | | 4-Methyl-2-pentanone
(MIBK) | 7 | 7.77E-02 | 1.99E+00 | 8.83E-01 | 6.63E-01 | 4.91E-01 | С | | 4-Methylheptane | 4 | 1.90E-01 | 3.14E-01 | 2.49E-01 | 5.36E-02 | 5.25E-02 | D | | Acetaldehyde | 5 | 2.19E-02 | 1.65E-01 | 7.74E-02 | 6.31E-02 | 5.53E-02 | D | | Acetone | 9 | 3.38E-01 | 1.61E+01 | 6.70E+00 | 5.34E+00 | 3.49E+00 | С | | Acetonitrile | 20 | 1.35E-01 | 2.56E+00 | 5.56E-01 | 5.19E-01 | 2.27E-01 | A | | Acrylonitrile | 6 | | | BDL ^a | | | С | | Benzene | 41 | 7.52E-02 | 2.20E+01 | 2.40E+00 | 3.69E+00 | 1.13E+00 | A | | Benzyl chloride | 24 | 1.72E-03 | 2.96E-02 | 1.81E-02 | 8.16E-03 | 3.26E-03 | A | | Bromodichloromethane | 2 | 2.75E-03 | 1.48E-02 | 8.78E-03 | 8.54E-03 | 1.18E-02 | Е | | Bromomethane (Methyl bromide) | 7 | 2.36E-03 | 6.77E-02 | 2.10E-02 | 2.32E-02 | 1.72E-02 | С | | Butane | 9 | 4.31E-01 | 3.48E+01 | 6.22E+00 | 1.09E+01 | 7.10E+00 | С | | Carbon disulfide | 34 | 2.92E-04 | 3.53E-01 | 1.47E-01 | 8.74E-02 | 2.94E-02 | A | | Carbon tetrachloride | 30 | 8.55E-04 | 3.29E-02 | 7.98E-03 | 7.59E-03 | 2.72E-03 | A | | Carbon tetrafluoride (Freon 14) | 1 | | | 1.51E-01 | | | Е | | Carbonyl sulfide (Carbon oxysulfide) | 29 | 1.04E-04 | 2.75E-01 | 1.22E-01 | 7.12E-02 | 2.59E-02 | A | TABLE 2-8 (CONTINUED). LANDFILL GAS CONSTITUENTS | Compound | Number
of Test
Reports | Minimum
(ppm) | Maximum
(ppm) | Mean
(ppm) | Standard
Deviation
(ppm) | 95%
Confidence
Interval
(± ppm) | Recommended
Emission
Factor Rating | |--|------------------------------|------------------|------------------|---------------|--------------------------------
--|--| | Chlorobenzene | 37 | 1.79E-02 | 7.44E+00 | 4.84E-01 | 1.21E+00 | 3.89E-01 | A | | Chlorodifluoromethane
(Freon 22) | 4 | 2.06E-01 | 1.39E+00 | 7.96E-01 | 5.00E-01 | 4.90E-01 | D | | Chloroethane (Ethyl chloride) | 10 | 9.69E-02 | 2.79E+01 | 3.95E+00 | 8.60E+00 | 5.33E+00 | В | | Chloromethane (Methyl chloride) | 11 | 1.24E-02 | 1.16E+00 | 2.44E-01 | 3.28E-01 | 1.94E-01 | В | | cis-1,2-Dichloroethene | 17 | 5.27E-02 | 6.69E+00 | 1.24E+00 | 1.56E+00 | 7.40E-01 | В | | cis-1,2-Dimethylcyclohexane | 4 | 5.68E-02 | 1.03E-01 | 8.10E-02 | 1.90E-02 | 1.86E-02 | D | | cis-1,3-Dichloropropene | 4 | 2.33E-04 | 6.68E-03 | 3.03E-03 | 2.72E-03 | 2.66E-03 | D | | cis-1,3-Dimethylcyclohexane | 4 | 3.78E-01 | 6.36E-01 | 5.01E-01 | 1.25E-01 | 1.23E-01 | D | | cis-1,4-Dimethylcyclohexane
/ trans-1,3-
Dimethylcyclohexane | 4 | 2.00E-01 | 2.91E-01 | 2.48E-01 | 3.97E-02 | 3.89E-02 | D | | cis-2-Butene | 4 | 7.08E-02 | 1.58E-01 | 1.05E-01 | 3.94E-02 | 3.86E-02 | D | | cis-2-Heptene | 1 | | | 2.45E-02 | | | Е | | cis-2-Hexene | 4 | 8.54E-03 | 2.51E-02 | 1.72E-02 | 7.16E-03 | 7.02E-03 | D | | cis-2-Octene | 4 | 1.67E-01 | 2.78E-01 | 2.20E-01 | 5.66E-02 | 5.55E-02 | D | | cis-2-Pentene | 4 | 2.14E-02 | 7.47E-02 | 4.79E-02 | 2.37E-02 | 2.32E-02 | D | | cis-3-Methyl-2-pentene | 4 | 1.18E-02 | 2.43E-02 | 1.79E-02 | 5.92E-03 | 5.80E-03 | D | | CO | 6 | 4.75E+00 | 7.81E+01 | 2.44E+01 | 2.85E+01 | 2.28E+01 | С | | Cyclohexane | 10 | 1.19E-01 | 3.03E+00 | 1.01E+00 | 8.97E-01 | 5.56E-01 | В | | Cyclohexene | 4 | 1.43E-02 | 2.56E-02 | 1.84E-02 | 5.19E-03 | 5.09E-03 | D | | Cyclopentane | 4 | 1.27E-02 | 3.34E-02 | 2.21E-02 | 8.55E-03 | 8.38E-03 | D | | Cyclopentene | 4 | 5.13E-03 | 2.78E-02 | 1.21E-02 | 1.07E-02 | 1.05E-02 | D | | Decane | 4 | 1.85E+00 | 6.38E+00 | 3.80E+00 | 1.94E+00 | 1.90E+00 | D | | Dibromochloromethane | 3 | 7.95E-03 | 2.38E-02 | 1.51E-02 | 8.02E-03 | 9.08E-03 | D | | Dibromomethane (Methylene dibromide) | 2 | 6.37E-04 | 1.03E-03 | 8.35E-04 | 2.81E-04 | 3.89E-04 | Е | | Dichlorobenzene | 58 | 4.84E-04 | 5.54E+00 | 9.40E-01 | 1.32E+00 | 3.40E-01 | A | | Dichlorodifluoromethane (Freon 12) | 13 | 1.17E-01 | 6.56E+00 | 1.18E+00 | 1.72E+00 | 9.34E-01 | В | | Dichloromethane (Methylene chloride) | 42 | 5.09E-03 | 4.12E+01 | 6.15E+00 | 8.23E+00 | 2.49E+00 | A | | Diethyl sulfide | 1 | | | 8.62E-02 | | | Е | | Dimethyl disulfide | 25 | 2.29E-04 | 4.35E-01 | 1.37E-01 | 1.03E-01 | 4.02E-02 | A | | Dimethyl sulfide | 29 | 7.51E-03 | 1.47E+01 | 5.66E+00 | 3.83E+00 | 1.39E+00 | A | | Dodecane (n-Dodecane) | 4 | 6.79E-02 | 4.64E-01 | 2.21E-01 | 1.70E-01 | 1.66E-01 | D | | Ethane | 5 | 4.83E+00 | 1.40E+01 | 9.05E+00 | 4.23E+00 | 3.71E+00 | D | | Ethanol | 5 | 2.03E-02 | 3.40E-01 | 2.30E-01 | 1.39E-01 | 1.21E-01 | D | | Ethyl acetate | 6 | 1.63E-01 | 3.97E+00 | 1.88E+00 | 1.54E+00 | 1.23E+00 | С | TABLE 2-8 (CONTINUED). LANDFILL GAS CONSTITUENTS | Compound | Number
of Test
Reports | Minimum
(ppm) | Maximum
(ppm) | Mean
(ppm) | Standard
Deviation
(ppm) | 95%
Confidence
Interval
(± ppm) | Recommended
Emission
Factor Rating | |--|------------------------------|------------------|------------------|---------------|--------------------------------|--|--| | Ethyl mercaptan (Ethanediol) | 30 | 6.05E-05 | 8.35E-01 | 1.98E-01 | 1.97E-01 | 7.06E-02 | A | | Ethyl methyl sulfide | 1 | | | 3.67E-02 | | | Е | | Ethylbenzene | 16 | 5.93E-01 | 8.80E+00 | 4.86E+00 | 2.58E+00 | 1.27E+00 | В | | Formaldehyde | 5 | 3.40E-03 | 2.51E-02 | 1.17E-02 | 9.32E-03 | 8.17E-03 | D | | Heptane | 10 | 1.29E-01 | 3.09E+00 | 1.34E+00 | 9.90E-01 | 6.14E-01 | В | | Hexane | 17 | 1.19E-01 | 2.60E+01 | 3.10E+00 | 6.04E+00 | 2.87E+00 | В | | Hydrogen sulfide | 36 | 1.02E-03 | 3.34E+02 | 3.20E+01 | 5.57E+01 | 1.82E+01 | A | | Indan (2,3-Dihydroindene) | 4 | 2.38E-02 | 1.39E-01 | 6.66E-02 | 5.12E-02 | 5.02E-02 | D | | Isobutane (2-Methylpropane) | 4 | 1.95E+00 | 1.66E+01 | 8.16E+00 | 6.73E+00 | 6.59E+00 | D | | Isobutylbenzene | 4 | 1.66E-02 | 7.55E-02 | 4.07E-02 | 2.49E-02 | 2.44E-02 | D | | Isoprene (2-Methyl-1,3-butadiene) | 3 | 1.16E-02 | 2.21E-02 | 1.65E-02 | 5.28E-03 | 5.97E-03 | D | | Isopropyl mercaptan | 24 | 3.75E-05 | 1.22E+00 | 1.75E-01 | 2.60E-01 | 1.04E-01 | A | | Isopropylbenzene (Cumene) | 5 | 7.61E-02 | 9.60E-01 | 4.30E-01 | 3.50E-01 | 3.07E-01 | D | | Methanethiol (Methyl mercaptan) | 29 | 9.80E-04 | 4.05E+00 | 1.37E+00 | 9.55E-01 | 3.48E-01 | A | | Methyl tert-butyl ether (MTBE) | 5 | 3.30E-03 | 2.61E-01 | 1.18E-01 | 1.21E-01 | 1.06E-01 | D | | Methylcyclohexane | 4 | 1.00E+00 | 1.51E+00 | 1.29E+00 | 2.59E-01 | 2.54E-01 | D | | Methylcyclopentane | 4 | 4.01E-01 | 8.17E-01 | 6.50E-01 | 1.77E-01 | 1.74E-01 | D | | Naphthalene | 4 | 7.91E-03 | 2.65E-01 | 1.07E-01 | 1.19E-01 | 1.17E-01 | D | | <i>n</i> -Butylbenzene | 4 | 2.24E-02 | 1.40E-01 | 6.80E-02 | 5.12E-02 | 5.02E-02 | D | | Nonane | 4 | 1.62E+00 | 3.46E+00 | 2.37E+00 | 7.95E-01 | 7.79E-01 | D | | <i>n</i> -Propylbenzene (Propylbenzene) | 5 | 1.32E-01 | 7.07E-01 | 4.13E-01 | 2.35E-01 | 2.06E-01 | D | | Octane | 4 | 8.46E-01 | 1.38E+00 | 1.08E+00 | 2.73E-01 | 2.68E-01 | D | | <i>p</i> -Cymene (1-Methyl-4-lsopropylbenzene) | 5 | 1.28E+00 | 8.16E+00 | 3.58E+00 | 3.10E+00 | 2.72E+00 | D | | Pentane | 9 | 4.77E-01 | 2.44E+01 | 4.46E+00 | 7.56E+00 | 4.94E+00 | С | | Propane | 9 | 4.79E+00 | 3.67E+01 | 1.55E+01 | 1.04E+01 | 6.80E+00 | С | | Propene | 4 | 1.61E+00 | 4.80E+00 | 3.32E+00 | 1.41E+00 | 1.38E+00 | D | | Propyne | 1 | | | 3.80E-02 | | | Е | | sec-Butylbenzene | 4 | 2.64E-02 | 1.21E-01 | 6.75E-02 | 4.04E-02 | 3.96E-02 | D | | Styrene (Vinylbenzene) | 14 | 9.59E-03 | 1.21E+00 | 4.11E-01 | 4.49E-01 | 2.35E-01 | В | | Tetrachloroethylene
(Perchloroethylene) | 40 | 5.12E-03 | 8.28E+00 | 2.03E+00 | 1.89E+00 | 5.85E-01 | A | | Tetrahydrofuran (Diethylene oxide) | 7 | 1.57E-01 | 1.78E+00 | 9.69E-01 | 5.63E-01 | 4.17E-01 | С | | Thiophene | 2 | 1.25E-01 | 5.72E-01 | 3.49E-01 | 3.16E-01 | 4.38E-01 | Е | | Toluene (Methyl benzene) | 40 | 1.30E+00 | 9.08E+01 | 2.95E+01 | 2.30E+01 | 7.12E+00 | A | TABLE 2-8 (CONTINUED). LANDFILL GAS CONSTITUENTS | Compound | Number
of Test
Reports | Minimum
(ppm) | Maximum
(ppm) | Mean
(ppm) | Standard
Deviation
(ppm) | 95%
Confidence
Interval
(± ppm) | Recommended
Emission
Factor Rating | |--|------------------------------|------------------|------------------|---------------|--------------------------------|--|--| | trans-1,2-Dichloroethene | 8 | 3.09E-03 | 4.60E-02 | 2.87E-02 | 1.52E-02 | 1.05E-02 | С | | trans-1,2-
Dimethylcyclohexane | 4 | 3.19E-01 | 5.23E-01 | 4.04E-01 | 8.65E-02 | 8.47E-02 | D | | trans-1,3-Dichloropropene | 5 | 3.30E-04 | 3.00E-02 | 9.43E-03 | 1.18E-02 | 1.03E-02 | D | | trans-1,4-
Dimethylcyclohexane | 4 | 1.68E-01 | 2.50E-01 | 2.05E-01 | 4.12E-02 | 4.04E-02 | D | | trans-2-Butene | 4 | 5.41E-02 | 1.76E-01 | 1.04E-01 | 5.15E-02 | 5.05E-02 | D | | trans-2-Heptene | 1 | | | 2.50E-03 | | | Е | | trans-2-Hexene | 4 | 1.11E-02 | 3.29E-02 | 2.06E-02 | 9.49E-03 | 9.30E-03 | D | | trans-2-Octene | 4 | 1.69E-01 | 2.96E-01 | 2.41E-01 | 5.32E-02 | 5.21E-02 | D | | trans-2-Pentene | 4 | 1.66E-02 | 5.09E-02 | 3.47E-02 | 1.41E-02 | 1.39E-02 | D | | trans-3-Methyl-2-pentene | 4 | 9.91E-03 | 2.07E-02 | 1.55E-02 | 4.73E-03 | 4.63E-03 | D | | Tribromomethane
(Bromoform) | 4 | 4.36E-04 | 2.68E-02 | 1.24E-02 | 1.12E-02 | 1.09E-02 | D | | Trichloroethylene
(Trichloroethene) | 42 | 6.55E-03 | 3.18E+00 | 8.28E-01 | 6.88E-01 | 2.08E-01 | A | | Trichlorofluoromethane (Freon 11) | 16 | 7.10E-03 | 7.14E-01 | 2.48E-01 | 2.22E-01 | 1.09E-01 | В | | Trichloromethane (Chloroform) | 34 | 2.21E-03 | 6.82E-01 | 7.08E-02 | 1.46E-01 | 4.91E-02 | A | | Undecane | 4 | 6.45E-01 | 3.10E+00 | 1.67E+00 | 1.04E+00 | 1.02E+00 | D | | Vinyl acetate | 6 | 2.17E-02 | 1.02E+00 | 2.48E-01 | 3.86E-01 | 3.09E-01 | С | | Vinyl chloride
(Chloroethene) | 40 | 6.78E-03 | 1.72E+01 | 1.42E+00 | 2.88E+00 | 8.92E-01 | A | | Xylenes (o-, m-, p-, mixtures) | 78 | 3.09E-01 | 3.56E+01 | 9.23E+00 | 8.84E+00 | 1.96E+00 | A | ^a All tests below detection limit. Method detection limits are available for three tests, and are as follows: 2.00E-04, 4.00E-03, and 2.00E-02 ppm TABLE 2-9. SUMMARY OF METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROGEN, AND OXYGEN CONCENTRATIONS OF RAW LANDFILL GAS | Test | СН |
[₄ | CO |) | C | O_2 | N | I_2 | C | \mathbf{O}_2 | |-----------|-----------------|--------------------|--------|---------|---------|---------|---------|---------|--------|----------------| | Report ID | (ppmv) | (% v/v) | | TR-076 | NR ^a | NR | NR | NR | NR | NR | 160,500 | 16.1 | 16,700 | 1.7 | | TR-084 | NR | NR | NR | NR | NR | NR | 100,000 | 10.0 | 24,000 | 2.4 | | TR-086 | NR | NR | NR | NR | NR | NR | 21,700 | 2.2 | 10,000 | 1.0 | | TR-114 | NR | NR | NR | NR | NR | NR | 140,000 | 14.0 | NR | NR | | TR-134 | NR | NR | NR | NR | NR | NR | 27,850 | 2.8 | 2,500 | 0.3 | | TR-141 | NR | NR | NR | NR | NR | NR | 50,100 | 5.0 | 20,500 | 2.1 | | TR-145 | 50,600 | 51.0 | 13 | 0.0 | 407,400 | 40.7 | 71,400 | 7.1 | 11,100 | 1.1 | | TR-146 | 525,000 | 52.5 | NR | NR | 413,000 | 41.3 | 56,900 | 5.7 | 4,280 | 0.4 | | TR-147 | NR | NR | 2.7 | 0.0 | NR | NR | NR | NR | NR | NR | | TR-148 | 529,000 | 52.9 | 4.7 | 0.0 | 402,000 | 40.2 | 66,000 | 6.6 | 2,700 | 0.3 | | TR-153 | 547,000 | 54.7 | NR | NR | 380,000 | 38.0 | 80,000 | 8.0 | 6,000 | 0.6 | | TR-156 | 389,000 | 38.9 | NR | NR | 349,000 | 34.9 | 258,000 | 25.8 | 24,000 | 2.4 | | TR-157 | 581,000 | 58.1 | NR | NR | 386,000 | 38.6 | 27,000 | 2.7 | 2,800 | 0.3 | | TR-159 | 480,000 | 48.0 | NR | NR | 374,000 | 37.4 | 141,000 | 14.1 | 5,300 | 0.5
 | TR-165 | 443,000 | 44.3 | NR | NR | 356,000 | 35.6 | 180,000 | 18.0 | 15,200 | 1.5 | | TR-167 | 450,000 | 45.0 | NR | NR | 360,000 | 36.0 | 178,000 | 17.8 | 14,400 | 1.4 | | TR-168 | 335,000 | 33.5 | NR | NR | 326,000 | 32.6 | 324,000 | 32.4 | 21,000 | 2.1 | | TR-169 | 316,000 | 31.6 | NR | NR | 316,000 | 31.6 | 340,000 | 34.0 | 22,000 | 2.2 | | TR-171 | 359,000 | 35.9 | NR | NR | 405,000 | 40.5 | 209,000 | 20.9 | 22,000 | 2.2 | | TR-173 | 481,000 | 48.1 | NR | NR | 382,000 | 38.2 | 121,000 | 12.1 | 17,400 | 1.7 | | TR-175 | 379,000 | 37.9 | 5.2 | 0.0 | 301,000 | 30.1 | 235,000 | 23.5 | 62,100 | 6.2 | | TR-176 | 318,000 | 31.8 | NR | NR | 265,000 | 26.5 | 344,000 | 34.4 | 73,300 | 7.3 | | TR-178 | 200,000 | 20.0 | NR | NR | 247,000 | 24.7 | 519,000 | 51.9 | 34,000 | 3.4 | | TR-179 | 459,000 | 45.9 | NR | NR | 331,000 | 33.1 | NR | NR | 32,800 | 3.3 | | TR-181 | 335,500 | 33.6 | NR | NR | 324,000 | 32.4 | 306,000 | 30.6 | 23,800 | 2.4 | | TR-182 | 351,000 | 35.1 | NR | NR | 332,000 | 33.2 | 287,000 | 28.7 | 21,800 | 2.2 | | TR-183 | 326,000 | 32.6 | NR | NR | 309,000 | 30.9 | 341,000 | 34.1 | 24,000 | 2.4 | TABLE 2-9 (CONTINUED). SUMMARY OF METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROGEN, AND OXYGEN CONCENTRATIONS OF RAW LANDFILL GAS | Test | СН | | CO |) | C | O_2 | N | N_2 | C | \mathbf{O}_2 | |-----------|---------|---------|--------|---------|---------|---------|---------|---------|--------|----------------| | Report ID | (ppmv) | (% v/v) | | TR-187 | 350,000 | 35.0 | NR | NR | 334,000 | 33.4 | 289,000 | 28.9 | 27,000 | 2.7 | | TR-188 | 435,000 | 43.5 | 77 | 0.0 | 355,000 | 35.5 | 196,000 | 19.6 | 13,700 | 1.4 | | TR-189 | 557,000 | 55.7 | 35 | 0.0 | 405,000 | 40.5 | 37,700 | 3.8 | 300 | 0.0 | | TR-190 | 502,000 | 50.2 | NR | NR | 395,000 | 39.5 | 103,000 | 10.3 | 200 | 0.0 | | TR-191 | 350,000 | 35.0 | NR | NR | 272,000 | 27.2 | 322,000 | 32.2 | 56,700 | 5.7 | | TR-194 | 611,000 | 61.1 | 65 | 0.0 | 389,000 | 38.9 | NR | NR | 1,000 | 0.1 | | TR-196 | 476,000 | 47.6 | NR | NR | 384,000 | 38.4 | 133,000 | 13.3 | 6,700 | 0.7 | | TR-199 | 275,000 | 27.5 | NR | NR | 212,000 | 21.2 | 427,000 | 42.7 | 86,000 | 8.6 | | TR-205 | 345,000 | 34.5 | NR | NR | 328,000 | 32.8 | 297,000 | 29.7 | 23,000 | 2.3 | | TR-207 | 183,000 | 18.3 | NR | NR | 219,500 | 22.0 | 506,000 | 50.6 | 91,800 | 9.2 | | TR-209 | 483,000 | 48.3 | 0.0 | 0.0 | 387,000 | 38.7 | 118,000 | 11.8 | 10,900 | 1.1 | | TR-220 | 350,000 | 35.0 | NR | NR | 295,000 | 29.5 | 304,000 | 30.4 | 50,500 | 5.1 | | TR-226 | 522,000 | 52.2 | 6.5 | 0.0 | 349,000 | 34.9 | 100,000 | 10.0 | 27,700 | 2.8 | | TR-229 | 309,000 | 30.9 | NR | NR | 250,000 | 25.0 | 374,000 | 37.4 | 72,200 | 7.2 | | TR-241 | 212,000 | 21.2 | NR | NR | 263,000 | 26.3 | 465,000 | 46.5 | 61,000 | 6.1 | | TR-251 | 410,000 | 41.0 | NR | NR | 366,000 | 36.6 | 190,000 | 19.0 | 35,000 | 3.5 | | TR-253 | 440,000 | 44.0 | NR | NR | 351,000 | 35.1 | 191,000 | 19.1 | 46,600 | 4.7 | | TR-255 | 445,000 | 44.5 | NR | NR | 375,000 | 37.5 | 164,000 | 16.4 | 16,000 | 1.6 | | TR-259 | 257,000 | 25.7 | NR | NR | 282,000 | 28.2 | 414,000 | 41.4 | 23,800 | 2.4 | | TR-260 | 260,000 | 26.0 | NR | NR | 284,000 | 28.4 | 415,000 | 41.5 | 24,000 | 2.4 | | TR-261 | 259,000 | 25.9 | NR | NR | 281,000 | 28.1 | 428,000 | 42.8 | 26,900 | 2.7 | | TR-264 | 446,000 | 44.6 | NR | NR | 374,000 | 37.4 | 154,000 | 15.4 | 26,500 | 2.7 | | TR-266 | 311,000 | 31.1 | 0.0 | 0.0 | 304,000 | 30.4 | NR | NR | 3,000 | 0.3 | | TR-272 | 467,000 | 46.7 | NR | NR | 374,000 | 37.4 | 131,000 | 13.1 | 17,000 | 1.7 | | TR-273 | 376,000 | 37.6 | NR | NR | 298,000 | 29.8 | 256,000 | 25.6 | 64,000 | 6.4 | | TR-284 | 520,000 | 52.0 | NR | NR | 411,000 | 41.1 | 159,000 | 15.9 | 16,000 | 1.6 | | TR-287 | 617,000 | 61.7 | NR | NR | 430,000 | 43.0 | 112,000 | 11.2 | 200 | 0.0 | TABLE 2-9 (CONTINUED). SUMMARY OF METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROGEN, AND OXYGEN CONCENTRATIONS OF RAW LANDFILL GAS | Test | СН | [₄ | CO |) | C | O_2 | N | I_2 | O_2 | | |------------------------|---------|----------------|--------|---------|---------|---------|---------|---------|--------|---------| | Report ID | (ppmv) | (% v/v) | | TR-290 | 213,000 | 21.3 | NR | NR | 348,000 | 34.8 | 420,000 | 42.0 | 8,800 | 0.9 | | TR-292 | 495,000 | 49.5 | NR | NR | 333,000 | 33.3 | 136,000 | 13.6 | 25,700 | 2.6 | | TR-293a | 607,000 | 60.7 | NR | NR | 438,000 | 43.8 | 137,000 | 13.7 | 26,000 | 2.6 | | TR-293b | 432,000 | 43.2 | NR | NR | 374,000 | 37.4 | 262,000 | 26.2 | 24,000 | 2.4 | | Minimum | 183,000 | 18.3 | - | - | 212,000 | 21.2 | 21,700 | 2.2 | 200 | 0.0 | | Maximum | 617,000 | 61.7 | 77.0 | 0.0 | 438,000 | 43.8 | 519,000 | 51.9 | 91,800 | 9.2 | | Mean | 408,000 | 40.8 | 20.9 | 0.0 | 342,000 | 34.2 | 219,000 | 21.9 | 25,400 | 2.5 | | Standard
Deviation | 113,000 | 11.3 | 28.4 | 0.0 | 54,800 | 5.5 | 135,000 | 13.5 | 22,100 | 2.2 | | 95% | | | | | | | | | | | | Confidence
Interval | | | | | | | | | | | | (±) | 31,100 | 3.1 | 17.6 | 0.0 | 15,000 | 1.5 | 35,900 | 3.6 | 5,790 | 0.6 | ⁽a) Not reported #### References California Air Resources Board. Facsimile from Chris Holm to Susan Thorneloe, U.S. EPA. Otay Landfill Flare Gas Summary. July 19, 2005. TR-076. New Source Performance Standards Tier 2 Sampling and Analysis for the Flying Cloud Landfill, Browning-Ferris Industries, 6/30/98. TR-084. Tier 2 NMOC Emission Rate Report for the Buncombe County Landfill, Buncombe County Solid Waste Services, 5/12/99. TR-086. Tier 2 NMOC Emission Rate Report for the White Street Landfill, Duke Engineering and Services, City of Greensboro Solid Waste Management Division, 5/18/99. TR-114. Summary Report of Tier 2 Sampling, Analysis, and Landfill Emissions Estimates for Non-Methane Organic Compounds Chrin Brothers Landfill, Chrin Brothers Sanitary Landfill, 4/24/98. TR-115. Seneca Landfill - Revised Tier 2 NMOC Emission Rate Report, Seneca Landfill, Inc., 12/5/96. TR-134. New Source Performance Standards Tier 2 Sampling, Analysis, and Landfill NMOC Emission Estimates for the Fort Worth Landfill, Laidlaw Waste Systems, Inc., 4/15/97. TR-141. Tier 2 NMOC Emission Rate Report for the SPSA Regional Landfill, Southeastern Public Service Authority, MSA Consulting Engineers, 6/10/97. - TR-145. Compliance Testing of a Landfill Flare at Browning-Ferris Gas Services, Inc.'s Facility in Halifax, Massachusetts, BFI Waste Systems of North America, Inc., May 1996. - TR-146. Compliance Source Testing of a Landfill Flare at Northern Disposal, Inc. East Bridgewater Landfill, Northern Disposal, Inc., June 1994. - TR-147. Compliance Emissions Test Program for BFI of Ohio, Inc., BFI of Ohio, Inc., 6/26/98. - TR-148. Compliance Testing of Landfill Flare at Browning-Ferris Gas Services, Inc.'s Fall River Landfill Flare, BFI Waste Systems of North America, Inc., March 1995. - TR-153. Results of the Emission Compliance Test on the Enclosed Flare System at the Carbon Limestone Landfill, Browning-Ferris Industrial Gas Services, Inc., 8/8/96. - TR-156. Results of the Emission Compliance Test on the Enclosed Flare System at the Lorain County Landfill No. 2, Browning-Ferris Industrial Gas Services, Inc., 9/5/96. - TR-157. Emission Compliance Testing Browning-Ferris Gas Services, Inc. Willowcreek Landfill, BFI-Willowcreek, 2/2/98. - TR-159. Compliance Stack Sampling Report, Monmouth County Reclamation Center, SCS Engineers (Reston, VA), 9/8/95. - TR-160. Source Emission Testing of an Enclosed Landfill Gas Ground Flare, SCS Engineers (Reston, VA), September 1997. - TR-165. 1997 Annual Compliance Source Testing Results for the Coyote Canyon Landfill Gas Recovery Facility Flare No. 1, Laidlaw Gas Recovery Systems, January 1998. - TR-167. 1997 Annual Compliance Source Testing Results for the Coyote Canyon Landfill Gas Recovery Facility Boiler, Laidlaw Gas Recovery Systems, January 1998. - TR-168. Colton Sanitary Landfill Gas Flare No. 2 (John Zink) 1998 Source Tests Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-169. Colton Sanitary Landfill Gas Flare No. 1 (McGill) 1998 Source Tests Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-171. High Landfill Gas Flow Rate Source Test Results from One Landfill Gas Flare at FRB Landfill in Orange County, California, Bryan A. Stirrat & Associates, July 1997. - TR-173. Annual Emissions Test of Landfill Gas Flare #3 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/12/99. - TR-175. Emissions Tests on Flares #2, #4 and #6 at the Lopez Canyon Landfill, City of Los Angeles, August 1997. - TR-176. Emissions Test Results on Flares #1, #4 and #9 Calabasas Landfill, County Sanitation Districts of Los Angeles County, February 1998. - TR-178. Annual Emission Test of Landfill Gas Flare #3 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 5/21/98. - TR-179. Annual Emissions Test of Landfill Gas Flare #1 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/13/99. - TR-181. The Mid-Valley Sanitary Landfill Gas Flare No.1 (McGill) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-182. The Mid-Valley Sanitary Landfill Gas Flare No.2 (SurLite) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-183. Annual Emissions Test of Landfill Gas Flare #2 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/13/99. - TR-187. Emissions Test of a Landfill Gas Flare Lowry Landfill/Denver-Arapohoe Disposal Site, Sur-Lite Corporation, February 1997. - TR-188. Characterization of Emissions from a Power Boiler Fired with Landfill Gas, Environment Canada Emissions Research and Measurement Division, March 2000. - TR-189. Characterization of Emissions from 925 kWe Reciprocating Engine Fired with Landfill Gas, Environment Canada Emissions Research and Measurement Division, December 2000. - TR-190. Characterization of Emissions from 812 kWe Reciprocating Engine Fired with Landfill Gas, Environment
Canada Emissions Research and Measurement Division, December 1999. - TR-191. Characterization of Emissions from Enclosed Flare Trail Road Landfill, Environment Canada Emissions Research and Measurement Division, August 2000. - TR-194. Characterization of Emissions from 1 MWe Reciprocating Engine Fired with Landfill Gas, Environment Canada Emissions Research and Measurement Division, January 2002. - TR-195. Characteristics of Semi-volatile Organic Compounds from Vented Landfills, Environment Canada Environmental Technology Advancement Directorate, August 1996. - TR-196. Results of the Biennial Criteria and AB 2588 Air Toxics Source Test on the Simi Valley Landfill Flare, Simi Valley Landfill and Recycling Center, April 1997. - TR-199. Emission Compliance Test on a Landfill Flare, City of Los Angeles, January 1999. - TR-205. The Mid-Valley Sanitary LFG Flare No. 3 (John Zink) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-207. Compliance Source Test Report LFG-fired Flare Stations I-4 and F-2, BKK Landfill, 12/12/97. - TR-209. Emission Test Report Volumes I and II Source/Compliance Emissions Testing for Cedar Hills Landfill, King County Solid Waste Division, 1/20/05. - TR-220. SCAQMD Performance Tests on the Spadra Energy Recovery from LFG (SPERG) Facility, County Sanitation Districts of Los Angeles County, April 1992. - TR-226. Methane and Nonmethane Organic Destruction Efficiency Tests of an Enclosed LFG Flare, Newco Waste Systems, April 1992. - TR-229. Scholl Canyon Landfill Gas Flares No. 9, 10 11 and 12 Emission Source Testing April 1999, South Coast Air Quality Management District, April 1999. - TR-236. Landfill Gas Flare Hydrogen Chloride Emissons Atascocita Landfill, Waste Management of Houston, 4/20/99. - TR-241. Performance Evaluation, Enclosed Landfill Gas Flare, Valley Landfill, Waste Energy Technology, November 1991. - TR-251. Emission Compliance Test on a Landfill Gas Flare Flare #1, Frank R. Bowerman Landfill, Orange County, 1/25/99. - TR-253. Emission Source Testing on Two Flares (Nos. 3 and 6) at the Spadra Landfill, Los Angeles County Sanitation Districts, 7/21/98. - TR-255. Emission Compliance Test on a Landfill Gas Flare -Olinda Alpha Landfill, Orange County Integrated Waste Management Department, No Report Date Given. - TR-258. Source Test Report, City of Sacramento Landfill Gas Flare, City of Sacramento, 6/26/96. - TR-259. The Millikan Sanitary Landfill Gas Flare No. 1 (Surlite) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. - TR-260. The Millikan Sanitary Landfill Gas Flare No. 2 (John Zink) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. - TR-261. The Millikan Sanitary Landfill Gas Flare No. 3 (John Zink) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. - TR-264. Emission Compliance Test on a Landfill Gas Flare, Orange County Integrated Waste Management Department, No Report Date Given. - TR-266. Compliance Source Test Report Landfill Gas-Fired Engine, Minnesota Methane, 3/3/98. - TR-272. Source Testing Final Report Landfill A, US EPA Air Pollution Prevention and Control Division, 10/6/05. - TR-273. Source Testing Final Report Landfill B, US EPA Air Pollution Prevention and Control Division, 10/6/05. - TR-284. Source Testing Final Report Landfill C, US EPA Air Pollution Prevention and Control Division, 10/6/05. - TR-287. Source Testing Final Report Landfill D, US EPA Air Pollution Prevention and Control Division, 10/6/05. - TR-290. San Timoteo Sanitary Landfill 1998 Source Test Results, San Bernandino County Solid Waste Management, 9/29/98. - TR-292. Source Testing Final Report Landfill E, US EPA Air Pollution Prevention and Control Division, October 2005. - TR-293. *Quantifying Uncontrolled Air Emissions From Two Florida Landfills* Draft Final Report. U.S. EPA Air Pollution Prevention and Control Division, March 26, 2008. - U.S. Environmental Protection Agency (1997a). Procedures for Preparing Emission Factor Documents ,EPA-454/R-95-015, Office of Air Quality Planning and Standards, Research Triangle Park, NC, November 1997. - U.S. Environmental Protection Agency (1997b). Emission Factor Documentation for AP-42 Section 2.4 Municipal Solid Waste Landfills, Revised, Office of Air Quality Planning and Standards. Research Triangle Park, NC, August 1997. # 2.7 LANDFILL GAS CONSTITUENT DATA FOR