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Abgtract

Cdl suppression and audit programs have been used at the Census Bureau for many yearsfor insuring the
confidentidity of establishments that contribute data that are used for building economic magnitude data
tables. Since the 1987 Economic Census, the suppression programswere based on network flow models
which work well for 2D tables but which have some drawbacks for higher dimensiona tables. Linear
programming (L P) based mode snow appear to beapractica option for higher dimensiond tablesand they
do not have these same drawbacks. This paper describes work over the last two years in implementing
these LPmodds, aswell assome of themathematica reasonsfor preferring the L P based models. Practicd
aspects of these programs are discussed; e.g., cal culating capacities, refinement runs, backtracking, linked
tables, frozen cells, and rounded data. A description of earlier work isasoincluded, asaregodsfor future
research.
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1. I ntroduction

The primary goal of this research report is to provide a description of the cell suppression and audit

programs (for three and four dimensional tabular data) that have been created or modified over the period

January 2000 to March 2001. We begin with a history of the development of suppression and audit

programs at the Census Bureaw, focusing on the key agorithmic features. These key festuresarewithin the
underlying mathematica structure; this structureis often based on one of the well-known methods from the
field of operations research, such as network flows or linear programming. We present a table based on
apaper by Cox (ref: C2) which evauates the semind programsin terms of generd desirable features for

asuppression program. In our description of recent devel opments, wefocuson how the desired properties
of each program can be expressed in terms of the ideas and language of linear programming. Weinclude
a fairly detailled description of the routines from the linear programming package CPLEX to show in a
concrete way how the key dgorithms can be performed in a computationdly efficient manner.

It may be helpful to review some of the basic facts and definitions. The distinction between magnitude and
frequency tabular datais best seen through an example. Supposetherowsof table aretypesof retail stores
and the columns are cities. If there were exactly five toy storesin the city of Batimore then a frequency
table would have the value '5' for the cell (toy, Bdtimore)." If the annud sdesfor the 5 stores were x1 >
x2 >..> x5 then a magnitude table would have some gatidtic of the five x(i) vaues (eg., the sum) asthe



cdl vdue. One mgor feature of magnitude tablesis that the cdll vaues are often dominated by the vaues
of asmall number of contributors (e.g., establishments). In order to ensure that accurate estimates of these
dominating values (e.g., x1) cannot be made even by the other contributors to the cdll vaue (eg., X2's),
it is necessary to establish a rule for deciding when a cell is too sendtive to be published; such an
unpublished cdl is cdled a primary suppression. The Census Bureau currently uses the p% rule to
determine primary suppressions, i.e, if it is possible for any contributor to a cdll to determine any other
contributor's value within p% of itstrue value, then the cdll is suppressed. Complementary suppressons
(also called secondary suppressions) are additional cells suppressed to protect the primaries. These are
needed since margind totals are dmost dways published in economic tables, and the additive relations so
generated would often allow atable user to caculate the vaue of aprimary if it werenot carefully protected
with additiona suppressions (ref: WP22).

2. Higtory of Suppression and Audit Programs at the Bureau

Suppressionprogramsat the Census Bureau have morethan athirty-year history, and they have undergone
an interesting evolution. According to Cox (ref: C2, p.6) the earliest large-scade use of automated
suppression programs based on a mathematica theory was for the 1977 U.S. Economic Census. The
program was based on combinatoria agorithms for protecting confidentid data within a sngle two-way
table. Information loss was defined to be the number of suppressed cells. Disclosure protection in three-
way tables was done heurigticaly by "stacking” congtituent two-way tables. Disclosure was based on an
(n,K)-rule (acdl wasdeemed sengtiveif thelargest n of the contributing establishments accounted for more
thank%o of thetotal cell valueref: WP22) and parameters were kept confidentia. The suppression module
was caled INTRA, denoting that suppression was "intra-table.” INTRA was used by the Census Bureau
for the 1977 and 1982 Economic Censuses, and severa surveys. (We now use the p% rule, see above).

