FINAL REPORT

Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals Administered by Gavage on Postnatal Days 23 to 52/53

Authors:

Julia D. George, Ph.D. Rochelle W. Tyl, Ph.D., DABT Bonnie T. Hamby, B.S. Christina B. Myers, M.S. Melissa C. Marr, B.A., RLATG

Sponsor:

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201-2693

Study Initiation Date:

May 20, 2002

Experimental Dates:

October 7, 2002 - October 22, 2003 January 26, 2003 - October 22, 2003

Performing Laboratory:

Center for Life Sciences and Toxicology Science and Engineering RTI International P. O. Box 12194 Research Triangle Park, NC 27709-2194

Sponsor's Representative:

David P. Houchens, Ph.D. EDSP Program Manager Battelle

In-Life Performance Dates:

September 5, 2002 - November 7, 2002 (Component 1)

December 26, 2002 - February 26, 2003 (Component 2)

Final Report Date:

February 9, 2004

RTI Identification Number:

08055.001.015.001

FINAL REPORT

Title:

Assessment of Pubertal Development and Thyroid Function in

		e CD® (Sprague-Dawley) Rats After Expost emicals Administered by Gavage on Postna 2/53	
Authors:	Julia D. George, Ph.D. Rochelle W. Tyl, Ph.D., DABT Bonnie T. Hamby, B.S. Christina B. Myers, M.S. Melissa C. Marr, B.A., RLATG		
Performing Laboratory:	Center for Life Sciences and Toxicology Science and Engineering RTI International P. O. Box 12194 Research Triangle Park, NC 27709-2194		
Sponsor:	Battelle Memorial Institute 505 King Avenue Columbus, OH 43201-2693		
Sponsor's Representative:	David P. Houchens, Ph.D. EDSP Program Manager Battelle		
Study Initiation Date:	May 20, 2002	2	
In-Life Performance Dates:	September 5, 2002 - November 7, 2002 (Component 1) December 26, 2002 - February 26, 2003 (Component 2)		
Experimental Dates:	October 7, 2002 - October 22, 2003 January 26, 2003 - October 22, 2003		
Draft Final Report Date:	February 9, 2004		
RTI Identification Number:	08055.001.0	15.001	
Author:		Approved:	
Julia D. George, Ph.D. Study Director Center for Life Sciences and Toxicology RTI International	Date	Alan H. Staple, M.Sc. Vice President Health Sciences RTI International	Date

TABLE OF CONTENTS

Pa	age
ABSTRACT	. 1
OBJECTIVE	. 4
MATERIALS AND METHODS	1
Test Materials and Dose Formulations	
Animals and Husbandry	. 6
Study Design	
F0 Females	
Progeny (F1)	
F1 Males	
Necropsy for pnd 52/53 F1 Males	
Gross Examination, and Histo pathology	
Statistical Analyses	15
Personnel	
Histopathology Report, Analytical Report, Feed Analysis Report, Protocol, Protocol Amendments, and	
Protocol Deviations	
Storage of Records	
Compliance	1 /
RESULTS	17
Dose Formulations	
Component 1	
Control F1 Males	
In-Life Data from F1 Males Treated with Atrazine	
Necropsy and Histopathological Data from F1 Males Treated with Atrazine	
In-Life Data from F1 Males Treated with p, p'-Dichlorodiphenyldichloroethylene	21
Necrop sy and Histopathological Data from F1 Males Treated with p, p'-	22
Dichlorodiphenyldichloroethylene	
In-Life Data from F1 Males Treated with Vinclozolin	
In-Life Data from F1 Males Treated with Methoxychlor	
Necropsy and Histopathological Data from F1 Males Treated with Methoxychlor	
Component 2	25
Control F1 Males	
In-Life Data from F1 Males Treated with Propylthiouracil	25
Necrop sy and Histopathological Data from F1 Males Treated with Propylthiouracil	
In-Life Data from F1 Males Treated with Ketoconazole	28
Necrop sy and Histopathological Data from F1 Males Treated with Ketoconazole	
In-Life Data from F1 Males Treated with Linuron	
Necropsy and Histopathological Data from F1 Males Treated with Linuron	
In-Life Data from F1 Males Treated with Phenobarbital	
DISCUSSION AND CONCLUSIONS	33
REFERENCES	36
PROTOCOL DEVIATIONS	38

List of Appendices				
I. II. III. IV. V.	Individual Animal Data Tables Histopathology Report Analytical Chemistry Reports Feed Analysis Reports Protocol and Two Amendments			
List of	Tables			
1. 2. 3.	Study Sche dule	13		
	List of Figures			
1. Gene	eral Component Study Design for the Male Pubertal Assay	10		
	List of Summary Tables			
1-A	Analyses of Atrazine Dose Formulations	43		
1-B	Analyses of p,p'-Dichlorodiphenyldichloroethylene Dose Formulations	44		
1-C	Analyses of Vinclozolin Dose Formulations	45		
1-D	Analyses of Methoxychlor Dose Formulations	46		
1-E	Analyses of Propylthiouracil Dose Formulations	48		
1-F	Analyses of Ketoconazole Dose Formulations			
1-G	Analyses of Linuron Dose Formulations	50		
1-H	Analyses of Phenobarbital Dose Formulations	51		
2-A	Summary of the Fate of the Atrazine-Treated F1 Males	52		
2-B	Summary of the Fate of the p,p'-Dichlorodiphenyldichloroethylene-Treated F1 Males			
2-C	Summary of the Fate of the Vinclozolin-Treated F1 Males			
2-D	Summary of the Fate of the Methoxychlor-Treated F1 Males			
2-E	Summary of the Fate of the Propylthiouracil-Treated F1 Males			
2-F	Summary of the Fate of the Ketoconazole-Treated F1 Males	54		
2-G	Summary of the Fate of the Linuron-Treated F1 Males	55		

Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean

2-H

3-A

3-B	Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post	
	Wean Period for the p,p'-Dichlorodiphenyldichloroethylene-Treated F1 Males	61
3-C	Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean	
	Period for the Vinclozolin-Treated F1 Males	66
3-D	Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean	
	Period for the Methoxychlor-Treated F1 Males	71
3-E	Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean	
	Period for the Propylthiouracil-Treated F1 Males	76
3-F	Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean	
	Period for the Ketoconazole-Treated F1 Males	81
3-G	Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post	
	Wean Period for the Linuron-Treated F1 Males	86
3-H	Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean	
	Period for the Phenobarbital-Treated F1 Males	91
4-A	Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the	
	Atrazine-Treated F1 Males	96
4-B	Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the	
	p,p'-Dichlorodiphenyldichloroethylene-Treated F1 Males	05
4-C	Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the	
	Vinclozolin-Treated F1 Males	114
4-D	Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the	
	Methoxychlor-Treated F1 Males	123
4-E	Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the	
	Propylthiouracil-Treated F1 Males	132
4-F	Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the	
	Ketoconazole-Treated F1 Males	l 4 1
4-G	Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the	
	Linuron-Treated F1 Males	150
4-H	Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the	
	Phenobarbital-Treated F1 Males	159
5-A	Summary of Clinical Observations During the Post Wean Period for the Atrazine-Treated F1 Males	167
5-B	Summary of Clinical Observations During the Post Wean Period for the	
	p,p'-Dichlorodiphenyldichloroethylene-Treated F1 Males	170
5-C	Summary of Clinical Observations During the Post Wean Period for the Vinclozolin-Treated F1 Males	172
5-D	Summary of Clinical Observations During the Post Wean Period for the Methoxychlor-Treated F1	
	Males	174

5-E	Summary of Clinical Observations During the Post Wean Period for the Propylthiouracil-Treated F1 Males	175
5-F	Summary of Clinical Observations During the Post Wean Period for the Ketoconazole-Treated F1	1/3
	Males	177
5-G	Summary of Clinical Observations During the Post Wean Period for the Linuron-Treated F1 Males	180
5-H	Summary of Clinical Observations During the Post Wean Period for the Phenobarbital-Treated F1	
	Males	182
6-A 6-B	Summary and Statistical Analysis of the Preputial Separation Data for the Atrazine-Treated F1 Males . Summary and Statistical Analysis of the Preputial Separation Data for the	185
	p,p'-Dichlorodiphenyldichloroethylene-Treated F1 Males	186
6-C	Summary and Statistical Analysis of the Preputial Separation Data for the Vinclozolin-Treated F1	
	Males	187
6-D	Summary and Statistical Analysis of the Preputial Separation Data for the Methoxychlor-Treated F1 Males	188
6-E	Summary and Statistical Analysis of the Preputial Separation Data for the Propylthiouracil-Treated F1	
	Males	189
6-F	Summary and Statistical Analysis of the Preputial Separation Data for the Ketoconazole-Treated F1 Males	190
6-G	Summary and Statistical Analysis of the Preputial Separation Data for the Linuron-Treated F1 Males	191
6-H	Summary and Statistical Analysis of the Preputial Separation Data for the Phenobarbital-Treated F1	
	Males	192
7-A	Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Atrazine-Treated F1 Males	193
7-B	Summary and Statistical Analysis of the Organ Weights and Hormone Data for the p,p-	
	Dichlorodiphenyldichloroethylene-Treated F1 Males	198
7-C	Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Vinclozolin-	
	Treated F1 Males	203
7-D	Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Methoxychlor-	
	Treated F1 Males	208
7-E	Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Propylthiouracil-	
	Treated F1 Males	212
7-F	Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Ketoconazole-	
	Treated F1 Males	217
7-G	Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Linuron-	
	Treated F1 Males	222

7-H	Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Phenobarbital-			
	Treated F1 Males	27		
8-A	Summary of Necropsy Findings for the Atrazine-Treated F1 Males	32		
8-B	Summary of Necropsy Findings for the p,p'-Dichlorodiphenyldichloroethylene-Treated F1 Males 23	33		
8-C	Summary of Necropsy Findings for the Vinclozolin-Treated F1 Males	34		
8-D	Summary of Necropsy Findings for the Methoxychlor-Treated F1 Males	35		
8-E	Summary of Necropsy Findings for the Propylthiouracil-Treated F1 Males	36		
8-F	Summary of Necropsy Findings for the Ketoconazole-Treated F1 Males	37		
8-G	Summary of Necropsy Findings for the Linuron-Treated F1 Males	38		
8-H	Summary of Necropsy Findings for the Phenobarbital-Treated F1 Males	30		

RTI Project No.: 08055.015.001 RTI Protocol No.: RTI-831

FINAL REPORT

Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals Administered by Gavage on Postnatal Days 23 to 52/53

ABSTRACT

The Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC), assembled by the U.S. Environmental Protection Agency (EPA) in 1996, recommended the use of a male 20-day pubertal assay with thyroid assessment to evaluate test materials that are only effective orally, or after a dosing duration longer than that used in the uterotrophic assay (EDSTAC Report, 1998). This assay is the most comprehensive assay in the proposed Tier 1 battery of optional assays. It is capable of detecting substances that alter thyroid function, that are aromatase inhibitors, estrogens, anti-estrogens, androgens, and anti-androgens, and that interfere with the hypothalamus-pituitary-gonadal or –thyroid axis. Although the experiments completed or in progress are believed to be sufficient to demonstrate the usefulness of the female pubertal assay for a wide variety of chemicals, EPA felt that additional multipledose studies across an array of chemicals would provide greater confidence in the reliability and relevance of the assay. Therefore, EPA decided to test eight additional chemicals that have various modes of action, i.e., atrazine, p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE), vinclozolin, methoxychlor, propylthiouracil, keto conazole, linuron, and phenobarb ital using the male pubertal assay.

The study was conducted in two components. In each component, F1 males, produced from undo sed timed-pregnant CD® (Sprague-Dawley) rats (the F0 generation), were used. On the day of birth (pnd 0), F1 pups were counted, sexed, weighed, and examined externally. On pnd 4, the litters were standardized to ten pups, maximizing the number of male pups. Natural litters with ten or fewer pups were not culled. The F0 females were allowed to rear their pups to pnd 21. F1 survival, gender identification, gross observations, and body weight were recorded on pnd 4, 7, 14, and 21. On pnd 21, F1 males were weaned and weight ranked across litters, then randomized into the treatment groups based on body weight. Fifteen F1 males were assigned to each treatment group in each component. F1 males were orally dosed with a test compound or the vehicle (corn oil) from pnd 23 to pnd 52/53. Dose volume (5 ml/kg/day) was based on daily body weight. In Component 1, animals received atrazine (75 or 150 mg/kg/day), p, p'-DDE (50 or 100 mg/kg/day), vinclozolin (30 or 100 mg/kg/day) or methoxychlor (25 or 50 mg/kg/day) in Mazola® corn oil. In Component 2, animals received propylthiouracil (2 or 25 mg/kg/day), ketoconazole (50 or 100 mg/kg/day), linuron (50 or 100 mg/kg/day), or phenobarbital (50 or 100 mg/kg/day) in Mazola® corn oil. A separate vehicle control group dosed with corn oil was run

concurrently with each component. Daily body weights and feed consumption for the F1 males were recorded during the post weaning treatment period to scheduled sacrifice. Clinical signs were recorded twice daily during the treatment period. Beginning on pnd 23, F1 males were examined for preputial separation; the day of complete preputial separation was identified as the age of acquisition of preputial separation.

At necropsy on pnd 52/53, the males were euthanized, and blood was collected by external cardiac puncture for analysis of thyroxine (T4) and thyroid-stimulating hormone (TSH). Body and organ weights were recorded. The testis, epididymis, and thyroid were evaluated histopathologically. The following observations were made:

- ♦ <u>Atrazine</u>. Treatment with atrazine at 75 or 150 mg/kg/day did not affect the day of acquisition of preputial separation. Adjusted organ weights exhibited an increasing trend for paired testes weight. No differences were noted in T4 or TSH levels, and no treatment-related histopathological changes were observed in the thyroid, testes, or epididymides.
- ♦ Vinclozolin. The day of preputial separation exhibited significant delays at both the 30 and 100 mg/kg/day dose levels. In addition, two males in the high-dose group failed to achieve preputial separation prior to scheduled necropsy. Adjusted weight of paired testes (increase), paired epididymides (decrease), and paired seminal vesicles with coagulating glands (decrease) exhibited significant treatment-related effects at both dose levels. Adjusted dorsolateral and total prostate, and LABC weight exhibited a significant decrease at the high dose. T4 levels were significantly decreased at both doses of vinclozolin, while no effect was observed on TSH.
- ♦ Methoxychlor. No effect on preputial separation was noted at either 25 or 50 mg/kg/day methoxychlor. A djusted paired adrenal weight (increase) and seminal vesicle with coagulating glands (decrease) exhibited a significant difference from the control group, and only at the high dose. Thyroid hormones were unaffected, and no treatment-related histopathology was observed.
- ♦ Propylthiou racil. As expected, propylthiouracil produced a decrease in T4 and an increase in T5H, increased adjusted thyroid weight, and thyroid follicular cell hypertrophy/hyperplasia at both 2 and 25 mg/kg/day. Preputial separation was significantly delayed at the high dose. Treatment effects were also observed at both doses in the increased adjusted weights of the seminal vesicles with coagulating glands. Adjusted liver weight and paired epididymides weight exhibited an increasing trend.
- ♦ <u>Keto conazole</u>. The postnatal day of acquisition of preputial separation was delayed at both doses of ketoconazole. Other treatment-related changes observed at both treatment levels included increased adjusted liver and paired adrenal weight, and decreased adjusted seminal vesicles with coagulating glands weight. The high dose of ketoconazole

also increased adjusted paired kidney weight and decreased adjusted paired testes weight. No effect of treatment was observed histologically in the testes, epididymides, or thyroid. Thyroid hormone levels were not affected.

- ♦ <u>Linuron</u>. Linuron delayed puberty at both the 50 and 100 mg/kg/day dose levels, as evidenced by delayed acquisition of preputial separation. Adjusted liver weight exhibited a treatment effect (increase) at both dose levels; adjusted seminal vesicles with coagulating glands weight was decreased at the high dose. Both T4 and TSH levels were decreased at both dose levels, although the decrease in TSH at the high dose of linuron did not reach statistical significance.
- Phenobarbital. The postnatal day of acquisition of preputial separation was delayed at both doses of phenobarbital. In addition, treatment-related effects were detected at both dose levels in an increase in the adjusted weights of the thyroid and liver. A decrease in adjusted organ weight was observed at the high dose for paired testes and LABC. Adjusted paired epididymides weight exhibited a decreasing trend. No effect of treatment was observed on circulating T4 or TSH levels, or histologically in the testes, epididymides, or thyroid.

OBJECTIVE

The objective of this study was to examine the sensitivity of the male pubertal assay to the effects of a wide variety of chemicals that are known to affect the endocrine system through different pathways and/or mechanisms of action. This assay is the most comprehensive assay in the proposed Tier 1 battery of assays, as it is capable of detecting substances that alter thyroid function, that are aromatase inhibitors, estrogens, androgens, antiandrogens, and thyroid-active compounds that are agents which interfere with the hypothalamus-pituitary-gonadal axis. Results from other shorter assays and/or with the use of intraperitoneal (i.p.) injection as the route of administration, have also been reported (O'Connor et al., 1998a,b; 1999a,b; 2000a,b; 2002a,b). Although the experiments that have been completed or in progress are believed to be sufficient to demonstrate the usefulness of these pubertal assays for a wide variety of chemicals, EPA felt that additional multiple-dose studies across an array of chemicals would provide greater confidence in the reliability and relevance of the female pubertal assay. Therefore, EPA decided to test eight additional chemicals that have various modes of action.

MATERIALS AND METHODS

Test Materials and Dose Formulations

The test chemicals were procured and analyzed for purity by the sponsor, by means of gas chromatography with a flame ionization detector (GC-FID), gravimetric analysis, or high performance liquid chromatography (HPLC), as indicated below. For atrazine, characterization was conducted on one lot, whereas do sing was accomplished with two lots, as indicated below. All bulk test chemicals were stored at Battelle, at room temperature, with the exception of phen obarbital, which was stored at 4°C.

Atrazine

CAS Number: 1912-24-9 Supplier: Chem Services Lot No. (Characterization): 277-93B

Purity (Battelle): 99.9% (GC-FID)

Lot Nos. (do sing): 289-102A and 285-63B (not characterized)

p, p-DDE

CAS Number: 72-55-9 Supplier: Aldrich Lot. No.: 09020KU

Purity (Battelle): 99.4% (GC-FID)

Vinclo zolin

CAS Number: 50471-44-8
Supplier: Chem Services
Lot No: 281-94A

Purity (Battelle): 99.7% (GC-FID)

Methoxychlor

CAS Number: 72-43-5 Supplier: Sigma Lot No.: 049H1328

Purity (Battelle): 89.7% (GC-FID)

Propylthiou racil

CAS Number: 51-52-5 Supplier: TCI Lot. No.: GB01

Purity (Battelle): 99.9% (gravimentric)

Keto cona zole

CAS Number: 65277-42-1

Supplier: Spectrum Laboratory Products

Lot. No: QL0352 Purity (Battelle): 100% (HPLC)

Linuron

CAS Number: 330-55-2
Supplier: Chem Services
Lot Number: 273-81B
Purity (Battelle): 99.5 (HPLC)

Phenobarbital

CAS Number: 50-06-6
Supplier: Sigma
Lot Number: 81K2620
Purity (Battelle): 99.1% (HPLC)

Mazola® corn oil (expiration dates 4-03, 9-03, 12-03 and 1-04) was purchased by Battelle-Sequim from retail outlets. Peroxide determination of the corn oil used was 2.07 meq/kg (expiration date 4-03), 1.38 meq/kg (expiration date 9-03), 1.77 meq/kg (expiration date 12-03), and 1.34 meq/kg (expiration date 1-04). The corn oil was stored in the freezer. Test chemicals formulated in corn oil were stored at 4°C. Dose formulations were mixed in corn oil for administration at 5 ml/kg. One vehicle formulation was mixed to be administered to the control group animals assigned to Component 1

compounds, whereas a separate vehicle formulation was mixed to be administered to the control group animals assigned to Component 2.

Stability analysis conducted at Battelle-Sequim, of test dose formulations of each chemical in corn oil indicated that the formulations were stable for at least eight weeks, with the exception of p, p'-DDE, and methoxychlor, which were stable for at least 6 and 4.5 weeks, respectively. Formulations assayed (triplicate average) between 91.0% and 109.6% of the target concentration prior to shipping to RTI International (Tables 1-A through 1-H). Additional information may be found in Appendix III (Final Chemical Reports for W A 2-14, B attelle, July 24, 2003).

Animals and Husbandry

For Component 1, 20 timed-pregnant and 2 nonpregnant female outbred albino CD® (Sprague-Dawley) rats (Crl:CD®[SD] IGS BR) were received from Charles River Breeding Laboratories (Raleigh, NC) on September 5, 2002 at gestational day (gd) 13 (Table 1). A separate order of 20 timed-pregnant and 2 nonpregnant female rats were received on December 26, 2002 for use in Component 2. The females were 10 weeks old upon arrival at RTI.

Table 1. Study Schedule

Event	Dates
Component 1 (Atrazine, DDE, Vinclozolin Methoxchlor)	
Receive 20 females at gd 13	September 5, 2002
Quarantine (gd 13-20)	September 5–12, 2002
pnd 0	September 14-16, 2002
pnd 21	October 5-7, 2002
1 st day of dosing (pnd 23)	October 7-9, 2002
Necropsy (pnd 52/53)	November 5-7, 2002
Receive 20 females at gd 13	December 26, 2002
P. 1 20 C. 1 4 112	D 1 26 2002
Quarantine (gd 13-20)	December 26 – January 2, 2003
pnd 0	January 4, 5, 2003
pnd 21	January 25, 26, 2003
1 st day of dosing (pnd 23)	January 26, 2003
Necropsy (pnd 52/53)	February 26, 27, 2003
Reproductive Organ/Thyroid Histopathology complete	October 22, 2003
Hormo ne Analysis Complete	May 20, 2003

For each component, the animals were quarantined for one week, during which time they were weighed and examined by a veterinarian. Representative animals were subjected to fecal examination. Within one day after receipt of each shipment, the two nonpregnant female rats were sacrificed and blood

collected for assessment of viral antibody status. Heat-inactivated serum was sent to BioReliance (Rockville, MD) for their Level 1 Rat Antibody Screen. The viral screen consisted of evaluation for the presence of antibodies against the following:

- ♦ Toolan H-1 virus (H-1),
- ♦ Sendai virus,
- pneumonia virus of mice (PVM),
- ♦ rat coronavirus/sialodacryoadenitis (RCV/SDA),
- ♦ Kilham rat virus (KRV),
- ♦ CAR Bacillus (CARB),
- ♦ Mycoplasma pulmonis (M. Pul.), and
- ♦ parvo (PARVO).

Results of the physical examination, serology, and parasitology were negative for signs of infectious disease. The animals were considered to be in good health and suitable for use in this study.

The experiment was carried out under standard laboratory conditions. The F0 animals were individually housed during the quarantine period and during gestation, and with their litters in solidbottom polycarbo nate cages with stainless-steel wire lids (Laboratory Products, Rochelle Park, NJ) with Sani-Chip® cage litter (P.J. Murphy Forest Products Corp., Montville, NJ). Postwean retained F1 males were housed singly until necropsy. All animals were housed in the RTI Animal Research Facility for the duration of the study. Due to an oversight, Room 201 was on a 12:12 (light:dark) light cycle for the first 30 days of the study. Thereafter, all animal rooms were on a 14:10 hour (light:dark) light cycle per day and were air-conditioned; temperature and relative humidity (RH) were continuously monitored, controlled, and recorded using an automatic system (Siebe/Barber-Colman Network 8000 System, Version 4.4.1, Loves Park, IL). The protocol-mandated temperature range was 64 to 79°F (18-26°C), and the RH range was 30-70% (NRC, 1996). The F0 and F1 animals (prior to weaning) in Component 1 were housed in Room 201 of the Animal Research Facility. Temperature and RH readings for the animal rooms, excluding transient deviations (as noted in the Protocol Deviation list, page 36) are presented here. Temperature and RH readings for Room 201 from September 5 to October 6, 2002, were 70.2 to 74.2°F and 44.5% to 62.6% RH. F1 animals were housed in Room 303 after weaning. Temperature and RH readings for Room 303 from October 5 to November 7, 2002, were 70.5 to 77.9°F and 45.8% to 61.4% RH. F0 and F1 animals in Component 2 were housed in Room 403 from December 26, 2002 to February 27, 2003. Temperature and RH readings for Room 403 from December 26, 2002 to February 27, 2003 were 70.2 to 73.3°F and 33.7 to 60.6% RH.

Purina Certified Rodent Chow (No. 5002, PMI Feeds, Inc., St. Louis, MO; batch numbers documented in the study records) was available *ad libitum*. The metabolizable energy content for this feed is 3.10 kcal/gm. All animals in all groups received either batch/lot #JUN 24 02 1B or #DEC 02 02

2B of Purina Certified Rodent Chow. The analyses of each feed batch for nutrient levels and possible contaminants were performed by the supplier, examined by the Study Director, and maintained in the study records. The feed was also analyzed at the manufacturer for the phytoestrogens (isoflavones) daidzein, genistein, and glycitein. Analysis indicated that the total phytoestrogens (as aglycones) in these lots of feed ranged from 271 to 353 ppm (Appendix IV).

Deionized water (generated in-house from tap water; source: City of Durham, Department of Water Resources, Durham, NC) was available *ad libitum* by plastic water bottles with butyl rubber stoppers and stainless-steel sipper tubes. Contaminant levels of the Durham City water were measured at regular intervals by the supplier per EPA specifications. The deionized water was analyzed by Balazs Analytical Laboratories, Inc. (Sunnyvale, CA). There were no known contaminants that may have affected the outcome of this study. F0 females were individually identified by eartag. F0 females were allowed to give birth and rear their litters. Litters were adjusted on pnd 4 to 10 pups, maximizing the number of male pups.

After selection of the F1 male weanling study animals, four unselected male rats were designated as sentinels and eartagged. They were singly housed in the study room(s) in polycarbonate solid-bottom cages with bedding and provided feed and water *ad libitum* (as described above for study animals). They were examined once daily by cage-side observation for morbidity or mortality at the same time as clinical observations or morbidity/mortality checks for the study animals. No sentinels exhibited any morbidity or mortality. At the time of necropsy of retained F1 males, the sentinels were terminated, blood samples collected, and serum samples prepared. All sentinel serum samples were submitted to BioReliance (Rockville, MD) for serological evaluation (see above). Analysis of serum (as described above) from sentinels sacrificed during the necropsy of the retained F1 male necropsy was negative for viral antibodies.

A total of 15 F1 males per group were assigned to each component in this study. F1 males were assigned to treatment groups by stratified randomization for body weight on pnd 21, so that mean body weight on pnd 21 did not differ among treatment groups. Selected male F1 weanlings were identified by eartag, and F1 pups prior to weaning were not uniquely identified. The method and numbers for identification were documented in the study records.

All adult animals assigned to the study were euthanized by CO_2 asphyxiation. F1 pups culled on pnd 4 were sacrificed by decapitation. F0 females received with the initial shipments, but not assigned to the study, were removed from the study room when the F0 females were released from quarantine and euthanized by CO_2 asphyxiation. Similarly, F1 males not assigned to treatment groups or chosen as sentinels were removed from the study room prior to initiation of dosing and euthanized by CO_2 asphyxiation. Records were kept documenting the fate of all animals in the study.

Study Design

A graphic representation of the component study design is presented in Figure 1. The study began with 20 timed-mated females in each component.

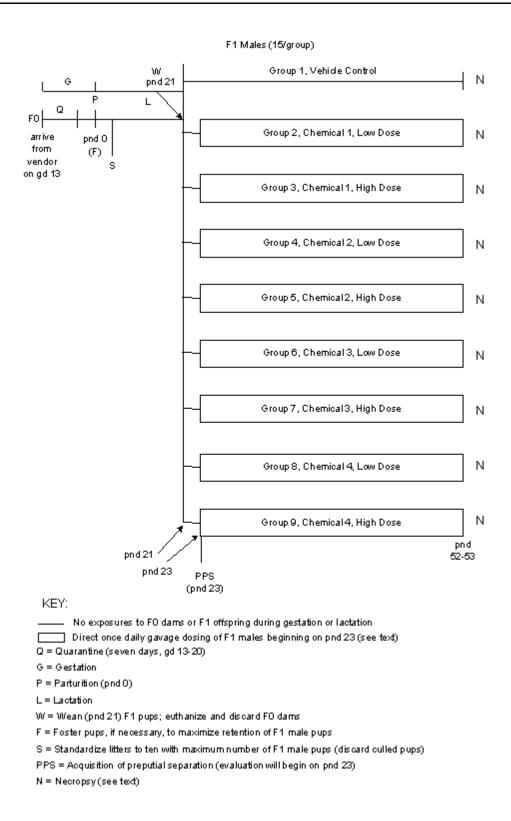


Figure 1. General Component Study Design for the Male Pubertal Assay

F0 Females

Beginning on gd 20, each female was examined twice daily (a.m. and p.m.) for evidence of littering. Females who were littering at morning and afternoon checks had this information recorded on the gestational sheet. Signs of dystocia or other signs of difficulty at parturition were also recorded, if observed. Dams that did not produce a litter by calculated gd 26 were euthanized by CO_2 and discarded. Any dams whose whole litters were born dead or died prior to pnd 21 were sacrificed, and the number of uterine implantation scars recorded. On pnd 21 of each F1 litter, each F0 dam was euthanized by CO_2 asphyxiation, and the carcass discarded. Final disposition of each animal was clearly documented in the study records.

Progeny (F1)

All pups were counted, sexed, weighed, and examined as soon as possible on the day of birth (designated as pnd 0) to determine the number of viable and stillborn members of each litter. Thereafter, litters were evaluated for survival, sex, gross observations, and body weights on pnd 4, 7, 14, and 21. Any pup which appeared moribund or died during lactation was necropsied, when possible, to investigate the cause of death and discarded. No organs were weighed or saved. On pnd 4, the size of each litter was adjusted to ten pups, maximizing the number of male pups retained. Natural litters with ten or fewer pups were not culled. All culled pups were sacrificed by decapitation. The F0 dams were allowed to rear their remaining F1 young to pnd 21. On pnd 21, each litter was weaned.

F1 Males

When each F1 litter reached pnd 21, the F1 males from each pnd 21 (wean) date were weight ranked across litters (outliers, i.e., heaviest and lightest pups, were eliminated from selection). The selected males were eartagged and distributed across the groups in each component by stratified randomization (e.g., one of the heaviest selected males went into each of the treatment groups, etc.). Of the remaining F1 males, four were eartagged and selected as sentinels.

Beginning on pnd 23, each F1 male was dosed with one of the test materials at one of the dose levels or the vehicle control (corn oil for all chemicals), as shown in Table 2. EPA selected nine test chemicals for this evaluation and selected the low- and high-target doses (in mg/kg/day) for each of them. One chemical selected for testing, finasteride, an inhibitor of a 5 α -reductase which catalyzes the conversion of testosterone to its potent metabolite, dihydrotestosterone [DHT]), could not be obtained from the manufacturer in time to be included in the study, and was eliminated from this study. The remaining eight test chemicals and their target/mechanism of action are as follows: (1) atrazine (affects the hypothalamus-pituitary axis); (2) p, p'-DDE (stable metabolite of DDT; anti-androgen through

competitive binding to the androgen receptor); (3) vinclozolin (metabolites M 1 and M2 act as antiandrogens; competitive binding to androgen receptor; M1 also binds weakly to the rat progesterone receptor); (4) methoxychlor (a xeno-estrogen through α -estrogen receptor, anti-estrogen through β -estrogen receptor and an anti-androgen through androgen receptor-mediated mechanism); (5) propylthiouracil (affects the thyroid directly, causing hypothyroidism); (6) ketoconazole (inhibits steroidogenesis in both sexes); (7) linuron (anti-androgen; competitive binding to androgen receptor); and (8) phenobarbital (induces P450 isoforms predominantly in the liver, accelerates metabolism of endogenous hormones and exogenous xenobiotics). Each animal was weighed every day prior to treatment and the body weight recorded. Treatments were administered daily by oral gavage using an 18-gauge gavage needle (1 inch length with 2.25 mm ball) and a 1 cc glass or plastic (disposable) tuberculin syringe for each treatment, from pnd 23 and continuing to pnd 52/53. This duration of treatment was required for the detection of pubertal delay and antithyroid effects. Test chemicals were administered in corn oil vehicle at a dosing volume of 5 ml/kg body weight. The treatments were administered on a mg/kg body weight basis, adjusted based on the most recent body weight, and the volume of the dose administered was recorded each day.

Clinical observations of F1 male study animals were documented at least once daily on pnd 21 and 22 (prior to dosing period) and at least twice daily, at dosing and one to two hours postdosing, throughout the dosing period (pnd 23 to pnd 52 or 53). All F1 males were weighed in the morning on pnd 21 and 22, and every day in the morning during the dosing period on pnd 23 to pnd 52/53, for adjustment of dosing volume based on the most recent body weight. Daily body weights were reported and statistically analyzed. F1 male weight gains were calculated and analyzed for pnd 21-23, 23-30, 30-37, 37-44, 44-51, 51-52, 51-53, and 23-52/53 (treatment period). F1 male body weights were also recorded on the day of acquisition of preputial separation. Feed weights for the individually-housed F1 weanling males were recorded daily and reported as g/day and as g/kg body weight/day.

Beginning on pnd 23, each F1 study male was examined daily for preputial separation. The appearance of partial and complete preputial separation or a persistent thread of tissue between the glans and prepuce was recorded if it occurred. In addition, the body weight at complete preputial separation was recorded.

Necropsy for pnd 52/53 F1 Males

Blood Collection and Hormone Assays

At scheduled necropsy of the F1 males, after terminal anesthesia (CO $_2$ asphyxiation), the males were weighed and the maximum amount of blood was taken by external cardiac puncture and placed in a labeled tube. The blood was allowed to clot and centrifuged under refrigeration at approximately 1200 \times

g for approximately 10 minutes. The resulting serum was subdivided into three aliquots and frozen at least -20°C. One aliquot from each animal was analyzed for T4 and the second aliquot was analyzed for T5H. The remaining serum was frozen and delivered to Dr. Ralph Cooper at the U.S. EPA's National Health and Environmental Effects Research Laboratory (NHE ERL) (RTP, NC).

Table 2. Study Design, Test Chemicals, and Target Doses

Group No.	No. F1 Males	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)	Dose Volume (ml/kg)
			COMPONENT 1		
1	15	a	0	0.0	5
2	15	Methoxychlor	25	5.0	5
3	15		50	10.0	5
4	15	Atrazine	75	15.0	5
5	15		150	30.0	5
6	15	p,p'-DDE	50	10.0	5
7	15		100	20.0	5
8	15	Vinclozolin	30	6.0	5
9	15		100	20.0	5
			COMPONENT 2		
1	15	a	0	0.0	5
2	15	Propylthio uracil	2	0.4	5
3	15		25	5.0	5
4	15	Linuron	50	10.0	5
5	15		100	20.0	5
6	15	Ketoco nazole	50	10.0	5
7	15		100	20.0	5
8	15	Phenobarbital	50	10.0	5
9	15		100	20.0	5

^a Corn oil, vehicle control

All assays were counted in a Packard Biosciences Cobra II Series Model 5002 gamma counter using RIASM ART software (Version 1.0). The rat thyroid stimulating hormone (rTSH) RIA used was a no-extraction, double antibody ¹²⁵I RIA (Amersham Biosciences, Piscataway, NJ) which utilized rTSH antibody, ¹²⁵I-rTSH, rTSH calibrators as the standard curve, and a solution consisting of donkey antirabbit serum coated onto magnetizable polymer particles. Normal control serum from the same species/strain/sex as the unknown samples was also assayed. From the control values, the intra and interassay coefficient of variation, percent recovery, and index of parallelism for the assays were determined

(see Table 3). The sensitivity of this assay was 0.5 ng/tube. For the RIA procedure, the sample was pipetted into a glass culture tube. The rTSH antiserum was added, followed by the ¹²⁵I-rTSH, and the tubes were vortexed and incubated at room temperature for 20-24 hours. After overnight incubation, the anti-rabbit serum was added and the tubes vortexed. The tubes were centrifuged, the supernatant was decanted, and the tubes containing pellets were counted in a gamma counter. Results were reported as ng/ml.

The T4 RIA used was a no-extraction, solid-phase 125 I RIA which utilized T4-specific antibody-coated tubes and 125 I-T4 (DPC, Los Angeles, CA). The T4 (Sigma, St. Louis, MO) standard curve was prepared in RIA Buffer I (0.01 M sodium phosphate plus 0.85% [w/v] sodium chloride with 0.1% [w/v] sodium azide and 1% [w/v] bovine serum albumin, pH 7.6). T4 controls were prepared in the same matrix as unknown samples by adding known concentrations of T4 to male serum, as appropriate. From the control values, the intra- and interassay coefficient of variation, percent recovery, and index of parallelism for the assays were determined (see Table 3). The sensitivity of this assay was 0.25 μ g/dL. For the RIA procedure, the sample was pipetted into the antibody-coated tube. The 125 I-T4 was added, and the tubes were vortexed and incubated in a 37°C water bath for one hour. After incubation, the supernatant was aspirated and the tubes were counted in a gamma counter. Results were reported as μ g/dL.

Table 3. Characteristics of Endocrine Radioim mun oass ays

	Hormone Assay		
	Т4	rTSH	
Parameter	(µg/dL)	(ng/m l)	
Matrix	pubertal male serum	pubertal male serum	
Intra-assay Variation: ^a			
blank m atrix	0/3.8%	0/5.3%	
mass added	2/3.3%	8/3.5%	
	10/2.8%	32/6.1%	
Interassay Variation. ^a			
num ber of assays	3	5	
blank m atrix	0/5.4%	0/10.4%	
mass added	2/8.9%	8/9.9%	
	10/3.4%	32/13.1%	
% Recovery of Added M ass ^b	2/(61.0% - 83.0%)	8/(88.8% - 122.4%)	
	10/(73.2% -77.3%)	32/(105.0% - 142.1%)	
Index of Parallelism ^c	2/100.5% ^d	0/110.2%	
	10/103.1% ^d	8/106.2%	
		32/94.0%	

Numbers are concentration of mass added/percentage variation. For intra-assay variation, the number of samples assayed was ten in each case.

Numbers are concentration of mass added/percentage recovered (range of all assays).

Index of parallelism = concentration of low volume ÷ concentration of high volume x 100.

d All study samples assayed at same volume.

Gross Examination, and Histopathology

Once each F1 male was bled, the animal was necropsied and internal thoracic and abdominal organs and cavities examined. Any abnormalities were documented. The following organs were dissected out and weighed: paired testes, paired epididymides, prostate (intact and separated into ventral and dorsolateral lobes), seminal vesicles with coagulating glands (and fluid), levator ani plus bulbo caverno sus muscle complex, liver, paired kidneys, adrenal glands (paired), pituitary, and thyroid (taken with attached portion of trachea, weighed after fixation and removal of the tracheal portion).

Tissues taken at necropsy were placed in fixative and then transferred to Experimental Pathology Laboratories (EPL) for processing. The testes and epididymides from each F1 male were placed in Bouin's fixative for 24 hours, after which they were rinsed and stored in 70% alcohol until embedded in paraffin. The thyroid with attached portion of trachea was fixed in 10% neutral buffered formalin. These tissues, in fixative were transferred to EPL. The thyroid was dissected and weighed at EPL. The tissues were embedded in paraffin, then sectioned at 3-5 microns and stained with hematoxylin and eosin (H and E) for subsequent histological evaluations. Optional tissues for histopathology, including the liver, paired kidneys, adrenal glands (paired) and pituitary (if warranted by organ weight change of "significant magnitude"), which were placed in 10% neutral buffered formalin, have not been processed. Stained sections were evaluated by a Board AVCP Certified veterinary pathologist (EPL) for pathologic abnormalities and potential treatment-related effects. Thyroids were evaluated for morphologic changes such as altered follicular epithelial height, the relative number and staining characteristics of colloid, the extent of thyroid vascular supply, and the density, size, and shape of the thyroid follicles. The testes and epididymides for each male were evaluated for spermatogenesis, spermiogenesis, status of seminiferous tubules in the testis, and sperm in the epididymis, as well as the structural integrity of these organs.

Statistical Analyses

All data for a single chemical (two doses) and concurrent vehicle control group were analyzed using either parametric ANOVA under the standard assumptions or robust regression methods (Zeger and Liang, 1986; Royall, 1986; Huber, 1967) which do not assume homogeneity of variance or normality. The homogeneity of variance assumption was examined via Levene's test (Levene, 1960). If Levene's test indicated lack of homogeneity of variance (p<0.05), robust regression methods were used to test all treatment effects. The robust regression methods use variance estimators that make no assumptions regarding homogeneity of variance or normality of the data. They were used to test for linear trends across dose as well as overall treatment group differences (via Wald chi-square tests). Significant overall treatment effects were followed by single degree-of-freedom t-tests for exposed vs. control group comparisons, if the overall treatment effect was significant. If Levene's test did not reject the hypothesis of homogeneous variances, standard ANOVA techniques were applied for comparing the treatment groups. The GLM procedure in SAS® Version 8 (SAS Institute, Inc., 1999 a,b,c,d,e; 2000) was used to test for linear trend, evaluate the overall effect of treatment and, when a significant treatment effect is present, to compare each exposed group to control via Dunnett's test (Dunnett, 1955, 1964). Standard

ANOVA methods, as well as Levene's test, were available in the GLM procedure of SAS®, and the robust regression methods were available in the REGRESS procedure of SUDAAN® Release 7.5.4 (Shah et al., 1997) or Release 8.0 (RTI, 2001). Organ weights were also analyzed by Analysis of Covariance (ANCOVA) using body weight at necropsy as the covariate. When statistically significant effects were observed, treatment means were examined further using LSMeans. The unit of comparison was the weanling F1 male offspring on study.

A test for statistical outliers was performed in the UNIVARIATE procedure of SAS® Version 8 (SAS Institute, Inc., 1999a,b,c,d,e; 2000) on F1 male body and organ weights. If examination of pertinent study data did not provide a plausible biologically sound reason for inclusion of the data flagged as "outlier," the data was excluded from summarization and analysis and was designated as outliers. For all statistical tests, $p \le 0.05$ (one- or two-tailed) was used as the criterion for significance.

Personnel

This study was conducted at RTI International, Research Triangle Park, NC, under contract to Battelle, Columbus, OH. Dr. David P. Houchens, EDSP Program Manager, was the Sponsor's Representative. Dr. R.W. Tyl served as Project Toxicologist. Dr. Julia D. George served as Study Director. Reproductive and Developmental Toxicology personnel included Ms. M.C. Marr (Laboratory Supervisor), Ms. C.B. Myers (Reproductive Toxicity Supervisor and Data Analyst), Mr. W.P. Ross, Ms. M.C. Rieth, Ms. V.I. Wilson, Ms. L.B Pelletier, Ms. M.P. Gower, Ms. N.M. Kuney, Ms. R.T. Krebs, Ms. S.W. Pearce, Ms. K.D. Vick, Ms. L. McDonald, Ms. A.J. Parham, Mr. M.D. Crews, Mr. C.G. Leach, Ms. A.B. Goodman, and Mr. T.W. Wiley. Bulk chemical analysis and handling, dose formulation, and dose formulation analysis were provided by the sponsor through Dr. E.A. Crecelius, PNNL, Battelle Marine Sciences Laboratory, Sequim, WA. Mr. M.M. Veselica (Supervisor, RTI Materials Handling Facility), Mr. D.L. Hubbard, and Mr. R.A. Price provided receipt and disbursement of dose formulations at RTI. Animal care was provided by Dr. D.B. Feldman, DVM, ACLAM, RTI Veterinarian, and Mr. F.N. Ali, Manager of RTI Animal Research Facility. Histology support was provided by EPL, Inc., and Dr. J.C. Seely (EPL) provided pathology support. RTI Quality Assurance personnel were Ms. D.A. Drissel, Ms. D.J. Smith, Ms. M.D. Phillips, Ms. T.M. Kenney, Ms. C. Ingalls, and Ms. M. Oh. Ms. K.D. Andrews, QA Consultant, audited the hormone data.

The final report was prepared by Dr. J.D. George, with assistance from Dr. R.W. Tyl, Ms. B. Hamby, Ms. C.B. Myers, and Ms. M.C. Marr. Ms. C.B. Myers was responsible for data compilation and statistical analyses, assisted by Mr. T.W. Wiley on data entry. Ms. M.C. Marr was responsible for all activities concerning organization and custody of the study records, and for archiving the study records. Ms. D.B. Bynum and Ms. K. L. Kehagias provided secretarial assistance.

Histopathology Report, Analytical Report, Feed Analysis Report, Protocol, Protocol Amendments, and Protocol Deviations

The histopathology and bulk chemical and dose formulation analytical reports were prepared and signed by their respective author(s) and included as Appendix II and III of this report, respectively. The feed analysis reports were produced by PMI, Inc., and included as Appendix IV. The protocol and two amendments, detailing the design and conduct of the study are presented in Appendix V of this report. Protocol deviations are listed on page 36 following the references.

Storage of Records

All original data sheets and records collected during the present study will be stored in the RTI Archives, under the control of the RTI Health Sciences Archivist, and remain the responsibility of RTI. Work sheets and computer printouts, which were generated in the statistical analysis of data, are stored in the RTI Archives. Copies of this report are filed with the RTI Archives and with Battelle. All remaining dose formulations were shipped back to the Sponsor. Records and samples from this study in RTI Archives may be released to the Sponsor upon written request.

Compliance

All records, data, biological specimens, and reports will be maintained in storage for the time period specified by the contract or for as long as the quality of the preparation affords evaluation, whichever is less. Quality control (QC) and quality assurance (QA) procedures followed those outlined in the Quality Assurance Project Plan (QAPP) prepared for this study and in accordance with the Quality Management Plan (QMP) for this project. The RTI Animal Research Facility is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC), International. At all times, animals were housed, handled, and used according to the NRC Guide (NRC, 1996).

RESULTS

Dose Formulations

Analysis of dose formulations prior to shipping from Battelle-Sequim, to RTI International indicated that the formulations were 91-109.6% of the target concentrations and were homogeneous (Table 1-A to 1-H). Aliquots of the dosing solutions and the control formulations were scheduled to be taken the first day of dosing (the first pnd 23) and on the first pnd 30, 37, 44, and 51. For Component 1, pnd 23, 30, 37, and 44 corresponded to October 7, 14, 21, 28, 2002. For the pnd 51 sample, the dosing formulation remaining in the dosing jar after completion of dosing served as the analytical sample (jar samples), since there was not enough formulation left over to take a separate analytical sample. For Component 2, pnd 23, 30, 37, 44 and 51 corresponded to January 26, 2003 and February 2, 9, 16, and 23, 2003, respectively. In addition, the formulation remaining in the dosing jar was submitted for analysis

(designated as Remain, Remainder, or Rec. samples; see Tables 1-A to 1-H and chemistry reports in Appendix III).

Analysis of 15 mg/ml atrazine dose formulations indicated concentrations of 112 -114% of the target concentration for the in-life samples and 94% of the target concentration for the postdosing sample (Table 1-A). The 30 mg/ml atrazine formulation assayed at 105-113% for the in-life samples and 96% for the postdosing sample. Analysis of 10 mg/ml p, p'-DDE dose formulations indicated concentrations of 93% of the target concentration for the in-life samples and 94% of the target concentration for the postdosing sample (Table 1-B). The 20 mg/ml p, p'-DDE formulation assayed at 91-92% for the in-life samples and 102% for the postdosing sample. The vinclozolin formulations were consumed during dosing, so there was none available to take in-life samples. Analysis of 6 mg/ml vinclozolin dose formulations indicated 95.3% of the target concentration for the postdosing sample (Table 1-C). The 20 mg/ml vinclozolin formulation assayed at 90% for the postdosing sample. Analysis of 5 mg/ml methoxychlor dose formulations indicated concentrations of 90-109% of the target concentration for the in-life samples and 91-94% of the target concentration for the postdosing samples (Table 1-D). The 10 mg/ml methoxychlor formulation assayed at 91-99% for the in-life samples and 91-94% for the postdosing samples.

Analysis of 0.4 mg/ml propylthiouracil dose formulations indicated concentrations of 75-88% of the target concentration for the in-life samples and 124% of the target concentration for the postdosing sample (Table 1-E). The 5 mg/ml propylthiouracil formulation assayed at 83-108% for the in-life samples and 104% for the postdosing sample. These results suggest that the 0.4 mg/ml dosing solution was more difficult to keep homogeneous during the dosing period. Analysis of 10 mg/ml ketoconazole dose formulations indicated concentrations of 85-102% of the target concentration for the in-life samples and 101% of the target concentration for the postdosing sample (Table 1-F). The 20 mg/ml ketoconazole formulation assayed at 91-99% for the in-life samples, and 100% for the postdosing sample. Analysis of 10 mg/ml linuron dose formulations indicated concentrations of 99-123% of the target concentration for the in-life samples, and 119% of the target concentration for the postdosing sample (Table 1-G). The 20 mg/ml linuron formulation assayed at 95-106% for the in-life samples, and 97% for the postdosing sample. Analysis of 10 mg/ml phenobarbital dose formulations indicated concentrations of 94-103% of the target concentration for the in-life samples, and 100% of the target concentration for the postdosing sample (Table 1-H). The 20 mg/ml phenobarbital formulation assayed at 99-103% for the in-life samples, and 101% for the postdosing sample. Additional analytical data are presented in Appendix III.

Component 1

Control F1 Males

Fifteen untreated F1 males were assigned to the control group for Component 1. These animals served as the concurrent control group for the animals in Component 1 that were treated with atrazine,

p,p'-DDE, vinclozolin, and methoxychlor. Twelve control animals were evaluated at scheduled necropsy on pnd 52 or 53 (see below).

In-Life Data from F1 Males Treated with Atrazine

Fifteen untreated F1 males were assigned to the 0, 75, or 150 mg/kg/day atrazine group (Table 2-A). No animals assigned to the control group or the high-dose atrazine-treated groups died prior to scheduled necropsy. Three males in each of the control and high dose groups were removed from the study because their correct postnatal day 0 could not be determined. One male in the low-dose group was removed from the study because it was not dosed on the correct postnatal days, and another male was removed from this group because his postnatal day 0 could not be determined. In addition, one male in the low-dose group was found dead on pnd 37 (misdirected dose) and was removed from subsequent evaluation in the study. Thus, there were 12 males in each of the 0, 75, and 150 mg atrazine/kg/day groups that reached scheduled sacrifice. Body weight at weaning (pnd 21), prior to dosing (pnd 22), and on the day of initiation of dosing (pnd 23) was equivalent across treatment groups (Table 3-A). Daily body weights for F1 males were significantly decreased in the high-dose group compared to the control group from pnd 24 to scheduled necropsy on pnd 52 or 53. In the low-dose group, body weight was decreased compared to the control group beginning on pnd 31, and continuing until necropsy. Body weight change was equivalent across treatment groups for pnd 21 to 23, but was significantly less in the low- and high-do se atrazine-treated groups compared to the control group for all intervals from pnd 23 to necropsy on pnd 52 or 53 (Table 3-A).

Feed consumption (g/day) for pnd 21 to 22 (prior to initiation of treatment) was greater in both the low- and high-dose atrazine-treated groups compared to the control group (51% and 39% increase, respectively; Table 4-A). The low- and high-do se atrazine-treated groups exhibited a significant decrease in absolute feed consumption (34.0-28.0% and 27.0-42.1%, respectively) on pnd 22 to 23 and 23 to 24, which was most likely influenced by aversion to taste after the initiation of gavage dosing with the test compound (for pnd 23 to 24). Thereafter, the high-dose group exhibited an effect on absolute feed consumption, with decreases (range of 11.3% to 27.9%) for pnd 24 to 25, 25 to 26, 26 to 27, 27 to 28, 29 to 30, 32 to 33, 33 to 34, 36 to 37, 37 to 38, 43 to 44, 44 to 45, 45 to 46, 46 to 47, 48 to 49, 49 to 50, and 50 to 51. The low-dose group exhibited a significant decrease in absolute feed consumption for pnd 26 to 27, 36 to 37, 43 to 44, 50 to 51, and 52 to 53. Absolute feed consumption for the treatment period (pnd 23 to 52) was significantly decreased at the high dose (by 7.9%). When feed consumption was calculated as a percent of body weight (g/kg/day), the effects of atrazine treatment were not as consistent. Prior to initiation of dosing, relative feed consumption exhibited an increasing trend with both the low and high dose group significantly increased compared to the control on pnd 21 to 22, and a decreasing trend, with both treatment groups significantly decreased compared to the control group on pnd 22 to 23 (reduced by 33.9 and 29.2%, low- and high-dose groups, respectively). Relative feed consumption exhibited a dose-related decrease for pnd 23 to 24, with both atrazine-treated groups affected (reduced by 25.7% and 38.6% at the low- and high-dose, respectively). Relative feed consumption was also decreased at the high dose for pnd 24 to 25, and 26 to 27. Thereafter, relative feed consumption tended to level out across the treatment groups, with a significant <u>increase</u> in relative feed consumption observed on pnd 28 to 29, 35 to 36, 42 to 43, 47 to 48, and 51 to 52 (both atrazine-treated groups increased), pnd 34 to 35 (low dose only), and pnd 38 to 39 and 39 to 40 (high dose only). A significant decrease in relative feed consumption (ANOVA, p<0.05, Linear Trend p>0.05) was noted at the low dose only, on pnd 50 to 51. A statistically significant overall treatment effect, but no significant trend or pairwise differences from the control group, was observed on pnd 52 to 53. Relative feed consumption was significantly increased in both atrazine-treated groups when calculated for the whole treatment period ending on pnd 52 (i.e., pnd 23 to 52; by 3.9% and 5.1%, low- and high-dose group, respectively), and for pnd 23 to 53 (by 4.6 and 6.3% low- and high-dose group, respectively; Table 4-A).