LANDFILLS WITH WASTE IN PLACE PRIOR TO 1992 The prior Municipal Solid Waste (MSW) Landfills section of AP-42 (U.S. EPA, 1998) contained uncontrolled LFG constituent default emission factors derived from landfills with the majority of their waste in place prior to 1992. This data is retained in the AP-42 section as Table 2.4-2. The following discussion, adapted from the 1997 emission factor documentation report (U.S. EPA, 1997b), documents the prior activities and analysis performed to derive these emission factors. The supporting raw data tables from the 1997 report are provided in Appendix A. # 2.7.1 Data Gathering and Review Data gathering was undertaken in advance of the 1998 AP-42 section update. This data gathering effort included an extensive literature search, contacts to identify ongoing projects within EPA, and electronic database searches. MSW landfill source test reports were collected during these efforts. After the data gathering was completed, a review of the information obtained was undertaken to reduce and synthesize the information for emission factor development. Reduction of the collected literature and data into a smaller, more pertinent subset for development of the MSW Landfill AP-42 section was governed by the following: - Only primary references of emissions data were used. - Test report source processes were clearly identified. - Test reports specified whether emissions were controlled or uncontrolled. - Reports referenced for controlled emissions specify the control devices. - Data support (i.e., calculation sheets, sampling and analysis description) was supplied in most cases. One exception is that some industry responses to the NSPS surveys were deemed satisfactory for inclusion. - Test report units were convertible to selected reporting units. - Test reports that were positively biased to a particular situation (i.e., test studies involving PCB analysis because of a known historical problem associated with PCB disposal in a specific MSW landfill) were excluded. As delineated by EPA's Emission Inventory Branch (EIB), the reduced subset of emissions data was ranked for quality. The ranking/rating of the data was used to identify questionable data. Each data set was ranked as follows: - A When tests were performed by a sound methodology and reported in enough detail for adequate validation. These tests are not necessarily EPA reference method tests, although such reference methods were preferred. - B When tests were performed by a generally sound methodology, but lack enough detail for adequate validation. - C When tests were based on an untested or new methodology or are lacking a significant amount of background data. - D When tests were based on a generally unacceptable method but the method may provide an order-of-magnitude value for the source (U.S. EPA, 1993). The selected rankings were based on the following criteria: - Source operation. The manner in which the source was operated is well documented in the report. The source was operating within typical parameters during the test. - Sampling procedures. If actual procedures deviated from standard methods, the deviations are well documented. Procedural alterations are often made in testing an uncommon type of source. When this occurs an evaluation is made of how such alternative procedures could influence the test results. - Sampling and process data. Many variations can occur without warning during testing, sometimes without being noticed. Such variations can induce wide deviation in sampling results. If a large spread between test results cannot be explained by information contained in the test report, the data are suspect and are given a lower rating. - Analysis and calculations. The test reports contain original raw data sheets. The nomenclature and equations used are compared with those specified by the EPA, to establish equivalency. The depth of review of the calculations is dictated by the reviewers' confidence in the ability and conscientiousness of the tester, which in turn is based on factors such as consistency of results and completeness of other areas of the test report (U.S. EPA, 1993). # 2.7.2 Development of Default Concentrations After review, there were 110 data sources (identified in the references as BID-1 to BID-110) used to develop the default concentrations. Appendix A lists the compounds presented in each reference. The Appendix also reflects the co-disposal history of the landfill, if known. Landfills known to have accepted non-residential wastes (i.e., co-disposal) and those known to have never accepted non-residential wastes are delineated. For most of these landfills, the disposal history is unknown. The data for co-disposal and no co-disposal or unknown disposal history are separated for NMOC, benzene, and toluene. There was no statistical difference among disposal history for any of the other LFG constituents presented (U.S. EPA, 1997b). As mentioned before, RCRA subtitle D requirements resulted in eliminating the practice of co-disposal in municipal solid waste landfills, so that co-disposal data segregation is not an issue for the landfills with waste in place on or after 1992. Table 2-11 presents default concentration values for the speciated organic compounds and reduced sulfur compounds that were corrected for air infiltration. As discussed earlier, these data were presented in the previous version of the AP-42 chapter (U.S. EPA, 1998), and will be presented in the AP-42 chapter as default concentrations for landfills with waste in place prior to 1992. The following
criteria, used in developing ratings in the 1997 AP-42 update (U.S. EPA, 1997b), were used to provide recommended default emission factor ratings. TABLE 2-10. CRITERIA USED TO DETERMINE RECOMMENDED DEFAULT EMISSION FACTOR RATINGS | Factor Rating | # of Data Points | |----------------------|------------------| | A | ≥ 20 | | В | 10-19 | | С | 6-9 | | D | 3-5 | | Е | <3 | TABLE 2-11. DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR LANDFILLS WITH WASTE IN PLACE PRIOR TO 1992 | Compound | Molecular Weight | Default
Concentration
(ppmv) | Emission Factor
Rating | |---|------------------|------------------------------------|---------------------------| | NMOC (as hexane) ^e | 86.18 | (pp.ii.v) | Ruung | | Co-disposal (SCC 50300603) | | 2,420 | D | | No or Unknown co-disposal (SCC 50100402) | | 595 | В | | 1,1,1-Trichloroethane (methyl chloroform) ^a | 133.42 | 0.48 | В | | 1,1,2,2-Tetrachloroethane ^a | 167.85 | 1.11 | С | | 1,1-Dichloroethane (ethylidene dichloride) ^a | 98.95 | 2.35 | В | | 1,1-Dichloroethene (vinylidene chloride) ^a | 96.94 | 0.20 | В | | 1,2-Dichloroethane (ethylene dichloride) ^a | 98.96 | 0.41 | В | | 1,2-Dichloropropane (propylene dichloride) ^a | 112.98 | 0.18 | D | | 2-Propanol (isopropyl alcohol) | 60.11 | 50.1 | Е | | Acetone | 58.08 | 7.01 | В | | Acrylonitrile ^a | 53.06 | 6.33 | D | | Benzene ^a | 78.11 | | | | Co-disposal (SCC 50300603) | | 11.1 | D | | No or Unknown co-disposal (SCC 50100402) | | 1.91 | В | | Bromodichloromethane | 163.83 | 3.13 | С | | Butane | 58.12 | 5.03 | С | | Carbon disulfide ^a | 76.13 | 0.58 | С | | Carbon monoxide ^b | 28.01 | 141 | Е | | Carbon tetrachloride ^a | 153.84 | 0.004 | В | | Carbonyl sulfide ^a | 60.07 | 0.49 | D | | Chlorobenzene ^a | 112.56 | 0.25 | С | | Chlorodifluoromethane | 86.47 | 1.30 | С | | Chloroethane (ethyl chloride) ^a | 64.52 | 1.25 | В | | Chloroform ^a | 119.39 | 0.03 | В | | Chloromethane | 50.49 | 1.21 | В | | Dichlorobenzene ^c | 147 | 0.21 | Е | | Dichlorodifluoromethane | 120.91 | 15.7 | A | | Dichlorofluoromethane | 102.92 | 2.62 | D | | Dichloromethane (methylene chloride) ^a | 84.94 | 14.3 | A | | Dimethyl sulfide (methyl sulfide) | 62.13 | 7.82 | С | | Ethane | 30.07 | 889 | С | | Ethanol | 46.08 | 27.2 | Е | | Ethyl mercaptan (ethanethiol) | 62.13 | 2.28 | D | | Ethylbenzene ^a | 106.16 | 4.61 | В | | Ethylene dibromide | 187.88 | 0.001 | E | | Fluorotrichloromethane | 137.38 | 0.76 | В | Table 2-11 (CONTINUED). DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR LANDFILLS WITH WASTE IN PLACE PRIOR TO 1992 | Compound | Molecular Weight | Default
Concentration
(ppmv) | Emission Factor
Rating | |--|------------------|------------------------------------|---------------------------| | Hexane ^a | 86.18 | 6.57 | В | | Hydrogen sulfide | 34.08 | 35.5 | В | | Mercury (total) ^{a,d} | 200.61 | 2.92x10 ⁻⁴ | Е | | Methyl ethyl ketone ^a | 72.11 | 7.09 | A | | Methyl isobutyl ketone ^a | 100.16 | 1.87 | В | | Methyl mercaptan | 48.11 | 2.49 | С | | Pentane | 72.15 | 3.29 | С | | Perchloroethylene (tetrachloroethylene) ^a | 165.83 | 3.73 | В | | Propane | 44.09 | 11.1 | В | | t-1,2-dichloroethene | 96.94 | 2.84 | В | | Toluene ^a | 92.13 | | | | Co-disposal (SCC 50300603) | | 165 | D | | No or Unknown co-disposal (SCC 50100402) | | 39.3 | A | | Trichloroethylene (trichloroethene) ^a | 131.38 | 2.82 | В | | Vinyl chloride ^a | 62.50 | 7.34 | В | | Xylenes ^a | 106.16 | 12.1 | В | NOTE: This is not an all-inclusive list of potential LFG constituents, only those for which test data were available at multiple sites. #### References - BID-1. Source Test Report No. 86-0375, Vinyl Chloride, Benzene, Toluene (and other Selected Chlorinated Hydrocarbon Compounds) Present in Landfill Gas Before and After Flaring, South Coast Air Quality Management District, October 29, 1986. - BID-2. Hazardous Pollutants in Class II Landfills, J.A. Wood and M.L. Porter, South Coast Air Quality Management District, December 1986. - BID-3. Emissions from a Landfill Gas-Fired Turbine/Generator Set, March 6, 1984, Source Test Report C-84-33 conducted at L.A. County Sanitation District by South Coast Air Quality Management District, June 28, 1984. ^a Hazardous Air Pollutants listed in Title III of the 1990 Clean Air Act Amendments. ^b Carbon monoxide is not a typical constituent of LFG, but does exist in instances involving landfill (underground) combustion. Therefore, this default value should be used with caution. Of 18 sites where CO was measured, only 2 showed detectable levels of CO. ^c Source tests did not indicate whether this compound was the para- or ortho- isomer. The para isomer is a Title III- ^d No data were available to speciate total Hg into the elemental and organic forms. ^e For NSPS/Emission Guideline compliance purposes, the default concentration for NMOC as specified in the final rule must be used. For purposes not associated with NSPS/Emission Guideline compliance, the default VOC content at co-disposal sites can be estimated by 85% by weight (2,060 ppmv as hexane); at No or Unknown sites can be estimated by 39% by weight (235 ppmv as hexane). - BID-4. Report of Stack Testing at County Sanitation District of Los Angeles Puente Hills landfill, July 31 and August 3, 1984, prepared by Engineering-Science for County Sanitation District of Los Angeles, August 15, 1984. - BID-5. Vinyl Chloride (and Other Organic Compounds) Content of Landfill Gas Vented to an Inoperative Flare, October 15, 1984, Source Test Report 84-496 conducted at David Price company by South Coast Air Quality Management District, November 30, 1984. - BID-6. Landfill Gas Composition, February 15, 1985, Source Test Report 85-102 Conducted at Bradley Pit Landfill by South Coast Air Quality Management District, May 22, 1985. - BID-7. Vinyl Chloride and Other Selected Compounds Present in A Landfill Gas Collection System Prior to and after Flaring, July 31, 1985, Source Test Report 85-369, conducted at L.A. County Sanitation District by South Coast Air Quality Management District, October 9, 1985. - BID-8. Emissions from a Landfill Exhausting Through a Flare System, September 11, 1985, Source Test Report 85-461, conducted at Operating Industries by South Coast Air Quality Management District, October 14, 1985. - BID-9. Emissions from a Landfill Gas Collection System, November 5, 1985, Source Test Report 85-511, conducted at Sheldon Street Landfill by South Coast Air Quality Management District, December 9, 1985. - BID-10. Vinyl Chloride and Other Selected Compounds Present in a Landfill Gas Collection System Prior to and after Flaring, December 6, 1985, Source Test Report 85-597, conducted at L.A. County Sanitation District's Mission Canyon Landfill by South Coast Air Quality Management District, January 16, 1986. - BID-11. Emissions from a Landfill Gas-Fired Flare and Sales Gas Constituents from a Landfill Gas Treatment Plant, May 7, 1986, Source Test Report 86-220, conducted at Azusa Land Reclamation by South Coast Air Quality Management District, June 30, 1986. - BID-12. Evaluation Test on a Landfill Gas-Fired Flare at the BKK Landfill Facility, West Covina, California, ARB-SS-87-09, California Air Resources Board, July 1986. - BID-13. Gaseous Composition from a Landfill Gas Collection System and Flare, July 10, 1986, Source Test Report 86-0342, conducted at Syufy Enterprises by South Coast Air Quality Management District, August 21, 1986. - BID-14. Emissions for Flare #3 Inlet Fuel Gas Line, April 1, 1987, Source Test Summary 87-0110, conducted at Pacific Lighting Energy Systems (Penrose Landfill) by South Coast Air Quality Management District, August 5, 1987. - BID-15. Analytical Laboratory Report for Source Test, Azusa Land Reclamation, June 30, 1983, South Coast Air Quality Management District. - BID-16. Analytical Laboratory Report for Source Test, Mission Canyon Landfill, West L.A. and Mountain Gate, April 11, 1984, South Coast Air Quality Management District. - BID-17. Source Test Report C-84-202, Bradley Pit Landfill, May 25, 1984, South Coast Air Quality Management District. - BID-18. Source Test Report 84-315, Puente Hills Landfill, February 6, 1985, South Coast Air Quality Management District. - BID-19. Source Test Report 84-596, Bradley Pit Landfill, March 11, 1985, South Coast Air Quality Management District. - BID-20. Source Test Report 84-373, L.A. By-Products, March 27, 1985, South Coast air Quality Management District. - BID-21. Source Test Report 85-36, Azusa Land Reclamation, August 13, 1985, South Coast Air Quality Management District. - BID-22. Source Test Report 85-403, Palos Verdes Landfill, September 25, 1985, South Coast Air Quality Management District. - BID-23. Source Test Report 86-0234, Pacific Lighting Energy Systems, July 16, 1986, South Coast Air Quality Management District. - BID-24. Evaluation Test on a Landfill Gas-Fired Flare at the Los Angeles County Sanitation District's Puente Hills Landfill Facility, CA, July 1986, [ARB/SS-87-06], South Coast Air Quality Management District, Sacramento, CA, July 1986. - BID-25. Gas Characterization, Microbial Analysis, and Disposal of Refuse in GRI Landfill Simulators, [EPA/600/2-86/041], Hazardous Waste Engineering Research Laboratory, Cincinnati, OH, April 1986. - BID-26. Analysis of Factors Affecting Methane Gas Recovery from Six Landfills, [EPA-600/2-91-055], U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, Research Triangle Park, NC, September 1991. - BID-27. Source Test Report, Browning-Ferris Industries, Lyon Development Landfill, August 21, 1990. - BID-28. Source Test Report, Browning-Ferris Industries, Azusa Landfill. - BID-29. Municipal Landfill Gas Condensate, EPA/600/2-87/090, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, October 1987. - BID-30. Measurement of Fugitive Atmospheric
Emissions of Polychlorinated Biphenyls from Hazardous Waste Landfills, Environmental Science and Technology, v19n10 p 986-991. October 1985. - BID-31. Barboza M.J., P.E., Air Emissions Study of the Blydenburgh Road Landfill, Paulus Sokolowski and Sartor, Inc., Malcolm Pirnie, Inc, Mahwah, NJ, April 13, 1991. - BID-32. Ambient Monitoring for PCB after Remedial Cleanup of Two Landfills in the Bloomington, Indiana Area, EPA/600/4-86/018, U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Research Triangle Park, NC, March 1986. - BID-33. Barboza M.J., P.E., An Integrated Study of Air Toxics Emissions from an MSW Landfill, Presented at the National Conference on Environmental Engineering, Paulus, Sokolowski and Sartor, Inc., Reno, NV, July 8-10, 1991. - BID-34. Study of Vinyl Chloride Formation at Landfill Sites in California, Battelle Pacific Northwest labs, Prepared for California State Air Resources Board, Sacramento, CA, January 1987. - BID-35. In-Situ Methods to Control Emissions from Surface Impoundments and Landfills, EPA/600/2-85/124, U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, Cincinnati, OH, October 1985. - BID-36. Trace-Chemical Characterization of Pollutants Occurring in the Production of Landfill Gas from the Shoreline Regional Park Sanitary Landfill, Mountain View, California, U.S. Department of Energy and Pacific Gas and Electric Company, April 1, 1981, DOE/CS/20291-T1. - BID-37. Leachate Collection and Gas Migration and Emission Problems at Landfills and Surface Impoundments, EPA/600/2-86/017, U.S. Environmental Protection Agency, Office of Research and Development Cincinnati, OH, January 1986. - BID-38. D. Antignano, Energy Tactics Inc., to J.R. Farmer, OAQPS:ESD, November 25, 1987, Response to questionnaire. - BID-39. G. Rodriguez, Pacific Lighting Energy Systems, to J.R. Farmer, OAQPS:ESD, December 1, 1987, Response to questionnaire. - BID-40. R. W. Van Bladeren, BioGas Technology, Inc., to J.R. Farmer, OAQPS:ESD, December 2, 1987, Response to questionnaire. - BID-41. M. Nourot, Laidlaw Gas Recovery Systems, to J.R. Farmer, OAQPS:ESD, December 8, 1987, Response to questionnaire. - BID-42. K.A. Flanagan, GSF Energy Inc., to S.A. Thorneloe, OAQPS:EPA:CPB, January 27, 1988, Response to questionnaire. - BID-43. D.A. Stringham and W.H. Wolfe, Waste Management of North America, Inc., to J.R. Farmer, OAQPS:ESD, January 29, 1988, Response to Section 114 questionnaire. - BID-44. D.L. Kolar, Browning-Ferris Industries, to J.R. Farmer, OAQPS:ESD, February 4, 1988, Response to questionnaire. - BID-45. Air Emissions from Municipal Solid Waste Landfills Background Information for Proposed Standards and Guidelines, EPA-450/3-90-011a, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, March 1991. - BID-46. Pelt, R., Memorandum "Methodology Used to Revise the Model Inputs in the Solid Waste Landfills Input Data Bases (Revised)", to the Municipal Solid Waste Landfills Docket No. A-88-09, April 28, 1993. - BID-47. Landfill Gas Production Curves, Myth Versus Reality, S.W. Zison, Pacific Energy. - BID-48. Source Test Report 87-0318, Calabasas Landfill, December 16, 1987, South Coast Air Quality Management District. - BID-49. Source Test Report 87-0329, Scholl Canyon Landfill, December 4, 1987, South Coast Air Quality Management District. - BID-50. Source Test Report 87-0391, Puente Hills Landfill, February 5, 1988, South Coast Air Quality Management District. - BID-51. Source Test Report 87-0376, Palos Verdes Landfill, February 9, 1987, South Coast Air Quality Management District. - BID-52. Augenstein, D. and J. Pacey, Modeling Landfill Methane Generation, EMCON Associates, San Jose, CA, 1992. - BID-53. Landfill Gas Characterization, Correspondence between C. Choate and J. Swanson, Waste Management of North America, Inc, Permit Services Division, Bay Area Quality Management District, Oakland, CA, 1988. - BID-54. Emission Testing at BFI's Arbor Hills Landfill, Northville, Michigan, September 22 through 25, 1992, Steiner Environmental, Inc., Bakersfield, CA, December 1992. - BID-55. Emission Test Report Performance Evaluation Landfill-Gas Enclosed Flare, Browning Ferris Industries, PEI Associates, Inc., Chicopee, MA, 1990. - BID-56. Source Test Report Boiler and Flare Systems, Prepared for Laidlaw Gas Recovery Systems, Coyote Canyon Landfill, Irvine, CA, by Kleinfelder Inc., Diamond Bar, CA, 1991. - BID-57. McGill Flare Destruction Efficiency Test Report for Landfill Gas at the Durham Road Landfill, Waste Management of North America, Inc, Bay Area Quality Management District, Oakland, CA, 1988. - BID-58. Solid Waste Assessment for Otay Valley/Annex Landfill, Correspondence between R. Yelenosky and B. McEntire., San Diego Air Pollution Control District, San Diego, CA, December 1988. - BID-59. Emission Test Report Performance Evaluation Landfill Gas Enclosed Flare, Disposal Specialists Inc., PEI Associates, Inc., Rockingham, VT, September 1990. - BID-60. Gas Flare Emissions Source Test for Sunshine Canyon Landfill, Browning Ferris Industries, Sylmar, CA, 1991. - BID-61. Methane and Nonmethane Organic Destruction Efficiency Tests of an Enclosed Landfill Gas Flare, Scott Environmental Technology, April 1992. - BID-62. Air Pollution Emission Evaluation Report for Ground Flare at Browning Ferris Industries Greentree Landfill, Kersey, Pennsylvania, BCM Engineers, Planners, Scientists and Laboratory Services, Pittsburgh, PA, May 1992. - BID-63. Stack Emissions Test Report for Ameron Kapaa Quarry, EnvironMETeo Services Inc., Correspondence between C. How and F. Enos., Waipahu, HI, January 1994. - BID-64. Report of Emission Levels and Fuel Economies for Eight Waukesha 12V-AT25GL Units Located at the Johnston, Rhode Island Central Landfill, Waukesha Pearce Industries, Inc. Houston TX, July 19, 1991. - BID-65. Gaseous Emission Study Performed for Waste Management of North America, Inc., CID Environmental Complex Gas Recovery Facility, August 8, 1989, Mostardi-Platt Associates, Inc., Chicago, IL, August 1989. - BID-66. Gaseous Emission Study Performed for Waste Management of North America, Inc., at the CID Environmental Complex Gas Recovery Facility, July 12-14, 1989, Mostardi-Platt Associates, Inc., Chicago, IL, July 1989. - BID-67. Final Report for Emissions Compliance Testing of One Waukesha Engine Generator, Browning-Ferris Gas Services, Inc., Chicopee, MA, February 1994. - BID-68. Final Report for Emissions Compliance Testing of Three Waukesha Engine Generators, Browning-Ferris Gas Services, Inc., Richmond, VA, February 1994. - BID-69. Emission Factors for Landfill Gas Flares at the Arizona Street Landfill, Correspondence between D. Byrnes, A. dela Cruz, and M.R. Lake, Prepared by South Coast Environmental Company (SCEC) for the San Diego Air Pollution Control District, San Diego, CA, November 1992. - BID-70. Emission Tests on the Puente Hills Energy from Landfill Gas (PERG) Facility Unit 400, September 1993, Prepared for County Sanitation Districts of Los Angeles County by Carnot, Tustin, CA, November 1993. - BID-71. Gaseous Emission Studies Performed for Waste Management of North America, Inc., at the CID Facility Centaur Turbine Stack 3, Chicago, Illinois, February 16, 1990, Mostardi-Platt Associates, Inc., Bensenville, IL, February 1990. - BID-72. Gaseous Emission Study Performed for Waste Management of North America, Inc., at the Tazewell County Landfill, Peoria, Illinois, No. 1 Gas Recovery Engine Stack, February 22-23, 1990, Mostardi-Platt Associates, Inc., Bensenville, IL, February 1990. - BID-73. Gaseous Emission Study Performed for Waste Management of North America, Inc., at the Monroe Livingston Power Production Plant, Scottsville, New York, No. 2 Gas Recovery Engine Stack, May 2, 1990, Mostardi-Platt Associates, Inc., Bensenville, IL, May 1990. - BID-74. Emissions Test Report for the Tripoli Landfill. Correspondence between J. Tice, Diesel and Gas Engineering Company, and S. Drake, Beaver Dams, NY, April 1989. - BID-75. Compliance Test Report Landfill Gas Fired Internal Combustion Engine, Oceanside Landfill Gas Recovery Facility, Energy Tactics, Inc., Oceanside, NY, November 2, 1992. - BID-76. Compliance Test Report Landfill Gas Fired Internal Combustion Engine, Dunbarton Road Landfill, Manchester, New Hampshire, ROJAC Environmental Services, Inc., Hartford, CT, June 1990. - BID-77. Summary of Source Test Results for Palo Alto Emission Inventory Test, Bay Area Air Quality Management District, San Francisco, CA, June 1993. - BID-78. Final Test Report for: Northeast Landfill Power-Joint Venture Engine No. 5 at the Rhode Island Central Landfill, Johnston, Rhode Island, Environmental Science Services, Providence, RI, May 1994. - BID-79. Report of Emission Levels and Fuel Economies for Eight Waukesha 12V-AT25GL Units Located at the Johnston, Rhode Island Central Landfill, Waukesha Pearce Industries, Inc., Houston TX, November 30, 1990. - BID-80. Landfill Gas Fired Flare Emission Factors for the Bonsall Location, Correspondence between M. Lake, and D. Byrnes. South Coast Air Quality Management District, CA, April 1994. - BID-81. Landfill Gas Fired Flare Emission Factors for the Hillsborough Location, Correspondence between M. Lake, and D. Byrnes, South Coast Air Quality Management District, CA, April 1994. - BID-82. Emission Factors for Landfill Gas Flares at the Bell Jr. High School Landfill, Correspondence between D. Byrnes, A. dela Cruz, and M.R. Lake, Prepared by South Coast Environmental Company (SCEC) for the San Diego Air Pollution Control District, San Diego, CA, November 1992. - BID-83. Source Test Results for Emission Testing of Landfill Energy Partners Engine No. 1 at San Marcos Landfill, Carnot, Tustin, CA, October 1993. - BID-84. Emission Factors for the Landfill Gas Fired Internal Combustion Engine at Otay Landfill, Operated by Pacific Energy, Correspondence between D.
