Environmental Policy Analysis: How Much Uncertainty is Too Much and How Do We Know?

> A Case Example of the Assessment of Ozone Monitor Network Options

Cynthia Stahl, U.S. EPA Region III November 15, 2004

Problems with Uncertainty in Policy Analysis

- Consider uncertainty a flaw in otherwise good scientific analysis – ignore
- Failing to understand impact on policy alternatives – surprise
- Uncertainty exacerbates problems of limited time and resources at policy making organizations.

Decision Makers' Dilemma

- Would a different policy choice be made if the data are different than initially presented or assumed?
- How can this be determined?
 - First question: How much uncertainty can a decision tolerate? (Not, how uncertain is the data)

Multi-criteria Integrated Resource Assessment (MIRA)

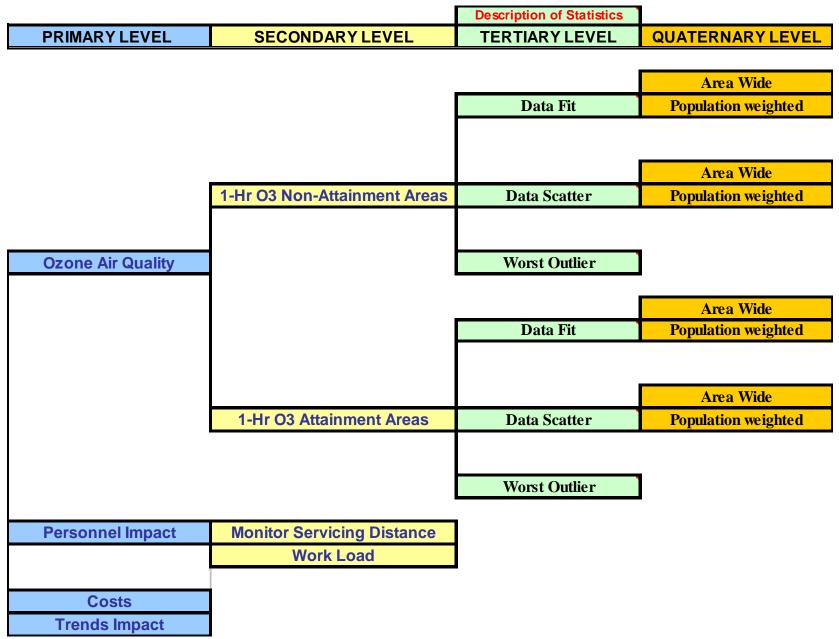
- Examine how much uncertainty a particular decision can tolerate.
- Learn how uncertainty affects policy options
 - Test different data possibilities

MIRA Methodology

- Determine criteria (stakeholder participation) and define with a metric (data input)
- Index criteria (expert)
- Initialize with values (preference schemes)
- Obtain ranked list of options

Iterate

 Details in: Stahl et al. (2002) BSTS 22(6): 443-459 and Stahl, C.H. (2003) University of Delaware Morris Library HN999 2004 .S781.


Monitoring Network Decision Question

- Is the current ozone monitoring network adequate?
 - Public health needs
 - Ecosystem needs
 - Considering costs, benefits (better air quality estimates)