Clinical observations were noted in the atrazine-treated groups, and included efflux of the dosing solution, rooting postdosing, rooting prior to dosing, rust-colored fur, salivation postdosing, and salivation prior to dosing in 2, 11, 2, 1, 1, and 12 animal(s) in the high-dose group, respectively (Table 5-A). Efflux of the dosing solution, rooting postdosing, and salivation prior to dosing were observed in four, six, and eight animals, respectively, in the low-dose group. Two control animals exhibited salivation prior to dosing (Table 5-A).

Treatment with atrazine had no significant effect on the average postnatal day of preputial separation (42.0-42.9 days of age; Table 6-A). Average body weight on the day of acquisition was significantly decreased at the high dose (by 8.8% compared to the control group); the low-dose group exhibited a smaller decrease (by 4.9%) which was not statistically significant (Table 6-A).

Necropsy and Histopathological Data from F1 Males Treated with Atrazine

At necropsy, average body weight exhibited a dose-related decreasing trend, with the low- and high-dose atrazine-treated groups significantly below the control group (Table 7-A). Absolute paired kidney and epididymides weights, prostate weight, and LABC muscle weight were decreased at the high dose, whereas pituitary, liver and seminal vesicle with coagulating glands weight were decreased at both doses of atrazine. A significant dose-related decreasing trend was observed for ventral and dorsolateral prostate weight with no significant pairwise differences. When organ weights were adjusted with respect to necropsy body weight, paired testes weight exhibited a dose-related increasing trend. Atrazine treatment had no significant effect on T4 or thyroid stimulating hormone (TSH) levels (Table 7-A).

Gross necropsy findings were minimal, and included one animal each in the control and low-dose group, and two animals in the high-dose group with hydron ephrosis, and one animal in the low-dose group with a small, undescended testis and a small left epididymis (Table 8-A). No treatment-related histopathology was observed.

In-Life Data from F1 Males Treated with p, p'-Dichlorodiphenyldichloroethylene

Fifteen untreated F1 males were assigned to the 0, 50, or 100 mg/kg/day p, p'-DDE groups (Table 2-B). Three control animals and one low dose animal were removed from the study because their correct postnatal day 0 could not be determined. One animal in the 50 mg/kg/day group was euthanized on pnd 29 due to a leg injury. Thus, 12, 13, and 15 F1 males were available for evaluation at necropsy. Body weight at weaning (pnd 21), prior to initiation of dosing (pnd 22), and on the day of initiation of dosing (pnd 23) was equivalent across treatment groups (Table 3-B). Body weight and body weight change were not affected by treatment with p,p'-DDE.

Feed consumption (g/day) for pnd 21 to 22 (prior to initiation of treatment) was equivalent across dose groups, but was reduced at both doses of p, p'-DDE (by 28.0 and 23.0% compared to control) for pnd 22 to 23 (Table 4-B). The high-dose p, p'-DDE-treated group exhibited a significant decrease in absolute feed consumption (by 11.2-12.5%) on pnd 23 to 24 and 26 to 27. Thereafter, the high-dose animals tended to consume more feed (g/day) than the control group. Significantly increased feed consumption in the high-dose group was observed on pnd 28 to 29 (by 17.6%), 41 to 42 (by 12.5%), pnd 42 to 43 (by 13.5%), pnd 47 to 48 (by 17.5%) and pnd 50 to 51 (by 19.3%). Similar significant increases were noted in the low-dose group accompanied by a significant linear trend on pnd 47 to 48 and on 51 to 52 in the absence of a significant linear trend. An increasing trend, only, was noted on pnd 35 to 36, 38 to 39, 39 to 40, and 48 to 49. Absolute feed consumption was significantly increased in the highdose group for the treatment period measured from pnd 23 to 52 (by 6.9%). When feed consumption was calculated as a percent of body weight (g/kg/day), a significant decrease was noted in the high-dose group compared to the control group for pnd 23 to 24, and 26 to 27 (8.5 and 10.2%, respectively). A significant increase in relative feed consumption was observed in both the low and high groups for pnd 28 to 29, 35 to 36, 38 to 39, 39 to 40, 42 to 43, and 47 to 48. In addition, relative feed consumption was significantly increased at the high dose of p, p'-DDE on pnd 37 to 38, 41 to 42, 48 to 49, 50 to 51, pnd 23 to 52, and pnd 23 to 53. An increasing trend was noted for pnd 49 to 50 and 52 to 53. Non-dose related increases were observed at the low dose for relative feed consumption on pnd 24 to 25, and 51 to 52, and significant overall treatment effects (ANOVA, p>0.05) were observed in the absence of a linear trend or pairwise differences from the control group on pnd 31 to 32 and 32 to 33 (Table 4-B).

Clinical observations were noted in the p, p'-DDE-treated groups, and consisted of chromodacryorrhea, efflux of the dosing solution, rooting postdosing, and salivation prior to dosing, in one, one, nine, and three animal(s) in the high-dose group, respectively, and chromodacryorrhea, rooting postdosing, rust-colored fur, and salivation prior to dosing in one each in the low-dose group. Two control animals were observed to salivate prior to dosing (Table 5-B).

Treatment with p, p'-DDE significantly delayed preputial separation in the low- and high-do se groups (44.9 and 45.7 days, respectively) compared to the control group (41.4 days; Table 6-B). On the

day of acquisition, average body weight in the low-dose group was increased by 14.4%, and by 18.1% in the high-dose group, compared to the control group value.

Necropsy and Histopathological Data from F1 Males Treated with p, p'-Dichlorodiphenyldichloroehtylene

At necropsy, average body weight was equivalent across treatment groups (Table 7-B). Absolute weight of the pituitary, paired adrenal glands, paired testes, ventral and dorso lateral prostate, who le prostate, seminal vesicles and coagulating glands, and LABC was unaffected by p, p'-DDE treatment. Absolute thyroid, liver, and paired kidney weight were increased at both doses of p, p'-DDE, whereas paired epididymides weight was decreased at the high dose. When organ weights were adjusted with respect to body weight at necropsy, thyroid, liver, and paired kidney weights were significantly increased at both doses of p, p'-DDE. Adjusted paired epididymides weight was decreased at the high dose, whereas the adjusted weight of the LABC exhibited a decreasing linear trend with no significant pairwise comparisons. T4 levels (in microg/dL) exhibited a decreasing trend, and were significantly decreased at the high dose (by 17.8% compared to the control value). TSH levels (ng/ml) were slightly increased in a dose-related manner (28.4 and 31.7%, compared to the control group values), but these differences did not reach statistical significance. (Table 7-B).

Gross necropsy findings were minimal, and included hydronephrosis in one animal in the control group, one animal in the low-dose group, and four animals in the high-dose group, and one animal each in the high-dose group with chromodacryorrhea or intestines distended with air (Table 8-B). No treatment-related histopathology was observed.

In-Life Data from F1 Males Treated with Vinclozolin

Fifteen untreated F1 males were assigned to the 0, 30, or 100 mg/kg/day vinclozolin groups (Table 2-C). No animals died prior to scheduled necropsy on pnd 52 or 53. Three males in the control and high-dose groups, and two males in the low-dose group were removed from the study because their correct postnatal day 0 could not be confirmed. Thus, 12, 13, and 12 animals were available in the control, low-, and high-dose groups, respectively, for full evaluation in this study. Body weight at weaning (pnd 21), pnd 22, and on the day of initiation of dosing (pnd 23) was equivalent across treatment groups (Table 3-C). In addition, daily body weights for F1 males were unaffected by vinclozolin treatment through pnd 53. Body weight change was equivalent across treatment groups for all intervals except pnd 51 to 53, which exhibited an increase at the low but not the high dose (Table 3-C).

Feed consumption (g/day) was equivalent across treatment groups for all intervals, with the following exceptions. A decreasing trend, only, was noted for pnd 26 to 27, and 45 to 46. On pnd 47 to 48, vinclozolin-treated groups were significantly increased over the control group in the presence of a significant increasing trend, and on pnd 51 to 52 in the absence of a significant trend. A transient decrease was also noted in the low dose for pnd 27 to 28. Absolute feed consumption for the entire treatment period (pnd 23 to pnd 52 or 53) was statistically equivalent across treatment groups. When feed

consumption was calculated as a percent of body weight (g/kg/day), a decreasing trend, only, was noted for pnd 23 to 24, and for pnd 45 to 46. However, relative feed consumption was increased in the high-dose group for pnd 24 to 25 (by 10.6%), 25 to 26 (by 14.0%), 30 to 31 (by 12.5%), 39 to 40 (by 7.6%), and 23 to 53 (by 4.7%), and in both vinclozolin-treated groups on pnd 28 to 29, 47 to 48, and 51 to 52 (by a range of 12.6 to 20.2%). An increasing trend, only, was noted for pnd 31 to 32, 37 to 38, and 42 to 43, but no significant differences between the control group and either of the treated group values were noted. A decreasing trend was observed for pnd 45 to 46. A transient increase in relative feed consumption, in the absence of a significant trend, was observed at the low dose for pnd 35 to 36. Relative feed consumption was equivalent across treatment groups when calculated for pnd 23 to 52 (Table 4-C).

Clinical observations were noted in the vinclozolin-treated groups, and consisted of efflux of dosing solution, piloerection, rooting postdosing, and salivation prior to dosing in three, one, four, and five high-dose animal(s), respectively, and efflux of the dosing solution, rooting postdosing, salivation prior to dosing, and sore(s) in one, four, two, and one low-dose animal(s), respectively (Table 5C). Two animals in the low-dose group were not dosed with vinclozolin on pnd 50, because there was not enough dosing solution. These animals resumed dosing the following day until scheduled necropsy. Two control animals exhibited salivation prior to dosing (Table 5-C).

Treatment with vinclozolin resulted in a dose-related delay in preputial separation that was significant in both treated groups (Table 6-C). The average postnatal day of preputial separation was 43.8 and 46.8 for the low- and high-dose groups, respectively, compared to 41.4 days for the control group. Body weight on the day of acquisition of preputial separation was significantly increased for both the low and the high dose vinclozolin-treated groups, likely secondary to the older age of these animals. Two males in the high-dose group failed to acquire preputial separation by pnd 52, and were therefore excluded from the calculation of this parameter. It is not known whether these animals would have exhibited preputial separation if the study had been extended (Table 6-C).

Necropsy and Histopathological Data from F1 Males Treated with Vinclozolin

At necropsy, average body weight exhibited a decreasing trend that was not dose-related (Table 7-C). Absolute pituitary, thyroid, liver, paired adrenal, paired kidney and paired testes weights were unaffected by treatment with vinclozolin. However, absolute paired epididymides, dorsolateral prostate, whole prostate, seminal vesicles with coagulating glands, and LABC weights were decreased at the high dose. Ventral prostate weight exhibited a decreasing trend. When organ weights were adjusted with respect to necropsy body weight, paired testis weight was increased at both doses of vinclozolin. Adjusted paired epididymides, and seminal vesicles with coagulating gland weights were decreased at both dose levels. Adjusted dorsolateral prostate, total prostate, and LABC weights were decreased at the high dose, and ventral prostate weight exhibited a decreasing trend. Vinclozolin treatment had no significant effect on adjusted pituitary, thyroid, liver, paired adrenal, or paired kidney weight. T4 was significantly decreased at both doses of vinclozolin, whereas TSH levels were unaffected (Table 7-C).

Gross necropsy findings were minimal, and included one to four animals in each group with hydronephrosis, and one animal in the high-dose group that had small seminal vesicles (Table 8-C). No treatment-related histopathology was observed.

In-Life Data from F1 Males Treated with Methoxychlor

Fifteen untreated F1 males were assigned to the 0, 25, or 50 mg/kg/day methoxychlor groups (Table 2-D). No animals died from the study prior to scheduled necropsy on pnd 52 or 53. Three animals in the control group and two animals in the high-dose group were removed from the study because their correct postnatal day 0 could not be determined. Thus, 12, 15, and 13 animals were available for full evaluation in the control-, low-, and high-dose groups, respectively, in this study. Body weights at weaning (pnd 21), pnd 22, and on the day of initiation of dosing (pnd 23) were equivalent across treatment groups (Table 3-D). In addition, daily body weights for F1 males were unaffected by methoxychlor treatment through pnd 53. Body weight change was equivalent across treatment groups for pnd 21 to 23, 23 to 30, 30 to 37, 51 to 52, 51 to 53, and 23 to 53. A decreasing trend was noted for pnd 37 to 44, 44 to 51, and for pnd 23 to 52. The high-dose group gained significantly less weight than the control group for the periods of pnd 37 to 44 and 44 to 51 (Table 3-D).

Feed consumption (g/day) for pnd 21 to 22 (prior to initiation of do sing) was increased in animals assigned to the high dose groups (Table 4-D). For pnd 22 to 23, feed consumption exhibited a decreasing trend. After initiation of dosing, an increasing trend was noted for absolute feed consumption on pnd 25 to 26, but no other effects of treatment on feed consumption were noted until pnd 43 to 44. Absolute feed consumption on pnd 43 to 44 exhibited a decreasing trend, with the high-dose significantly reduced (by 13%) compared to the control group. A transient decrease in absolute feed consumption, in the absence of a significant trend, was noted for the low dose group on pnd 45 to 46. On pnd 47 to 48, an increasing trend was noted with the high dose group significantly increased (by 13.2%) compared to the control group. A decreasing trend was also noted for pnd 51 to 52. Absolute feed consumption for the entire treatment period (pnd 23 to pnd 52 or 53) was statistically equivalent across treatment groups. When feed consumption was calculated as a percent of body weight (g/kg/day), a significant increase was noted for animals assigned to the high-dose group on pnd 21 to 22, prior to initiation of dosing. On pnd 22 to 23, the high-dose group exhibited a significant decrease (by 25.5%) compared to the control group. A decreasing trend was noted on pnd 43 to 44. Increases in relative feed consumption were noted at the high dose on pnd 25 to 26, 28 to 29, and 47 to 48 (by 10.9-16.3%), and in the low-dose group on pnd 28 to 29 and 47 to 48 (by 9.9 to 12.7%). Relative feed consumption was equivalent across treatment groups when calculated for the whole treatment period (pnd 23 to 52 or 23 to 53; Table 4-D).

Clinical observations were noted in the methoxychlor-treated groups and consisted of chromodacryorrhea in one animal at the low dose, efflux of dosing solution in two animals at the low dose and one animal at the high dose, and rooting postdosing in two animals at the high dose (Table 5-D). Two control animals exhibited salivation prior to dosing (Table 5-D).

Treatment with methoxychlor had no significant effect on the average day of preputial separation (Table 6-D). The average postnatal day of preputial separation was 41.4, 41.8 and 41.8 for the control, low- and high-dose groups, respectively. Body weight on the day of acquisition of preputial separation was equivalent across the treatment groups (Table 6-D).

Necropsy and Histopathological Data from F1 Males Treated with Methoxychlor

At necropsy, average body weight was equivalent across dose groups (Table 7-D). Absolute pituitary, liver, paired kidney, paired testes, paired epididymides, prostate (ventral, dorsolateral, and total), and LABC weights were not significantly affected by treatment with methoxychlor. Absolute thyroid weight exhibited a significant overall treatment effect (ANOVA, p<0.05). A dose-related increasing trend and significant increase at the high dose were observed for absolute paired adrenal weight. Absolute seminal vesicles with coagulating glands weight exhibited a dose-related decreasing trend, with a significant decrease at the high dose of methoxychlor. When organ weights were adjusted with respect to necropsy body weight, paired adrenal gland weight was significantly increased at the high dose and seminal vesicles and coagulating glands weight was decreased at the high dose. T4 and TSH levels were unaffected by treatment with methoxychlor (Table 7-D).

Gross necropsy findings were minimal, and included one animal each in the control and high-dose group with hydronephrosis (Table 8-D). No treatment-related histopathology was observed.

Component 2

Control F1 Males

Fifteen untreated F1 males were assigned to the control group for Component 2. These animals served as the concurrent control group for the animals in Component 2 that were treated with propylthiouracil, ketoconazole, linuron, and phenobarbital. One animal in the control group was found dead on pnd 31 due to a misdirected dose, and was removed from further evaluation in the study.

In-Life Data from F1 Males Treated with Propylthiouracil

Fifteen untreated F1 males were assigned to the 0, 2, or 25 mg/kg/day propylthiouracil groups (Table 2-E). One animal in the control group was found dead on pnd 31 due to a misdirected dose, and was removed from the study, and one animal in the high-dose group was found dead on pnd 50. Thus, 14, 15, and 14 animals were available for full evaluation in the control, low, and high-dose groups in this study. Body weight at weaning (pnd 21), pnd 22, and on the day of initiation of dosing (pnd 23) was equivalent across treatment groups (Table 3-E). In addition, daily body weights for F1 males were unaffected by propylthiouracil treatment through pnd 31. A significant dose-related decreasing trend was observed for all time points from pnd 32 through necropsy on pnd 52 or 53, with the high-dose group significantly decreased compared to the control group at all time points beginning with pnd 33. The reductions in body weight at the high dose were progressive with dosing, and reached 45.0-46.3% of the

control value by pnd 52-53. The low-dose group did not exhibit any significant reduction in body weight until necropsy, and was reduced then only by 7.6-9.5% compared to the control values. Body weight change was equivalent across treatment groups for pnd 21 to 23, and pnd 23 to 30. Beginning on pnd 30 to 37, a decreasing trend was noted that continued through necropsy on pnd 52 or 53. The high-dose group gained significantly less weight than the control group for all periods beginning on pnd 30. Weight gain in the high-dose group slowed progressively, from 41.7% less than the controls for pnd 30 to 37 to no or almost no measurable weight gain on pnd for pnd 51 to 52 and 51 to 53. Weight gain in the low-dose group was significantly and progressively reduced compared to the control group beginning on pnd 44, although less affected than the high-dose group (29.5 to 66.3% less than the controls). Overall weight change during the treatment period until necropsy on pnd 52 or 53 was significantly reduced in both the low (by 9.6-12.7%) and high (by 56.8-58.1%) dose groups, compared to the control group value (Table 3-E).

Feed consumption (g/day) for pnd 21 to 22 and pnd 22 to 23 (prior to initiation of dosing) was equivalent across treatment groups (Table 4-E). After initiation of dosing on pnd 23, absolute feed consumption continued to be unaffected by treatment until pnd 30, with the exception of a transient increase at the low dose for pnd 25 to 26. Thereafter, a decreasing trend was noted for feed consumption for every interval, beginning on pnd 30 until necropsy on pnd 52 or 53. The high-dose group ate significantly and progressively less feed (g/day) than the control group, beginning on pnd 31 (16.6 to 62.5% less than the control group value). The low-dose group exhibited this same effect, although less severe, beginning on pnd 45 (9.2 to 29.0% reduction in feed consumption). Absolute feed consumption for the entire treatment period (pnd 23 to pnd 52 or 53) was reduced at the high dose (by 35.3-38.5%) dose compared to the control group value. When feed consumption was calculated as a percent of body weight (g/kg/day), a similar pattern was observed. Reductions in feed consumption in the high-dose group were observed beginning on pnd 31, ranged from 6.4% to 33.8% and generally increased with extended dosing. Beginning on pnd 44, the low-dose group exhibited reduced feed consumption that ranged from 7.6% to 21.9% less than the control group. Relative feed consumption for the whole treatment period (pnd 23 to 52 or 23 to 53) was reduced by 14.1-16.5% in the high-dose group. The lowdose group exhibited reduced relative feed consumption only for the treatment period ending on pnd 52 (by 3.4%) but not for pnd 23 to 53 (Table 4-E).

Clinical observations were noted in the propylthiouracil-treated groups, and consisted of efflux of the dosing solution, rooting postdosing, rough coat, and salivation prior to dosing in 1, 2, 1, and 1 animal(s) in the low-dose group, and efflux of the dosing solution, rooting postdosing, and salivation prior to dosing in 1, 14, and 1 animal(s) in the high-dose group (Table 5-E). The control animals had no distinctive clinical signs (Table 5-E).

Treatment with propylthiouracil significantly delayed acquisition of preputial separation in the high-dose group (Table 6-E). The average postnatal day of preputial separation was 40.4 and 43.3 for the

low- and high-dose groups, respectively, compared to 39.6 days for the control group. Body weight on the day of acquisition of preputial separation was significantly decreased at the high dose.

Necropsy and Histopathological Data from F1 Males Treated with Propylthiouracil

At necropsy, average body weight exhibited a decreasing trend that was dose-related (Table 7-E). The high-dose animals exhibited a dose-related increase in absolute thyroid weight, with both propylthiouracil-treated groups significantly increased over the control group value. All other organ weights exhibited a dose-related decreasing trend, with all absolute organ weights except seminal vesical weight significantly reduced at the high dose. Low dose animals had reduced absolute liver, paired adrenal gland, and paired kidney weight. When organ weights were adjusted with respect to necropsy body weight, both the thyroid and the seminal vesicles with coagulating glands exhibited increased adjusted organ weight for both treatment groups. The adjusted weights of the paired adrenal glands and the paired kidneys were significantly decreased at the low dose, although there was not a statistically significant change at the high dose. Adjusted paired epididymides weight exhibited an increasing trend. T4 levels were significantly reduced at both dose levels, in a dose-related manner, and TSH levels were significantly increased in a dose-related manner at both doses (Table 7-E).

Gross necropsy findings included one animal in the control group with urinary calculi and thickened bladder wall, one animal each in the low-dose group exhibiting hydrone phrosis, pulmonary foci, reduced dorsolateral or ventral prostate, or reduced seminal vesicles, and nine animals with enlarged and/or otherwise notable thyroid glands (Table 8-E). In the high-dose group, 4 animals had reduced adrenal glands, 2 animals had hydronephrosis, 1 animal had small kidneys, pituitary, dorsolateral prostate, or ventral prostate, 6 animals had hepatic abnormalities (mottled or reduced in size), and 14 animals had thyroid observations, including enlargement, reddening, or darkening (Table 8-E). All animals in the high-dose group exhibited thyroid follicular cell hypertrophy/hyperplasia, characterized by increased size and apparent number of follicular cells, and reduction of follicular lumen size. The severity of these changes were scored as:

- minimal = multifocal follicles affected, with size and number of follicular cells slightly enlarged and increased;
- mild = diffuse change with further increased cell size and hyperplasia;
- ♦ moderate = enhanced severity with the presence of notable numbers of follicular cell mitoses; and
- marked = increased mitotic rate, some degenerative cells within the follicular epithelium, and obvious enlargement of the thyroid shape and size.

Based on these criteria, no animals were scored as minimal, one animal was scored as mild, nine moderate, and four marked at the high dose. Based on these results, the low dose thyroids were also examined, revealing that all 15 animals at the low dose also exhibited thryoid hypertrophy/hyperplasia. As would be expected, the severity was somewhat less, with scores of 0 minimal, 10 mild, 5 moderate,

and no markedly affected animals. These changes were reflected in the dose-related increases in adjusted thyroid weight (for body weight at necropsy) at both dose levels.

In-Life Data from F1 Males Treated with Ketoconazole

Fifteen untreated F1 males were assigned to the 0, 50, or 100 mg/kg/day ketoconazole group (Table 2-F). One animal each in the control and high-dose group died of a misdirected dose on pnd 31 and 37, respectively, and was removed from further evaluation in the study. Thus, 14, 15, and 14 F1 males were available for evaluation at scheduled necropsy. Daily body weight and body weight change from pnd 23 to pnd 52 or 53 were largely unaffected by treatment with ketoconazole (Table 3-F). A significant decreasing trend was observed for body weight on pnd 46, 48, and 49, and for body weight change on pnd 44 to 51 and 23 to 52 but with no pairwise difference from controls. No other changes were noted (Table 3-F).

Absolute feed consumption on pnd 21 was increased in animals assigned to the low and the high-dose groups (Table 4-F). Thereafter, absolute feed consumption for intervals between pnd 23 and pnd 52 or 53 was equivalent across the groups, with the exception of transient increases at the low dose on pnd 23 to 24, and 36 to 37. Absolute feed consumption for pnd 23 to 52 was equivalent across the treatment groups; an increasing trend was noted for pnd 23 to 53. When feed consumption was calculated as a percent of body weight (g/kg/day), feed consumption exhibited an increasing trend and significant increases for animals assigned to either the low- or the high-dose group on pnd 21 to 22. For pnd 23 to 24 (after initiation of treatment), relative feed consumption was also increased in both the low- and high-dose groups. Increased relative feed consumption was noted in the high-dose group on pnd 41 to 42, 43 to 44, and 49 to 50 (10.4, 10.7, and 8.5%, respectively). A transient increase in relative feed consumption was noted in the low dose group on pnd 36 to 37. A dose-related increasing trend, only, was noted for pnd 46 to 47 and pnd 50 to 51. Relative feed consumption for the treatment period of pnd 23 to 52 or pnd 23 to 53 was increased in both the low (by 3.7 to 6.2%) and the high (by 4.7 to 7.6%) dose groups compared to the control group values (Table 4-F).

Clinical observations noted in the ketoconazole-treated groups consisted of efflux of dosing solution, rooting postdosing, rooting prior to dosing, rough coat, and salivation prior to dosing in 1, 14, 1, 1, and 4 animal(s) in the low-dose group, respectively, and efflux of dosing solution, piloerection, rooting postdosing, rough coat, and salivation prior to dosing in 1, 1, 15, 2, and 13 animal(s) in the high-dose group, respectively (Table 5-F).

Treatment with ketoconazole resulted in a significant delay in the average postnatal day of preputial separation at both treatment levels (Table 6-F). Acquisition of preputial separation occurred at 42.3 days in the low-dose group and 44.1 days in the high-dose group, compared to 39.6 days for the control group. Body weight on the day of acquisition was increased in a dose-related manner, likely reflecting the older age of the ketoconazole-treated animals.

Necropsy and Histopathological Data from F1 Males Treated with Ketoconazole

At necropsy, average body weight was equivalent across treatment groups (Table 7-F). Absolute paired adrenal weights were increased in a dose-related manner at both treatment levels of ketoconazole. Paired testes, paired epididymides, ventral prostate, total prostate, and LABC weight exhibited dose-related decreasing trends. Seminal vesicles with coagulating glands weight was significantly decreased at both treatment levels, whereas, testes weight was decreased at the high dose. When organ weights were adjusted with respect to necropsy body weight, liver weight and paired adrenal glands weight were significantly increased at both treatment levels, whereas seminal vesicles with coagulating glands weight was decreased at both treatment levels. Adjusted paired kidney weight increased in a dose-related manner that was significant at the high dose of ketoconazole, whereas adjusted paired testes weight was significantly decreased at the high dose. Ketoconazole treatment had no significant effect on T4 or TSH levels (Table 7-F).

Gross necropsy findings included abnormal adrenal gland, hydronephrosis, small dorsolateral prostate, and small seminal vesicles in four, one, one, and one animal(s) in the low-dose group, respectively, and abnormal adrenal gland, hydronephrosis, pulmonary foci, small dorsolateral prostate, small ventral prostate, and small seminal vesicles in six, two, one, one, three, and four animal(s) in the high-dose group (Table 8-F). One control animal had urinary calculi and thickened bladder wall (Table 8-F). No treatment-related histopathology was observed.

In-Life Data from F1 Males Treated with Linuron

Fifteen untreated F1 males were assigned to the 0, 50, or 100 mg/kg/day linuron group (Table 2-G). One animal assigned to the control group was found dead on pnd 31 due to a misdirected gavage dose, and was removed from further evaluation in the study. Thus, there were 14, 15, and 15 F1 males available for evaluation in the control, low- and high-dose groups, respectively, at scheduled necropsy. Body weights were equivalent across treatment groups from pnd 21 to pnd 23 (Table 3-G). Thereafter, a significant decreasing trend was observed for daily body weights until scheduled necropsy on pnd 52 or 53. The high-dose group weighed significantly less than the control group every day from pnd 25 to pnd 52. Daily body weight in the low-dose group was significantly less than the control group during the middle portion of the dosing period, i.e., pnd 32 to pnd 43, with the exception of pnd 36. Body weight change exhibited a decreasing trend for all interim time intervals between pnd 21 and pnd 52, with the high dose significantly decreased for each interim interval from pnd 23 to pnd 52. Body weight change was significantly reduced at the low dose for pnd 23 to 30, and 30 to 37. Body weight change for pnd 51 to 53 was equivalent across treatment groups. However, body weight change for the entire treatment period from pnd 23 to pnd 52 was significantly reduced at both dose levels of linuron, whereas body weight change for pnd 23 to 53 was significantly decreased only at the high dose (Table 3-G).

Feed consumption (g/day) for pnd 21 to 22 (prior to initiation of treatment) was increased at the high dose, whereas feed consumption for pnd 22 to 23 was equivalent across treatment groups

(Table 4-G). Absolute feed consumption (g/day) exhibited a decreasing trend for all interim time intervals from pnd 23 to pnd 52, with the exception of pnd 34 to 35, 35 to 36, 37 to 38, 38 to 39, 41 to 42, and 52 to 53, for which feed consumption was equivalent across the treatment groups. With the exception of pnd 27 to 28, and 42 to 43, the high-dose animals consumed significantly less feed than the control animals at each of these intervals (by 8.4 to 21.1% less than the control group). The low-dose group consumed 6.8 to 14.9% less feed than the control animals for a brief period (pnd 23 to 24, 24 to 25, 25 to 26, 28 to 29, and 31 to 32). With regard to the whole treatment period for animals necropsied on pnd 52, the high-dose animals consumed 13.7% less feed than the control animals. Feed consumption for the whole treatment period from pnd 23 to 53 exhibited a decreasing trend, but with no significant differences from the control group for either the low- or high-dose group. When feed consumption was calculated as a percent of body weight (g/kg/day), feed consumption was more consistent across treatment groups. Relative feed consumption was increased in animals assigned to the high dose on pnd 21 to 22 (prior to the start of dosing). On pnd 24 to 25, 25 to 26, and 26 to 27, relative feed consumption exhibited a decreasing trend, with the high-dose animals consuming 10.4 to 11.0% less than the control animals on pnd 24 to 25, and 25 to 26, and the low dose animals consuming 10.5% less than the control animals on pnd 24 to 25. Thereafter, relative feed consumption was equivalent across treatment groups, with the exception of a decrease in both treatment groups on pnd 31 to 32 (7.0%, low; 10.7%, high), an increasing trend on pnd 46 to 47 and 47 to 48, and significantly increased relative feed consumption in the low (8.0%) and high (6.0%) dose groups, compared to the control group on pnd 47 to 48. On pnd 43 to 44, relative feed consumption in the low-dose group, but not the high-dose group, was transiently increased (8.7%) over the control group value. Relative feed consumption for the entire treatment period (pnd 23 to pnd 52 or 53) was equivalent across treatment groups (Table 4-G).

Clinical observations were noted in the linuron-treated groups, and consisted of rooting postdosing, salivation postdosing, and salivation prior to dosing in 15, 1, and 6 animal(s) in the low-dose group, and difficult (resisting) to dose, efflux of dosing solution, rooting postdosing, and salivation prior to dosing in 1, 1, 15, and 14 animal(s) at the high dose (Table 5-G).

Treatment with linuron significantly delayed preputial separation at both dose levels (Table 6-G). Preputial separation occurred at 43.6 days and 45.5 days in the low- and high-dose groups, respectively, compared to 39.6 days for the control animals. Average body weight at acquisition was significantly increased in both linuron-treated groups, likely reflecting the older age of these animals.

Necropsy and Histopathological Data from F1 Males Treated with Linuron

At necropsy, average body weight exhibited a dose-related decreasing trend, with the low- and high-do se linuron-treated group values significantly below the control group value (Table 7-G). Absolute pituitary, paired kidney, ventral, dorsolateral, and whole prostate, seminal vesicles with coagulating glands and LABC weights decreased in a dose-related manner, with significant reductions at both doses of linuron. Thyroid, liver, paired testes, and paired epididymides weights were decreased only at the high dose. Paired a drenal gland weight was not affected by linuron treatment. When organ weights were

adjusted with respect to necropsy body weight, adjusted liver weight exhibited a significant dose-related increase at both the low- and high-dose of linuron. Adjusted prostate and ventral prostate weight were decreased at the low, but not the high-dose of linuron, whereas adjusted seminal vesicles with coagulating glands weight was decreased at the high dose. T4 levels decreased in a dose-related manner with the values in both linuron-treated groups significantly decreased compared to control values (by 20.4% and 41.2%, low- and high-dose, respectively). TSH levels were significantly decreased at the low dose (by 22.2%) compared to the control animals. The high-dose animals exhibited a 17.8% decrease in TSH levels, but this did not reach statistical significance (Table 7-G).

Gross necropsy findings included two, two, and three animal(s) in the low-dose group with small dorsolateral prostate, small ventral prostate, and small seminal vesicles, respectively, one, one, one, three, four, six, and one animal(s) in the high-dose group with hydronephrosis, reddened lungs, small pituitary, small dorsolateral prostate, small ventral prostate, small seminal vesicles, and enlarged spleen with white foci, respectively. One animal in the control group had urinary calculi and a thickened bladder wall (Table 8-G). No treatment-related histopathology was observed.

In-Life Data from F1 Males Treated with Phenobarbital

Fifteen untreated F1 males were assigned to the 0, 50, or 100 mg/kg/day phenobarbital group (Table 2-H). One animal assigned to the control group was found dead on pnd 31 due to a misdirected gavage dose, and was removed from further evaluation in the study. Thus, there were 14, 15, and 15 F1 males available for evaluation in the control, low- and high-dose groups, respectively at scheduled necropsy. Body weights were generally equivalent across treatment groups from pnd 21 to pnd 53, with the exception of decreasing trends on pnd 32, 33, 34, 37, 38, 39, 49, 50, and 52 with no significant pairwise comparisons (Table 3-H). Body weight change exhibited a decreasing trend for pnd 23 to 30, 30 to 37, and 44 to 51 with the high-dose significantly decreased compared to the control group for pnd 30 to 37. Body weight change for the entire treatment period from pnd 23 to pnd 52 exhibited a decreasing trend with no significant pairwise comparisons, whereas body weight change for pnd 23 to 53 exhibited no statistically significantly changes (Table 3-H).

Feed consumption (g/day) for pnd 21 to 22 (prior to initiation of treatment) was increased in animals assigned to the phenobarbital groups, compared to the animals assigned to the control group, whereas feed consumption for pnd 22 to 23 was equivalent across treatment groups (Table 4-H). Absolute feed consumption (g/day) exhibited increasing trends and significant increases at the high dose compared to the control group values for pnd 25 to 26 and 26 to 27. The low-dose group exhibited a transient increase in feed consumption for pnd 23 to 24. Absolute feed consumption for the whole treatment period, for animals necropsied on pnd 52 or 53, was equivalent across treatment groups. When feed consumption was calculated as a percent of body weight (g/kg/day) the animals assigned to the phenobarbital-treated groups still exhibited significantly increased feed consumption. Increasing trends were noted for pnd 21 to 22, 25 to 26, 26 to 27, 29 to 30, 30 to 31, 36 to 37, 41 to 42, 43 to 44, 44 to 45, 45 to 46, 46 to 47, 47 to 48, 48 to 49, 49 to 50, and 50 to 51. A significant increase in relative feed

consumption was observed in both the low (by 5.4 to 8.5%) and high-dose (by 9.5 to 11.7%) groups on pnd 25 to 26, 26 to 27, 41 to 42, and 43 to 44. Relative feed consumption was significantly increased at the high dose, only (by 8.4 to 14.3%) on pnd 29 to 30, 30 to 31, 46 to 47, and 49 to 50. On pnd 23 to 24, relative feed consumption was transiently increased at the low dose of phenobarbital (by 16.4%) compared to the control group. Relative feed consumption for the entire treatment period (pnd 23 to pnd 52 or 53) was significantly increased in both the low (by 3.8 to 6.8%) and high (by 7.1 to 8.4%) dose phenobarbital-treated groups compared to the control group (Table 4-H).

Clinical observations were noted in the phenobarb ital-treated groups, and consisted of atax ia postdosing, efflux of the dosing solution, prone postdosing, rooting postdosing, rough coat, and salivation prior to dosing in 6, 1, 4, 12, 4, and 4 animal(s) in the low-dose group, and ataxia postdosing, efflux of the dosing solution, prone postdosing, rooting postponing, rough coat, and salivation prior to dosing in 5, 1, 15, 15, 3, and 6 animal(s) at the high dose (Table 5-H).

Treatment with phenobarbital significantly delayed preputial separation at both dose levels (Table 6-H). Preputial separation was observed at 41.3 days and 43.0 days in the low- and high-dose groups, respectively, compared to 39.6 days for the control animals. Average body weight at acquisition was significantly increased in the high-dose group, and also increased (biologically significant) at the low dose of phenobarbital, compared to the control group, likely reflecting the older age of these animals.

Necropsy and Histopathological Data from F1 Males Treated with Phenobarbital

At necropsy, average body weight exhibited a dose-related decreasing trend with no significant pairwise comparisons (Table 7-H). Absolute thyroid and liver weight increased in a dose-related manner that was significant at both doses of phenobarbital. Absolute paired testes, paired epididymides, seminal vesicles with coagulating glands, and LABC weight each exhibited a decreasing trend and a significant decrease at the high dose compared to the control group value. When organ weights were adjusted with respect to necropsy body weight, the effects on the thyroid, liver, paired testes, and LABC were the same as observed for the absolute organ weights; paired epididymides weight exhibited a decreasing trend, only. T4 and TSH levels were not affected by phenobarbital treatment (Table 7-H).

Gross necropsy findings included two, one, one, and one animal(s) in the low-dose group with hydronephrosis, small dorsolateral prostate, small ventral prostate, and small seminal vesicles, respectively, two, two, two, and three animal(s) in the high-dose group with hydronephrosis, small dorsolateral prostate, small ventral prostate, and small seminal vesicles, respectively. One animal in the control group had urinary calculi and a thickened bladder wall (Table 8-H). No treatment-related histopathology was observed.

DISCUSSION AND CONCLUSIONS

This study was designed to gather information describing the conduct and usefulness of the male pubertal assay, that has been designated as an optional Endocrine Disruptor Tier I screening protocol (EDSTAC, 1998), using compounds selected to aid in the optimization of the protocol. Currently in the prevalidation stage, the male pubertal assay provides a means of screening apical effects of endocrine disruptors that may alter a number of endocrine-dependent mechanisms, including estrogenic, androg enic-, and thyroid hormone-related processes (Stoker et al., 2000). As summarized in Stoker et al. (2000), the male pubertal protocol should be able to detect alterations in sexual maturation and thyroid function. The endpoints in the current version of this protocol were chosen to reflect specific changes in pubertal development, thyroid function, or general toxicity. In an effort to evaluate the ability of this protocol to detect alterations in each of these areas, the following compounds were tested: atrazine (affects the hypothalamus-pituitary axis); p,p'-DDE (stable metabolite of DDT; anti-androgen through competitive binding to the androgen receptor); vinclozolin (metabolites M1 and M2 act as anti-androgen; competitive binding to androgen receptor; M 1 also binds weakly to the rat progesterone receptor); methoxychlor (a xeno-estrogen through α -estrogen receptor, anti-estrogen through β -estrogen receptor and an anti-androgen through androgen receptor mediated mechanism); propylthiouracil (affects the thyroid directly, causing hypothyroidism); linuron (anti-androgen; competitive binding to androgen receptor); ketoconazole (inhibits steroidogenesis in both sexes); and phenobarbital (induces P450 isoforms predominantly in the liver, accelerates metabolism of endogenous hormones and exogenous xenobiotics). The results of this study are discussed below with respect to how the protocol performed with respect to the test compounds.

Atrazine. Treatment with atrazine at 75 or 150 mg/kg/day did not affect the day of acquisition of preputial separation. Adjusted organ weights revealed an increasing trend for paired testes weight. No differences were noted in T4 or TSH levels, and no treatment-related histopathological changes were observed in the thyroid, testes, or epididymides. These results agree with those of Stoker et al. (2000), in their evaluation of the pubertal effects of atrazine (0, 12.5, 50, 100, 150, or 200 mg/kg/day) on male Wistar rats, using this study design.

p,p'-DDE. Treatment with 50 or 100 mg/kg/day p,p'-DDE significantly delayed preputial separation at both treatment levels. Adjusted thyroid, liver, and paired kidney weights were significantly increased at both doses of p,p'-DDE. With respect to reproductive tissues, adjusted paired epididymides weight exhibited a significant decrease at the high dose, whereas LABC weight exhibited a decreasing trend. Decreased T4 was observed at the high dose, whereas TSH exhibited no significant effect. No treatment-related histopathological changes were observed in the thyroid, testes, or epididymides.

<u>Vinclozolin</u>. The day of preputial separation exhibited significant delays at both the 30 and 100 mg/kg/day dose levels. In addition, two males in the high-dose group failed to achieve preputial separation prior to scheduled necropsy. Adjusted paired testes weight (increase), paired epididymides

(decrease), and paired seminal vesicles with coagulating glands (decrease) exhibited significant treatment-related effects at both dose levels. Adjusted dorsolateral and total prostate, and LABC weight exhibited a significant decrease at the high dose, and adjusted ventral prostate weight exhibited a decreasing trend. T4 levels were significantly decreased at both doses of vinclozolin, while no effect was observed on TSH. No treatment-related histopathological changes were observed in the thyroid, testes, or epididymides.

Methoxychlor. No effect on preputial separation was noted at either 25 or 50 mg/kg/day methoxychlor. Adjusted paired adrenal weight (increase) and seminal vesicle with coagulating glands weight (decrease) exhibited a treatment effect at the high dose. Thyroid hormones were unaffected, and no treatment-related histopathology was observed. These results are in accordance with those observed by Gray et al. (1989), who saw delayed puberty, and altered reproductive organ weights, TSH levels, and testicular histopathology at doses higher than 50 mg/kg/day, in F1 animals exposed to methoxychlor from gestation through pnd 15.

<u>Propylthiou racil</u>. As expected, propylthiouracil produced a decrease in circulating levels of T4 and an increase in circulating levels of TSH at both 2 and 25 mg/kg/day. Increased adjusted thyroid weight, and thyroid follicular cell hypertrophy/hyperplasia were also observed at both 2 and 25 mg/kg/day. Preputial separation was significantly delayed at the high dose. Treatment effects were also observed at both doses in the increased adjusted weights of the seminal vesicles with coagulating glands. Adjusted paired epididymides weight exhibited an increasing trend.

Keto cona zole. The postnatal day of acquisition of preputial separation was delayed at both doses of ketoconazole. Other treatment-related changes observed at both dose levels included increased adjusted liver and paired adrenal weight, and decreased adjusted seminal vesicles with coagulating glands weight. The high dose of ketoconazole also increased adjusted paired kidney weight and decreased adjusted paired testes weight. Thyroid hormone levels were not affected. No effect of treatment was observed histologically in the thyroid, testes, or epididymides.

<u>Linuron</u>. Linuron delayed puberty at both the 50 and 100 mg/kg/day dose levels, as evidenced by delayed acquisition of preputial separation. Adjusted liver weight exhibited a treatment effect (increase) at both dose levels; adjusted seminal vesicles with coagulating glands weight was decreased at the high dose. Both T4 and TSH levels were decreased at both dose levels, although the decrease in TSH at the high dose of linuron did not reach statistical significance. No treatment-related histopathological changes were observed in the thyroid, testes, or epididymides.

<u>Phenobarbital</u>. The postnatal day of acquisition of preputial separation was delayed at both doses of phenobarbital. In addition, treatment-related effects were detected at both dose levels in an increase in the adjusted weights of the thyroid and liver. A decrease in adjusted organ weight was observed at the high dose for paired testes and LABC; paired epididymides weight exhibited a decreasing

trend. No treatment related histopahtological changes were observed in the thyroid, testes, or epididymides.

REFERENCES

- Dunn ett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1096-1121.
- Dunn ett, C.W. (1964). New tables for multiple comparisons with a control. *Biometrics* 20, 482-491.
- Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) (1998) Final Report, Volume I.
- Gray L. E., Jr, Ostby, J., Ferrell, J., Rehnberg, G., Linder, R., Cooper, R., Goldman, J., Slott, V., Laskey, J. (1989). A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. *Fundam Appl Toxicol.* **12**(1), 92-108.
- Huber, P.J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, 221-233.
- Levene, H. (1960). Robust tests for the equality of variance. In: *Contributions to Probability and Statistics* (I. Olkin, S.G. Ghurye, W. Hoeffding, W.G. Madow, and H.B. Mann, Eds.), Palo Alto, CA, Liang, K., and S. Zeger (1986). Longitudinal data analysis using generalized linear models. *Biometrika* 73, 13-22.
- NRC (1996). Guide for the Care and Use of Laboratory Animals. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council. Revised 1996.
- O'Connor, J.C., S.R. Frame, L.B. Biegel, J.C. Cook, and L.G. Davis (1998a). Sensitivity of a Tier I screening battery compared to an *in utero* exposure for detecting the estrogen receptor agonist 17 beta-estradiol. *Toxico l. Sci.* 44(2), 169-84.
- O'Connor, J.C., J.C. Cook, T.W. Slone, G.T. Makovec, S.R. Frame, and L.G. Davis (1998b). An ongoing validation of a Tier I screening battery for detecting endocrine-active compounds (EACs). *Toxicol. Sci.* **46(1)**, 45-60.
- O'Connor, J.C., S.R. Frame, L.G. Davis, and J.C. Cook (1999a). Detection of the environmental antiandrogen p,p-DDE in CD and Long-Evans rats using a Tier I screening battery and a Hersberg as say. *Toxicol. Sci.* **51(1)**, 44-53.
- O'Connor, J.C., S.R. Frame, L.G. Davis, and J.C. Cook (1999b). Detection of thyroid toxicants in a Tier I screening battery and alterations in thyroid endpoints over 28 days of exposure. *Toxicol. Sci.* 51(1), 54-70.
- O'Connor, J.C., L.G. Davis, S.R. Frame, and J.C. Cook (2000a) Evaluation of a Tier I screening battery for detecting endocrine-active compounds (EACs) using the positive controls testosterone, coumestrol, progesterone, and RU846. *Toxicol. Sci.* **54(2)**, 338-354.
- O'Connor, J.C., L.G. Davis, S.R. Frame, and J.C. Cook (2000b) Detection of dopaminergic modulators in a Tier I screening battery for identifying endocrine-active compounds (EACs). *Reprod. Toxicol.* **14(3)**, 193-205.

- O'Connor, J.C., S.R. Frame, and G.S. Ladies (2002a). Evaluation of a 15-day screening assay using intact male rats for identifying steroid biosynthesis inhibitors and thyroid modulators. *Toxicol. Sci.* **69(1)**, 79-91.
- O'Connor, J.C., S.R. Frame, and G.S. Ladies. (2002b). Evaluation of a 15-day screening assay using intact male rats for identifying antiandrogens. *Toxicol. Sci.* **69(1)**, 92-108.
- RTI (2001). **SUD AAN User's Manual, Release 8.0.** Research Triangle Park, NC: Research Triangle Institute.
- Royall, R.M. (1986). Model robust confidence intervals using maximum likelihood estimators. *International Statistical Review* **54**, 221-226.
- SAS Institute Inc. (1999a). SAS® Language Reference: Concepts, Version 8, Cary, NC: SAS Institute Inc. 554 pp.
- SAS Institute Inc. (1999b). SAS/STAT® Users' Guide, Version 8, Cary, NC: SAS Institute Inc. 3884 pp.
- SAS Institute Inc. (1999c). SAS® Language Reference: Dictionary, Version 8, Cary, NC: SAS Institute Inc. 1244 pp.
- SAS Institute Inc. (1999 d). SAS® Procedures Guide, Version 8, Cary, NC: SAS Institute Inc. 1643 pp.
- SAS Institute Inc. (1999 e). SAS® Companion for the Microsoft Windows Environment, Version 8, Cary, NC: SAS Institute Inc. 562 pp.
- SAS Institute Inc. (2000). SAS/STAT® Software: Changes and Enhancements, Release 8.1, Cary, NC: SAS Institute Inc. 554 pp.
- Shah, B.V., Barnwell, B.G., and G.S. Bieler (1997). SUDAAN® Software for the Statistical Analysis of Correlated Data. User's Manual. Release 7.5, Volume 1, Research Triangle Institute, Research Triangle Park, NC.
- Stoker, T.E., Laws, S.C., Guidici, D.L., Cooper, R.L. (2000). The effect of atrazine on puberty in male wistar rats: an evaluation in the protocol for the assessment of pubertal development and thyroid function. *Toxicol Sci.* 58(1),50-9.
- Zeger, S. and K. Liang (1986). Longitudinal data analysis for discrete and continuous outcomes. *Biometrics* **42**, 121-130.

PROTOCOL DEVIATIONS

Thirty-two deviations from the protocol were noted as follows:

- 1. Due to an error in the breeding date of the Component 1 F0 females by Charles River Laboratories, the females were bred on August 23, 2002, instead of August 22, 2003, as requested by RTI. Thus, on the gestational forms, September 12, 2002 was gd 19 instead of gd 20 as indicated, and F0 females were checked for litters starting on gd 19 instead of gd 20.
- 2. Post-dosing observations were inadvertently not recorded for the following animals: Male 258 Rx Code 59969, pnd 40; Male 159 Rx Code 27489, Pnd 27; Male 177 (time and clinical observation), Rx Code 27489, pnd 45; Male 261, Rx Code 34563, pnd 31; Male 209, Rx Code 95962, pnd 40; Male 226, Rx Code 95962, pnd 39 and 40; Male 227, Rx Code 95962, pnd 40; Male 262, Rx Code 95962, pnd 41; Male 268 Rx Code 65437, pnd 41, Male 139 Rx Code 46916, pnd 41; Male 157, Rx Code 46916, pnd 30, Male 67, Rx Code 96509, pnd 23 and 26; Male 17, Rx Code 68843, pnd 29; Male 109, Rx Code 39239, pnd 34.
- 3. Observations were inadvertently not recorded at dosing (or on pnd 21 or 22 prior to dosing) for the following animals: Male 128, Rx 29505, pnd 22; Male 217, Rx Code 82703, pnd 21; Male 86, Rx Code 78967, pnd 47; Male 83, Rx Code 84156, Pnd 53; Male 90, Rx Code 84156, pnd 22. In addition, for Male 128, the time of observation was not recorded.
- 4. Post-dosing observations were done <1 hour or > 2 hours: Rx Code 82703, 5 on pnd 31, 10 on pnd 30, 3 on pnd 27, 6 on pnd 26. Rx Code 04691, 4 on pnd 23, 8 on pnd 24, 10 on pnd 25, 13 on pnd 26,15 on pnd 27, 5 on pnd 28 and 5 on pnd 30. Rx Code 65437, 10 on pnd 23, 12 on pnd 24, 5 on pnd 25 and 5 on pnd 28, Rx Code 29505 one on pnd 23. Rx Code 15492 one on pnd 23, one on pnd 36 and two on pnd 39. Rx Code 82703, 5 on pnd 31, 9 on pnd 30, one on pnd 32. Rx Code 46916, two on pnd 46. Rx Code 78967 two on pnd 47. Rx Code 96509, one on pnd 33, Rx 68843, one on pnd 23.
- 5. Five males were not dosed on 11/5/02 (insufficient dosing formulation). Male 112, 115 and 130 in Rx Code 15492 on pnd 50 and Male 114 and 131 in Rx Code 07983 on pnd 50. Data from animals #115, #114, and #131 were subsequently removed from evaluation because their pnd 0 could not be established.
- 6. Full post-dosing samples were not available from all dosing bottles since analytical samples had to be used for dosing when insufficient dosing formulation was available. Only 1-2 ml was collected for pnd 37 and pnd 44 since the volume of dose formulation available for these days for dosing was low.
- 7. Page 2 of the preputial separation data form for Component 2 does did not have eartag number listed. The eartag number was available for checking on the cage card and Page 1 of preputial separation form.
- 8. The old food weight was inadvertently not recorded on pnd 46 for Male 3, 14, Rx Code 68843; for Male 5, 13, Rx code 39239; Male 4 Rx Code 84156; Male 6, 12, Rx Code 29505; Male 8, Rx Code 15492; Male 7, Rx Code 48266; Male 11, Rx Code 15492; Male 9, 10, Rx Code 07983. The new feed weight was inadvertently not recorded on pnd 27 for Male 21, Rx Code 48266 and on pnd 45 for Male 110, Rx Code 29505.