Byrnes and L. Kramer, San Diego County Air Pollution Control District, San Diego, CA, October 1991. - BID-85. Testing of Monitored Pollutants in Exhaust Gases at the San Marcos Landfill, San Diego Air Pollution Control District, San Diego, CA, October 1989. - BID-86. Staff Report, Proposed Amended Rule 431.1, Sulfur Content of Gaseous Fuels, South Coast Air Quality Management District, Rule Development Division, El Monte, CA, April 1990. - BID-87. Engineering Report: Puente Hills Landfill, Flare #11, Dioxin, Furan, and PCB Test Results, Sierra Environmental Engineering Inc., Costa Mesa, CA, February 1986. - BID-88. Compliance Testing for Spadra Landfill Gas-to-Energy Plant, July 25 and 26, 1990, Pape & Steiner Environmental Services. Bakersfield, CA, November 1990. - BID-89. AB2588 Source Test Report for Oxnard Landfill, July 23-27, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, October 1990. - BID-90. AB2588 Source Test Report for Oxnard Landfill, October 16, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, November 1990. - BID-91. Engineering Source Test Report for Oxnard Landfill, December 20, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, January 1991. - BID-92. AB2588 Emissions Inventory Report for the Salinas Crazy Horse Canyon Landfill, Pacific Energy, Commerce, CA, October 1990. - BID-93. Newby Island Plant 2 Site IC Engine's Emission Test, February 7-8, 1990, Laidlaw Gas Recovery Systems, Newark, CA, February 1990. - BID-94. Landfill Methane Recovery Part II: Gas Characterization, Final Report, Gas Research Institute, December 1982. - BID-95. Letter from J.D. Thornton, Minnesota Pollution Control Agency, to R. Myers, U.S. EPA, February 1, 1996. - BID-96. Letter and attached documents from M. Sauers, GSF Energy, to S. Thorneloe, U.S. EPA, May 29, 1996. - BID-97. Landfill Gas Particulate and Metals Concentration and Flow Rate, Mountaingate Landfill Gas Recovery Plant, Horizon Air Measurement Services, prepared for GSF Energy, Inc., May 1992. - BID-98. Landfill Gas Engine Exhaust Emissions Test Report in Support of Modification to Existing IC Engine Permit at Bakersfield Landfill Unit #1, Pacific Energy Services, December 4, 1990. - BID-99. Addendum to Source Test Report for Superior Engine #1 at Otay Landfill, Pacific Energy Services, April 2, 1991. - BID-100. Source Test Report 88-0075 of Emissions from an Internal Combustion Engine Fueled by Landfill Gas, Penrose Landfill, Pacific Energy Lighting Systems, South Coast Air Quality Management District, February 24, 1988. - BID-101. Source Test Report 88-0096 of Emissions from an Internal Combustion Engine Fueled by Landfill Gas, Toyon Canyon Landfill, Pacific Energy Lighting Systems, South Coast Air Quality Management, March 8, 1988. - BID-102. Letter and attached documents from C. Nesbitt, Los Angeles County Sanitation Districts, to K. Brust, E.H. Pechan and Associates, Inc., December 6, 1996. - BID-103. Determination of Landfill Gas Composition and Pollutant Emission Rates at Fresh Kills Landfill, revised Final Report, Radian Corporation, prepared for U.S. EPA, November 10, 1995. - BID-104. Advanced Technology Systems, Inc., Report on Determination of Enclosed Landfill Gas Flare Performance, Prepared for Y & S Maintenance, Inc., February 1995. - BID-105. Chester Environmental, Report on Ground Flare Emissions Test Results, Prepared for Seneca Landfill, Inc., October 1993. - BID-106. Smith Environmental Technologies Corporation, Compliance Emission Determination of the Enclosed Landfill Gas Flare and Leachate Treatment Process Vents, Prepared for Clinton County Solid Waste Authority, April 1996. BID-107. AirRecon7, Division of RECON Environmental Corp., Compliance Stack Test Report for the Landfill Gas FLare Inlet & Outlet at Bethlehem Landfill, Prepared for LFG Specialties Inc., December 3, 1996. BID-108. ROJAC Environmental Services, Inc., Compliance Test Report, Hartford Landfill Flare Emissions Test Program, November 19, 1993. BID-109. Normandeau Associates, Inc., Emissions Testing of a Landfill Gas Flare at Contra Costa Landfill, Antioch, California, March 22, 1994 and April 22, 1994, May 17, 1994. BID-110. AirRecon, Compliance Stack Emission Evaluation, Gloucester County Solid Waste Complex, May 14, 1996. U.S. Environmental Protection Agency (1997b). Emission Factor Documentation for AP-42 Section 2.4 – Municipal Solid Waste Landfills, Revised, Office of Air Quality Planning and Standards. Research Triangle Park, NC, August 1997. U.S. Environmental Protection Agency (1998). Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Section 2.4 Municipal Solid Waste Landfills, Research Triangle Park, NC, November 1998. #### 3.0 CONTROLLED LANDFILL GAS DATA ANALYSIS RESULTS Emission factors for control devices apply to landfills with waste in place both before and after 1992. Development of emission factors for each combustion control device type is discussed in the following sections. # 3.1 FLARES Landfill gas flare combustion by-product emissions data for a total of 35 landfills were submitted to EPA and utilized in emission factor development, comprising a total of 53 flares contained in 41 test reports. Six of the test reports contained test data from two different landfills but represent six different flares (TR-181, TR-182, and TR-205 for one landfill, and TR-259, TR-260, and TR- 261 for another landfill). The manufacturer was specified for 23 of the flares (Table 3-1). These flares are assumed to be enclosed since sampling candle-stick flares is not typically done. Enclosed flares are designed to allow for performance testing to establish emission reduction capability and potential by-product emissions. TABLE 3-1. SUMMARY OF NUMBER OF FLARES AND MANUFACTURERS FOR LANDFILL GAS FLARE COMBUSTION BY-PRODUCT EMISSIONS TEST DATA | Flare Manufacturer | Number of Emission
Test Reports | |--------------------|------------------------------------| | Callidus | 1 | | John Zink | 14 | | LFG Specialties | 1 | | McGill | 2 | | Perennial Energy | 3 | | SurLite | 2 | | Not Specified | 30 | | Total | 53 | Nitrogen oxides, carbon monoxide, and particulate matter emissions were sampled and reported in units of parts per million (ppm), pounds per hour (lb/hr), or pounds per day (lb/day). Total dioxin/furan emissions were reported in nanograms per dry standard cubic meter (ng/dscm). Twenty-five test reports contained emissions data for NO_X , CO, and PM. One test report contained data for NO_X , CO, and total dioxins/furans. Five test reports contained emissions data for both NO_X and CO, one test report contained only NO_X emission data, and five test reports contained only CO emissions data. Where possible, each of the emission data points were converted to kilograms per million dry standard cubic meters of CH_4 (kg/ 10^6 dscm CH_4) to result in comparable emissions for a variety of LFG flares (See Appendix G for sample calculation). # 3.1.1 Nitrogen Oxides The default NO_x emission factor was calculated from 36 test reports containing NO_X emissions data from a total of 48 flares. The emission rate provided in TR-148 was excluded from the NO_X analysis because the flare inlet gas flow rate was reported in standard cubic feet per minute (scfm) and inlet gas moisture was not determined as part of the flare testing. Consequently, a NO_X emission factor could not be developed on the basis of dry standard cubic meters of inlet CH_4 for TR-148. The emission rate provided for TR-160 was excluded from the NO_X analysis because flare inlet gas composition data was not provided in the test report. As a result, an emission factor could not be calculated for TR-160. One test report (TR-241) revealed NO_x emission rates below the method detection limit (<0.59 kg/hr or 392 kg/10⁶ dscm CH₄) for all test runs. Based on guidance for detection limits contained in EPA's Procedures for Preparing Emission Factor Documents (U.S. EPA, 1997a), half of the method detection limit was used to represent this flare's average emission rate. Since there are detect values greater than this non-detect, the value is used in emission factor determination calculations Two of the 36 test reports (TR-145 and TR-146) contained NO_X test data obtained from operating the flare under two different operating temperatures. For both cases, the data associated with the set of test runs that most closely matched the average testing temperature from the other 34 test reports (1,552 °F) was used for the development of the default NO_X emission factor. Emission rates for the 46 flares (excluding the two flares from TR-148 and TR-160) included in the analysis range from 211 to 1,373 kg/ 10^6 dscm CH₄. The arithmetic mean emission rate for NO_X for these LFG flares is 631 kg/ 10^6 dscm CH₄. This average rate was selected as the default emission factor to represent flare NO_X in the AP-42 update with an A quality rating. The previous AP-42 default factor (U.S. EPA, 1998) was 650 kg/ 10^6 dscm CH₄ with a quality rating of "C." #### 3.1.2 Carbon Monoxide The CO default emission factor was calculated from 40 test reports containing emissions data from 52 flares. The emission rate provided in TR-148 was excluded from the CO analysis because the flare inlet gas flow rate was reported in standard cubic feet per minute (scfm) and inlet gas moisture was not determined as part of the flare testing. Consequently, a CO emission factor could not be developed on the basis of dry standard cubic meters of inlet CH₄ for TR-148. The emission rate provided for TR-160 was excluded from the CO analysis because flare inlet gas composition data was not provided in the test report. As a result, an emission factor could not be calculated for TR-160. Four test reports (TR-157, TR-175, TR-179, and TR-251)
revealed CO emission rates below the method detection limits. Based on guidance for detection limits contained in EPA's Procedures for Preparing Emission Factor Documents (U.S. EPA, 1997a), half of the method detection limits were used to represent the average emission rate. Since there are detect values greater than the non-detect values, the values are used in emission factor determination calculations Two of the 40 test reports (TR-145 and TR-146) contained CO test data obtained from operating the each flare under two different operating temperatures. For both cases, the data associated with the set of test runs that most closely matched the average testing temperature from the other 36 test reports (1,551 °F) was used for the development of the default CO emission factor. Carbon monoxide emission rates for the 50 flares (excluding the two flares from TR-148 and TR-160) included in the analysis range from 0 to $11,500~\text{kg}/10^6~\text{dscm CH}_4$. The arithmetic mean emission rate for CO is $737~\text{kg}/10^6~\text{dscm CH}_4$, which was selected as the default emission factor with an A quality rating for the AP-42 update. The prior default factor in AP-42 (U.S. EPA, 1998) was $12,000~\text{kg}/10^6~\text{dscm CH}_4$ with a quality rating of "C." It is worth noting that the new default emission factor is based on over three times the amount of data as the previous emission factor, which may help explain the large difference between the default values. #### 3.1.3 Particulate Matter The default PM emission factor was calculated from 28 test reports containing emissions data from 36 flares. One of the test reports (TR-146) contained PM test data obtained from operating the flare under two different operating temperatures. The data associated with the set of test runs that most closely matched the average testing temperature from the other test reports (1,548 °F) was used for the development of the default CO emission factor. The emission rate provided in TR-148 was excluded from the PM analysis because the flare inlet gas flow rate was reported in standard cubic feet per minute (scfm) and inlet gas moisture was not determined as part of the flare testing. Consequently, a PM emission factor could not be developed on the basis of dry standard cubic meters of inlet CH₄. The PM emission rates from the 35 flares (excluding the flare from TR-148) included in the analysis range between 84 and $735 \text{ kg/}10^6 \text{ dscm CH}_4$. The arithmetic mean emission rate for PM is 238 kg/ 10^6 dscm CH_4 with an A quality rating. This average rate was selected as the default to represent PM in the AP-42 update. The prior version of the AP-42 section for MSW landfills (U.S. EPA, 1998) had a default PM emission factor of 270 kg/ 10^6 dscm CH_4 with a quality rating of "D." #### 3.1.4 Total Dioxin/Furan One test report (TR-273) contained measurement data for dioxins/furans. The total dioxin/furan emission rate is $6.7 \times 10^{-6} \text{ kg/}10^{6} \text{ dscm CH}_4$, which was selected as the default emission factor for the AP-42 update. The previous AP-42 section for MSW landfills (U.S. EPA, 1998) did not include dioxin/furan emission factors for LFG flares. #### 3.1.5 Flare Summary Summaries of the NO_X, CO, PM, and total dioxin/furan combustion by-product data included in the LFG flare analysis for determining default emission factors for the update can be found in Tables 3-4, 3-5, and 3-6. In addition, the three tables provide the test methods used to measure these emissions data. A data quality rating of A was assigned to each of the flare test reports listed in Tables 3-4, 3-5, and 3-6. All of the reports containing these data included adequate detail, the methodology appeared to be sound, and no problems were reported for the test runs. The following criteria, used in developing ratings in the 1998 AP-42 update, were used to provide recommended default emission factor ratings. TABLE 3-2. CRITERIA USED TO DETERMINE RECOMMENDED DEFAULT EMISSION FACTOR RATINGS | Factor Rating # of Data Poin | | |--------------------------------|-------| | A | ≥ 20 | | В | 10-19 | | С | 6-9 | | D | 3-5 | | Е | <3 | An overall data quality rating of A is recommended for the NO_X, CO, and PM combustion byproducts from flares default emission factors. This rating exemplifies the fact that the default NO_X, CO, and PM emission factors were developed using A-rated test data and the emission factor ranking is more of a function of the number of data points used to develop the default emission factor. Furthermore, no specific bias is evident for the NO_X , CO, and PM emission factors. An overall data quality rating of E is recommended for the total dioxin/furan combustion by-product default emission factor since the emission factor was developed from a single facility which does not represent a random sample of LFG flares (Table 3-3). TABLE 3-3. RECOMMENDED DEFAULT EMISSION FACTOR RATINGS FOR NO $_{\rm X}$, CO, PM, AND TOTAL DIOXIN/FURAN LANDFILL FLARE COMBUSTION BY-PRODUCTS | Flare Combustion
By-Product | # of Data Points | Recommended Emission
Factor Rating | |--------------------------------|------------------|---------------------------------------| | NOx | 30 | A | | СО | 34 | A | | PM | 23 | A | | Total Dioxin/Furan | 1 | Е | TABLE 3-4. LANDFILL GAS FLARE NO_x EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS | Test Report | Test Method | Flare Combustion
By-Product | Calculated Emission Factor (kg/10 ⁶ dscm CH ₄) | |-------------------------------------|-------------------------------|--------------------------------|---| | TR-145 ^a | EPA Method 7E | NO _x | 671 | | TR-146 ^a | EPA Method 7E | NO _x | 1,200 | | TR-159 | EPA Method 7E | NO _x | 634 | | TR-165 | SCAQMD Method 100.1 | NO _x | 669 | | TR-168 | SCAQMD Method 100.1 | NO _x | 341 | | TR-169 | SCAQMD Method 100.1 | NO _x | 322 | | TR-171 | SCAQMD Method 100.1 | NO _x | 608 | | TR-173 | SCAQMD Method 100.1 | NO _x | 563 | | TR-175 ^b | SCAQMD Method 100.1 | NO _x | 725 | | TR-176 | SCAQMD Method 100.1 | NO _x | 656 | | TR-178 | SCAQMD Method 100.1 | NO _x | 458 | | TR-179 | SCAQMD Method 100.1 | NO _x | 502 | | TR-181, TR-182, TR-205 ^c | SCAQMD Method 100.1 | NO _x | 320 | | TR-183 | SCAQMD Method 100.1 | NO _x | 520 | | TR-187 | SCAQMD Method 100.1 | NO _x | 430 | | TR-196 | CARB Method 100/EPA Method 7E | NO _x | 677 | | TR-199 | SCAQMD Method 100.1 | NO _x | 449 | | TR-207 | SCAQMD Method 100.1 | NO _x | 1,370 | | TR-209 ^d | EPA Method 7E | NO _x | 1,080 | | TR-229 | SCAQMD Method 100.1 | NO _x | 823 | | TR-241 ^e | EPA Method 7A | NO_x | 392 | TABLE 3-4 (CONTINUED). LANDFILL GAS FLARE NO_x EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS | Test Report | Test Method | Flare Combustion
By-Product | Calculated Emission Factor (kg/10 ⁶ dscm CH ₄) | |-------------------------------------|---|--|---| | TR-251 | SCAQMD Method 100.1 | NO_x | 848 | | TR-253 | SCAQMD Method 100.1 | NO _x | 846 | | TR-255 | SCAQMD Method 100.1 | NO_x | 543 | | TR-258 | CARB Method 100 | NO_x | 554 | | TR-259, TR-260, TR-261 ^c | SCAQMD Method 100.1 | NO_x | 234 | | TR-264 | SCAQMD Method 100.1 | NO_x | 939 | | TR-273 | EPA Method 7E | NO _x | 741 | | TR-287 | EPA Method 7E | NO _x | 596 | | TR-290 | SCAQMD Method 100.1 | NO _x | 211 | | | NO _x Default Emission Factor | | | | | 1998 AP-42 | NO _x Emission Factor ^f | 650 | ^a Average flare temperature for tests where the temperature was not varied is 1552°F. For tests performed under multiple temperatures, the test where the operating temperature was closest to the average was included. See discussion for additional details. TABLE 3-5. LANDFILL GAS FLARE CO EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS | Test Report | Test Method | Flare Combustion By-
Product | Calculated Emission
Factor
(kg/10 ⁶ dscm CH ₄) | |---------------------|---|---------------------------------|---| | TR-145 ^a | EPA Method 10, 40 CFR 60, Appendix A | СО | 533 | | TR-146 ^a | EPA Method 10, 40 CFR 60, Appendix A | СО | 23 | | TR-147 | EPA Method 10, 40 CFR 60, Appendix A | СО | 13 | | TR-153 | EPA Method 10, 40 CFR 60, Appendix A | СО | 105 | | TR-156 | EPA Method 10, 40 CFR 60, Appendix A CO | | 53 | | TR-157 ^b | EPA Method 10, 40 CFR 60, Appendix A | СО | 12 | | TR-159 | EPA Method 10, 40 CFR 60, Appendix A | СО | 911 | | TR-165 | SCAQMD Method 100 | СО | 1,550 | | TR-168 | SCAQMD Method 100 | СО | 11 | | TR-169 | SCAQMD Method 100.1 | СО | 15 | | TR-171 | SCAQMD Method 100.1 | СО | 319 | | TR-173 | SCAQMD Method 100.1 | СО | 263 | ^b Emission factor calculated is based on the average emissions for three flares. ^c Three test reports for three separate flares at the same landfill. ^d Emission factor calculated is based on the average emissions for five flares. ^e Based on guidance in EPA's Procedures for Preparing Emission Factor Documents for detection limits, half of the method detection limit was used to represent this landfill's average emission rate. Since there are detect values greater than this non-detect, the value is used in emission factor determination calculations. ^f AP-42, Fifth Edition, Volume I, Section 2.4, Supplement E, November 1998. TABLE 3-5 (CONTINUED). LANDFILL GAS FLARE CO EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS | Test Report | Test Method Flare Combustion B Product | | Calculated Emission
Factor
(kg/10 ⁶ dscm CH ₄) | |-------------------------------------|---|---
---| | TR-175 ^{b,d} | SCAQMD Method 100.1/SCAQMD
Method 10.1 TCA/FID | СО | 29 | | TR-176 | SCAQMD Method 100.1 | СО | 13 | | TR-178 | SCAQMD Method 100.1 | СО | 276 | | TR-179 ^b | SCAQMD Method 100.1 | СО | 262 | | TR-181, TR-182, TR-205 ^e | SCAQMD Method 100.1 | СО | 164 | | TR-183 | SCAQMD Method 100.1 | СО | 541 | | TR-187 | SCAQMD Method 100.1 | СО | 76 | | TR-196 | CARB Method 100/EPA Method 10 | СО | 2,010 | | TR-199 | SCAQMD Method 100.1 | СО | 11,500 | | TR-207 | SCAQMD Method 100.1 | СО | 639 | | TR-209 ^c | EPA Method 10, 40 CFR 60, Appendix A | СО | 100 | | TR-226 | EPA Method 10, 40 CFR 60, Appendix A | EPA Method 10, 40 CFR 60, Appendix A CO | | | TR-229 | SCAQMD Method 100.1 | SCAQMD Method 100.1 CO | | | TR-251 ^b | SCAQMD Method 25.1 | CAQMD Method 25.1 CO | | | TR-253 | SCAQMD Method 100.1 | СО | 13 | | TR-255 | SCAQMD Method 100.1 | СО | 434 | | TR-258 | CARB Method 100 | СО | 23 | | TR-259, TR-260, TR-261 ^e | SCAQMD Method 100.1 | СО | 175 | | TR-264 | SCAQMD Method 100.1 | СО | 780 | | TR-273 | EPA Method 10, 40 CFR 60, Appendix A | СО | 410 | | TR-287 | EPA Method 10, 40 CFR 60, Appendix A CO | | 3,420 | | TR-290 | SCAQMD Method 100.1 CO | | 0 | | | 737 | | | | 3.4 (3.4) | | -42 CO Emission Factor ^f | 12,000 | ^a Average flare temperature for tests where the temperature was not varied is 1551°F. For tests performed under multiple temperatures, the test where the operating temperature was closest to the average was included. See discussion for additional details. ^b Based on guidance in EPA's Procedures for Preparing Emission Factor Documents for detection limits, half of the method detection limit was used to represent this landfill's average emission rate. Since there are detect values greater than this non-detect, the value is used in emission factor determination calculations. ^c Emission factor calculated is based on the average emissions for five flares. ^d Emission factor calculated is based on the average emissions for three flares. ^e Three test reports for three separate flares at the same landfill. AP-42, Fifth Edition, Volume I, Section 2.4, Supplement E, November 1998. TABLE 3-6. LANDFILL GAS FLARE PM AND TOTAL DIOXIN/FURAN EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS | Test Report | Test Method | Flare Combustion By-
Product | Calculated Emission Factor (kg/10 ⁶ dscm CH ₄) | |-------------------------------------|-------------------|--|---| | TR-145 | EPA Method 0050 | PM | 142 | | TR-146 ^a | EPA Method 0050 | PM | 226 | | TR-165 | SCAQMD Method 5.2 | PM | 187 | | TR-168 | SCAQMD Method 5.1 | PM | 309 | | TR-171 | SCAQMD Method 5.1 | PM | 735 | | TR-173 | SCAQMD Method 5.1 | PM | 256 | | TR-175 ^b | SCAQMD Method 5.1 | PM | 143 | | TR-176 | SCAQMD Method 5.1 | PM | 165 | | TR-178 | SCAQMD Method 5.1 | PM | 531 | | TR-179 | SCAQMD Method 5.1 | PM | 251 | | TR-181, TR-182, TR-205 ^c | SCAQMD Method 5.1 | PM | 84 | | TR-183 | SCAQMD Method 5.1 | PM | 193 | | TR-187 | SCAQMD Method 5.1 | PM | 249 | | TR-196 | SCAQMD Method 5.1 | PM | 401 | | TR-199 | SCAQMD Method 5.1 | PM | 184 | | TR-207 | SCAQMD Method 5.2 | PM | 130 | | TR-229 | SCAQMD Method 5.1 | PM | 313 | | TR-251 | SCAQMD Method 5.1 | PM | 277 | | TR-253 | SCAQMD Method 5.1 | PM | 131 | | TR-255 | SCAQMD Method 5.1 | PM | 138 | | TR-259, TR-260, TR-261 ^c | SCAQMD Method 5.1 | PM | 97 | | TR-264 | SCAQMD Method 5.1 | PM | 205 | | TR-290 | SCAQMD Method 5.1 | PM | 133 | | | | PM Default Emission Factor | 238 | | | 1 | 998 AP-42 PM Emission Factor ^d | 270 | | TR-273 | EPA Method 23 | Dioxin/Furan | 6.7E-06 | | | Dioxin | Furan Default Emission Factor ^e | 6.76E-06 | ^a Average flare temperature for tests where the temperature was not varied is 1548°F. For tests performed under multiple temperatures, the test where the operating temperature was closest to the average was included. See discussion for additional details. ^b Emission factor calculated is based on the average emissions for three flares. ^c Three test reports for three separate flares at the same landfill. ^d AP-42, Fifth Edition, Volume I, Section 2.4, Supplement E, November 1998. ^e New default emission factor. No emission factor for dioxin/furan is in the latest AP-42 update. #### References - TR-145. Compliance Testing of a Landfill Flare at Browning-Ferris Gas Services, Inc.'s Facility in Halifax, Massachusetts, BFI Waste Systems of North America, Inc., May 1996. - TR-146. Compliance Source Testing of a Landfill Flare at Northern Disposal, Inc. East Bridgewater Landfill, Northern Disposal, Inc., June 1994. - TR-147. Compliance Emissions Test Program for BFI of Ohio, Inc., BFI of Ohio, Inc., 6/26/98. - TR-148. Compliance Testing of Landfill Flare at Browning-Ferris Gas Services, Inc.'s Fall River Landfill Flare, BFI Waste Systems of North America, Inc., March 1995. - TR-153. Results of the Emission Compliance Test on the Enclosed Flare System at the Carbon Limestone Landfill, Browning-Ferris Industrial Gas Services, Inc., 8/8/96. - TR-156. Results of the Emission Compliance Test on the Enclosed Flare System at the Lorain County Landfill No. 2, Browning-Ferris Industrial Gas Services, Inc., 9/5/96. - TR-157. Emission Compliance Testing Browning-Ferris Gas Services, Inc. Willowcreek Landfill, BFI-Willowcreek, 2/2/98. - TR-159. Compliance Stack Sampling Report, Monmouth County Reclamation Center, SCS Engineers (Reston, VA), 9/8/95. - TR-160. Source Emission Testing of an Enclosed Landfill Gas Ground Flare, SCS Engineers (Reston, VA), September 1997. - TR-165. 1997 Annual Compliance Source Testing Results for the Coyote Canyon Landfill Gas Recovery Facility Flare No. 1, Laidlaw Gas Recovery Systems, January 1998. - TR-168. Colton Sanitary Landfill Gas Flare No. 2 (John Zink) 1998 Source Tests Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-169. Colton Sanitary Landfill Gas Flare No. 1 (McGill) 1998 Source Tests Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-171. High Landfill Gas Flow Rate Source Test Results from One Landfill Gas Flare at FRB Landfill in Orange County, California, Bryan A. Stirrat & Associates, July 1997. - TR-173. Annual Emissions Test of Landfill Gas Flare #3 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/12/99. - TR-175. Emissions Tests on Flares #2, #4 and #6 at the Lopez Canyon Landfill, City of Los Angeles, August 1997. - TR-176. Emissions Test Results on Flares #1, #4 and #9 Calabasas Landfill, County Sanitation Districts of Los Angeles County, February 1998. - TR-178. Annual Emission Test of Landfill Gas Flare #3 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 5/21/98. - TR-179. Annual Emissions Test of Landfill Gas Flare #1 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/13/99. - TR-181. The Mid-Valley Sanitary Landfill Gas Flare No.1 (McGill) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-182. The Mid-Valley Sanitary Landfill Gas Flare No.2 (SurLite) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-183. Annual Emissions Test of Landfill Gas Flare #2 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/13/99. - TR-187. Emissions Test of a Landfill Gas Flare Lowry Landfill/Denver-Arapohoe Disposal Site, Sur-Lite Corporation, February 1997. - TR-196. Results of the Biennial Criteria and AB 2588 Air Toxics Source Test on the Simi Valley Landfill Flare, Simi Valley Landfill and Recycling Center, April 1997. - TR-199. Emission Compliance Test on a Landfill Flare, City of Los Angeles, January 1999. - TR-205. The Mid-Valley Sanitary Landfill Gas Flare No. 3 (John Zink) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - TR-207. Compliance Source Test Report Landfill Gas-fired Flare Stations I-4 and F-2, BKK Landfill, 12/12/97. - TR-209. Emission Test Report Volumes I and II Source/Compliance Emissions Testing for Cedar Hills Landfill, King County Solid Waste Division, 1/20/05. - TR-226. Methane and Nonmethane Organic Destruction Efficiency Tests of an Enclosed Landfill Gas Flare, Newco Waste Systems, April 1992. - TR-229. Scholl Canyon Landfill Gas Flares No. 9, 10 11 and 12 Emission Source Testing April 1999, South Coast Air Quality Management District, April 1999. - TR-241. Performance Evaluation, Enclosed Landfill Gas Flare, Valley Landfill, Waste Energy Technology, November 1991. - TR-251. Emission Compliance Test on a Landfill Gas Flare Flare #1, Frank R. Bowerman Landfill, Orange County, 1/25/99. - TR-253. Emission Source Testing on Two Flares (Nos. 3 and 6) at the Spadra Landfill, Los Angeles County Sanitation Districts, 7/21/98. - TR-255. Emission Compliance Test on a Landfill Gas Flare -Olinda Alpha Landfill, Orange County Integrated Waste Management Department, No Report Date Given. - TR-258. Source Test Report, City of Sacramento Landfill Gas Flare, City of Sacramento, 6/26/96. TR-259. The Millikan Sanitary Landfill Gas Flare No. 1 (Surlite) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. TR-260. The Millikan Sanitary Landfill Gas Flare No. 2 (John Zink) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. TR-261. The Millikan Sanitary Landfill Gas Flare No. 3 (John Zink) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. TR-264. Emission Compliance Test on a Landfill Gas Flare, Orange County Integrated Waste Management Department, No Report Date Given. TR-273. Source Testing Final Report - Landfill B, US EPA Air Pollution Prevention and Control Division, 10/6/05. TR-287. Source Testing Final Report - Landfill D, US EPA Air Pollution Prevention and Control Division, 10/6/05. TR-290. San