Cox in 1987 proposed using mathematica networks for complementary cell suppression. Networks are
mathematica model s based on flow of aquantity dong the arcs of agraph. Thereisanaturd interpretation
of a2D table asanetwork. A cedll suppression program based on networks was written by Bob Hemmig
and used for the 1987 U.S. Economic Census. Another suppression program, also based on networks,
was written by Bob Jewett and used for the 1992 Economic Census. Since 1992, Jewett (ref: J) extended
the program in many ways and it has been used ever since at the Census Bureau. The computational
module of this program, viz. the network flow agorithm, is a Fortran subroutine caled MCF, written by
Professor Klingman at the University of Texas circa 1980 (MCF=Minima Cost FHow).

One of thekey ideas used in the network-based suppression programsistheideaof capacity. The capacity
of acdl isameasure of how much the cell can contribute to the protection of a specified primary cdll.
Jewett states that Cox first came up with thisideain 1991. In the smplest cases, the capacity of acdl is
equal to its vaue. The extenson of the basic idea of capacity to the complicated Stuations thet arise in
practice was due to Jewett (ref: J, p. 11-G, p.1-11). See below for more facts about capacity.

The MCF subroutine and the entire network flow suppresson program based on it, are fast



computationdly. For 2D tables, the network method isknown, under certain conditionson the distributions
of contributorsto the cell values, to create asuppression pattern that isnot undersuppressed, i.e., apattern
with asufficient number of complements to ensure that the primaries have (at least) the desired amount of
protection for each of the contributors (ref:C1). Even when these conditions are not met, thereis often at
mogt a smdl amount of undersuppression in practice. See section below on capacity for more on these
conditions. Therefore, for 2D tables, there is a fairly widespread acceptance of the network-based
suppression programs. However, for 3D tables, it is known that use of network flow methodsis arough
heuridtic, so rough that the possibility of undersuppression at the cdll level existsand hasactudly occurred
(athough often there is only asmall amount of it). Itisknown that LP based suppression aways provides
adequate protection at the cell level for standard tables. For this reason, Jm Fagan and Laura Zayatz
wrote, in 1991, (J: p. 111-A-1) an LP based suppression subroutine callable from Jewett's suppression
program; it cals an LP subroutine called XMP that was acquired from Dr. Kelly of the University of
Maryland. This suppression program, was not fast enough for production work and Jewett decided to try
another approach for 3D tables (J: p. 111-A-1). Jewett decided to writea3D suppression using an ideathat
Bob Hemmig has used for the 1987 Economic Census, namely to use the network flow approach for 3D
tables even though it had the possibility of undersuppression (ref: J, p.l11-A-2)

The firgt audit program for ng the results of acell suppression program waswritten by LauraZayatz
circal1992 (ref: J, p.I11-A-3). Thisaudit program used the L P program XM P mentioned aboveto cal culate
the feasibility interva (or actud protection level) associated with each suppressed cdll (either primary or
complementary). It then compares the feaghility interva with the desired protection interva to see if the
latter iscontained intheformer. If thedesired interva iscontained in the actua interva for each suppressed
cdl, the cell suppression is deemed a success. The main purpose of the audit program isto determine and
write out alist of those suppressed cells whose desired protection interval isNOT contained in the actud
protection interva. In that case, the audit determinesif the actual protection interval does a least have a
width at least aslarge asthat of the desired intervd; thisis caled "diding coverage." Of course, the most
serious Stuation is where there is little or no protection afforded a suppressed cell; such cases ether
indicate some trivid data processng error in some input or a programming error with the suppression
program or possibly aninherent weakness with the methodol ogy of the suppression program that leadsto
undersuppression.

Statigtica agencies from other countries a so have done research in the area of suppression methods; e.g.,
Statistics Canada uses L P based programs (ref: R) and the Federa Statistical Office of Germany has used
aprogram based on the new hypercube method (ref: G).

3. Basic Features of the Optimizing Routines for Suppresson Programs
There are many features required of a suppression program other than those performed in the optimizing

routine. In this section, we restrict our discussion to the optimizing routine; seereference Jfor adiscusson
of other parts of the program.



By basic features, we mean the inputs, outputs, and mathematica structure which operate on the inputsto
produce the outputs. For the mathematical structure, we will use the ideas and language of linear
programming rather than the ideas and language of network flow models. For the latter see reference C1.