- 9. Body weight was not recorded for Male 49, Rx code 96509 on pnd 41; Male 138 body weight at sacrifice was not recorded, Rx Code 65437; weight, dose, and time of postdosing observation were not recorded for Male 108, Rx Code 84156 on pnd 32 (animal was dosed).
- 10. During necropsy on 11/5/02, it was noted that the adrenal glands and pituitary glands "were not being weighed immediately" as per the study protocol. When this was brought to the attention of the staff, the weigher was diligent about immediately weighing these particular organs to minimize drying out.
- 11. There was insufficient serum available for a sample to be transferred to EPA for Animal 267, Rx Code 46916, on 2-26-03.
- 12. One male pup from Dam #4 was not weighed on pnd 0 during Component 1 Lactation.
- One male pup from Dam #52 was inadvertently not weighed on pnd 7 and one female pup from Dam #74 was not weighed on pnd 0 during Component 2 Lactation.
- One female pup from Dam #22 that was found dead on 9-15-02, pnd 0 inadvertently did not have a necropsy performed.
- 15. For Male #95, Rx Code 07983, no clinical observations were recorded at dosing on pnd 51.
- 16. At necropsy, the prostate was excised whole, and then separated into dorsal and ventral lobes. Each lobe was weighed individually, but the two lobes were never weighed together. Instead, the computer program that was used to process the data combined the weights of the dorsal and ventral lobes to obtain the whole prostate weight. This was done to minimize handling of the tissue.
- 17. There is no record that the sentinel animals were selected randomly as specified in the protocol.
- 18. The protocol specified the approximate weight range of the pnd 21 pups as 48-55g. The actual weight of the pnd 21 animals ranged from 44-64 g.
- 19. Blood Collection Records: Blood collected at necropsy was split into three aliquots instead of two, as stated in the protocol.
- 20. Dose Formulation Records: Pnd 51 samples were to come from the 1st pnd 51, on 11/5/02. Due to a shortage of formulation they were taken from supplementary dose formulations (Rep 3 and 4) on 11/8/02 which was the second pnd 53.
- 21. Dose Formulation Records: Battelle formulations were not shipped with stir bars.
- Necrop sy Records, Component 1: For Male #72, Rx Code 84156, no initials/date were entered to indicate who changed the entry and when for change from Bouins fixative to formalin.
- 23. F1 Dosing Component 1, Notebook 1: Male 87, pnd 32 clinical observations were not conducted 1-2 hours postdosing.
- 24. F1 Dosing Component 1, Notebook 1: Male 49, clinical observations and body weight was not recorded on pnd 41.
- 25. F1 Dosing Component 1, Notebook 1: Male 14, Rx Code 68843, pnd 51, no post dose observations conducted.

- 26. The light cycle in ARF room 201, Component 1, was incorrect from September 5, 2002 to October 5, 2002. The light cycle was 12:12 hours (light;dark) instead of 14:10 hours (light;dark). F0 females and pups were housed in the room during this time.
- 27. In ARF room 201, Component 1, the humidity was above that specified in the protocol (76.7% RH) for one hour on September 17, 2002.
- In ARF room 303, component 1, the humidity was above that specified in the protocol (87.5% RH) for one hour on October 9, 2002.
- 29. In ARF room 403, Component 2, the humidity was below that specified in the protocol (21.2% RH) for one hour on January 15, 2003.
- 30. Male 49, Rx Code 96509, was dosed (0.85 ml) on pnd 41, based on a recorded body weight 169.99 g. However, examination of the body weights for the day preceding (pnd 40, 209.40 g) and the day after (pnd 42, 230.41 g), and the fact that this animal showed steady weight gain during this portion of the study suggested that the body weight on pnd 41 had been incorrectly recorded. The body weight was not included in the analyzed data. However, since the animal was dosed on pnd 41 based on this body weight, the animal received less dosing formulation than it should have, had the weight been recorded correctly.
- Table of Protocol Deviations for Dosing Volumes Other than that Specified in the Study Protocol. This was caused by technicians inadvertently misreading the Dosing Chart.

Male #	Rx Code	Received (ml)	Should have Received (ml)
104	78967	0.56	0.46
17	68843	0.31	0.35

32. Table of F1 Males dosed after 10:00 a.m. This was caused by some technicians taking longer to dose each animal than other technicians.

Component 1

			Rx	Code			
Pnd Day	78967	95509	68843	29505	48266	15492	07983
24							7
25							10
26					5	11	12
27						2	2
29					1	11	10
30						2	2
32							10
33							1
34						11	10
35						10	12
36				11	12	11	12

Component 1 (continued)

			Rx	Code			
Pnd Day	78967	95509	68843	29505	48266	15492	07983
37				2	12	13	11
38					11	3	12
39						11	12
40						13	12
41				8	14	13	12
42					1	2	12
43				6	14	11	10
44					5	13	12
45					4	13	12
46	14				1	13	12
47	15					2	2
48	1						
50	10				5	9	10
51	14	14	11	4	14	13	12
52						4	5

Component 2

	Rx Code									
Pnd Day	27489	16317	34563	95962	82703	04691	65437	46916	59969	
28	10	10	10	9	10	10	10	10	10	
29	15	15	15	15	5	5	5	5	15	
30	12	15	15	15					3	
31		5	15	15						
32			5	6						
33				7						
37			8	9						
38			10	15						
39		9	15	15						
40		10	14	15						
41			5	7						
42			10	9						
43			15	15						
44	1	9	15	15						
45		3	5	6						
46				1						

Component 2 (continued)

	Rx Code									
Pnd Day	27489	16317	34563	95962	82703	04691	65437	46916	59969	
47				9						
48				5						

In the Study Director's professional opinion, these developerformance, or interpretation, and are presented for contemporary of the study Director's professional opinion, these developerformance, or interpretation, and are presented for contemporary of the study Director's professional opinion, these developerformance, or interpretation, and are presented for contemporary of the study Director's professional opinion, these developerformance, or interpretation, and are presented for contemporary of the study Director's professional opinion on the study Director's professional opinion of the study Director o	, ,
Julia D. George, Ph.D.	Date
Study Director	

Table 1-A. Analyses of Atrazine Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type⁵	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)	Mean % of Nominal <u>+</u> RSD ^e
NA	NA	2-14-Q-M Top R-1, R1 to R3	preship	15	13.8°	91.8 ± 2.33
NA	NA	2-14-Q-M Bott R-1, R1 to R3	preship	15	14.0°	93.3 ± 1.70
NA	NA	2-14-R-M Top R-1, R1 to R3	preship	30	28.3°	94.3 ± 2.31
NA	NA	2-14-R-M Bott R-1, R1 to R3	preship	30	29.0°	96.7 ± 1.17
NA	NA	2-14-Q-M R-2, R1 to R3	preship	15	15.8°	105.0 ± 0.673
NA	NA	2-14-R-M R-2, R1 to R3	preship	30	30.6°	101.9 ± 0.771
84156	Purple	WA2-14Q-M 10-7vial	first day dosing	15	17.15 ^d	114
84156	Purple	WA2-14Q-M 10-14vial	first day dosing	15	16.81 ^d	112
84156	Purple	WA2-14Q-M 10-21 vial	first day dosing	15	16.85 ^d	112
84156	Purple	WA2-14Q-M 10-28 vial	first day dosing	15	17.02 ^d	113
39239	Brown	WA2-14R-M 10-7 vial	first day dosing	30	33.80 ^d	113
39239	Brown	WA2-14R-M 10-14 vial	first day dosing	30	33.10 ^d	110
39239	Brown	WA2-14R-M 10-21 vial	first day dosing	30	31.43 ^d	105
39239	Brown	QA2-14R-M 10-28 vial	first day dosing	30	32.11 ^d	107
84156	Purple	WA2-14-Q-M Rep3Jar	postdose	15	14.1 ^d	94
39239	Brown	WA2-14-R-M Rep3Jar	postdose	30	28.8 ^d	96

^a Dosing solutions were formulated in corn oil vehicle for administration at 5 ml/kg.

Samples were taken prior to shipping from Battelle to RTI (preship), on the first day of dosing for pnd 23, 30, 37, 44, and after dosing was completed (postdose).

[°] n = 3 for individual determinations

^d n = 1 for individual determinations

Data are presented as mean % (± % relative standard deviation).

Table 1-B. Analyses of p,p'-DDE Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type ^b	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)	Mean % of Nominal <u>+</u> RSD°
NA	NA	2-14-N-M R-1 R-1 to R-3	preship	10	9.19°	91.9 ± 2.34°
NA	NA	2-14-P-M R-1 R-1 to R-3	preship	20	18.2°	91.0 ± 1.34
29505	Pink	2-14-N-M 10-7vial	first day dosing	10	9.30 ^d	93
29505	Pink	2-14-N-M 10-14vial	first day dosing	10	9.29 ^d	93
29505	Pink	2-14-N-M 10-21vial	first day dosing	10	9.34 ^d	93
29505	Pink	2-14-N-M 10-28vial	first day dosing	10	9.30 ^d	93
48266	Yellow	2-14-P-M 10-7vial	first day dosing	20	18.1 ^d	91
48266	Yellow	2-14-P-M 10-14vial	first day dosing	20	18.2 ^d	91
48266	Yellow	2-14-P-M 10-21vial	first day dosing	20	18.4 ^d	92
48266	Yellow	2-14-P-M 10-28vial	first day dosing	20	_f	
29505	Pink	2-14-N-M Rep3Jar	postdosing	10	9.40 ^d	94
48266	Yellow	2-14-P-M Rep3Jar	postdosing	20	20.4 ^d	102

^a Dosing solutions were formulated in corn oil vehicle for administration at 5 ml/kg.

Samples were taken prior to shipping from Battelle to RTI (preship), on the first day of dosing for pnd 23, 30, 37, 44, and after dosing was completed (postdose).

[°] n = 3 for individual determinations

^d n = 1 for individual determinations

Data are presented as mean % (± % relative standard deviation).

f Sample not received for analysis.

Table 1-C. Analyses of Vinclozolin Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type ^b	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)	Mean % of Nominal <u>+</u> RSD°
NA	NA	2-14-J-M R-1 R-1, R-2, R-3	preship	6	5.60°	93.3 ± 0.9
NA	NA	2-14-K-M R-1 R-1, R-2, R-3	preship	20	18.7°	93.4 ± 1.2
15492	Green	WA 2-14-J-M Rep3Jar	postdose	6	5.72 ^d	95.3
07983	Black	WA 2-14-K-M Rep3Jar	postdose	20	18.0 ^d	90.0

^a Dosing solutions were formulated in corn oil vehicle for administration at 5 ml/kg.

Samples were taken prior to shipping from Battelle to RTI (preship), and after dosing was completed (postdose). No in-life samples were taken since the dosing solution was consumed.

[°] n = 3 for individual determinations

^d n = 1 for individual determinations

^e Data are presented as mean % (± % relative standard deviation).

Table 1-D. Analyses of Methoxychlor Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type ^b	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)	Mean % of Nominal <u>+</u> RSD°
NA	NA	2-14-L-M R-1 R-1 to R-3	preship	5	4.69°	93.7 ± 1.54
NA	NA	2-14-M-M R-1 R-1 to R-3	preship	10	9.62°	96.2 ± 1.59
NA	NA	2-14-L-M R-2 R1 to R-3	preship	5	4.90°	97.9 ± 0.60
NA	NA	2-14-M-M R-2 R1 to R3	preship	10	9.85 °	98.5± 2.46
NA	NA	2-14-L-M R-3 R-1 to R-3	preship	5	5.48°	109.6 ± 2.21
NA	NA	2-14-M-M R-3 R-1 to R-3	preship	10	10.8°	108.5 ± 0.797
96509	Blue	WA2-14L-M 10-7vial	first day dosing	5	4.72 ^d	94
96509	Blue	WA2-14L-M 10-14vial	first day dosing	5	4.63 ^d	93
96509	Blue	WA2-14L-M 10-21vial	first day dosing	5	5.43 ^d	109
96509	Blue	WA2-14L-M 10-28vial	first day dosing	5	4.52 ^d	90
68843	Red	WA2-14M-M 10-7vial	first day dosing	10	9.23 ^d	92
68843	Red	WA2-14M-M 10-14vial	first day dosing	10	9.85 ^d	99
68843	Red	WA2-14M-M 10-21vial	first day dosing	10	9.26 ^d	93
68843	Red	WA2-14M-M 10-28vial	first day dosing	10	9.12 ^d	91
96509	Blue	WA2-14-L-M Rep1Jar	postdose	5	4.57 ^d	91

Table 1-D. Analyses of Methoxychlor Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type ^b	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)	Mean % of Nominal <u>+</u> RSD°
96509	Blue	WA2-14-L-M Rep2Jar	postdose	5	4.70 ^d	94
96509	Blue	WA2-14-L-M Rep4Jar	postdose	5	4.62 ^d	92
68843	Red	WA2-14-M-M Rep1Jar	postdose	10	9.12 ^d	91
68843	Red	WA2-14-M-M Rep2Jar	postdose	10	9.42 ^d	94
68843	Red	WA2-14-M-M Rep4Jar	postdose	10	9.28 ^d	93

Dosing solutions were formulated in corn oil vehicle for administration at 5 ml/kg.

Samples were taken prior to shipping from Battelle to RTI (preship), on the first day of dosing for pnd 23, 30, 37, 44, and after dosing was completed (postdose).

[°] n = 3 for individual determinations

^d n = 1 for individual determinations

^e Data are presented as mean % (± % relative standard deviation).

Table 1-E. Analyses of Propylthiouracil Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type ^b	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)°	Mean % of Nominal <u>+</u> RSD°
NA	NA	2-14 B-M Rep1 to Rep3	preship	0.4	0.432°	108.0 ± 6.4
NA	NA	2-14 C-M Rep1 to Rep3	preship	5.0	4.95°	99.1 ± 4.9
04691	Pink	2-14 B-M 1-26- 03pnd23	first day dosing	0.4	0.350 ^d	88
04691	Pink	2-14 B-M 2-02- 03pnd30	first day dosing	0.4	0.347 ^d	87
04691	Pink	2-14 B-M 2-09- 03pnd37	first day dosing	0.4	0.299 ^d	75
04691	Pink	2-14 B-M 2-16- 03pnd44	first day dosing	0.4	0.347 ^d	87
04691	Pink	2-14 B-M 2-23- 03pnd51	first day dosing	0.4	0.333 ^d	83
65437	Black	2-14 C-M 1-26- 03pnd23	first day dosing	5.0	4.44 ^d	89
65437	Black	2-14 C-M 2-02- 03pnd30	first day dosing	5.0	5.41 ^d	108
65437	Black	2-14 C-M 2-09- 03pnd37	first day dosing	5.0	4.82 ^d	96
65437	Black	2-14 C-M 2-16- 03pnd44	first day dosing	5.0	4.60 ^d	92
65437	Black	2-14 C-M 2-23- 03pnd51	first day dosing	5.0	4.16 ^d	83
04691	Pink	WA2-14-B-M Rep3 Remainder	postdose	0.4	0.494 ^d	124
65437	Black	WA2-14-C-M Rep3 Remainder	postdose	5.0	5.22 ^d	104

^a Dosing solutions were formulated in corn oil vehicle for administration at 5 ml/kg.

Samples were taken prior to shipping from Battelle to RTI (preship), on the first day of dosing for pnd 23, 30, 37, 44, 51, and after dosing was completed (postdose).

[°] n = 3 for individual determinations

^d n = 1 for individual determinations

Data are presented as mean % (± % relative standard deviation).

Table 1-F. Analyses of Ketoconazole Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type ^b	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)	Mean % of Nominal <u>+</u> RSD°
NA	NA	2-14F-M Rep1 to Rep 3	preship	10	10.6°	106.0 ± 2.29
NA	NA	2-14G-M Rep1 to Rep 3	preship	20	21.6°	108.1 ± 0.518
27489	Red	1-26 F-M	first day dosing	10	8.46 ^d	85
27489	Red	2-2 F-M	first day dosing	10	8.59 ^d	86
27489	Red	2-9 F-M	first day dosing	10	9.98 ^d	100
27489	Red	2-16 F-M	first day dosing	10	10.1 ^d	101
27489	Red	2-23 F-M	first day dosing	10	10.2 ^d	102
16317	Blue	1-26 G-M	first day dosing	20	18.8 ^d	94
16317	Blue	2-2 G-M	first day dosing	20	19.8 ^d	99
16317	Blue	2-9 G-M	first day dosing	20	19.8 ^d	99
16317	Blue	2-16 G-M	first day dosing	20	19.1 ^d	96
16317	Blue	2-23 G-M	first day dosing	20	18.2 ^d	91
27489	Red	Remain2-14F-M rep3	postdose	10	10.1 ^d	101
16317	Blue	Remain2-14 G-M rep3	postdose	20	20.0 ^d	100

^a Dosing solutions were formulated in corn oil vehicle for administration at 5 ml/kg.

Samples were taken prior to shipping from Battelle to RTI (preship), on the first day of dosing for pnd 23, 30, 37, 44, 51, and after dosing was completed (postdose).

[°] n = 3 for individual determinations

^d n = 1 for individual determinations

Data are presented as mean % (± % relative standard deviation).

Table 1-G. Analyses of Linuron Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type⁵	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml) ^c	Mean % of Nominal <u>+</u> RSD°
NA	NA	2-14-D-M R- 1 to R-3	preship	10	10.5°	105 ± 1.81
NA	NA	2-14-E-M R- 1 to R-3	preship	20	20.1°	101 ± 1.83
46916	Green	1-26-03 D-M	first day dosing	10	12.3 ^d	123
46916	Green	2-02-03 D-M	first day dosing	10	10.2 ^d	102
46916	Green	2-09-03 D-M	first day dosing	10	10.8 ^d	108
46916	Green	2-16-03 D-M	first day dosing	10	9.90 ^d	99
46916	Green	2-23-03 D-M	first day dosing	10	10.4 ^d	104
59969	Yellow	1-26-03 E-M	first day dosing	20	19.4 ^d	97
59969	Yellow	2-02-03 E-M	first day dosing	20	19.0 ^d	95
59969	Yellow	2-09-03 E-M	first day dosing	20	19.7 ^d	99
59969	Yellow	2-16-03 E-M	first day dosing	20	19.8 ^d	99
59969	Yellow	2-23-03 E-M	first day dosing	20	21.2 ^d	106
46916	Green	Rec. 2-14-D-M Rep-3	postdose	10	11.9 ^d	119
59969	Yellow	Rec. 2-14-E-M Rep-3	postdose	20	19.4 ^d	97

^a Dosing solutions were formulated in corn oil vehicle for administration at 5 ml/kg.

Samples were taken prior to shipping from Battelle to RTI (preship), on the first day of dosing for pnd 23, 30, 37, 44, 51, and after dosing was completed (postdose).

[°] n = 3 for individual determinations

^d n = 1 for individual determinations

Data are presented as mean % (± % relative standard deviation).

Table 1-H. Analyses of Phenobarbital Dose Formulations^a

RTI Rx Code	RTI Color Code	Battelle Sample Code	Sample Type ^b	Nominal Concentration (mg/ml)	Analytical Concentration (mg/ml)	Mean % of Nominal <u>+</u> RSD°
NA	NA	2-14 H-M R- 1 to R-3	preship	10	9.64°	96.4 ± 0.99
NA	NA	2-14 I-M R-1 to R-3	preship	20	19.0°	95.0 ± 5.6
34563	Orange	1-26-03 H-M	first day dosing	10	9.40 ^d	94
34563	Orange	2-02-03 H-M	first day dosing	10	9.77 ^d	98
34563	Orange	2-09-03 H-M	first day dosing	10	9.92 ^d	99
34563	Orange	2-16-03 H-M	first day dosing	10	10.2 ^d	102
34563	Orange	2-23-03 H-M	first day dosing	10	10.3 ^d	103
95962	Brown	1-26-03 I-M	first day dosing	20	19.9 ^d	100
95962	Brown	2-02-03 I-M	first day dosing	20	20.5 ^d	103
95962	Brown	2-09-03 I-M	first day dosing	20	19.6 ^d	98
95962	Brown	2-16-03 I-M	first day dosing	20	19.7 ^d	99
95962	Brown	2-23-03 I-M	first day dosing	20	19.8 ^d	99
34563	Orange	Rec. 2-14-H-M Rep-3	postdose	10	10.0 ^d	100
95962	Brown	Rec. 2-14-I-M Rep-3	postdose	20	20.2 ^d	101

^a Dosing solutions were formulated in corn oil vehicle for administration at 5 ml/kg.

Samples were taken prior to shipping from Battelle to RTI (preship), on the first day of dosing for pnd 23, 30, 37, 44, 51, and after dosing was completed (postdose).

[°] n = 3 for individual determinations

^d n = 1 for individual determinations

Data are presented as mean % (± % relative standard deviation).

Table 2-A. Summary of the Fate of the Atrazine-Treated F₁ Males (page 1 of 1)

	Atrazine (mg/kg/day, po)			
	0	75	150	
No. of Males on Study	12 ^a	13 ^b	12 ^c	
Phase of Study				
Post Wean Period	0	₁ d	0	
Scheduled Sacrifice	12	12	12	

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

Table 2-B. Summary of the Fate of the p,p'-Dichlorodiphenyldichloroethane-Treated F_1 Males (page 1 of 1)

	p,p'-Dichlorodiphenyldichloroethane (mg/kg/day, po)			
	0	50	100	
No. of Males on Study	12 ^a	14 ^b	15	
Phase of Study				
Post Wean Period	0	1°	0	
Scheduled Sacrifice	12	13	15	

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

bMale 18 was removed from the study because it was not dosed on the correct postnatal days and male 119 was removed from the study because his correct postnatal day 0 could not be confirmed.

^cMales 55, 118 and 127 were removed from the study because their correct postnatal day 0 could not be confirmed.

dMale 54 was found dead on postnatal day 37 after dosing (misdirected dose).

^bMale 74 was removed from the study because his correct postnatal day 0 could not be confirmed.

^cMale 20 was euthanized on postnatal day 29 after dosing due to a leg injury.

Table 2-C. Summary of the Fate of the Vinclozolin-Treated F_1 Males (page 1 of 1)

	Vinclozolin (mg/kg/day, po)			
	0	30	100	
No. of Males on Study	12 ^a	13 ^b	12 ^c	
Phase of Study				
Post Wean Period	0	0	0	
Scheduled Sacrifice	12	13	12	

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

Table 2-D. Summary of the Fate of the Methoxychlor-Treated F_1 Males (page 1 of 1)

	Methoxychlor (mg/kg/day, po)			
	0	25	50	
No. of Males on Study	12 ^a	15	13 ^b	
Phase of Study				
Post Wean Period	0	0	0	
Scheduled Sacrifice	12	15	13	

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

bMales 79 and 115 were removed from the study because their correct postnatal day 0 could not be confirmed.

^cMales 24, 114 and 131 were removed from the study because their correct postnatal day 0 could not be confirmed.

^bMales 17 and 30 were removed from the study because their correct postnatal day 0 could not be confirmed.

Table 2-E. Summary of the Fate of the Propylthiouracil-Treated F₁ Males (page 1 of 1)

	Propylthiouracil (mg/kg/day, po)			
	0	2	25	
No. of Males on Study	15	15	15	
Phase of Study				
Post Wean Period	1 a	0	1 ^b	
Scheduled Sacrifice	14	15	14	

 $^{^{\}rm a}$ Male 217 was found dead on postnatal day 31 prior to dosing (misdirected dose). $^{\rm b}$ Male 268 was found dead on postnatal day 50 prior to dosing.

Table 2-F. Summary of the Fate of the Ketoconazole-Treated F_1 Males (page 1 of 1)

	Ketoconazole (mg/kg/day, po)		
	0	50	100
No. of Males on Study	15	15	15
Phase of Study			
Post Wean Period	1 ^a	0	1 b
Scheduled Sacrifice	14	15	14

 ^aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).
 ^bMale 242 was found dead on postnatal day 37 prior to dosing (misdirected dose).

Table 2-G. Summary of the Fate of the Linuron-Treated F_1 Males (page 1 of 1)

	Linuron (mg/kg/day, po)			
	0	50	100	
No. of Males on Study	15	15	15	
Phase of Study				
Post Wean Period	1 a	0	0	
Scheduled Sacrifice	14	15	15	

^aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

Table 2-H. Summary of the Fate of the Phenobarbital-Treated F_1 Males (page 1 of 1)

	Phenobarbital (mg/kg/day, po)			
	0	50	100	
No. of Males on Study	15	15	15	
Phase of Study				
Post Wean Period	1 a	0	0	
Scheduled Sacrifice	14	15	15	

^aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

Table 3-A. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Atrazine Treated F₁ Males (page 1 of 5)

	A	trazine (mg/kg/day,	po)
	0	75	150
No. of Males on Study	12 ^a	13 ^b	12 ^C
Body Weight (pnd 21) (g) ^d			
	55.97	56.75	55.60
	<u>+</u> 1.74 N=12	<u>+</u> 1.38 N=13	<u>+</u> 1.60 N=12
Body Weight (pnd 22) (g) ^d	N=12	N=13	IN=12
Body Weight (phd 22) (g)	59.72	61.35	60.62
	59.72 <u>+</u> 1.80	+ 1.24	± 1.70
	N=12	N=13	N=12
Body Weight (pnd 23) (g) ^d			
	66.55	66.85	66.05
	<u>+</u> 1.93 N=12	<u>+</u> 1.22 N=13	<u>+</u> 1.83 N=12
Body Weight (pnd 24) (g) ^d			· · · · <u>-</u>
20dy 110ight (pha 2 i) (g)	73.05 ‡	69.46	66.35 *
	<u>+</u> 2.07 §§	<u>+</u> 1.30	<u>+</u> 1.68
	N=12	N=13	N=12
Body Weight (pnd 25) (g) ^d			
	79.55 ‡‡ <u>+</u> 2.24 §§§	74.86 <u>+</u> 1.48	69.38 *** <u>+</u> 1.68
	± 2.24 333 N=12	<u>+</u> 1.46 N=13	<u>+</u> 1.00 N=12
Body Weight (pnd 26) (g) ^d			
	85.44 ‡‡	80.50	75.00 **
	± 2.28 §§§	<u>+</u> 1.75	<u>+</u> 1.84
Dady Waight (and 07) (a) 0	N=12	N=13	N=12
Body Weight (pnd 27) (g) ^d	00.07.11	00.70	00 04 ***
	92.37 ‡‡ <u>+</u> 2.48 §§§	86.79 <u>+</u> 1.81	80.31 *** + 2.14
	N=12	N=13	N=12
Body Weight (pnd 28) (g) ^d			
	99.66 ‡‡	93.44	86.77 ***
	<u>+</u> 2.54 §§§ N=12	<u>+</u> 2.03 N=13	<u>+</u> 2.32 N=12
Body Weight (pnd 29) (g) ^d	14-12	11-10	11-12
20dy Wolgh (phd 25) (g)	106.93 ‡‡	100.31	94.55 **
	<u>+</u> 2.82 §§	<u>+</u> 1.93	<u>+</u> 2.54
	N=12	N=13	N=12

Table 3-A. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Atrazine Treated F₁ Males (page 2 of 5)

	A	Atrazine (mg/kg/day, po)		
	0	75	150	
Body Weight (pnd 30) (g) ^d				
	115.74 ‡‡	107.99	100.78 ***	
	± 2.98 §§§	± 2.13	± 2.70	
	N=12	N=13	N=12	
Body Weight (pnd 31) (g) ^d				
	123.56 ‡‡‡	113.53 *	107.24 ***	
	<u>+</u> 3.26 §§§ N=12	<u>+</u> 2.08 N=13	<u>+</u> 2.48 N=12	
5 1 W : 1 (100) ()d	IN= 12	N=13	IN=12	
Body Weight (pnd 32) (g) ^d				
	132.74 ‡‡‡	123.07 *	114.69 ***	
	<u>+</u> 3.37 §§§ N=12	<u>+</u> 2.28 N=12 ^e	<u>+</u> 2.87 N=12	
Rady Waight (and 22) (a)d	14-12	11-12	11-12	
Body Weight (pnd 33) (g) ^d		400 44 #	4.00 O.T. dalah	
	141.91 ‡‡‡ <u>+</u> 3.50 §§§	129.11 * <u>+</u> 3.51	122.05 *** <u>+</u> 2.97	
	± 3.30 333 N=12	<u>+</u> 3.31 N=13	<u>+</u> 2.97 N=12	
Body Weight (pnd 34) (g) ^d				
Body Wolgh (pha 51) (g)	151 22 +++	138.88 *	130.44 ***	
	151.22 ‡‡‡ <u>+</u> 3.69 §§§	+ 2.55	+ 2.91	
	N=12	N=13	N=12	
Body Weight (pnd 35) (g) ^d				
	160.77 ‡‡‡	148.50 *	139.91 ***	
	<u>+</u> 3.63 §§§	<u>+</u> 2.65	<u>+</u> 3.26	
	N=12	N=13	N=12	
Body Weight (pnd 36) (g) ^d				
	171.46 ‡‡‡	159.61 *	150.41 ***	
	<u>+</u> 4.05 §§§	<u>+</u> 2.62	<u>+</u> 3.49	
ــ	N=12	N=13	N=12	
Body Weight (pnd 37) (g) ^d				
	180.49 ‡‡‡	168.05 *	156.81 ***	
	<u>+</u> 4.05 §§§ N=12	<u>+</u> 2.28 N=13	<u>+</u> 3.05 N=12	
Dod: Waight (5 = 4.00) (5)d	1 4- 12	IN-IO	11-12	
Body Weight (pnd 38) (g) ^d				
	191.01 ‡‡‡	175.90 **	163.33 *** + 3.20	
	<u>+</u> 4.19 §§§ N=12	<u>+</u> 2.94 N=12 ^f	<u>+</u> 3.20 N=12	

Table 3-A. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Atrazine Treated F₁ Males (page 3 of 5)

	Atrazine (mg/kg/day, po)		
	0	75	150
Body Weight (pnd 39) (g) ^d			
, (6)	198.66 ‡‡‡	184.72 *	171.74 ***
	± 4.16 §§§	<u>+</u> 2.67	<u>+</u> 3.55
	N=12	N=12	N=12
Body Weight (pnd 40) (g) ^d			
	208.02 ‡‡‡	191.55 **	180.58 ***
	± 4.10 §§§	± 2.98	± 3.31
	N=12	N=12	N=12
Body Weight (pnd 41) (g) ^d			
body Weight (phd 41) (g)	040 04 111	100.00.**	400 07 ***
	216.01 ‡‡‡	199.82 ** <u>+</u> 2.82	188.87 ***
	<u>+</u> 4.33 §§§ N=12	<u>+</u> 2.62 N=12	<u>+</u> 4.09 N=12
Rody Weight (and 42) (a)d	11-12	14-12	11-12
Body Weight (pnd 42) (g) ^d			
	225.72 ‡‡‡	208.04 **	194.09 ***
	<u>+</u> 5.07 §§§ N=12	<u>+</u> 2.89 N=12	<u>+</u> 2.80 N=12
5	11-12	14-12	11-12
Body Weight (pnd 43) (g) ^d			
	235.65 ‡‡‡	216.19 **	201.09 ***
	<u>+</u> 5.09 §§§	<u>+</u> 2.73	<u>+</u> 3.07
	N=12	N=12	N=12
Body Weight (pnd 44) (g) ^d			
	245.61 ‡‡‡	223.97 **	208.63 ***
	<u>+</u> 5.19 §§§	<u>+</u> 3.12	<u>+</u> 3.39
	N=12	N=12	N=12
Body Weight (pnd 45) (g) ^d			
	255.20 ‡‡‡	231.19 ***	215.20 ***
	<u>+</u> 5.02 §§§	<u>+</u> 3.28	<u>+</u> 3.35
	N=12	N=12	N=12
Body Weight (pnd 46) (g) ^d			
	261.60 ‡‡‡	237.67 ***	220.62 ***
	<u>+</u> 5.21 §§§	<u>+</u> 3.13	<u>+</u> 2.98
	N=12	N=12	N=12
Body Weight (pnd 47) (g) ^d			
	271.36 ‡‡‡	246.48 ***	227.08 ***
	<u>+</u> 5.15 §§§	<u>+</u> 3.46	<u>+</u> 3.46
	N=12	N=12	N=12

Table 3-A. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Atrazine Treated F₁ Males (page 4 of 5)

	Atrazine (mg/kg/day, po)		
	0	75	150
Body Weight (pnd 48) (g) ^d			
	279.60 ‡‡‡	253.93 ***	233.89 ***
	<u>+</u> 5.06 §§§	<u>+</u> 3.35	<u>+</u> 3.50
	N=12	N=12	N=12
Body Weight (pnd 49) (g) ^d			
	288.54 ‡‡‡	262.49 ***	241.53 ***
	<u>+</u> 5.29 §§§	<u>+</u> 3.51	<u>+</u> 3.82
	N=12	N=12	N=12
Body Weight (pnd 50) (g) ^d			
	299.08 ‡‡‡	270.35 ***	248.71 ***
	<u>+</u> 5.35 §§§	<u>+</u> 3.90	<u>+</u> 3.86
	N=12	N=12	N=12
Body Weight (pnd 51) (g) ^d			
	304.73 ‡‡‡	275.67 ***	255.51 ***
	<u>+</u> 5.65 §§§	<u>+</u> 4.43	<u>+</u> 4.22
	N=12	N=12	N=12
Body Weight (pnd 52) (g) ^d			
, , , , , ,	314.88 ‡‡‡	282.14 ***	260.85 ***
	± 5.38 §§§	<u>+</u> 4.28	<u>+</u> 4.10
	N=12	N=12	N=12
Body Weight (pnd 53) (g) ^{d,g}			
, , , , , ,	334.74 ‡‡‡	285.69 ***	272.68 ***
	<u>+</u> 9.48 §§§	<u>+</u> 4.83	<u>+</u> 8.97
	N=5	N=6	N=4
Body Weight Change (pnd 21 to 23	s) (a)d		
body Weight Change (pha 21 to 20	10.59	10.10	10.46
	+ 0.55	+ 0.42	+ 0.44
	N=12	N=13	N=12
Body Weight Change (pnd 23 to 30)) (g) ^d		
- - "	49.18 ‡‡‡	41.14 ***	34.72 ***
	± 1.65 §§§	<u>+</u> 1.13	<u>+</u> 1.08
	N=12	N=13	N=12
Body Weight Change (pnd 30 to 37	7) (g) ^d		
	64.75 ‡‡‡	60.06 *	56.04 ***
	<u>+</u> 1.57 §§§	<u>+</u> 1.42	<u>+</u> 1.17
	N=12	N=13	N=12

Table 3-A. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Atrazine Treated F₁ Males (page 5 of 5)

	Atrazine (mg/kg/day, po)		
	0	75	150
Body Weight Change (pnd 37 to 4	14) (g) ^d		
	65.12 ‡‡‡	55.80 ***	51.82 ***
	<u>+</u> 1.72 §§§ N=12	<u>+</u> 1.18 N=12 ^f	<u>+</u> 1.33 N=12
Body Weight Change (pnd 44 to 5			
, , , , , , , , , , , , , , , , , , , ,	59.12 ‡‡‡	51.69 *	46.89 ***
	<u>+</u> 1.39 §§§	± 2.48	<u>+</u> 1.40
	N=12	N=12	N=12
Body Weight Change (pnd 51 to 5	52) (g) ^d		
	10.15 ‡‡	6.47 *	5.34 **
	<u>+</u> 1.07 §§§ N=12	<u>+</u> 0.63 N=12	<u>+</u> 1.03 N=12
	_	N=12	N=12
Body Weight Change (pnd 51 to 5	53) (g) ^{u,g}		
	16.93 ‡‡	9.45 **	11.52 *
	<u>+</u> 0.99 § N=5	<u>+</u> 1.66 N=6	<u>+</u> 0.87 N=4
		IN=0	IN=4
Body Weight Change (pnd 23 to 5	52) (g) ^u		
	248.32 ‡‡‡	215.13 ***	194.80 ***
	<u>+</u> 4.47 §§§	<u>+</u> 3.56 N=12	<u>+</u> 3.48
	N=12	IN= I Z	N=12
Body Weight Change (pnd 23 to 5	53) (g) ^{a,g}		
	263.44 ‡‡‡	215.91 **	201.19 ***
	<u>+</u> 9.46 §§§ N=5	<u>+</u> 4.44 N=6	<u>+</u> 9.31 N=4

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

bMale 18 was removed from the study because it was not dosed on the correct postnatal days and male 119 was removed from the study because his correct postnatal day 0 could not be confirmed.

^CMales 55, 118 and 127 were removed from the study because their correct postnatal day 0 could not be confirmed.

dReported as the mean \pm S.E.M.; pnd = postnatal day.

eDecrease in N is due to the body weight for one male inadvertently not being recorded.

fMale 54 was found dead on postnatal day 37 after dosing (misdirected dose).

⁹Includes those animals that were not scheduled for sacrifice until postnatal day 53.

[†]p<0.05; ANOVA Test. †p<0.01; ANOVA Test. ††p<0.01; ANOVA Test. \$p<0.05; Test for Linear Trend.

^{§\$}p<0.01; Test for Linear Trend.

^{§§§}p<0.001; Test for Linear Trend.

^{*}p<0.05; Dunnett's Test.

^{**}p<0.01; Dunnett's Test.
***p<0.001; Dunnett's Test.

Table 3-B. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 1 of 5)

	p,p'-Dichlorodi	phenyldichloroethyle	ne (mg/kg/day, po)
	0	50	100
No. of Males on Study	12 ^a	14 ^b	15
Body Weight (pnd 21) (g) ^C			
	55.97	55.91	56.56
	<u>+</u> 1.74 N=12	<u>+</u> 1.82 N=14	<u>+</u> 1.55 N=15
Body Weight (pnd 22) (g) ^C	N=12	N=14	N=13
Body Weight (prid 22) (g)	F0 70	CO 44	50.00
	59.72 <u>+</u> 1.80	60.11 <u>+</u> 1.95	59.88 <u>+</u> 1.79
	N=12	N=14	N=15
Body Weight (pnd 23) (g) ^C			
	66.55	65.35	65.02
	<u>+</u> 1.93 N=12	<u>+</u> 2.06 N=14	<u>+</u> 1.88 N=15
Body Weight (pnd 24) (g) ^C	11-12	14-11	14-10
body Wolght (phd 24) (g)	73.05	71.03	70.19
	<u>+</u> 2.07	+ 2.16	+ 1.97
	N=12	N=14	N=15
Body Weight (pnd 25) (g) ^C			
	79.55	77.65	76.61
	<u>+</u> 2.24 N=12	<u>+</u> 2.34 N=14	<u>+</u> 2.17 N=15
Body Weight (pnd 26) (g) ^C			
<i>y</i>	85.44	83.22	83.78
	<u>+</u> 2.28	<u>+</u> 2.81	<u>+</u> 2.32
	N=12	N=14	N=15
Body Weight (pnd 27) (g) ^C			
	92.37 <u>+</u> 2.48	90.40 <u>+</u> 2.82	89.82 + 2.45
	N=12	N=14	N=15
Body Weight (pnd 28) (g) ^C			
	99.66	97.60	97.80
	<u>+</u> 2.54	<u>+</u> 3.09	<u>+</u> 2.66
Pady Waight (and 20) (a)C	N=12	N=14	N=15
Body Weight (pnd 29) (g) ^C	400.00	405.00	400.07
	106.93 <u>+</u> 2.82	105.02 <u>+</u> 3.25	106.27 <u>+</u> 2.88
	N=12	N=14	N=15

Table 3-B. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 2 of 5)

	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
	0	50	100
Body Weight (pnd 30) (g) ^C			
	115.74	113.98	114.59
	<u>+</u> 2.98	<u>+</u> 3.59	<u>+</u> 2.88
	N=12	N=13 ^d	N=15
Body Weight (pnd 31) (g) ^C			
	123.56	120.71	121.96
	<u>+</u> 3.26	<u>+</u> 3.68	<u>+</u> 3.09
	N=12	N=13	N=15
Body Weight (pnd 32) (g) ^C			
	132.74	128.56	131.36
	<u>+</u> 3.37	<u>+</u> 4.53	<u>+</u> 3.30
	N=12	N=13	N=15
Body Weight (pnd 33) (g) ^C			
	141.91	136.64	141.74
	<u>+</u> 3.50	<u>+</u> 4.92	<u>+</u> 3.34
	N=12	N=13	N=15
Body Weight (pnd 34) (g) ^C			
	151.22	145.47	150.99
	<u>+</u> 3.69	<u>+</u> 5.61	<u>+</u> 3.70
	N=12	N=13	N=15
Body Weight (pnd 35) (g) ^C			
	160.77	156.19	160.39
	<u>+</u> 3.63	<u>+</u> 4.73	<u>+</u> 3.78
	N=12	N=13	N=15
Body Weight (pnd 36) (g) ^C			
	171.46	166.06	170.78
	<u>+</u> 4.05	<u>+</u> 4.95	<u>+</u> 4.07
	N=12	N=13	N=15
Body Weight (pnd 37) (g) ^C			
	180.49	175.67	179.62
	<u>+</u> 4.05	<u>+</u> 4.96	<u>+</u> 4.04
	N=12	N=13	N=15
Body Weight (pnd 38) (g) ^C			
	191.01	185.28	190.03
	<u>+</u> 4.19	<u>+</u> 5.09	<u>+</u> 4.32
	N=12	N=13	N=15

Table 3-B. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 3 of 5)

	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
	0	50	100
Body Weight (pnd 39) (g) ^C			
	198.66	194.61	198.92
	<u>+</u> 4.16	<u>+</u> 5.18	<u>+</u> 4.39
	N=12	N=13	N=15
Body Weight (pnd 40) (g) ^C			
	208.02	205.72	208.48
	<u>+</u> 4.10	+ 5.27	<u>+</u> 4.67
	N=12	N=13	N=15
Body Weight (pnd 41) (g) ^C			
	216.01	214.61	216.74
	<u>+</u> 4.33	<u>+</u> 5.47	<u>+</u> 4.66
	N=12	N=13	N=15
Body Weight (pnd 42) (g) ^C			
	225.72	223.49	226.45
	<u>+</u> 5.07	<u>+</u> 5.44	<u>+</u> 4.68
	N=12	N=13	N=15
Body Weight (pnd 43) (g) ^C			
	235.65	233.89	235.46
	<u>+</u> 5.09	<u>+</u> 5.66	<u>+</u> 4.83
	N=12	N=13	N=15
Body Weight (pnd 44) (g) ^C			
	245.61	242.14	242.41
	<u>+</u> 5.19	<u>+</u> 5.81	<u>+</u> 4.73
	N=12	N=13	N=15
Body Weight (pnd 45) (g) ^C			
	255.20	252.36	252.22
	<u>+</u> 5.02	<u>+</u> 5.96	<u>+</u> 5.12
	N=12	N=13	N=15
Body Weight (pnd 46) (g) ^C			
	261.60	260.74	261.21
	<u>+</u> 5.21	<u>+</u> 6.08	<u>+</u> 4.74
	N=12	N=13	N=15
Body Weight (pnd 47) (g) ^C			
	271.36	270.30	271.22
	<u>+</u> 5.15 N=12	<u>+</u> 6.19 N=13	<u>+</u> 5.43 N=15

Table 3-B. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 4 of 5)

	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
	0	50	100
Body Weight (pnd 48) (g) ^C			
	279.60	278.83	279.23
	<u>+</u> 5.06	<u>+</u> 6.30	<u>+</u> 5.13
	N=12	N=13	N=15
Body Weight (pnd 49) (g) ^C			
	288.54	288.66	289.71
	<u>+</u> 5.29	<u>+</u> 6.35	<u>+</u> 5.27
	N=12	N=13	N=15
Body Weight (pnd 50) (g) ^C			
	299.08	298.10	298.24
	<u>+</u> 5.35	<u>+</u> 7.08	<u>+</u> 5.61
	N=12	N=13	N=15
Body Weight (pnd 51) (g) ^C			
	304.73	304.26	305.53
	<u>+</u> 5.65	<u>+</u> 6.90	<u>+</u> 5.39
	N=12	N=13	N=15
Body Weight (pnd 52) (g) ^C			
	314.88	314.73	310.70
	<u>+</u> 5.38	<u>+</u> 7.42	<u>+</u> 7.56
	N=12	N=13	N=15
Body Weight (pnd 53) (g) ^{c,e}			
	334.74	332.65	337.07
	<u>+</u> 9.48	<u>+</u> 7.98	<u>+</u> 5.61
	N=5	N=6	N=7
Body Weight Change (pnd 21 to 23	3) (g) ^C		
	10.59	9.45	8.46
	<u>+</u> 0.55 §	<u>+</u> 0.52	<u>+</u> 0.88
	N=12	N=14	N=15
Body Weight Change (pnd 23 to 30	0) (g) ^C		
	49.18	48.19	49.58
	<u>+</u> 1.65	<u>+</u> 1.53	<u>+</u> 1.38
	N=12	N=13 ^d	N=15
Body Weight Change (pnd 30 to 37	7) (g) ^C		
	64.75	61.69	65.03
	<u>+</u> 1.57	<u>+</u> 2.56	<u>+</u> 1.33
	N=12	N=13	N=15

Table 3-B. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 5 of 5)

	p,p'-Dichlorodi	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)	
	0	50	100
Body Weight Change (pnd 37 to	o 44) (g) ^C		
	65.12	66.47	62.80
	<u>+</u> 1.72 N=12	<u>+</u> 1.75 N=13	<u>+</u> 1.17 N=15
Body Weight Change (pnd 44 to	o 51) (g) ^C		
	59.12	62.12	63.12
	<u>+</u> 1.39	<u>+</u> 1.59	<u>+</u> 1.38
	N=12	N=13	N=15
Body Weight Change (pnd 51 to	o 52) (g) ^C		
	10.15	10.47	5.17
	<u>+</u> 1.07	<u>+</u> 1.41	<u>+</u> 2.97
D. I. W. '. I. Ol / 154 (N=12	N=13	N=15
Body Weight Change (pnd 51 to	53) (g) ^{c,c}		
	16.93	19.80	20.19
	<u>+</u> 0.99	<u>+</u> 1.38	<u>+</u> 1.87
	N=5	N=6	N=7
Body Weight Change (pnd 23 to	o 52) (g) ^C		
	248.32	248.94	245.69
	<u>+</u> 4.47	<u>+</u> 5.73	<u>+</u> 6.17
	N=12	N=13	N=15
Body Weight Change (pnd 23 to	o 53) (g) ^{c,e}		
	263.44	261.90	268.59
	<u>+</u> 9.46	<u>+</u> 7.65	<u>+</u> 4.14
	N=5	N=6	N=7

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

bMale 74 was removed from the study because his correct postnatal day 0 could not be confirmed.

^cReported as the mean <u>+</u> S.E.M.; pnd = postnatal day.

^dMale 20 was euthanized on postnatal day 29 after dosing due to a leg injury.

eIncludes those animals that were not scheduled for sacrifice until postnatal day 53.

^{\$}p<0.05; Test for Linear Trend.