Timoteo Sanitary Landfill 1998 Source Test Results, San Bernandino County Solid Waste Management, 9/29/98. U.S. Environmental Protection Agency (1997a). Procedures for Preparing Emission Factor Documents ,EPA-454/R-95-015, Office of Air Quality Planning and Standards, Research Triangle Park, NC, November 1997. U.S. Environmental Protection Agency (1998). Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Section 2.4 Municipal Solid Waste Landfills, Research Triangle Park, NC, November 1998. # 3.2 BOILERS, ENGINES AND TURBINES # 3.2.1 Boiler Combustion By-Product Emissions – Source Characterization, Test Methods and Results Combustion by-product emissions data for LFG-fired boilers were submitted to EPA for a total of seven landfills. However, one boiler test report (TR-163) was excluded from the analysis because the report provided to EPA is incomplete and does not contain any test method or sampling information. Nitrogen oxide and carbon monoxide emissions were sampled and reported in units of parts per million (ppm), pounds per hour (lb/hr), pounds per day (lb/day), or grams per cubic meter of CH₄ (g/m³ CH₄) for six boilers. Four of the test reports also contain particulate matter emissions data, given in lb/hr, lb/day, or g/m³ CH₄. Five boiler test reports have total dioxin/furan emissions in nanograms per dry standard cubic meter (ng/dscm), picograms in toxicity equivalents (TEQ) per cubic meter (pg TEQ/m³), or lb/hr. Where possible, each of the emission data points were converted to kilograms per million dry standard cubic meters of CH₄ (kg/10⁶ dscm CH₄) to result in comparable emissions for a variety of LFG-fired boilers. Of the six boiler test reports used in the analysis, three boilers (TR-167, TR-220, TR-291) are Zurn steam boilers. One of these boilers is equipped with dual Coen burners such that the LFG may be supplemented with natural gas in order to maintain acceptable Btu levels. One boiler (TR-292) is a Combustion Engineering Model 33-7KT-10, A-type package base-load steam boiler. The remaining two boilers did not specify the type of boiler tested. There were no "A" or "B" quality test reports available for boilers from the prior AP-42 update that could be utilized in this analysis. # 3.2.1.1 Nitrogen Oxides Five of the six test reports (TR-167, TR-188, TR-220, TR-268, TR-291, TR-292) containing NO_X emissions data were included in the analysis to determine a default emission factor. The emission rate provided for TR-188 was excluded from the NO_X analysis because samples were collected and analyzed using a portable combustion gas analyzer, which is not considered an acceptable test method for the AP-42 analysis. The two lowest emission rates are represented by boilers (TR-167, TR-220) equipped with flue gas recirculation to reduce NO_X formation, although the difference between these two rates and the next two highest rates is not a significant amount. Emission rates for the six boilers included in the analysis range from 563 to $1,040~kg/10^6~dscm$ CH₄. The arithmetic mean emission rate for NO_X for these LFG-fired boilers is 677 kg/ $10^6~dscm$ CH₄. This average rate was selected as the default emission factor to represent boiler NO_X in the AP-42 update with a D quality rating. The 1998 default factor in AP-42 (U.S. EPA, 1998) is 530 with a D quality rating. #### 3.2.1.2 Carbon Monoxide Four of the six test reports (TR-167, TR-188, TR-220, TR-268, TR-291, TR-292) containing CO emissions data were included in the analysis to determine a default emission factor. The emission rate provided for TR-188 was excluded from the CO analysis because samples were collected and analyzed using a portable combustion gas analyzer, which is not considered an acceptable test method for the AP-42 analysis. Another report (TR-291) reveals CO emission rates below the method detection limit (<0.03 kg/hr or 16 kg/10⁶ dscm CH₄) for all test runs. Based on guidance for detection limits contained in EPA's Procedures for Preparing Emission Factor Documents (U.S. EPA, 1997a), half of the detection limit (0.014 kg/hr or 8 kg/10⁶ dscm CH₄) should be used to represent the average CO emission rate. However, the halved rate is greater than the detect value for the CO emission rate for another test report (TR-220). Therefore, as directed in the EPA procedures document, this halved emission rate was not used to determine a default CO emission factor. Carbon monoxide emission rates range from 3 to $250 \, kg/10^6$ dscm CH₄. The arithmetic mean emission rate for CO is $116 \, kg/10^6$ dscm CH₄, which was selected as the default emission factor with a "D" quality rating for the AP-42 update. The prior default factor in AP-42 (U.S. EPA, 1998) is $90 \, kg/10^6$ dscm CH₄ with a quality rating of "E." # 3.2.1.3 Particulate Matter Particulate matter emissions are provided in four boiler test reports (TR-167, TR-188, TR-220, TR-268). These four PM emission rates range between 10 and 71 kg/ 10^6 dscm CH₄. The arithmetic mean emission rate for PM is 41 kg/ 10^6 dscm CH₄. This average rate was selected as the default to represent PM in the AP-42 update, with a "D" quality rating. The previous AP-42 section for MSW landfills (U.S. EPA, 1998) has a default PM emission factor of 130 kg/ 10^6 dscm CH₄ with a quality rating of "D." #### 3.2.1.4 Total Dioxin/Furan Five test reports (TR-188, TR-220, TR-268, TR-291, TR-292) contain measurement data for dioxins/furans. Emissions data for one boiler test report (TR-188) were excluded from the dioxin/furan analysis because data were only reported on a TEQ basis but total dioxin/furan on a mass basis was being used in the analysis to determine a default emission factor. Three test reports (TR-220, TR-268, TR-291) reveal total dioxin/furan emission rates below the method detection limit for all test runs. Based on guidance for detection limits contained in EPA's Procedures for Preparing Emission Factor Documents (U.S. EPA, 1997a), half of the detection limit was used to represent the average emission rate of total dioxin/furan for these boilers. Total dioxin/furan emission rates range from 1.4×10^{-6} to 1.5×10^{-5} kg/ 10^{6} dscm CH₄. The arithmetic mean emission rate for total dioxin/furan is 5.1×10^{-6} kg/ 10^{6} dscm CH₄, which was selected as the default emission factor with a "D" quality rating for the AP-42 update. The prior AP-42 section for MSW landfills (U.S. EPA, 1998) does not include dioxin/furan emission factors for LFG-fired boilers. #### 3.2.1.5 Boiler Summary Table 3-7 contains a summary of the combustion by-product data included in the LFG-fired boiler analysis for determining default emission factors for the AP-42 update. In addition, Table 3-7 provides the test methods used to measure these emissions data. A data quality rating of "A" was assigned to each of the boiler test reports listed in Table 3-7. All of the reports containing these data included adequate detail, the methodology appeared to be sound, and no problems were reported for the test runs. However, an overall data quality rating of "D" is recommended for each of the four default emission factors representing combustion by-products from boilers. This rating exemplifies the fact that the default factors were developed using "A"-rated test data from a small number of facilities. Although no specific bias is evident, it is not clear if the boilers tested represent a random sample of the existing LFG-fired boilers in the U.S. given that five or fewer data points were used to determine each default emission factor. # TABLE 3-7. LANDFILL GAS-FIRED BOILER EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS | Test Report
Reference | Test Method | Boiler
Combustion By-
Product | Emission Rate
(kg/10 ⁶ dscm
CH ₄) | Emission Rate
(lb/10 ⁶ dscf
CH ₄) | |--------------------------|--|-------------------------------------|--|--| | TR-167 | SCAQMD Method 100.1 sampling with a CEMS | NO_X | 591 | 37 | | TR-220 | SCAQMD Method 100.1 sampling with a CEMS | NO_X | 563 | 35 | | TR-268 | ARB Method 1-100 | NO_X | 1,040 | 65 | | TR-291 | SCAQMD Method 100.1 sampling with a CEMS | NO_X | 593 | 37 | | TR-292 | EPA Method 7E (CEM) | NO_X | 593 | 37 | | | NO _X Defa | ult Emission Factor | 677 | 42 | | | 1998 NO _x Defat | ult Emission Factor ^a | 530 | 33 | | TR-167 | SCAQMD Method 100.1 sampling with a CEMS | СО | 94 | 6 | | TR-220 | SCAQMD Method 100.1 sampling with a CEMS | СО | 3 | 0.2 | | TR-268 | ARB Method 1-100 | СО | 116 | 7 | | TR-292 | EPA Method 10 (CEM) | CO | 250 | 16 | | | CO Defa | ult Emission Factor | 116 | 7 | | | 1998 CO Defa | ult Emission Factor ^a | 90 | 5.7 | | TR-167 | SCAQMD Method 5.2 | PM | 48 | 3 | | TR-188 | Environment Canada Report EPS 1/RM/8 "Reference Method for Source Testing: Measurement of Releases of Particulate from Stationary Sources" | PM | 36 | 2 | | TR-220 | SCAQMD Method 5.1 | PM | 10 | 1 | | TR-268 | EPA Method 5 | PM | 71 | 4 | | | PM Defa | ult Emission Factor | 41 | 3 | | | 1998 PM Defau | ult Emission Factor ^a | 130 | 8.2 | | TR-220 | CARB Method 428 | Total dioxin/furan | 2.22x10 ⁻⁶ | 1.38x10 ⁻⁷ | | TR-268 | Modified EPA Method 5 (ASME Semi-VOST) | Total dioxin/furan | 1.36x10 ⁻⁶ | 8.47x10 ⁻⁸ | | TR-291 | CARB Method 428 | Total dioxin/furan | 1.4x10 ⁻⁶ | 8.93x10 ⁻⁸ | | TR-292 | EPA Method 23 and EPA Method 8290 | Total dioxin/furan | 1.53×10^{-5} | 9.54x10 ⁻⁷ | | | Total Dioxin/Furan Defa | ult Emission Factor | 5.1x10 ⁻⁶ | 3.2x10 ⁻⁷ | | | 1998 Total Dioxin/Furan Defa | ult Emission Factor ^a | Not available | Not available | ^a – Default emission factor from the
November 1998 AP-42 chapter 2.4. # 3.2.2 Internal Combustion (IC) Engine Combustion By-Product Emissions – Source Characterization, Test Methods and Results Combustion by-product emissions data for LFG-fired IC engines were submitted to EPA for a total of six landfills. Nitrogen oxide and carbon monoxide emissions were sampled and reported in units of ppm, lb/hr, or g/m³ CH₄ for all six engines. Three of the test reports also contain particulate matter emissions data, given in g/m³ CH₄. Five engine test reports have total dioxin/furan emissions in pg TEQ/m³, or grams per hour (g/hr). Where possible, each of the emission data points was converted to kilograms per million dry standard cubic meters of CH₄ (kg/10⁶ dscm CH₄) to result in comparable emissions for a variety of LFG-fired engines. Of the six engine test reports used in the analysis, five engines (TR-189, TR-190, TR-266, TR-272, TR-284) are Caterpillar gas engines. The remaining engine (TR-194) is a Waukesha gas engine. In addition to the newly-submitted test reports described above, there were data from six engine test reports used in the prior AP-42 update that were "A" or "B" quality that were also used in this analysis. Six data points for NO_{x_i} five for CO, and one for PM were used from the prior AP-42 update information. #### 3.2.2.1 Nitrogen Oxides Three of the six test reports (TR-266, TR-272, TR-284) containing NO_X emissions data were included in the analysis to determine a default emission factor. The emission rates provided for TR-189, TR-190, and TR-194 were excluded from the NO_X analysis because samples were collected and analyzed using a portable combustion gas analyzer, which is not considered an acceptable test method. The maximum emission rate of $60,600 \text{ kg}/10^6 \text{ dscm CH}_4$ for one engine (TR-284) is a suspected outlier when compared to the other emission rates. However, this test was witnessed by EPA staff and was thoroughly audited. Therefore, this potential outlier was included in the analysis because no datum should be rejected solely on the basis of statistical tests since there is a risk of rejecting an emission rate that represents actual emissions. Emission rates for the three engines included in the analysis, plus the six engines from the previous AP-42 update (BID-64, -67, -68, -98, -99, -101) range from 2,440 to $60,600 \text{ kg}/10^6 \text{ dscm CH}_4$. The arithmetic mean emission rate for NO_X for these LFG-fired engines is $11,600 \text{ kg}/10^6 \text{ dscm CH}_4$. This average rate was selected as the default emission factor to represent engine NO_X in the AP-42 update, with a quality rating of "C." However, the user should consider the impact of the individual data point that is influencing this average when applying the default emission factor. For comparison, the median value of the engine NOx data points results in a value of $4,740 \text{ kg}/10^6 \text{ dscm CH}_4$, which compares more closely with the previous default factor in AP-42 (U.S. EPA, 1998). The previous default emission factor was $4,000 \text{ kg}/10^6 \text{ dscm CH}_4$ with a quality rating of "D." # 3.2.2.2 Carbon Monoxide Three of the six engine test reports (TR-266, TR-272, TR-284) containing CO emissions data were included in the analysis to determine a default emission factor. The emission rates provided for TR-189, TR-190, and TR-194 were excluded from the CO analysis because samples were collected and analyzed using a portable combustion gas analyzer, which is not considered an acceptable test method for the AP-42 analysis. There are five emission data points from the prior AP-42 update that are included in this analysis (BID-64, -67, -98, -99, -101). Carbon monoxide emission rates range from 6,400 to $11,700 \, kg/10^6 \, dscm \, CH_4$. The arithmetic mean emission rate for CO is $8,460 \, kg/10^6 \, dscm \, CH_4$, which was selected as the default emission factor with a "C" quality rating for the AP-42 update. The prior default factor in AP-42 (U.S. EPA, 1998) is $7,500 \, kg/10^6 \, dscm \, CH_4$ with a quality rating of "C." # 3.2.2.3 Particulate Matter Particulate matter emissions are provided in three engine test reports (TR-189, TR-190, TR-194) and one data point from the prior AP-42 update (BID-98). These four PM emission rates range between 43 and $772 \text{ kg/}10^6 \text{ dscm CH}_4$. The arithmetic mean emission rate for PM is $232 \text{ kg/}10^6 \text{ dscm CH}_4$. This average rate was selected as the default to represent PM in the AP-42 update, with a quality rating of "D." The 1998 AP-42 section for MSW landfills (U.S. EPA, 1998) has a default PM emission factor of 770 kg/10⁶ dscm CH₄ with a quality rating of "E." #### 3.2.2.4 Total Dioxin/Furan Five test reports (TR-189, TR-190, TR-194, TR-272, TR-284) contain measurement data for dioxins/furans. Emissions data for three engine test reports (TR-189, TR-190, TR-194) were excluded from the dioxin/furan analysis because data were only reported on a TEQ basis but total dioxin/furan on a mass basis was being used in the analysis to determine a default emission factor. Emission rates for the remaining two test reports (TR-272, TR-284) are below the method detection limit for all test runs using EPA Method 23. The emission rates for each of these reports are <2.15 x 10^{-10} kg/hr (1.73 x 10^{-6} kg/ 10^{6} dscm CH₄) for TR-272 and <1.12 x 10^{-10} kg/hr (3.92 x 10^{-7} kg/ 10^{6} dscm CH₄) for TR-284. Therefore, a proper analysis cannot be conducted for total dioxin/furan emissions from LFG-fired engines until additional data become available. The prior version of the AP-42 section for MSW landfills (U.S. EPA, 1998) does not include dioxin/furan emission factors for engines. # 3.2.2.5 IC Engine Summary Table 3-8 contains a summary of the combustion by-product data included in the LFG-fired IC engine analysis for determining default emission factors for the AP-42 update. In addition, Table 3-8 provides the test methods used to measure these emissions data. A data quality rating of "A" (except for BID-99 and PM for BID-98, which have "B" ratings) was assigned to each of the IC engine test reports listed in Table B. All of the reports containing these data included adequate detail, the methodology appeared to be sound, and no problems were reported for the test runs. However, overall data quality ratings of "C" for NOx and CO, and "D" for PM, are recommended for default emission factors representing combustion by-products from engines. These ratings exemplify the fact that the default factors were developed using "A" and "B"-rated test data from a reasonable to small number of facilities. Although no specific bias is evident, it is not clear if the engines tested represent a random sample of the existing LFG-fired engines in the U.S. given that between four (PM) to nine (NO_x) data points were used to determine each default emission factor. TABLE 3-8. LANDFILL GAS-FIRED IC ENGINE EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS | Test Report | | IC Engine
Combustion By- | Emission Rate (kg/10 ⁶ dscm | Emission Rate
(lb/10 ⁶ dscf | |-------------|---|-----------------------------|--|---| | Reference | Test Method | Product | CH ₄) | CH ₄) | | TR-266 | SCAQMD Method 100.1 and EPA Methods 6C and 7E | NO _X | 8,170 | 510 | | TR-272 | EPA Method 7E (CEM) | NO_X | 5,680 | 355 | | TR-284 | EPA Method 7E (CEM) | NO_X | 60,600 | 3,780 | | BID-64 | EPA Method 10 (CEM) | NO_X | 2,470 | 154 | | BID-67 | EPA Method 10 (CEM) | NO_X | 2,500 | 156 | | BID-68 | EPA Method 7E (CEM) | NO_X | 2,440 | 152 | | BID-98 | CARB Method 1-100 | NO_X | 4,540 | 283 | | BID-99 | Unspecified | NO_X | 4,740 | 296 | | BID-101 | Phenoldisulfonic Acid (PDSA) method | NO_X | 13,400 | 839 | # TABLE 3-8 (CONTINUED). LANDFILL GAS-FIRED IC ENGINE EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS | Test Report
Reference | Test Method | IC Engine
Combustion By-
Product | Emission Rate
(kg/10 ⁶ dscm
CH ₄) | Emission Rate
(lb/10 ⁶ dscf
CH ₄) | |---|---|--|--|--| | | NO_X Defa | 11,600 | 725 | | | 1998 NO _X Default Emission Factor ^a | | | 4,000 | 250 | | TR-266 | SCAQMD Method 100.1 and EPA Methods 6C and 7E | СО | 11,100 | 693 | | TR-272 | EPA Method 10 (CEM) | CO | 11,700 | 728 | | TR-284 | EPA Method 10 (CEM) | CO | 7,680 | 479 | | BID-64 | EPA Method 7E (CEM) | CO | 8,150 | 508 | | BID-67 | EPA Method 7E (CEM) | CO | 9,280 | 579 | | BID-98 | CARB Method 1-100 | CO | 6,810 | 425 | | BID-99 | Unspecified | CO | 6,400 | 399 | | BID-101 | TCA method | CO | 6,610 | 413 | | | CO Defa | 8,460 | 528 | | | 1998 CO Default Emission Factor ^a | | | 7,500 | 470 | | TR-189 | Environment Canada Report EPS 1/RM/8 "Reference Method for Source Testing: Measurement of Releases of Particulate from Stationary Sources" | PM | 56.6 | 3.5 | | TR-190 | Environment Canada Report EPS 1/RM/8 "Reference Method for Source Testing: Measurement of Releases of Particulate from Stationary Sources" | PM | 54.8 | 3.4 | | TR-194 | Environment Canada Report EPS 1/RM/8 "Reference Method for Source Testing: Measurement of Releases of Particulate from Stationary Sources" | PM | 43.1 | 2.7 | | BID-98 | EPA Method 5 | PM | 772 | 48 | | PM Default Emission Factor | | | 232 | 14.5 | | 1998 PM Default Emission Factor ^a | | | 770 | 48 | ^a – Default emission factor from the November 1998 AP-42 chapter 2.4. # 3.2.2.6 Emission Factors in Alternate Units of Measure
The preceding tables present the emission factors in the units used for updating the MSW Landfills section of AP-42 (U.S. EPA, 1998). However, EPA's Landfill Methane Outreach Program (LMOP) and other organizations may require emission factors presented in units more convenient to the LFG energy project or combustion device being studied. Therefore, Table 3-9 presents the boiler data in units of lb/MMBtu heat input and lb/MWh of electricity produced, and Table 3-10 presents the engine data in lb/MMBtu heat input, and lb/MWh and g/brake horsepower-hour (bhph). The heat rate assumed in these conversions is 10,700 Btu/kWh for boilers, and 11,100 Btu/kWh for engines. These are consistent with factors used by the LMOP program and are based on engine manufacturer's literature and other information provided to LMOP by manufacturers and distributors. The heat content of CH₄ is 1,012 Btu/dscf (Perry, 1963). # TABLE 3-9. LANDFILL GAS-FIRED BOILER EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS (ALTERNATE UNIT FACTORS) | Test Report
Reference | Test Method | Boiler
Combustion By-
Product | Emission Rate
(lb/MMBtu)
(fuel input) | Emission Rate
(lb/MWh) | |--------------------------|--|-------------------------------------|---|---------------------------| | TR-167 | SCAQMD Method 100.1 sampling with a CEMS | NO_X | 0.04 | 0.4 | | TR-220 | SCAQMD Method 100.1 sampling with a CEMS | NO_X | 0.03 | 0.4 | | TR-268 | ARB Method 1-100 | NO_X | 0.06 | 0.7 | | TR-291 | SCAQMD Method 100.1 sampling with a CEMS | NO_X | 0.04 | 0.4 | | TR-292 | EPA Method 7E (CEM) | NO _X | 0.04 | 0.4 | | | NO _X Defa | 0.04 | 0.4 | | | | 1998 NO _x Defa | 0.03 | 0.3 | | | TR-167 | SCAQMD Method 100.1 sampling with a CEMS | СО | 0.01 | 0.1 | | TR-220 | SCAQMD Method 100.1 sampling with a CEMS | СО | 2.0x10 ⁻⁴ | 2.1x10 ⁻³ | | TR-268 | ARB Method 1-100 | СО | 0.01 | 0.1 | | TR-292 | EPA Method 10 (CEM) | CO | 0.02 | 0.2 | | | CO Defa | 0.01 | 0.1 | | | | 1998 CO Defat | 0.01 | 0.1 | | | TR-167 | SCAQMD Method 5.2 | PM | 3.0x10 ⁻³ | 0.03 | | TR-188 | Environment Canada Report EPS 1/RM/8 "Reference Method for Source Testing: Measurement of Releases of Particulate from Stationary Sources" | PM | 2.2x10 ⁻³ | 0.02 | | TR-220 | SCAQMD Method 5.1 | PM | 6.0x10 ⁻⁴ | 0.01 | | TR-268 | EPA Method 5 | PM | $4.4x10^{-3}$ | 0.05 | | | PM Defa | 2.5×10^{-3} | 0.03 | | | | 1998 PM Defa | 8.1x10 ⁻³ | 0.09 | | | TR-220 | CARB Method 428 | Total dioxin/furan | 1.4x10 ⁻¹⁰ | 1.5x10 ⁻⁹ | | TR-268 | Modified EPA Method 5 (ASME Semi-VOST) | Total dioxin/furan | 8.4x10 ⁻¹¹ | 9.0x10 ⁻¹⁰ | | TR-291 | CARB Method 428 | Total dioxin/furan | 8.8x10 ⁻¹¹ | 9.4x10 ⁻¹⁰ | | TR-292 | EPA Method 23 and EPA Method 8290 | Total dioxin/furan | 9.4×10^{-10} | 1.0x10 ⁻⁸ | | | Total Dioxin/Furan Defa | 3.1x10 ⁻¹⁰ | 3.3 x10 ⁻⁹ | | | | 1998 Dioxin/Furan Defa | Not available | Not available | | ^a – Default emission factor from the November 1998 AP-42 chapter 2.4, but converted to lb/MMBtu and lb/kWh units using 1,012 Btu/dscf CH₄ and 10,700 Btu/kWh, as discussed above. TABLE 3-10. LANDFILL GAS-FIRED IC ENGINE EMISSIONS DATA USED TO DEVELOP COMBUSTION BY-PRODUCT EMISSION FACTORS (ALTERNATE UNIT FACTORS) | Test
Report
Reference | Test Method | IC Engine
Combustion
By-Product | Emission
Rate
(lb/MMBtu)
(fuel input) | Emission
Rate
(lb/MWh) | Emission
Rate
(g/bhph) ^a | |---|--|---------------------------------------|--|------------------------------|---| | TR-266 | SCAQMD Method 100.1 and EPA Methods
6C and 7E | NO _X | 0.5 | 5.6 | 2.0 | | TR-272 | EPA Method 7E (CEM) | NO_X | 0.4 | 3.9 | 1.4 | | TR-284 | EPA Method 7E (CEM) | NO_X | 3.7 | 41 | 15 | | BID-64 | EPA Method 10 (CEM) | NO_X | 0.2 | 1.7 | 0.6 | | BID-67 | EPA Method 10 (CEM) | NO_X | 0.2 | 1.7 | 0.6 | | BID-68 | EPA Method 7E (CEM) | NO_X | 0.2 | 1.7 | 0.6 | | BID-98 | CARB Method 1-100 | NO_X | 0.3 | 3.1 | 1.1 | | BID-99 | Unspecified | NO_X | 0.3 | 3.2 | 1.2 | | BID-101 | Phenoldisulfonic Acid (PDSA) method | NO_X | 0.8 | 9.2 | 3.3 | | NO _X Default Emission Factor | | | 0.7 | 8.0 | 2.8 | | 1998 NO _X Default Emission Factor ^b | | | 0.2 | 2.7 | 1.0 | | TR-266 | SCAQMD Method 100.1 and EPA Methods
6C and 7E | СО | 0.7 | 7.6 | 2.7 | | TR-272 | EPA Method 10 (CEM) | CO | 0.7 | 8.0 | 2.8 | | TR-284 | EPA Method 10 (CEM) | CO | 0.5 | 5.3 | 1.9 | | BID-64 | EPA Method 7E (CEM) | CO | 0.5 | 5.6 | 2.0 | | BID-67 | EPA Method 7E (CEM) | CO | 0.6 | 6.4 | 2.3 | | BID-98 | CARB Method 1-100 | CO | 0.4 | 4.7 | 1.7 | | BID-99 | Unspecified | CO | 0.4 | 4.4 | 1.6 | | BID-101 | TCA method | CO | 0.4 | 4.5 | 1.6 | | | CO Default Emission Factor | | 0.5 | 5.8 | 2.1 | | | 1998 CO Default Emission Factor ^b | | 0.5 | 5.2 | 1.8 | | TR-189 | Environment Canada Report EPS 1/RM/8 "Reference Method for Source Testing: Measurement of Releases of Particulate from Stationary Sources" | PM | 3.5x10 ⁻³ | 3.9x10 ⁻² | 1.4x10 ⁻² | | TR-190 | Environment Canada Report EPS 1/RM/8 "Reference Method for Source Testing: Measurement of Releases of Particulate from Stationary Sources" | PM | 3.4x10 ⁻³ | 3.8x10 ⁻² | 1.3x10 ⁻² | | TR-194 | Environment Canada Report EPS 1/RM/8 "Reference Method for Source Testing: Measurement of Releases of Particulate from Stationary Sources" | PM | 2.7x10 ⁻³ | 3.0x10 ⁻² | 1.1x10 ⁻² | | BID-98 | EPA Method 5 | PM | 4.7 x10 ⁻² | 5.3x10 ⁻¹ | 1.9x10 ⁻¹ | | PM Default Emission Factor | | | 1.4x10 ⁻² | 1.6x10 ⁻¹ | 5.6x10 ⁻² | | 1998 PM Default Emission Factor ^b | | | 4.7 x10 ⁻² | 5.3 x10 ⁻¹ | 1.9x10 ⁻¹ | ^a – Per common practice, assumes a 5% energy loss from engine output in converting shaft energy to electricity. b – Default emission factor from the November 1998 AP-42 chapter 2.4, but converted to lb/MMBtu and lb/kWh units using 1,012 Btu/dscf CH₄ and 11,100 Btu/kWh, as discussed above. # 3.2.3 Gas Turbine Data Summary Since the last update of the MSW Landfills section of AP-42 (U.S. EPA, 1998), no additional test data for LFG turbines has been received by EPA. Therefore, these emission factors remain the same as in the previous update. Supporting background information from the 1997 background information document for turbines is included in Appendix F to this document. #### References BID-64. Report of Emission Levels and Fuel Economics for Eight Waukesha 12V-AT25GL Units Located at the Johnston, Rhode Island Central Landfill, Waukesha Pearce Industries, Inc. Houston, TX, July 19, 1991. BID-67. Final Report for Emissions Compliance Testing of One Waukesha Engine Generator, Browning-Ferris Gas Services, Inc., Chicopee, MA, February 1994. BID-68. Final Report for Emissions Compliance Testing of Three Waukesha Engine Generators, Browning-Ferris Gas Services, Inc., Richmond, VA, February 1994. BID-98. Landfill Gas Engine Exhaust Emissions Test Report in Support of Modification to Existing IC Engine Permit at Bakersfield Landfill Unit #1, Pacific Energy Services, December 4, 1990. BID-99. Addendum to Source Test Report for Superior Engine #1 at Otay Landfill, Pacific Energy Services, April 2, 1991. BID-101. Source Test Report 88-0096 of Emissions from an Internal Combustion Engine Fueled by Landfill Gas, Toyon Canyon Landfill, Pacific Energy Lighting Systems, South Coast Air Quality Management District, March 8, 1988. Perry, John H., ed. *Chemical Engineers Handbook*. McGraw-Hill Book Company: NY, 1963, Page 9-9. TR-163. Compliance Testing for SPADRA Landfill Gas-to-Energy Plant, Ebasco Constructors, Inc., November 1990. TR-167. 1997 Annual Compliance Source Testing Results for the Coyote Canyon Landfill Gas Recovery Facility Boiler, Laidlaw Gas Recovery Systems, January 1998. TR-188. Characterization of Emissions from a Power Boiler Fired with Landfill Gas, Environment Canada, Emissions Research and Measurement Division, March 2000. TR-189. Characterization of Emissions from 925 kWe Reciprocating Engine Fired with Landfill Gas, Environment Canada, Emissions Research and Measurement Division, December 2000. TR-190. Characterization of Emissions from 812 kWe Reciprocating Engine Fired with Landfill Gas, Environment Canada, Emissions Research and Measurement Division, December 1999. TR-194. Characterization of Emissions from 1 Mwe Reciprocating Engine Fired with Landfill Gas, Environment Canada, Emissions Research and Measurement Division, January 2002. - TR-220. SCAQMD Performance Tests on the Spadra Energy Recovery from Landfill Gas (SPERG) Facility, County Sanitation Districts of Los Angeles County, April 1992. - TR-266. Compliance Source Test Report Landfill Gas-Fired Engine, Minnesota Methane, March 3, 1998. - TR-268. Emission Testing at PERG Maximum Boiler Load, County Sanitation Districts of Los Angeles County, December 1986. - TR-272. Source Testing Final Report Landfill A, U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, October 6, 2005. - TR-284. Source Testing Final Report Landfill C, U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, October 6, 2005. - TR-291. PCDD/PCDF Emissions Tests on the Palos Verdes Energy Recovery from Landfill Gas (PVERG) Facility, Unit 2, County Sanitation Districts of Los Angeles County, February 1994. - TR-292. Source Testing Final Report Landfill E, U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, October 2005. - U.S. Environmental Protection Agency (1997a). Procedures for Preparing Emission Factor Documents ,EPA-454/R-95-015, Office