Suppression subroutines for unrounded data.

Inputs:

1. Primary cdl inputs, cdll location and protection required
(asinglevaduefor protection meanswe assume the upper and lower protection required are equal;
i.e, the uncertainty interval for the vaue v should contain [v - prot, v + prot]).

2. Table structure information; row relations, column relations, etc.
(note: thisinformation is used to set up the congtraint matrix used in the LP problem)

3. Array of capacities; ameasure of the maximum protection every cell can provide for
the desgnated primary

4. Array of costs, ameasure of how much information is logt from the table when (later) a st of cdlsis
selected as complements (and is therefore not published)

LP variables created:

For each cell in the table we define two variables; one which denotes an increase from the given cdl vaue;
the other a decrease. Two variables are needed because it is convenient to sate thisLP problemin terms
of non-negative variables and we want to alow the solution vaue for a given cell to represent either an
increase or adecrease of the call vaue but not both (in network flow language, either positive or negative
flow is dlowed).

LP Congraint matrix created:

The condraint matrix contains, in acompressed form, information about the set of dl additive reationsthat
expressthefact that the sum over changesinthe cdllsof agiven shaft equa zero. Thisissmply afancy way
of saying that we are searching for feasible solutions in which the new cell vaues satisfy the same additive
relations asthe origind cdls.

Bounds for varigbles:

There are two ways to implement this. For cases where one knows the desired protection can be found,
it iseasest to do thefollowing. Let Ib(i)=lower bound(i); ub(i) =upper bound(i) for theith LPvariable. For
the primary cell's positive increase variable st Ib=ub=protection; for its negative change variable st
Ib=ub=0. Viewed in terms of the origind table, thisforcestheprimary cell to haveanew vaue= (origind
vaue + protection). Thusthis pogtive change varidble for the primary cdl isthe"forcing function” for this
problem, where "forcing function” is a term often used in gpplied mathematics for describing dynamic
gystems. In cases where one may not be able to find the full protection (this may happen when there are
frozen cells, see below), it is better to set [b=0, ub=protection, for the positive increase variable and use
avery negative cos coefficient for thisvariable. Inthisway, the solution will return the maximum achieveble
fractionof the desired protection. For cellsi other than the primary:  [b=0, ub=capacity(i); where capacity
is computed in a prior routine. These bounds apply to both LP variables associated with each cell i. See



discusson below on the calculation of capacity.

Codt coefficients:

The cogt functionisthe sum over dl variables of the cost coefficients timesthevariablevaue; i.e. sum over
c(i) * x(i). Here each variable vaue represents a change in cell value. The cost coefficients are inputs to
the LP problem. They often equa the vaue of the cell associated with the variable. Inthis case, whenwe
try to minimize the cogt function during the LP optimization step, we aretrying to find aset of cdll changes
that takes placein cdlswith smal vaues,

Optimization and the solution:

For each primary we perform a sngle optimization, viz. acost minimization. The actud minimum value of
the cost function is not usudly the most important part of the solution; what ismaost important isthe set of
cdls associated with the set of variableswhich have anon-zero solution vaue. These arethe cdllsthat form
the complementary suppression pattern for the given primary.

Outputs:

If ether variable (the increase or the decrease) associated with acell hasanon-zero solution vaue weflag
that cdl witha'C' for complement unlessit dready hasa'C' or 'P flag. Thisinformation isreturned to the
routine which caled the optimizing routine.

4, Badic Features of Audit Programs

Unlike the suppression program, the audit program can be written as a sngle routine which cdls some
genera purpose L P package. The basic features of the 3D and 4D audit programswritten by LauraZayatz
are listed below.

Note that these programs were designed to run on positive, additive, unrounded dataand our description
gppliesjust to that case. More complicated cases are now handled by recently developed audit programs,
for those see the section on mgor changes below.
Inputs.
1. Table structure information:
These includes table Sze, row relations, column relaions, etc.
2. Thevaue of each cell in thetable:
Note that even the values of the suppressed cells are supplied.
3. A suppression flag, either P (primary) or C (complementary) for each suppressed cell.
4. The desired protection (value) for each suppressed cell.