Table 3-C. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 1 of 5)

	Vinclozolin (mg/kg/day, po)		
	0	30	100
No. of Males on Study	12 ^a	13 ^b	12 ^C
Body Weight (pnd 21) (g) ^d			
	55.97	55.58	55.34
	<u>+</u> 1.74 N=12	<u>+</u> 1.63 N=13	<u>+</u> 1.82 N=12
Body Weight (pnd 22) (g) ^d	11-12	N=13	N=12
Body Weight (phd 22) (g)	59.72	60.43	59.50
	59.72 <u>+</u> 1.80	+ 1.90	± 1.99
	N=12	N=13	N=12
Body Weight (pnd 23) (g) ^d			
	66.55	66.01	65.21
	<u>+</u> 1.93 N=12	<u>+</u> 1.91 N=13	<u>+</u> 1.82 N=12
Body Weight (pnd 24) (g) ^d			
20dy 110ight (pha 2 i) (g)	73.05	71.99	69.68
	<u>+</u> 2.07	<u>+</u> 2.01	<u>+</u> 1.83
	N=12	N=13	N=12
Body Weight (pnd 25) (g) ^d			
	79.55	78.31	76.12 <u>+</u> 2.03
	<u>+</u> 2.24 N=12	<u>+</u> 2.22 N=13	<u>+</u> 2.03 N=12
Body Weight (pnd 26) (g) ^d			
	85.44	84.70	82.25
	± 2.28	± 2.40	<u>+</u> 2.05
D 1 W 1 1 (107) ()d	N=12	N=13	N=12
Body Weight (pnd 27) (g) ^d		a	
	92.37 + 2.48	91.37 <u>+</u> 2.52	88.60 <u>+</u> 2.15
	N=12	N=13	N=12
Body Weight (pnd 28) (g) ^d			
	99.66	98.48	95.95
	<u>+</u> 2.54 N=12	<u>+</u> 2.72 N=13	<u>+</u> 2.15 N=12
Body Weight (pnd 29) (g)d	14-12	14-10	11-12
2009 Wolghi (phia 29) (g)	106.93	105.84	103.67
	<u>+</u> 2.82	<u>+</u> 2.99	<u>+</u> 2.34
	N=12	N=13	N=12

Table 3-C. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 2 of 5)

	Vinclozolin (mg/kg/day, po)		
	0	30	100
Body Weight (pnd 30) (g) ^d			
	115.74	113.98	110.85
	<u>+</u> 2.98	<u>+</u> 3.16	<u>+</u> 2.45
	N=12	N=13	N=12
Body Weight (pnd 31) (g) ^d			
	123.56	121.98	116.33
	<u>+</u> 3.26	<u>+</u> 3.25	<u>+</u> 3.01
	N=12	N=13	N=12
Body Weight (pnd 32) (g) ^d			
, , , , ,	132.74	130.86	126.32
	<u>+</u> 3.37	<u>+</u> 3.80	<u>+</u> 2.83
	N=12	N=13	N=12
Body Weight (pnd 33) (g) ^d			
, , , , ,	141.91	140.94	135.42
	<u>+</u> 3.50	<u>+</u> 4.06	<u>+</u> 2.87
	N=12	N=13	N=12
Body Weight (pnd 34) (g) ^d			
	151.22	149.96	144.40
	<u>+</u> 3.69	<u>+</u> 4.22	<u>+</u> 2.83
	N=12	N=13	N=12
Body Weight (pnd 35) (g) ^d			
	160.77	159.63	154.36
	<u>+</u> 3.63	<u>+</u> 4.51	<u>+</u> 3.06
	N=12	N=13	N=12
Body Weight (pnd 36) (g) ^d			
	171.46	170.17	163.82
	<u>+</u> 4.05	<u>+</u> 4.85	<u>+</u> 3.04
	N=12	N=13	N=12
Body Weight (pnd 37) (g) ^d			
	180.49	179.79	172.98
	<u>+</u> 4.05	<u>+</u> 4.90	<u>+</u> 3.49
	N=12	N=13	N=12
Body Weight (pnd 38) (g) ^d			
	191.01	189.75	182.21
	<u>+</u> 4.19	<u>+</u> 5.25	<u>+</u> 3.49
	N=12	N=13	N=12

Table 3-C. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 3 of 5)

	Vinclozolin (mg/kg/day, po)		
	0	30	100
Body Weight (pnd 39) (g) ^d			
	198.66	198.85	190.57
	<u>+</u> 4.16	<u>+</u> 5.39	<u>+</u> 3.43
	N=12	N=13	N=12
Body Weight (pnd 40) (g) ^d			
	208.02	208.13	200.41
	+ 4.10	<u>+</u> 5.79	<u>+</u> 3.76
	N=12	N=13	N=12
Body Weight (pnd 41) (g) ^d			
	216.01	217.43	209.99
	<u>+</u> 4.33	<u>+</u> 5.72	<u>+</u> 3.72
	N=12	N=13	N=12
Body Weight (pnd 42) (g) ^d			
	225.72	227.04	217.93
	<u>+</u> 5.07	<u>+</u> 6.04	<u>+</u> 3.65
	N=12	N=13	N=12
Body Weight (pnd 43) (g) ^d			
	235.65	236.72	227.33
	<u>+</u> 5.09	<u>+</u> 6.17	<u>+</u> 3.84
	N=12	N=13	N=12
Body Weight (pnd 44) (g) ^d			
	245.61	245.78	236.10
	<u>+</u> 5.19	<u>+</u> 6.37	<u>+</u> 3.77
	N=12	N=13	N=12
Body Weight (pnd 45) (g) ^d			
#	255.20	255.54	245.08
	<u>+</u> 5.02	<u>+</u> 6.77	<u>+</u> 3.85
	N=12	N=13	N=12
Body Weight (pnd 46) (g) ^d			
	261.60	263.99	249.87
	<u>+</u> 5.21	<u>+</u> 6.65	<u>+</u> 4.62
	N=12	N=13	N=12
Body Weight (pnd 47) (g) ^d			
#	271.36	272.93	261.27
	<u>+</u> 5.15	<u>+</u> 7.08	<u>+</u> 4.57
	N=12	N=13	N=12

Table 3-C. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 4 of 5)

	Vinclozolin (mg/kg/day, po)		
	0	30	100
Body Weight (pnd 48) (g) ^d			
#	279.60	284.20	270.83
	± 5.06	<u>+</u> 7.36	± 4.39
ــ	N=12	N=13	N=12
Body Weight (pnd 49) (g) ^d			
#	288.54	293.34	280.48
	<u>+</u> 5.29 N=12	<u>+</u> 7.49 N=13	<u>+</u> 4.61 N=12
Body Weight (pnd 50) (g) ^d	14-12	14-10	14-12
#	299.08 <u>+</u> 5.35	303.52 <u>+</u> 7.70	288.76 <u>+</u> 4.62
	<u>+</u> 3.33 N=12	<u>+</u> 7.70 N=13	<u>+</u> 4.02 N=12
Body Weight (pnd 51) (g) ^d			
#	304.73	310.12	295.47
	<u>+</u> 5.65	<u>+</u> 8.04	<u>+</u> 4.98
	N=12	N=13	N=12
Body Weight (pnd 52) (g) ^d			
#	314.88	321.93	306.71
	<u>+</u> 5.38 N=12	<u>+</u> 8.73 N=13	<u>+</u> 4.90 N=12
D. I. W. J.	IN=IZ	IN= 13	IN= I Z
Body Weight (pnd 53) (g) ^{d,e}			
	334.74	354.05	324.67
	<u>+</u> 9.48 N=5	<u>+</u> 6.83 N=5	<u>+</u> 10.28 N=5
Body Weight Change (pnd 21 to 2	(3) (a)d		
, , , , , , , , , , , , , , , , , , , ,	10.59	10.43	9.87
	<u>+</u> 0.55	<u>+</u> 0.70	<u>+</u> 0.36
	N=12	N=13	N=12
Body Weight Change (pnd 23 to 3	60) (g) ^d		
	49.18	47.97	45.64
	<u>+</u> 1.65 N=12	<u>+</u> 1.53 N=13	<u>+</u> 0.85 N=12
Pady Waight Change (and 20 to 2		N=13	IN=IZ
Body Weight Change (pnd 30 to 3		a	
	64.75 <u>+</u> 1.57	65.81 <u>+</u> 1.92	62.13 <u>+</u> 1.35
	<u>+</u> 1.57 N=12	± 1.92 N=13	<u>+</u> 1.35 N=12

Table 3-C. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 5 of 5)

	Vir	Vinclozolin (mg/kg/day, po)		
	0	30	100	
Body Weight Change (pnd 37	to 44) (g) ^d			
	65.12	65.99	63.12	
	<u>+</u> 1.72	<u>+</u> 1.87	<u>+</u> 1.58	
	N=12	N=13	N=12	
Body Weight Change (pnd 44	to 51) (g) ^d			
	59.12	64.34	59.36	
	<u>+</u> 1.39	<u>+</u> 2.45	<u>+</u> 1.65	
	N=12	N=13	N=12	
Body Weight Change (pnd 51	to 52) (g) ^d			
	10.15	11.80	11.24	
	<u>+</u> 1.07	<u>+</u> 1.18	<u>+</u> 1.09	
	N=12	N=13	N=12	
Body Weight Change (pnd 51	to 53) (g) ^{d,e}			
	16.93 ‡‡	25.60 **	19.50	
	<u>+</u> 0.99	<u>+</u> 1.76	<u>+</u> 1.26	
	N=5	N=5	N=5	
Body Weight Change (pnd 23	to 52) (g) ^d			
#	248.32	255.92	241.50	
	<u>+</u> 4.47	<u>+</u> 7.47	<u>+</u> 3.92	
	N=12	N=13	N=12	
Body Weight Change (pnd 23	to 53) (g) ^{d,e}			
	263.44	282.17	254.82	
	<u>+</u> 9.46	<u>+</u> 5.84	<u>+</u> 9.63	
	N=5	N=5	N=5	

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

^bMales 79 and 115 were removed from the study because their correct postnatal day 0 could not be

^CMales 24, 114 and 131 were removed from the study because their correct postnatal day 0 could not be confirmed.

^dReported as the mean \pm S.E.M.; pnd = postnatal day. eIncludes those animals that were not scheduled for sacrifice until postnatal day 53.

[#]Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

^{‡‡}p<0.01; ANOVA Test.

p<0.01; Dunnett's Test.

Table 3-D. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 1 of 5)

	Me	ethoxychlor (mg/kg/da	ay, po)
	0	25	50
No. of Males on Study	12 ^a	15	13 ^b
Body Weight (pnd 21) (g) ^C			
	55.97	56.76	56.19
	<u>+</u> 1.74 N=12	<u>+</u> 1.42 N=15	<u>+</u> 1.97 N=13
Body Weight (pnd 22) (g) ^C	IN=12	N=13	N=13
Body Weight (phd 22) (g)	59.72	59.89	60.34
	59.72 <u>+</u> 1.80	± 1.51	60.34 <u>+</u> 2.17
	N=12	N=15	N=13
Body Weight (pnd 23) (g) ^C			
	66.55	66.82	66.17
	<u>+</u> 1.93 N=12	<u>+</u> 1.63 N=15	<u>+</u> 2.34 N=13
Body Weight (pnd 24) (g) ^C			
20dy 110.g.n (p.nd 2 1) (g)	73.05	72.87	72.14
	<u>+</u> 2.07	<u>+</u> 1.62	<u>+</u> 2.57
	N=12	N=15	N=13
Body Weight (pnd 25) (g) ^C			
	79.55 <u>+</u> 2.24	79.53 <u>+</u> 1.67	79.15 <u>+</u> 2.61
	<u>+</u> 2.24 N=12	± 1.67 N=15	<u>+</u> 2.61 N=13
Body Weight (pnd 26) (g) ^C			
	85.44	86.20	85.91
	<u>+</u> 2.28	± 1.73	<u>+</u> 2.80
Dod. Maiah (and 07) (a)C	N=12	N=15	N=13
Body Weight (pnd 27) (g) ^C	00.07	00.04	00.00
	92.37 + 2.48	93.91 <u>+</u> 1.86	93.38 + 2.98
	N=12	N=15	N=13
Body Weight (pnd 28) (g) ^C			
	99.66	101.13	100.64
	<u>+</u> 2.54 N=12	<u>+</u> 1.94 N=15	<u>+</u> 3.12 N=13
Body Weight (pnd 29) (g) ^C	14-14	14-10	11-10
20dy Wolgh (phd 20) (g)	106.93	108.69	108.31
	<u>+</u> 2.82	<u>+</u> 2.06	<u>+</u> 3.52
	N=12	N=15	N=13

Table 3-D. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 2 of 5)

	Me	Methoxychlor (mg/kg/day, po)		
	0	25	50	
Body Weight (pnd 30) (g) ^C				
, , ,	115.74	117.32	116.30	
	<u>+</u> 2.98	<u>+</u> 2.23	<u>+</u> 3.82	
	N=12	N=15	N=13	
Body Weight (pnd 31) (g) ^C				
	123.56	124.03	123.59	
	<u>+</u> 3.26	<u>+</u> 2.56	<u>+</u> 3.75	
	N=12	N=15	N=13	
Body Weight (pnd 32) (g) ^C				
	132.74	131.67	133.45	
	<u>+</u> 3.37	<u>+</u> 3.11	<u>+</u> 4.21	
	N=12	N=15	N=13	
Body Weight (pnd 33) (g) ^C				
	141.91	139.93	142.50	
	<u>+</u> 3.50	<u>+</u> 3.87	<u>+</u> 4.31	
	N=12	N=15	N=13	
Body Weight (pnd 34) (g) ^C				
	151.22	147.86	151.54	
	<u>+</u> 3.69	<u>+</u> 4.61	<u>+</u> 4.56	
	N=12	N=15	N=13	
Body Weight (pnd 35) (g) ^C				
	160.77	157.03	159.51	
	<u>+</u> 3.63	<u>+</u> 5.27	<u>+</u> 4.89	
	N=12	N=15	N=13	
Body Weight (pnd 36) (g) ^C				
	171.46	168.99	171.63	
	<u>+</u> 4.05	<u>+</u> 3.90	<u>+</u> 5.21	
	N=12	N=15	N=13	
Body Weight (pnd 37) (g) ^C				
	180.49	177.91	181.34	
	± 4.05	<u>+</u> 4.13	<u>+</u> 5.33	
_	N=12	N=15	N=13	
Body Weight (pnd 38) (g) ^C				
	191.01	187.92	189.69	
	<u>+</u> 4.19	<u>+</u> 4.22	<u>+</u> 5.66	
	N=12	N=15	N=13	

Table 3-D. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 3 of 5)

	M	Methoxychlor (mg/kg/day, po)		
	0	25	50	
Body Weight (pnd 39) (g) ^C				
	198.66	194.84	196.72	
	<u>+</u> 4.16	<u>+</u> 4.43	<u>+</u> 5.50	
	N=12	N=15	N=13	
Body Weight (pnd 40) (g) ^C				
	208.02	204.48	206.99	
	<u>+</u> 4.10	<u>+</u> 4.23	<u>+</u> 6.09	
	N=12	N=15	N=13	
Body Weight (pnd 41) (g) ^C				
	216.01	211.91	213.80	
	<u>+</u> 4.33	<u>+</u> 4.42	<u>+</u> 6.12	
	N=12	N=14 ^d	N=13	
Body Weight (pnd 42) (g) ^C				
	225.72	223.36	222.74	
	<u>+</u> 5.07	<u>+</u> 4.41	<u>+</u> 6.49	
	N=12	N=15	N=13	
Body Weight (pnd 43) (g) ^C				
	235.65	229.15	230.03	
	<u>+</u> 5.09	<u>+</u> 4.30	<u>+</u> 6.83	
	N=12	N=15	N=13	
Body Weight (pnd 44) (g) ^C				
	245.61	238.17	237.99	
	<u>+</u> 5.19	<u>+</u> 4.68	<u>+</u> 6.89	
	N=12	N=15	N=13	
Body Weight (pnd 45) (g) ^C				
	255.20	247.69	246.74	
	<u>+</u> 5.02	<u>+</u> 4.72	<u>+</u> 6.77	
	N=12	N=15	N=13	
Body Weight (pnd 46) (g) ^C				
	261.60	254.35	253.82	
	<u>+</u> 5.21	<u>+</u> 4.77	<u>+</u> 7.00	
	N=12	N=15	N=13	
Body Weight (pnd 47) (g) ^C				
	271.36	263.46	263.32	
	<u>+</u> 5.15	± 5.14	<u>+</u> 6.92	
	N=12	N=15	N=13	

Table 3-D. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 4 of 5)

	Methoxychlor (mg/kg/day, po)		
	0	25	50
Body Weight (pnd 48) (g) ^C			
	279.60	271.39	271.68
	<u>+</u> 5.06	<u>+</u> 5.05	<u>+</u> 7.51
	N=12	N=15	N=13
Body Weight (pnd 49) (g) ^C			
	288.54	280.78	280.25
	<u>+</u> 5.29	<u>+</u> 5.23	<u>+</u> 7.87
	N=12	N=15	N=13
Body Weight (pnd 50) (g) ^C			
	299.08	288.78	288.24
	<u>+</u> 5.35	<u>+</u> 5.12	<u>+</u> 8.00
	N=12	N=15	N=13
Body Weight (pnd 51) (g) ^C			
	304.73	293.80	290.44
	<u>+</u> 5.65	<u>+</u> 4.86	<u>+</u> 7.73
	N=12	N=15	N=13
Body Weight (pnd 52) (g) ^C			
	314.88	302.69	297.93
	<u>+</u> 5.38	<u>+</u> 4.91	<u>+</u> 7.88
	N=12	N=15	N=13
Body Weight (pnd 53) (g) ^{C,e}			
	334.74	318.52	328.01
	<u>+</u> 9.48	<u>+</u> 4.36	<u>+</u> 7.84
	N=5	N=7	N=6
Body Weight Change (pnd 21 to 23	3) (g) ^C		
	10.59	10.06	9.97
	<u>+</u> 0.55	<u>+</u> 0.44	<u>+</u> 0.69
	N=12	N=15	N=13
Body Weight Change (pnd 23 to 30	0) (g) ^C		
	49.18	50.50	50.13
	<u>+</u> 1.65	<u>+</u> 1.18	<u>+</u> 1.61
D. 1. 14. 14. 01. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	N=12	N=15	N=13
Body Weight Change (pnd 30 to 3	7) (g) ^C		
	64.75	60.59	65.04
	<u>+</u> 1.57	<u>+</u> 2.66	<u>+</u> 1.71 N-12
	N=12	N=15	N=13

Table 3-D. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 5 of 5)

	Met	hoxychlor (mg/kg/da	ay, po)
	0	25	50
Body Weight Change (pnd 37 to 44)) (g) ^C		
	65.12 ‡‡ <u>+</u> 1.72 §§ N=12	60.26 <u>+</u> 1.52 N=15	56.66 ** <u>+</u> 1.92 N=13
Body Weight Change (pnd 44 to 51)) (g) ^C		
	59.12 ‡ <u>+</u> 1.39 §§ N=12	55.63 <u>+</u> 1.59 N=15	52.45 ** <u>+</u> 1.45 N=13
Body Weight Change (pnd 51 to 52)) (g) ^C		
	10.15 <u>±</u> 1.07 N=12	8.89 <u>+</u> 0.94 N=15	7.49 <u>+</u> 0.78 N=13
Body Weight Change (pnd 51 to 53)) (g) ^{c,e}		
	16.93 <u>+</u> 0.99 N=5	20.43 <u>+</u> 2.34 N=7	19.81 <u>±</u> 2.22 N=6
Body Weight Change (pnd 23 to 52)) (g) ^C		
	248.32 <u>±</u> 4.47 § N=12	235.87 <u>+</u> 4.20 N=15	231.76 <u>+</u> 5.82 N=13
Body Weight Change (pnd 23 to 53)) (g) ^{c,e}		
	263.44 <u>+</u> 9.46 N=5	247.50 <u>+</u> 4.41 N=7	256.06 <u>+</u> 7.44 N=6

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

bMales 17 and 30 were removed from the study because their correct postnatal day 0 could not be confirmed.

^cReported as the mean \pm S.E.M.; pnd = postnatal day. ^dDecrease in N is due to one body weight inadvertently not being recorded.

elncludes those animals that were not scheduled for sacrifice until postnatal day 53.

[‡]p<0.05; ANOVA Test. ‡‡p<0.01; ANOVA Test. \$p<0.05; Test for Linear Trend. \$\$p<0.01; Test for Linear Trend.

^{**}p<0.01; Dunnett's Test.

Table 3-E. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 1 of 5)

	Pro	pylthiouracil (mg/kg/c	day, po)
	0	2	25
No. of Males on Study	15	15	15
Body Weight (pnd 21) (g) ^a			
	56.99	56.72	56.79
	<u>+</u> 1.32 N=15	<u>+</u> 1.19 N=15	<u>+</u> 1.40 N=15
Body Weight (pnd 22) (g) ^a			
, , , , , ,	60.50	60.63	60.60
	<u>+</u> 1.40	<u>+</u> 1.49	<u>+</u> 1.46
D 1 W 11/ 100 /)3	N=15	N=15	N=15
Body Weight (pnd 23) (g) ^a	07.00	07.40	00.40
	67.30 + 1.41	67.16 <u>+</u> 1.46	66.43 <u>+</u> 1.55
	N=15	N=15	N=15
Body Weight (pnd 24) (g) ^a			
	73.36	74.00	72.83
	<u>+</u> 1.44 N=15	<u>+</u> 1.49 N=15	<u>+</u> 1.43 N=15
Body Weight (pnd 25) (g) ^a		-	
	80.15	81.52	79.73
	<u>+</u> 1.69	<u>+</u> 1.56	<u>+</u> 1.60
Dod. W. inht (n. d. 20) (n. d.	N=15	N=15	N=15
Body Weight (pnd 26) (g) ^a	00.54	00.05	00.50
	86.51 <u>+</u> 1.78	88.35 <u>+</u> 1.52	86.50 <u>+</u> 1.72
	N=15	N=15	N=15
Body Weight (pnd 27) (g) ^a			
	93.67	95.56	93.12
	<u>+</u> 1.93 N=15	<u>+</u> 1.58 N=15	<u>+</u> 1.81 N=15
Body Weight (pnd 28) (g) ^a			
, , , , , , ,	101.31	103.84	101.53
	± 2.18	<u>+</u> 1.62	± 2.13
Rody Woight (and 20) (a) 8	N=15	N=15	N=15
Body Weight (pnd 29) (g) ^a	109.18	111 17	100 40
	109.18 <u>+</u> 2.24	111.47 <u>+</u> 1.65	108.42 <u>+</u> 2.13
	N=15	N=15	N=15

Table 3-E. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 2 of 5)

	Propy	/Ithiouracil (mg/kg/d	day, po)
	0	2	25
Body Weight (pnd 30) (g) ^a			
	117.04	119.25	114.81
	<u>+</u> 2.43	<u>+</u> 2.01	+ 2.48
	N=15	N=15	N=15
Body Weight (pnd 31) (g) ^a			
, , , , , ,	124.98	127.87	122.34
	+ 2.75	<u>+</u> 1.92	<u>+</u> 2.76
	N=14 ^b	N=15	N=15
Body Weight (pnd 32) (g) ^a			
,,,,,,,,,,	134.96	137.54	128.81
	± 3.19 §	+ 2.09	± 2.86
	N=14	<u>-</u> 2.03 N=15	N=15
Body Weight (pnd 33) (g) ^a			
(g)	144 22 +	146.63	134.73 *
	144.32 ‡ <u>+</u> 3.26 §§	+ 2.20	+ 3.11
	1 5.20 33 N=14	N=15	N=15
Body Weight (pnd 34) (g) ^a			
Body Weight (phd 54) (g)	4=0.00.111	4== 00	400 00 tub
	153.68 ‡‡‡	155.89	138.99 **
	<u>+</u> 3.42 §§§ N=14	<u>+</u> 2.34 N=15	<u>+</u> 3.28 N=15
Dadi Mainh (22 d 25) (2)	14-14	14-10	11-10
Body Weight (pnd 35) (g) ^a			
	162.40 ‡‡‡	165.65	144.40 ***
	<u>+</u> 3.88 §§§	<u>+</u> 2.60 N=15	<u>+</u> 3.48 N=15
	N=14	IN=13	IN=15
Body Weight (pnd 36) (g) ^a			
	172.22 ‡‡‡	175.59	149.05 ***
	<u>+</u> 4.04 §§§	<u>+</u> 2.79	<u>+</u> 3.69
_	N=14	N=15	N=15
Body Weight (pnd 37) (g) ^a			
	182.68 ‡‡‡	185.85	153.00 ***
	<u>+</u> 4.05 §§§	<u>+</u> 2.91	<u>+</u> 3.65
	N=14	N=15	N=15
Body Weight (pnd 38) (g) ^a			
	192.75 ‡‡‡	195.97	156.71 ***
	<u>+</u> 4.33 §§§	± 3.35	<u>+</u> 3.88
	N=14	N=15	N=15

Table 3-E. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 3 of 5)

	Propy	/Ithiouracil (mg/kg/d	day, po)
	0	2	25
Body Weight (pnd 39) (g) ^a			
, , , , , , ,	201.28 ‡‡‡	205.33	159.37 ***
	<u>+</u> 4.33 §§§	± 3.21	+ 4.02
	<u>-</u> 1.00 333 N=14	N=15	N=15
Body Weight (pnd 40) (g) ^a			
(g)	210.50 ‡‡‡	214.96	162.24 ***
	± 4.51 §§§	+ 3.78	<u>+</u> 4.36
	N=14	<u>-</u> 0.70 N=15	<u>-</u> 4.00 N=15
Body Weight (pnd 41) (g) ^a			
body Weight (phd 41) (g)	240 50 +++	222.40	400.00 ***
	218.50 ‡‡‡ <u>+</u> 4.31 §§§	222.46 <u>+</u> 3.55	163.02 *** <u>+</u> 4.12
	<u>+</u> 4.51 333 N=14	<u>+</u> 3.33 N=15	<u>+</u> 4.12 N=15
Pody Weight (and 42) (a)	11-11	11-10	11-10
Body Weight (pnd 42) (g) ^a	000 44 111		40404
	228.11 ‡‡‡	230.26	164.84 ***
	<u>+</u> 4.61 §§§ N=14	<u>+</u> 4.13 N=15	<u>+</u> 4.31 N=15
	IN=14	IN=13	IN=15
Body Weight (pnd 43) (g) ^a			
	236.54 ‡‡‡	239.19	166.33 ***
	<u>+</u> 4.88 §§§	<u>+</u> 4.49	<u>+</u> 4.26
	N=14	N=15	N=15
Body Weight (pnd 44) (g) ^a			
	245.11 ‡‡‡	246.64	166.96 ***
	<u>+</u> 5.18 §§§	<u>+</u> 4.57	<u>+</u> 4.26
	N=14	N=15	N=15
Body Weight (pnd 45) (g) ^a			
	254.94 ‡‡‡	254.76	168.06 ***
	<u>+</u> 5.18 §§§	<u>+</u> 4.70	<u>+</u> 4.27
	N=14	N=15	N=15
Body Weight (pnd 46) (g) ^a			
	264.82 ‡‡‡	262.61	168.78 ***
	<u>+</u> 5.70 §§§	<u>+</u> 5.05	<u>+</u> 4.05
	N=14	N=15	N=15
Body Weight (pnd 47) (g) ^a			
	273.56 ‡‡‡	269.14	169.66 ***
	<u>+</u> 5.58 §§§	<u>+</u> 5.29	<u>+</u> 4.15
	N=14	N=15	N=15

Table 3-E. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 4 of 5)

	Propy	/lthiouracil (mg/kg/d	
	0	2	25
Body Weight (pnd 48) (g) ^a			
	282.57 ‡‡‡	274.84	169.67 ***
	<u>+</u> 5.88 §§§	<u>+</u> 5.50	<u>+</u> 4.11
	N=14	N=15	N=15
Body Weight (pnd 49) (g) ^a			
	292.27 ‡‡‡	280.84	170.22 ***
	<u>+</u> 6.15 §§§	<u>+</u> 6.38	<u>+</u> 4.06
	N=14	N=15	N=15
Body Weight (pnd 50) (g) ^a			
	301.88 ‡‡‡	286.69	171.45 ***
	<u>+</u> 6.50 §§§	<u>+</u> 6.63	<u>+</u> 4.33
	N=14	N=15	N=14 ^C
Body Weight (pnd 51) (g) ^a			
	310.88 ‡‡‡	292.97	171.80 ***
	<u>+</u> 6.60 §§§	<u>+</u> 7.05	<u>+</u> 4.49
	N=14	N=15	N=14
Body Weight (pnd 52) (g) ^a			
	321.52 ‡‡‡	297.22 *	172.60 ***
	<u>+</u> 6.65 §§§	<u>+</u> 7.24	<u>+</u> 4.46
	N=14	N=15	N=14
Body Weight (pnd 53) (g) ^{a,d}			
	336.44 ‡‡‡	304.39 **	185.14 ***
	<u>+</u> 7.39 §§§	<u>+</u> 7.07	<u>+</u> 3.32
	N=5	N=5	N=4
Body Weight Change (pnd 21 to 23	3) (g) ^a		
	10.31	10.45	9.64
	<u>+</u> 0.47	<u>+</u> 0.48	<u>+</u> 0.46
	N=15	N=15	N=15
Body Weight Change (pnd 23 to 30)) (g) ^a		
	49.74	52.09	48.37
	<u>+</u> 1.31	<u>+</u> 0.94	<u>+</u> 1.10
	N=15	N=15	N=15
Body Weight Change (pnd 30 to 37	7) (g) ^a		
	65.56 ‡‡‡	66.60	38.19 ***
	± 1.71 §§§	<u>+</u> 1.14	<u>+</u> 1.57
	N=14 ^b	N=15	N=15

Table 3-E. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 5 of 5)

	Propv	Ithiouracil (mg/kg/da	v. po)
	0	2	25
Body Weight Change (pnd 37 to 44)	(g) ^a		
	62.43 ‡‡‡ <u>+</u> 1.67 §§§ N=14	60.79 <u>+</u> 2.00 N=15	13.97 *** <u>+</u> 1.03 N=15
Body Weight Change (pnd 44 to 51)	(g) ^a		
#	65.77 ††† <u>+</u> 1.78 ŸŸŸ N=14	46.34 ÞÞÞ <u>+</u> 3.58 N=15	5.27 ÞÞÞ <u>+</u> 0.93 N=14 ^C
Body Weight Change (pnd 51 to 52)	(g) ^a		
	10.64 ‡‡‡ <u>+</u> 0.57 §§§ N=14	4.24 *** <u>+</u> 0.57 N=15	0.80 *** <u>+</u> 0.43 N=14
Body Weight Change (pnd 51 to 53)	$(g)^{a,d}$		
	19.47 ‡‡‡ <u>+</u> 2.40 §§ N=5	6.56 *** <u>+</u> 1.51 N=5	-0.00 *** <u>+</u> 0.44 N=4
Body Weight Change (pnd 23 to 52)	(g) ^a		
	254.36 ‡‡‡ <u>+</u> 5.91 §§§ N=14	230.05 ** <u>+</u> 6.48 N=15	106.67 *** <u>+</u> 3.35 N=14
Body Weight Change (pnd 23 to 53)	(g)a,d		
	265.76 ‡‡‡ <u>+</u> 6.58 §§§ N=5	231.96 ** <u>+</u> 6.69 N=5	114.94 *** <u>+</u> 3.07 N=4

^aReported as the mean \pm S.E.M.; pnd = postnatal day.

bMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

^CMale 268 was found dead on postnatal day 50 prior to dosing.

dIncludes those animals that were not scheduled for sacrifice until postnatal day 53.

[#]Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

[‡]p<0.05; ANOVA Test. ‡‡‡p<0.001; ANOVA Test.

^{\$}p<0.05; Test for Linear Trend.

^{§\$}p<0.01; Test for Linear Trend.

^{§§§}p<0.001; Test for Linear Trend.

^{*}p<0.05; Dunnett's Test.

^{**}p<0.01; Dunnett's Test.

Table 3-F. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 1 of 5)

	Ke	toconazole (mg/kg/da	ay, po)
	0	50	100
No. of Males on Study	15	15	15
Body Weight (pnd 21) (g) ^a			
	56.99	57.09	56.56
	<u>+</u> 1.32 N=15	<u>+</u> 1.33 N=15	<u>+</u> 1.34 N=15
Body Weight (pnd 22) (g) ^a	14-15	N=13	N=13
Body Weight (phd 22) (g)	60.50	59.73	59.39
	+ 1.40	99.73 <u>+</u> 1.28	59.39 <u>+</u> 1.26
	N=15	N=15	N=15
Body Weight (pnd 23) (g) ^a			
	67.30	66.39	66.39
	<u>+</u> 1.41 N=15	<u>+</u> 1.64 N=15	<u>+</u> 1.63 N=15
Body Weight (pnd 24) (g) ^a			
20dy 110.g.n (p.nd 2 1) (g)	73.36	72.77	71.57
	<u>+</u> 1.44	<u>+</u> 1.71	<u>+</u> 1.63
	N=15	N=15	N=15
Body Weight (pnd 25) (g) ^a			
	80.15	79.60	77.68
	<u>+</u> 1.69 N=15	<u>+</u> 1.81 N=15	<u>+</u> 1.55 N=15
Body Weight (pnd 26) (g) ^a			
, , , , , , , , ,	86.51	85.82	83.99
	<u>+</u> 1.78	<u>+</u> 1.81	<u>+</u> 1.68
D W : L (LOT) ()3	N=15	N=15	N=15
Body Weight (pnd 27) (g) ^a		22.24	
	93.67 <u>+</u> 1.93	93.04 <u>+</u> 1.95	90.59 <u>+</u> 1.93
	N=15	N=15	N=15
Body Weight (pnd 28) (g) ^a			
	101.31	100.61	97.96
	<u>+</u> 2.18 N=15	<u>+</u> 2.13 N=15	<u>+</u> 2.02 N=15
Body Weight (pnd 29) (g) ^a	14-10	14-10	14-10
2009 Wolghi (pha 29) (g)	109.18	108.56	105.42
	<u>+</u> 2.24	<u>+</u> 2.28	<u>+</u> 2.10
	N=15	N=15	N=15

Table 3-F. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 2 of 5)

	Ke	toconazole (mg/kg/d	ay, po)
	0	50	100
Body Weight (pnd 30) (g) ^a			
	117.04	116.77	112.87
	<u>+</u> 2.43	<u>+</u> 2.45	<u>+</u> 2.31
	N=15	N=15	N=15
Body Weight (pnd 31) (g) ^a			
	124.98	125.24	121.35
	+ 2.75	<u>+</u> 2.62	+ 2.57
	N=14b	N=15	N=15
Body Weight (pnd 32) (g) ^a			
	134.96	133.74	128.78
	<u>+</u> 3.19	<u>+</u> 2.68	<u>+</u> 2.46
	N=14	N=15	N=15
Body Weight (pnd 33) (g) ^a			
	144.32	142.68	138.31
	<u>+</u> 3.26	<u>+</u> 2.86	<u>+</u> 3.04
	N=14	N=15	N=15
Body Weight (pnd 34) (g) ^a			
	153.68	151.41	145.86
	<u>+</u> 3.42	<u>+</u> 2.88	<u>+</u> 2.91
	N=14	N=15	N=15
Body Weight (pnd 35) (g) ^a			
	162.40	161.64	155.63
	<u>+</u> 3.88	<u>+</u> 3.76	<u>+</u> 3.32
	N=14	N=15	N=15
Body Weight (pnd 36) (g) ^a			
	172.22	171.30	165.16
	<u>+</u> 4.04	<u>+</u> 3.61	<u>+</u> 3.27
	N=14	N=15	N=15
Body Weight (pnd 37) (g) ^a			
	182.68	181.94	174.63
	<u>+</u> 4.05	<u>+</u> 3.92	<u>+</u> 3.81
	N=14	N=15	N=14 ^C
Body Weight (pnd 38) (g) ^a			
	192.75	191.62	183.19
	<u>+</u> 4.33	<u>+</u> 4.08	<u>+</u> 3.84
	N=14	N=15	N=14

Table 3-F. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 3 of 5)

	Ket	oconazole (mg/kg/d	ay, po)
	0	50	100
Body Weight (pnd 39) (g) ^a			
, (6)	201.28	199.28	192.08
	<u>+</u> 4.33	<u>+</u> 4.55	<u>+</u> 3.99
	N=14	N=15	N=14
Body Weight (pnd 40) (g) ^a			
	210.50	207.73	200.41
	<u>+</u> 4.51	+ 4.90	<u>+</u> 4.00
	N=14	N=15	N=14
Body Weight (pnd 41) (g) ^a			
	218.50	215.08	207.38
	<u>+</u> 4.31	<u>+</u> 4.87	<u>+</u> 4.12
	N=14	N=15	N=14
Body Weight (pnd 42) (g) ^a			
	228.11	224.41	216.59
	<u>+</u> 4.61	<u>+</u> 5.16	<u>+</u> 4.46
	N=14	N=15	N=14
Body Weight (pnd 43) (g) ^a			
	236.54	233.70	225.33
	<u>+</u> 4.88	<u>+</u> 5.25	<u>+</u> 4.87
	N=14	N=15	N=14
Body Weight (pnd 44) (g) ^a			
	245.11	242.73	233.63
	<u>+</u> 5.18	<u>+</u> 5.29	<u>+</u> 4.77
	N=14	N=15	N=14
Body Weight (pnd 45) (g) ^a			
	254.94	251.27	241.25
	<u>+</u> 5.18	<u>+</u> 5.18	<u>+</u> 4.77
	N=14	N=15	N=14
Body Weight (pnd 46) (g) ^a			
	264.82	260.47	248.99
	<u>+</u> 5.70 §	<u>+</u> 5.51	<u>+</u> 5.00
	N=14	N=15	N=14
Body Weight (pnd 47) (g) ^a			
	273.56	270.20	259.16
	<u>+</u> 5.58	<u>+</u> 5.60	<u>+</u> 5.59
	N=14	N=15	N=14

Table 3-F. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 4 of 5)

	Ket	oconazole (mg/kg/d	ay, po)
	0	50	100
Body Weight (pnd 48) (g) ^a			
	282.57	277.97	265.32
	<u>+</u> 5.88 §	<u>+</u> 5.36	<u>+</u> 5.30
	N=14	N=15	N=14
Body Weight (pnd 49) (g) ^a			
	292.27	288.40	274.05
	<u>+</u> 6.15 §	<u>+</u> 5.61	<u>+</u> 5.84
	N=14	N=15	N=14
Body Weight (pnd 50) (g) ^a			
	301.88	298.08	284.61
	<u>+</u> 6.50	<u>+</u> 5.86	<u>+</u> 5.84
	N=14	N=15	N=14
Body Weight (pnd 51) (g) ^a			
	310.88	308.55	294.73
	<u>+</u> 6.60	<u>+</u> 5.82	<u>+</u> 6.21
	N=14	N=15	N=14
Body Weight (pnd 52) (g) ^a			
	321.52	321.62	303.57
	<u>+</u> 6.65	<u>+</u> 6.46	<u>+</u> 6.56
	N=14	N=15	N=14
Body Weight (pnd 53) (g) ^{a,d}			
	336.44	337.44	343.20
	<u>+</u> 7.39	<u>+</u> 8.38	<u>+</u> 5.69
	N=5	N=5	N=4
Body Weight Change (pnd 21 to 23	3) (g) ^a		
	10.31	9.29	9.83
	± 0.47	<u>+</u> 0.65	<u>+</u> 0.59
	N=15	N=15	N=15
Body Weight Change (pnd 23 to 30)) (g) ^a		
	49.74	50.39	46.48
	<u>+</u> 1.31	<u>+</u> 1.26	<u>+</u> 0.95
	N=15	N=15	N=15
Body Weight Change (pnd 30 to 37	7) (g) ^a		
	65.56	65.17	62.21
	<u>+</u> 1.71 N-14b	<u>+</u> 1.69	<u>+</u> 1.58
	N=14 ^b	N=15	N=14 ^C

Table 3-F. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 5 of 5)

	Ket	Ketoconazole (mg/kg/day, po)		
	0	50	100	
Body Weight Change (pnd 37 to 4	44) (g) ^a			
	62.43 <u>+</u> 1.67 N=14	60.78 <u>+</u> 1.90 N=15	59.00 <u>+</u> 1.28 N=14	
Body Weight Change (pnd 44 to 5	51) (g) ^a			
	65.77 <u>+</u> 1.78 § N=14	65.83 <u>+</u> 1.38 N=15	61.10 <u>+</u> 1.62 N=14	
Body Weight Change (pnd 51 to 5	52) (g) ^a			
	10.64 <u>+</u> 0.57 N=14	13.06 <u>+</u> 2.42 N=15	8.84 <u>+</u> 0.96 N=14	
Body Weight Change (pnd 51 to 5	53) (g) ^{a,d}			
	19.47 <u>±</u> 2.40 N=5	21.67 <u>±</u> 1.78 N=5	18.37 <u>+</u> 3.37 N=4	
Body Weight Change (pnd 23 to 5	52) (g) ^a			
	254.36 <u>+</u> 5.91 § N=14	255.23 <u>+</u> 5.45 N=15	237.51 <u>+</u> 5.32 N=14	
Body Weight Change (pnd 23 to 5	53) (g) ^{a,d}			
	265.76 <u>+</u> 6.58 N=5	266.63 <u>+</u> 7.51 N=5	272.19 <u>+</u> 6.15 N=4	

^aReported as the mean <u>+</u> S.E.M.; pnd = postnatal day.

^bMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

^cMale 242 was found dead on postnatal day 37 prior to dosing (misdirected dose).

^dIncludes those animals that were not scheduled for sacrifice until postnatal day 53.

§p<0.05; Test for Linear Trend.

Table 3-G. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Linuron Treated F₁ Males (page 1 of 5)

	L	inuron (mg/kg/day,	po)
	0	50	100
No. of Males on Study	15	15	15
Body Weight (pnd 21) (g) ^a			
	56.99	57.00	57.08
	<u>+</u> 1.32	<u>+</u> 1.19	<u>+</u> 1.14 N=15
Dody (Majab) (20) (2)	N=15	N=15	N=15
Body Weight (pnd 22) (g) ^a	00.50	50.00	50.55
	60.50 <u>+</u> 1.40	59.96 <u>+</u> 1.22	59.55 <u>+</u> 1.30
	N=15	N=15	N=15
Body Weight (pnd 23) (g) ^a			
	67.30	67.11	65.60
	<u>+</u> 1.41 N=15	<u>+</u> 1.32 N=15	<u>+</u> 1.28 N=15
Body Weight (pnd 24) (g) ^a	14-10	14-10	11-10
Body Weight (phd 24) (g)	73.36	71.30	69.06
	+ 1.44 §	+ 1.23	<u>+</u> 1.46
	N=15	N=15	N=15
Body Weight (pnd 25) (g) ^a			
	80.15 ‡	77.02	74.26 *
	<u>+</u> 1.69 §§ N=15	<u>+</u> 1.30 N=15	<u>+</u> 1.66 N=15
Body Weight (pnd 26) (g) ^a			
, , , , , , ,	86.51 ‡	82.50	79.28 **
	<u>+</u> 1.78 §§	<u>+</u> 1.45	<u>+</u> 1.64
5 1 10 11 (155) ()3	N=15	N=15	N=15
Body Weight (pnd 27) (g) ^a			
	93.67 ‡‡ <u>+</u> 1.93 §§	88.33 <u>+</u> 1.54	85.12 ** <u>+</u> 1.77
	N=15	N=15	N=15
Body Weight (pnd 28) (g) ^a			
	101.31 ‡‡	96.42	92.16 **
	<u>+</u> 2.18 §§ N=15	<u>+</u> 1.75 N=15	<u>+</u> 2.05 N=15
Rody Woight (and 20) (a)a	IN-IO	IN-IO	IN-13
Body Weight (pnd 29) (g) ^a	100 10 ++	102.20	00 42 **
	109.18 ‡‡ <u>+</u> 2.24 §§§	103.39 <u>+</u> 1.79	98.43 ** <u>+</u> 2.33
	N=15	N=15	N=15

Table 3-G. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Linuron Treated F₁ Males (page 2 of 5)

	L	inuron (mg/kg/day,	po)
	0	50	100
Body Weight (pnd 30) (g) ^a			
, , ,	117.04 ‡‡	110.51	105.15 **
	<u>+</u> 2.43 §§§	<u>+</u> 1.96	+ 2.38
	N=15	N=15	N=15
Body Weight (pnd 31) (g) ^a			
, , , , , , ,	124.98 ‡‡	117.90	111.69 ***
	± 2.75 §§§	<u>+</u> 2.04	+ 2.49
	N=14 ^b	N=15	N=15
Body Weight (pnd 32) (g) ^a			
	124.06 +++	126.13 *	118.60 ***
	134.96 ‡‡‡ <u>+</u> 3.19 §§§	± 2.11	+ 2.61
	<u>-</u> 0.10 333 N=14	<u>-</u> 2.11 N=15	N=15
Body Weight (pnd 33) (g) ^a			
Body Weight (pha 33) (g)	444.00 +++	404 44 *	400 40 ***
	144.32 ‡‡‡	134.44 *	126.46 ***
	<u>+</u> 3.26 §§§ N=14	<u>+</u> 2.30 N=15	<u>+</u> 2.78 N=15
Dady Waight (and 04) (a)3	14-14	14-10	11-10
Body Weight (pnd 34) (g) ^a			
	153.68 ‡‡‡	141.99 *	132.72 ***
	± 3.42 §§§	<u>+</u> 2.47	± 3.00
	N=14	N=15	N=15
Body Weight (pnd 35) (g) ^a			
	162.40 ‡‡‡	151.60 *	142.85 ***
	<u>+</u> 3.88 §§§	<u>+</u> 2.50	<u>+</u> 3.16
	N=14	N=15	N=15
Body Weight (pnd 36) (g) ^a			
	172.22 ‡‡‡	161.09	152.01 ***
	<u>+</u> 4.04 §§§	<u>+</u> 2.64	<u>+</u> 3.53
	N=14	N=15	N=15
Body Weight (pnd 37) (g) ^a			
	182.68 ‡‡‡	170.88 *	161.56 ***
	<u>+</u> 4.05 §§§	<u>+</u> 2.86	<u>+</u> 3.75
	N=14	N=15	N=15
Body Weight (pnd 38) (g) ^a			
	192.75 ‡‡‡	179.36 *	168.27 ***
	+ 4.33 §§§	<u>+</u> 2.91	<u>+</u> 3.70
	N=14	N=15	N=15

Table 3-G. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Linuron Treated F₁ Males (page 3 of 5)

	L	inuron (mg/kg/day,	po)
	0	50	100
Body Weight (pnd 39) (g) ^a			
, , , , , ,	201.28 ‡‡‡	188.23 *	176.66 ***
	± 4.33 §§§	<u>+</u> 3.05	<u>+</u> 4.12
	N=14	N=15	N=15
Body Weight (pnd 40) (g) ^a			
	210.50 ‡‡‡	197.35 *	183.02 ***
	<u>+</u> 4.51 §§§	<u>+</u> 3.13	<u>+</u> 4.17
	N=14	N=15	N=15
Body Weight (pnd 41) (g) ^a			
	218.50 ‡‡‡	205.34 *	190.44 ***
	<u>+</u> 4.31 §§§	<u>+</u> 3.34	<u>+</u> 4.32
	N=14	N=15	N=15
Body Weight (pnd 42) (g) ^a			
	228.11 ‡‡‡	213.74 *	198.40 ***
	<u>+</u> 4.61 §§§	<u>+</u> 3.56	<u>+</u> 4.82
	N=14	N=15	N=15
Body Weight (pnd 43) (g) ^a			
	236.54 ‡‡‡	221.63 *	205.40 ***
	<u>+</u> 4.88 §§§	<u>+</u> 3.65	<u>+</u> 4.88
	N=14	N=15	N=15
Body Weight (pnd 44) (g) ^a			
	245.11 ‡‡‡	230.85	212.37 ***
	<u>+</u> 5.18 §§§	<u>+</u> 3.76	<u>+</u> 5.08
	N=14	N=15	N=15
Body Weight (pnd 45) (g) ^a			
	254.94 ‡‡‡	240.82	220.80 ***
	<u>+</u> 5.18 §§§	<u>+</u> 4.02	<u>+</u> 5.29
	N=14	N=15	N=15
Body Weight (pnd 46) (g) ^a			
	264.82 ‡‡‡	249.74	227.78 ***
	<u>+</u> 5.70 §§§	<u>+</u> 4.31	<u>+</u> 5.36
	N=14	N=15	N=15
Body Weight (pnd 47) (g) ^a			
	273.56 ‡‡‡	258.03	234.84 ***
	<u>+</u> 5.58 §§§	± 4.25	<u>+</u> 5.32
	N=14	N=15	N=15

Table 3-G. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Linuron Treated F₁ Males (page 4 of 5)

		inuron (mg/kg/day, r	
	0	50	100
Body Weight (pnd 48) (g) ^a			
	282.57 ‡‡‡	266.82	242.74 ***
	<u>+</u> 5.88 §§§	<u>+</u> 4.71	+ 5.72
	N=14	N=15	N=15
Body Weight (pnd 49) (g) ^a			
	292.27 ‡‡‡	275.28	250.84 ***
	<u>+</u> 6.15 §§§	<u>+</u> 4.72	<u>+</u> 5.98
	N=14	N=15	N=15
Body Weight (pnd 50) (g) ^a			
	301.88 ‡‡‡	284.04	257.36 ***
	<u>+</u> 6.50 §§§	<u>+</u> 5.05	<u>+</u> 5.97
	N=14	N=15	N=15
Body Weight (pnd 51) (g) ^a			
	310.88 ‡‡‡	292.16	265.85 ***
	<u>+</u> 6.60 §§§	<u>+</u> 5.03	<u>+</u> 6.47
	N=14	N=15	N=15
Body Weight (pnd 52) (g) ^a			
	321.52 ‡‡‡	302.24	272.85 ***
	<u>+</u> 6.65 §§§	<u>+</u> 5.36	<u>+</u> 6.68
	N=14	N=15	N=15
Body Weight (pnd 53) (g) ^{a,c}			
	336.44	326.41	298.53
	<u>+</u> 7.39 §	<u>+</u> 11.06	<u>+</u> 11.82
	N=5	 N=5	 N=5
Body Weight Change (pnd 21 to 23	3) (g) ^a		
	10.31	10.12	8.52
	<u>+</u> 0.47 §	<u>+</u> 0.57	<u>+</u> 0.62
	N=15	N=15	N=15
Body Weight Change (pnd 23 to 30	0) (g) ^a		
	49.74 ‡‡‡	43.39 **	39.55 ***
	<u>+</u> 1.31 §§§	<u>+</u> 1.01	<u>+</u> 1.64
	N=15	N=15	N=15
Body Weight Change (pnd 30 to 3	7) (g) ^a		
	65.56 ‡‡‡	60.37 *	56.41 ***
	<u>+</u> 1.71 §§§	<u>+</u> 1.54	<u>+</u> 1.44
	N=14 ^b	N=15	N=15

Table 3-G. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Linuron Treated F₁ Males (page 5 of 5)

	L	Linuron (mg/kg/day, po)		
	0	50	100	
Body Weight Change (pnd 37 t	o 44) (g) ^a			
	62.43 ‡‡‡	59.97	50.81 ***	
	<u>+</u> 1.67 §§§	<u>+</u> 1.03	<u>+</u> 1.77	
	N=14	N=15	N=15	
Body Weight Change (pnd 44 t	o 51) (g) ^a			
	65.77 ‡‡‡	61.31	53.48 ***	
	<u>+</u> 1.78 §§§	<u>+</u> 1.70	<u>+</u> 1.84	
	N=14	N=15	N=15	
Body Weight Change (pnd 51 t	o 52) (g) ^a			
#	10.64 ††	10.08	6.99 ÞÞ	
	<u>+</u> 0.57 ŸŸ	<u>+</u> 0.69	<u>+</u> 1.06	
	N=14	N=15	N=15	
Body Weight Change (pnd 51 t	o 53) (g) ^{a,c}			
	19.47	18.73	15.54	
	<u>+</u> 2.40	<u>+</u> 1.70	<u>+</u> 2.12	
	N=5	N=5	N=5	
Body Weight Change (pnd 23 t	o 52) (g) ^a			
	254.36 ‡‡‡	235.13 *	207.24 ***	
	<u>+</u> 5.91 §§§	<u>+</u> 4.51	<u>+</u> 5.92	
	N=14	N=15	N=15	
Body Weight Change (pnd 23 t	o 53) (g) ^{a,c}			
	265.76 ‡	255.84	228.29 *	
	<u>+</u> 6.58 §	<u>+</u> 10.27	<u>+</u> 11.40	
	N=5	N=5	N=5	

^aReported as the mean \pm S.E.M.; pnd = postnatal day.

bMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

^CIncludes those animals that were not scheduled for sacrifice until postnatal day 53.

[#]Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

[‡]p<0.05; ANOVA Test.

^{##}p<0.01; ANOVA Test. ###p<0.001; ANOVA Test.

^{\$}p<0.05; Test for Linear Trend.

^{§\$}p<0.01; Test for Linear Trend.

^{§§§}p<0.001; Test for Linear Trend.

^{*}p<0.05; Dunnett's Test.

^{**}p<0.01; Dunnett's Test.

^{****}p<0.001; Dunnett's Test.