of Air Quality Planning and Standards, Research Triangle Park, NC, November 1997. - U.S. Environmental Protection Agency (1998). Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Section 2.4 Municipal Solid Waste Landfills, Research Triangle Park, NC, November 1998. # 3.3 CONTROL DEVICE EFFICENCY DATA NMOC data was compiled for the various control devices and analyzed. This data consists of "A" and "B" data from the prior Municipal Solid Waste (MSW) Landfills section of AP-42 (U.S. EPA, 1998), along with the data available from this update, all of which were rated as "A" quality. The following table (Table 3-11) summarizes the data, which is also found in Table 2.4-3 of the AP-42 section. Appendix F contains the supporting data and calculations used to determine the control device efficiencies. Please note that the Landfill NSPS requirements are in 40 CFR 60.752(b)(2)(iii) for enclosed combustion devices (e.g., enclosed flares, boilers, engines, turbines) burning untreated LFG require reduction of NMOC by 98 weight % or reduce the outlet NMOC concentration to less than 20 ppmv, dry basis as hexane at 3% oxygen. Therefore, although some of the data show that observed control efficiencies may sometimes be less than 98%, the control device may still meet the regulatory requirements by meeting the 20 ppmv limit of NMOC (dry basis as hexane at 3% oxygen). Following the same criteria as described for the emission factors, the control device efficiency rankings were assigned as follows: Boiler – "D;" Flare – "A;" Engine – "D;" and Turbine – "E." | | Number of
Data Points | Min (%) | Max (%) | Mean (%) | Standard
Deviation
(%) | 95%
Confidence
Interval
(± %) | |------------------------------|--------------------------|---------|---------|----------|------------------------------|--| | Boiler | 5 | 95.9 | 99.6 | 98.6 | 1.6 | 1.4 | | Flare | 25 | 85.8 | 100.0 | 97.7 | 3.4 | 1.3 | | Engine | 3 | 94.6 | 99.7 | 97.2 | 2.6 | 2.9 | | Avg of Boiler, Engine, Flare | | | | 97.8 | | | | Turbine | 2 | 91.5 | 97.3 | 94.4 | 4.1 | 134.8 | TABLE 3-11. NMOC CONTROL EFFICIENCY DATA ANALYSIS SUMMARY Historically, controlled emissions have been calculated with Equation 6. In this equation it is assumed that the LFG collection and control system operates 100 percent of the time. Minor durations of system downtime associated with routine maintenance and repair (i.e., 5 to 7 percent) will not appreciably affect emission estimates. The first term in Equation 6 accounts for emissions from uncollected LFG, while the second term accounts for emissions of the pollutant that were collected but not fully combusted in the control or utilization device: $$CM_{P} = \left[UM_{P} \times \left(1 - \frac{\eta_{col}}{100}\right)\right] + \left[UM_{P} \times \frac{\eta_{col}}{100} \times \left(1 - \frac{\eta_{cnt}}{100}\right)\right]$$ (6) where: CM_P = Controlled mass emissions of pollutant P, kg/yr; UM_P = Uncontrolled mass emissions of P, kg/yr (from Equation 5); η_{col} = Efficiency of the LFG collection system, % (recommended default is 75%); and η_{cnt} = Efficiency of the LFG control or utilization device, %. # 3.4 CONTROL DEVICE CARBON DIOXIDE, SULFUR DIOXIDE, AND HYDROGEN CHLORIDE EMISSIONS Controlled emissions of CO₂ and sulfur dioxide (SO₂) are best estimated using site-specific LFG constituent concentrations and mass balance methods (Nesbitt, 1996). If site-specific data are not available, the data in Tables 2-7, 2-8 and 2-9 can be used with the mass balance methods that follow. Controlled CO₂ emissions include emissions from the CO₂ component of LFG and additional CO₂ formed during the combustion of LFG. The bulk of the CO₂ formed during LFG combustion comes from the combustion of the CH₄ fraction. Small quantities will be formed during the combustion of the NMOC fraction. However, this typically amounts to less than one percent of total CO₂ emissions by weight. This contribution to the overall mass balance picture is also very small and does not have a significant impact on overall CO₂ emissions (Nesbitt, 1996). The following equation which assumes a 100% combustion efficiency for CH₄ can be used to estimate CO₂ emissions from controlled landfills: $$CM_{CO_2} = UM_{CO_2} + \left(UM_{CH_4} \times \frac{\eta_{col}}{100} \times 2.75\right)$$ (7) where: CM_{CO_2} = Controlled mass emissions of CO_2 , kg/yr (from Equation 5); UM_{CO₂} = Uncontrolled mass emissions of CO₂, kg/yr (from Equation 5); UM_{CH₄} = Uncontrolled mass emissions of CH₄, kg/yr; η_{col} = Efficiency of the LFG collection system, % (recommended default is 75%); and 2.75 = Ratio of the molecular weight of CO_2 to the molecular weight of CH_4 . To prepare estimates of SO_2 emissions, data on the concentration of reduced sulfur compounds within the LFG are needed. The best way to prepare this estimate is with site-specific information on the total reduced sulfur content of the LFG. Often these data are expressed in ppmv as sulfur (S). Equations 4 and 5 should be used first to determine the uncontrolled mass emission rate of reduced sulfur compounds as sulfur. Then, the following equation can be used to estimate SO_2 emissions: $$CM_{SO_2} = UM_S x \frac{\eta_{col}}{100} x 2.0$$ (8) where: CM_{SO₂} = Controlled mass emissions of SO₂, kg/yr; UM_S = Uncontrolled emissions of reduced sulfur compounds as sulfur, kg/yr; η_{col} = Efficiency of the LFG collection system, %; and 2.0 = Ratio of the molecular weight of SO_2 to the molecular weight of S. The next best method to estimate SO₂ concentrations, if site-specific data for total reduced sulfur compounds as sulfur are not available, is to use site-specific data for speciated reduced sulfur compound concentrations. These data can be converted to ppmv as S with Equation 9. After the total reduced sulfur as S has been obtained from Equation 9, then Equations 4, 5, and 8 can be used to derive SO₂ emissions. $$C_S = \sum_{i=1}^{n} C_P \times S_P \tag{9}$$ C_s = Concentration of total reduced sulfur compounds, ppmv as S (for use in Equation 4); C_P = Concentration of each reduced sulfur compound, ppmv; S_P = Number of moles of S produced from the combustion of each reduced sulfur compound (i.e., 1 for sulfides, 2 for disulfides); and n = Number of reduced sulfur compounds available for summation. If no site-specific data are available, values of 47 and 33 ppmv can be used for C_s in the gas from landfills having a majority of the waste in place before 1992 and from landfills having a majority of the waste in place after 1992, respectively. These values were obtained by using the default concentrations presented in Tables 2-9 and 2-7 for reduced sulfur compounds and Equation 9. Hydrochloric acid [hydrogen chloride (HCl)] emissions are formed when chlorinated compounds in LFG are combusted in control equipment. The best methods to estimate HCl emissions are mass balance methods that are analogous to those presented above for estimating SO₂ emissions. Hence, the best source of data to estimate HCl emissions is site-specific LFG data on total chloride [expressed in ppmv as the chloride ion (Cl)]. However, emission estimates may be underestimated, since not every chlorinated compound in the LFG will be represented in the site test report (i.e., only those that the analytical method specifies). If these data are not available, then total chloride can be estimated from data on individual chlorinated species using Equation 10 below. $$C_{Cl} = \sum_{i=1}^{n} C_{P} \times Cl_{P}$$ $$\tag{10}$$ where: C_{Cl} = Concentration of total chloride, ppmv as Cl⁻ (for use in Equation 4); C_p = Concentration of each chlorinated compound, ppmv; Cl_p = Number of moles of Cl⁻ produced from the combustion of each mole of chlorinated compound (i.e., 3 for 1,1,1-trichloroethane); and n = Number of chlorinated compounds available for summation. After the total chloride concentration (C_{Cl}) has been estimated, Equations 4 and 5 should be used to determine the total uncontrolled mass emission rate of chlorinated compounds as chloride ion (UM_{Cl}). This value is then used in Equation 11, below, to derive HCl emission estimates: $$CM_{HCl} = UM_{Cl} \times \frac{\eta_{col}}{100} \times 1.03 \times \frac{\eta_{cnt}}{100}$$ (11) where: CM_{HCl} = Controlled mass emissions of HCl, kg/yr; UM_{Cl} = Uncontrolled mass emissions of chlorinated compounds as chloride, kg/yr (from Equations 4 and 5); η_{col} = Efficiency of the LFG collection system, percent; 1.03 = Ratio of the molecular weight of HCl to the molecular weight of Cl⁻; and η_{cnt} = Control efficiency of the LFG control or utilization device, percent. In estimating HCl emissions, it is assumed that all of the chloride ion from the combustion of chlorinated LFG constituents is converted to HCl. If an estimate of the control efficiency, η_{cnt} , is not available, then the control efficiency for the equipment listed in Table 3-11 should be used. This assumption is recommended to assume that HCl emissions are not under-estimated. If site-specific data on total chloride or speciated chlorinated compounds are not available, then default values of 42 and 74 ppmv can be used for C_{Cl} in the gas from landfills having a majority of the waste in place before 1992 and from landfills having a majority of the waste in place after 1992, respectively. These values were derived from the default LFG constituent concentrations presented in Tables 2-11 and 2-8. As mentioned above, use of this default may produce underestimates of HCl emissions since it is based only on those compounds for which analyses have been performed. The constituents listed in Table 2-11 and 2-8 are likely not all of the chlorinated compounds present in LFG. #### References Letter and attached documents from C. Nesbitt, Los Angeles County Sanitation Districts, to K.
Brust, E.H. Pechan and Associates, Inc., December 6, 1996. ## 4.0 MERCURY EMISSIONS DATA ANALYSIS ## 4.1 MERCURY IN RAW LANDFILL GAS Mercury concentration data for raw LFG were submitted to EPA for a total of 17 landfills. These landfills are represented by nine emissions test reports because one test report (TR-211) contains mercury data for eight landfills in the state of Washington and another (TR-293) contains data for two landfills. This Washington report includes multiple measurements for two of the landfills sampled (TR-211a, TR-211f) because the LFG streams are split between the flare and the energy recovery facility at each landfill. A single average concentration for each of these landfills was calculated to represent each landfill so as not to disproportionately affect the overall average concentration being determined to estimate mercury emissions for an average landfill. Total mercury, elemental mercury, monomethyl mercury, and dimethyl mercury are the four forms of mercury sampled and analyzed at these 17 landfills. Mercury concentrations are reported in either nanograms per cubic meter (ng/m³) or milligrams per dry standard cubic foot (mg/dscf). These concentrations were converted to common units of parts per million by volume (ppmv), assuming standard conditions of 20 °C and one atmosphere. ## 4.1.1 Total Mercury All nine of the test reports (TR-196, TR-211, TR-212, TR-272, TR-273, TR-284, TR-287, TR-292, TR-293), representing 17 landfills, contain measurement data for total mercury. Concentrations for two landfills were excluded from the total mercury analysis because samples were collected from a leachate well open to the atmosphere for one landfill (TR-211c) and from a passive gas well, with ambient air present, for another landfill (TR-211d). Total mercury was sampled and analyzed using EPA Method 1631 for 14 of the 17 landfills. The test report for the landfill (TR-196) used CARB Draft Method 436 (adopted as CARB Method 436 in July 1997), Determination of Multiple Metals Emissions from Stationary Sources, to determine total mercury concentration. This test report reveals total mercury concentrations below the method detection limit (<4.08 x 10⁻⁶ ppmv) for all three test runs. Based on guidance for detection limits contained in EPA's Procedures for Preparing Emission Factor Documents (U.S. EPA, 1997a), half of the detection limit (2.04 x 10⁻⁶ ppmv) was used to represent the average concentration of total mercury for this landfill. This concentration represents the minimum concentration used in the analysis. Another test report (TR-293) used method SW-846 Method 7473, "Mercury in Solids and Solutions by Thermal Decomposition, Mercury Amalgamation, and Atomic Adsorption Spectroscopy" and CFR Part 60 Method 30B, "Determination of Total Vapor Phase Mercury Emissions from Coal-Fired Combustion Sources Using Carbon Sorbent Tubes" to determine total mercury. Total mercury concentrations for the 15 landfills included in the analysis range from 2.04×10^{-6} to 9.61×10^{-4} ppmv. The maximum concentration of 9.61×10^{-4} ppmv for one landfill (TR-211g) is a suspected outlier when compared to the other concentrations. However, the maximum concentration was included in the analysis because no datum should be rejected solely on the basis of statistical tests since there is a risk of rejecting a concentration that represents actual emissions. The test report containing this suspected outlier (TR-211) is for eight landfills in the state of Washington. This report states that total mercury levels observed at these Washington landfills are in the range of 25 to $8,000 \text{ ng/m}^3$ (3.0×10^{-6} to 9.6×10^{-4} ppmv) which generally agrees with concentrations previously reported by Lindberg et al., 2001. The arithmetic mean concentration for total mercury for the 13 landfills is 1.2×10^{-4} ppmv. This average concentration was selected as the default to represent total mercury in the AP-42 update. The previous default concentration in AP-42 (U.S. EPA, 1998) is 2.92 x 10⁻⁴ ppmv with a quality rating of "E." ## 4.1.2 Elemental Mercury Six test reports (TR-272, TR-273, TR-284, TR-287, TR-292, TR-293), representing seven landfills, include elemental mercury concentrations that were measured by the LUMEX Instrument. Elemental mercury concentrations range from 7.0×10^{-6} to 3.9×10^{-4} ppmv. The arithmetic mean concentration for elemental mercury is 7.7×10^{-5} ppmv, which was selected as the default concentration for the AP-42 update. The previous version of the AP-42 section for MSW landfills (U.S. EPA, 1998) does not include elemental mercury because no data were available to speciate total mercury into the elemental form. ### 4.1.3 Monomethyl Mercury Monomethyl mercury concentrations are contained in seven test reports (TR-212, TR-272, TR-273, TR-284, TR-287, TR-292, TR-293) representing eight landfills. Five of these were sampled and analyzed using EPA draft method 1630. One test report (TR-293) used cold-vapor atomic fluorescence spectroscopy (CVAFS). The overall range of concentrations is 4.5 x 10⁻⁸ to 2.0 x 10⁻⁶ ppmv. The arithmetic mean concentration for monomethyl mercury for the six landfills is 3.8 x 10⁻⁷ ppmv. This average concentration was selected as the default to represent total mercury in the AP-42 update. The prior AP-42 section for MSW landfills (U.S. EPA, 1998) does not include monomethyl mercury because no data were available to speciate total mercury into the organic forms. ## 4.1.4 Dimethyl Mercury Eight test reports (TR-211, TR-212, TR-272, TR-273, TR-284, TR-287, TR-292, TR-293), representing 16 landfills, contain measurement data for dimethyl mercury. Concentrations for two landfills were excluded from the dimethyl mercury analysis because samples were collected from a leachate well open to the atmosphere for one landfill (TR-211c) and from a passive gas well, with ambient air present, for another landfill (TR-211d). Concentrations thought to be biased low were excluded for two additional landfills (TR-272, TR-273) because spike recoveries are well below normally acceptable levels. Dimethyl mercury was sampled and analyzed using EPA Method 1630 Appendix A for five test reports. The remaining test report, representing two landfills, used CVAFS. Dimethyl mercury concentrations range from 2.3×10^{-7} to 5.5×10^{-6} ppmv. The arithmetic mean concentration for dimethyl mercury is 2.5×10^{-6} ppmv, which was selected as the default concentration for the AP-42 update. The prior version of the AP-42 section for MSW landfills (U.S. EPA, 1998) does not include dimethyl mercury because no data were available to speciate total mercury into the organic forms. ## 4.1.5 Mercury Data Summary Table 4-1 contains a summary of the mercury data included in the raw LFG analysis for determining default concentrations for the AP-42 update. Appendix E presents statistical data graphs of the mercury data. A data quality rating of "A" was assigned to each of the individual mercury test data contained in Table 4-1. All of the reports containing these data included adequate detail, the methodology appeared to be sound, and no problems were reported for the valid test runs. An overall data quality rating of "B" for each of the four default concentrations representing each mercury compound is recommended. This rating exemplifies the fact that the default concentrations were developed from "A"-rated test data from a moderate number of facilities. Although no specific bias is evident, is not clear if the landfills tested represent a random sample of landfills in the U.S. In addition, less than 20 data points were used to determine each default concentration. TABLE 4-1. RAW LANDFILL GAS MERCURY DATA USED TO DETERMINE AP-42 DEFAULT CONCENTRATIONS | Test Report
Reference | Mercury Test Method | Mercury
Compound | Concentration (ppmv) | |--------------------------|----------------------------|-----------------------------|--------------------------| | TR-211a | EPA Method 1630 Appendix A | Dimethyl | 1.9 x 10 ⁻⁶ | | TR-211b | EPA Method 1630 Appendix A | Dimethyl | 1.10 x 10 ⁻⁶ | | TR-211e | EPA Method 1630 Appendix A | Dimethyl | 7.4 x 10 ⁻⁷ | | TR-211f | EPA Method 1630 Appendix A | Dimethyl | 2.59 x 10 ⁻⁶ | | TR-211g | EPA Method 1630 Appendix A | Dimethyl | 4.81 x 10 ⁻⁶ | | TR-211h | EPA Method 1630 Appendix A | Dimethyl | 3.00 x 10 ⁻⁶ | | TR-212 | EPA Method 1630 Appendix A | Dimethyl | 3.97 x 10 ⁻⁶ | | TR-284 | EPA Method 1630 Appendix A | Dimethyl | 1.54 x 10 ⁻⁶ | | TR-287 | EPA Method 1630 Appendix A | Dimethyl | 5.32 x 10 ⁻⁶ | | TR-292 | EPA Method 1630 Appendix A | Dimethyl | 5.48 x 10 ⁻⁶ | | TR-293a | CVAFS | Dimethyl | 2.3 x 10 ⁻⁷ | | TR-293b | CVAFS | Dimethyl | 6.8 x 10 ⁻⁷ | | | Dimethyl Me | rcury Default Concentration | 2.5 x 10 ⁻⁶ | | TR-272 | LUMEX Instrument | Elemental | 3.69 x 10 ⁻⁵ | | TR-273 | LUMEX Instrument | Elemental | 7.0 x 10 ⁻⁶ | | TR-284 | LUMEX Instrument | Elemental | 1.2 x 10 ⁻⁵ | | TR-287 | LUMEX Instrument | Elemental | 3.33 x 10 ⁻⁵ | | TR-292 | LUMEX Instrument | Elemental | 5.28 x 10 ⁻⁵ | | TR-293a | LUMEX Instrument | Elemental | 3.9 x 10 ⁻⁴ | | TR-293b | LUMEX Instrument | Elemental | 5.6 x 10 ⁻⁶ | | | Elemental Me | rcury Default Concentration | 7.7 x 10 ⁻⁵ | | TR-212 | EPA Draft Method 1631 | Monomethyl | 1.446 x 10 ⁻⁷ | | TR-272 | EPA Draft Method 1630 | Monomethyl | 4 x 10 ⁻⁸ | | TR-273 | EPA Draft Method 1630 | Monomethyl | 1.3 x 10 ⁻⁷ | | TR-284 | EPA Draft Method 1630 | Monomethyl | 4.4 x 10 ⁻⁷ | | TR-287 | EPA Draft Method 1630 | Monomethyl | 2.76 x 10 ⁻⁷ | | TR-292 | EPA Draft Method 1630 | Monomethyl | 6.0 x 10 ⁻⁷ | | TR-293a | CVAFS | Monomethyl | 1.4 x 10 ⁻⁶ | | TR-293b | CVAFS | Monomethyl | 2.0 x 10 ⁻⁶ | | | Monomethyl Me | rcury Default Concentration | 3.8 x 10 ⁻⁷ | 69 TABLE 4-1 (CONTINUED). RAW LANDFILL GAS MERCURY DATA USED TO DETERMINE AP-42 DEFAULT
CONCENTRATIONS | Test Report
Reference | Mercury Test Method | Mercury
Compound | Concentration (ppmv) | |--------------------------|---|---------------------|---------------------------| | TR-196 | CARB Draft Method 436 | Total | 2.04 x 10 ⁻⁶ | | TR-211a | EPA Method 1631 | Total | 5.41 x 10 ⁻⁶ | | TR-211b | EPA Method 1631 | Total | 1.4098 x 10 ⁻⁴ | | TR-211e | EPA Method 1631 | Total | 1.13 x 10 ⁻⁵ | | TR-211f | EPA Method 1631 | Total | 2.767 x 10 ⁻⁵ | | TR-211g | EPA Method 1631 | Total | 9.6083 x 10 ⁻⁴ | | TR-211h | EPA Method 1631 | Total | 3.029 x 10 ⁻⁵ | | TR-212 | EPA Method 1631 | Total | 4.89 x 10 ⁻⁵ | | TR-272 | EPA Method 1631 | Total | 7.58 x 10 ⁻⁵ | | TR-273 | EPA Method 1631 | Total | 2.45 x 10 ⁻⁵ | | TR-284 | EPA Method 1631 | Total | 5.10 x 10 ⁻⁵ | | TR-287 | EPA Method 1631 | Total | 8.87 x 10 ⁻⁵ | | TR-292 | EPA Method 1631 | Total | 1.751 x 10 ⁻⁴ | | TR-293a | SW-846 Method 7473 / CFR Part 60 Method 30B | Total | 6.0 x 10 ⁻⁴ | | TR-293b | SW-846 Method 7473 / CFR Part 60 Method 30B | Total | 5.2 x 10 ⁻⁶ | | | 1.2 x 10 ⁻⁴ | | | ## 4.2 POST-COMBUSTION MERCURY EMISSIONS Burning LFG in combustion devices (control devices), including flares, engines, turbines, and boilers, may change the chemical species of mercury originally in the raw LFG but does not reduce the total quantity of mercury released. The amount of total mercury released from any combustion outlet is directly related to the amount of total mercury contained in the raw LFG. In other words, mercury emissions from landfills will be released to the atmosphere regardless of whether the LFG is combusted. However, combustion of LFG can convert organic forms of mercury, such as dimethyl mercury and monomethyl mercury, to less toxic inorganic forms, such as elemental mercury (Lindberg et al., 2001). The previous version of the AP-42 section for MSW landfills (U.S. EPA, 1998) has the following footnote for Table 2.4-3. Control Efficiencies for LFG Constituents: "For any equipment, the control efficiency for mercury should be assumed to be 0." However, we note that use of activated carbon control technology (e.g., fixed beds) is capable of achieving significant reductions in mercury emission rates. This technology is used for the control of mercury emissions from small municipal waste and hospital incinerator units. It is uncertain whether this particular technology is feasible for LFG combustion applications. Total mercury concentrations from combustion outlets were provided for five landfills (TR-272, TR-273, TR-284, TR-287, TR-292), representing outlet emissions from two flares, two engines, and one boiler. Total mercury was measured using EPA Method 29 for all five landfills. Concentrations for four of these landfills (TR-272, TR-273, TR-284, TR-287) are below the method detection limit for all three test runs. Based on guidance for detection limits contained in EPA's Procedures for Preparing Emission Factor Documents (U.S. EPA, 1997a), half of the detection limit should be used to represent the average concentration of total mercury for each of these four landfills. However, these halved concentrations are greater than the detect value for the total mercury concentration from the remaining landfill tested (TR-292). Therefore, as directed in the EPA procedures document, these four halved concentrations should not be used in determining a default concentration for post-combustion total mercury emissions. In addition, elemental mercury concentrations were provided for post-combustion engine emissions from two landfills (TR-272, TR-284), using the LUMEX Instrument. Due to the limited post-combustion mercury data provided and the knowledge that mercury in raw LFG is not destroyed through combustion but rather converted from organic to inorganic forms, it is recommended that default concentrations for post-combustion mercury emissions not be developed at this time. If additional data become available, then these factors may be explored further. #### References Bloom, N.S. 1999. Method validation study for dimethyl mercury in air. Final report for US Army Corps of Engineers. Available from Frontier Geosciences, Seattle, WA. Bloom, N.S., and W.F. Fitzgerald. 1988. Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection. Analytica Chimica Acta 208:151. Carpi, A., S.E. Lindberg, E.M. Prestbo, and N.S. Bloom. 1997. Methyl mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge. Journal of Environmental Quality 26:1650-1655. Lindberg, S.E., D. Wallschläger, E.M. Prestbo, N.S. Bloom, J. Price, and D. Reinhart. 2001. Methylated mercury species in municipal waste landfill gas sampled in Florida, USA. Atmospheric Environment 35:4011-4015. TR-196. Results of the Biennial Criteria and AB 2588 Air Toxics Source Test on the Simi Valley Landfill Flare, Simi Valley Landfill and Recycling Center, April 1997. TR-211. Determination of Total and Dimethyl Mercury in Raw Landfill Gas with Site Screening for Elemental Mercury at Eight Washington State Landfills, Washington State Department of Ecology, July 2003. TR-212. Determination of Total, and Monomethyl Mercury in Raw Landfill Gas at the Central Solid Waste Management Center, Delaware Solid Waste Authority, February 2003. TR-272. Source Testing Final Report - Landfill A, U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, October 6, 2005. TR-273. Source Testing Final Report - Landfill B, U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, October 6, 2005. TR-284. Source Testing Final Report - Landfill C, U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, October 6, 2005. TR-287. Source Testing Final Report - Landfill D, U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, October 6, 2005. TR-292. Source Testing Final Report - Landfill E, U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, October 2005. - TR-293. *Quantifying Uncontrolled Air Emissions From Two Florida Landfills* Draft Final Report. U.S. EPA Air Pollution Prevention and Control Division, March 26, 2008. - U.S. Environmental Protection Agency (1997a). Procedures for Preparing Emission Factor Documents ,EPA-454/R-95-015, Office of Air Quality Planning and Standards, Research Triangle Park, NC, November 1997. - U.S. Environmental Protection Agency (1998). Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Section 2.4 Municipal Solid Waste Landfills, Research Triangle Park, NC, November 1998. ### **5.0 AP-42 SECTION 2.4** Section 2.4 of AP-42 is presented in the following pages as it would appear in the AP-42 update. Please note that until this is formally released through EPA's Technology Transfer Network (TTN) Clearinghouse for Inventories & Emissions (http://www.epa.gov/ttn/chief/ap42/), the factors and information contained in this section are regarded as draft. ### 2.4 MUNICIPAL SOLID WASTE LANDFILLS # 2.4.1 General 1-4 A municipal solid waste (MSW) landfill unit is a discrete area of land or an excavation that receives household waste, and that is not a land application unit, surface impoundment, injection well, or waste pile. An MSW landfill unit may also receive other types of wastes, such as commercial solid waste, nonhazardous sludge, and industrial solid waste. In addition to household and commercial wastes, the other waste types potentially accepted by MSW landfills include (most landfills accept only a few of the following categories): - X Municipal sludge, - X Municipal waste combustion ash, - X Infectious waste, - X Small-quantity generated hazardous waste; - X Waste tires, - X Industrial non-hazardous waste, - X Conditionally exempt small quantity generator (CESQG) hazardous waste, - X Construction and demolition waste, - X Agricultural wastes, - X Oil and gas wastes, and - X Mining wastes. The information presented in this section applies only to landfills which receive primarily MSW. This information is not intended to be used to estimate emissions from landfills which receive large quantities of other waste types such as industrial waste, or construction and demolition wastes. These other wastes exhibit emissions unique to the waste being landfilled. In the United States in 2006, approximately 55 percent of solid waste was landfilled, 13 percent was incinerated, and 32 percent was recycled or composted. There were an estimated 1,754 active MSW landfills in the United States in 2006. These landfills were estimated to receive 138 million tons of waste annually, with 55 to 60 percent reported as household waste, and 35 to 45 percent reported as commercial waste.⁷⁹ # 2.4.2 Process Description ^{2,5} The majority of landfills currently use the "area fill" method which involves placing waste on a landfill liner, spreading it in layers, and compacting it with heavy equipment. A daily soil cover is spread over the compacted waste to prevent wind-blown trash and to protect the trash from scavengers and vectors. The landfill liners are constructed of soil (i.e., recompacted clay) and synthetics (i.e., high density polyethylene) to provide an impermeable barrier to leachate (i.e., water that has passed through the landfill) and gas migration from the landfill. Once an area of the landfill is completed, it is covered with a "cap" or "final cover" composed of various combinations of clay, synthetics, soil and cover vegetation to control the incursion of precipitation, the erosion of the cover, and the release of gases and odors from the landfill. # 2.4.3 Control Technology^{2,5,6} The New Source Performance Standards (NSPS) and Emission Guidelines for air emissions from MSW landfills