LPvariadles.

There are severd differencesin the way LP variables are defined for the audit programin contrast to the
suppression routines. Firdly, there are variables defined only for the suppressed cells ( not for dl cellsas
for suppression routines). For the suppressed cells, only onevariableisdefined (not two asfor suppression



routines). This Sngle variable desgnates a possible val ue for the suppressed cdll (not achangein vaue as
for suppression routines). It is easy to see that there are, in generd, many fewer LP variables defined for
agiven table in the audit programs (of the type described here) than in suppresson routines.

The congraint matrix:

The congraint matrix reflects the same additive relations that were expressed for the suppression routines.
However, for audit programs, for a given shaft, the vaues of dl the unsuppressed cells are combined on
the right-hand-sde of the shaft equation; this combination forms a component of a constant vector (often
denoted 'b) that isinput to the LP solver (see below).

Boundsfor varigbles:

The bounds for variables are dso smpler for the audit program. Each possible vaue

is bounded below by zero (recal positivity assumption above) and bounded above by the grand total for
the table. Note that these bounds remain congtant for each of the optimizations that are performed.

Cogt coefficients.

The only LP quantity that changes as one changes the cell being consdered, is the cost coefficient
associated with that particular suppressed cell. The coefficient is zero for dl variables other than the one
being optimized.

Optimization and the solutions:

For each suppressed cell given in the input file, the audit program performs two optimizations, oneto find
the minimum, the other the maximum vaue of the suppressed cdl. Thus the upper and lower limits are
determined for each suppressed cdl in the table. (Actudly the audit programs save time by smply finding
if therange of each variable containsthe (desired) protection intervad [vaue(i) - prot(i), vaue(i) + prot(i)];
this can be determined by examining the vaue of al variablesin a solution vector, not Smply the varigble
being optimized.)

The outputs:

For each suppressed cdll vduei oneformsthe [minva (i), max va(i)]. Theinterva so formed, often called
the "feasbility interva" or "suppresson interva" (ref: WdW?2, p. 35), is compared with the (desired)
protection interva to determine if the latter interva is contained intheformer. If so, it isclear that the given
suppression pattern is adequate to guarantee the desired protection, at least at the cell level. If not, the
program checks to see if there is "diding protection”, i.e. the width of the feagibility intervd is at leest as
large as the width of the protection interva and the feasibility interva containsthe cdll vadue. The program
aso determines when there is inadequate upper or lower protection or no protection at al, and these
troublesome cases arewritten to aseparatefile. A summary of results, including the number of primary and
complementary cells, aswell as the number of these achieving full or diding protection is written to afile.
If protection is not adequate for some primaries, one may try to improve the suppression pattern (either
with a program or by hand) to achieve adequate protection.



5. Desirable Advanced Features for Suppression Programs

Inmost aspects, the early INTRA program wasinferior to current suppresson programs. However, it did
find a suppression pattern for al the primaries Smultaneoudy. This is interesting because, in theory, the
optimal suppression pattern is achievable, in generd, only by tregting dl the primaries Smultaneoudy (ref:
C2). However, in practice, even for moderate sized tables, such problemsare computationdly infeasible.
Thus the network and LP programs are sequentid in nature, i.e., they find a pattern for the primariesin
sequence. Complementary suppressionsare added to those found for previous primaries by smply adding
flagsto cells as they are identified as complementsin a dynamic datafile.

Protection at the enterprise (or establishment or contributor) leve refersto the fact that agiven enterprise
may contribute in amajor way to two or more cells in some row, column, or other shaft. If the program
ignoresthat fact, it islikely to overstate the amount of protection provided by acdll to aprimary when they
have common contributors. Since about 1992, the Bureau programs have built ahigh degree of protection
at the enterprise level into the programs. This protection is built into the program by using a notion of
capacity that usesidentifiers for the two leading contributors to each cdll (ref: J, p.l1-G-4)

It is easily shown that network flow modes can be used to modd the additive structure of a 2D table
perfectly. Based onthisresult, it can be proven that suppression for 2D tablesprovides adequate protection
at least @ the cdll leve. Thesituation for LP programsis even better; it provides adequate protection at the
cdl levd for dl dimensons. Of course, the confidentidity requirement is protection at the enterprise leve;
protectionat the cell isanecessary but not sufficient requirement for enterprise level protection. However,
for the specia case in which dl contributors contribute to a most one interior cdl in each shaft, the two
notions of protection are equivaent. The drawback of L P methods relative to network modelsisonly one
of speed.