***p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model.

***p<0.01; Linear trend test in robust regression model.

**pp<0.01; Individual t-test for pairwise comparisons to control in robust regression model.

Table 3-H. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 1 of 5)

	Ph	enobarbital (mg/kg/d	ay, po)
	0	50	100
No. of Males on Study	15	15	15
Body Weight (pnd 21) (g) ^a			
	56.99	56.91	57.44
	<u>+</u> 1.32 N=15	<u>+</u> 1.22 N=15	<u>+</u> 1.43 N=15
Body Weight (pnd 22) (g) ^a	14–15	14-10	14-15
Body Weight (phd 22) (g)	60.50	59.61	60.10
	<u>+</u> 1.40	<u>+</u> 1.30	<u>+</u> 1.40
	N=15	N=15	N=15
Body Weight (pnd 23) (g) ^a			
	67.30	67.20	66.82
	<u>+</u> 1.41 N=15	<u>+</u> 1.53 N=15	<u>+</u> 1.62 N=15
Body Weight (pnd 24) (g) ^a			
	73.36	74.60	73.76
	<u>+</u> 1.44	<u>+</u> 1.53	<u>+</u> 1.68 N=15
Pody Weight (and 25) (a)	N=15	N=15	N=15
Body Weight (pnd 25) (g) ^a	00.45	00.00	70.44
	80.15 <u>+</u> 1.69	80.63 <u>+</u> 1.50	79.11 <u>+</u> 1.67
	N=15	N=15	N=15
Body Weight (pnd 26) (g) ^a			
	86.51	86.65	84.31
	<u>+</u> 1.78 N=15	<u>+</u> 1.70 N=15	<u>+</u> 1.67 N=15
Body Weight (pnd 27) (g) ^a			
	93.67	93.52	91.22
	<u>+</u> 1.93 N=15	<u>+</u> 1.85 N=15	<u>+</u> 1.82 N=15
Pody Weight (and 20) (a)d	N=13	N=13	N=13
Body Weight (pnd 28) (g) ^a	101.31	100.53	97.43
	+ 2.18	+ 1.90	97.43 <u>+</u> 1.82
	N=15	N=15	N=15
Body Weight (pnd 29) (g) ^a			
	109.18	108.65	105.14
	<u>+</u> 2.24 N=15	<u>+</u> 2.11 N=15	<u>+</u> 2.13 N=15

Table 3-H. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 2 of 5)

	Phe	Phenobarbital (mg/kg/day, po)		
	0	50	100	
Body Weight (pnd 30) (g) ^a				
	117.04	116.65	112.38	
	<u>+</u> 2.43	<u>+</u> 2.24	<u>+</u> 2.26	
	N=15	N=15	N=15	
Body Weight (pnd 31) (g) ^a				
, , , , , ,	124.98	124.64	118.98	
	+ 2.75	<u>+</u> 2.47	<u>+</u> 2.35	
	N=14 ^b	N=15	N=15	
Body Weight (pnd 32) (g) ^a				
, , , , , , ,	134.96	133.15	126.63	
	± 3.19 §	<u>+</u> 2.80	± 2.47	
	N=14	N=15	N=15	
Body Weight (pnd 33) (g) ^a				
, , , , , , , , , , , , , , , , , , , ,	144.32	141.68	135.27	
	± 3.26 §	<u>+</u> 2.88	<u>+</u> 2.90	
	N=14	N=15	N=15	
Body Weight (pnd 34) (g) ^a				
	153.68	150.35	143.61	
	<u>+</u> 3.42 §	<u>+</u> 2.94	<u>+</u> 3.18	
	N=14	N=15	N=15	
Body Weight (pnd 35) (g) ^a				
	162.40	160.30	153.21	
	<u>+</u> 3.88	<u>+</u> 3.30	<u>+</u> 3.40	
	N=14	N=15	N=15	
Body Weight (pnd 36) (g) ^a				
	172.22	170.18	162.68	
	<u>+</u> 4.04	<u>+</u> 3.36	<u>+</u> 3.44	
	N=14	N=15	N=15	
Body Weight (pnd 37) (g) ^a				
	182.68	180.67	171.32	
	<u>+</u> 4.05 §	<u>+</u> 3.62	<u>+</u> 3.67	
	N=14	N=15	N=15	
Body Weight (pnd 38) (g) ^a				
	192.75	190.22	180.49	
	<u>+</u> 4.33 §	<u>+</u> 3.68	<u>+</u> 3.92	
	N=14	N=15	N=15	

Table 3-H. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 3 of 5)

	Phe	Phenobarbital (mg/kg/day, po)		
	0	50	100	
Body Weight (pnd 39) (g) ^a				
	201.28	200.12	188.91	
	<u>+</u> 4.33 §	<u>+</u> 3.83	<u>+</u> 4.11	
	N=14	N=15	N=15	
Body Weight (pnd 40) (g) ^a				
	210.50	209.28	199.68	
	<u>+</u> 4.51	<u>+</u> 4.01	<u>+</u> 4.64	
	N=14	N=15	N=15	
Body Weight (pnd 41) (g) ^a				
	218.50	217.50	206.17	
	<u>+</u> 4.31	<u>+</u> 4.32	<u>+</u> 4.58	
	N=14	N=15	N=15	
Body Weight (pnd 42) (g) ^a				
	228.11	227.65	215.93	
	<u>+</u> 4.61	<u>+</u> 5.07	<u>+</u> 5.00	
	N=14	N=15	N=15	
Body Weight (pnd 43) (g) ^a				
	236.54	236.10	224.82	
	<u>+</u> 4.88	<u>+</u> 4.62	<u>+</u> 5.14	
	N=14	N=15	N=15	
Body Weight (pnd 44) (g) ^a				
	245.11	244.50	232.75	
	<u>+</u> 5.18	<u>+</u> 5.25	<u>+</u> 5.11	
	N=14	N=15	N=15	
Body Weight (pnd 45) (g) ^a				
	254.94	253.35	241.28	
	<u>+</u> 5.18	<u>+</u> 4.95	<u>+</u> 5.43	
	N=14	N=15	N=15	
Body Weight (pnd 46) (g) ^a				
	264.82	262.11	250.02	
	<u>+</u> 5.70	<u>+</u> 5.37	<u>+</u> 5.44	
	N=14	N=15	N=15	
Body Weight (pnd 47) (g) ^a				
	273.56	270.42	258.52	
	<u>+</u> 5.58	<u>+</u> 6.01	<u>+</u> 5.60	
	N=14	N=15	N=15	

Table 3-H. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 4 of 5)

	Phenobarbital (mg/kg/day, po)		
	0	50	100
Body Weight (pnd 48) (g) ^a			
	282.57	277.09	266.38
	<u>+</u> 5.88	<u>+</u> 6.03	<u>+</u> 5.80
	N=14	N=15	N=15
Body Weight (pnd 49) (g) ^a			
	292.27	286.45	274.54
	<u>+</u> 6.15 §	<u>+</u> 6.12	<u>+</u> 6.45
	N=14	N=15	N=15
Body Weight (pnd 50) (g) ^a			
	301.88	295.67	283.39
	<u>+</u> 6.50 §	<u>+</u> 6.37	<u>+</u> 6.30
	N=14	N=15	N=15
Body Weight (pnd 51) (g) ^a			
	310.88	304.69	292.34
	<u>+</u> 6.60	<u>+</u> 6.67	<u>+</u> 6.83
	N=14	N=15	N=15
Body Weight (pnd 52) (g) ^a			
	321.52	320.85	300.43
	<u>+</u> 6.65 §	<u>+</u> 8.08	<u>+</u> 6.82
	N=14	N=15	N=15
Body Weight (pnd 53) (g) ^{a,c}			
	336.44	323.98	329.43
	<u>+</u> 7.39	<u>+</u> 17.88	<u>+</u> 15.26
	N=5	N=5	N=3
Body Weight Change (pnd 21 to 23	3) (g) ^a		
	10.31	10.30	9.39
	<u>+</u> 0.47	<u>+</u> 0.55	<u>+</u> 0.73
	N=15	N=15	N=15
Body Weight Change (pnd 23 to 30	0) (g) ^a		
	49.74	49.45	45.56
	<u>+</u> 1.31 §	<u>+</u> 1.47	<u>+</u> 1.29
	N=15	N=15	N=15
Body Weight Change (pnd 30 to 37	7) (g) ^a		
	65.56 ‡	64.02	58.94 *
	± 1.71 §§	<u>+</u> 1.59	<u>+</u> 1.84
	N=14 ^b	N=15	N=15

Table 3-H. Summary and Statistical Analysis of the Body Weights and Weight Changes During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 5 of 5)

	Phe	Phenobarbital (mg/kg/day, po)		
	0	50	100	
Body Weight Change (pnd 37 to	44) (g) ^a			
	62.43 <u>+</u> 1.67	63.83 <u>+</u> 2.30	61.43 <u>+</u> 1.86	
Body Weight Change (pnd 44 to	N=14	N=15	N=15	
body Weight Change (phd 44 to	65.77 <u>+</u> 1.78 § N=14	60.19 <u>+</u> 1.86 N=15	59.59 <u>+</u> 1.97 N=15	
Body Weight Change (pnd 51 to	52) (g) ^a			
	10.64 <u>+</u> 0.57 N=14	16.16 <u>+</u> 6.56 N=15	8.09 <u>+</u> 0.69 N=15	
Body Weight Change (pnd 51 to	53) (g) ^{a,c}			
	19.47 <u>+</u> 2.40 N=5	18.77 <u>+</u> 3.58 N=5	17.36 <u>+</u> 1.17 N=3	
Body Weight Change (pnd 23 to	52) (g) ^a			
	254.36 ‡ <u>+</u> 5.91 § N=14	253.65 <u>+</u> 7.64 N=15	233.61 <u>+</u> 5.83 N=15	
Body Weight Change (pnd 23 to	53) (g) ^{a,c}			
	265.76 <u>+</u> 6.58 N=5	253.20 <u>+</u> 17.65 N=5	257.56 <u>+</u> 14.55 N=3	

^aReported as the mean \pm S.E.M.; pnd = postnatal day. ^bMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

Cincludes those animals that were not scheduled for sacrifice until postnatal day 53.

†p<0.05; ANOVA Test.

\$p<0.05; Test for Linear Trend.

\$p<0.05; Dunnett's Test.

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 1 of 9)

	A	Atrazine (mg/kg/day,	po)
	0	75	150
No. of Males on Study	12 ^a	13 ^b	12 ^C
Feed Consumption (pnd 21 to 22	?) (g/day) ^d		
#	8.0 ††† + 0.5 ŸŸŸ	12.1 ÞÞ <u>+</u> 1.1	11.1 ÞÞÞ <u>+</u> 0.6
	N=11 ^e	N=13	N=12
Feed Consumption (pnd 22 to 23	3) (g/day) ^d		
	10.0 ‡‡	6.6 **	7.3 *
	<u>+</u> 0.5 § N=12	<u>+</u> 0.8 N=12 ^e	<u>+</u> 1.0 N=12
Feed Consumption (pnd 23 to 24) (g/day) ^d		
	10.7 ‡‡‡	7.7 ***	6.2 ***
	<u>+</u> 0.5 §§§ N=12	<u>+</u> 0.3 N=12 ^e	<u>+</u> 0.4 N=12
Feed Consumption (pnd 24 to 25	i) (g/day) ^d		
	11.5 ‡‡‡	10.7	8.5 ***
	<u>+</u> 0.4 §§§ N=12	<u>+</u> 0.6 N=12 ^f	<u>+</u> 0.5 N=11 ^f
Feed Consumption (pnd 25 to 26	s) (g/day) ^d		
	11.8 ‡‡	10.8	9.1 **
	<u>+</u> 0.4 §§§ N=12	<u>+</u> 0.6 N=13	<u>+</u> 0.5 N=11 ^e
Feed Consumption (pnd 26 to 27	') (g/day) ^d		
	13.6 ‡‡‡	11.8 *	9.8 ***
	<u>+</u> 0.5 §§§ N=12	<u>+</u> 0.4 N=13	<u>+</u> 0.6 N=12
Feed Consumption (pnd 27 to 28		14-10	11-12
	14.7 ‡‡	13.0	11.4 **
	<u>+</u> 0.9 §§§ N=12	<u>+</u> 0.5 N=13	<u>+</u> 0.3 N=12
Feed Consumption (pnd 28 to 29		14-15	14-12
	13.1	13.6	13.8
	± 0.8	<u>+</u> 0.4	<u>+</u> 0.5
Feed Consumption (pnd 29 to 30	N=12 n) (g/day)d	N=13	N=12
. oca consamption (pria 23 to oc	15.2 ‡	14.2	13.1 **
	<u>+</u> 0.6 §§	<u>+</u> 0.4	<u>+</u> 0.4
	N=12	N=13	N=12

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 2 of 9)

		Atrazine (mg/kg/day	, po)
	0	75	150
Feed Consumption (pnd 30 to 31) (g/d	day) ^d		
	16.1 <u>+</u> 0.7 N=12	15.0 <u>+</u> 0.7 N=11 ^f	14.7 <u>+</u> 0.4 N=12
Feed Consumption (pnd 31 to 32) (g/d	day) ^d		
	17.4 <u>+</u> 0.6 N=12	15.7 <u>+</u> 0.9 N=12 ^e	16.4 <u>+</u> 0.9 N=12
Feed Consumption (pnd 32 to 33) (g/o	_{day)} d		
	17.9 ‡ <u>+</u> 0.5 § N=12	15.5 <u>+</u> 1.0 N=13	15.0 * <u>±</u> 0.6 N=11 ^e
Feed Consumption (pnd 33 to 34) (g/o	_{day)} d		
	19.4 ‡ <u>+</u> 0.8 §§ N=12	18.1 <u>+</u> 0.5 N=12 ^f	16.7 * <u>±</u> 0.7 N=11 ^f
Feed Consumption (pnd 34 to 35) (g/d	day) ^d		
	20.8 <u>+</u> 0.7 N=12	21.1 <u>+</u> 0.6 N=12 ^f	19.7 <u>+</u> 0.9 N=12
Feed Consumption (pnd 35 to 36) (g/o	day) ^d		
	21.2 <u>+</u> 0.7 N=12	23.7 <u>+</u> 0.8 N=11 ^{e,f}	23.5 <u>+</u> 1.0 N=12
Feed Consumption (pnd 36 to 37) (g/o	_{day)} d		
	22.2 ‡‡‡ <u>+</u> 0.5 §§§ N=12	20.2 * <u>+</u> 0.7 N=13	17.9 *** <u>+</u> 0.5 N=12
Feed Consumption (pnd 37 to 38) (g/o	day) ^d		
	21.3 ‡‡ <u>+</u> 0.7 §§§ N=12	19.4 <u>+</u> 0.5 N=129	17.8 *** <u>+</u> 0.6 N=11 ^f
Feed Consumption (pnd 38 to 39) (g/o	day) ^d		
	22.2 <u>+</u> 0.7 N=12	21.9 <u>+</u> 0.4 N=11 ^f	20.8 <u>+</u> 0.9 N=11 ^e

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 3 of 9)

	,	Atrazine (mg/kg/day	_/ , po)
	0	75	150
Feed Consumption (pnd 39 to 40) (g/	/day) ^d		
	23.6 <u>+</u> 0.6 N=12	21.8 <u>+</u> 0.6 N=12	22.6 <u>+</u> 0.8 N=12
Feed Consumption (pnd 40 to 41) (g/	/day) ^d		
	24.6 <u>+</u> 1.3 N=12	23.6 <u>+</u> 0.7 N=12	22.1 <u>+</u> 0.7 N=12
Feed Consumption (pnd 41 to 42) (g/	_{/day)} d		
	23.2 <u>+</u> 0.8 N=11 ^f	23.5 <u>+</u> 0.6 N=11 ^f	22.0 <u>+</u> 0.7 N=12
Feed Consumption (pnd 42 to 43) (g/	^{/day)d}		
	23.0 <u>±</u> 1.0 N=12	24.7 <u>+</u> 0.8 N=11 ^f	22.2 <u>±</u> 0.8 N=11 ^f
Feed Consumption (pnd 43 to 44) (g/	_{'day)} d		
	25.3 ‡ <u>+</u> 0.9 § N=12	22.7 * <u>+</u> 0.7 N=12	22.3 * <u>+</u> 0.6 N=11 ^e
Feed Consumption (pnd 44 to 45) (g/	/day) ^d		
	24.3 ‡ <u>+</u> 0.6 §§ N=12	22.8 <u>+</u> 0.7 N=12	21.4 ** <u>+</u> 0.6 N=11 ^f
Feed Consumption (pnd 45 to 46) (g/	/day) ^d		
	26.1 ‡‡ <u>+</u> 0.7 §§§ N=11 ^h	24.1 <u>±</u> 0.6 N=11 ^h	21.8 *** <u>+</u> 0.8 _{N=9} e,h
Feed Consumption (pnd 46 to 47) (g/	/day) ^d		
	25.2 ‡‡‡ <u>+</u> 0.7 §§§ N=12	24.1 <u>+</u> 0.6 N=12	21.0 *** <u>+</u> 0.7 N=12
Feed Consumption (pnd 47 to 48) (g/	/day) ^d		
	21.2 <u>+</u> 0.6 N=12	23.1 <u>+</u> 0.5 N=11 ^f	21.6 ± 0.7 N=12

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 4 of 9)

		trazine (mg/kg/day,	po)
	0	75	150
Feed Consumption (pnd 48 to 49)	(g/day) ^d		
	24.7 ‡	23.4	21.9 *
	<u>+</u> 0.7 §§	<u>+</u> 0.8	<u>+</u> 0.7
	N=12	N=12	N=12
Feed Consumption (pnd 49 to 50)	(g/day) ^d		
	25.7 ‡	23.7	22.0 **
	<u>+</u> 0.6 §§ N=12	<u>+</u> 1.0 N=12	<u>+</u> 1.0 N=12
F		N=12	IN=12
Feed Consumption (pnd 50 to 51)			
	28.0 ‡‡‡	22.8 ***	22.5 ***
	<u>+</u> 0.9 §§§ N=12	<u>+</u> 0.9 N=12	<u>+</u> 0.8 N=12
Feed Consumption (pnd 51 to 52)		11-12	11-12
r eed Consumption (prid 31 to 32)		24.5	24.7
	23.8 <u>+</u> 0.6	24.5 <u>+</u> 1.2	24.7 <u>+</u> 0.8
	N=12	N=12	N=12
Feed Consumption (pnd 52 to 53)	(g/day) ^{d,i}		
	25.2 ‡	20.2 **	23.2
	<u>+</u> 0.8	<u>+</u> 1.1	<u>+</u> 1.1
	N=5	N=6	N=4
Feed Consumption (pnd 23 to 52,	treatment period) (g/da	y) ^d	
	20.2 ‡	19.3	18.6 *
	± 0.4 §§	± 0.3	<u>+</u> 0.2
- 10 / 100	N=10 ^j	N=7 ^j	N=5 ^j
Feed Consumption (pnd 23 to 53,			
	20.7	19.3	18.7
	<u>+</u> 0.8 § N=4j	<u>+</u> 0.4 N=3 ^j	<u>+</u> 0.0 N=2 ^j
	N-7	11-0	11-2
Feed Consumption (pnd 21 to 22)	(g/kg/day) ^d		
	137.4 ‡‡	205.4 **	195.1 *
	<u>+</u> 6.1 §	<u>+</u> 18.5	<u>+</u> 15.7
	N=11 ^e	N=13	N=12
Feed Consumption (pnd 22 to 23)	(g/kg/day) ^d		
	158.3 ‡‡	104.6 **	112.0 *
	± 7.2 §	<u>+</u> 13.8	<u>+</u> 14.3
	N=12	N=12 ^e	N=12

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 5 of 9)

		Atrazine (mg/kg/day,	po)
-	0	75	150
Feed Consumption (pnd 23 to 24) (g/k	(g/day) ^d		
	153.0 ‡‡‡ <u>+</u> 4.3 §§§ N=12	113.7 *** <u>+</u> 3.5 N=12 ^e	94.0 *** <u>+</u> 7.4 N=12
Feed Consumption (pnd 24 to 25) (g/k	(g/day) ^d		
	150.4 ‡‡ <u>+</u> 3.4 §§ N=12	148.0 <u>+</u> 6.8 N=12 ^f	125.3 ** <u>+</u> 5.9 N=11 ^f
Feed Consumption (pnd 25 to 26) (g/k	(g/day) ^d		
	143.8 <u>+</u> 4.6 § N=12	138.1 <u>+</u> 6.0 N=13	126.2 <u>+</u> 5.7 N=11 ^e
Feed Consumption (pnd 26 to 27) (g/k	(g/day) ^d		
	153.6 ‡‡ <u>+</u> 5.8 §§§ N=12	141.3 <u>±</u> 3.3 N=13	126.6 ** <u>+</u> 6.3 N=12
Feed Consumption (pnd 27 to 28) (g/k	(g/day) ^d		
	154.2 <u>+</u> 11.8 N=12	144.2 <u>+</u> 4.2 N=13	136.4 <u>+</u> 2.8 N=12
Feed Consumption (pnd 28 to 29) (g/kg	(g/day) ^d		
	125.8 ‡‡‡ <u>+</u> 6.1 §§§ N=12	140.7 * <u>+</u> 3.1 N=13	151.8 *** <u>+</u> 3.2 N=12
Feed Consumption (pnd 29 to 30) (g/kg	(g/day) ^d		
	136.1 <u>+</u> 2.9 N=12	136.3 <u>+</u> 2.7 N=13	133.9 <u>+</u> 2.5 N=12
Feed Consumption (pnd 30 to 31) (g/k	(g/day) ^d		
	134.4 <u>+</u> 4.8 N=12	136.7 <u>+</u> 6.1 N=11 ^f	141.5 <u>+</u> 2.0 N=12
Feed Consumption (pnd 31 to 32) (g/kg	(g/day) ^d		
	135.7 <u>+</u> 3.5 N=12	132.6 <u>+</u> 6.8 N=12 ^e	147.4 <u>+</u> 5.6 N=12

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 6 of 9)

		Atrazine (mg/kg/day,	po)
	0	75	150
Feed Consumption (pnd 32 to 33) (g/kg	kg/day) ^d		
	130.2 <u>+</u> 2.9 N=12	119.6 <u>+</u> 7.3 N=12 ^k	127.2 <u>+</u> 4.7 N=11 ^e
Feed Consumption (pnd 33 to 34) (g/k	kg/day) ^d		
	132.0 <u>+</u> 3.3 N=12	135.7 <u>±</u> 3.6 N=12 ^f	132.0 <u>+</u> 3.8 N=11 ^f
Feed Consumption (pnd 34 to 35) (g/kg	kg/day) ^d		
	133.0 ‡ <u>+</u> 3.4 § N=12	147.0 * <u>+</u> 3.7 N=12 ^f	145.0 <u>+</u> 4.7 N=12
Feed Consumption (pnd 35 to 36) (g/k	kg/day) ^d		
	127.8 ‡‡‡ <u>+</u> 4.0 §§§ N=12	154.8 *** <u>+</u> 5.4 N=11 ^{e,f}	161.6 *** <u>+</u> 5.0 N=12
Feed Consumption (pnd 36 to 37) (g/k	kg/day) ^d		
	126.6 <u>+</u> 4.2 N=12	123.0 <u>+</u> 3.7 N=13	117.4 <u>+</u> 5.3 N=12
Feed Consumption (pnd 37 to 38) (g/k	kg/day) ^d		
	114.3 <u>+</u> 2.2 N=12	113.0 <u>+</u> 2.1 N=129	111.8 <u>+</u> 2.9 N=11 ^f
Feed Consumption (pnd 38 to 39) (g/k	kg/day) ^d		
	113.9 ‡ <u>+</u> 2.4 § N=12	122.1 <u>+</u> 2.6 N=11 ^f	124.7 * <u>+</u> 3.6 N=11 ^e
Feed Consumption (pnd 39 to 40) (g/k	kg/day) ^d		
	116.3 ‡ <u>+</u> 2.6 § N=12	115.9 <u>+</u> 3.5 N=12	128.7 * <u>+</u> 4.3 N=12
Feed Consumption (pnd 40 to 41) (g/k	kg/day) ^d		
	115.4 <u>+</u> 4.4 N=12	120.6 <u>±</u> 3.0 N=12	119.2 <u>+</u> 2.1 N=12

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 7 of 9)

	,	Atrazine (mg/kg/day,	po)
	0	75	150
Feed Consumption (pnd 41 to 42) (g/l	kg/day) ^d		
	106.7	115.7	115.2
	<u>+</u> 4.3 N=11 ^f	<u>+</u> 2.3 N=11 ^f	<u>+</u> 4.6 N=12
Feed Consumption (pnd 42 to 43) (g/l		14-11	14-12
, , , , , , , , , , , , , , , , , , , ,	99.5 ‡ ‡	116.8 **	112.6 *
	<u>+</u> 3.9 §	± 3.9 N=11 ^f	± 3.2 N=11 ^f
	N=12	N=11 [†]	N=11 [†]
Feed Consumption (pnd 43 to 44) (g/l	kg/day) ^d		
	105.6	103.0	109.3
	<u>+</u> 5.0 N=12	<u>+</u> 2.8 N=12	<u>+</u> 2.5 N=11 ^e
Feed Consumption (pnd 44 to 45) (g/l			
, , ,	97.5	100.2	101.5
	<u>+</u> 2.6	<u>+</u> 2.5	± 2.4 N=11 ^f
	N=12	N=12	N=11 ¹
Feed Consumption (pnd 45 to 46) (g/l			
	100.2	101.6	98.5
	<u>+</u> 2.4 N=11 ^h	<u>+</u> 2.5 N=11 ^h	<u>+</u> 3.4 _{N=9} e,h
Feed Consumption (pnd 46 to 47) (g/l	kg/day) ^d		
	94.7	99.7	93.9
	± 2.3	<u>+</u> 2.2	<u>+</u> 2.6
- 10 (1 10) (1.	N=12	N=12	N=12
Feed Consumption (pnd 47 to 48) (g/l			
	77.3 ‡‡‡ <u>+</u> 3.1 §§§	92.8 *** + 2.0	93.5 *** <u>+</u> 2.9
	N=12	<u>+</u> 2.0 N=11 ^f	N=12
Feed Consumption (pnd 48 to 49) (g/l	kg/day) ^d		
	87.1	90.8	92.1
	<u>+</u> 1.9 N=12	<u>+</u> 3.0 N=12	<u>+</u> 2.1 N=12
Feed Consumption (pnd 49 to 50) (g/l		11-12	14-12
1 dea Consumption (prid 49 to 50) (gri	87.8	88.7	89.9
	+ 2.3	+ 3.1	69.9 <u>+</u> 3.7
	N=12	N=12	N=12

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 8 of 9)

		Atrazine (mg/kg/day, po)		
	0	75	150	
Feed Consumption (pnd 50 to 51)	(g/kg/day) ^d			
	92.7 ‡	83.2 *	89.2	
	<u>+</u> 2.6	<u>+</u> 2.6	<u>+</u> 2.5	
	N=12	N=12	N=12	
Feed Consumption (pnd 51 to 52)	(g/kg/day) ^d			
	77.1 ‡‡‡	87.7 *	95.4 ***	
	<u>+</u> 2.0 §§§	<u>+</u> 3.5	<u>+</u> 1.9	
	N=12	N=12	N=12	
Feed Consumption (pnd 52 to 53)	(g/kg/day) ^{d,i}			
	76.4 ‡	71.0	86.6	
	<u>+</u> 1.5	<u>+</u> 3.9	<u>+</u> 1.5	
	N=5	N=6	N=4	
Feed Consumption (pnd 23 to 52,	treatment period) (g/kg/	day) ^d		
	108.3 ‡‡	112.5 *	113.8 *	
	<u>+</u> 1.1 §§		<u>+</u> 0.8	
	N=10 ^j	<u>+</u> 1.3 N=7 ^j	N=5 ^j	
Feed Consumption (pnd 23 to 53,	treatment period) (g/kg/	day) ^{d,i}		
	104.5 ‡‡	109.3 *	111.1 **	
	+ 0.8 §§	<u>+</u> 1.0	+ 1.2	
	N=4j	N=3 ^j	N=2 ^j	

Table 4-A. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Atrazine Treated F₁ Males (page 9 of 9)

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

^bMale 18 was removed from the study because it was not dosed on the correct postnatal days and male 119 was removed from the study because his correct postnatal day 0 could not be confirmed.

^CMales 55, 118 and 127 were removed from the study because their correct postnatal day 0 could not be confirmed.

dReported as the mean \pm S.E.M.; pnd = postnatal day.

^eDecrease in N is due to the feed consumption value for one animal being unrealistic (i.e. negative) and therefore it was excluded.

^fDecrease in N is due to the feed consumption value for one or more animals being statistical outliers and therefore they were excluded.

9Male 54 was found dead on postnatal day 37 after dosing (misdirected dose).

hDecrease in N is due to one or more feed weights inadvertently not being recorded.

Includes those animals that were not scheduled for sacrifice until postnatal day 53.

Decrease in N is due to interim feed consumption value(s) for one or more animals being missing and therefore the overall feed consumption value could not be calculated.

^kDecrease in N is due to the postnatal day 32 body weight for one male inadvertently not being recorded. #Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

†††p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model.

†††p<0.001; Linear trend test in robust regression model.

pp_{<0.01}; Individual t-test for pairwise comparisons to control in robust regression model.

ppp co.001; Individual t-test for pairwise comparisons to control in robust regression model.

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

§p<0.05; Test for Linear Trend.

§\$p<0.01; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

*p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

p<0.001; Dunnett's Test.

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 1 of 9)

	p,p'-Dichlorodi	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
	0	50	100	
No. of Males on Study	12 ^a	14 ^b	15	
Feed Consumption (pnd 21 to 22) (g/day) ^C			
	8.0	10.3	9.5	
	<u>+</u> 0.5 N=11 ^d	<u>+</u> 0.6 N=14	<u>+</u> 0.7 N=15	
Feed Consumption (pnd 22 to 23) (
	10.0 ‡	7.2 *	7.7 *	
	<u>+</u> 0.5 § N=12	± 0.8	<u>+</u> 0.6	
Feed Consumption (pnd 23 to 24) (N=14	N=15	
r eed Consumption (prid 25 to 24) (10.7 ‡	10.5	9.5 *	
	<u>+</u> 0.5 §	<u>+</u> 0.3	<u>+</u> 0.4	
	N=12	N=13 ^e	N=15	
Feed Consumption (pnd 24 to 25) (,			
	11.5 <u>+</u> 0.4	12.0 <u>+</u> 0.4	11.3 <u>+</u> 0.4	
	± 0.4 N=12	<u>+</u> 0.4 N=14	<u>+</u> 0.4 N=15	
Feed Consumption (pnd 25 to 26) (g/day) ^C			
	11.8	11.8	12.1	
	<u>+</u> 0.4 N=12	<u>+</u> 0.3 N=13 ^e	<u>+</u> 0.4 N=15	
Feed Consumption (pnd 26 to 27) (14-10	11-10	
(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	13.6 ‡	12.6	11.9 *	
	<u>+</u> 0.5 §§	<u>+</u> 0.4	<u>+</u> 0.4	
= 10 · · · · · · · · · · · · · · · · · ·	N=12	N=14	N=15	
Feed Consumption (pnd 27 to 28) (40.0	40.0	
	14.7 <u>+</u> 0.9	13.3 <u>+</u> 0.5	13.3 <u>+</u> 0.5	
	N=12	N=14	N=14 ^f	
Feed Consumption (pnd 28 to 29) (g/day) ^C			
	13.1 ‡	14.6	15.4 *	
	<u>+</u> 0.8 § N=12	<u>+</u> 0.5 N=14	<u>+</u> 0.5 N=15	
Feed Consumption (pnd 29 to 30) (
	15.2	14.2	14.6	
	<u>+</u> 0.6 N=12	<u>+</u> 0.4 N=139	<u>+</u> 0.4 N=15	
	IN= IZ	IN= 139	IN= IO	

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 2 of 9)

	p,p'-Dichlorod	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
	0	50	100	
Feed Consumption (pnd 30 to 31) ((g/day) ^C			
	16.1 <u>+</u> 0.7 N=12	15.6 <u>+</u> 0.7 N=13	16.2 <u>+</u> 0.5 N=15	
Feed Consumption (pnd 31 to 32) ((g/day) ^C			
	17.4 <u>±</u> 0.6 N=12	16.0 <u>+</u> 1.2 N=12 ^d	18.4 <u>±</u> 0.6 N=15	
Feed Consumption (pnd 32 to 33) ((g/day) ^C			
	17.9 ‡ <u>+</u> 0.5 N=12	15.4 <u>+</u> 1.2 N=12 ^e	18.4 <u>±</u> 0.4 N=15	
Feed Consumption (pnd 33 to 34) ((g/day) ^C			
	19.4 <u>±</u> 0.8 N=12	17.2 ± 1.4 N=13	19.5 <u>±</u> 0.7 N=15	
Feed Consumption (pnd 34 to 35) ((g/day) ^C			
	20.8 <u>+</u> 0.7 N=12	20.0 <u>±</u> 0.6 N=12 ^e	20.6 ± 0.5 N=15	
Feed Consumption (pnd 35 to 36) ((g/day) ^C			
	21.2 <u>+</u> 0.7 § N=12	23.4 <u>+</u> 1.1 N=13	24.2 <u>±</u> 0.8 N=15	
Feed Consumption (pnd 36 to 37) ((g/day) ^C			
	22.2 <u>+</u> 0.5 N=12	22.2 <u>+</u> 0.7 N=13	22.8 <u>±</u> 0.6 N=15	
Feed Consumption (pnd 37 to 38) ((g/day) ^C			
	21.3 <u>+</u> 0.7 N=12	21.3 ± 0.5 N=13	23.1 ± 0.8 N=15	
Feed Consumption (pnd 38 to 39) ((g/day) ^C			
	22.2 <u>±</u> 0.7 § N=12	23.6 <u>±</u> 0.9 N=13	24.7 <u>±</u> 0.7 N=15	

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 3 of 9)

	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
	0	50	100
Feed Consumption (pnd 39 to 40)	(g/day) ^C		
	23.6 <u>+</u> 0.6 § N=12	24.9 <u>+</u> 0.7 N=13	25.6 <u>+</u> 0.7 N=15
Feed Consumption (pnd 40 to 41)	(g/day) ^C		
	24.6 <u>+</u> 1.3 N=12	25.4 <u>+</u> 0.6 N=13	25.0 <u>+</u> 0.5 N=15
Feed Consumption (pnd 41 to 42)	(g/day) ^C		
	23.2 ‡ <u>+</u> 0.8 §§ N=11 ^e	24.4 <u>±</u> 0.5 N=13	26.1 * <u>+</u> 0.7 N=15
Feed Consumption (pnd 42 to 43)	(g/day) ^C		
	23.0 ‡ <u>±</u> 1.0 § N=12	25.5 <u>±</u> 0.7 N=13	26.1 * <u>±</u> 0.8 N=14 ^e
Feed Consumption (pnd 43 to 44)	(g/day) ^C		
	25.3 <u>±</u> 0.9 N=12	25.1 ± 0.5 N=13	24.5 <u>±</u> 0.5 N=14 ^e
Feed Consumption (pnd 44 to 45)	(g/day) ^C		
	24.3 <u>+</u> 0.6 N=12	25.3 <u>±</u> 0.7 N=12 ^e	26.0 <u>±</u> 0.7 N=14 ^d
Feed Consumption (pnd 45 to 46)	(g/day) ^C		
	26.1 <u>+</u> 0.7 N=11 ^f	25.8 <u>+</u> 0.7 N=9 ^d ,f	27.4 <u>+</u> 0.6 N=14 ^f
Feed Consumption (pnd 46 to 47)	(g/day) ^C		
	25.2 <u>±</u> 0.7 N=12	25.1 <u>±</u> 0.8 N=13	25.7 <u>+</u> 0.9 N=15
Feed Consumption (pnd 47 to 48)	(g/day) ^C		
	21.2 ‡‡‡ <u>+</u> 0.6 §§§ N=12	24.4 ** ± 0.8 N=13	24.9 *** <u>+</u> 0.6 N=15

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 4 of 9)

	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
	0	50	100
Feed Consumption (pnd 48 to 49) (g/da	ay) ^C		
	24.7 <u>+</u> 0.7 § N=12	26.1 <u>+</u> 0.7 N=13	27.0 <u>+</u> 0.6 N=15
Feed Consumption (pnd 49 to 50) (g/da	ay) ^C		
	25.7 <u>+</u> 0.6 N=12	26.2 <u>+</u> 1.0 N=13	27.9 <u>+</u> 0.9 N=15
Feed Consumption (pnd 50 to 51) (g/da	ay) ^c		
	28.0 ‡‡‡ <u>+</u> 0.9 §§§ N=12	28.8 <u>±</u> 1.2 N=13	33.4 *** <u>+</u> 0.7 N=15
Feed Consumption (pnd 51 to 52) (g/da	ay) ^C		
	23.8 ‡‡ <u>±</u> 0.6 N=12	29.0 ** <u>+</u> 1.3 N=13	26.0 <u>+</u> 0.8 N=14 ^e
Feed Consumption (pnd 52 to 53) (g/da	_{ay)} c,h		
	25.2 <u>+</u> 0.8 N=5	27.6 <u>+</u> 1.2 N=6	28.7 <u>+</u> 1.4 N=7
Feed Consumption (pnd 23 to 52, treat	ment period) (g/day	y) ^C	
	20.2 ‡ <u>+</u> 0.4 § N=10 ⁱ	21.3 <u>+</u> 0.5 N=8 ⁱ	21.6 * <u>±</u> 0.4 N=13 ⁱ
Feed Consumption (pnd 23 to 53, treat	ment period) (g/day	_{y)} c,h	
	20.7 <u>+</u> 0.8 N=4 ⁱ	21.4 <u>+</u> 0.9 N=3 ⁱ	22.3 <u>+</u> 0.4 N=7
Feed Consumption (pnd 21 to 22) (g/kg	g/day) ^C		
	137.4 ‡ <u>+</u> 6.1 N=11 ^d	179.4 * <u>+</u> 13.4 N=14	162.6 <u>+</u> 10.2 N=15
Feed Consumption (pnd 22 to 23) (g/kg	g/day) ^C		
	158.3 <u>+</u> 7.2 N=12	115.0 <u>+</u> 16.0 N=14	125.0 <u>+</u> 11.1 N=15

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 5 of 9)

	p,p'-Dichlorodip	henyldichloroethyler	ne (mg/kg/day, po)
	0	50	100
Feed Consumption (pnd 23 to 24)	(g/kg/day) ^C		
	153.0 ‡ <u>+</u> 4.3 §§ N=12	151.7 <u>+</u> 2.3 N=13 ^e	140.0 * <u>+</u> 3.6 N=15
Feed Consumption (pnd 24 to 25)	(g/kg/day) ^C		
	150.4 ‡ <u>+</u> 3.4 N=12	161.4 * <u>+</u> 2.4 N=14	154.3 <u>+</u> 2.9 N=15
Feed Consumption (pnd 25 to 26)	(g/kg/day) ^C		
	143.8 <u>+</u> 4.6 N=12	145.8 <u>±</u> 5.1 N=13 ^e	152.4 <u>+</u> 5.9 N=15
Feed Consumption (pnd 26 to 27)	(g/kg/day) ^C		
	153.6 ‡ <u>±</u> 5.8 § N=12	146.2 <u>±</u> 4.1 N=14	137.9 * <u>+</u> 3.0 N=15
Feed Consumption (pnd 27 to 28)	(g/kg/day) ^C		
	154.2 <u>+</u> 11.8 N=12	142.4 <u>+</u> 5.5 N=14	142.5 <u>+</u> 2.8 N=14 ^f
Feed Consumption (pnd 28 to 29)	(g/kg/day) ^C		
	125.8 ‡‡‡ <u>±</u> 6.1 §§§ N=12	144.5 ** <u>+</u> 2.2 N=14	150.8 *** <u>+</u> 2.7 N=15
Feed Consumption (pnd 29 to 30)	(g/kg/day) ^c		
	136.1 <u>+</u> 2.9 N=12	129.7 <u>+</u> 3.2 N=139	133.3 <u>+</u> 3.9 N=15
Feed Consumption (pnd 30 to 31)	(g/kg/day) ^C		
	134.4 <u>±</u> 4.8 N=12	132.5 <u>+</u> 4.1 N=13	137.0 <u>+</u> 2.1 N=15
Feed Consumption (pnd 31 to 32)	(g/kg/day) ^C		
	135.7 ‡ <u>+</u> 3.5 N=12	127.1 <u>±</u> 6.9 N=12 ^d	145.0 <u>+</u> 3.3 N=15

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 6 of 9)

	p,p'-Dichlorodi	phenyldichloroethyle	ne (mg/kg/day, po)
	0	50	100
Feed Consumption (pnd 32 to	33) (g/kg/day) ^C		
	130.2 ‡	115.0	135.6
	<u>+</u> 2.9	<u>+</u> 7.2	<u>+</u> 3.5
	N=12	N=12 ^e	N=15
Feed Consumption (pnd 33 to	o 34) (g/kg/day) ^C		
	132.0	121.0	132.7
	<u>+</u> 3.3	<u>+</u> 9.7	<u>+</u> 2.6
	N=12	N=13	N=15
Feed Consumption (pnd 34 to	o 35) (g/kg/day) ^C		
	133.0	130.9	132.7
	<u>+</u> 3.4	<u>+</u> 3.2	<u>+</u> 3.4
	N=12	N=12 ^e	N=15
Feed Consumption (pnd 35 to	36) (g/kg/day) ^C		
	127.8 ‡	145.6 *	145.8 *
	<u>+</u> 4.0 §	<u>+</u> 6.5	<u>+</u> 3.3
	N=12	N=13	N=15
Feed Consumption (pnd 36 to	37) (g/kg/day) ^C		
	126.6	130.7	130.2
	<u>+</u> 4.2	<u>+</u> 3.7	<u>+</u> 1.8
	N=12	N=13	N=15
Feed Consumption (pnd 37 to	38) (g/kg/day) ^C		
	114.3 ‡	118.8	124.7 *
	<u>+</u> 2.2 §	<u>+</u> 3.4	<u>+</u> 2.6
	N=12	N=13	N=15
Feed Consumption (pnd 38 to	39) (g/kg/day) ^C		
	113.9 ‡‡	123.7 *	126.9 **
	<u>+</u> 2.4 §§	<u>+</u> 2.8	<u>+</u> 2.5
	N=12	N=13	N=15
Feed Consumption (pnd 39 to	9 40) (g/kg/day) ^C		
	116.3 ‡‡	124.7 *	125.4 **
	<u>+</u> 2.6 §§	<u>+</u> 2.0	<u>+</u> 1.7
	N=12	N=13	N=15
Feed Consumption (pnd 40 to	o 41) (g/kg/day) ^C		
	115.4	121.0	118.0
	± 4.4	<u>+</u> 2.3	<u>+</u> 2.6
	N=12	N=13	N=15

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 7 of 9)

	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
	0	50	100
Feed Consumption (pnd 41 to 42) ((g/kg/day) ^C		
	106.7 ‡ <u>+</u> 4.3 § N=11 ^e	111.9 <u>+</u> 2.7 N=13	118.0 * <u>+</u> 2.4 N=15
Feed Consumption (pnd 42 to 43) (
	99.5 ‡ <u>+</u> 3.9 § N=12	111.9 * <u>+</u> 2.8 N=13	111.7 * <u>+</u> 3.5 N=14 ^e
Feed Consumption (pnd 43 to 44) ((g/kg/day) ^C		
	105.6 <u>+</u> 5.0 N=12	105.7 <u>+</u> 2.1 N=13	101.3 <u>+</u> 2.0 N=14 ^e
Feed Consumption (pnd 44 to 45) ((g/kg/day) ^C		
	97.5 <u>+</u> 2.6 N=12	102.7 <u>±</u> 2.8 N=12 ^e	103.7 <u>+</u> 1.9 N=14 ^d
Feed Consumption (pnd 45 to 46) ((g/kg/day) ^C		
	100.2 <u>+</u> 2.4 N=11 ^f	97.2 <u>+</u> 2.7 N=9 ^{d,f}	105.7 <u>+</u> 3.2 N=14 ^f
Feed Consumption (pnd 46 to 47) ((g/kg/day) ^C		
	94.7 <u>+</u> 2.3 N=12	94.9 <u>+</u> 3.5 N=13	96.6 <u>+</u> 2.7 N=15
Feed Consumption (pnd 47 to 48) ((g/kg/day) ^C		
	77.3 ‡‡ <u>+</u> 3.1 §§ N=12	89.2 ** <u>+</u> 2.9 N=13	90.5 ** <u>+</u> 1.8 N=15
Feed Consumption (pnd 48 to 49) ((g/kg/day) ^C		
#	87.1 †† <u>+</u> 1.9 ŸŸŸ N=12	92.3 <u>+</u> 2.5 N=13	94.8 ÞÞ <u>+</u> 1.3 N=15
Feed Consumption (pnd 49 to 50) ((g/kg/day) ^C		
	87.8 <u>+</u> 2.3 § N=12	89.1 <u>+</u> 2.5 N=13	94.7 <u>+</u> 2.1 N=15

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 8 of 9)

	p,p'-Dichlorodipl	henyldichloroethyler	ne (mg/kg/day, po)
	0	50	100
Feed Consumption (pnd 50 to 51) (g	/kg/day) ^c		
	92.7 ‡‡‡ <u>+</u> 2.6 §§§	95.7 <u>+</u> 3.2	110.8 *** <u>+</u> 1.7
	N=12	N=13	N=15
Feed Consumption (pnd 51 to 52) (g	/kg/day) ^C		
	77.1 ‡‡‡	93.7 ***	83.2
	<u>+</u> 2.0 N=12	<u>+</u> 3.6 N=13	<u>+</u> 2.3 N=14 ^e
Feed Consumption (pnd 52 to 53) (g	/kg/day) ^{c,h}		
	76.4 <u>+</u> 1.5 § N=5	84.3 <u>+</u> 2.3 N=6	86.7 <u>+</u> 3.6 N=7
Feed Consumption (pnd 23 to 52, tre	eatment period) (g/kg/	day) ^c	
	108.3 ‡‡ <u>+</u> 1.1 §§§ N=10 ⁱ	111.6 <u>+</u> 1.7 N=8 ⁱ	115.4 ** <u>+</u> 1.3 N=13 ⁱ
Feed Consumption (pnd 23 to 53, tre	eatment period) (g/kg/	day) ^{c,h}	
	104.5 ‡‡ <u>+</u> 0.8 §§§ N=4 ⁱ	107.1 <u>+</u> 1.3 N=3 ⁱ	112.9 *** <u>+</u> 1.2 N=7

Table 4-B. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 9 of 9)

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

^bMale 74 was removed from the study because his correct postnatal day 0 could not be confirmed.

^cReported as the mean + S.E.M.; pnd = postnatal day.

dDecrease in N is due to the feed consumption value for one animal being unrealistic (i.e. negative) and therefore it was excluded.

^eDecrease in N is due to the feed consumption value for one animal being a statistical outlier and therefore it was excluded.

^fDecrease in N is due to one or more feed weights inadvertently not being recorded.

9Male 20 was euthanized on postnatal day 29 after dosing due to a leg injury.

hIncludes those animals that were not scheduled for sacrifice until postnatal day 53.

Decrease in N is due to interim feed consumption value(s) for one or more animals being missing and therefore the overall feed consumption value could not be calculated.

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

§p<0.05; Test for Linear Trend.

§§p<0.01; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

*p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

*** p<0.001; Dunnett's Test.

††p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model.

***p<0.001; Linear trend test in robust regression model.

pbp<0.01; Individual t-test for pairwise comparisons to control in robust regression model.

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 1 of 9)

	Vinclozolin (mg/kg/day, po)		
	0	30	100
No. of Males on Study	12 ^a	13 ^b	12 ^C
Feed Consumption (pnd 21 to 22) ((g/day) ^d		
	8.0 <u>+</u> 0.5	9.4 <u>+</u> 0.6	8.8 <u>+</u> 0.6
	N=11 ^e	N=13	N=12
Feed Consumption (pnd 22 to 23) (,		
	10.0 <u>±</u> 0.5 N=12	8.4 <u>+</u> 0.6 N=13	8.5 <u>±</u> 0.3 N=11 ^f
Feed Consumption (pnd 23 to 24) ((g/day) ^d		
	10.7 <u>+</u> 0.5 N=12	10.1 <u>+</u> 0.4 N=13	9.5 <u>+</u> 0.3 N=12
Feed Consumption (pnd 24 to 25) ((g/day) ^d		
	11.5 <u>+</u> 0.4 N=12	11.9 <u>+</u> 0.5 N=13	12.1 <u>±</u> 0.4 N=12
Feed Consumption (pnd 25 to 26) ((g/day) ^d		
	11.8 <u>+</u> 0.4 N=12	12.4 <u>+</u> 0.4 N=13	12.9 <u>+</u> 0.3 N=12
Feed Consumption (pnd 26 to 27)	(g/day) ^d		
	13.6 <u>+</u> 0.5 § N=12	12.6 <u>±</u> 0.5 N=13	12.1 <u>+</u> 0.3 N=12
Feed Consumption (pnd 27 to 28) ((g/day) ^d		
#	14.7 †† <u>+</u> 0.9 N=12	12.5 Þ <u>+</u> 0.3 N=12 ^f	13.8 <u>±</u> 0.4 N=12
Feed Consumption (pnd 28 to 29) ((g/day) ^d		
	13.1 <u>+</u> 0.8 N=12	15.1 <u>±</u> 0.7 N=13	15.1 <u>+</u> 0.4 N=12
Feed Consumption (pnd 29 to 30) ((g/day) ^d		
	15.2 <u>+</u> 0.6 N=12	14.7 <u>±</u> 0.6 N=13	15.3 <u>+</u> 0.7 N=12

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F_1 Males (page 2 of 9)

		Vinclozolin (mg/kg/da	ıy, po)
	0	30	100
Feed Consumption (pnd 30 to 31) (g/day) ^d		
	16.1	16.3	17.2
	<u>+</u> 0.7 N=12	<u>+</u> 0.7 N=13	<u>+</u> 0.9 N=12
Feed Consumption (pnd 31 to 32) (N=13	11-12
(pna 01 to 02) (17.4	17.9	17.9
	<u>+</u> 0.6	+ 0.8	+ 0.5
	N=12	N=13	N=12
Feed Consumption (pnd 32 to 33) (g/day) ^d		
	17.9	17.1	16.7
	<u>+</u> 0.5	<u>+</u> 0.6	± 0.5
	N=12	N=13	N=11 ^f
Feed Consumption (pnd 33 to 34) (g/day) ^d		
	19.4	18.0	18.0
	<u>+</u> 0.8 N=12	<u>+</u> 0.7 N=13	<u>+</u> 0.5
		N=13	N=12
Feed Consumption (pnd 34 to 35) (3 ,		
#	20.8	19.5	19.2
	<u>+</u> 0.7 N=12	<u>+</u> 0.9 N=13	<u>+</u> 0.3 N=12
Feed Consumption (pnd 35 to 36) (
	21.2	23.8	21.9
	<u>+</u> 0.7	<u>+</u> 1.1	<u>+</u> 0.5
	N=12	N=13	N=12
Feed Consumption (pnd 36 to 37) (g/day) ^d		
	22.2	22.6	22.1
	<u>+</u> 0.5 N=12	<u>+</u> 0.8 N=13	<u>+</u> 0.4 N=12
Feed Consumption (pnd 37 to 38) (N=13	N=12
(pila er te ee) (21.3	21.3	21.5
	± 0.7	± 0.7	± 0.5
	N=12	N=13	N=11 ^f
Feed Consumption (pnd 38 to 39) (g/day) ^d		
	22.2	24.0	22.6
	<u>+</u> 0.7	<u>+</u> 1.0	<u>+</u> 0.6
	N=12	N=13	N=12

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F_1 Males (page 3 of 9)

	Vi	Vinclozolin (mg/kg/day, po)		
	0	30	100	
Feed Consumption (pnd 39 to 40	0) (g/day) ^d			
#	23.6 <u>+</u> 0.6 N=12	25.1 <u>+</u> 1.0 N=13	24.4 <u>+</u> 0.5 N=12	
Feed Consumption (pnd 40 to 41	1) (g/day) ^d			
	24.6 <u>+</u> 1.3 N=12	24.4 ± 0.8 N=13	24.1 <u>+</u> 0.6 N=12	
Feed Consumption (pnd 41 to 42	2) (g/day) ^d			
	23.2 <u>+</u> 0.8 N=11 ^f	24.9 <u>±</u> 0.9 N=12 ^f	24.4 <u>+</u> 0.6 N=12	
Feed Consumption (pnd 42 to 43	3) (g/day) ^d			
	23.0 ± 1.0 N=12	24.1 <u>+</u> 1.2 N=13	25.0 <u>±</u> 0.6 N=11 ^f	
Feed Consumption (pnd 43 to 44	4) (g/day) ^d			
	25.3 <u>±</u> 0.9 N=12	25.6 <u>±</u> 0.7 N=13	24.8 <u>±</u> 0.5 N=11 ^f	
Feed Consumption (pnd 44 to 45	5) (g/day) ^d			
	24.3 <u>+</u> 0.6 N=12	24.6 <u>+</u> 0.9 N=13	24.4 <u>+</u> 0.5 N=12	
Feed Consumption (pnd 45 to 46	6) (g/day) ^d			
	26.1 <u>±</u> 0.7 § N=119	24.5 <u>+</u> 2.1 N=119	21.5 <u>+</u> 1.0 N=109	
Feed Consumption (pnd 46 to 47	7) (g/day) ^d			
#	25.2 <u>±</u> 0.7 N=12	23.7 <u>±</u> 1.3 N=13	23.4 <u>+</u> 0.7 N=12	
Feed Consumption (pnd 47 to 48	B) (g/day) ^d			
	21.2 ‡‡‡ <u>+</u> 0.6 § N=12	25.3 *** <u>+</u> 0.8 N=13	24.4 ** <u>+</u> 0.6 N=12	

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F_1 Males (page 4 of 9)

	V	inclozolin (mg/kg/day	, po)
	0	30	100
Feed Consumption (pnd 48 to	9 49) (g/day) ^d		
	24.7	25.5	24.9
	<u>+</u> 0.7	<u>+</u> 1.1	<u>+</u> 0.6
	N=12	N=13	N=12
Feed Consumption (pnd 49 to	50) (g/day) ^d		
#	25.7	28.1	25.8
	<u>+</u> 0.6	<u>+</u> 1.4	<u>+</u> 0.6
	N=12	N=13	N=12
Feed Consumption (pnd 50 to	51) (g/day) ^d		
	28.0	31.3	28.4
	<u>+</u> 0.9	<u>+</u> 1.5	<u>+</u> 0.9
	N=12	N=13	N=12
Feed Consumption (pnd 51 to	52) (g/day) ^d		
#	23.8 ††	27.6 ÞÞ	26.0 ÞÞ
	<u>+</u> 0.6	<u>+</u> 1.2	<u>+</u> 0.5
	N=12	N=13	N=12
Feed Consumption (pnd 52 to	53) (g/day) ^{d,h}		
	25.2	27.0	23.2
	<u>+</u> 0.8	<u>+</u> 1.4	<u>+</u> 1.5
	N=5	N=5	N=5
Feed Consumption (pnd 23 to	52, treatment period) (g/da	_{ay)} d	
	20.2	20.8	20.7
	<u>+</u> 0.4 N=10 ⁱ	<u>+</u> 0.7	<u>+</u> 0.3
		N=9 ⁱ	N=7 ⁱ
Feed Consumption (pnd 23 to	53, treatment period) (g/da	_{ay)} d,h	
	20.7	21.5	21.5
	<u>+</u> 0.8	<u>+</u> 0.8	<u>+</u> 0.6
	N=4 ¹	N=3 ⁱ	N=3 ⁱ
Feed Consumption (pnd 21 to	o 22) (g/kg/day) ^d		
r - u	137.4	159.4	152.6
	+ 6.1	+ 6.9	+ 9.7
	N=11 ^e	N=13	N=12
Feed Consumption (pnd 22 to	23) (g/kg/day) ^d		
- "	158.3	135.5	137.9
	<u>+</u> 7.2	<u>+</u> 10.8	+ 9.3
	N=12	N=13	N=11 ^f

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 5 of 9)