Ozone Monitor Network Demonstration Study

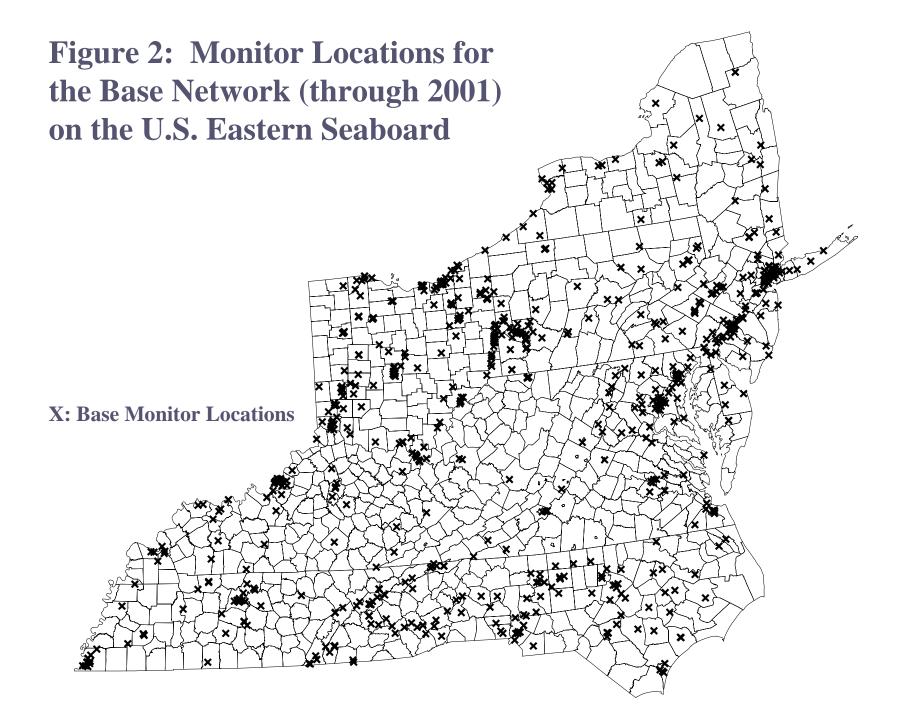
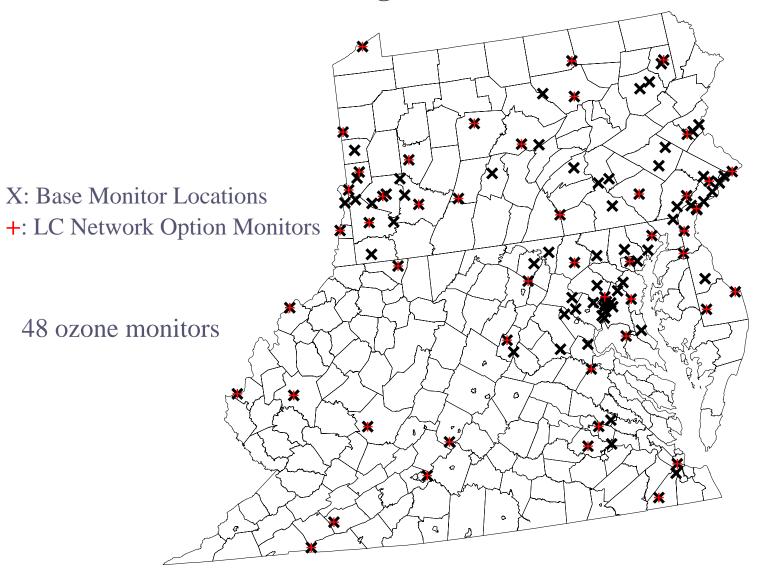

- Monitoring data used for assessing human and ecological ozone exposure
- U.S. Mid-Atlantic region: currently 110 ozone monitors primarily in urban areas
- Assessment criteria (14 total):
 - Air Quality estimate (interpolation from monitoring sites and from modeled values)
 - Personnel resources (workload and distance from state agency office)
 - Costs (maintenance of existing and installation of new monitors)
 - Historical trends (value of historical data at the same site)