One mgor computationa consderation isthe szeand dimenson of atablethat can be processed. Because
of thiscongraint, overlapping tables, i.e., tableswith common cells, are often not treated asasingle higher

dimengond structure. Instead, we trest the tables with common cells as "linked tables™ This trestment

however necessitates the time-consuming process of "backtracking,” in which protection required for a
primary may be modified if that primary is needed to provide protection for some other cell. See below for

more details.

According to Cox (ref: C2, p.5) there are three measures of information loss that are commonly used in
the complementary cdll suppression literature. They are;

(S:  minimize the number of suppressed cells

(V):  minimizethetotd vaue of suppressed cells

(B):  minimize the sum of logarithms of the vaues of suppressed cdlls
To implement the associated cost functions exactly it is necessary to use binary variables which are
avalable only ininteger programming (ILP) problems. If binary variables y(i) are available, wewould st
c(i)=1for dl i, and cost = sum (c(i)*y(i)) wherey(i)=0if 'I'isnot suppressed, y(i)=1if itis. In acontinuous



variadle LP problem, the best gpproximation we can make is cost= sum(c(i)*x(i)) where x(i) = Oif 'i'is
not suppressed; x(i)=abs(change in cdl vaue) if 'i' has non-zero flow for some solution. Thisis wha we
cdl inthetable below the" continuous gpproximation” of (S). Thesameideaappliesto (V), (B), andsmilar
functions.

Table of Suppression Program Properties

INTRA Network Based LP Based
Simultaneous suppresson Yes No No
Protection at enterpriselevel NoO Some Some
Guarantees adequate supp. No Yes Yes
for 2D tables at cdl leve
Guarantees adequate supp. No No Yes
for 3D tables at cdl leve
Treats linked tables No Yes Yes
(Globa suppression)
Codgt function SV,orB cont. approx. cont. approx.
(see @bovefor defns) of SV,or B of SV, or B

6. Practica Congderations that Complicate Suppression Programs

Cdculating capecities

The notion of capacity for a cell was developed by Larry Cox and Bob Jewett (J: p.I1-G-3). Cox
suggested that one compute the required protection for the primary cdl by itsdf, and then compute the
required protection if the primary suppression were combined with another cell. The capacity of this other
cdl to protect the primary is defined to be the decrease in the amount of required protection. Actudly
implementing this genera procedure for al possble cases that arise in practice has proven to be
complicated (ref: J, section 11-G). Capacitiesfor agiven shaft (e.g., row, column) may not be additive. The
network-based programsare abletowork well with thislack of additivity; currently the L Pbased programs
recompute marginas to force additivity. The caculation of cgpacities is farly smple when a given
contributor gppearsin a most oneinterior cell in any shaft. However, deciding how to calcul ate capacities
for the many types of casesin which a given contributor gppears in two or more interior cdls for agiven
shaft, can be difficult; for detalls, see (ref: J, 11-G) or the actua Fortran code.

Refinement Runs
For agiven primary suppose aset of complements has been selected by the suppression program. These



cdls may have been sdlected as complements when the costs were equd to the cdll vaues. However, it
often useful to run the suppression program a second time in which one starts with a set of candidate
complements equa to the st of complements chosen on the firgt run. The set of complements found in
second call will be a subset of those sdlected on the first cal and will till provide adequate protection.
Usudly one wants to diminate some of the samdl cdlls; this can be done by assigning ahigher cost to such
cdlsthan to the large cells. For example, if the cost for thefirst run were defined asthe cdll vaue, the cost
for the second run could be defined as the negative of the cost for the first run.

Backtracking and linked tables.