	Vii	Vinclozolin (mg/kg/day, po)		
	0	30	100	
Feed Consumption (pnd 23 to 24) (g	g/kg/day) ^d			
	153.0 <u>+</u> 4.3 § N=12	146.4 <u>+</u> 3.6 N=13	141.5 <u>+</u> 3.4 N=12	
Feed Consumption (pnd 24 to 25) (g				
	150.4 ‡ <u>+</u> 3.4 §§ N=12	158.2 <u>+</u> 3.8 N=13	166.4 * <u>+</u> 4.2 N=12	
Feed Consumption (pnd 25 to 26) (g	g/kg/day) ^d			
	143.8 ‡‡ <u>±</u> 4.6 §§§ N=12	152.5 <u>+</u> 2.7 N=13	163.9 ** <u>+</u> 4.2 N=12	
Feed Consumption (pnd 26 to 27) (g	g/kg/day) ^d			
	153.6 <u>±</u> 5.8 N=12	142.7 <u>+</u> 3.9 N=13	142.4 <u>±</u> 4.8 N=12	
Feed Consumption (pnd 27 to 28) (g	g/kg/day) ^d			
	154.2 <u>+</u> 11.8 N=12	133.5 <u>+</u> 2.1 N=12 ^f	149.9 <u>+</u> 4.4 N=12	
Feed Consumption (pnd 28 to 29) (g	g/kg/day) ^d			
	125.8 ‡‡‡ <u>+</u> 6.1 §§ N=12	146.9 ** <u>+</u> 3.2 N=13	151.2 *** <u>+</u> 3.1 N=12	
Feed Consumption (pnd 29 to 30) (g	g/kg/day) ^d			
#	136.1 <u>±</u> 2.9 N=12	133.9 <u>+</u> 4.1 N=13	143.3 <u>±</u> 6.6 N=12	
Feed Consumption (pnd 30 to 31) (g	g/kg/day) ^d			
	134.4 ‡ <u>+</u> 4.8 § N=12	137.5 <u>+</u> 3.1 N=13	151.2 * <u>+</u> 6.0 N=12	
Feed Consumption (pnd 31 to 32) (g	g/kg/day) ^d			
	135.7 <u>±</u> 3.5 § N=12	141.3 <u>+</u> 4.1 N=13	147.8 <u>+</u> 3.6 N=12	

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F_1 Males (page 6 of 9)

	Vinclozolin (mg/kg/day, po)		
	0	30	100
Feed Consumption (pnd 32 to 33) (g/kg/day) ^d		
	130.2 <u>+</u> 2.9 N=12	126.3 <u>+</u> 2.6 N=13	128.5 <u>+</u> 4.8 N=11 ^f
Feed Consumption (pnd 33 to 34) (g/kg/day) ^d		
	132.0 <u>+</u> 3.3 N=12	123.4 <u>+</u> 3.2 N=13	129.1 <u>+</u> 2.8 N=12
Feed Consumption (pnd 34 to 35) (g/kg/day) ^d		
	133.0 <u>+</u> 3.4 N=12	125.8 <u>+</u> 3.7 N=13	129.0 <u>+</u> 1.4 N=12
Feed Consumption (pnd 35 to 36) (g/kg/day) ^d		
	127.8 ‡‡ <u>±</u> 4.0 N=12	143.6 ** <u>±</u> 3.4 N=13	137.8 ± 2.4 N=12
Feed Consumption (pnd 36 to 37) (g/kg/day) ^d		
	126.6 <u>+</u> 4.2 N=12	129.1 <u>+</u> 2.7 N=13	131.2 <u>+</u> 2.3 N=12
Feed Consumption (pnd 37 to 38) (g/kg/day) ^d		
	114.3 <u>+</u> 2.2 § N=12	115.4 <u>+</u> 1.9 N=13	121.7 <u>+</u> 3.1 N=11 ^f
Feed Consumption (pnd 38 to 39) (g/kg/day) ^d		
	113.9 <u>+</u> 2.4 N=12	123.0 <u>±</u> 3.2 N=13	121.6 <u>±</u> 2.8 N=12
Feed Consumption (pnd 39 to 40) (g/kg/day) ^d		
	116.3 ‡ <u>+</u> 2.6 § N=12	122.9 <u>+</u> 1.9 N=13	125.1 * <u>+</u> 2.3 N=12
Feed Consumption (pnd 40 to 41) (g/kg/day) ^d		
	115.4 <u>+</u> 4.4 N=12	115.0 <u>+</u> 3.0 N=13	117.6 <u>+</u> 3.0 N=12

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F_1 Males (page 7 of 9)

	Vi	Vinclozolin (mg/kg/day, po)		
	0	30	100	
Feed Consumption (pnd 41 to 42)) (g/kg/day) ^d			
	106.7	112.4	114.1	
	<u>+</u> 4.3 N=11 ^f	<u>+</u> 1.7 N=12 ^f	<u>+</u> 2.8	
	N=11 ^T	N=12 [†]	N=12	
Feed Consumption (pnd 42 to 43)) (g/kg/day) ^d			
	99.5	104.5	111.9	
	<u>+</u> 3.9 §	<u>+</u> 4.7	<u>+</u> 2.6	
	N=12	N=13	N=11 ^f	
Feed Consumption (pnd 43 to 44)) (g/kg/day) ^d			
	105.6	106.2	107.0	
	<u>+</u> 5.0	<u>+</u> 2.0	+ 3.0	
	N=12	N=13	N=11 ^f	
Feed Consumption (pnd 44 to 45) (g/kg/day) ^d			
	97.5	98.4	101.5	
	<u>+</u> 2.6	<u>+</u> 2.8	<u>+</u> 2.1	
	N=12	N=13	N=12	
Feed Consumption (pnd 45 to 46)) (g/kg/day) ^d			
	100.2	91.8	85.5	
	<u>+</u> 2.4 §	<u>+</u> 6.7	<u>+</u> 3.2	
	N=119	N=119	N=10 ⁹	
Feed Consumption (pnd 46 to 47)) (g/kg/day) ^d			
	94.7	88.6	91.3	
	<u>+</u> 2.3	<u>+</u> 4.4	<u>+</u> 1.4	
	N=12	N=13	N=12	
Feed Consumption (pnd 47 to 48) (g/kg/day) ^d			
	77.3 ‡‡‡	91.1 **	91.9 **	
	<u>+</u> 3.1 §§	<u>+</u> 2.5	<u>+</u> 2.8	
	N=12	N=13	N=12	
Feed Consumption (pnd 48 to 49)) (g/kg/day) ^d			
	87.1	88.1	90.3	
	<u>+</u> 1.9	<u>+</u> 2.3	<u>+</u> 1.7	
	N=12	N=13	N=12	
Feed Consumption (pnd 49 to 50)) (g/kg/day) ^d			
	87.8	93.8	90.5	
	<u>+</u> 2.3	± 3.4	<u>+</u> 1.5	
	N=12	N=13	N=12	

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 8 of 9)

	Vi	nclozolin (mg/kg/day	r, po)
	0	30	100
Feed Consumption (pnd 50 to 51) (g/kg/day) ^d		
	92.7	101.8	97.1
	<u>+</u> 2.6	<u>+</u> 3.5	<u>+</u> 2.6
	N=12	N=13	N=12
Feed Consumption (pnd 51 to 52) (g/kg/day) ^d		
	77.1 ‡‡	87.1 **	86.8 *
	<u>+</u> 2.0 §	<u>+</u> 2.1	<u>+</u> 2.7
	N=12	N=13	N=12
Feed Consumption (pnd 52 to 53) (g/kg/day) ^{d,h}		
	76.4	77.8	72.4
	<u>+</u> 1.5	<u>+</u> 3.8	<u>+</u> 3.0
	N=5	N=5	N=5
Feed Consumption (pnd 23 to 52, tr	eatment period) (g/kg	/day) ^d	
	108.3	110.4	112.4
	+ 1.1	<u>+</u> 2.1	<u>+</u> 1.1
	N=10 ⁱ	N=9 ⁱ	N=7 ⁱ
Feed Consumption (pnd 23 to 53, tr	eatment period) (g/kg	/day) ^{d,h}	
	104.5 ‡	108.5	109.4 *
	<u>+</u> 0.8 §	<u>+</u> 1.5	<u>+</u> 1.4
	$N=4^{i}$	N=3 ⁱ	N=3 ⁱ

Table 4-C. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Vinclozolin Treated F₁ Males (page 9 of 9)

- ^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be
- bMales 79 and 115 were removed from the study because their correct postnatal day 0 could not be
- ^CMales 24, 114 and 131 were removed from the study because their correct postnatal day 0 could not be confirmed.
- dReported as the mean \pm S.E.M.; pnd = postnatal day.
- ^eDecrease in N is due to the feed consumption value for one animal being unrealistic (i.e. negative) and therefore it was excluded.
- ^fDecrease in N is due to the feed consumption value for one animal being a statistical outlier and therefore it was excluded.
- 9Decrease in N is due to one or more feed weights inadvertently not being recorded.
- hIncludes those animals that were not scheduled for sacrifice until postnatal day 53.
- Decrease in N is due to interim feed consumption value(s) for one or more animals being missing and therefore the overall feed consumption value could not be calculated.
- #Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.
- ‡p<0.05; ANOVA Test.
- ##p<0.01; ANOVA Test.
- **‡‡‡**p<0.001; ANOVA Test.
- **§**p<0.05; Test for Linear Trend.
- §\$p<0.01; Test for Linear Trend.
- **§§§**p<0.001; Test for Linear Trend.
- *p<0.05; Dunnett's Test.
- **p<0.01; Dunnett's Test.
- ***p<0.001; Dunnett's Test.

 ††p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model.
- **p**<0.05; Individual t-test for pairwise comparisons to control in robust regression model.
- **PP**p<0.01; Individual t-test for pairwise comparisons to control in robust regression model.

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 1 of 9)

	Met	hoxychlor (mg/kg/d	day, po)
	0	25	50
No. of Males on Study	12 ^a	15	13 ^b
Feed Consumption (pnd 21 to 22)	(g/day) ^C		
#	8.0 †† <u>+</u> 0.5 ŸŸŸ N=11 ^d	9.0 <u>+</u> 0.3 N=15	12.0 ÞÞ <u>+</u> 1.1 N=13
Feed Consumption (pnd 22 to 23)	(g/day) ^C		
#	10.0 <u>+</u> 0.5 Ÿ N=12	9.1 <u>+</u> 0.3 N=15	7.4 <u>+</u> 1.1 N=12 ^d
Feed Consumption (pnd 23 to 24)	(g/day) ^C		
	10.7 <u>+</u> 0.5 N=12	11.0 <u>+</u> 0.5 N=15	10.2 <u>+</u> 0.8 N=13
Feed Consumption (pnd 24 to 25)	(g/day) ^C		
	11.5 <u>+</u> 0.4 N=12	11.8 <u>+</u> 0.2 N=15	11.9 <u>+</u> 0.4 N=12 ^e
Feed Consumption (pnd 25 to 26)	(g/day) ^C		
	11.8 <u>±</u> 0.4 § N=12	12.3 <u>+</u> 0.5 N=14 ^e	13.3 <u>+</u> 0.5 N=13
Feed Consumption (pnd 26 to 27)	(g/day) ^C		
	13.6 <u>±</u> 0.5 N=12	13.7 <u>+</u> 0.3 N=15	13.2 <u>+</u> 0.5 N=13
Feed Consumption (pnd 27 to 28)	(g/day) ^C		
#	14.7 <u>+</u> 0.9 N=12	13.6 <u>+</u> 0.4 N=14 ^e	14.1 <u>+</u> 0.4 N=13
Feed Consumption (pnd 28 to 29)	(g/day) ^C		
	13.1 <u>+</u> 0.8 N=12	14.5 <u>+</u> 0.3 N=15	14.6 <u>+</u> 0.5 N=13
Feed Consumption (pnd 29 to 30)	(g/day) ^C		
	15.2 <u>+</u> 0.6 N=12	15.4 <u>+</u> 0.4 N=14 ^e	15.4 <u>+</u> 0.5 N=13

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 2 of 9)

	N	/lethoxychlor (mg/kg/d	lay, po)
	0	25	50
Feed Consumption (pnd 30 to 31) (g	g/day) ^C		
	16.1 <u>+</u> 0.7 N=12	15.6 <u>+</u> 0.6 N=15	15.8 <u>+</u> 0.5 N=13
Feed Consumption (pnd 31 to 32) (g	g/day) ^C		
	17.4 <u>+</u> 0.6 N=12	16.5 <u>±</u> 0.8 N=14 ^e	17.4 <u>+</u> 0.7 N=13
Feed Consumption (pnd 32 to 33) (g	g/day) ^C		
	17.9 <u>+</u> 0.5 N=12	17.7 <u>+</u> 1.0 N=15	18.8 <u>+</u> 0.8 N=13
Feed Consumption (pnd 33 to 34) (g	g/day) ^c		
	19.4 <u>+</u> 0.8 N=12	18.4 <u>±</u> 1.3 N=14 ^f	19.5 <u>±</u> 0.9 N=13
Feed Consumption (pnd 34 to 35) (g	g/day) ^C		
#	20.8 <u>+</u> 0.7 N=12	19.9 <u>+</u> 1.1 N=15	23.5 <u>+</u> 2.3 N=13
Feed Consumption (pnd 35 to 36) (g	g/day) ^C		
#	21.2 <u>+</u> 0.7 N=12	22.0 <u>±</u> 0.7 N=15	20.4 <u>+</u> 1.9 N=13
Feed Consumption (pnd 36 to 37) (g	g/day) ^C		
	22.2 <u>+</u> 0.5 N=12	21.5 <u>+</u> 0.6 N=15	22.1 <u>+</u> 0.7 N=13
Feed Consumption (pnd 37 to 38) (g	g/day) ^C		
	21.3 <u>+</u> 0.7 N=12	21.4 <u>+</u> 0.7 N=15	22.0 <u>±</u> 0.9 N=13
Feed Consumption (pnd 38 to 39) (g	g/day) ^C		
	22.2 <u>+</u> 0.7 N=12	21.8 <u>+</u> 0.9 N=15	21.7 <u>±</u> 0.8 N=13

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 3 of 9)

	Me	ethoxychlor (mg/kg/d	ay, po)
	0	25	50
Feed Consumption (pnd 39 to 40) (g	յ/day) ^C		
	23.6 <u>+</u> 0.6 N=12	22.9 <u>+</u> 0.7 N=15	24.1 <u>+</u> 1.0 N=13
Feed Consumption (pnd 40 to 41) (g	յ/day) ^C		
	24.6 <u>+</u> 1.3 N=12	22.9 <u>+</u> 0.5 N=14 ^d	23.1 <u>+</u> 1.0 N=13
Feed Consumption (pnd 41 to 42) (g	_J /day) ^C		
	23.2 <u>+</u> 0.8 N=11 ^e	24.6 <u>+</u> 0.8 N=15	24.2 <u>±</u> 0.7 N=12 ^e
Feed Consumption (pnd 42 to 43) (g	_J /day) ^C		
	23.0 <u>+</u> 1.0 N=12	21.7 <u>±</u> 0.6 N=15	23.3 ± 0.9 N=13
Feed Consumption (pnd 43 to 44) (g	_J /day) ^C		
	25.3 ‡ <u>+</u> 0.9 §§ N=12	23.1 <u>+</u> 0.7 N=15	22.0 * <u>+</u> 0.6 N=13
Feed Consumption (pnd 44 to 45) (g	_J /day) ^C		
	24.3 <u>+</u> 0.6 N=12	23.1 <u>+</u> 0.6 N=15	23.4 <u>±</u> 0.7 N=12 ^e
Feed Consumption (pnd 45 to 46) (g	_J /day) ^C		
	26.1 ‡ <u>+</u> 0.7 N=119	23.1 * <u>+</u> 1.0 N=15	24.1 <u>+</u> 0.7 N=119
Feed Consumption (pnd 46 to 47) (g	_J /day) ^C		
	25.2 <u>+</u> 0.7 N=12	24.5 <u>+</u> 0.8 N=15	24.8 <u>+</u> 0.7 N=13
Feed Consumption (pnd 47 to 48) (g	ŋ/day) ^C		
	21.2 ‡ <u>+</u> 0.6 §§ N=12	23.3 <u>+</u> 0.7 N=15	24.0 * ± 0.8 N=13

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 4 of 9)

	Me	ethoxychlor (mg/kg/c	day, po)
	0	25	50
Feed Consumption (pnd 48 to 4	9) (g/day) ^C		
	24.7	24.1	23.5
	<u>+</u> 0.7	<u>+</u> 0.9	<u>+</u> 0.9
	N=12	N=15	N=13
Feed Consumption (pnd 49 to 5	0) (g/day) ^C		
#	25.7	24.5	25.2
	<u>+</u> 0.6	<u>+</u> 0.5	<u>+</u> 0.9
	N=12	N=15	N=13
Feed Consumption (pnd 50 to 5	1) (g/day) ^C		
	28.0	26.7	25.7
	<u>+</u> 0.9	<u>+</u> 0.9	<u>+</u> 0.8
	N=12	N=15	N=13
Feed Consumption (pnd 51 to 5	2) (g/day) ^C		
	23.8	22.4	21.6
	± 0.6 §	± 0.8	<u>+</u> 0.5
	N=12	N=15	N=13
Feed Consumption (pnd 52 to 5			
	25.2	25.0	26.8
	<u>+</u> 0.8	<u>+</u> 1.3	<u>+</u> 1.3
	N=5	N=7	N=6
Feed Consumption (pnd 23 to 5	. ,	ay) ^C	
	20.2	19.7	20.8
	± 0.4	<u>+</u> 0.5	<u>+</u> 0.3
- 10	N=10 ⁱ	N= 1 3 ⁱ	N=9 ⁱ
Feed Consumption (pnd 23 to 5	. , .		2.1.2
	20.7	19.8	21.2
	<u>+</u> 0.8 N=4 ⁱ	<u>+</u> 0.4 N=5 ⁱ	<u>+</u> 0.5 N=5 ⁱ
Feed Consumption (pnd 21 to 2			
	137.4 ‡‡	156.8	210.4 **
	<u>+</u> 6.1 §§ N=11 ^d	<u>+</u> 8.4	<u>+</u> 22.6
F 10		N=15	N=13
Feed Consumption (pnd 22 to 2	, ,,		
#	158.3 †	143.5	118.0 Þ
	<u>+</u> 7.2 Ÿ N−12	<u>+</u> 3.1 N=15	<u>+</u> 18.2 N=12 ^d
	N=12	IN= IO	IN= IZ~

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 5 of 9)

	Me	ethoxychlor (mg/kg/d	ay, po)
	0	25	50
Feed Consumption (pnd 23 to 24) (g/	kg/day) ^C		
	153.0 <u>+</u> 4.3 N=12	156.9 <u>+</u> 5.0 N=15	146.5 <u>+</u> 8.7 N=13
Feed Consumption (pnd 24 to 25) (g/	kg/day) ^C		
	150.4 <u>+</u> 3.4 N=12	156.9 <u>+</u> 7.3 N=15	159.6 <u>+</u> 3.5 N=12 ^e
Feed Consumption (pnd 25 to 26) (g/	kg/day) ^C		
	143.8 ‡ <u>+</u> 4.6 §§ N=12	147.6 <u>+</u> 4.1 N=14 ^e	160.9 * <u>±</u> 3.6 N=13
Feed Consumption (pnd 26 to 27) (g/	kg/day) ^C		
	153.6 <u>+</u> 5.8 N=12	151.9 <u>±</u> 3.0 N=15	148.4 <u>±</u> 5.0 N=13
Feed Consumption (pnd 27 to 28) (g/	kg/day) ^C		
	154.2 <u>+</u> 11.8 N=12	140.2 <u>+</u> 2.3 N=14 ^e	145.5 <u>+</u> 2.2 N=13
Feed Consumption (pnd 28 to 29) (g/	kg/day) ^C		
	125.8 ‡ <u>+</u> 6.1 § N=12	138.2 * <u>+</u> 2.9 N=15	139.5 * <u>±</u> 1.7 N=13
Feed Consumption (pnd 29 to 30) (g/	kg/day) ^C		
	136.1 <u>+</u> 2.9 N=12	136.4 <u>+</u> 2.2 N=14 ^e	137.7 <u>+</u> 2.1 N=13
Feed Consumption (pnd 30 to 31) (g/	kg/day) ^C		
	134.4 <u>+</u> 4.8 N=12	129.3 <u>+</u> 3.9 N=15	132.4 <u>+</u> 2.5 N=13
Feed Consumption (pnd 31 to 32) (g/	kg/day) ^C		
	135.7 <u>+</u> 3.5 N=12	128.5 <u>±</u> 5.2 N=14 ^e	135.5 <u>+</u> 2.8 N=13

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 6 of 9)

	Methoxychlor (mg/kg/day, po)		
	0	25	50
Feed Consumption (pnd 32 to 33)	(g/kg/day) ^C		
	130.2 <u>+</u> 2.9 N=12	129.4 <u>+</u> 6.4 N=15	136.4 <u>+</u> 3.8 N=13
Feed Consumption (pnd 33 to 34)	(g/kg/day) ^C		
#	132.0 <u>+</u> 3.3 N=12	127.9 <u>+</u> 9.4 N=14 ^f	132.6 <u>+</u> 3.6 N=13
Feed Consumption (pnd 34 to 35)	(g/kg/day) ^C		
#	133.0 <u>±</u> 3.4 N=12	129.6 <u>±</u> 4.5 N=15	149.4 <u>±</u> 12.4 N=13
Feed Consumption (pnd 35 to 36)	(g/kg/day) ^C		
#	127.8 <u>+</u> 4.0 N=12	135.2 <u>±</u> 3.2 N=15	124.5 <u>±</u> 11.5 N=13
Feed Consumption (pnd 36 to 37)	(g/kg/day) ^C		
	126.6 <u>±</u> 4.2 N=12	124.6 <u>±</u> 4.3 N=15	126.2 <u>+</u> 3.8 N=13
Feed Consumption (pnd 37 to 38)	(g/kg/day) ^C		
	114.3 <u>+</u> 2.2 N=12	116.9 <u>±</u> 2.3 N=15	118.8 <u>+</u> 3.9 N=13
Feed Consumption (pnd 38 to 39)	(g/kg/day) ^C		
	113.9 <u>±</u> 2.4 N=12	113.9 <u>+</u> 4.3 N=15	112.2 <u>+</u> 2.6 N=13
Feed Consumption (pnd 39 to 40)	(g/kg/day) ^C		
	116.3 <u>±</u> 2.6 N=12	114.8 <u>+</u> 2.6 N=15	119.2 <u>+</u> 3.5 N=13
Feed Consumption (pnd 40 to 41)	(g/kg/day) ^C		
	115.4 <u>+</u> 4.4 N=12	110.5 <u>+</u> 2.1 N=13 ^{d,j}	109.8 <u>+</u> 2.9 N=13

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 7 of 9)

	Methoxychlor (mg/kg/day, po)		
	0	25	50
Feed Consumption (pnd 41 to 42) (g	g/kg/day) ^C		
	106.7 <u>+</u> 4.3 N=11 ^e	112.4 <u>+</u> 3.0 N=14	111.3 <u>+</u> 3.1 N=12 ^e
Feed Consumption (pnd 42 to 43) (g	g/kg/day) ^C		
	99.5 <u>±</u> 3.9 N=12	96.1 <u>+</u> 1.8 N=15	103.1 <u>+</u> 3.1 N=13
Feed Consumption (pnd 43 to 44) (g	g/kg/day) ^c		
	105.6 <u>±</u> 5.0 § N=12	98.7 <u>±</u> 1.9 N=15	94.5 <u>+</u> 2.2 N=13
Feed Consumption (pnd 44 to 45) (g	g/kg/day) ^c		
	97.5 <u>±</u> 2.6 N=12	95.4 <u>±</u> 1.8 N=15	96.8 <u>±</u> 2.7 N=12 ^e
Feed Consumption (pnd 45 to 46) (g	g/kg/day) ^C		
	100.2 ± 2.4 N=119	92.5 <u>+</u> 4.8 N=15	92.8 <u>+</u> 2.4 N=119
Feed Consumption (pnd 46 to 47) (g	g/kg/day) ^C		
	94.7 <u>±</u> 2.3 N=12	95.1 <u>±</u> 3.4 N=15	96.3 <u>+</u> 2.5 N=13
Feed Consumption (pnd 47 to 48) (g	g/kg/day) ^C		
	77.3 ‡‡ <u>+</u> 3.1 §§§ N=12	87.1 * <u>+</u> 1.8 N=15	89.9 ** <u>+</u> 2.3 N=13
Feed Consumption (pnd 48 to 49) (g	g/kg/day) ^C		
	87.1 <u>±</u> 1.9 N=12	87.3 <u>+</u> 2.2 N=15	85.1 <u>±</u> 1.7 N=13
Feed Consumption (pnd 49 to 50) (g	g/kg/day) ^C		
	87.8 <u>±</u> 2.3 N=12	86.2 <u>+</u> 1.4 N=15	88.6 <u>±</u> 2.4 N=13

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 8 of 9)

_	M	Methoxychlor (mg/kg/day, po)		
	0	25	50	
Feed Consumption (pnd 50 to 5	1) (g/kg/day) ^C			
	92.7 <u>+</u> 2.6 N=12	91.9 <u>+</u> 3.0 N=15	89.1 <u>+</u> 1.8 N=13	
Feed Consumption (pnd 51 to 5	2) (g/kg/day) ^c			
	77.1 <u>+</u> 2.0 N=12	75.5 <u>+</u> 2.9 N=15	73.9 <u>+</u> 2.0 N=13	
Feed Consumption (pnd 52 to 53	3) (g/kg/day) ^{c,h}			
	76.4 <u>+</u> 1.5 N=5	79.8 <u>+</u> 3.3 N=7	83.4 <u>+</u> 4.5 N=6	
Feed Consumption (pnd 23 to 5	2, treatment period) (g/k	g/day) ^C		
	108.3 <u>+</u> 1.1 N=10 ⁱ	109.1 <u>+</u> 2.0 N=12 ⁱ	109.7 <u>+</u> 1.2 N=9 ⁱ	
Feed Consumption (pnd 23 to 5	3, treatment period) (g/k	g/day) ^{c,h}		
	104.5 <u>+</u> 0.8 N=4 ⁱ	103.1 <u>+</u> 1.9 N=5 ⁱ	107.1 <u>+</u> 1.8 N=5 ⁱ	

Table 4-D. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Methoxychlor Treated F₁ Males (page 9 of 9)

- ^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.
- bMales 17 and 30 were removed from the study because their correct postnatal day 0 could not be confirmed.
- ^cReported as the mean + S.E.M.; pnd = postnatal day.
- ^dDecrease in N is due to the feed consumption value for one animal being unrealistic (i.e. negative) and therefore it was excluded.
- ^eDecrease in N is due to the feed consumption value for one animal being a statistical outlier and therefore it was excluded.
- ^fDecrease in N is due to one animal pulling the feed out of the feed hopper and into the cage and therefore an accurate feed weight could not be obtained.
- 9Decrease in N is due to one or more feed weights inadvertently not being recorded.
- hIncludes those animals that were not scheduled for sacrifice until postnatal day 53.
- Decrease in N is due to interim feed consumption value(s) for one or more animals being missing and therefore the overall feed consumption value could not be calculated.
- Decrease in N is due to one body weight on postnatal day 41 inadvertently not being recorded.
- #Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.
- †p<0.05; Wald Chi-square Test for overall treatment effect in robust regression model.
- ††p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model.

 *p<0.05; Linear trend test in robust regression model.

 *p<0.01; Linear trend test in robust regression model.

- **p**c<0.05; Individual t-test for pairwise comparisons to control in robust regression model.
- **pb**p<0.01: Individual t-test for pairwise comparisons to control in robust regression model.
- **‡**p<0.05; ANOVA Test.
- **‡‡**p<0.01; ANOVA Test.
- \$p<0.05; Test for Linear Trend.
- §\$p<0.01; Test for Linear Trend.
- §§§p<0.001; Test for Linear Trend.
- *p<0.05; Dunnett's Test.
- p<0.01; Dunnett's Test.

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 1 of 9)

	Propylthiouracil (mg/kg/day, po)		
	0	2	25
No. of Males on Study	15	15	15
Feed Consumption (pnd 21 to 22)	(g/day) ^a		
	5.7	6.4	7.1
	<u>+</u> 0.4 N=15	<u>+</u> 0.5 N=15	<u>+</u> 0.4 N=15
Feed Consumption (pnd 22 to 23)	(g/day) ^a		
	10.1	9.8	10.0
	<u>+</u> 0.3 N=15	<u>+</u> 0.3 N=15	<u>+</u> 0.3 N=15
Feed Consumption (pnd 23 to 24)		11-10	11-10
	10.3	10.7	10.3
	<u>+</u> 0.2 N=13 ^b	<u>+</u> 0.2	<u>+</u> 0.2
Food Consumption (and 24 to 25)		N=15	N=15
Feed Consumption (pnd 24 to 25)		40.4	44.5
	12.1 <u>+</u> .0.4	12.4 <u>+</u> 0.4	11.5 <u>+</u> 0.3
	N=14 ^b	N=15	N=15
Feed Consumption (pnd 25 to 26)	(g/day) ^a		
	11.8 ‡ <u>+</u> 0.3	13.0 * <u>+</u> 0.4	12.1 <u>+</u> 0.3
	N=15	N=15	N=15
Feed Consumption (pnd 26 to 27)	(g/day) ^a		
	12.8	12.9	13.3
	<u>+</u> 0.3 N=15	<u>+</u> 0.4 N=15	<u>+</u> 0.3 N=15
Feed Consumption (pnd 27 to 28)	(g/day) ^a		
#	15.0	15.6	15.1
	<u>+</u> 0.8 N=15	<u>+</u> 0.4 N=15	<u>+</u> 0.4 N=15
Feed Consumption (pnd 28 to 29)		14-10	14-10
. 333 353	14.1	14.4	13.7
	<u>+</u> 0.3	<u>+</u> 0.5	<u>+</u> 0.4
Food Consumption (and 00 to 00)	N=15	N=15	N=15
Feed Consumption (pnd 29 to 30)		140	40.5
	14.4 <u>+</u> 0.5	14.9 <u>+</u> 0.5	13.5 <u>+</u> 0.5
	N=15	N=15	N=15

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 2 of 9)

	Propylthiouracil (mg/kg/day, po)		
	0	2	25
Feed Consumption (pnd 30 to 31) (g/	/day) ^a		
	15.6 ‡‡ <u>+</u> 0.5 §§ N=14 ^C	16.3 <u>+</u> 0.3 N=15	14.3 <u>+</u> 0.5 N=14 ^b
Feed Consumption (pnd 31 to 32) (g/	/day) ^a		
	17.5 ‡‡‡ <u>+</u> 0.6 §§§ N=14	18.0 <u>+</u> 0.3 N=15	14.6 *** <u>+</u> 0.5 N=14 ^b
Feed Consumption (pnd 32 to 33) (g/	/day) ^a		
	18.5 ‡‡‡ <u>±</u> 0.8 §§§ N=14	18.2 <u>+</u> 0.4 N=15	14.6 *** <u>+</u> 0.6 N=15
Feed Consumption (pnd 33 to 34) (g/	/day) ^a		
	18.5 ‡‡‡ <u>±</u> 0.4 §§§ N=14	18.9 <u>+</u> 0.5 N=15	13.9 *** <u>+</u> 0.8 N=15
Feed Consumption (pnd 34 to 35) (g/	/day) ^a		
	19.6 ‡‡‡ <u>+</u> 1.1 §§§ N=14	20.6 ± 0.4 N=14 ^b	15.0 *** <u>+</u> 0.9 N=15
Feed Consumption (pnd 35 to 36) (g/	/day) ^a		
	20.4 ‡‡‡ <u>±</u> 0.8 §§§ N=14	21.3 <u>+</u> 0.7 N=15	13.9 *** <u>+</u> 0.5 N=15
Feed Consumption (pnd 36 to 37) (g/	/day) ^a		
	21.9 ‡‡‡ <u>+</u> 0.4 §§§ N=14	22.4 <u>+</u> 0.6 N=15	13.6 *** ± 0.5 N=15
Feed Consumption (pnd 37 to 38) (g/	/day) ^a		
	22.3 ‡‡‡ <u>+</u> 0.6 §§§ N=14	22.4 <u>+</u> 0.6 N=15	15.4 *** <u>+</u> 1.0 N=15
Feed Consumption (pnd 38 to 39) (g/	/day) ^a		
#	22.8 ††† <u>+</u> 0.6 ŸŸŸ N=14	22.6 <u>±</u> 0.4 N=15	12.7 ÞÞÞ ± 1.0 N=15

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 3 of 9)

	Propylthiouracil (mg/kg/day, po)		
0	2	25	
Feed Consumption (pnd 39 to 40) (g/day) ^a			
22.9 <u>+</u> 0.5 N=14	23.4 5 §§§ ± 0.5 N=15	13.1 *** <u>+</u> 0.5 N=15	
Feed Consumption (pnd 40 to 41) (g/day) ^a			
22.8 <u>+</u> 0.5 N=14	22.6 \$\frac{\pm}{9}\frac{\pm}{N} = 0.5 N=15	11.5 *** <u>+</u> 0.4 N=15	
Feed Consumption (pnd 41 to 42) (g/day) ^a			
24.3 <u>±</u> 0.7 N=14	23.4 \$\frac{\pmathbf{\q}\pmathbf{\pmathbf{\q}\pmathbf{\pmathbf{\q\novex\boled{\pmathbf{\q\exi\q\exin\exii\q\exi\q\exin\exii\q\exii\exii\q\exii\q\exii\q\exi	12.8 *** <u>+</u> 0.5 N=15	
Feed Consumption (pnd 42 to 43) (g/day) ^a			
23.3 <u>+</u> 0.8 N=14	24.0 \$ § § \$ ± 0.7 N=15	12.3 *** <u>+</u> 0.4 N=15	
Feed Consumption (pnd 43 to 44) (g/day) ^a			
23.1 <u>+</u> 0.8 N=14	22.7 \$ § § ± 0.7 N=15	11.1 *** <u>+</u> 0.3 N=15	
Feed Consumption (pnd 44 to 45) (g/day) ^a			
23.6 <u>±</u> 0.5 N=14	22.0 \$\frac{\pmathbf{\q}\exi\pmathbf{\pmathbf{\qmanbbf{\qmanbbf{\qmanbbf{\qmanbbf{\qmanbbf{\qmanbbf{\qmanbbf{\q	11.4 *** <u>+</u> 0.5 N=14 ^b	
Feed Consumption (pnd 45 to 46) (g/day) ^a			
25.0 ± 0.8 N=14	22.7 * \$§\$\$ ± 0.6 N=15	11.2 *** <u>+</u> 0.2 N=14 ^d	
Feed Consumption (pnd 46 to 47) (g/day) ^a			
24.9 ± 0.5 N=13 ^b	22.0 ** \$\frac{\pmathbf{\q}\pmathbf{\pmathbf{\q}\pmathbf{\pmathbf{\qmanh}\pmathbf{\q}\pmathbf	** 11.3 *** <u>+</u> 0.3 N=15	
Feed Consumption (pnd 47 to 48) (g/day) ^a			
24.6 ± 0.5 N=13 ^b	21.4 ** \$ \$ \$ ± 0.7 N=15	** 11.0 *** <u>+</u> 0.4 N=15	

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 4 of 9)

	Propylthiouracil (mg/kg/day, po)		
	0	2	25
Feed Consumption (pnd 48 to 49) (g/	′day) ^a		
	25.2 ‡‡‡ <u>+</u> 0.9 §§§ N=14	21.4 ** <u>+</u> 1.0 N=15	11.0 *** <u>+</u> 0.4 N=15
Feed Consumption (pnd 49 to 50) (g/	′day) ^a		
	25.8 ‡‡‡ <u>+</u> 0.9 §§§ N=14	21.3 *** <u>+</u> 0.7 N=15	10.9 *** <u>+</u> 0.3 N=14 ^e
Feed Consumption (pnd 50 to 51) (g/	′day) ^a		
	26.6 ‡‡‡ <u>+</u> 0.8 §§§ N=14	21.9 *** <u>+</u> 0.8 N=15	10.8 *** <u>+</u> 0.4 N=14
Feed Consumption (pnd 51 to 52) (g/	′day) ^a		
	25.6 ‡‡‡ <u>±</u> 0.7 §§§ N=14	19.3 *** <u>+</u> 0.8 N=15	9.6 *** <u>+</u> 0.2 N=14
Feed Consumption (pnd 52 to 53) (g/	′day) ^{a,f}		
	25.9 ‡‡‡ <u>+</u> 1.0 §§§ N=5	18.4 *** <u>+</u> 0.8 N=5	9.7 *** <u>+</u> 0.4 N=4
Feed Consumption (pnd 23 to 52, tre	atment period) (g/da	_{y)} a	
	20.5 ‡‡‡ <u>+</u> 0.4 §§§ N=12 ⁹	19.4 <u>+</u> 0.4 N=149	12.6 *** <u>+</u> 0.3 N=129
Feed Consumption (pnd 23 to 53, tre	atment period) (g/dag	y) ^{a,f}	
	20.7 ‡‡‡ <u>+</u> 0.4 §§§ N=5	19.6 <u>+</u> 0.4 N=5	13.4 *** <u>+</u> 0.1 N=39
Feed Consumption (pnd 21 to 22) (g/	/kg/day) ^a		
	98.2 <u>+</u> 7.0 N=15	110.5 <u>+</u> 8.8 N=15	120.6 <u>+</u> 6.0 N=15
Feed Consumption (pnd 22 to 23) (g/	(kg/day) ^a		
	158.7 <u>±</u> 3.9 N=15	153.7 <u>±</u> 3.9 N=15	157.1 <u>+</u> 3.0 N=15

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 5 of 9)

	Prop	Propylthiouracil (mg/kg/day, po)		
	0	2	25	
Feed Consumption (pnd 23 to 24	l) (g/kg/day) ^a			
	144.5	152.6	149.1	
	<u>+</u> 2.4 N=13 ^b	<u>+</u> 2.5	<u>+</u> 3.1	
	N=13 ^D	N=15	N=15	
Feed Consumption (pnd 24 to 25	5) (g/kg/day) ^a			
	154.9	159.1	151.0	
	<u>+</u> 4.8 N=14 ^b	<u>+</u> 3.4	<u>+</u> 3.0	
	N=14 ^D	N=15	N=15	
Feed Consumption (pnd 25 to 26	6) (g/kg/day) ^a			
	141.4	152.9	145.2	
	± 3.2	<u>+</u> 3.8	<u>+</u> 2.8	
	N=15	N=15	N=15	
Feed Consumption (pnd 26 to 27	') (g/kg/day) ^a			
	142.6	141.0	147.8	
	<u>+</u> 2.4	<u>+</u> 4.6	<u>+</u> 2.7	
	N=15	N=15	N=15	
Feed Consumption (pnd 27 to 28	B) (g/kg/day) ^a			
	153.1	156.3	155.0	
	<u>+</u> 5.8	<u>+</u> 3.1	<u>+</u> 2.7	
	N=15	N=15	N=15	
Feed Consumption (pnd 28 to 29	9) (g/kg/day) ^a			
	134.9	134.3	131.6	
	<u>+</u> 3.5	<u>+</u> 5.6	<u>+</u> 4.6	
	N=15	N=15	N=15	
Feed Consumption (pnd 29 to 30)) (g/kg/day) ^a			
	127.3	128.8	120.3	
	<u>+</u> 2.4 §	<u>+</u> 2.3	<u>+</u> 3.4	
	N=15	N=15	N=15	
Feed Consumption (pnd 30 to 31) (g/kg/day) ^a			
	128.9 ‡‡	132.2	120.6 *	
	± 2.4 §§	<u>+</u> 2.1	± 2.7	
	N=14 ^C	N=15	N=14 ^b	
Feed Consumption (pnd 31 to 32	2) (g/kg/day) ^a			
	134.2 ‡‡‡	135.7	114.5 ***	
	<u>+</u> 2.3 §§§	<u>+</u> 2.4	<u>+</u> 2.5 N=14 ^b	
	N=14	N=15	N=14 ⁰	

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 6 of 9)

	Propylthiouracil (mg/kg/day, po)		
	0	2	25
Feed Consumption (pnd 32 to 33) (g/kg/day) ^a		
	132.2 ‡‡ <u>+</u> 3.9 §§§ N=14	128.1 <u>+</u> 2.2 N=15	111.3 ** <u>+</u> 5.1 N=15
Feed Consumption (pnd 33 to 34) (g/kg/day) ^a		
	124.3 ‡‡‡ <u>+</u> 2.6 §§§ N=14	124.8 <u>+</u> 2.6 N=15	101.6 *** <u>+</u> 4.5 N=15
Feed Consumption (pnd 34 to 35) (g/kg/day) ^a		
	123.7 <u>+</u> 5.6 § N=14	128.3 <u>+</u> 2.3 N=14 ^b	107.5 <u>+</u> 8.7 N=15
Feed Consumption (pnd 35 to 36) (g/kg/day) ^a		
	121.9 ‡‡‡ <u>+</u> 2.8 §§§ N=14	124.6 <u>±</u> 3.6 N=15	94.4 *** <u>+</u> 1.4 N=15
Feed Consumption (pnd 36 to 37) (g/kg/day) ^a		
	123.5 ‡‡‡ <u>+</u> 1.7 §§§ N=14	123.9 <u>+</u> 2.4 N=15	89.8 *** <u>+</u> 1.7 N=15
Feed Consumption (pnd 37 to 38) (g/kg/day) ^a		
#	118.7 †† <u>+</u> 1.7 ŸŸŸ N=14	117.3 <u>+</u> 2.2 N=15	98.6 ÞÞÞ <u>+</u> 5.3 N=15
Feed Consumption (pnd 38 to 39) (g/kg/day) ^a		
#	115.9 ††† <u>+</u> 3.0 ŸŸŸ N=14	112.6 <u>±</u> 1.6 N=15	80.4 ÞÞÞ <u>+</u> 6.4 N=15
Feed Consumption (pnd 39 to 40) (g/kg/day) ^a		
	111.3 ‡‡‡ <u>+</u> 1.9 §§§ N=14	111.2 <u>±</u> 1.7 N=15	81.0 *** <u>+</u> 1.6 N=15
Feed Consumption (pnd 40 to 41) (g/kg/day) ^a		
	106.5 ‡‡‡ <u>+</u> 2.0 §§§ N=14	103.1 <u>+</u> 1.4 N=15	70.5 *** <u>+</u> 1.7 N=15

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 7 of 9)

	Propyl	thiouracil (mg/kg/day	v, po)
	0	2	25
Feed Consumption (pnd 41 to 42) (g/kg/day	₎ a		
	108.8 ‡‡‡ <u>+</u> 2.5 §§§ =14	103.2 <u>+</u> 2.2 N=15	78.0 *** <u>+</u> 1.5 N=15
Feed Consumption (pnd 42 to 43) (g/kg/day)a		
	100.4 ‡‡‡ <u>+</u> 3.0 §§§ =14	102.3 <u>+</u> 2.2 N=15	74.2 *** <u>+</u> 1.7 N=15
Feed Consumption (pnd 43 to 44) (g/kg/day) ^a		
	95.9 ‡‡‡ <u>+</u> 2.4 §§§ =14	93.6 <u>+</u> 2.2 N=15	67.1 *** <u>+</u> 1.5 N=15
Feed Consumption (pnd 44 to 45) (g/kg/day) ^a		
	94.7 ‡‡‡ <u>+</u> 1.2 §§§ =14	87.5 ** <u>±</u> 1.7 N=15	68.0 *** <u>±</u> 1.7 N=14 ^b
Feed Consumption (pnd 45 to 46) (g/kg/day	₎ a		
	96.2 ‡‡‡ <u>+</u> 1.8 §§§ =14	87.7 ** <u>+</u> 1.4 N=15	67.1 *** <u>+</u> 1.8 N=14 ^d
Feed Consumption (pnd 46 to 47) (g/kg/day	₎ a		
N=	91.6 ‡‡‡ <u>+</u> 2.0 §§§ 13 ^b	82.8 ** <u>+</u> 1.8 N=15	66.9 *** <u>+</u> 1.4 N=15
Feed Consumption (pnd 47 to 48) (g/kg/day	₎ a		
N=	87.3 ‡‡‡ <u>+</u> 1.2 §§§ 13 ^b	78.5 ** <u>+</u> 2.0 N=15	65.1 *** <u>+</u> 2.5 N=15
Feed Consumption (pnd 48 to 49) (g/kg/day) ^a		
	87.6 ‡‡‡ <u>+</u> 2.2 §§§ =14	76.7 ** <u>+</u> 2.4 N=15	64.5 *** <u>+</u> 1.7 N=15
Feed Consumption (pnd 49 to 50) (g/kg/day	₎ a		
	86.7 ‡‡‡ <u>+</u> 1.9 §§§ =14	74.9 *** <u>+</u> 1.7 N=15	64.3 *** <u>+</u> 1.4 N=14 ^e

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 8 of 9)

			`
	Propylthiouracil (mg/kg/day, po)		
	0	2	25
Feed Consumption (pnd 50 to 51) (g	/kg/day) ^a		
	86.7 ‡‡‡ <u>±</u> 1.5 §§§ N=14	75.5 *** <u>+</u> 1.5 N=15	63.3 *** <u>+</u> 1.8 N=14
Feed Consumption (pnd 51 to 52) (g	/kg/day) ^a		
	81.0 ‡‡‡ <u>+</u> 1.3 §§§ N=14	65.0 *** <u>+</u> 1.5 N=15	56.0 *** <u>+</u> 1.7 N=14
Feed Consumption (pnd 52 to 53) (g	/kg/day) ^{a,f}		
	78.1 ‡‡‡ <u>+</u> 1.5 §§ N=5	61.0 *** <u>+</u> 2.2 N=5	52.4 *** <u>+</u> 1.8 N=4
Feed Consumption (pnd 23 to 52, tre	eatment period) (g/kg/	/day) ^a	
	107.3 ‡‡‡ <u>±</u> 0.9 §§§ N=129	103.6 * <u>±</u> 0.9 N=149	89.6 *** <u>±</u> 1.0 N=129
Feed Consumption (pnd 23 to 53, tre	eatment period) (g/kg/	/day) ^{a,f}	
	103.7 ‡‡‡ <u>+</u> 1.1 §§§ N=5	99.8 <u>+</u> 1.4 N=5	89.1 *** <u>+</u> 1.5 N=39

Table 4-E. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Propylthiouracil Treated F₁ Males (page 9 of 9)

^aReported as the mean \pm S.E.M.; pnd = postnatal day.

^bDecrease in N is due to the feed consumption value for one or more animals being a statistical outlier and therefore it was excluded.

^CMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

^dDecrease in N is due to the feed consumption value for one animal being unrealistic (i.e. negative) and therefore it was excluded.

^eMale 268 was found dead on postnatal day 50 prior to dosing.

[†]Includes those animals that were not scheduled for sacrifice until postnatal day 53.

9Decrease in N is due to interim feed consumption value(s) for one or more animals being missing and therefore the overall feed consumption value could not be calculated.

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

\$p<0.05; Test for Linear Trend.

§\$p<0.01; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

*p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

***p<0.001; Dunnett's Test.

††p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model.

†††p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model. p<0.001; Linear trend test in robust regression model.

PPPp<0.001; Individual t-test for pairwise comparisons to control in robust regression model.