for certain new and existing landfills were published in the Federal Register on March 1, 1996. Current versions of the NSPS and Emission Guidelines can be found at 40 CFR 60 subparts WWW and Cb, respectively. The regulation requires that Best Demonstrated Technology (BDT) be used to reduce MSW landfill emissions from affected new and existing MSW landfills if (1) the landfill has a design capacity of 2.5 million Mg (2.75 million tons) and 2.5 million cubic meters or more, and (2) the calculated uncontrolled emissions from the landfill are greater than or equal to 50 Mg/yr (55 tons/yr) of nonmethane organic compounds (NMOCs). The MSW landfills that are affected by the NSPS/Emission Guidelines are each new MSW landfill, and each existing MSW landfill that has accepted waste since November 8, 1987 or that has capacity available for future use. Control systems require: (1) a welldesigned and well-operated gas collection system, and (2) a control device capable of reducing nonmethane organic compounds (NMOCs) in the collected gas by 98 weight-percent (or to 20 ppmv, dry basis as hexane at 3% oxygen for an enclosed combustion device). Other compliance options include use of a flare that meets specified design and operating requirements or treatment of landfill gas (LFG) for use as a fuel. The National Emission Standards for Hazardous Air Pollutants (NESHAP) for MSW landfills was published in the Federal Register on January 16, 2003. It requires control of the same landfills, and the same types of gas collection and control systems as the NSPS. The NESHAP also requires earlier control of bioreactor landfills and contains a few additional reporting requirements for MSW landfills. Landfill gas collection systems consist of a series of vertical or horizontal perforated pipes that penetrate the waste mass and collect the gases produced by the decaying waste. These collection systems are classified as either active or passive systems. Active collection systems use mechanical blowers or compressors to create a vacuum in the collection piping to optimize the collection of LFG. Passive systems use the natural pressure gradient established between the encapsulated waste and the atmosphere to move the gas through the collection system. LFG control and treatment options include: (1) combustion of the LFG, and (2) treatment of the LFG for subsequent sale or use. Combustion techniques include techniques that do not recover energy (i.e., flares and thermal incinerators), and techniques that recover energy and generate electricity from the combustion of the LFG (i.e., gas turbines and reciprocating engines). Boilers can also be employed to recover energy from LFG in the form of steam. Flares combust the LFG without the recovery of energy, and are classified by their burner design as being either open or enclosed. Purification techniques are used to process raw LFG to either a medium-BTU gas using dehydration and filtration or as a higher-BTU gas by removal of inert constituents using adsorption, absorption, and membranes. # 2.4.4 Emissions^{2,7} Methane (CH₄) and carbon dioxide (CO₂) are the primary constituents of LFG, and are produced by microorganisms within the landfill under anaerobic conditions. Transformations of CH₄ and CO₂ are mediated by microbial populations that are adapted to the cycling of materials in anaerobic environments. Landfill gas generation proceeds through four phases. The first phase is aerobic [i.e., with oxygen (O₂) available from air trapped in the waste] and the primary gas produced is CO₂. The second phase is characterized by O₂ depletion, resulting in an anaerobic environment, where large amounts of CO₂ and some hydrogen (H₂) are produced. In the third phase, CH₄ production begins, with an accompanying reduction in the amount of CO_2 produced. Nitrogen (N_2) content is initially high in LFG in the first phase, and declines sharply as the landfill proceeds through the second and third phases. In the fourth phase, gas production of CH_4 , CO_2 , and N_2 becomes fairly steady. The duration of each phase and the total time of gas generation vary with landfill conditions (i.e., waste composition, design management, and anaerobic state). Typically, LFG also contains NMOC and volatile organic compounds (VOC). NMOC result from either decomposition by-products or volatilization of biodegradable wastes. Although NMOC are considered trace constituents in LFG, the NMOC and VOC emission rates could be "major" with respect to Prevention of Significant Deterioration (PSD) and New Source Review (NSR) requirements. This NMOC fraction often contains various organic hazardous air pollutants (HAP), greenhouse gases (GHG), compounds associated with stratospheric ozone depletion and volatile organic compounds (VOC). However, in MSW landfills where contaminated soils from storage tank cleanups are used as daily cover, much higher levels of NMOC have been observed. As LFG migrates through the contaminated soil, it adsorbs the organics, resulting in the higher concentrations of NMOC and any other contaminant in the soil. In one landfill where contaminated soil was used as daily cover, the NMOC concentration in the LFG was 5,870 ppm as compared to the AP-42 average value of 838 ppm. While there is insufficient data to develop a factor or algorithm for estimating NMOC from contaminated daily cover, the emissions inventory developer should be aware to expect elevated NMOC concentrations from these landfills. Other emissions associated with MSW landfills include combustion products from LFG control and utilization equipment (i.e., flares, engines, turbines, and boilers). These include carbon monoxide (CO), oxides of nitrogen (NO_X), sulfur dioxide (SO_2), hydrogen chloride (HCl), particulate matter (PM) and other combustion products (including HAPs). PM emissions can also be generated in the form of fugitive dust created by mobile sources (i.e., garbage trucks) traveling along paved and unpaved surfaces. The reader should consult AP-42 Volume I Sections 13.2.1 and 13.2.2 for information on estimating fugitive dust emissions from paved and unpaved roads. One pollutant that can very greatly between landfills is hydrogen sulfide (H₂S). H₂S is normally present in LFG at levels ranging from 0 to 90 ppm, with an average concentration of 33 ppm. However, a recent trend at some landfills has been the use of construction and demolition waste (C&D) as daily cover. Under certain conditions that are not well understood, some microorganisms will convert the sulfur in the wall-board of C&D waste to H₂S. At these landfills, H₂S concentrations can be significantly higher than at landfills that do not use C&D waste as daily cover. While H₂S measurements are not available for landfills using C&D for daily cover, the State of New Hampshire among others have noted elevated H₂S odor problems at these landfills and have assumed that H₂S concentrations have increased, similarly. In a series of studies at 10 landfills in Florida where a majority of the waste is composed of C&D material, the concentration of H₂S concentration spanned a range from less than the detection limit of the instrument (0.003 ppmv) up to 12,000 ppmv.⁸ Another study that was conducted used flux boxes to measure uncontrolled emissions of H₂S at five landfills in Florida. This study reported a range of H₂S emissions between 0.192 and 1.76 mg/(m²-d).⁹ At any MSW landfill where C&D waste was used as daily cover or was comingled with the MSW, it is recommended that direct H₂S measurements be used to develop specific H₂S emissions for the landfill. The rate of emissions from a landfill is governed by gas production and transport mechanisms. Production mechanisms involve the production of the emission constituent in its vapor phase through vaporization, biological decomposition, or chemical reaction. Transport mechanisms involve the transportation of a volatile constituent in its vapor phase to the surface of the landfill, through the air boundary layer above the landfill, and into the atmosphere. The three major transport mechanisms that enable transport of a volatile constituent in its vapor phase are diffusion, convection, and displacement. Although relatively uncommon, fires can occur on the surface of the landfill or underground. The smoke from a landfill fire frequently contains many dangerous chemical compounds, including: carbon monoxide, particulate matter and hazardous gases that are the products of incomplete combustion, and very elevated concentrations of the many gaseous constituents normally occurring in LFG. Of particular concern in landfill fires is the emission of dioxins/furans. Accidental fires at landfills and the uncontrolled burning of residential waste are considered the largest sources of dioxin emissions in the United States. The composition of the gases from landfill fires is highly variable and dependent on numerous site specific factors, including: the composition of the material burning, the composition of the surrounding waste, the temperature of the burning waste, and the presence of oxygen. The only reliable method for estimating the emissions from a landfill fire involves testing the emissions directly. More information is available on landfill fires and their emissions from reference 11. 2.4.4.1 Uncontrolled Emissions — Several methods have been developed by EPA to determine the uncontrolled emissions of the various compounds present in LFG. The newest measurement method is optical remote sensing with radial plume mapping (ORS-RPM). This method uses an optical emission detector such as open-path Fourier transform infrared spectroscopy (FTIR), ultraviolet differential absorption spectroscopy (UV-DOAS), or open-path tunable diode laser absorption spectroscopy (OP-TDLAS); coupled with radial plume mapping software that processes path-integrated emission concentration data and meteorological data to yield an estimate of uncontrolled
emissions. More information on this newest method is described in Evaluation of Fugitive Emissions Using Ground-Based Optical Remote Sensing Technology (EPA/600/R-07/032). Additional research is ongoing to provide additional guidance on the use of optical remote sensing for application at landfills. Evaluating uncontrolled emissions from landfills can be a challenge. This is due to the changing nature of landfills, scale and complexity of the site, topography, and spatial and temporal variability in emissions. Additional guidance is being developed for application of EPA's test method for area sources emissions. This is expected to be released by the spring of 2009. For more information, refer to the Emission Measurement Center of EPA's Technology Transfer Network (http://www.epa.gov/ttn/emc/tmethods.html). Additional information on ORS technology can also be found on EPA's website for Measurement and Monitoring Technologies for 21st Century (21M²) which provided funding to identify improved technologies for quantifying area source emissions (http://www.clu-in.org/programs/21m2/openpath/). Often flux data are used to evaluate LFG collection efficiency. The concern with the use of this data is that it does not capture emission losses from header pipes or extraction wells. The other concern is that depending upon the design of the study, the emission variability across a landfill surface is not captured. Emission losses can occur from cracks and fissures or difference in landfill cover material. Often, alternative cover material is used to help promote infiltration, particularly for wet landfill operation. This can result in larger loss of fugitive emissions. Another loss of landfill gas is through the leachate collection pumps and wells. For many of these potential losses, a flux box is not considered adequate to capture the total loss of fugitive gas. The use of ORS technology is considered more reliable. When direct measurement data are not available, the most commonly used EPA method to estimate the uncontrolled emissions associated with LFG is based on a biological decay model. In this method, the generation of CH_4 must first be estimated by using a theoretical first-order kinetic model of CH_4 production developed by the EPA¹³: $$Q_{CH_4} = 1.3L_o R(e^{-kc} - e^{-kt})$$ (1) where: QCH_4 = Methane generation rate at time t, m³/yr; L_o = Methane generation potential, m³ CH₄/Mg of "wet" or "as received" refuse; R = Average annual refuse acceptance rate during active life, Mg of "wet" or "as received" refuse /yr; e = Base log, unitless; k = Methane generation rate constant, yr⁻¹; c = Time since landfill closure, yrs (c = 0 for active landfills); and t = Time since the initial refuse placement, yrs. When annual refuse acceptance data is available, the following form of Equation (1) is used. This is the general form of the equation that is used in EPA's Landfill Gas Emissions Model (LandGEM). Due to the complexity of the double summation, Equation (1alt) is normally implemented within a computer model. Equation (1 alt.) is more accurate because it accounts for the varying annual refuse flows and it calculates each year's gas flow in $^{1}/_{10th}$ year increments. $$Q_{CH_4} = 1.3 \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_0 \frac{R_i}{10} e^{-kt_{ij}}$$ (1 alternate) where: Q_{CH_4} = Methane generation rate at time t, m³/yr; L_o = Methane generation potential, m³ CH₄/Mg of "wet" or "as received" refuse; R_i = Annual refuse acceptance rate for year i, Mg of "wet" or "as received" refuse /yr; e = Base log, unitless; k = Methane generation rate constant, yr⁻¹; c = Time since landfill closure, yrs (c = 0 for active landfills); and t = Time since the initial refuse placement, yrs. i = year in life of the landfill $j = \frac{1}{10th}$ year increment in the calculation. It should be noted that Equation (1) is provided for estimating CH_4 emissions to the atmosphere. Other fates may exist for the gas generated in a landfill, including capture and subsequent microbial degradation within the landfill's surface layer. Currently, there are no data that adequately address this fate. It is generally accepted that the bulk of the CH_4 generated will be emitted through cracks or other openings in the landfill surface and that Equation (1) can be used to approximate CH_4 emissions from an uncontrolled landfill. It should also be noted that Equation (1) is different from the equation used in other models such as LandGEM by the addition of the constant 1.3 at the front of the equation. This constant is included to compensate for L_0 which is typically determined by the amount of gas collected by LFG collection systems. The design of these systems will typically result in a gas capture efficiency of only 75%. Therefore, 25% of the gas generated by the landfill is not captured and included in the development of L_0 . The ratio of total gas to captured gas is a ratio of 100/75 or equivalent to 1.3. Site-specific landfill information is generally available for variables R, c, and t. When refuse acceptance rate information is scant or unknown, R can be determined by dividing the refuse in place by the age of the landfill. If a facility has documentation that a certain segment (cell) of a landfill received *only* nondegradable refuse, then the waste from this segment of the landfill can be excluded from the calculation of R. Nondegradable refuse includes concrete, brick, stone, glass, plaster, wallboard, piping, plastics, and metal objects. The average annual acceptance rate should only be estimated by this method when there is inadequate information available on the actual average acceptance rate. The time variable, t, includes the total number of years that the refuse has been in place (including the number of years that the landfill has accepted waste and, if applicable, has been closed). Values for variables L_o and k are normally estimated. Estimation of the potential CH_4 generation capacity of refuse (L_o) is generally treated as a function of the moisture and organic content of the refuse. Estimation of the CH_4 generation constant (k) is a function of a variety of factors, including moisture, pH_4 temperature, and other environmental factors, and landfill operating conditions. Recommended AP-42 defaults for k are: k Value 0.02 Areas receiving <25 inches/yr rainfall 0.04 Areas receiving >25 inches/yr rainfall Wet landfills¹⁴ For the purpose of the above table, wet landfills are defined as landfills which add large amounts of water to the waste. This added water may be recycled landfill leachates and condensates, or may be other sources of water such as treated wastewater. The CH_4 generation potential, L_o , has been observed to vary from 6 to 270 m³/Mg (200 to 8670 ft3/ton), depending on the organic content of the waste material. A higher organic content results in a higher L_o . Food, textiles, paper, wood, and horticultural waste have the highest L_o value on a dry basis, while inert materials such as glass, metal and plastic have no L_o value. Since moisture does not contribute to the value of L_o , a high moisture content waste, such as food or organic sludge, will have a lower L_o on an "as received" basis. When using Equation 1 to estimate emissions for typical MSW landfills in the U.S., a mean L_o value of 100 m³/Mg refuse (3,530 ft³/ton, "as received" basis) is recommended. There is a significant level of uncertainty in Equation 2 and its recommended defaults values for k and L_o . The recommended defaults k and L_o for conventional landfills, based upon the best fit to 40 different landfills, yielded predicted CH_4 emissions that ranged from ~30 to 400% of measured values and had a relative standard deviation of 0.73 (Table 2-2). The default values for wet landfills were based on a more limited set of data and are expected to contain even greater uncertainty. When gas generation reaches steady state conditions, LFG consists of approximately equal volumes of CO_2 and CH_4 . LFG also typically contains as much as five percent N_2 and other gases, and trace amounts of NMOCs. Since the flow of CO_2 is approximately equal to the flow of CH_4 , the estimate derived for CH_4 generation using Equation (1) can also be used to estimate CO_2 generation. Addition of the CH_4 and CO_2 emissions will yield an estimate of total LFG emissions. If site-specific information is available on the actual CH_4 and CO_2 contents of the LFG, then the site-specific information should be used. Most of the NMOC emissions from landfills result from the volatilization of organic compounds contained in the landfilled waste. Small amounts may also be created by biological processes and chemical reactions within the landfill. Available data show that the range of values for total NMOC in LFG is from 31 ppmv to over 5,387 ppmv, and averages 838 ppmv. The proposed regulatory default of 4,000 ppmv for NMOC concentration was developed for regulatory compliance purposes and is considered more conservative. For emissions inventory purposes, site-specific information should be taken into account when determining the total NMOC concentration, whenever available. Measured pollutant concentrations (i.e., as measured by EPA Reference Method 25C), must be corrected for air infiltration which can occur by two different mechanisms: LFG sample dilution and air intrusion into the landfill. These corrections require site-specific data for the LFG CH₄, CO₂, N₂, and O₂ content. If the ratio of N₂ to O₂ is less than or equal to 4.0 (as found in ambient air), then the total pollutant concentration is adjusted for sample dilution by assuming that CO₂ and CH₂ are the primary constituents of LFG (assumed to account for 100% of the LGF), and the following equation is used: $$C_{P} \text{ (corrected for air infiltration)} = \frac{C_{P} \times (1 \times 10^{6})}{C_{CO_{2}} + C_{CH_{4}}}$$ (2) where: C_P =
Concentration of pollutant P in LFG (i.e., NMOC as hexane), ppmv; $C_{CO_2} = CO_2$ concentration in LFG, ppmv; $Q_{CH_4} = CH_4$ Concentration in LFG, ppmv; and 1×10^6 = Constant used to correct concentration of P to units of ppmv. If the ratio of N_2 to O_2 concentrations (i.e., C_{N2} , C_{O2}) is greater than 4.0, then the total pollutant concentration should be adjusted for air intrusion into the landfill by using Equation (2) and adding the concentration of N_2 (i.e., C_{N2}) to the denominator. Values for C_{CO2} , C_{CH4} , C_{N2} , C_{O2} , can usually be found in the source test report for the particular landfill along with the total pollutant concentration data. To estimate uncontrolled emissions of NMOC or other LFG constituents, the following equation should be used: $$Q_{p} = \frac{Q_{CH_{4}} \times C_{p}}{C_{CH_{c}} \times (1 \times 10^{6})}$$ (3) where: $\begin{array}{lcl} Q_P & = & Emission \ rate \ of \ pollutant \ P \ (i.e., \ NMOC), \ m^3/yr; \\ Q_{CH_4} & = & CH_4 \ generation \ rate, \ m^3/yr \ (from \ Equation \ 1); \\ C_P & = & Concentration \ of \ pollutant \ P \ in \ LFG, \ ppmv; \ and \end{array}$ C_{CH_4} = Concentration of CH_4 in the LFG (assumed to be 50% expressed as 0.5) Uncontrolled mass emissions per year of total NMOC (as hexane) and speciated organic and inorganic compounds can be estimated by the following equation: $$UM_{P} = Q_{P} x \frac{MW_{P} x 1 \text{ atm}}{(8.205 \text{x} 10^{-5} \text{ m}^{3} - \text{atm/gmol} - {}^{\circ}\text{K}) x (1000 \text{g/kg}) x (273 + \text{T})}$$ (4) where: UM_P = Uncontrolled mass emissions of pollutant P (i.e., NMOC), kg/yr; MW_P = Molecular weight of P, g/gmol (i.e., 86.18 for NMOC as hexane); Q_P = Emission rate of pollutant P, m³/yr; and T = Temperature of LFG, °C. This equation assumes that the operating pressure of the system is approximately 1 atmosphere. If the temperature of the LFG is not known, a temperature of 25 $^{\circ}$ C (77 $^{\circ}$ F) is recommended. Uncontrolled default concentrations of VOC, NMOC and speciated compounds are presented in Table 2.4-1 for landfills having a majority of the waste in place on or after 1992 and in Table 2.4-2 for landfills having a majority of the waste in place before 1992. These default concentrations have already been corrected for air infiltration and can be used as input parameters to Equation (3) for estimating emissions from landfills when site-specific data are not available. An analysis of the data, based on the co-disposal history (with non-residential wastes) of the individual landfills from which the concentration data were derived, indicates that for benzene, NMOC, and toluene, there is a difference in the uncontrolled concentrations. It is important to note that the compounds listed in Tables 2.4-1 and 2.4-2 are not the only compounds likely to be present in LFG. The listed compounds are those that were identified through a review of the available landfill test reports. The reader should be aware that additional compounds are likely present, such as those associated with consumer or industrial products. Given this information, extreme caution should be exercised in the use of the default emission concentrations given in Tables 2.4-1 and 2.4-2. Available data have shown that there is a range of over two orders of magnitude in many of the pollutant concentrations among gases from various MSW landfills. 2.4.4.2 Controlled Emissions — Emissions from landfills are typically controlled by installing a gas collection system, and either combusting the collected gas through the use of internal combustion engines, flares, or turbines, or by purifying the gas for direct use in place of a fuel such as natural gas. Gas collection systems are not 100% efficient in collecting LFG, so emissions of CH₄ and NMOC at a landfill with a gas recovery system still occur. To estimate controlled emissions of CH₄, NMOC, and other constituents in LFG, the collection efficiency of the system must first be estimated. Reported collection efficiencies typically range from 50 to 95%, with a default efficiency of 75% recommended by EPA for inventory purposes. The lower collection efficiencies are experienced at landfills with a large number of open cells, no liners, shallow soil covers, poor collection system and cap maintenance programs and/or a large number of cells without gas collection. The higher collection efficiencies may be achieved at closed sites employing good liners, extensive geomembrane-clay composite caps in conjunction with well engineered gas collection systems, and aggressive operation and maintenance of the cap and collection system. If documented site-specific collection efficiencies are available (i.e., through a comprehensive surface sampling program), then they may be used instead of the 75% average. An analysis showing a range in the gas collection system taking into account delays from gas collection from initial waste placement is provided in Section 2.0. Estimates of controlled emissions may also need to account for the control efficiency of the control device. Control efficiencies for NMOC and VOC based on test data for the combustion of LFG with differing control devices are presented in Table 2.4-3. As noted in the table, these control efficiencies may also be applied to other LFG constituents. Emissions from the control devices need to be added to the uncollected emissions to estimate total controlled emissions. Controlled CH₄, NMOC, VOC, and speciated emissions can be determined by either of two methods developed by EPA. The newest method is the optical remote sensing with radial plume mapping (ORS-RPM). This method uses an optical emission detector such as open-path Fourier transform infrared spectroscopy (FTIR), ultraviolet differential absorption spectroscopy (UV-DOAS), or open-path tunable diode laser absorption spectroscopy (OP-TDLAS); coupled with radial plume mapping software that processes path-integrated emission concentration data and meteorological data to yield an estimate of uncontrolled emissions. More information on this newest method is described in *Evaluation of Fugitive Emissions Using Ground-Based Optical Remote Sensing Technology* (EPA/600/R-07/032).