Cdls often gppear in more than one basic table but it is often not computationally feasibleto createahigher
dimensond table in which the basi ¢ tables can be imbedded. However, whenever a cell becomes part of
the suppression pattern for abasic table, it isimportant to ensure that it has adequate protection in dl the
basic tablesin which it appears. For example, in certain tables, aprimary may need more protection than
that which is necessary to Ssmply protect its contributors. This can occur when the given primary is used
to complement another primary that needed alarger amount of protection (2 p. 11-A-4, p. [1-G-5). For
example, if aprimary initialy requires60 unitsof protection (i.e., uncertainty) to protect itsown contributors
and it later requires 100 units of uncertainty (in its role as a complement) to help protect some other
primary, then its new higher level of required uncertainty (100 units) needs to be reflected in the
suppressionpatternthat it generates. That is, its"own" suppression pattern needsto be redone starting with
a larger vadue for "protection” (100 units). This redoing of its suppressed pattern to reflect a larger
"protection” is the key idea involved in backtracking for the cell suppresson problem. Backtracking
sometimes accounts for a significant fraction of the processing time for suppression runs (J: p. [1-A-4). It
improves the likelihood that a given cdl isfully protected "globaly” (i.e., across linked tables) but it does
not guarantee it.

Frozen cdlls and partia protection

Withlinked tables, after processing asingletable, one may generate asuppress on pattern which onewants
to "transfer” to other tableswhich overlgp with thefirst one. By "transfer” we mean that the cellsin common
that are suppressed in the first table should be suppressed in al other tables in which they appear; this
gpplies likewise for unsuppressed cells. Such cdllswhose suppression statusin agiven tableisfixed during
a suppression run are caled "frozen cdls" Frozen unsuppressed cells may cause a problem since the
suppression program does not allow such cdllsto be used as complementsto protect primaries. However,
by so redtricting the set of candidate complements, it is possble that the desired amount of protection for
agiven primary may not be found. In this case, the program needs to determine the maximum amount of
protection that is available; one way to find this quantity is being implemented for the L P based programs.
It isbased on atechniquethat has been used in the network based programs, viz., associate avery negative
cost coefficient to the (pogitive) change variable for a cell, with an upper bound equd to the protection
desired. This cogt function will lead to a solution with the largest protection possible that is consistent with
the pattern of frozen cells.
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Rounded vs. Unrounded data; Recomputing Marginals.

Let us fird review the notion of conventiona rounding (ref: WdW1, p.103). An example of this for a
rounding base of 1 would be as follows: an unrounded vaue such as 1.750 is rounded up to 2; whereas
1.499 is rounded down to 1. In generd, in conventiona rounding, each vaue is rounded to the nearest
multiple of the rounding base. The rounding is aso done on the marginads and this often leads to non-

additivity in thetable; i.e., some marginas after rounding may be closeto, but not equa to, the sum of the
rounded values of interior cdllsof the shaft. Cdll vauesare often rounded just prior to publication; they may
aso be rounded earlier in the production process. Such earlier rounding may have a dight effect on the
caculation of capacities; but the network-based programs do not require capacity additivity so these
rounding effects are not important. The L P based suppression programs do currently recompute marginas
to ensure capacity additivity dthough this festure may not be needed and it may be diminated. The audit
programs for unrounded dataa so recompute marginds, however, they recompute cell vaue marginas, not
capacity marginds. In contrast, the audit program for rounded data dlows for alack of additivity for cell

vaues and aborts only when the non-additivity is so greet that it could not occur due to rounding aone.

7. Magor Developments with Suppression and Audit Programs since January 2000

i) In 1999, SRD acquired a license for a commercia linear programming (LP) and mixed integer
programming (MIP) package caled CPLEX. Thispackage, writtenin C, hasroutinesthat are callablefrom
batch programs; it can dso be run interactively. This package is consdered to be of high qudity; it hasa
presolver for amplifying the LP problem prior to optimization, correct and fast implementations of some
common standard L P agorithms (smplex, dud, and barrier) and is computationdly fast. Its routines can
be called from either aFortran or C program. The SRD verson runson a SUN computer running Solaris
(v2.6) UNIX . The economic directorate has another license for CPLEX; their verson runs on a DEC
Alphawith UNIX.