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 1 of 9)

	Ketoconazole (mg/kg/day, po)		
	0	50	100
No. of Males on Study	15	15	15
Feed Consumption (pnd 21 to 22) (g/day) ^a		
	5.7 ‡‡‡	9.3 ***	8.0 *
	<u>+</u> 0.4 § N=15	<u>+</u> 0.8 N=14 ^b	<u>+</u> 0.5 N=15
Food Consumption (and 22 to 22) (N=14~	CI =NI
Feed Consumption (pnd 22 to 23) (· ,	0.0	40.4
	10.1 <u>+</u> 0.3	9.3 <u>+</u> 0.9	10.4 <u>+</u> 0.5
	N=15	N=14 ^C	N=15
Feed Consumption (pnd 23 to 24) (g/day) ^a		
	10.3 ‡	11.2 *	10.9
	<u>+</u> 0.2 N=13 ^b	<u>+</u> 0.3 N=15	<u>+</u> 0.3 N=15
Food Consumption (and 24 to 25) (IN= ID	N=13
Feed Consumption (pnd 24 to 25) (40.4	
	12.1 <u>+</u> 0.4	12.1 <u>+</u> 0.3	11.4 <u>+</u> 0.3
	N=14 ^b	N=15	$N=14^{b}$
Feed Consumption (pnd 25 to 26) (g/day) ^a		
	11.8	11.9	11.9
	<u>+</u> 0.3 N=15	<u>+</u> 0.2 N=15	<u>+</u> 0.3 N=15
Feed Consumption (pnd 26 to 27) (14-15	14-15
reed Consumption (prid 20 to 27) (40.0	40.0
	12.8 <u>+</u> 0.3	13.8 <u>+</u> 0.5	12.6 <u>+</u> 0.6
	N=15	N=15	N=15
Feed Consumption (pnd 27 to 28) (g/day) ^a		
	15.0	15.6	15.7
	<u>+</u> 0.8 N=15	<u>+</u> 0.6 N=15	<u>+</u> 0.5 N=15
Feed Consumption (pnd 28 to 29) (14-10	14-10
. 334 33.134.1191011 (prid 23 to 23) (14.1	14.8	14.3
	<u>+</u> 0.3	<u>+</u> 0.6	<u>+</u> 0.4
	N=15	N=15	$N=\overline{14}^b$
Feed Consumption (pnd 29 to 30) (g/day) ^a		
	14.4	15.0	14.0
	<u>+</u> 0.5 N=15	<u>+</u> 0.5 N=15	<u>+</u> 0.9 N=15

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 2 of 9)

	Ke	toconazole (mg/kg/d	lay, po)
	0	50	100
Feed Consumption (pnd 30 to 31) (g	յ/day) ^a		
	15.6 <u>+</u> 0.5 N=14 ^d	16.1 <u>+</u> 0.5 N=15	15.9 <u>+</u> 0.6 N=14 ^b
Feed Consumption (pnd 31 to 32) (g	_J /day) ^a		
	17.5 <u>+</u> 0.6 N=14	17.3 <u>+</u> 0.4 N=15	16.4 <u>+</u> 0.5 N=15
Feed Consumption (pnd 32 to 33) (g	_J /day) ^a		
	18.5 <u>+</u> 0.8 N=14	18.9 <u>+</u> 0.5 N=15	17.8 <u>+</u> 0.7 N=15
Feed Consumption (pnd 33 to 34) (g	ŋ/day) ^a		
	18.5 <u>±</u> 0.4 N=14	19.3 <u>±</u> 0.4 N=15	18.2 ± 0.6 N=15
Feed Consumption (pnd 34 to 35) (g	_J /day) ^a		
	19.6 <u>+</u> 1.1 N=14	20.0 <u>±</u> 1.0 N=15	20.6 <u>+</u> 0.6 N=14 ^C
Feed Consumption (pnd 35 to 36) (g	_J /day) ^a		
	20.4 <u>+</u> 0.8 N=14	21.2 <u>±</u> 0.5 N=15	20.3 <u>+</u> 0.6 N=14 ^b
Feed Consumption (pnd 36 to 37) (g	_J /day) ^a		
	21.9 ‡ <u>+</u> 0.4 N=14	24.0 * <u>±</u> 0.7 N=15	21.9 <u>+</u> 0.7 N=14 ^e
Feed Consumption (pnd 37 to 38) (g	_J /day) ^a		
#	22.3 <u>+</u> 0.6 N=14	23.5 <u>+</u> 1.0 N=15	22.4 <u>+</u> 0.5 N=14
Feed Consumption (pnd 38 to 39) (g	_I /day) ^a		
	22.8 <u>±</u> 0.6 N=14	22.5 <u>±</u> 0.9 N=15	23.1 <u>+</u> 0.8 N=14

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 3 of 9)

	Ketoconazole (mg/kg/day, po)			
	0	50	100	
Feed Consumption (pnd 39 to 40) (g	/day) ^a			
	22.9 <u>+</u> 0.5 N=14	23.7 <u>±</u> 0.7 N=15	22.2 <u>+</u> 0.6 N=14	
Feed Consumption (pnd 40 to 41) (g	/day) ^a			
#	22.8 <u>+</u> 0.5 N=14	23.8 <u>+</u> 0.4 N=14 ^b	22.6 <u>±</u> 1.2 N=13 ^b	
Feed Consumption (pnd 41 to 42) (g	/day) ^a			
	24.3 <u>+</u> 0.7 N=14	24.6 <u>+</u> 0.8 N=15	25.3 <u>±</u> 0.7 N=13 ^b	
Feed Consumption (pnd 42 to 43) (g	/day) ^a			
	23.3 <u>+</u> 0.8 N=14	25.3 <u>+</u> 0.6 N=15	23.9 <u>±</u> 1.1 N=14	
Feed Consumption (pnd 43 to 44) (g	/day) ^a			
	23.1 <u>+</u> 0.8 N=14	24.3 <u>+</u> 0.8 N=15	24.4 <u>+</u> 0.7 N=14	
Feed Consumption (pnd 44 to 45) (g	/day) ^a			
	23.6 <u>+</u> 0.5 N=14	24.3 <u>+</u> 0.4 N=15	22.8 <u>+</u> 0.6 N=14	
Feed Consumption (pnd 45 to 46) (g	/day) ^a			
	25.0 <u>+</u> 0.8 N=14	24.2 <u>+</u> 0.7 N=15	24.1 <u>+</u> 0.9 N=14	
Feed Consumption (pnd 46 to 47) (g	/day) ^a			
	24.9 <u>+</u> 0.5 N=13 ^b	26.3 <u>+</u> 0.8 N=15	25.5 ± 0.8 N=14	
Feed Consumption (pnd 47 to 48) (g	/day) ^a			
	24.6 <u>±</u> 0.5 N=13 ^b	25.3 <u>±</u> 0.6 N=15	23.2 <u>+</u> 0.7 N=14	

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 4 of 9)

	Ke	etoconazole (mg/kg/da	y, po)
	0	50	100
Feed Consumption (pnd 48 to 49)) (g/day) ^a		
	25.2	25.7	24.7
	<u>+</u> 0.9	<u>+</u> 0.5	<u>+</u> 1.0
	N=14	N=15	N=14
Feed Consumption (pnd 49 to 50)) (g/day) ^a		
	25.8	26.4	26.3
	<u>+</u> 0.9	<u>+</u> 0.8	<u>+</u> 0.7
	N=14	N=15	N=14
Feed Consumption (pnd 50 to 51)) (g/day) ^a		
	26.6	27.4	26.9
	<u>+</u> 0.8	<u>+</u> 0.6	<u>+</u> 0.8
	N=14	N=15	N=14
Feed Consumption (pnd 51 to 52)) (g/day) ^a		
	25.6	26.2	24.1
	<u>+</u> 0.7 N=14	<u>+</u> 0.6 N=14 ^b	<u>+</u> 0.9
Food Consumption (and FO to FO)		IN= 14~	N=14
Feed Consumption (pnd 52 to 53)			
	25.9	27.2	28.4
	<u>+</u> 1.0 N=5	<u>+</u> 0.5 N=5	<u>+</u> 1.2 N=4
Feed Consumption (pnd 23 to 52			
	20.5	21.0	19.7
	± 0.4	± 0.4	± 0.6
	N=129	N=139	N=99
Feed Consumption (pnd 23 to 53	, treatment period) (g/d	_{ay)} a,f	
	20.7	21.8	22.7
	<u>+</u> 0.4 §	<u>+</u> 0.6	<u>+</u> 0.3
	N=5	N=5	N=2 ⁹
Food Consumention (and 24 to 22)			
Feed Consumption (pnd 21 to 22)	,,		400 - 1
	98.2 ‡‡	162.7 ***	139.0 *
	<u>+</u> 7.0 § N=15	<u>+</u> 17.4 N=14 ^b	<u>+</u> 8.7 N=15
Feed Consumption (pnd 22 to 23)			
(р. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	158.7	144.4	164.6
	+ 3.9	+ 12.0	± 5.1
	N=15	N=14 ^C	N=15

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 5 of 9)

	Ketoconazole (mg/kg/day, po)		
	0	50	100
Feed Consumption (pnd 23 to 24) ((g/kg/day) ^a		
#	144.5 †††	162.2 ÞÞ	157.8 ÞÞÞ
	<u>+</u> 2.4 ŸŸ N=13 ^b	<u>+</u> 4.5	<u>+</u> 2.9
		N=15	N=15
Feed Consumption (pnd 24 to 25) (
	154.9	158.5	154.2
	<u>+</u> 4.8 N=14 ^b	<u>+</u> 2.7 N=15	<u>+</u> 3.8 N=14 ^b
Facility (2014-2014)		N=13	N=14°
Feed Consumption (pnd 25 to 26) (,		
	141.4	144.6	147.7
	<u>+</u> 3.2 N=15	<u>+</u> 2.6 N=15	<u>+</u> 2.8 N=15
Feed Consumption (pnd 26 to 27) (14-15	14-15
reed Consumption (prid 26 to 27) (.5 5 7,		
	142.6	154.5	144.0 <u>+</u> 5.0
	<u>+</u> 2.4 N=15	<u>+</u> 3.1 N=15	<u>+</u> 5.0 N=15
Feed Consumption (pnd 27 to 28) (
, ,	153.1	160.1	165.9
	<u>+</u> 5.8	<u>+</u> 4.6	<u>+</u> 2.9
	N=15	N=15	N=15
Feed Consumption (pnd 28 to 29) ((g/kg/day) ^a		
	134.9	141.9	141.1
	<u>+</u> 3.5	<u>+</u> 5.7	<u>+</u> 5.0
	N=15	N=15	N=14 ^b
Feed Consumption (pnd 29 to 30) ((g/kg/day) ^a		
	127.3	133.1	127.5
	<u>+</u> 2.4	<u>+</u> 2.3	<u>+</u> 6.9
	N=15	N=15	N=15
Feed Consumption (pnd 30 to 31) ((g/kg/day) ^a		
	128.9	133.0	136.0
	<u>+</u> 2.4	<u>+</u> 2.3	± 2.9
	N=14 ^d	N=15	N=14 ^b
Feed Consumption (pnd 31 to 32) (
	134.2	133.6	131.0
	<u>+</u> 2.3 N=14	<u>+</u> 1.7 N=15	<u>+</u> 3.3 N=15

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 6 of 9)

	Ketoconazole (mg/kg/day, po)		
	0	50	100
Feed Consumption (pnd 32 to 33) (g/kg/day) ^a		
	132.2 + 3.9	136.6 + 2.1	132.6 <u>+</u> 3.5
Feed Consumption (pnd 33 to 34) (N=14 g/kg/dav) ^a	N=15	N=15
	124.3	131.7	128.3
	<u>+</u> 2.6	<u>+</u> 2.5	<u>+</u> 4.2
	N=14	N=15	N=15
Feed Consumption (pnd 34 to 35) (g/kg/day) ^a		
	123.7	127.1	136.1
	<u>+</u> 5.6 N=14	<u>+</u> 4.6 N=15	<u>+</u> 2.0 N=14 ^C
Feed Consumption (pnd 35 to 36) (N=15	N=14°
r cod consumption (prid so to co) (;	121.9	127.2	126.5
	± 2.8	+ 1.7	± 2.5
	N=14	N=15	N=14 ^b
Feed Consumption (pnd 36 to 37) (g/kg/day) ^a		
	123.5 ‡‡	136.0 **	128.7
	<u>+</u> 1.7 N=14	<u>+</u> 3.2 N=15	<u>+</u> 2.3 N=14 ^e
Feed Consumption (pnd 37 to 38) (N=13	N=14-
reca consumption (plia or to oo) (118.7	125.5	125.6
	+ 1.7	+ 4.5	± 2.3
	N=14	N=15	N=14
Feed Consumption (pnd 38 to 39) (g/kg/day) ^a		
	115.9	115.0	122.9
	± 3.0	<u>+</u> 3.7	<u>+</u> 3.4
5 10 " (100 t 10) (N=14	N=15	N=14
Feed Consumption (pnd 39 to 40) (
	111.3 <u>+</u> 1.9	116.9	113.4
	± 1.9 N=14	<u>+</u> 3.1 N=15	<u>+</u> 2.6 N=14
Feed Consumption (pnd 40 to 41) (g/kg/day) ^a		
#	106.5	111.2	111.2
	± 2.0	± 2.0 N=14 ^b	± 4.7
	N=14	N=14 ^o	N=13 ^b

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 7 of 9)

	Ketoconazole (mg/kg/day, po)		
	0	50	100
Feed Consumption (pnd 41 to 42) (g	/kg/day) ^a		
	108.8 ‡ <u>+</u> 2.5 §§ N=14	111.9 <u>+</u> 2.2 N=15	120.1 ** <u>+</u> 3.0 N=13 ^b
Feed Consumption (pnd 42 to 43) (g	/kg/day) ^a		
	100.4 ± 3.0 N=14	110.9 <u>+</u> 3.2 N=15	108.1 <u>+</u> 4.5 N=14
Feed Consumption (pnd 43 to 44) (g	/kg/day) ^a		
	95.9 ‡ <u>+</u> 2.4 §§ N=14	102.0 <u>+</u> 2.1 N=15	106.2 ** <u>+</u> 2.2 N=14
Feed Consumption (pnd 44 to 45) (g	/kg/day) ^a		
	94.7 <u>±</u> 1.2 N=14	98.5 <u>+</u> 2.0 N=15	96.4 ± 2.3 N=14
Feed Consumption (pnd 45 to 46) (g	/kg/day) ^a		
	96.2 <u>±</u> 1.8 N=14	94.7 <u>+</u> 2.0 N=15	98.0 <u>+</u> 2.5 N=14
Feed Consumption (pnd 46 to 47) (g	/kg/day) ^a		
	91.6 <u>±</u> 2.0 § N=13 ^b	99.7 <u>+</u> 3.9 N=15	100.3 <u>+</u> 1.5 N=14
Feed Consumption (pnd 47 to 48) (g	/kg/day) ^a		
	87.3 <u>±</u> 1.2 N=13 ^b	92.7 <u>+</u> 2.6 N=15	88.8 <u>+</u> 2.5 N=14
Feed Consumption (pnd 48 to 49) (g	/kg/day) ^a		
	87.6 <u>±</u> 2.2 N=14	90.9 <u>+</u> 1.3 N=15	91.1 ± 2.0 N=14
Feed Consumption (pnd 49 to 50) (g	/kg/day) ^a		
	86.7 ‡ <u>+</u> 1.9 §§ N=14	89.9 <u>+</u> 1.7 N=15	94.1 ** <u>+</u> 1.2 N=14

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 8 of 9)

	Ket	Ketoconazole (mg/kg/day, po)		
	0	50	100	
Feed Consumption (pnd 50 to 51) (g/kg/day) ^a			
	86.7 <u>+</u> 1.5 § N=14	90.7 <u>+</u> 1.9 N=15	92.8 <u>+</u> 1.7 N=14	
Feed Consumption (pnd 51 to 52	2) (g/kg/day) ^a			
	81.0 <u>+</u> 1.3 N=14	83.3 <u>+</u> 1.3 N=14 ^b	80.2 <u>+</u> 2.0 N=14	
Feed Consumption (pnd 52 to 53	3) (g/kg/day) ^{a,f}			
	78.1 <u>+</u> 1.5 N=5	82.0 <u>+</u> 2.8 N=5	83.8 <u>+</u> 2.8 N=4	
Feed Consumption (pnd 23 to 52	2, treatment period) (g/kg	_l /day) ^a		
	107.3 ‡‡ <u>±</u> 0.9 §§ N=129	111.3 ** <u>+</u> 0.7 N=13 ⁹	112.3 ** <u>±</u> 1.3 N=99	
Feed Consumption (pnd 23 to 53	3, treatment period) (g/kg	ı/day) ^{a,f}		
	103.7 ‡‡ <u>+</u> 1.1 §§§ N=5	110.1 ** <u>+</u> 0.7 N=5	111.6 ** <u>+</u> 2.0 N=29	

Table 4-F. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Ketoconazole Treated F₁ Males (page 9 of 9)

```
<sup>a</sup>Reported as the mean + S.E.M.; pnd = postnatal day.
```

dMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

^eMale 242 was found dead on postnatal day 37 prior to dosing (misdirected dose).

[†]Includes those animals that were not scheduled for sacrifice until postnatal day 53.

9Decrease in N is due to interim feed consumption value(s) for one or more animals being missing and therefore the overall feed consumption value could not be calculated.

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

§p<0.05; Test for Linear Trend.

§§p<0.01; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

*p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

p<0.001; Dunnett's Test.

†††p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model. †*p<0.01; Linear trend test in robust regression model.

pp<0.01; Individual t-test for pairwise comparisons to control in robust regression model.

p<0.001; Individual t-test for pairwise comparisons to control in robust regression model.

bDecrease in N is due to the feed consumption value for one or more animals being a statistical outlier and therefore it was excluded.

^CDecrease in N is due to the feed consumption value for one animal being unrealistic (i.e. negative) and therefore it was excluded.

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 1 of 9)

	Linuron (mg/kg/day, po)		
	0	50	100
No. of Males on Study	15	15	15
Feed Consumption (pnd 21 to 22) (g/	′day) ^a		
	5.7 ‡‡ <u>+</u> 0.4 §§§ N=15	7.0 <u>+</u> 0.5 N=15	8.5 ** <u>+</u> 0.6 N=15
Feed Consumption (pnd 22 to 23) (g/	⁽ day) ^a		
	10.1 <u>+</u> 0.3 N=15	10.1 <u>±</u> 0.4 N=15	9.2 <u>+</u> 0.6 N=15
Feed Consumption (pnd 23 to 24) (g/	′day) ^a		
#	10.3 †† <u>+</u> 0.2 ŸŸ N=13 ^b	9.6 ÞÞ <u>+</u> 0.2 N=15	9.0 ÞÞ <u>+</u> 0.5 N=15
Feed Consumption (pnd 24 to 25) (g/	′day) ^a		
	12.1 ‡‡‡ <u>+</u> 0.4 §§§ N=14 ^b	10.3 ** <u>+</u> 0.3 N=15	9.9 *** <u>+</u> 0.4 N=15
Feed Consumption (pnd 25 to 26) (g/	′day) ^a		
	11.8 ‡‡‡ <u>+</u> 0.3 §§§ N=15	10.7 * <u>+</u> 0.3 N=15	9.7 *** <u>+</u> 0.3 N=15
Feed Consumption (pnd 26 to 27) (g/	′day) ^a		
	12.8 ‡‡ <u>±</u> 0.3 §§§ N=15	11.7 <u>±</u> 0.3 N=15	10.9 ** <u>+</u> 0.5 N=15
Feed Consumption (pnd 27 to 28) (g/	/day) ^a		
	15.0 <u>+</u> 0.8 § N=15	13.5 <u>+</u> 0.5 N=15	13.3 <u>+</u> 0.5 N=15
Feed Consumption (pnd 28 to 29) (g/	/day) ^a		
	14.1 ‡‡ <u>+</u> 0.3 §§§ N=15	12.8 * <u>+</u> 0.3 N=15	11.8 *** <u>+</u> 0.5 N=15
Feed Consumption (pnd 29 to 30) (g/	′day) ^a		
	14.4 ‡ <u>+</u> 0.5 §§ N=15	13.1 <u>+</u> 0.3 N=15	12.6 ** <u>+</u> 0.5 N=15

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 2 of 9)

	L	_inuron (mg/kg/day,	po)
	0	50	100
Feed Consumption (pnd 30 to 31) (g/	′day) ^a		
	15.6 ‡‡ <u>+</u> 0.5 §§ N=14 ^C	14.3 <u>+</u> 0.4 N=15	13.2 ** <u>+</u> 0.5 N=15
Feed Consumption (pnd 31 to 32) (g/	′day) ^a		
	17.5 ‡‡‡ <u>+</u> 0.6 §§§ N=14	15.2 ** <u>+</u> 0.4 N=15	13.8 *** <u>+</u> 0.4 N=15
Feed Consumption (pnd 32 to 33) (g/	′day) ^a		
	18.5 ‡‡ <u>+</u> 0.8 §§§ N=14	16.8 <u>+</u> 0.6 N=15	15.2 ** <u>+</u> 0.6 N=15
Feed Consumption (pnd 33 to 34) (g/	′day) ^a		
	18.5 ‡‡ <u>±</u> 0.4 §§§ N=14	17.5 <u>±</u> 0.9 N=15	15.3 ** <u>±</u> 0.4 N=15
Feed Consumption (pnd 34 to 35) (g/	′day) ^a		
#	19.6 <u>+</u> 1.1 N=14	18.5 <u>±</u> 0.4 N=15	17.7 <u>+</u> 0.4 N=15
Feed Consumption (pnd 35 to 36) (g/	′day) ^a		
	20.4 <u>+</u> 0.8 N=14	19.3 <u>+</u> 0.4 N=15	19.0 <u>+</u> 0.8 N=15
Feed Consumption (pnd 36 to 37) (g/	′day) ^a		
	21.9 ‡ <u>+</u> 0.4 §§ N=14	20.8 <u>+</u> 0.5 N=15	19.3 * <u>+</u> 0.8 N=15
Feed Consumption (pnd 37 to 38) (g/	′day) ^a		
	22.3 <u>+</u> 0.6 N=14	20.4 <u>+</u> 0.4 N=15	21.3 <u>+</u> 1.0 N=15
Feed Consumption (pnd 38 to 39) (g/	′day) ^a		
#	22.8 <u>±</u> 0.6 N=14	22.7 <u>±</u> 0.7 N=15	20.8 <u>+</u> 1.8 N=15

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 3 of 9)

		_inuron (mg/kg/day	r, po)
	0	50	100
Feed Consumption (pnd 39 to 40) (g/o	day) ^a		
	22.9 ‡‡‡ <u>±</u> 0.5 §§§ N=14	22.2 <u>+</u> 0.5 N=15	18.8 *** <u>±</u> 1.0 N=14d
Feed Consumption (pnd 40 to 41) (g/o	day) ^a		
	22.8 ‡‡ <u>+</u> 0.5 §§ N=14	22.5 <u>+</u> 0.4 N=15	20.1 ** <u>+</u> 0.6 N=15
Feed Consumption (pnd 41 to 42) (g/o	day) ^a		
	24.3 <u>±</u> 0.7 N=14	23.3 <u>+</u> 0.6 N=15	22.1 <u>+</u> 1.2 N=15
Feed Consumption (pnd 42 to 43) (g/d	day) ^a		
	23.3 ‡ <u>+</u> 0.8 § N=14	23.4 <u>+</u> 0.5 N=15	21.2 <u>±</u> 0.7 N=15
Feed Consumption (pnd 43 to 44) (g/d	day) ^a		
	23.1 ‡‡ <u>+</u> 0.8 §§ N=14	23.5 <u>+</u> 0.4 N=15	20.3 ** <u>+</u> 0.7 N=15
Feed Consumption (pnd 44 to 45) (g/d	day) ^a		
	23.6 ‡ <u>+</u> 0.5 § N=14	23.2 <u>+</u> 0.9 N=15	21.2 * <u>+</u> 0.5 N=14 ^d
Feed Consumption (pnd 45 to 46) (g/d	day) ^a		
	25.0 ‡‡‡ <u>+</u> 0.8 §§§ N=14	24.4 <u>+</u> 0.5 N=14 ^b	21.1 *** <u>+</u> 0.6 N=14 ^b
Feed Consumption (pnd 46 to 47) (g/d	day) ^a		
	24.9 ‡ <u>+</u> 0.5 § N=13 ^b	23.8 <u>+</u> 0.5 N=15	22.8 * <u>+</u> 0.6 N=15
Feed Consumption (pnd 47 to 48) (g/d	day) ^a		
	24.6 ‡‡ <u>+</u> 0.5 §§ N=13 ^b	24.8 <u>+</u> 0.6 N=15	22.1 ** <u>+</u> 0.6 N=15

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 4 of 9)

		Linuron (mg/kg/day, po)		
	0	50	100	
Feed Consumption (pnd 48 to 4	49) (g/day) ^a			
	25.2 ‡‡	24.9	21.7 **	
	<u>+</u> 0.9 §§	<u>+</u> 0.5	<u>+</u> 0.7	
	N=14	N=15	N=15	
Feed Consumption (pnd 49 to	50) (g/day) ^a			
	25.8 ‡‡	25.1	21.9 **	
	<u>+</u> 0.9 §§	<u>+</u> 0.6	<u>+</u> 0.9	
	N=14	N=15	N=15	
Feed Consumption (pnd 50 to	51) (g/day) ^a			
	26.6 ‡‡	25.6	22.9 ***	
	<u>+</u> 0.8 §§§	<u>+</u> 0.4	<u>+</u> 0.8	
	N=14	N=15	N=15	
Feed Consumption (pnd 51 to	52) (g/day) ^a			
	25.6 ‡‡	25.1	21.6 **	
	<u>+</u> 0.7 §§	<u>+</u> 0.7	<u>+</u> 0.9	
	N=14	N=15	N=15	
Feed Consumption (pnd 52 to	53) (g/day) ^{a,e}			
	25.9	25.8	23.2	
	<u>+</u> 1.0	<u>+</u> 0.9	<u>+</u> 1.2	
	N=5	N=5	N=5	
Feed Consumption (pnd 23 to	52, treatment period) (g/da	_{y)} a		
	20.5 ‡‡‡	19.3	17.7 ***	
	<u>+</u> 0.4 §§§		<u>+</u> 0.5	
	N=12 ^f	<u>+</u> 0.3 N=14 ^f	N=13 ^f	
Feed Consumption (pnd 23 to	53, treatment period) (g/da	_{y)} a,e		
	20.7	20.2	18.2	
	<u>+</u> 0.4 §	<u>+</u> 0.7	<u>+</u> 0.8	
	N=5	N=5	N=5	
	> (1			
Feed Consumption (pnd 21 to 2	22) (g/kg/day) ^a			
	98.2 ‡‡	120.1	147.6 **	
	<u>+</u> 7.0 §§	<u>+</u> 9.3	<u>+</u> 13.9	
	N=15	N=15	N=15	
Feed Consumption (pnd 22 to 2	23) (g/kg/day) ^a			
	158.7	159.5	146.4	
	<u>+</u> 3.9	<u>+</u> 5.1	<u>+</u> 8.1	
	N=15	N=15	N=15	

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 5 of 9)

		inuron (mg/kg/day,	po)
	0	50	100
Feed Consumption (pnd 23 to 24)	(g/kg/day) ^a		
#	144.5 <u>+</u> 2.4 N=13 ^b	139.1 <u>+</u> 3.6 N=15	132.9 <u>+</u> 5.8 N=15
Feed Consumption (pnd 24 to 25)	(g/kg/day) ^a		
	154.9 ‡ <u>+</u> 4.8 §§ N=14 ^b	138.6 * <u>+</u> 3.7 N=15	137.9 * <u>+</u> 4.4 N=15
Feed Consumption (pnd 25 to 26)	(g/kg/day) ^a		
	141.4 ‡ <u>±</u> 3.2 §§ N=15	134.7 <u>+</u> 3.7 N=15	126.7 ** <u>+</u> 3.4 N=15
Feed Consumption (pnd 26 to 27)	(g/kg/day) ^a		
	142.6 <u>±</u> 2.4 § N=15	137.3 <u>±</u> 2.5 N=15	132.7 <u>+</u> 4.5 N=15
Feed Consumption (pnd 27 to 28)	(g/kg/day) ^a		
	153.1 <u>+</u> 5.8 N=15	145.5 <u>±</u> 3.3 N=15	149.1 <u>+</u> 3.6 N=15
Feed Consumption (pnd 28 to 29)	(g/kg/day) ^a		
	134.9 <u>+</u> 3.5 N=15	128.2 <u>±</u> 4.0 N=15	124.4 <u>+</u> 5.2 N=15
Feed Consumption (pnd 29 to 30)	(g/kg/day) ^a		
#	127.3 <u>+</u> 2.4 N=15	122.3 <u>+</u> 1.8 N=15	124.2 <u>+</u> 4.5 N=15
Feed Consumption (pnd 30 to 31)	(g/kg/day) ^a		
	128.9 <u>±</u> 2.4 N=14 ^C	125.7 <u>+</u> 3.2 N=15	121.3 <u>+</u> 3.4 N=15
Feed Consumption (pnd 31 to 32)	(g/kg/day) ^a		
	134.2 ‡‡‡ <u>+</u> 2.3 §§§ N=14	124.8 ** <u>+</u> 1.9 N=15	119.8 *** <u>+</u> 2.1 N=15

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 6 of 9)

		Linuron (mg/kg/day	, po)
	0	50	100
Feed Consumption (pnd 32 to 33) (g	_J /kg/day) ^a		
	132.2 <u>+</u> 3.9 N=14	128.9 <u>+</u> 3.1 N=15	123.4 <u>+</u> 2.9 N=15
Feed Consumption (pnd 33 to 34) (g		11-10	11-10
	124.3 <u>+</u> 2.6 N=14	126.4 <u>+</u> 6.2 N=15	117.8 <u>+</u> 2.1 N=15
Feed Consumption (pnd 34 to 35) (g	յ/kg/day) ^a		
	123.7 <u>+</u> 5.6 N=14	126.0 <u>+</u> 2.5 N=15	128.7 <u>+</u> 1.9 N=15
Feed Consumption (pnd 35 to 36) (g	_J /kg/day) ^a		
	121.9 <u>+</u> 2.8 N=14	123.3 <u>±</u> 2.1 N=15	128.3 ± 3.4 N=15
Feed Consumption (pnd 36 to 37) (g	_J /kg/day) ^a		
	123.5 <u>+</u> 1.7 N=14	125.4 <u>+</u> 1.8 N=15	123.1 <u>+</u> 4.1 N=15
Feed Consumption (pnd 37 to 38) (g	ŋ/kg/day) ^a		
#	118.7 <u>+</u> 1.7 N=14	116.8 <u>+</u> 2.2 N=15	129.1 <u>+</u> 5.2 N=15
Feed Consumption (pnd 38 to 39) (g	ŋ/kg/day) ^a		
	115.9 <u>+</u> 3.0 N=14	123.5 <u>±</u> 3.5 N=15	121.8 <u>+</u> 11.7 N=15
Feed Consumption (pnd 39 to 40) (g	_J /kg/day) ^a		
	111.3 <u>+</u> 1.9 N=14	115.3 <u>+</u> 2.9 N=15	103.4 <u>+</u> 5.0 N=14 ^d
Feed Consumption (pnd 40 to 41) (g	_J /kg/day) ^a		
	106.5 <u>+</u> 2.0 N=14	111.7 <u>+</u> 1.8 N=15	107.7 <u>+</u> 2.8 N=15

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 7 of 9)

		Linuron (mg/kg/day, p	00)
	0	50	100
Feed Consumption (pnd 41 to 42) (g	g/kg/day) ^a		
	108.8	111.2	112.5
	<u>+</u> 2.5	<u>+</u> 2.6	<u>+</u> 4.0
	N=14	N=15	N=15
Feed Consumption (pnd 42 to 43) (g	g/kg/day) ^a		
	100.4	107.8	105.0
	<u>+</u> 3.0	<u>+</u> 2.5	<u>+</u> 3.1
	N=14	N=15	N=15
Feed Consumption (pnd 43 to 44) (g	g/kg/day) ^a		
	95.9 ‡	104.2 *	97.0
	<u>+</u> 2.4	<u>+</u> 1.7	<u>+</u> 2.6
	N=14	N=15	N=15
Feed Consumption (pnd 44 to 45) (g	g/kg/day) ^a		
	94.7	98.2	98.3
	<u>+</u> 1.2	<u>+</u> 3.2	<u>+</u> 2.0 N=14 ^d
	N=14	N=15	N=14 ⁴
Feed Consumption (pnd 45 to 46) (g	g/kg/day) ^a		
	96.2	99.5	94.1
	<u>+</u> 1.8	<u>+</u> 1.9 N=14 ^b	<u>+</u> 1.8 N=14 ^b
	N=14	N=14 ^o	N=14 ^o
Feed Consumption (pnd 46 to 47) (g	g/kg/day) ^a		
	91.6	94.1	98.7
	<u>+</u> 2.0 § N=13 ^b	<u>+</u> 2.2	<u>+</u> 2.3
		N=15	N=15
Feed Consumption (pnd 47 to 48) (g	g/kg/day) ^a		
#	87.3 †††	94.3 ÞÞÞ	92.5 Þ
	<u>+</u> 1.2 Y N=13 ^b	<u>+</u> 1.2 N=15	<u>+</u> 1.9 N=15
		IN=15	N=15
Feed Consumption (pnd 48 to 49) (g			
	87.6	91.9	88.1
	<u>+</u> 2.2 N=14	<u>+</u> 2.0	<u>+</u> 1.9 N=15
- 10 · · · · · · · · · · · · · · · ·		N=15	11=10
Feed Consumption (pnd 49 to 50) (g			
	86.7	89.9	86.2
	<u>+</u> 1.9 N=14	<u>+</u> 2.0 N=15	<u>+</u> 2.9 N=15

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 8 of 9)

		Linuron (mg/kg/day, po)		
	0	50	100	
Feed Consumption (pnd 50 to 5	51) (g/kg/day) ^a			
	86.7 <u>+</u> 1.5	88.9 + 1.1	87.5 <u>+</u> 1.7	
	N=14	N=15	N=15	
Feed Consumption (pnd 51 to 5	52) (g/kg/day) ^a			
	81.0 <u>±</u> 1.3 N=14	84.5 <u>±</u> 1.9 N=15	80.2 <u>+</u> 2.8 N=15	
Feed Consumption (pnd 52 to 5	53) (g/kg/day) ^{a,e}			
	78.1 <u>+</u> 1.5 N=5	80.2 <u>+</u> 1.9 N=5	79.0 <u>+</u> 3.3 N=5	
Feed Consumption (pnd 23 to 5	52, treatment period) (g/k	(g/day) ^a		
	107.3 <u>±</u> 0.9 N=12 ^f	109.2 <u>+</u> 1.0 N=14 ^f	106.7 ± 1.4 N=13 ^f	
Feed Consumption (pnd 23 to 5	53, treatment period) (g/k	(g/day) ^{a,e}		
	103.7 <u>+</u> 1.1 N=5	105.6 <u>+</u> 1.3 N=5	102.2 <u>+</u> 1.3 N=5	

Table 4-G. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Linuron Treated F₁ Males (page 9 of 9)

^aReported as the mean \pm S.E.M.; pnd = postnatal day.

^bDecrease in N is due to the feed consumption value for one or more animals being a statistical outlier and therefore it was excluded.

^CMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

^CDecrease in N is due to the feed consumption value for one animal being unrealistic (i.e. negative) and therefore it was excluded.

^eIncludes those animals that were not scheduled for sacrifice until postnatal day 53.

[†]Decrease in N is due to interim feed consumption value(s) for one or more animals being missing and therefore the overall feed consumption value could not be calculated.

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

‡D<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

\$p<0.05; Test for Linear Trend.

§§p<0.01; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

_p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

***p<0.001; Dunnett's Test.

††p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model.

†††p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model.

 \dot{Y}_{p} <0.05; Linear trend test in robust regression model.

p<0.03; Linear trend test in robust regression model.

p<0.05; Individual t-test for pairwise comparisons to control in robust regression model.

pbp<0.01; Individual t-test for pairwise comparisons to control in robust regression model.

pppp<0.001; Individual t-test for pairwise comparisons to control in robust regression model.

Table 4-H. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 1 of 8)

	Phe	nobarbital (mg/kg/da	ıy, po)
	0	50	100
No. of Males on Study	15	15	15
Feed Consumption (pnd 21 to 22) (g/day) ^a		
	5.7 ‡‡‡ <u>+</u> 0.4 §§ N=15	8.3 *** <u>+</u> 0.3 N=15	7.6 ** <u>+</u> 0.5 N=15
Feed Consumption (pnd 22 to 23) (g/day) ^a		
	10.1 <u>±</u> 0.3 N=15	10.1 <u>±</u> 0.7 N=15	9.5 <u>±</u> 0.7 N=15
Feed Consumption (pnd 23 to 24) (g/day) ^a		
	10.3 ‡‡ <u>+</u> 0.2 N=13 ^b	11.9 ** <u>+</u> 0.4 N=15	10.9 <u>+</u> 0.3 N=15
Feed Consumption (pnd 24 to 25) (g/day) ^a		
	12.1 <u>+</u> 0.4 N=14 ^b	12.4 <u>±</u> 0.2 N=15	11.9 <u>+</u> 0.3 N=15
Feed Consumption (pnd 25 to 26) (g/day) ^a		
	11.8 ‡ <u>+</u> 0.3 § N=15	12.7 <u>±</u> 0.3 N=15	12.9 * <u>+</u> 0.3 N=15
Feed Consumption (pnd 26 to 27) (g/day) ^a		
	12.8 ‡ <u>+</u> 0.3 § N=15	13.5 <u>+</u> 0.3 N=15	14.0 * <u>±</u> 0.3 N=15
Feed Consumption (pnd 27 to 28) (g/day) ^a		
#	15.0 <u>±</u> 0.8 N=15	15.3 <u>±</u> 0.4 N=15	15.5 <u>+</u> 0.4 N=15
Feed Consumption (pnd 28 to 29) (g/day) ^a		
	14.1 <u>±</u> 0.3 N=15	14.5 <u>+</u> 0.4 N=15	14.6 <u>+</u> 0.4 N=15
Feed Consumption (pnd 29 to 30) (g/day) ^a		
	14.4 <u>+</u> 0.5 N=15	15.1 <u>+</u> 0.3 N=15	15.8 <u>+</u> 0.8 N=15

Table 4-H. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 2 of 8)

	P	henobarbital (mg/kg/d	day, po)
	0	50	100
Feed Consumption (pnd 30 to 31) (g	/day) ^a		
	15.6 <u>+</u> 0.5 N=14 ^C	15.7 <u>+</u> 0.4 N=15	16.3 <u>±</u> 0.4 N=14 ^b
Feed Consumption (pnd 31 to 32) (g	/day) ^a		
	17.5 <u>+</u> 0.6 N=14	17.0 <u>+</u> 0.4 N=15	16.3 <u>+</u> 0.5 N=15
Feed Consumption (pnd 32 to 33) (g	/day) ^a		
	18.5 <u>+</u> 0.8 N=14	17.7 <u>+</u> 0.7 N=15	18.3 <u>+</u> 0.8 N=15
Feed Consumption (pnd 33 to 34) (g	/day) ^a		
	18.5 <u>+</u> 0.4 N=14	18.1 <u>±</u> 0.4 N=15	18.4 <u>±</u> 0.7 N=15
Feed Consumption (pnd 34 to 35) (g	/day) ^a		
	19.6 <u>+</u> 1.1 N=14	20.0 <u>+</u> 0.5 N=14 ^b	19.3 <u>+</u> 0.8 N=15
Feed Consumption (pnd 35 to 36) (g	/day) ^a		
	20.4 <u>+</u> 0.8 N=14	20.6 <u>+</u> 0.8 N=15	19.8 <u>+</u> 0.5 N=15
Feed Consumption (pnd 36 to 37) (g	/day) ^a		
#	21.9 <u>+</u> 0.4 N=14	22.9 <u>+</u> 0.7 N=14 ^b	22.4 ± 1.1 N=15
Feed Consumption (pnd 37 to 38) (g	/day) ^a		
	22.3 <u>+</u> 0.6 N=14	23.8 <u>+</u> 0.6 N=14 ^b	21.9 ± 1.3 N=15
Feed Consumption (pnd 38 to 39) (g	/day) ^a		
	22.8 <u>+</u> 0.6 N=14	23.2 <u>+</u> 1.2 N=14 ^d	22.2 ± 1.0 N=15

Table 4-H. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 3 of 8)

	Phenobarbital (mg/kg/day, po)		
0	50	100	
Feed Consumption (pnd 39 to 40) (g/day) ^a			
22.9	23.5	23.2	
<u>+</u> 0.5	<u>+</u> 1.0	<u>+</u> 1.1	
N=14	N=15	N=15	
Feed Consumption (pnd 40 to 41) (g/day) ^a			
22.8	22.6	22.2	
<u>+</u> 0.5	<u>+</u> 1.7	<u>+</u> 0.6	
N=14	N=15	N=15	
Feed Consumption (pnd 41 to 42) (g/day) ^a			
24.3	26.4	25.2	
<u>+</u> 0.7	<u>+</u> 0.8 N=14 ^b	<u>+</u> 0.8	
N=14	N=14 ^D	N=15	
Feed Consumption (pnd 42 to 43) (g/day) ^a			
23.3	25.0	24.4	
<u>+</u> 0.8	<u>+</u> 1.1	<u>+</u> 0.7	
N=14	N=15	N=15	
Feed Consumption (pnd 43 to 44) (g/day) ^a			
23.1	25.0	24.2	
<u>+</u> 0.8	$\frac{+}{2}$ 0.9	<u>+</u> 0.6	
N=14	N=14 ^b	N=15	
Feed Consumption (pnd 44 to 45) (g/day) ^a			
23.6	25.1	24.0	
<u>+</u> 0.5	<u>+</u> 0.6	<u>+</u> 0.8	
N=14	N=15	N=15	
Feed Consumption (pnd 45 to 46) (g/day) ^a			
25.0	25.6	25.3	
<u>+</u> 0.8	<u>+</u> 0.9	<u>+</u> 0.7	
N=14	N=15	N=15	
Feed Consumption (pnd 46 to 47) (g/day) ^a			
24.9	25.8	26.4	
± 0.5	<u>+</u> 0.9	± 0.6	
N=13 ^b	N=15	N=15	
Feed Consumption (pnd 47 to 48) (g/day) ^a			
24.6	24.8	24.8	
± 0.5	<u>+</u> 0.9	<u>+</u> 0.7	
N=13 ^b	N=15	N=15	

Table 4-H. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 4 of 8)

	Phe	enobarbital (mg/kg/da	ay, po)
	0	50	100
Feed Consumption (pnd 48 to 4	9) (g/day) ^a		
	25.2	24.8	25.2
	<u>+</u> 0.9	<u>+</u> 0.8	<u>+</u> 0.9
	N=14	N=15	N=15
Feed Consumption (pnd 49 to 5	0) (g/day) ^a		
	25.8	26.5	26.3
	<u>+</u> 0.9	<u>+</u> 1.0 N=14 ^b	<u>+</u> 0.8
	N=14	N=14 ^D	N=15
Feed Consumption (pnd 50 to 5	1) (g/day) ^a		
	26.6	27.7	27.1
	<u>+</u> 0.8	± 1.0	<u>+</u> 0.9
	N=14	N=14 ^d	N=15
Feed Consumption (pnd 51 to 5	2) (g/day) ^a		
	25.6	25.7	23.7
	<u>+</u> 0.7	<u>+</u> 1.0	<u>+</u> 0.8
F O	N=14	N=15	N=15
Feed Consumption (pnd 52 to 5		_	
	25.9	26.9	27.2
	<u>+</u> 1.0 N=5	<u>+</u> 2.5 N=5	<u>+</u> 2.0 N=3
Feed Consumption (pnd 23 to 5			IN-O
i eeu oonsumpiion (phu 23 to 3	. , .		20.5
	20.5	20.9	20.5
	<u>+</u> 0.4 N=12 ^f	<u>+</u> 0.5 N=12 ^f	<u>+</u> 0.5 N=14 ^f
Feed Consumption (pnd 23 to 5			14— 1-7
	20.7	21.4	22.3
	<u>+</u> 0.4	<u>+</u> 1.2	+ 0.8
	N=5	N=5	N=2 ^f
Feed Consumption (pnd 21 to 2)	2) (g/kg/day) ^a		
	98.2 ‡‡‡	143.5 ***	130.8 *
	<u>+</u> 7.0 §	<u>+</u> 7.8	<u>+</u> 9.1
	N=15	N=15	N=15
Feed Consumption (pnd 22 to 2	,		
	158.7	157.6	149.0
	<u>+</u> 3.9	<u>+</u> 9.5	<u>+</u> 10.5
	N=15	N=15	N=15

Table 4-H. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 5 of 8)

	Phe	Phenobarbital (mg/kg/day, po)		
	0	50	100	
Feed Consumption (pnd 23 to 24) (g/kg/day) ^a			
	144.5 ‡‡	168.2 ***	155.3	
	<u>+</u> 2.4 N=13 ^b	<u>+</u> 4.4 N=15	<u>+</u> 4.8 N=15	
Feed Consumption (pnd 24 to 25				
	154.9	160.5	155.8	
	<u>+</u> 4.8	<u>+</u> 2.2	<u>+</u> 3.8	
Feed Consumption (pnd 25 to 26	N=14	N=15	N=15	
reed Consumption (prid 25 to 20	141.4 ‡‡‡	152.4 *	158.0 ***	
	+ 3.2 §§§	+ 2.2	± 3.0	
	N=15	N=15	N=15	
Feed Consumption (pnd 26 to 27	') (g/kg/day) ^a			
	142.6 ‡‡‡	150.3 *	159.1 ***	
	± 2.4 §§§	<u>+</u> 2.2	± 2.4	
	N=15	N=15	N=15	
Feed Consumption (pnd 27 to 28	, ,			
	153.1	157.5	164.9	
	<u>+</u> 5.8 N=15	<u>+</u> 3.0 N=15	<u>+</u> 3.5 N=15	
Feed Consumption (pnd 28 to 29)) (g/kg/day) ^a			
	134.9	138.8	145.7	
	<u>+</u> 3.5	<u>+</u> 4.0	<u>+</u> 5.7	
	N=15	N=15	N=15	
Feed Consumption (pnd 29 to 30)) (g/kg/day) ^a			
	127.3 ‡	133.9	145.5 **	
	<u>+</u> 2.4 §§ N=15	<u>+</u> 1.1 N=15	<u>+</u> 7.0 N=15	
Feed Consumption (pnd 30 to 31		14-15	14-10	
(1)	128.9 ‡‡	130.4	140.3 **	
	<u>+</u> 2.4 §§	<u>+</u> 2.4	<u>+</u> 2.7	
	N=14 ^C	N=15	N=14 ^b	
Feed Consumption (pnd 31 to 32	?) (g/kg/day) ^a			
	134.2	132.3	132.5	
	<u>+</u> 2.3 N=14	<u>+</u> 2.0 N=15	<u>+</u> 3.0 N=15	

Table 4-H. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 6 of 8)

	Ph	nenobarbital (mg/kg/c	lay, po)
	0	50	100
Feed Consumption (pnd 32 to 33) (g/	/kg/day) ^a		
	132.2 <u>+</u> 3.9 N=14	128.4 <u>+</u> 3.3 N=15	139.8 <u>+</u> 5.0 N=15
Feed Consumption (pnd 33 to 34) (g/	/kg/day) ^a		
	124.3 <u>+</u> 2.6 N=14	124.4 <u>+</u> 2.0 N=15	132.2 <u>+</u> 3.6 N=15
Feed Consumption (pnd 34 to 35) (g/	/kg/day) ^a		
	123.7 <u>+</u> 5.6 N=14	129.3 <u>±</u> 1.5 N=14 ^b	130.2 <u>+</u> 4.1 N=15
Feed Consumption (pnd 35 to 36) (g/	/kg/day) ^a		
	121.9 <u>+</u> 2.8 N=14	125.1 ± 5.1 N=15	125.6 ± 2.3 N=15
Feed Consumption (pnd 36 to 37) (g/	/kg/day) ^a		
	123.5 <u>+</u> 1.7 § N=14	130.9 <u>+</u> 2.3 N=14 ^b	133.5 <u>+</u> 4.9 N=15
Feed Consumption (pnd 37 to 38) (g	/kg/day) ^a		
	118.7 <u>+</u> 1.7 N=14	128.3 <u>+</u> 3.2 N=14 ^b	124.8 <u>+</u> 7.7 N=15
Feed Consumption (pnd 38 to 39) (g/	/kg/day) ^a		
	115.9 <u>+</u> 3.0 N=14	119.5 <u>+</u> 5.5 N=14 ^d	119.6 <u>+</u> 3.7 N=15
Feed Consumption (pnd 39 to 40) (g/	/kg/day) ^a		
	111.3 <u>+</u> 1.9 N=14	114.6 <u>+</u> 4.4 N=15	119.3 <u>+</u> 4.8 N=15
Feed Consumption (pnd 40 to 41) (g/	/kg/day) ^a		
	106.5 <u>+</u> 2.0 N=14	105.3 <u>±</u> 6.8 N=15	109.2 <u>+</u> 2.0 N=15

Table 4-H. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 7 of 8)

	Phe	enobarbital (mg/kg/d	ay, po)
-	0	50	100
Feed Consumption (pnd 41 to 42) (g/	/kg/day) ^a		
	108.8 ‡‡ <u>+</u> 2.5 §§ N=14	118.1 * <u>+</u> 2.7 N=14 ^b	119.1 ** <u>+</u> 2.0 N=15
Feed Consumption (pnd 42 to 43) (g/	/kg/day) ^a		
	100.4 <u>+</u> 3.0 N=14	108.5 <u>+</u> 5.3 N=15	110.9 <u>+</u> 2.1 N=15
Feed Consumption (pnd 43 to 44) (g/	/kg/day) ^a		
	95.9 ‡‡ <u>+</u> 2.4 §§ N=14	103.9 * <u>±</u> 2.3 N=14 ^b	105.6 ** <u>+</u> 1.5 N=15
Feed Consumption (pnd 44 to 45) (g/	/kg/day) ^a		
	94.7 <u>+</u> 1.2 § N=14	101.3 <u>+</u> 2.4 N=15	101.5 <u>+</u> 2.6 N=15
Feed Consumption (pnd 45 to 46) (g/	/kg/day) ^a		
	96.2 <u>+</u> 1.8 § N=14	99.2 <u>+</u> 2.3 N=15	102.8 <u>+</u> 1.5 N=15
Feed Consumption (pnd 46 to 47) (g/	/kg/day) ^a		
	91.6 ‡‡‡ <u>+</u> 2.0 §§§ N=13 ^b	96.7 <u>+</u> 2.1 N=15	103.9 *** <u>+</u> 1.7 N=15
Feed Consumption (pnd 47 to 48) (g/	/kg/day) ^a		
	87.3 <u>+</u> 1.2 § N=13 ^b	90.5 <u>+</u> 2.4 N=15	94.7 <u>+</u> 2.3 N=15
Feed Consumption (pnd 48 to 49) (g/	/kg/day) ^a		
	87.6 <u>+</u> 2.2 § N=14	87.9 <u>+</u> 1.2 N=15	92.9 <u>+</u> 1.8 N=15
Feed Consumption (pnd 49 to 50) (g/	/kg/day) ^a		
	86.7 ‡ <u>+</u> 1.9 §§ N=14	90.1 <u>+</u> 2.0 N=14 ^b	94.0 ** <u>+</u> 1.4 N=15

Table 4-H. Summary and Statistical Analysis of the Feed Consumption During the Post Wean Period for the Phenobarbital Treated F₁ Males (page 8 of 8)

	Phe	enobarbital (mg/kg/d	av no)
	0	50	100
Feed Consumption (pnd 50 to 51)	(g/kg/day) ^a		
	86.7 <u>±</u> 1.5 § N=14	91.2 <u>+</u> 2.1 N=14 ^d	94.3 <u>+</u> 2.6 N=15
Feed Consumption (pnd 51 to 52)	(g/kg/day) ^a		
	81.0 <u>±</u> 1.3 N=14	82.3 <u>+</u> 2.7 N=15	79.9 <u>+</u> 2.2 N=15
Feed Consumption (pnd 52 to 53)	(g/kg/day) ^{a,e}		
	78.1 <u>+</u> 1.5 N=5	83.5 <u>+</u> 3.5 N=5	83.6 <u>+</u> 3.2 N=3
Feed Consumption (pnd 23 to 52,	treatment period) (g/kg	/day) ^a	
	107.3 ‡‡‡ <u>+</u> 0.9 §§§ N=12 ^f	111.4 ** <u>+</u> 1.1 N=12 ^f	114.9 *** <u>+</u> 0.7 N=14 ^f
Feed Consumption (pnd 23 to 53,	treatment period) (g/kg	/day) ^{a,e}	
	103.7 ‡ <u>+</u> 1.1 §§ N=5	110.8 * <u>+</u> 2.3 N=5	112.4 * <u>+</u> 1.0 N=2 ^f

^aReported as the mean \pm S.E.M.; pnd = postnatal day.

^bDecrease in N is due to the feed consumption value for one or more animals being a statistical outlier and therefore it was excluded.

^CMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

^CDecrease in N is due to the feed consumption value for one animal being unrealistic (i.e. negative) and therefore it was excluded.

^eIncludes those animals that were not scheduled for sacrifice until postnatal day 53.

[†]Decrease in N is due to interim feed consumption value(s) for one or more animals being missing and

therefore the overall feed consumption value could not be calculated.

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

[‡]p<0.05; ANOVA Test.

[‡]‡p<0.01; ANOVA Test.

^{‡‡‡}p<0.001; ANOVA Test.

^{\$}p<0.05; Test for Linear Trend.

^{§\$}p<0.01; Test for Linear Trend.

^{§§§}p<0.001; Test for Linear Trend.

^{*}p<0.05; Dunnett's Test.

^{**}p<0.01; Dunnett's Test.

p<0.001; Dunnett's Test.

Table 5-A. Summary of Clinical Observations During the Post Wean Period for the Atrazine-Treated F_1 Males (page 1 of 3)

A. Clinical Observations Summarized by Group	Atrazine (mg/kg/day, po)			
Observation	0	75	150	
Efflux of the dosing solution		4	2	
Found dead after dosing		1		
Rooting: post dosing		6	11	
Rooting: prior to dosing			2	
Rust colored fur			1	
Salivation: post dosing			1	
Salivation: prior to dosing	2	8	12	

B. Clini	cal Observations Summarized by Group and D ay	Atrazine (mg/kg/day, po)		
Day ^a	Observation ^b	0	75	150
24	Efflux of the dosing solution			1
25	Efflux of the dosing solution		1	
29	Rooting: post dosing			1
	Salivation: prior to dosing		1	1
30	Rooting: post dosing			1
	Salivation: prior to dosing		1	1
31	Salivation: prior to dosing		1	1
32	Rooting: post dosing			3
	Salivation: prior to dosing		1	2
33	Rooting: post dosing			4
	Salivation: prior to dosing		4	3
34	Rooting: post dosing			4
	prior to dosing			1
	Salivation: prior to dosing		3	2
35	Rooting: post dosing			5
	prior to dosing			1
	Salivation: prior to dosing		3	3
36	Rooting: post dosing			2
	Salivation: prior to dosing		2	2

Table 5-A. Summary of Clinical Observations During the Post Wean Period for the Atrazine-Treated F_1 Males (page 2 of 3)

B. Clin	ical Observations Summarized by Group and D ay	A	Atrazine (mg/kg/day, po)		
Day ^a	Observation ^b	0	75	150	
37	Efflux of the dosing solution		1		
	Found dead after dosing		1		
	Rooting: post dosing			3	
	Salivation: prior to dosing		5	6	
38	Rooting: post dosing			6	
	Salivation: prior to dosing		6	7	
39	Efflux of the dosing solution			1	
	Efflux of the dosing solution, slight		1		
	Rooting: post dosing		3	4	
	Salivation: prior to dosing		5	6	
40	Rooting: post dosing		2	3	
	Salivation: prior to dosing		3	3	
41	Rooting: post dosing		1	3	
	Salivation: prior to dosing		4	6	
42	Rooting: post dosing			3	
	Salivation: prior to dosing		3	8	
43	Efflux of the dosing solution			1	
	Rooting: post dosing		3	4	
	Salivation: prior to dosing		4	7	
44	Rooting: post dosing		1	9	
	Salivation: post dosing			1	
	prior to dosing		5	6	
45	Rooting: post dosing		2	4	
	prior to dosing			1	
	Salivation: prior to dosing		2	11	
46	Rooting: post dosing		2	5	
	Salivation: postdosing			1	
	prior to dosing		4	4	
47	Efflux of the dosing solution		1		
	Rooting: post dosing		1	5	
	Salivation: post dosing			1	
	prior to dosing	2	3	3	
48	Rooting: post dosing		2	7	
	Rust co lored fur: ch in			1	
	Salivation: prior to dosing		1	5	

Table 5-A. Summary of Clinical Observations During the Post Wean Period for the Atrazine-Treated F_1 Males (page 3 of 3)

B. Cli	nical Observations Summarized by Group and Day	Atr	azine (mg/kg/day,	po)
Day ^a	Observation b	0	75	150
49	Rooting: post dosing		2	7
	Rust co lored fur: ch in			1
	Salivation: prior to dosing		2	6
50	Efflux of the dosing solution			1
	Efflux of the dosing solution, small amount		1	
	Rooting: post dosing		1	4
	Rust colored fur: ch in			1
	Salivation: prior to dosing		3	4
51	Rooting: post dosing		1	1
	Salivation: prior to dosing		1	3
52	Rooting: post dosing		1	3
	Salivation: prior to dosing			3

^aPostnata l day.

 $^{^{\}mbox{\scriptsize b}}$ Clini cal ob serv ation s are tabulated once p er day per a nim al.