Figure 1: Ozone Monitoring Network Assessment Criteria



Monitor Network Options

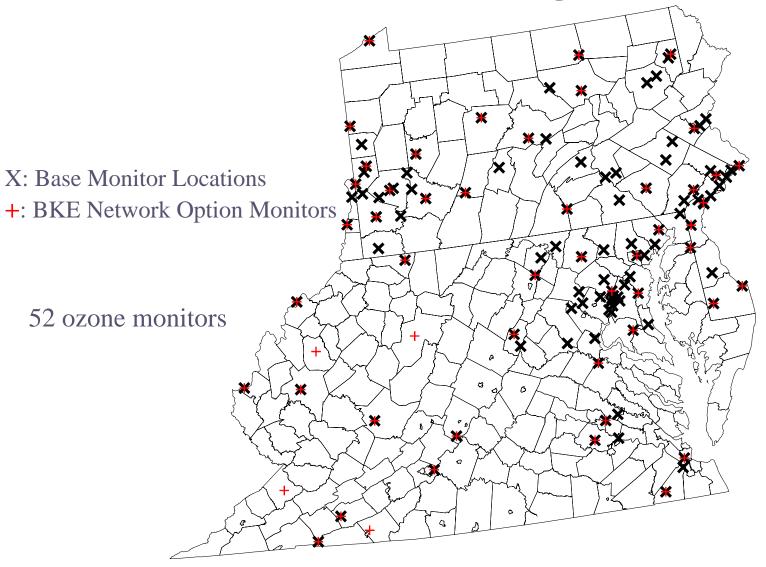

- Status quo
 - Base
- Least Cost
 - (Base 62 monitors) = 48 monitors
- Best Kriging Estimate
 - (Least Cost + 4 monitors) = 52 monitors

Figure 3: Least Cost Network Option – Monitor Locations in U.S. Mid-Atlantic Region

Figure 4: Best Kriging Estimate Network Option – Monitor Locations in the U.S. Mid-Atlantic Region

Data

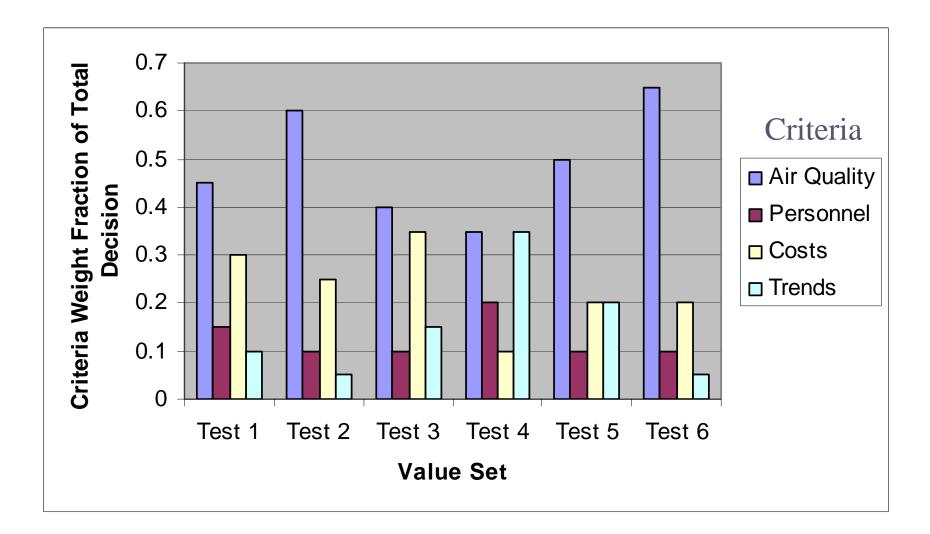
- Ozone monitoring data
 - Ozone design value (3 year averages)
 - Historical trends of design values
 - Interpolation where no monitors
- Capital costs
 - New monitoring station
 - New ozone analyzer
- Operation and Maintenance costs
 - Monitoring station
 - Ozone analyzer
- Distance from monitoring station to state office
 - Ratio of state staff to ozone monitors

Demonstration Focus

- r Example is simplified for demonstration
- O/M cost for monitoring station
- O/M cost for ozone analyzer
- Examine how data uncertainty in these two variables affects 3 network options.

Cost Data

- Best current estimate; Obtained in 1993 dollars
 - O/M costs for an ozone monitoring station
 = \$16,000
 - O/M costs for an ozone analyzer = \$3,400


Data is Certain

- Previous MIRA analysis produced certain cardinal ranking: Best Kriging Estimate (BKE), Least Cost (LC), and Base (B)
- Keep same cardinal ranking for now
 - Air quality always greatest weight BUT actual weight can vary considerably.
- ✓ Values = Preference schemes
 - Many different sets produce BKE-LC-B cardinal ranking
 - 6 value sets tested

Cardinal Ranking Sidebar

- Understanding uncertainty = does the cardinal rank change with data uncertainty? If so, how/when/under what circumstances?
 - When are we "surprised"? (Cardinal ranking changes)
- Demonstration starts with seeing how original ranking is preserved and then examines how/when this changes with data uncertainty.
 - Bracket the analysis first with decision question's uncertainty tolerance, then go to scientist/statistician.