ii) The calsto the linear programming subroutine XMP that existed in the earlier suppresson and audit
programs were replaced by calsto the various L P routines from CPLEX. Specificaly the 3D suppression
program that was LP based was updated in this way. Both the 3D and 4D audit programs were aso
updated. The suppression programsthat are used for 2D tables and use network flow methods are known
to provide a sufficient amount of suppression a the cdl leve (ref: C1, p. 1458) and the basic dgorithmic
structure has not been modified in recent years. Use of CPLEX inthe 2D programs may be explored later
to determine if CPLEX, when runin its "network mode," runs asfast (or even faster) than MCF.

iii) Efforts have begun to speed up the suppression and audit programs by saving some parts of the solution
of the LP problem for one suppressed cell that can be used for the next suppressed cell being processed.
In dgorithmic andyds, a"warm dart” is an informa expresson that expressesthe idea of using part of an
earlier solution in the search for a solution to the next in a series of problems; thus, we have implemented
awarm dart for the suppresson program. The high degree of control of the LP solver dlowed in the
CPLEX package makes this possible. In the suppression problem, the congraintssmply expressthefact
that the sum of cdll vaue changesin any shaft must be zero. These congraints are clearly the samefor each
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primary being protected. What differs are the bounds for the cells that are candidate complements,
because the bounds are determined by the capacities and these do depend on the given primary. The cost
coefficients associated with the cells dso change with the primary since typicaly after a cdll is chosen as
acomplement its cost coefficient decreases.

iv) The 4D audit programwas generdized to handlelinear congraints other than asmple additivereation;
e.g., frequently asum of two columns equasthe sum of the remaining columns. Thisgenerality was needed
to process certain Manufacturers Energy Consumption Survey (MECS) tables. A generdization like this
iseadly implemented in CPLEX.

V) The 3D audit program was enhanced so that it can handle rounded vaues and determineif asuppressed
cdl in the rounded table can be shown to have a unique rounded vaue. In such cases, the rounding is
providing adequate protection for the cell and the unique vaue rather than a suppression flag should be
published for the cell. This program has two other types of generdity; it can handle non-smple additive
relations (asiniv) and it dlows for negative values in desgnated columns. The LP structure for rounded
data involves many more variables; in fact a variable is now required for each cdll; the bounds for the
variable depends on whether the cdll is suppressed or hasa published rounded value; e.g. for asuppressed
cdl the bounds may be Ib=0; ub=grand totd for table; for a cell with a rounded value v, b= v-0.5,
ub=v+0.5 if rounding isto the nearest unit.

8. The CPLEX Linear Programming Package

The basc CPLEX routines.
For initidizing a CPLEX environment use:
env = CPXopenCPLEX develop (status)
Note that thisworks only if the computer islicensed for the Base System (i.e,, the interactive system) and
Cdlable Library use.
For creating an LP problem object with no variables or congtraints yet defined use:
Ip = CPXcreateprab ( env, status, probname)
For copying various arrays to the problem object after they have been defined in the code:
status = CPXcopylp (env,Ip, nvar, ncon, objsen, ¢, b, sense,
meatbeg, matcnt, matind, matvd, Ib, ub)
In the call to CPXcopylp, key inputs are;
nvar = the number of LP varigbles;
ncon = the number of congraints,
objsen = the type of optimization problem; 1 to minimize; -1 to maximize
c= anaray of 9zenvar, the cost (i.e., objective) function coefficients;
b = n array of sze ncon, the right hand size congtants for the congraints;
sense = an array of Sze ncon, the sense of the inequdities for each congraint;
matbeg, matcnt, matind, matva = 4 arrays that describe the nonzero dements of the
congtraint matrix (See code or reference manua for details)
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Ib = an array of Sze nvar, the lower bound for each variable
ub = an array of size nvar, the upper bound for each variable

For solving the L P problem, there are three choices for the solver,

To invoke the prima amplex agorithm: status = CPXprimopt (env, Ip)

Toinvoke the dud smplex dgorithm:  status = CPXdudopt (env, Ip)