¹² Historically, controlled emissions have been calculated with Equation 5. In this equation it is assumed that the LFG collection and control system operates 100 percent of the time. Minor durations of system downtime associated with routine maintenance and repair (i.e., 5 to 7 percent) will not appreciably effect emission estimates. The first term in Equation 5 accounts for emissions from uncollected LFG, while the second term accounts for emissions of the pollutant that were collected but not fully combusted in the control or utilization device: $$CM_{P} = \left[UM_{P} x \left(1 - \frac{\eta_{col}}{100} \right) \right] + \left[UM_{P} x \frac{\eta_{col}}{100} x \left(1 - \frac{\eta_{cnt}}{100} \right) \right]$$ (5) CM_P = Controlled mass emissions of pollutant P, kg/yr; UM_P = Uncontrolled mass emissions of P, kg/yr (from Equation 4); η_{col} = Efficiency of the LFG collection system, % (recommended default is 75%); and η_{cnt} = Efficiency of the LFG control or utilization device, %. Emission factors for the secondary compounds, CO, PM, NO_x and dioxins/furans exiting the control device are presented in Table 2.4-4. These emission factors should be used when equipment vendor emission guarantees are not available. Controlled emissions of CO₂ and sulfur dioxide (SO₂) are best estimated using site-specific LFG constituent concentrations and mass balance methods.¹⁵ If site-specific data are not available, the data in Tables 2.4-1 and 2.4-2 can be used with the mass balance methods that follow. Controlled CO₂ emissions include emissions from the CO₂ component of LFG and additional CO₂ formed during the combustion of LFG. The bulk of the CO₂ formed during LFG combustion comes from the combustion of the CH₄ fraction. Small quantities will be formed during the combustion of the NMOC fraction. However, this typically amounts to less than 1 percent of total CO₂ emissions by weight. Also, the formation of CO through incomplete combustion of LFG will result in small quantities of CO₂ not being formed. This contribution to the overall mass balance picture is also very small and does not have a significant impact on overall CO₂ emissions. The following equation which assumes a 100% combustion efficiency for CH_4 can be used to estimate CO_2 emissions from controlled landfills: $$CM_{CO_2} = UM_{CO_2} + \left(UM_{CH_4} \times \frac{\eta_{col}}{100} \times 2.75\right)$$ (6) where: CM_{CO_2} = Controlled mass emissions of CO_2 , kg/yr; UM_{CO₂} = Uncontrolled mass emissions of CO₂, kg/yr (from Equation 4); UM_{CH₄} = Uncontrolled mass emissions of CH₄, kg/yr (from Equation 4); η_{col} = Efficiency of the LFG collection system, % (recommended default is 75%); and 2.75 = Ratio of the molecular weight of CO_2 to the molecular weight of CH_4 . To prepare estimates of SO₂ emissions, data on the concentration of reduced sulfur compounds within the LFG are needed. The best way to prepare this estimate is with site-specific information on the total reduced sulfur content of the LFG. Often these data are expressed in ppmv as sulfur (S). Equations 3 and 4 should be used first to determine the uncontrolled mass emission rate of reduced sulfur compounds as sulfur. Then, the following equation can be used to estimate SO₂ emissions: $$CM_{SO_2} = UM_S x \frac{\eta_{col}}{100} x 2.0$$ (7) CM_{SO_2} = Controlled mass emissions of SO_2 , kg/yr; UM_S = Uncontrolled emissions of reduced sulfur compounds as sulfur, kg/yr (from Equations 3 and 4); η_{col} = Efficiency of the LFG collection system, %; and 2.0 = Ratio of the molecular weight of SO_2 to the molecular weight of S. The next best method to estimate SO₂ concentrations, if site-specific data for
total reduced sulfur compounds as sulfur are not available, is to use site-specific data for speciated reduced sulfur compound concentrations. These data can be converted to ppmv as S with Equation 8. After the total reduced sulfur as S has been obtained from Equation 8, then Equations 3, 4, and 7 can be used to derive SO₂ emissions. $$C_{S} = \sum_{i=1}^{n} C_{P} \times S_{P} \tag{8}$$ where: C_s = Concentration of total reduced sulfur compounds, ppmv as S (for use in Equation 3); C_p = Concentration of each reduced sulfur compound, ppmv; S_{p} = Number of moles of S produced from the combustion of each reduced sulfur compound (i.e., 1 for sulfides, 2 for disulfides); and n = Number of reduced sulfur compounds available for summation. If no site-specific data are available, values of 47 and 33 ppmv can be used for C_s in the gas from landfills having a majority of the waste in place before 1992 and from landfills having a majority of the waste in place after 1992, respectively. These values were obtained by using the default concentrations presented in Tables 2.4-1 and 2.4-2 for reduced sulfur compounds and Equation 8. Hydrochloric acid [Hydrogen Chloride (HCl)] emissions are formed when chlorinated compounds in LFG are combusted in control equipment. The best methods to estimate HCl emissions are mass balance methods that are analogous to those presented above for estimating SO_2 emissions. Hence, the best source of data to estimate HCl emissions is site-specific LFG data on total chloride [expressed in ppmv as the chloride ion (Cl $^{-}$)]. However, emission estimates may be underestimated, since not every chlorinated compound in the LFG will be represented in the site test report (i.e., only those that the analytical method specifies). If these data are not available, then total chloride can be estimated from data on individual chlorinated species using Equation 9 below. $$C_{Cl} = \sum_{i=1}^{n} C_{P} \times Cl_{P}$$ $$\tag{9}$$ where: C_{Cl} = Concentration of total chloride, ppmv as Cl⁻ (for use in Equation 3); C_p = Concentration of each chlorinated compound, ppmv; Cl_p = Number of moles of Cl⁻ produced from the combustion of each mole of chlorinated compound (i.e., 3 for 1,1,1-trichloroethane); and n = Number of chlorinated compounds available for summation. After the total chloride concentration (C_{Cl}) has been estimated, Equations 3 and 4 should be used to determine the total uncontrolled mass emission rate of chlorinated compounds as chloride ion (UM_{Cl}). This value is then used in Equation 10, below, to derive HCl emission estimates: $$CM_{HCI} = UM_{CI} \times \frac{\eta_{col}}{100} \times 1.03 \times \frac{\eta_{cnt}}{100}$$ (10) CM_{HCl} = Controlled mass emissions of HCl, kg/yr; UM_{Cl} = Uncontrolled mass emissions of chlorinated compounds as chloride, kg/yr (from Equations 3 and 4); η_{col} = Efficiency of the LFG collection system, percent; 1.03 = Ratio of the molecular weight of HCl to the molecular weight of Cl⁻; and η_{cnt} = Control efficiency of the LFG control or utilization device, percent. In estimating HCl emissions, it is assumed that all of the chloride ion from the combustion of chlorinated LFG constituents is converted to HCl. If an estimate of the control efficiency, η_{cnt} , is not available, then the control efficiency for the equipment listed in Table 2.4-3 should be used. This assumption is recommended to assume that HCl emissions are not under-estimated. If site-specific data on total chloride or speciated chlorinated compounds are not available, then default values of 42 and 74 ppmv can be used for C_{Cl} in the gas from landfills having a majority of the waste in place before 1992 and from landfills having a majority of the waste in place after 1992, respectively. These values were derived from the default LFG constituent concentrations presented in Tables 2.4-1 and 2.4-2. As mentioned above, use of this default may produce underestimates of HCl emissions since it is based only on those compounds for which analyses have been performed. The constituents listed in Table 2.4-1 and 2.4-2 are likely not all of the chlorinated compounds present in LFG. The reader is referred to AP-42 Volume I, Sections 13.2.1 and 13.2.2 for information on estimating fugitive dust emissions from paved and unpaved roads, and to Section 13.2.3 for information on estimating fugitive dust emissions from heavy construction operations; and to AP-42 Volume II Section II-7 for estimating exhaust emissions from construction equipment. ## 2.4.5 Updates Since the Fifth Edition The Fifth Edition was released in January 1995. The November 1998 revision includes major revisions of the text and recommended emission factors contained in the section. The most significant revisions to this section since publication in the Fifth Edition are summarized below. - X The equations to calculate the CH₄, CO₂ and other constituents were simplified. - X The default L_0 and k were revised based upon an expanded base of gas generation data. - X The default ratio of CO₂ to CH₄ was revised based upon averages observed in available source test reports. - X The default concentrations of LFG constituents were revised based upon additional data. References 16-148 are the emission test reports from which data were obtained for this section. - X Additional control efficiencies were included and existing efficiencies were revised based upon additional emission test data. X Revised and expanded the recommended emission factors for secondary compounds emitted from typical control devices. The current (i.e., 2008) update includes text revisions and additional discussion, as well as revised recommended emission factors contained within the section. The more significant revisions are summarized below: - X Default concentrations of LFG constituents were developed for landfills with the majority of their waste in place on or after 1992 (proposal of RCRA Subtitle D). The LFG constituent list from the last update reflects data from landfills with waste in place prior to 1992, so Table 2.4-2 was renamed to reflect this. - X Control efficiencies were updated to incorporate additional emission test data and the table was revised to show the NMOC and VOC control efficiencies. - X Revised and expanded the recommended emission factors for secondary compounds emitted from typical control devices. - X The description of modern landfills and statistics about waste disposition in the U.S. were updated with 2006 information. - X EPA's newest measurement method for determining landfill emissions, Optical Remote Sensing with Radial Plume Mapping (ORS-RPM), was added to the discussion of available options for measuring landfill emissions. - X A factor of 1.3 was added to Equation (1) to account for the fact that L_0 is typically determined by the amount of CH_4 collected at landfills using equipment that typically has a capture efficiency of only 75%. - X A k value of 0.3 was added to the list of recommended k values for use in Equation (1) to more accurately model landfill gas emissions from wet landfills. | Table 2.4-1. DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR LANDFILLS WITH WASTE IN PLACE ON OR AFTER 1992 | | | | | | |---|------------|------------------|---------------|-----------------|--| | | | | Default | Recommended | | | Compound | CAS Number | Molecular Weight | Concentration | Emission Factor | | | | | | (ppmv) | Rating | | | NMOC (as hexane) ^a | | 86.18 | 8.38E+02 | A | | | VOC^b | | NA | 8.35E+02 | A | | | 1,1,1-Trichloroethane ^c | 71556 | 133.40 | 2.43E-01 | A | | | 1,1,2,2-Tetrachloroethane ^c | 79345 | 167.85 | 5.35E-01 | Е | | | 1,1,2,3,4,4-Hexachloro-1,3-butadiene | 87683 | 260.76 | 3.49E-03 | D | | | (Hexachlorobutadiene) ^c | | | | _ | | | 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) | 76131 | 187.37 | 6.72E-02 | С | | | 1,1,2-Trichloroethane ^c | 79005 | 133.40 | 1.58E-01 | D | | | 1,1-Dichloroethane ^c | 75343 | 98.96 | 2.08E+00 | A | | | 1,1-Dichloroethene (1,1- | 75354 | 96.94 | 1.60E-01 | A | | | Dichloroethylene) ^c | 73334 | 70.74 | 1.00L-01 | | | | 1,2,3-Trimethylbenzene | 526738 | 120.19 | 3.59E-01 | D | | | 1,2,4-Trichlorobenzene ^c | 120821 | 181.45 | 5.51E-03 | С | | | 1,2,4-Trimethylbenzene | 95636 | 120.19 | 1.37E+00 | В | |---|-----------------|---------------|----------|---| | 1,2-Dibromoethane (Ethylene | | | | ъ | | dibromide) ^c | 106934 | 187.86 | 4.80E-03 | В | | 1,2-Dichloro-1,1,2,2- | 7.61.40 | 170.02 | 1.000.01 | , | | tetrafluoroethane (Freon 114) | 76142 | 170.92 | 1.06E-01 | В | | 1,2-Dichloroethane (Ethylene | 107072 | 00.00 | 1.500.01 | | | dichloride) ^c | 107062 | 98.96 | 1.59E-01 | A | | 1,2-Dichloroethene | 540590 | 96.94 | 1.14E+01 | Е | | 1,2-Dichloropropane ^c | 78875 | 112.99 | 5.20E-02 | D | | 1,2-Diethylbenzene | 135013 | 134.22 | 1.99E-02 | D | | 1,3,5-Trimethylbenzene | 108678 | 120.19 | 6.23E-01 | С | | 1,3-Butadiene (Vinyl ethylene) ^c | 106990 | 54.09 | 1.66E-01 | С | | 1,3-Diethylbenzene | 141935 | 134.22 | 6.55E-02 | D | | 1,4-Diethylbenzene | 105055 | 134.22 | 2.62E-01 | D | | 1,4-Dioxane (1,4-Diethylene | | | | | | dioxide) ^c | 123911 | 88.11 | 8.29E-03 | D | | 1-Butene / 2-Methylbutene | 106989 / 513359 | 56.11 / 70.13 | 1.22E+00 | D | | 1-Butene / 2-Methylpropene | 106989 / 115117 | 56.11 | 1.10E+00 | Е | | 1-Ethyl-4-methylbenzene (4-Ethyl | 6220.60 | 120.10 | 0.000 01 | C | | toluene) | 622968 | 120.19 | 9.89E-01 | С | | 1-Ethyl-4-methylbenzene (4-Ethyl | (220(0 / 100(70 | 120.10 | 5.70E.01 | D | | toluene) + 1,3,5-Trimethylbenzene | 622968 / 108678 | 120.19 | 5.79E-01 | D | | 1-Heptene | 592767 | 98.19 | 6.25E-01 | Е | | 1-Hexene / 2-Methyl-1-pentene | 592416 / 763291 | 84.16 | 8.88E-02 | D | | 1-Methylcyclohexene | 591491 | 96.17 | 2.27E-02 | D | |
1-Methylcyclopentene | 693890 | 82.14 | 2.52E-02 | D | | 1-Pentene | 109671 | 70.13 | 2.20E-01 | D | | 1-Propanethiol (n-Propyl mercaptan) | 107039 | 76.16 | 1.25E-01 | A | | 2,2,3-Trimethylbutane | 464062 | 100.20 | 9.19E-03 | D | | 2,2,4-Trimethylpentane ^c | 540841 | 114.23 | 6.14E-01 | D | | 2,2,5-Trimethylhexane | 3522949 | 128.26 | 1.56E-01 | D | | 2,2-Dimethylbutane | 75832 | 86.18 | 1.56E-01 | D | | 2,2-Dimethylpentane | 590352 | 100.20 | 6.08E-02 | D | | 2,2-Dimethylpropane | 463821 | 72.15 | 2.74E-02 | Е | | 2,3,4-Trimethylpentane | 565753 | 114.23 | 3.12E-01 | D | | 2,3-Dimethylbutane | 79298 | 86.18 | 1.67E-01 | D | | 2,3-Dimethylpentane | 565593 | 100.20 | 3.10E-01 | D | | 2,4-Dimethylhexane | 589435 | 114.23 | 2.22E-01 | D | | 2,4-Dimethylpentane | 108087 | 100.20 | 1.00E-01 | D | | 2,5-Dimethylhexane | 592132 | 114.23 | 1.66E-01 | D | | 2,5-Dimethylthiophene | 638028 | 112.19 | 6.44E-02 | E | | 2-Butanone (Methyl ethyl ketone) ^c | 78933 | 72.11 | 4.01E+00 | C | | 2-Ethyl-1-butene | 760214 | 84.16 | 1.77E-02 | D | | 2-Ethylthiophene | 872559 | 112.19 | 6.29E-02 | E | | 2-Ethyltoluene | 611143 | 120.19 | 3.23E-01 | D | | 2-Hexanone (Methyl butyl ketone) | 591786 | 100.16 | 6.13E-01 | E | | 2-Methyl-1-butene | 563462 | 70.13 | 1.79E-01 | D | | 2-Methyl-1-propanethiol (Isobutyl | | | | | | mercaptan) | 513440 | 90.19 | 1.70E-01 | Е | | 2-Methyl-2-butene | 513359 | 70.13 | 3.03E-01 | D | Table 2.4-1(CONTINUED). DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR LANDFILLS WITH WASTE IN PLACE ON OR AFTER 1992 | Compound | CAS Number | Molecular Weight | Default Concentration | | |---|------------------|------------------|-----------------------|--------------------------| | 2-Methyl-2-propanethiol (tert- | 75661 | 90.19 | (ppmv)
3.25E-01 | Emission Factor Rating E | | Butylmercaptan) | | | | | | 2-Methylbutane | 78784 | 72.15 | 2.26E+00 | D | | 2-Methylheptane | 592278 | 114.23 | 7.16E-01 | D | | 2-Methylhexane | 591764 | 100.20 | 8.16E-01 | D | | 2-Methylpentane | 107835 | 86.18 | 6.88E-01 | D | | 2-Propanol (Isopropyl alcohol) | 67630 | 60.10 | 1.80E+00 | С | | 3,6-Dimethyloctane | 15869940 | 142.28 | 7.85E-01 | D | | 3-Ethyltoluene | 620144 | 120.19 | 7.80E-01 | D | | 3-Methyl-1-pentene | 760203 | 84.16 | 6.99E-03 | D | | 3-Methylheptane | 589811 | 114.23 | 7.63E-01 | D | | 3-Methylhexane | 589344 | 100.20 | 1.13E+00 | D | | 3-Methylpentane | 96140 | 86.18 | 7.40E-01 | D | | 3-Methylthiophene | 616444 | 98.17 | 9.25E-02 | Е | | 4-Methyl-1-pentene | 691372 | 84.16 | 2.33E-02 | Е | | 4-Methyl-2-pentanone (MIBK) ^c | 108101 | 100.16 | 8.83E-01 | С | | 4-Methylheptane | 589537 | 114.23 | 2.49E-01 | D | | Acetaldehyde ^c | 75070 | 44.05 | 7.74E-02 | D | | Acetone | 67641 | 58.08 | 6.70E+00 | C | | Acetonitrile ^c | 75058 | 41.05 | 5.56E-01 | A | | Acrylonitrile ^{c,d} | 107131 | 53.06 | BDL | | | Benzene ^c | 71432 | 78.11 | 2.40E+00 | A | | Benzyl chloride ^c | 100447 | 126.58 | 1.81E-02 | A | | Bromodichloromethane | 75274 | 163.83 | 8.78E-03 | E | | Bromomethane (Methyl bromide) ^c | 74839 | 94.94 | 2.10E-02 | C | | Butane | 106978 | 58.12 | 6.22E+00 | C | | Carbon disulfide ^c | 75150 | 76.14 | 1.47E-01 | A | | Carbon monoxide | 630080 | 28.01 | 2.44E+01 | C | | Carbon tetrachloride ^c | 56235 | 153.82 | 7.98E-03 | A | | Carbon tetrafluoride (Freon 14) | 75730 | 88.00 | 1.51E-01 | E | | Carbonyl sulfide (Carbon oxysulfide) ^c | 463581 | 60.08 | 1.22E-01 | A | | Chlorobenzene | 108907 | 112.56 | 4.84E-01 | A | | Chlorodifluoromethane (Freon 22) ^c | 75456 | 86.47 | 7.96E-01 | D | | Chloroethane (Ethyl chloride) ^c | 75003 | 64.51 | 3.95E+00 | В | | Chloromethane (Methyl chloride) ^c | 74873 | 50.49 | 2.44E-01 | В | | cis-1,2-Dichloroethene | 156592 | 96.94 | 1.24E+00 | В | | cis-1,2-Dienioroctiche
cis-1,2-Dimethylcyclohexane | 2207014 | 112.21 | 8.10E-02 | D | | cis-1,3-Dirhettiyicyclonexane | 10061015 | 110.97 | 3.03E-03 | D | | cis-1,3-Diemoropropene | 638040 | 110.97 | 5.01E-01 | D | | cis-1,4-Dimethylcyclohexane / trans- | 036040 | 112.21 | 3.01E-01 | ט | | 1,3-Dimethylcyclohexane | 624293 / 2207036 | 112.21 | 2.48E-01 | D | | cis-2-Butene | 590181 | 56.11 | 1.05E-01 | D | | cis-2-Heptene | 6443921 | 98.19 | 2.45E-02 | Е | | cis-2-Hexene | 7688213 | 84.16 | 1.72E-02 | D | | cis-2-Octene | 7642048 | 112.21 | 2.20E-01 | D | | cis-2-Pentene | 627203 | 70.13 | 4.79E-02 | D | | cis-3-Methyl-2-pentene | 922623 | 84.16 | 1.79E-02 | D | | Cyclohexane | 110827 | 84.16 | 1.01E+00 | В | | Cyclohexene | 110838 | 82.14 | 1.84E-02 | D | Table 2.4-1(CONTINUED). DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR LANDFILLS WITH WASTE IN PLACE ON OR AFTER 1992 | | | LACE ON OR AL | Default Concentration | Recommended | |--|------------|------------------|-----------------------|------------------------| | Compound | CAS Number | Molecular Weight | (ppmv) | Emission Factor Rating | | Cyclopentane | 287923 | 70.13 | 2.21E-02 | D | | Cyclopentene | 142290 | 68.12 | 1.21E-02 | D | | Decane | 124185 | 142.28 | 3.80E+00 | D | | Dibromochloromethane | 124481 | 208.28 | 1.51E-02 | D | | Dibromomethane (Methylene dibromide) | 74953 | 173.84 | 8.35E-04 | Е | | Dichlorobenzene ^{c,e} | 106467 | 147.00 | 9.40E-01 | A | | Dichlorodifluoromethane (Freon 12) | 75718 | 120.91 | 1.18E+00 | В | | Dichloromethane (Methylene chloride) ^c | 75092 | 84.93 | 6.15E+00 | A | | Diethyl sulfide | 352932 | 90.19 | 8.62E-02 | E | | Dimethyl disulfide | 624920 | 94.20 | 1.37E-01 | A | | Dimethyl sulfide | 75183 | 62.14 | 5.66E+00 | A | | Dodecane (n-Dodecane) | 112403 | 170.33 | 2.21E-01 | D | | Ethane | 74840 | 30.07 | 9.05E+00 | D | | Ethanol | 64175 | 46.07 | 2.30E-01 | D | | Ethyl acetate | 141786 | 88.11 | 1.88E+00 | C | | Ethyl mercaptan (Ethanediol) | 75081 | 62.14 | 1.98E-01 | A | | Ethyl methyl sulfide | 624895 | 76.16 | 3.67E-02 | E | | Ethylbenzene ^c | 100414 | 106.17 | 4.86E+00 | В | | Formaldehyde ^c | 50000 | 30.03 | 1.17E-02 | D | | Heptane | 142825 | 100.20 | 1.34E+00 | В | | Hexane ^c | 110543 | 86.18 | 3.10E+00 | В | | Hydrogen sulfide | 7783064 | 34.08 | 3.20E+01 | A | | Indane (2,3-Dihydroindene) | 496117 | 34.08 | 6.66E-02 | D | | Isobutane (2-Methylpropane) | 75285 | 58.12 | 8.16E+00 | D | | Isobutylbenzene | 538932 | 134.22 | 4.07E-02 | D | | Isoprene (2-Methyl-1,3-butadiene) | 78795 | 68.12 | 1.65E-02 | D | | Isopropyl mercaptan | 75332 | 76.16 | 1.75E-01 | A | | Isopropyl mercaptan Isopropylbenzene (Cumene) ^c | | | | D | | | 98828 | 120.19 | 4.30E-01 | | | Mercury (total) ^c | 7439976 | 200.59 | 1.22E-04 | В | | Mercury (elemental) ^c | 7439976 | 200.59 | 7.70E-05 | С | | Mercury (monomethyl) ^c | 51176126 | 216.63 | 3.84E-07 | С | | Mercury (dimethyl) ^c | 627441 | 258.71 | 2.53E-06 | В | | Methanethiol (Methyl mercaptan) | 74931 | 48.11 | 1.37E+00 | A | | Methyl tert-butyl ether (MTBE) ^c | 1634044 | 88.15 | 1.18E-01 | D | | Methylcyclohexane | 108872 | 98.19 | 1.29E+00 | D | | Methylcyclopentane | 96377 | 84.16 | 6.50E-01 | D | | Naphthalene ^c | 91203 | 128.17 | 1.07E-01 | D | | n-Butylbenzene | 104518 | 134.22 | 6.80E-02 | D | | Nonane | 111842 | 128.26 | 2.37E+00 | D | | n-Propylbenzene (Propylbenzene) | 103651 | 120.19 | 4.13E-01 | D | | Octane | 111659 | 114.23 | 1.08E+00 | D | | p-Cymene (1-Methyl-4-
lsopropylbenzene) | 99876 | 134.22 | 3.58E+00 | D | | Pentane | 109660 | 72.15 | 4.46E+00 | C | | Propane | 74986 | 44.10 | 1.55E+01 | С | | Propene | 115071 | 42.08 | 3.32E+00 | D | | Propyne | 74997 | 40.06 | 3.80E-02 | Е | | sec-Butylbenzene | 135988 | 134.22 | 6.75E-02 | D | Table 2.4-1(CONTINUED). DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR LANDFILLS WITH WASTE IN PLACE ON OR AFTER 1992 | Compound | CAS Number | Molecular Weight | Default
Concentration
(ppmv) | Recommended
Emission Factor
Rating | |---|------------|------------------|------------------------------------|--| | Styrene (Vinylbenzene) ^c | 100425 | 104.15 | 4.11E-01 | В | | Tetrachloroethylene
(Perchloroethylene) ^c | 127184 | 165.83 | 2.03E+00 | A | | Tetrahydrofuran (Diethylene oxide) | 109999 | 72.11 | 9.69E-01 | С | | Thiophene | 110021 | 84.14 | 3.49E-01 | Е | | Toluene (Methyl benzene) ^c | 108883 | 92.14 | 2.95E+01 | A | | trans-1,2-Dichloroethene | 156605 | 96.94 | 2.87E-02 | С | | trans-1,2-Dimethylcyclohexane | 6876239 | 112.21 | 4.04E-01 | D | | trans-1,3-Dichloropropene | 10061026 | 110.97 | 9.43E-03 | D | | trans-1,4-Dimethylcyclohexane | 2207047 | 112.21 | 2.05E-01 | D | | trans-2-Butene | 624646 | 56.11 | 1.04E-01 | D | | trans-2-Heptene | 14686136 | 98.19 | 2.50E-03 | Е | | trans-2-Hexene | 4050457 | 84.16 | 2.06E-02 | D | | trans-2-Octene | 13389429 | 112.21 | 2.41E-01 | D | | trans-2-Pentene | 646048 | 70.13 | 3.47E-02 | D | | trans-3-Methyl-2-pentene | 616126 | 84.16 | 1.55E-02 | D | | Tribromomethane (Bromoform) ^c | 75252 | 252.73 | 1.24E-02 | D | | Trichloroethylene (Trichloroethene) ^c | 79016 | 131.39 | 8.28E-01 | A | | Trichlorofluoromethane (Freon 11) | 91315616 | 137.37 | 2.48E-01 | В | | Trichloromethane (Chloroform) ^c | 8013545 | 119.38 | 7.08E-02 | A | | Undecane | 1120214 | 156.31 | 1.67E+00 | D | | Vinyl acetate ^c | 85306269 | 86.09 | 2.48E-01 | С | | Vinyl chloride (Chloroethene) ^c | 75014 | 62.50 | 1.42E+00 | A | | Xylenes (o-, m-, p-, mixtures) | 8026093 | 106.17 | 9.23E+00 | A | NOTE: This is not an all-inclusive list of potential LFG constituents, only those for which test data were available at multiple sites. References 83-148. ^e Many source tests did not indicate whether this compound was the ortho-, meta-, or para- isomer. The para isomer is a Title III listed HAP. | Table 2.4-2. DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR LANDFILLS WITH WASTE IN PLACE PRIOR TO 1992 (SCC 50100402, 50300603) | | | | |
---|------------------|-----------------------|------------------------|--| | | | Default Concentration | | | | Compound | Molecular Weight | (ppmv) | Emission Factor Rating | | | NMOC (as hexane) ^e | 86.18 | | | | | Co-disposal (SCC 50300603) | | 2,420 | D | | | No or Unknown co-disposal (SCC 50100402) | | 595 | В | | | 1,1,1-Trichloroethane (methyl chloroform) ^a | 133.42 | 0.48 | В | | | 1,1,2,2-Tetrachloroethane ^a | 167.85 | 1.11 | С | | | 1,1-Dichloroethane (ethylidene dichloride) ^a | 98.95 | 2.35 | В | | | 1,1-Dichloroethene (vinylidene chloride) ^a | 96.94 | 0.20 | В | | ^a For NSPS/Emission Guideline compliance purposes, the default concentration for NMOC as specified in the final rule must be used. ^b Calculated as 99.7% of NMOC, based on speciated emission test data. ^c Hazardous Air Pollutant listed in Title III of the 1990 Clean Air Act Amendments. $^{^{\}rm d}$ All tests below detection limit. Method detection limits are available for three tests, and are as follows: MDL = 2.00E-04, 4.00E-03, and 2.00E-02 ppm Table 2.4-2 (CONTINUED). DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR LANDFILLS WITH WASTE IN PLACE PRIOR TO 1992 (SCC 50100402, 50300603) | (See 50100402, 503000003) | | | | | | |---|------------------|------------------------------|---------------------------|--|--| | Compound | Molecular Weight | Default Concentration (ppmv) | Emission Factor
Rating | | | | 1,2-Dichloroethane (ethylene dichloride) ^a | 98.96 | 0.41 | В | | | | 1,2-Dichloropropane (propylene dichloride) ^a | 112.98 | 0.18 | D | | | | 2-Propanol (isopropyl alcohol) | 60.11 | 50.1 | Е | | | | Acetone | 58.08 | 7.01 | В | | | | Acrylonitrile ^a | 53.06 | 6.33 | D | | | | Benzene ^a | 78.11 | | | | | | Co-disposal (SCC 50300603) | | 11.1 | D | | | | No or Unknown co-disposal (SCC 50100402) | | 1.91 | В | | | | Bromodichloromethane | 163.83 | 3.13 | С | | | | Butane | 58.12 | 5.03 | С | | | | Carbon disulfide ^a | 76.13 | 0.58 | С | | | | Carbon monoxide ^b | 28.01 | 141 | Е | | | | Carbon tetrachloride ^a | 153.84 | 0.004 | В | | | | Carbonyl sulfide ^a | 60.07 | 0.49 | D | | | | Chlorobenzene ^a | 112.56 | 0.25 | С | | | | Chlorodifluoromethane | 86.47 | 1.30 | С | | | | Chloroethane (ethyl chloride) ^a | 64.52 | 1.25 | В | | | | Chloroform ^a | 119.39 | 0.03 | В | | | | Chloromethane | 50.49 | 1.21 | В | | | | Dichlorobenzene ^c | 147 | 0.21 | Е | | | | Dichlorodifluoromethane | 120.91 | 15.7 | A | | | | Dichlorofluoromethane | 102.92 | 2.62 | D | | | | Dichloromethane (methylene chloride) ^a | 84.94 | 14.3 | A | | | | Dimethyl sulfide (methyl sulfide) | 62.13 | 7.82 | С | | | | Ethane | 30.07 | 889 | С | | | | Ethanol | 46.08 | 27.2 | Е | | | | Ethyl mercaptan (ethanethiol) | 62.13 | 2.28 | D | | | | Ethylbenzene ^a | 106.16 | 4.61 | В | | | | Ethylene dibromide | 187.88 | 0.001 | Е | | | | Fluorotrichloromethane | 137.38 | 0.76 | В | | | | Hexane ^a | 86.18 | 6.57 | В | | | | Hydrogen sulfide | 34.08 | 35.5 | В | | | | Mercury (total) ^{a,d} | 200.61 | 2.92x10 ⁻⁴ | Е | | | | Methyl ethyl ketone ^a | 72.11 | 7.09 | A | | | | Methyl isobutyl ketone ^a | 100.16 | 1.87 | В | | | | Methyl mercaptan | 48.11 | 2.49 | С | | | | | • | | | | | | Table 2.4-2 (CONTINUED). DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR | | | | | | | |--|--------|------|---|--|--|--| | LANDFILLS WITH WASTE IN PLACE PRIOR TO 1992 (SCC 50100402, 50300603) | | | | | | | | Compound Molecular Weight Default Concentration Emission Factor Rating | | | | | | | | Pentane | 72.15 | 3.29 | С | | | | | Perchloroethylene (tetrachloroethylene) ^a | 165.83 | 3.73 | В | | | | | Propane | 44.09 | 11.1 | В | | | | | t-1,2-dichloroethene | 96.94 | 2.84 | В | | | | | Toluene ^a | 92.13 | | | | | | | Co-disposal (SCC 50300603) | | 165 | D | | | | | No or Unknown co-disposal (SCC 50100402) | | 39.3 | A | | | | | Trichloroethylene (trichloroethene) ^a | 131.38 | 2.82 | В | | | | | Vinyl chloride ^a | 62.50 | 7.34 | В | | | | | Xylenes ^a | 106.16 | 12.1 | В | | | | NOTE: This is not an all-inclusive list of potential LFG constituents, only those for which test data were available at multiple sites. References 16-82. Source Classification Codes in parentheses. Table 2.4-3. CONTROL EFFICIENCIES FOR LFG NMOC and VOCa | | Control Efficiency (%) ^b | | | |--|-------------------------------------|--------|--------| | Control Device | Typical | Range | Rating | | Boiler/Steam Turbine (50100423) | 98.6 | 96-99+ | D | | Flare ^c (50100410) (50300601) | 97.7 | 86-99+ | A | | Gas Turbine (50100420) | 94.4 | 92-97 | E | | IC Engine (50100421) | 97.2 | 95-99+ | D | ^a References 16-148. Source Classification Codes in parentheses. ^a Hazardous Air Pollutants listed in Title III of the 1990 Clean Air Act Amendments. ^b Carbon monoxide is not a typical constituent of LFG, but does exist in instances involving landfill (underground) combustion. Therefore, this default value should be used with caution. Of 18 sites where CO was measured, only 2 showed detectable levels of CO. ^c Source tests did not indicate whether this compound was the para- or ortho- isomer. The para isomer is a Title III-listed HAP. ^d No data were available to speciate total Hg into the elemental and organic forms. ^e For NSPS/Emission Guideline compliance purposes, the default concentration for NMOC as specified in the final rule must be used. For purposes not associated with NSPS/Emission Guideline compliance, the default VOC content at co-disposal sites can be estimated by 85 percent by weight (2,060 ppmv as hexane); at No or Unknown sites can be estimated by 39 percent by weight 235 ppmv as hexane). ^b Control efficiency may also be applied to LFG constituents in Tables 2-4.1 and 2.4-2, except for mercury. For any combustion equipment, the control efficiency for Hg should be assumed to be 0. ^c Where information on equipment was given in the reference, test data were taken from enclosed flares. Control efficiencies are assumed to be equally representative of open flares. Table 2.4-4. EMISSION FACTORS FOR SECONDARY COMPOUNDS EXITING CONTROL DEVICES^a | Control Dorley | Pollutant ^b | Typical Rate,