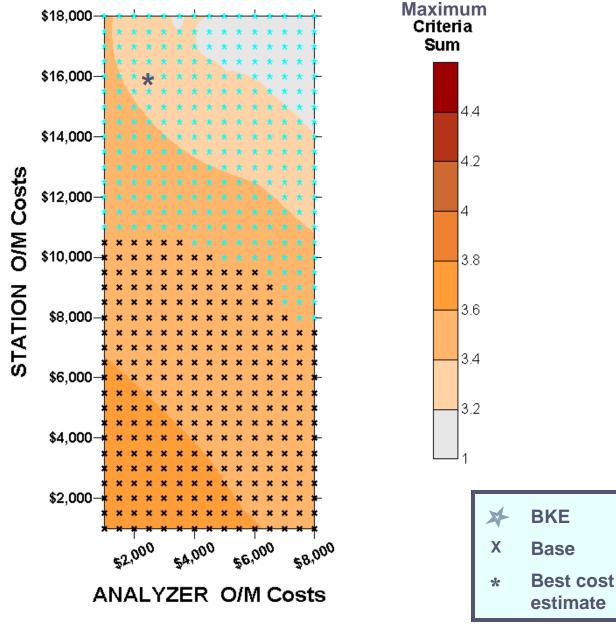
Figure 5: Primary Criteria Level Value Sets

Criteria-Option Relationship

- Learn these relationships through experimentation and stakeholder discussions.
- In general,
 - Weighting Air quality criterion more heavily tends to favor BKE,
 - Weighting Trends criterion more heavily tends to favor Base, and
 - Weighting Personnel and Costs criteria more heavily tend to favor Least Cost

How much more preferred is the top ranked option?

- Compare separation between top ranked option and second ranked option with different value sets (via ratios).
 - Greater separation = first option more greatly preferred than next option
 - Actual criteria sums not important relative ranking and degree of separation more important
 - Important to know for testing impact of data uncertainty on option ranking.


Table 2: Criteria Sums for selected Value sets

Value Set	Best Kriging Estimate	Least Cost	Base	BKE/LC (%)
Test 1	4.3904	4.2699	3.7098	2.81
Test 4	3.3083	3.2741	3.2044	1.04
Test 6	4.7658	4.3335	4.2502	9.97

Data is Uncertain

- Impact of Uncertainty on Top-ranked option?
 - Different combinations of data uncertainty produce differently ranked options.
 - Plot maximum criteria sum (i.e., first ranked network option) against varying data ranges.
 - When does the BKE option no longer look the most attractive when compared to the other options?

Figure 6: Impact on Top-ranked option due to O/M Cost Uncertainties (Test 4)

Figure 6 – Different Network Option Dominates in Certain Data Ranges

- BKE dominates in the mid-range of costs
- Base option is more favored initially at lower costs because of capital investment (constant in this demo) required for BKE option, even though BKE saves O/M costs.

Impact on Top-ranked option with Other Value Sets

- All other Test value sets retain BKE as top-ranked option as both O/M analyzer and station costs vary.
- What does this mean?

Comparing Impact of Uncertainty with Different Value Sets

- Different value sets respond differently to uncertainty – more or less "resilient"
- Whether uncertainty is too much depends on the value set (and indexing*)

* Indexing remains constant in this demonstration.

How much Uncertainty is Too Much?

- Tota uncertainty is more acceptable in some contexts than others.
- MIRA allows decision makers to determine how much uncertainty is too much.

Implications for the policy maker

Policy makers who understand the impacts of uncertainty on potential options are less likely to be surprised (flipping cardinal ranks).

Target limited resources.

- Test whether uncertainty is acceptable in the specific policy/decision context.
- Know when it is necessary to reduce uncertainty.
- Approach statisticians/scientists with question of whether data uncertainty is within certain range (tested via MIRA) rather than asking what the data uncertainty is.

Contact information Cynthia Stahl, U.S. EPA Region III, <u>stahl.cynthia@epa.gov</u>, 215-814-2180.

- -