To invoke the barrier dgorithm: status = CPXbaropt (env, Ip)

(baropt is used for problems with a very large number of variables, say, more than 100,000)

Any of these solvers can be used to solve amoderate sized suppression problem. However, it appearsthat
duaopt may be dightly faster in generd (see section 10 below)

For extracting various components of the solution use:

gatus = CPXsolution (env, Ip, termin, objva, X, pi, dack, dj)
In the suppression programs, the part of the solution of grestest interest is the vector X, a vector with the
vauesfor each of the LPvariables. A variable with anonzero value meansthat the associated cell must be
suppressed. For the audit program, the objective function vaue (objva) isthe quantity of greatest interest;
it represents the maximum or minimum vaue that the associated cdll can achieve the interva (min, max)
defines the feagibility interva for that suppression.

If the current L P problem object will no longer be used, and acompletely new object will be defined then
one can free the current object with:

status = CPXfreeprob (env, Ip)
When CPLEX isno longer needed in the program one cdls.

status = CPXcloseCPLEX (env)

Programming note: the Fortran - C interface:

When cdling a routine written in C, such as a CPLEX routine, a scdar quantity such as 'env' must be
passed as 'Yova (env)' ; this passes the variable by vaue, which iswhat the C routine expects for ascaar
quantity. For arrays and character strings, a C routine expects a cdl by reference (which iswhat Fortran
does by default; i.e. without the %va () ). There are dso array indexing and ordering differences between
Fortranand C; seethe SUN Fortran Programmer's Guide for the F77 and F90 compilers; or the CPLEX
User's Manud.

0. Implementing Warm Starts and Modifications of an LP problem

Instead of defining a completely new problem object for each successive optimization in agiven run of the
suppression or audit programs, it is more efficient to modify only those parts of the LP problem that are
modified between successive calsto an LP solver.

For the suppression problem, the only parts of the problem that are changed between callsto a
solver for successive primaries are the bounds for the variables (these are determined by the capacities)
and the cost (=objective) function coefficients (these are often defined in terms of the vaues of the cdls
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associated with the variables).
status = CPXchgbds (env, Ip, bdscnt, bdsindices, lu, bd)
Here bdscnt = number of bounds that are changed; Iu, type of bound; bd, new vaue of bound.
status = CPXchgobj (env, Ip, objent, objindices, objvalues)
Here objcnt = number of objective function coefficients that are to be changed, objvaluesis the array of
new vaues.

For the audit program, the bounds do not change as we successively determine the lower and
upper limitsfor each suppressed cell. However, the cost function coefficientsdo changebut inavery smple
way. In the audit program there is only one variable for each cdll, and when we find the lower and upper
limits for agiven variable var(i) , we amply define cost(var(i))=1 and
set the codt for dl other variables equal to zero. Aswe cycle through the set of suppressed cdlls, to find the
lower bound we set objsen = 1 (for minimization) and then call:

cal CPXchgobjsen (env, Ip, objsen)
Then we cal asolver and extract objva (see above).
To find the upper bound we set objsen = -1 (for maximization) and then cadl the solver again.

10. Future Research

The main topic that will be explored in coming monthsisdetermining the design of the L P based programs
that will lead to the shortest run times for production work. Specifically we will explore the following
questions. Using the LP heurigtic for the cell suppression problem, what is the optima way to implement
it using the CPLEX routines? Thisinvolves determining which of thethree CPLEX LP solversisbest under
givenconditions(e.g., Sze of thetable, number of variables, etc.). What isthe best way to implement warm
starts ? Under what condition will they return avalid solution ? How much of atime savings do warm
sarts provide ? Would a CPLEX suppression program in ‘network flow mode be ableto run faster than
the current M CF based suppression program for large production runs on 2D tables ?

A longer range topic to be explored is determining the practicality of integer linear programming (ILP)
based programsfor productionwork. Onemotivation for usng I L P based programswas mentioned above;
it is only such programs that dlow one to implement the exact verson of the B,SV cogt functions. ILP
based programswould likely a so haveless oversuppress on than the L P based programs. Recent research
(ref: F, F-SG) in thisareawill be studied for hints as to how to best design such programs.
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