kg/10 ⁶ dscm | Typical Rate, lb/10 ⁶ dscf CH ₄ | Emission Factor | |-----------------------------------|------------------------|--|---|-----------------| | Control Device | | CH ₄ | | Rating | | Flare ^c | Nitrogen dioxide | 631 | 39 | A | | (50100410) | Carbon monoxide | 737 | 46 | A | | (50300601) | Particulate matter | 238 | 15 | A | | | Dioxin/Furan | 6.7×10^{-6} | 4.2x10 ⁻⁷ | E | | IC Engine | Nitrogen dioxide | 11,620 | 725 | С | | (50100421) | Carbon monoxide | 8,462 | 528 | C | | | Particulate matter | 232 | 15 | D | | Boiler/Steam Turbine ^d | Nitrogen dioxide | 677 | 42 | D | | (50100423) | Carbon monoxide | 116 | 7 | D | | | Particulate matter | 41 | 3 | D | | | Dioxin/Furan | 5.1×10^{-6} | 3.2x10 ⁻⁷ | D | | Gas Turbine | Nitrogen dioxide | 1,400 | 87 | D | | (50100420) | Carbon monoxide | 3,600 | 230 | E | | | Particulate matter | 350 | 22 | E | ^a Source Classification Codes in parentheses. ### **References for Section 2.4** - "Criteria for Municipal Solid Waste Landfills," 40 CFR Part 258, Volume 56, No. 196, October 9, 1991. - 2. Air Emissions from Municipal Solid Waste Landfills Background Information for Proposed Standards and Guidelines, Office of Air Quality Planning and Standards, EPA-450/3-90-011a, Chapters 3 and 4, U. S. Environmental Protection Agency, Research Triangle Park, NC, March 1991. - 3. *Municipal Solid Waste in the United States: 2006 Facts and Figures*, Office of Solid Waste, U. S. Environmental Protection Agency, Washington, DC, December 2007. http://www.epa.gov/epaoswer/non-hw/muncpl/msw99.htm - 4. Eastern Research Group, Inc., *List of Municipal Solid Waste Landfills*, Prepared for the U. S. Environmental Protection Agency, Office of Solid Waste, Municipal and Industrial Solid Waste Division, Washington, DC, September 1992. - 5. Suggested Control Measures for Landfill Gas Emissions, State of California Air Resources Board, Stationary Source Division, Sacramento, CA, August 1990. - 6. "Standards of Performance for New Stationary Sources and Guidelines for Control of Existing Sources: Municipal Solid Waste Landfills; Proposed Rule, Guideline, and Notice of Public Hearing," 40 CFR Parts 51, 52, and 60, Vol. 56, No. 104, May 30, 1991. b No data on PM size distributions were available, however for other gas-fired combustion sources, most of the particulate matter is less than 2.5 microns in diameter. Hence, this emission factor can be used to provide estimates of PM-10 or PM-2.5 emissions. See section 2.4.4.2 for methods to estimate CO₂, SO₂, and HCl. ^c Where information on equipment was given in the reference, test data were taken from enclosed flares. Control efficiencies are assumed to be equally representative of open flares. ^d All source tests were conducted on boilers, however emission factors should also be representative of steam turbines. Emission factors are representative of boilers equipped with low-NO_x burners and flue gas recirculation. No data were available for uncontrolled NO_x emissions. - 7. U.S. DOE, National Renewable Energy Laboratory, Comparison of Models for Predicting Landfill Methane Recovery, March 1997, Available online: http://www.nrel.gov/docs/legosti/fy97/26041.pdf - 8. Eun, Sangho, Debra R. Reinhart, C. David Cooper, Timothy G. Townsend, Ayman Faour. Hydrogen sulfide flux measurements from construction and demolition debris (C&D) landfills. Waste Management 27 (2007) 220-227. Available online: http://www.sciencedirect.com - 9. Lee, Sue, Qiyong Xu, Matthew Booth, Timothy G. Townsend, Paul Chadik and Gabriel Bitton. Reduced sulfur compounds in gas from construction and demolition debris landfills. Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, United States. October 2005. Available online: http://www.sciencedirect.com - 10. Gullett, B.K., P.M. Lemieux, C.C. Lutes, C.K.. Winterrowd and D.L. Winters, 2001. Emissions of PCDD/F from uncontrolled, domestic waste burning, *Chemosphere, Volume 43, Issues 4-7, May 2001, Pages 721-725* - 11. <u>Landfill Fires, Their Magnitude, Characteristics, and Mitigation</u>, prepared by TriData Corporation, 1000 Wilson Boulevard Arlington, Virginia 22209, for Federal Emergency Management Agency, United States Fire Administration, National Fire Data Center, May 2002, http://www.usfa.dhs.gov/downloads/pdf/publications/fa-225.pdf - 12. Evaluation of Fugitive Emissions Using Ground-Based Optical Remote Sensing Technology, Office of Research and Development, U. S. Environmental Protection Agency, Washington, DC, (EPA/600/R-07/032), February 2007. - 13. R.L. Peer, et al., Memorandum *Methodology Used to Revise the Model Inputs in the Municipal Solid Waste Landfills Input Data Bases (Revised)*, to the Municipal Solid Waste Landfills Docket No. A-88-09, April 28, 1993. - 14. Debra R. Reinhart, Ayman A. Faour, and Huaxin You, *First-Order Kinetic Gas Generation Model Parameters for Wet Landfills*, U. S. Environmental Protection Agency, (EPA-600/R-05/072), June 2005. - 15. Letter and attached documents from C. Nesbitt, Los Angeles County Sanitation Districts, to K. Brust, E.H. Pechan and Associates, Inc., December 6, 1996. - 16. A.R. Chowdhury, *Emissions from a Landfill Gas-Fired Turbine/Generator Set, Source Test Report C-84-33*, Los Angeles County Sanitation District, South Coast Air Quality Management District, June 28, 1984. - 17. Engineering-Science, Inc., *Report of Stack Testing at County Sanitation District Los Angeles Puente Hills Landfill*, Los Angeles County Sanitation District, August 15, 1984. - 18. J.R. Manker, Vinyl Chloride (and Other Organic Compounds) Content of Landfill Gas Vented to an Inoperative Flare, Source Test Report 84-496, David Price Company, South Coast Air Quality Management District, November 30, 1984. - 19. S. Mainoff, *Landfill Gas Composition, Source Test Report 85-102*, Bradley Pit Landfill, South Coast Air Quality Management District, May 22, 1985. - 20. J. Littman, Vinyl Chloride and Other Selected Compounds Present in A Landfill Gas Collection System Prior to and after Flaring, Source Test Report 85-369, Los Angeles County Sanitation District, South Coast Air Quality Management District, October 9, 1985. - 21. W.A. Nakagawa, *Emissions from a Landfill Exhausting Through a Flare System, Source Test Report 85-461*, Operating Industries, South Coast Air Quality Management District, October 14, 1985. - 22. S. Marinoff, *Emissions from a Landfill Gas Collection System*, *Source Test Report 85-511*. Sheldon Street Landfill, South Coast Air Quality Management District, December 9, 1985. - 23. W.A. Nakagawa, Vinyl Chloride and Other Selected Compounds Present in a Landfill Gas Collection System Prior to and after Flaring, Source Test Report 85-592, Mission Canyon Landfill, Los Angeles County Sanitation District, South Coast Air Quality Management District, January 16, 1986. - 24. California Air Resources Board, *Evaluation Test on a Landfill Gas-Fired Flare at the BKK Landfill Facility*, West Covina, CA, ARB-SS-87-09, July 1986. - 25. S. Marinoff, Gaseous Composition from a Landfill Gas Collection System and Flare, Source Test Report 86-0342, Syufy Enterprises, South Coast Air Quality Management District, August 21, 1986. - 26. Analytical Laboratory Report for Source Test, Azusa Land Reclamation, June 30, 1983, South Coast Air Quality Management District. - 27. J.R. Manker, *Source Test Report C-84-202*, Bradley Pit Landfill, South Coast Air Quality Management District, May 25, 1984. - 28. S. Marinoff, *Source Test Report 84-315*, Puente Hills Landfill, South Coast Air Quality Management District, February 6, 1985. - 29. P.P. Chavez, *Source Test Report 84-596*, Bradley Pit Landfill, South Coast Air Quality Management District, March 11, 1985. - 30. S. Marinoff, *Source Test Report 84-373*, Los Angeles By-Products, South Coast air Quality Management District, March 27, 1985. - 31. J. Littman, *Source Test Report 85-403*, Palos Verdes Landfill, South Coast Air Quality Management District, September 25, 1985. - 32. S. Marinoff, *Source Test Report 86-0234*, Pacific Lighting Energy Systems, South Coast Air Quality Management District, July 16, 1986. - 33. South Coast Air Quality Management District, Evaluation Test on a Landfill Gas-Fired Flare at the Los Angeles County Sanitation District's Puente Hills Landfill Facility, [ARB/SS-87-06], Sacramento, CA, July 1986. - 34. D.L. Campbell, et al., *Analysis of Factors Affecting Methane Gas Recovery from Six Landfills*, Air and Energy Engineering Research Laboratory, EPA-600/2-91-055, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1991. - 35. Browning-Ferris Industries, Source Test Report, Lyon Development Landfill, August 21, 1990. - 36. X.V. Via, *Source Test Report*, Browning-Ferris Industries, Azusa Landfill. - 37. M. Nourot, *Gaseous Composition from a Landfill Gas Collection System and Flare Outlet*. Laidlaw Gas Recovery Systems, to J.R. Farmer, OAQPS:ESD, December 8, 1987. - 38. D.A. Stringham and W.H. Wolfe, *Waste Management of North America, Inc.*, to J.R. Farmer, OAQPS:ESD, January 29, 1988, Response to Section 114 questionnaire. - 39. V. Espinosa, *Source Test Report* 87-0318, Los Angeles County Sanitation District Calabasas Landfill, South Coast Air Quality Management District, December 16, 1987. - 40. C.S. Bhatt, *Source Test Report 87-0329*, Los Angeles County Sanitation District, Scholl Canyon Landfill, South Coast Air Quality Management District, December 4, 1987. - 41. V. Espinosa, *Source Test Report 87-0391*, Puente Hills Landfill, South Coast Air Quality Management District, February 5, 1988. - 42. V. Espinosa, *Source Test Report 87-0376*, Palos Verdes Landfill, South Coast Air Quality Management District, February 9, 1987. - 43. Bay Area Air Quality Management District, Landfill Gas Characterization, Oakland, CA, 1988. - 44. Steiner Environmental, Inc., *Emission Testing at BFI's Arbor Hills Landfill, Northville, Michigan*, September 22 through 25, 1992, Bakersfield, CA, December 1992. - 45. PEI Associates, Inc., *Emission Test Report Performance Evaluation Landfill-Gas Enclosed Flare, Browning Ferris Industries*, Chicopee, MA, 1990. - 46. Kleinfelder Inc., *Source Test Report Boiler and Flare Systems*, Prepared for Laidlaw Gas Recovery Systems, Coyote Canyon Landfill, Diamond Bar, CA, 1991. - 47. Bay Area Air Quality Management District, McGill Flare Destruction Efficiency Test Report for Landfill Gas at the Durham Road Landfill, Oakland, CA, 1988. - 48. San Diego Air Pollution Control District, *Solid Waste Assessment for Otay Valley/Annex Landfill*. San Diego, CA, December 1988. - 49. PEI Associates, Inc., *Emission Test Report Performance Evaluation Landfill Gas Enclosed Flare*, Rockingham, VT, September 1990. - 50. Browning-Ferris Industries, *Gas Flare Emissions Source Test for Sunshine Canyon Landfill*. Sylmar, CA, 1991. - 51. Scott Environmental Technology, *Methane and Nonmethane Organic Destruction Efficiency Tests of an Enclosed Landfill Gas Flare*, April 1992. - 52. BCM Engineers, Planners, Scientists and Laboratory Services, *Air Pollution Emission Evaluation Report for Ground Flare at Browning Ferris Industries Greentree Landfill, Kersey, Pennsylvania*. Pittsburgh, PA, May 1992. - 53. EnvironMETeo Services Inc., Stack Emissions Test Report for Ameron Kapaa Quarry, Waipahu, HI, January 1994. - 54. Waukesha Pearce Industries, Inc., Report of Emission Levels and Fuel Economies for Eight Waukesha 12V-AT25GL Units Located at the Johnston, Rhode Island Central Landfill, Houston TX, July 19, 1991. - 55. Mostardi-Platt Associates, Inc., Gaseous Emission Study Performed for Waste Management of North America, Inc., CID Environmental Complex Gas Recovery Facility, August 8, 1989. Chicago, IL, August 1989. - 56. Mostardi-Platt Associates, Inc., Gaseous Emission Study Performed for Waste Management of North America, Inc., at the CID Environmental Complex Gas Recovery Facility, July 12-14, 1989. Chicago, IL, July 1989. - 57. Browning-Ferris Gas Services, Inc., *Final Report for Emissions Compliance Testing of One Waukesha Engine Generator*, Chicopee, MA, February 1994. - 58. Browning-Ferris Gas Services, Inc., *Final Report for Emissions Compliance Testing of Three Waukesha Engine Generators*, Richmond, VA, February 1994. - 59. South Coast Environmental Company (SCEC), *Emission Factors for Landfill Gas Flares at the Arizona Street Landfill*, Prepared for the San Diego Air Pollution Control District, San Diego, CA, November 1992. - 60. Carnot, Emission Tests on the Puente Hills Energy from Landfill Gas (PERG) Facility Unit 400, September 1993, Prepared for County Sanitation Districts of Los Angeles County, Tustin, CA, November 1993. - 61. Pape & Steiner Environmental Services, *Compliance Testing for Spadra Landfill Gas-to-Energy Plant, July 25 and 26, 1990*, Bakersfield, CA, November 1990. - 62. AB2588 Source Test Report for Oxnard Landfill, July 23-27, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, October 1990. - 63. AB2588 Source Test Report for Oxnard Landfill, October 16, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, November 1990. -
64. Engineering Source Test Report for Oxnard Landfill, December 20, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, January 1991. - 65. AB2588 Emissions Inventory Report for the Salinas Crazy Horse Canyon Landfill, Pacific Energy, Commerce, CA, October 1990. - 66. Newby Island Plant 2 Site IC Engine's Emission Test, February 7-8, 1990, Laidlaw Gas Recovery Systems, Newark, CA, February 1990. - 67. Landfill Methane Recovery Part II: Gas Characterization, Final Report, Gas Research Institute, December 1982. - 68. Letter from J.D. Thornton, Minnesota Pollution Control Agency, to R. Myers, U.S. EPA, February 1, 1996. - 69. Letter and attached documents from M. Sauers, GSF Energy, to S. Thorneloe, U.S. EPA, May 29, 1996. - 70. Landfill Gas Particulate and Metals Concentration and Flow Rate, Mountaingate Landfill Gas Recovery Plant, Horizon Air Measurement Services, prepared for GSF Energy, Inc., May 1992. - 71. Landfill Gas Engine Exhaust Emissions Test Report in Support of Modification to Existing IC Engine Permit at Bakersfield Landfill Unit #1, Pacific Energy Services, December 4, 1990. - 72. Addendum to Source Test Report for Superior Engine #1 at Otay Landfill, Pacific Energy Services, April 2, 1991. - 73. Source Test Report 88-0075 of Emissions from an Internal Combustion Engine Fueled by Landfill Gas, Penrose Landfill, Pacific Energy Lighting Systems, South Coast Air Quality Management District, February 24, 1988. - 74. Source Test Report 88-0096 of Emissions from an Internal Combustion Engine Fueled by Landfill Gas, Toyon Canyon Landfill, Pacific Energy Lighting Systems, March 8, 1988. - 75. Determination of Landfill Gas Composition and Pollutant Emission Rates at Fresh Kills Landfill, revised Final Report, Radian Corporation, prepared for U.S. EPA, November 10, 1995. - 76. Advanced Technology Systems, Inc., *Report on Determination of Enclosed Landfill Gas Flare Performance*, Prepared for Y & S Maintenance, Inc., February 1995. - 77. Chester Environmental, *Report on Ground Flare Emissions Test Results*, Prepared for Seneca Landfill, Inc., October 1993. - 78. Smith Environmental Technologies Corporation, *Compliance Emission Determination of the Enclosed Landfill Gas Flare and Leachate Treatment Process Vents*, Prepared for Clinton County Solid Waste Authority, April 1996. - 79. AirRecon®, Division of RECON Environmental Corp., *Compliance Stack Test Report for the Landfill Gas FLare Inlet & Outlet at Bethlehem Landfill*, Prepared for LFG Specialties Inc., December 3, 1996. - 80. ROJAC Environmental Services, Inc., Compliance Test Report, Hartford Landfill Flare Emissions Test Program, November 19, 1993. - 81. Normandeau Associates, Inc., Emissions Testing of a Landfill Gas Flare at Contra Costa Landfill, Antioch, California, March 22, 1994 and April 22, 1994, May 17, 1994. - 82. Roe, S.M., et. al., *Methodologies for Quantifying Pollution Prevention Benefits from Landfill Gas Control and Utilization*, Prepared for U.S. EPA, Office of Air and Radiation, Air and Energy Engineering Laboratory, EPA-600/R-95-089, July 1995. - 83. TR-076. New Source Performance Standards Tier 2 Sampling and Analysis for the Flying Cloud Landfill, Browning-Ferris Industries, 6/30/98. - 84. TR-084. Tier 2 NMOC Emission Rate Report for the Buncombe County Landfill, Buncombe County Solid Waste Services, 5/12/99. - 85. TR-086. Tier 2 NMOC Emission Rate Report for the White Street Landfill, Duke Engineering and Services, City of Greensboro Solid Waste Management Division, 5/18/99. - 86. TR-114. Summary Report of Tier 2 Sampling, Analysis, and Landfill Emissions Estimates for Non-Methane Organic Compounds Chrin Brothers Landfill, Chrin Brothers Sanitary Landfill, 4/24/98. - 87. TR-115. Seneca Landfill Revised Tier 2 NMOC Emission Rate Report, Seneca Landfill, Inc., 12/5/96. - 88. TR-134. New Source Performance Standards Tier 2 Sampling, Analysis, and Landfill NMOC Emission Estimates for the Fort Worth Landfill, Laidlaw Waste Systems, Inc., 4/15/97. - 89. TR-141. Tier 2 NMOC Emission Rate Report for the SPSA Regional Landfill, Southeastern Public Service Authority, MSA Consulting Engineers, 6/10/97. - 90. TR-145. Compliance Testing of a Landfill Flare at Browning-Ferris Gas Services, Inc.'s Facility in Halifax, Massachusetts, BFI Waste Systems of North America, Inc., May 1996. - 91. TR-146. Compliance Source Testing of a Landfill Flare at Northern Disposal, Inc. East Bridgewater Landfill, Northern Disposal, Inc., June 1994. - 92. TR-147. Compliance Emissions Test Program for BFI of Ohio, Inc., BFI of Ohio, Inc., 6/26/98. - 93. TR-148. Compliance Testing of Landfill Flare at Browning-Ferris Gas Services, Inc.'s Fall River Landfill Flare, BFI Waste Systems of North America, Inc., March 1995. - 94. TR-153. Results of the Emission Compliance Test on the Enclosed Flare System at the Carbon Limestone Landfill, Browning-Ferris Industrial Gas Services, Inc., 8/8/96. - 95. TR-156. Results of the Emission Compliance Test on the Enclosed Flare System at the Lorain County Landfill No. 2, Browning-Ferris Industrial Gas Services, Inc., 9/5/96. - 96. TR-157. Emission Compliance Testing Browning-Ferris Gas Services, Inc. Willowcreek Landfill, BFI-Willowcreek, 2/2/98. - 97. TR-159. Compliance Stack Sampling Report, Monmouth County Reclamation Center, SCS Engineers (Reston, VA), 9/8/95. - 98. TR-160. Source Emission Testing of an Enclosed Landfill Gas Ground Flare, SCS Engineers (Reston, VA), September 1997. - 99. TR-163. Compliance Testing for SPADRA Landfill Gas-to-Energy Plant, Ebasco Constructors, Inc., November 1990. - 100. TR-165. 1997 Annual Compliance Source Testing Results for the Coyote Canyon Landfill Gas Recovery Facility Flare No. 1, Laidlaw Gas Recovery Systems, January 1998. - 101. TR-167. 1997 Annual Compliance Source Testing Results for the Coyote Canyon Landfill Gas Recovery Facility Boiler, Laidlaw Gas Recovery Systems, January 1998. - 102. TR-168. Colton Sanitary Landfill Gas Flare No. 2 (John Zink) 1998 Source Tests Results, Bryan A. Stirrat & Associates, 9/29/98. - 103. TR-169. Colton Sanitary Landfill Gas Flare No. 1 (McGill) 1998 Source Tests Results, Bryan A. Stirrat & Associates, 9/29/98. - 104. TR-171. High Landfill Gas Flow Rate Source Test Results from One Landfill Gas Flare at FRB Landfill in Orange County, California, Bryan A. Stirrat & Associates, July 1997. - 105. TR-173. Annual Emissions Test of Landfill Gas Flare #3 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/12/99. - 106. TR-175. Emissions Tests on Flares #2, #4 and #6 at the Lopez Canyon Landfill, City of Los Angeles, August 1997. - 107. TR-176. Emissions Test Results on Flares #1, #4 and #9 Calabasas Landfill, County Sanitation Districts of Los Angeles County, February 1998. - 108. TR-178. Annual Emission Test of Landfill Gas Flare #3 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 5/21/98. - 109. TR-179. Annual Emissions Test of Landfill Gas Flare #1 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/13/99. - 110. TR-181. The Mid-Valley Sanitary Landfill Gas Flare No.1 (McGill) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - 111. TR-182. The Mid-Valley Sanitary Landfill Gas Flare No.2 (SurLite) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - 112. TR-183. Annual Emissions Test of Landfill Gas Flare #2 Bradley Landfill, Waste Management Recycling and Disposal Services of California, Inc., 4/13/99. - 113. TR-187. Emissions Test of a Landfill Gas Flare Lowry Landfill/Denver-Arapohoe Disposal Site, Sur-Lite Corporation, February 1997. - 114. TR-188. Characterization of Emissions from a Power Boiler Fired with Landfill Gas, Environment Canada Emissions Research and Measurement Division, March 2000. - 115. TR-189. Characterization of Emissions from 925 kWe Reciprocating Engine Fired with Landfill Gas, Environment Canada Emissions Research and Measurement Division, December 2000. - 116. TR-190. Characterization of Emissions from 812 kWe Reciprocating Engine Fired with Landfill Gas, Environment Canada Emissions Research and Measurement Division, December 1999. - 117. TR-191. Characterization of Emissions from Enclosed Flare Trail Road Landfill, Environment Canada Emissions Research and Measurement Division, August 2000. - 118. TR-194. Characterization of Emissions from 1 MWe Reciprocating Engine Fired with Landfill Gas, Environment Canada Emissions Research and Measurement Division, January 2002. - 119. TR-195. Characteristics of Semi-volatile Organic Compounds from Vented Landfills, Environment Canada Environmental Technology Advancement Directorate, August 1996. - 120. TR-196. Results of the Biennial Criteria and AB 2588 Air Toxics Source Test on the Simi Valley Landfill Flare, Simi Valley Landfill and Recycling Center, April 1997. - 121. TR-199. Emission Compliance Test on a Landfill Flare, City of Los Angeles, January 1999. - 122. TR-205. The Mid-Valley Sanitary Landfill Gas Flare No. 3 (John Zink) 1998 Source Test Results, Bryan A. Stirrat & Associates, 9/29/98. - 123. TR-207. Compliance Source Test Report Landfill Gas-fired Flare Stations I-4 and F-2, BKK Landfill, 12/12/97. - 124. TR-209. Emission Test Report Volumes I and II Source/Compliance Emissions Testing for Cedar Hills Landfill, King County Solid Waste Division, 1/20/05. - 125. TR-211. Determination of Total and Dimethyl Mercury in Raw Landfill Gas with Site Screening for Elemental Mercury at Eight Washington State Landfills, Washington State Department of Ecology, July 2003. - 126. TR-212. Determination of Total, and Monomethyl Mercury in Raw Landfill Gas at the Central Solid Waste Management Center, Delaware Solid Waste Authority, February 2003. - 127. TR-220. SCAQMD Performance Tests on the Spadra Energy Recovery from Landfill Gas (SPERG) Facility, County Sanitation Districts of Los Angeles County,
April 1992. - 128. TR-226. Methane and Nonmethane Organic Destruction Efficiency Tests of an Enclosed Landfill Gas Flare, Newco Waste Systems, April 1992. - 129. TR-229. Scholl Canyon Landfill Gas Flares No. 9, 10 11 and 12 Emission Source Testing April 1999, South Coast Air Quality Management District, April 1999. - 130. TR-236. Landfill Gas Flare Hydrogen Chloride Emissons Atascocita Landfill, Waste Management of Houston, 4/20/99. - 131. TR-241. Performance Evaluation, Enclosed Landfill Gas Flare, Valley Landfill, Waste Energy Technology, November 1991. - 132. TR-251. Emission Compliance Test on a Landfill Gas Flare Flare #1, Frank R. Bowerman Landfill, Orange County, 1/25/99. - 133. TR-253. Emission Source Testing on Two Flares (Nos. 3 and 6) at the Spadra Landfill, Los Angeles County Sanitation Districts, 7/21/98. - 134. TR-255. Emission Compliance Test on a Landfill Gas Flare -Olinda Alpha Landfill, Orange County Integrated Waste Management Department, No Report Date Given. - 135. TR-258. Source Test Report, City of Sacramento Landfill Gas Flare, City of Sacramento, 6/26/96. - 136. TR-259. The Millikan Sanitary Landfill Gas Flare No. 1 (Surlite) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. - 137. TR-260. The Millikan Sanitary Landfill Gas Flare No. 2 (John Zink) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. - 138. TR-261. The Millikan Sanitary Landfill Gas Flare No. 3 (John Zink) 1998 Source Test Results, South Coast Air Quality Management District, 9/29/98. - 139. TR-264. Emission Compliance Test on a Landfill Gas Flare, Orange County Integrated Waste Management Department, No Report Date Given. - 140. TR-266. Compliance Source Test Report Landfill Gas-Fired Engine, Minnesota Methane, 3/3/98. - 141. TR-268. Emission Testing at PERG Maximum Boiler Load, County Sanitation Districts of Los Angeles County, December 1986. - 142. TR-272. Source Testing Final Report Landfill A, US EPA Air Pollution Prevention and Control Division, 10/6/05. - 143. TR-273. Source Testing Final Report Landfill B, US EPA Air Pollution Prevention and Control Division, 10/6/05. - 144. TR-284. Source Testing Final Report Landfill C, US EPA Air Pollution Prevention and Control Division, 10/6/05. - 145. TR-287. Source Testing Final Report Landfill D, US EPA Air Pollution Prevention and Control Division, 10/6/05. - 146. TR-290. San Timoteo Sanitary Landfill 1998 Source Test Results, San Bernandino County Solid Waste Management, 9/29/98.TR-291. PCDD/PCDF Emissions Tests on the Palos Verdes Energy Recovery from Landfill Gas (PVERG) Facility, Unit 2, County Sanitation Districts of Los Angeles County, February 1994. - 147. TR-292. Source Testing Final Report Landfill E, US EPA Air Pollution Prevention and Control Division, October 2005 - 148. TR-293. *Quantifying Uncontrolled Air Emissions From Two Florida Landfills* Draft Final Report. U.S. EPA Air Pollution Prevention and Control Division, March 26, 2008.