Table 5-B. Summary of Clinical Observations During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene-Treated F_1 Males (page 1 of 2)

A. Clinical Observations Summarized by Group p,p'-Dichlorodiphenyldichloroethylene (mg/kg/di			(mg/kg/day, po)
Observation	0	50	100
Chromodacryorrhea		1	1
Efflux of the dosing solution			1
Euthanized after dosing due to a leg injury		1	
Injury of the left rear leg, swelling of the left metatars al area, possible fracture but not evident		1	
Rooting: post dosing		1	9
Rust colored fur		1	
Salivation: prior to dosing	2	1	3

B. Clir	nical Observations Summarized by Group and Day	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)			
Day ^a	Observation b	0	50	100	
26	Efflux of the dosing solution			1	
	Injury of the left rear leg, swelling of the left metatarsal area, possible fracture but not evident		1		
27	Injury of the left rear leg, swelling of the left metatarsal area, possible fracture but not evident		1		
28	Injury of the left rear leg, swelling of the left metatarsal area, possible fracture but not evident		1		
29	Injury of the left rear leg, increased swelling of the left metatarsal area, possible fracture but not evident; euthanized after dosing		1		
	Rooting: post dosing		1	1	
	Salivation: prior to dosing		1		
31	Rooting: post dosing			1	
	Salivation: prior to dosing		1	1	
32	Rooting: post dosing		1		
	Salivation: prior to dosing		1		
34	Chromodacryorrhea: nose		1		
	Salivation: prior to dosing		1		
35	Rooting: post dosing		1	5	
	Salivation: prior to dosing		1		
36	Rooting: post dosing			1	
37	Rooting: post dosing			2	
	Salivation: prior to dosing		1		

Table 5-B. Summary of Clinical Observations During the Post Wean Period for the p,p'-Dichlorodiphenyldichloroethylene-Treated F_1 Males (page 2 of 2)

B. Clir	ical Observations Summarized by Group and Day	p,p'-Dichlorodip	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
Day ^a	Observation b	0	50	100	
38	Rooting: post dosing			2	
	Salivation: prior to dosing		1		
39	Rooting: post dosing			2	
	Salivation: prior to dosing		1		
40	Rooting: post dosing			2	
	Salivation: prior to dosing		1	1	
41	Rooting: post dosing			1	
	Salivation: prior to dosing		1		
42	Salivation: prior to dosing		1		
43	Efflux of the dosing solution, slight			1	
	Rooting: post dosing			2	
	Rust colored fur: back		1		
	Salivation: prior to dosing		1		
44	Chromodacryorrhea: eye, right			1	
	Rust colored fur: back		1		
45	Chromodacryorrhea: eye, right			1	
	Rooting: post dosing			2	
	Salivation: prior to dosing		1	1	
46	Chromodacryorrhea: eye, right			1	
47	Chromodacryorrheæ eye, right			1	
	Salivation: prior to dosing	2	1		
48	Chromodacryorrhea: eye, right, gone			1	
49	Rooting: post dosing			1	
	Salivation: prior to dosing		1		

^aPostnata l day.

 $^{{}^{}b}Clini\,cal\,\,ob\,serv\,ation\,s\,\,are\,\,tabu\,lated\,\,o\,nce\,\,p\,er\,\,da\,y\,\,per\,\,a\,nim\,al.$

Table 5-C. Summary of Clinical Observations During the Post Wean Period for the Vinclozolin-Treated ${\sf F_1}$ Males (page 1 of 2)

A. Clinical Observations Summarized by Group	Vinclozolin (mg/kg/day, po)			
Observation	0	0 30 10		
Animal not dosed, no dosing solution available		2		
Efflux of the dosing solution		1	3	
Piloerection			1	
Rooting: post dosing		4	4	
Salivation: prior to dosing	2	2	5	
Sore(s)		1		

B. Clir	nical Observations Summarized by Group and Day	Vinc	lozolin (mg/kg/day	y, po)
Day ^a	Observation ^b	0	30	100
25	Efflux of the dosing solution			2
	Piloerection			1
26	Rooting: post dosing			1
29	Efflux of the dosing solution			1
	Salivation: prior to dosing			2
30	Salivation: prior to dosing			2
32	Salivation: prior to dosing			1
33	Salivation: prior to dosing			1
34	Salivation: prior to dosing			2
35	Rooting: post dosing		1	
	Salivation: prior to dosing			1
36	Salivation: prior to dosing		1	1
37	Rooting: post dosing			1
	Salivation: prior to dosing		1	2
38	Efflux of the dosing solution, slight			1
	Rooting: post dosing			1
	Salivation: prior to dosing		1	3

Table 5-C. Summary of Clinical Observations During the Post Wean Period for the Vinclozolin-Treated ${\sf F_1}$ Males (page 2 of 2)

B. Clin	ical Observations Summarized by Group and Day	Vinclozolin (mg/kg/day, po)		
Day ^a	Observation ^b	0	30	100
39	Efflux of the dosing solution, slight		1	
	Rooting: post dosing			1
	Salivation: prior to dosing			3
40	Rooting: post dosing			2
	Salivation: prior to dosing			3
41	Rooting: post dosing		1	1
	Salivation: prior to dosing			2
43	Rooting: post dosing		2	
	Salivation: prior to dosing			1
44	Rooting: post dosing		1	1
	Salivation: prior to dosing			2
45	Rooting: post dosing			1
	Salivation: prior to dosing			2
46	Efflux of the dosing solution			1
	Rooting: post dosing			1
	Sore(s): neck		1	
47	Salivation: prior to dosing	2		
	Sore(s): neck		1	
48	Sore(s): neck		1	
49	Rooting: post dosing			1
	Sore(s): neck		1	
50	Animal not dosed, no dosing solution available		2	
	Sore(s): neck, healed		1	
51	Salivation: prior to dosing			1

 $^{^{\}rm a}{\rm Pos}\,{\rm tnata}\,{\rm I}$ day. $^{\rm b}{\rm Clinic}\,{\rm al}$ observations are tabulated once per day per animal.

Table 5-D. Summary of Clinical Observations During the Post Wean Period for the Methoxychlor-Treated F_1 Males (page 1 of 1)

A. Clinical Observations Summarized by Group	Methoxychlor (mg/kg/day, po)		
Observation	0 25 50		
Chromodacryorrhea		1	
Efflux of the dosing solution		2	1
Rooting: post dosing			2
Salivation: prior to dosing	2		

B. Clin	ical Observations Summarized by Group and Day	Methoxychlor (mg/kg/day, po)			
Day ^a	Observation ^b	0	25	50	
23	Efflux of the dosing solution		2	1	
30	Rooting: post dosing			1	
34	Chromodacryorrhea: nose		1		
44	Rooting: post dosing			1	
45	Rooting: post dosing			1	
47	Salivation: prior to dosing	2			
48	Rooting: post dosing			1	

 $^{^{\}rm a}{\rm Pos}\,{\rm tnatal}$ day. $^{\rm b}{\rm Clinical}$ observations are tabulated once per day per animal.

Table 5-E. Summary of Clinical Observations During the Post Wean Period for the Propylthiouracil-Treated F_1 Males (page 1 of 2)

A. Clinical Observations Summarized by Group	Propy	Propylthiouracil (mg/kg/day, po)			
Observation	0	0 2 25			
Efflux of the dosing solution		1	1		
Found dead prior to dosing	1		1		
Rooting: post dosing		2	14		
Rough coat		1			
Salivation: prior to dosing		1	1		

B. Clin	ical Observations Summarized by Group and Day	Propylth	iouracil (mg/kg	/day, po)
Day ^a	Observation ^b	0	2	25
30	Rooting: post dosing			5
-	Rough coat		1	
31	Found dead prior to dosing	1		
	Rooting: post dosing			4
32	Rooting: post dosing		1	7
33	Rooting: post dosing			11
34	Rooting: post dosing			4
35	Rooting: post dosing			1
	Salivation: prior to dosing		1	
36	Rooting: post dosing			2
37	Rooting: post dosing			6
38	Efflux of the dosing solution		1	
	Rooting: post dosing			7
	Salivation: prior to dosing			1
39	Rooting: post dosing		1	5
40	Rooting: post dosing			2
41	Rooting: post dosing			5
42	Rooting: post dosing			1
43	Rooting: post dosing			1
44	Rooting: post dosing			3
	Salivation: prior to dosing			1

Table 5-E. Summary of Clinical Observations During the Post Wean Period for the Propylthiouracil-Treated F_1 Males (page 2 of 2)

B. Clin	ical Observations Summarized by Group and Day	Propylthiouracil (mg/kg/day, po)		
Day ^a	Observation ^b	0	2	25
45	Efflux of the dosing solution			1
	Rooting: post dosing			4
46	Rooting: post dosing			1
47	Rooting: post dosing			6
48	Rooting: post dosing			7
	Salivation: prior to dosing			1
49	Rooting: post dosing			3
50	Efflux of the dosing solution			1
	Found dead prior to dosing			1
	Rooting: post dosing			1
51	Rooting: post dosing			1

 $^{^{\}rm a}{\rm Pos}\,{\rm tnatal}$ day. $^{\rm b}{\rm Clinical}$ observations are tabulated once per day per animal.

Table 5-F. Summary of Clinical Observations During the Post Wean Period for the Ketoconazole-Treated F_1 Males (page 1 of 3)

A. Clinical Observations Summarized by Group	Keto	Ketoconazole (mg/kg/day, po)			
Observation	0	50	100		
Efflux of the dosing solution		1	1		
Found dead prior to dosing	1		1		
Piloerection			1		
Rooting: post dosing		14	15		
Rooting: prior to dosing		1			
Rough coat		1	2		
Salivation: prior to dosing		4	13		

B. Clir	B. Clinical Observations Summarized by Group and Day		Ketoconazole (mg/kg/day, po)		
Day ^a	Observation ^b	0	50	100	
24	Efflux of the dosing solution		1		
25	Efflux of the dosing solution			1	
	Salivation: prior to dosing			1	
26	Rooting: post dosing			9	
27	Rooting: post dosing		4	10	
	Salivation: prior to dosing			1	
28	Rooting: post dosing		2	4	
	Salivation: prior to dosing			1	
29	Rough coat			1	
30	Rooting: post dosing		1		
	Rough coat			2	
31	Found dead prior to dosing	1			
	Rooting: post dosing		2	5	
	prior to dosing		1		
32	Rooting: post dosing		1	7	
	Rough coat			1	
	Salivation: prior to dosing			2	
33	Rooting: post dosing		1	7	
	Rough coat			1	
	Salivation: prior to dosing			3	
34	Rooting: post dosing		1	6	
	Rough coat		1	1	
	Salivation: prior to dosing		2	9	

Table 5-F. Summary of Clinical Observations During the Post Wean Period for the Ketoconazole-Treated F_1 Males (page 2 of 3)

3. Clinical Observations Summarized by Group and Day		Ketod	Ketoconazole (mg/kg/day, po)		
Day ^a	Observation ^b	0	50	100	
35	Rooting: post dosing		3	5	
	Rough coat			1	
	Salivation: prior to dosing			1	
36	Piloerection			1	
	Rooting: post dosing		3	7	
	Rough coat			1	
	Salivation: prior to dosing			3	
37	Found dead prior to dosing			1	
	Rooting: post dosing		9	9	
	Rough coat			1	
	Salivation: prior to dosing			2	
38	Rooting: post dosing		10	11	
	Rough coat			1	
	Salivation: prior to dosing			3	
39	Rooting: post dosing		9	5	
	Rough coat			1	
	Salivation: prior to dosing			2	
40	Rooting: post dosing		4	7	
	Rough coat			1	
	Salivation: prior to dosing		1	5	
41	Rooting: post dosing		1	9	
	Salivation: prior to dosing		2	4	
42	Rooting: post dosing			4	
	Salivation: prior to dosing		1	1	
43	Rooting: post dosing			2	
	Salivation: prior to dosing			1	
44	Rooting: post dosing		1	3	
	Salivation: prior to dosing		1	1	
45	Rooting: post dosing		4	7	
	Salivation: prior to dosing			1	
46	Rooting: post dosing		5	5	
	Salivation: prior to dosing			1	
47	Rooting: post dosing		1	4	
	Salivation: prior to dosing			2	

Table 5-F. Summary of Clinical Observations During the Post Wean Period for the Ketoconazole-Treated F_1 Males (page 3 of 3)

B. Clin	ical Observations Summarized by Group and Day	Ketoconazole (mg/kg/day, po)		
Day ^a	Observation ^b	0	50	100
48	Rooting: post dosing		1	8
	Salivation: prior to dosing			6
49	Rooting: post dosing			1
	Salivation: prior to dosing			4
50	Rooting: post dosing		1	4
	Salivation: prior to dosing			3
51	Rooting: post dosing			2
	Salivation: prior to dosing			3
52	Salivation: prior to dosing			2

 $^{^{\}rm a}{\rm Pos}\,{\rm tnata}\,{\rm I}\,{\rm day}.$ $^{\rm b}{\rm Clinic}\,{\rm al}\,{\rm obs}\,{\rm erva}\,{\rm tions}\,$ are tabulated once per day per animal.

Table 5-G. Summary of Clinical Observations During the Post Wean Period for the Linuron-Treated F_1 Males (page 1 of 2)

A. Clinical Observations Summarized by Group	Lii	Linuron (mg/kg/day, po)		
Observation	0	50	100	
Difficult to dose			1	
Efflux of the dosing solution		1		
Found dead prior to dosing	1			
Rooting: post dosing		15	15	
Salivation: post dosing		1		
Salivation: prior to dosing		6	14	

B. Clin	ical Observations Summarized by Group and Day	Linu	Linuron (mg/kg/day, po)		
Day ^a	Observation ^b	0	50	100	
25	Efflux of the dosing solution			1	
	Rooting: post dosing			5	
26	Rooting: post dosing			11	
	Salivation: prior to dosing			1	
27	Rooting: post dosing			15	
28	Rooting: post dosing			5	
29	Rooting: post dosing			1	
	Salivation: prior to dosing			3	
30	Rooting: post dosing		4	10	
	Salivation: prior to dosing		2	4	
31	Found dead prior to dosing	1			
	Rooting: post dosing		7	14	
	Salivation: prior to dosing		1	3	
32	Rooting: post dosing		7	13	
	Salivation: prior to dosing		1	6	
33	Rooting: post dosing		14	12	
	Salivation: prior to dosing		1	5	
34	Rooting: post dosing		6	12	
	Salivation: prior to dosing		1	4	
35	Rooting: post dosing		3	10	
	Salivation: prior to dosing			1	
36	Rooting: post dosing		2	12	
	Salivation: prior to dosing			1	

Table 5-G. Summary of Clinical Observations During the Post Wean Period for the Linuron-Treated F_1 Males (page 2 of 2)

B. Clin	ical Observations Summarized by Group and Day	Linuron (mg/kg/day, po)		
Day ^a	Observation ^b	0	50	100
37	Rooting: post dosing		9	12
	Salivation: prior to dosing		2	4
38	Rooting: post dosing		9	15
	Salivation: prior to dosing		3	6
39	Rooting: post dosing		11	14
	Salivation: prior to dosing		1	3
10	Rooting: post dosing		10	11
	Salivation: prior to dosing		2	9
41	Difficult to dose			1
	Rooting: post dosing		7	10
	Salivation: prior to dosing		2	7
42	Rooting: post dosing		4	5
	Salivation: prior to dosing		3	5
43	Rooting: post dosing		5	1
	Salivation: prior to dosing		5	2
44	Rooting: post dosing		9	11
	Salivation: prior to dosing		4	6
15	Rooting: post dosing		7	7
	Salivation: prior to dosing		5	4
16	Rooting: post dosing		4	4
	Salivation: prior to dosing		2	4
17	Rooting: post dosing		10	7
	Salivation: prior to dosing		2	3
18	Rooting: post dosing		10	9
	Salivation: prior to dosing		2	2
19	Rooting: post dosing		5	2
	Salivation: prior to dosing		1	1
50	Rooting: post dosing		3	7
	Salivation: prior to dosing		1	1
51	Rooting: post dosing		7	5
	Salivation: postdosing		1	
	priorto dosing		1	1
52	Salivation: prior to dosing			1

^aPostn atal da y.

 $^{{}^{\}mbox{\scriptsize b}}\mbox{Clinica I}$ observ ations are tabulated on ce per day per a nimal.

Table 5-H. Summary of Clinical Observations During the Post Wean Period for the Phenobarbital-Treated F_1 Males (page 1 of 3)

A. Clinical Observations Summarized by Group	Pheno	Phenobarbital (mg/kg/day, po)		
Observation	0	50	100	
Ataxia: post dosing		6	5	
Efflux of the dosing solution		1	1	
Found dead prior to dosing	1			
Prone: postdosing		4	15	
Right front leg: bruised			1	
Right front paw: second digit missing			1	
Rooting: post dosing		12	15	
Rough coat		4	3	
Salivation: prior to dosing		4	6	

B. Clir	ical Observations Summarized by Group and Day	Phen	obarbital (mg/kg/da	ay, po)
Day ^a	Observation ^b	0	50	100
23	Ataxia: post dosing		2	3
	Efflux of the dosing solution		1	
	Prone: postdosing		1	9
24	Ataxia: post dosing		3	2
	Efflux of the dosing solution			1
	Prone: postdosing		4	15
25	Ataxia: post dosing		1	
	Prone: postdosing			6
26	Rooting: post dosing		4	8
	Salivation: prior to dosing		1	1
27	Rooting: post dosing		5	13
	Salivation: prior to dosing		1	2
28	Rooting: post dosing		2	6
30	Right front leg: bruised, animal not using it			1
	Rooting: post dosing		3	2
31	Found dead prior to dosing	1		
	Right front leg: bruised, animal using it a little			1
	Rooting: post dosing		4	4
32	Right front leg: bruised, animal using it			1
	Rooting: post dosing		1	11
	Salivation: prior to dosing		1	3
33	Rooting: post dosing		3	5
	Rough coat		2	2
	Salivation: prior to dosing		1	2

Table 5-H. Summary of Clinical Observations During the Post Wean Period for the Phenobarbital-Treated F_1 Males (page 2 of 3)

B. Clin	ical Observations Summarized by Group and Day	Phen	Phenobarbital (mg/kg/day, po)		
Day ^a	Observation ^b	0	50	100	
34	Rooting: post dosing		4	4	
	Rough coat		2		
	Salivation: prior to dosing		1	3	
35	Rooting: post dosing		3	7	
	Rough coat		1		
	Salivation: prior to dosing			1	
36	Rooting: post dosing		2	7	
	Rough coat		1		
37	Rooting: post dosing		5	10	
	Rough coat			1	
	Salivation: prior to dosing		1		
38	Rooting: post dosing		6	11	
	Rough coat		1	1	
	Salivation: prior to dosing		1	2	
39	Rooting: post dosing		5	11	
	Rough coat		1	1	
	Salivation: prior to dosing		1	3	
40	Right front paw: second digit missing			1	
	Rooting: post dosing		6	7	
	Salivation: prior to dosing		3	4	
41	Right front paw: second digit missing			1	
	Rooting: post dosing		6	7	
	Salivation: prior to dosing		1	1	
42	Right front paw: second digit missing			1	
	Rooting: post dosing		2	5	
43	Right front paw: second digit missing			1	
	Rooting: post dosing		1	2	
45	Rooting: post dosing		1		
46	Rooting: post dosing			1	
47	Rooting: post dosing		2	4	
48	Rooting: post dosing		3	3	
	Salivation: prior to dosing		1	1	
49	Rooting: post dosing		2	4	

Table 5-H. Summary of Clinical Observations During the Post Wean Period for the Phenobarbital-Treated F_1 Males (page 3 of 3)

B. Clinical Observations Summarized by Group and Day		Phenobarbital (mg/kg/day, po)			
Day ^a Observation ^b 0		50	100		
50	Salivation: prior to dosing		1	1	
51	Rooting: post dosing		1		

 $^{^{\}mbox{\scriptsize aPostnatal}}$ day. $^{\mbox{\scriptsize b}}\mbox{\scriptsize Clinical observations}$ are tabulated once per day per animal.

Table 6-A. Summary and Statistical Analysis of the Preputial Separation Data for the Atrazine-Treated F₁ Males (page 1 of 1)

	А	Atrazine (mg/kg/day, po)			
	0	75	150		
No. of Males on Study	12 ^a	13 ^b	12 ^C		
Number of Males Evaluated					
	12	12 ^d	12		
Average Postnatal Day of Preputia	l Separation ^e				
	41.4	42.0	42.9		
	<u>+</u> 0.7	<u>+</u> 0.5	<u>+</u> 0.4		
	N=12	N=12	N=12		
Average Body Weight (g) on Day o	f Acquisition ^e				
	219.50 ‡	208.84	200.26 *		
	<u>+</u> 5.79 §§	<u>+</u> 5.57	<u>+</u> 2.64		
	N=12	N=12	N=12		

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

^bMale 18 was removed from the study because it was not dosed on the correct postnatal days and male 119 was removed from the study because his correct postnatal day 0 could not be confirmed.

^CMales 55, 118 and 127 were removed from the study because their correct postnatal day 0 could not be confirmed.

 $^{^{}m d}$ Male 54 was found dead on postnatal day 37 after dosing (misdirected dose).

eReported as the mean \pm S.E.M.; pnd = postnatal day.

[‡]p<0.05; ANOVA Test. §\$p<0.01; Test for Linear Trend. *p<0.05; Dunnett's Test.

Table 6-B. Summary and Statistical Analysis of the Preputial Separation Data for the p,p'-Dichlorodiphenyldichloroethylene-Treated F₁ Males (page 1 of 1)

	p,p'-Dichlorodiph	enyldichloroethylene	e (mg/kg/day, po)
	0	50	100
No. of Males on Study	12 ^a	14 ^b	15
Number of Males Evaluated			
	12	13 ^C	15
Average Postnatal Day of Preputial	l Separation ^d		
	41.4 ‡‡‡ <u>+</u> 0.7 §§§ N=12	44.9 *** <u>+</u> 0.3 N=13	45.7 *** <u>+</u> 0.4 N=15
Average Body Weight (g) on Day o	f Acquisition ^d		
	219.50 ‡‡‡ <u>+</u> 5.79 §§§ N=12	251.10 *** <u>+</u> 6.35 N=13	259.19 *** <u>+</u> 4.58 N=15

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

bMale 74 was removed from the study because his correct postnatal day 0 could not be confirmed.

^CMale 20 was euthanized on postnatal day 29 after dosing due to a leg injury.

dReported as the mean <u>+</u> S.E.M.; pnd = postnatal day. ###p<0.001; ANO VA Test.

^{§§§}p<0.001; Test for Linear Trend.
***p<0.001; Dunnett's Test.

Table 6-C. Summary and Statistical Analysis of the Preputial Separation Data for the Vinclozolin-Treated F₁ Males (page 1 of 1)

	Vin	Vinclozolin (mg/kg/day, po)		
	0	30	100	
No. of Males on Study	12 ^a	13 ^b	12 ^C	
Number of Males Evaluated				
	12	13	10 ^d	
Average Postnatal Day of Preputia	l Separation ^e			
	41.4 ‡‡‡ <u>+</u> 0.7 §§§ N=12	43.8 ** <u>+</u> 0.3 N=13	46.8 *** <u>+</u> 0.3 N=10	
Average Body Weight (g) on Day o	f Acquisition ^e			
	219.50 ‡‡‡ <u>+</u> 5.79 §§§ N=12	242.86 ** <u>+</u> 4.97 N=13	259.64 *** <u>+</u> 5.98 N=10	

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be

^bMales 79 and 115 were removed from the study because their correct postnatal day 0 could not be confirmed.

^CMales 24, 114 and 131 were removed from the study because their correct postnatal day 0 could not be confirmed.

^dMales 9 and 59 were not positive for preputial separation by postnatal day 52 when they were necropsied and therefore they were excluded from the evaluation.

eReported as the mean \pm S.E.M.; pnd = postnatal day.

^{###}p<0.001; ANO VA Test. \$\$\$p<0.001; Test for Linear Trend.

^{**}p<0.01; Dunnett's Test.

p<0.001; Dunn ett's Test.

Table 6-D. Summary and Statistical Analysis of the Preputial Separation Data for the Methoxychlor-Treated F_1 Males (page 1 of 1)

	Methoxychlor (mg/kg/day, po)			
	0	25	50	
No. of Males on Study	12 ^a	15	13 ^b	
Number of Males Evaluated				
	12	14 ^C	13	
Average Postnatal Day of Preputia	ıl Separation ^d			
	41.4	41.8	41.8	
	<u>+</u> 0.7 N=12	<u>+</u> 0.7 N=14	<u>+</u> 0.6 N=13	
Average Body Weight (g) on Day o	of Acquisition ^d			
	219.50	218.70	220.46	
	<u>+</u> 5.79 N=12	<u>+</u> 4.33 N=14	<u>+</u> 6.32 N=13	

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

bMales 17 and 30 were removed from the study because their correct postnatal day 0 could not be confirmed.

^cMale 134 was not positive for preputial separation by postnatal day 53 when it was necropsied and therefore it was excluded from the evaluation.

dReported as the mean \pm S.E.M.; pnd = postnatal day.

Table 6-E. Summary and Statistical Analysis of the Preputial Separation Data for the Propylthiouracil-Treated F_1 Males (page 1 of 1)

	Propy	/Ithiouracil (mg/kg/	day, po)
	0	2	25
No. of Males on Study	15	15	15
Number of Males Evaluated			
	14 ^a	15	15
Average Postnatal Day of Preputial	Separation ^b		
	39.6 ‡‡‡ <u>+</u> 0.4 §§§ N=14	40.4 <u>+</u> 0.4 N=15	43.3 *** <u>+</u> 0.5 N=15
Average Body Weight (g) on Day of	Acquisition ^b		
	207.47 ‡‡‡ <u>+</u> 4.20 §§§ N=14	216.75 <u>+</u> 4.75 N=15	166.54 *** <u>+</u> 3.95 N=15

aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).
bReported as the mean + S.E.M.; pnd = postnatal day.
###p<0.001; ANO VA Test.
\$\$\$p<0.001; Test for Linear Trend.

p<0.001; Dunnett's Test.

Table 6-F. Summary and Statistical Analysis of the Preputial Separation Data for the Ketoconazole-Treated F₁ Males (page 1 of 1)

	Ketoconazole (mg/kg/day, po)			
	0	50	100	
No. of Males on Study	15	15	15	
Number of Males Evaluated				
	14 ^a	15	14 ^b	
Average Postnatal Day of Preputial	Separation ^C			
#	39.6 ††† <u>+</u> 0.4 ŸŸŸ N=14	42.3 ÞÞÞ <u>+</u> 0.4 N=15	44.1 ÞÞÞ <u>+</u> 0.2 N=14	
Average Body Weight (g) on Day of	Acquisition ^C			
	207.47 ‡‡ <u>+</u> 4.20 §§ N=14	227.15 * <u>+</u> 7.26 N=15	234.76 ** <u>+</u> 4.98 N=14	

^aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

bMale 242 was found dead on postnatal day 37 prior to dosing (misdirected dose).

CReported as the mean \pm S.E.M.; pnd = postnatal day.

[#]Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

^{†††‡}p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model.

YYYp<0.001; Linear trend test in robust regression model.

PPPp
p<0.001; Individual t-test for pairwise comparisons to control in robust regression model.

^{‡‡}p<0.01; ANOVA Test.

^{\$\$}p<0.01; Test for Linear Trend. *p<0.05; Dunnett's Test. p<0.01; Dunnett's Test.

Table 6-G. Summary and Statistical Analysis of the Preputial Separation Data for the Linuron-Treated F_1 Males (page 1 of 1)

	Linuron (mg/kg/day, po)		
	0	50	100
No. of Males on Study	15	15	15
Number of Males Evaluated			
	14 ^a	15	15
Average Postnatal Day of Preputial S	eparation ^b		
	39.6 ‡‡‡ <u>+</u> 0.4 §§§ N=14	43.6 *** <u>+</u> 0.5 N=15	45.5 *** <u>+</u> 0.4 N=15
Average Body Weight (g) on Day of A	acquisition ^b		
	207.47 ‡ <u>+</u> 4.20 § N=14	226.64 * <u>+</u> 3.41 N=15	223.97 * <u>+</u> 6.41 N=15

aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).
bReported as the mean + S.E.M.; pnd = postnatal day.
tp<0.05; ANOVA Test.
tttp<0.001; ANOVA Test.
\$p<0.05; Test for Linear Trend.
\$\$\$p<0.05; Test for Linear Trend.
*p<0.05; Dunnett's Test.
***p<0.001; Dunnett's Test.

Table 6-H. Summary and Statistical Analysis of the Preputial Separation Data for the Phenobarbital-Treated F₁ Males (page 1 of 1)

	Phenobarbital (mg/kg/day, po)		
	0	50	100
No. of Males on Study	15	15	15
Number of Males Evaluated			
	14 ^a	15	15
Average Postnatal Day of Preputial S	separation ^b		
#	39.6 ††† <u>+</u> 0.4 ŸŸŸ N=14	41.3 ÞÞ <u>+</u> 0.3 N=15	43.0 ÞÞÞ <u>+</u> 0.5 N=15
Average Body Weight (g) on Day of A	Acquisition ^b		
	207.47 ‡ <u>+</u> 4.20 § N=14	220.48 <u>+</u> 5.27 N=15	224.17 * <u>+</u> 4.83 N=15

^aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

bReported as the mean \pm S.E.M.; pnd = postnatal day.

[#]Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

tt.t.p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model.

YYYp<0.001; Linear trend test in robust regression model.

PPp<0.01; Individual t-test for pairwise comparisons to control in robust regression model.

PPp<0.001; Individual t-test for pairwise comparisons to control in robust regression model.

[‡]p<0.05; ANOVA Test.

^{\$}p<0.05; Test for Linear Trend.

^{*}p<0.05; Dunnett's Test.

Table 7-A. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Atrazine Treated F₁ Males (page 1 of 6)

	Atra	nzine (mg/kg/day, p	o)
	0	75	150
No. of Males on Study	12 ^a	13 ^b	12 ^C
No. of Males at Scheduled Sacrifice	12	12 ^d	12
Sacrifice Body Weight (g) ^e			
	316.31 ‡‡‡ <u>+</u> 6.46 §§§ N=11 ^f	279.00 *** <u>+</u> 4.52 N=12	256.67 *** <u>+</u> 4.35 N=12
Pituitary Weight (g) ^e			
	0.0113 ‡‡‡ <u>+</u> 0.0003 §§§ N=12	0.0100 * <u>+</u> 0.0005 N=12	0.0079 *** <u>+</u> 0.0005 N=12
Thyroid Weight (g) ^e			
#	0.0185 <u>+</u> 0.0012 N=12	0.0205 <u>+</u> 0.0008 N=12	0.0186 <u>+</u> 0.0007 N=12
Liver Weight (g) ^e			
#	16.4133 †† <u>+</u> 0.6404 ŸŸŸ N=12	14.8414 Þ <u>+</u> 0.3419 N=12	13.9548 ÞÞ <u>+</u> 0.3022 N=12
Paired Adrenal Gland Weight (g) ^e			
	0.0534 <u>+</u> 0.0025 N=12	0.0497 <u>+</u> 0.0019 N=12	0.0538 <u>+</u> 0.0021 N=12
Paired Kidney Weight (g) ^e			
	2.8524 ‡‡ <u>+</u> 0.0865 §§ N=12	2.7231 <u>+</u> 0.0537 N=12	2.5378 ** <u>+</u> 0.0527 N=12
Paired Testis Weight (g) ^e			
	2.7402 <u>±</u> 0.0497 N=12	2.8174 <u>+</u> 0.0580 N=12	2.8196 <u>+</u> 0.0664 N=12
Paired Epididymis Weight (g) ^e			
	0.4856 ‡‡ <u>±</u> 0.0129 §§ N=12	0.4478 ± 0.0133 N=12	0.4207 ** ± 0.0126 N=12

Table 7-A. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Atrazine Treated F₁ Males (page 2 of 6)

		Atrazine (mg/kg/day, po)		
	0	75	150	
Ventral Prostate Weight (g) ^e				
	0.2407	0.2092	0.1969	
	<u>+</u> 0.0113 §	<u>+</u> 0.0145	<u>+</u> 0.0127	
	N=12	N=12	N=12	
Dorsolateral Prostate Weight (g) ^e				
	0.1973	0.1796	0.1560	
	<u>+</u> 0.0167 §	<u>+</u> 0.0079	<u>+</u> 0.0098	
	N=12	N=12	N=12	
Prostate Weight (g) ^e				
	0.4380 ‡	0.3888	0.3529 *	
	<u>+</u> 0.0221 §§	<u>+</u> 0.0195	<u>+</u> 0.0186	
	N=12	N=12	N=12	
Seminal Vesicles with Coagulating	Glands Weight (g) ^e			
	0.5529 ##	0.4528 *	0.4204 **	
	<u>+</u> 0.0332 §§ N=12	<u>+</u> 0.0260 N=12	<u>+</u> 0.0215 N=12	
Levator Ani plus Bulbcavernosus M			11-12	
Levator Arii pius Buibcavernosus ivi			0.5004 *	
	0.7060 ‡ <u>+</u> 0.0259 §§	0.5961 <u>+</u> 0.0406	0.5601 * <u>+</u> 0.0335	
	N=12	N=12	N=12	
Adjusted Distritory Weight (a) C				
Adjusted Pituitary Weight (g) ^g	0.0405	0.0404	0.0007	
	0.0105 + 0.0006	0.0101 <u>+</u> 0.0004	0.0087 <u>+</u> 0.0005	
	N=11 ^f	<u>-</u> 0.0004 N=12	N=12	
Adjusted Thyroid Weight (g) ⁹				
, ,	0.0195	0.0204	0.0183	
	<u>+</u> 0.0014	<u>+</u> 0.0007	± 0.0008	
	N=11 ^f	N=12	N=12	
Adjusted Liver Weight (g) ⁹				
	14.7885	15.0751	15.4710	
	<u>+</u> 0.6006	<u>+</u> 0.2601	<u>+</u> 0.3320	
	N=11 ^f	N=12	N=12	

Table 7-A. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Atrazine Treated F_1 Males (page 3 of 6)

	At	razine (mg/kg/day, p	00)
	0	75	150
Adjusted Paired Adrenal Gland Weigl	nt (g) ^g		
	0.0493 <u>+</u> 0.0033 N=11 ^f	0.0502 <u>+</u> 0.0022 N=12	0.0570 <u>+</u> 0.0029 N=12
Adjusted Paired Kidney Weight (g) ^g			
	2.5828 <u>+</u> 0.0744 N=11 ^f	2.7595 <u>+</u> 0.0481 N=12	2.7744 <u>+</u> 0.0648 N=12
Adjusted Paired Testis Weight (g) ⁹			
	2.6125 <u>+</u> 0.0812 ʎ N=11 ^f	2.8368 <u>+</u> 0.0525 N=12	2.9456 <u>±</u> 0.0707 N=12
Adjusted Paired Epididymis Weight (₃₎ 9		
	0.4526 <u>+</u> 0.0189 N=11 ^f	0.4522 <u>+</u> 0.0122 N=12	0.4490 <u>±</u> 0.0165 N=12
Adjusted Ventral Prostate Weight (g)	9		
	0.2254 <u>+</u> 0.0204 N=11 ^f	0.2112 <u>+</u> 0.0132 N=12	0.2097 <u>±</u> 0.0178 N=12
Adjusted Dorsolateral Prostate Weigh	nt (g)9		
	0.1652 <u>+</u> 0.0179 N=11 ^f	0.1834 <u>+</u> 0.0116 N=12	0.1808 <u>+</u> 0.0156 N=12
Adjusted Prostate Weight (g) ^g			
	0.3907 <u>+</u> 0.0303 N=11 ^f	0.3946 <u>+</u> 0.0196 N=12	0.3905 <u>±</u> 0.0264 N=12
Adjusted Seminal Vesicles with Coag	ulating Glands Weigl	ht (g) ^g	
	0.5288 <u>+</u> 0.0418 N=11 ^f	0.4572 <u>+</u> 0.0270 N=12	0.4491 <u>+</u> 0.0364 N=12
Adjusted Levator Ani plus Bulbcaverr	osus Muscle Comple	ex Weight (g) ^g	
	0.6639 <u>+</u> 0.0516 N=11 ^f	0.6028 <u>+</u> 0.0333 N=12	0.6040 <u>±</u> 0.0449 N=12

Table 7-A. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Atrazine Treated F₁ Males (page 4 of 6)

	Atra	zine (mg/kg/day, po))
	0	75	150
Adjusted Pituitary Weight (g) ^h			
	0.0114 ԾԾԾ <u>+</u> 0.0004 ʎʎʎ N=12	0.0099 % <u>+</u> 0.0004 N=12	0.0080 ንንን <u>+</u> 0.0004 N=12
Adjusted Thyroid Weight (g) ^h			
	0.0185 <u>+</u> 0.0011 N=12	0.0205 <u>+</u> 0.0008 N=12	0.0187 <u>+</u> 0.0007 N=12
Adjusted Liver Weight (g) ^h			
	16.4333 ♦♦♦ <u>+</u> 0.5017 △△△ N=12	14.7509	14.0254
Adjusted Paired Adrenal Gland Weight	(g) ^h		
	0.0535 ± 0.0021 N=12	0.0494 <u>+</u> 0.0021 N=12	0.0539 <u>±</u> 0.0021 N=12
Adjusted Paired Kidney Weight (g) ^h			
	2.8546 ଫଫ <u>+</u> 0.0622 ʎʎ N=12	2.7127 <u>+</u> 0.0624 N=12	2.5458 % <u>+</u> 0.0623 N=12
Adjusted Paired Testis Weight (g) ^h			
	2.7438 <u>+</u> 0.0445 N=12	2.8015 <u>+</u> 0.0446 N=12	2.8320 <u>+</u> 0.0446 N=12
Adjusted Paired Epididymis Weight (g)	1		
	0.4863 ƯƯƯ <u>+</u> 0.0105 ʎʎʎ N=12	0.4446 % <u>+</u> 0.0106 N=12	0.4232 ንንን <u>+</u> 0.0106 N=12
Adjusted Ventral Prostate Weight (g) ^h			
	0.2409 ± 0.0128 ʎ N=12	0.2081 <u>+</u> 0.0129 N=12	0.1977 <u>+</u> 0.0128 N=12
Adjusted Dorsolateral Prostate Weight ((g) ^h		
	0.1975 <u>+</u> 0.0122 ʎ N=12	0.1789 <u>+</u> 0.0122 N=12	0.1565 <u>+</u> 0.0122 N=12

Table 7-A. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Atrazine Treated F_1 Males (page 5 of 6)

	Atrazine (mg/kg/day, po)		
	0	75	150
Adjusted Prostate Weight (g)h			
	0.4384	0.3870 <u>+</u> 0.0200 N=12	0.3542 % <u>+</u> 0.0200 N=12
Adjusted Seminal Vesicles with Co	pagulating Glands Weigh	t (g) ^h	
	0.5536 ປັປ <u>+</u> 0.0267 ໒໒ N=12	0.4497 % <u>+</u> 0.0267 N=12	0.4229 ንን <u>+</u> 0.0267 N=12
Adjusted Levator Ani plus Bulbcav	ernosus Muscle Comple	x Weight (g) ^h	
	0.7073	0.5904 % <u>+</u> 0.0315 N=12	0.5646 ?? <u>+</u> 0.0314 N=12
Thyroxine Hormone (T4) (ug/dL) ^e			
	6.46 <u>+</u> 0.16 N=12	6.35 <u>+</u> 0.26 N=12	6.28 <u>+</u> 0.25 N=12
Thyroid Stimulating Hormone (TSH)) (ng/ml) ^e		
	10.95 <u>+</u> 1.06 N=12	10.89 <u>+</u> 1.31 N=12	12.66 <u>+</u> 1.81 N=12

```
<sup>a</sup>Males 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be
 confirmed.
```

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

\$p<0.05; Test for Linear Trend.

§§p<0.01; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

*p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

***p<0.001; Dunnett's Test. ttp<0.01; Wald Chi-square Test for overall treatment effect in robust regression model.

p<0.001; Linear trend test in robust regression model.

p<0.05; Individual t-test for pairwise comparisons to control in robust regression model.

pp<0.01; Individual t-test for pairwise comparisons to control in robust regression model.

Up<0.05; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

^{UU}p<0.01; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

^{UUU}p<0.001; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the

√p<0.05; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

Kp<0.01; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

KMp<0.001; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

%p<0.05; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.01; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.001; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

♦♦♦ p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

ΔΔΔp<0.001; Linear trend test in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

⁴⁴p<0.01; Individual t-test for pairwise comparisons to control in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

⁴⁴⁴p<0.001; Individual t-test for pairwise comparisons to control in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

^bMale 18 was removed from the study because it was not dosed on the correct postnatal days and male 119 was removed from the study because his correct postnatal day 0 could not be confirmed.

^CMales 55, 118 and 127 were removed from the study because their correct postnatal day 0 could not be confirmed.

dMale 54 was found dead on postnatal day 37 after dosing (misdirected dose).

^eReported as the mean + S.E.M.

^fDecrease in N is due to the body weight for one animal inadvertently not being recorded prior to blood being taken.

⁹Reported as the adjusted mean + S.E.M. (sacrifice weight as covariate).

hReported as the adjusted mean \pm S.E.M. (postnatal day 21 body weight as covariate).

[#]Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

Table 7-B. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the p,p'-Dichlorodiphenyldichloroethylene Treated F_1 Males (page 1 of 6)

_		enyldichloroethylene	(mg/kg/day, po)
	0	50	100
No. of Males on Study	12 ^a	14 ^b	15
No. of Males at Scheduled Sacrifice	12	13 ^C	15
Sacrifice Body Weight (g) ^d			
	316.31	316.80	311.09
	<u>+</u> 6.46 N=11 ^e	<u>+</u> 7.41 N=13	<u>+</u> 7.88 N=15
Pituitary Weight (g) ^d			
, , ,	0.0113	0.0110	0.0116
	± 0.0003	<u>+</u> 0.0005 N=13	<u>+</u> 0.0004 N=14 ^f
Thyroid Weight (g) ^d	N=12	N=13	N=14·
#	0.0195 ++	0.0220 Þ	0.0243 ÞÞ
#	0.0185 †† <u>+</u> 0.0012 ŸŸ	<u>+</u> 0.0007	+ 0.0016
	N=12	N=13	N=15
Liver Weight (g) ^d			
	16.4133 ‡‡‡ <u>+</u> 0.6404 §§§	22.4886 *** <u>+</u> 0.6320	23.8107 *** <u>+</u> 0.7765
	N=12	± 0.0320 N=13	<u>+</u> 0.7703 N=15
Paired Adrenal Gland Weight (g) ^d			
	0.0534	0.0536	0.0510
	<u>+</u> 0.0025 N=12	<u>+</u> 0.0023 N=12 ^f	<u>+</u> 0.0033 N=15
Paired Kidney Weight (g) ^d			
	2.8524 ‡	3.1923 *	3.2025 *
	<u>+</u> 0.0865 §	<u>+</u> 0.0776	<u>+</u> 0.1025
5 ·	N=12	N=13	N=15
Paired Testis Weight (g) ^d	0.7400	0.7000	0.7700
	2.7402 <u>+</u> 0.0497	2.7960 <u>+</u> 0.0465	2.7760 <u>+</u> 0.0604
	N=12	N=13	N=15
Paired Epididymis Weight (g) ^d			
	0.4856 ‡	0.4670	0.4356 *
	<u>+</u> 0.0129 § N=12	<u>+</u> 0.0140 N=13	<u>+</u> 0.0144 N=15

Table 7-B. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 2 of 6)

	p,p'-Dichlorodipher	nyldichloroethylene	
	0	50	100
Ventral Prostate Weight (g) ^d			
	0.2407 <u>±</u> 0.0113 N=12	0.2576 <u>+</u> 0.0195 N=13	0.2285 <u>+</u> 0.0159 N=15
Dorsolateral Prostate Weight (g) ^d			
	0.1973 <u>±</u> 0.0167 N=12	0.2196 <u>+</u> 0.0122 N=13	0.1954 <u>+</u> 0.0180 N=15
Prostate Weight (g) ^d			
	0.4380 <u>+</u> 0.0221 N=12	0.4772 <u>+</u> 0.0287 N=13	0.4239 <u>+</u> 0.0232 N=15
Seminal Vesicles with Coagulating G	Glands Weight (g) ^d		
	0.5529 <u>±</u> 0.0332 N=12	0.5648 <u>+</u> 0.0261 N=13	0.4891 <u>+</u> 0.0348 N=15
Levator Ani plus Bulbcavernosus Mu	uscle Complex Weight (g) ^d	
	0.7060 <u>±</u> 0.0259 N=12	0.6814 <u>+</u> 0.0420 N=13	0.6217 <u>+</u> 0.0291 N=15
Adjusted Pituitary Weight (g) ⁹			
	0.0115 <u>+</u> 0.0004 N=11 ^e	0.0111 <u>+</u> 0.0004 N=13	0.0116 <u>+</u> 0.0004 N=14 ^f
Adjusted Thyroid Weight (g) ^g			
	0.0190 ♦♦ <u>+</u> 0.0010 ፊፊ N=11 ^e	0.0218	0.0245
Adjusted Liver Weight (g) ^g			
	16.5695 ଫଫଫ <u>+</u> 0.5246 ʎʎʎ N=11 ^e	22.3261 %% <u>+</u> 0.4828 N=13	24.0453 <i>?</i> ? <u>+</u> 0.4503 N=15

Table 7-B. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 3 of 6)

	p,p'-Dichlorodiphe	nyldichloroethylene	(mg/kg/day, po)
	0	50	100
Adjusted Paired Adrenal Gland Weight	(g) ^g		
	0.0532 <u>+</u> 0.0031 N=11 ^e	0.0534 <u>+</u> 0.0030 N=12 ^f	0.0513 <u>+</u> 0.0027 N=15
Adjusted Paired Kidney Weight (g) ^g			
	2.8625 ƯƯƯ <u>+</u> 0.0616 ʎʎʎ N=11 ^e	3.1691 % <u>+</u> 0.0567 N=13	3.2359 ንንን <u>+</u> 0.0529 N=15
Adjusted Paired Testis Weight (g) ^g			
	2.7646 <u>+</u> 0.0504 N=11 ^e	2.7878 <u>+</u> 0.0464 N=13	2.7879 <u>+</u> 0.0433 N=15
Adjusted Paired Epididymis Weight (g)	g		
	0.4868 ℧ ± 0.0145 ʎ N=11 ^e	0.4653 <u>+</u> 0.0133 N=13	0.4381 % <u>+</u> 0.0124 N=15
Adjusted Ventral Prostate Weight (g) ⁹			
	0.2398 <u>+</u> 0.0165 N=11 ^e	0.2553 <u>+</u> 0.0151 N=13	0.2319 <u>+</u> 0.0141 N=15
Adjusted Dorsolateral Prostate Weight	(g) ^g		
	0.1946 <u>+</u> 0.0163 N=11 ^e	0.2172 <u>+</u> 0.0150 N=13	0.1988 <u>+</u> 0.0140 N=15
Adjusted Prostate Weight (g) ^g			
	0.4344 <u>+</u> 0.0229 N=11 ^e	0.4726 <u>+</u> 0.0211 N=13	0.4306 <u>±</u> 0.0197 N=15
Adjusted Seminal Vesicles with Coagu	lating Glands Weight	(g) ^g	
	0.5620 <u>+</u> 0.0330 N=11 ^e	0.5610 <u>+</u> 0.0304 N=13	0.4945 ± 0.0284 N=15
Adjusted Levator Ani plus Bulbcaverno	sus Muscle Complex	(Weight (g) ^g	
	0.7155 ± 0.0328 ʎ N=11 ^e	0.6767 <u>+</u> 0.0302 N=13	0.6285 <u>+</u> 0.0281 N=15

Table 7-B. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 4 of 6)

	p,p'-Dichlorodiphe	nyldichloroethylene	(mg/kg/day, po)
	0	50	100
Adjusted Pituitary Weight (g) ^h			
	0.0114	0.0111	0.0115
	<u>+</u> 0.0004	<u>+</u> 0.0004	<u>+</u> 0.0004
	N=12	N=13	$N=\overline{14}^{f}$
Adjusted Thyroid Weight (g) ^h			
	0.0186 ♦♦♦	0.0220 ₄∢	0.0242 ₄∢
	<u>+</u> 0.0009 <u>+</u>	<u>+</u> 0.0007	<u>+</u> 0.0013
	N=12	N=13	N=15
Adjusted Liver Weight (g) ^h			
	16.4773 ԾԾԾ	22.5309 >>>	23.7229 ንንን
	<u>+</u> 0.5775 ለለለ	<u>+</u> 0.5548	<u>+</u> 0.5167
	N=12	N=13	N=15
Adjusted Paired Adrenal Gland Weight	(g) ^h		
	0.0534	0.0536	0.0510
	<u>+</u> 0.0030	<u>+</u> 0.0030	<u>+</u> 0.0027
	N=12	N=12 ^f	N=15
Adjusted Paired Kidney Weight (g) ^h			
	2.8605 ƯƯ	3.1976 %	3.1914 %
	<u>+</u> 0.0768 ʎʎ	<u>+</u> 0.0738	<u>+</u> 0.0687
	N=12	N=13	N=15
Adjusted Paired Testis Weight (g) ^h			
	2.7444	2.7988	2.7704
	<u>+</u> 0.0486	<u>+</u> 0.0466	<u>+</u> 0.0434
	N=12	N=13	N=15
Adjusted Paired Epididymis Weight (g) ^h	l		
	0.4866 ℧	0.4676	0.4342 %
	<u>+</u> 0.0130 ʎʎ	<u>+</u> 0.0125	<u>+</u> 0.0116
	N=12	N=13	N=15
Adjusted Ventral Prostate Weight (g) ^h			
	0.2415	0.2582	0.2274
	<u>+</u> 0.0162	<u>+</u> 0.0155	<u>+</u> 0.0145
	N=12	N=13	N=15
Adjusted Dorsolateral Prostate Weight (g) ^h		
	0.1981	0.2201	0.1944
	<u>+</u> 0.0163	<u>+</u> 0.0156	<u>+</u> 0.0146
	N=12	N=13	N=15

Table 7-B. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the p,p'-Dichlorodiphenyldichloroethylene Treated F₁ Males (page 5 of 6)

	p,p'-Dichlorodiph	p,p'-Dichlorodiphenyldichloroethylene (mg/kg/day, po)		
_	0	50	100	
Adjusted Prostate Weight (g) ^h				
	0.4396 <u>±</u> 0.0238 N=12	0.4783 <u>+</u> 0.0228 N=13	0.4217 <u>+</u> 0.0213 N=15	
Adjusted Seminal Vesicles with Coag	gulating Glands Weigl	ht (g) ^h		
	0.5551 <u>+</u> 0.0302 N=12	0.5662 <u>+</u> 0.0290 N=13	0.4861 <u>+</u> 0.0270 N=15	
Adjusted Levator Ani plus Bulbcaveri	nosus Muscle Comple	ex Weight (g) ^h		
	0.7086 <u>+</u> 0.0297 ʎ N=12	0.6830 <u>+</u> 0.0286 N=13	0.6182 <u>±</u> 0.0266 N=15	
Thyroxine Hormone (T4) (ug/dL) ^d				
	6.46 ‡‡ <u>+</u> 0.16 §§§ N=12	5.90 <u>+</u> 0.23 N=13	5.31 ** <u>+</u> 0.26 N=15	
Thyroid Stimulating Hormone (TSH) (ng/ml) ^d			
	10.95 <u>+</u> 1.06 N=12	14.06 <u>+</u> 1.58 N=13	14.42 <u>+</u> 1.81 N=15	

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

bMale 74 was removed from the study because his correct postnatal day 0 could not be confirmed.

^cMale 20 was euthanized on postnatal day 29 after dosing due to a leg injury.

dReported as the mean + S.E.M.

^eDecrease in N is due to the body weight for one animal inadvertently not being recorded prior to blood being taken.

[†]Decrease in N is due to one organ weight being a statistical outlier and therefore it was excluded.

9Reported as the adjusted mean + S.E.M. (sacrifice weight as covariate).

hReported as the adjusted mean <u>+</u> S.E.M. (postnatal day 21 body weight as covariate).

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

Ttp<0.01; Wald Chi-square Test for overall treatment effect in robust regression model. Yyp<0.01; Linear trend test in robust regression model.

p<0.05; Individual t-test for pairwise comparisons to control in robust regression model.

pbp<0.01; Individual t-test for pairwise comparisons to control in robust regression model.

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

\$p<0.05; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

*p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

***p<0.001; Dunnett's Test.

♦♦p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

♦♦♦ p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

△△p<0.01; Linear trend test in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

 $\triangle\triangle$ p<0.001; Linear trend test in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

<0.05; Individual t-test for pairwise comparisons to control in robust regression model with body weight</p> at sacrifice or on postnatal day 21 as covariate.

⁴⁴p<0.01; Individual t-test for pairwise comparisons to control in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

Op<0.05; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

OOp<0.01; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

UUUp<0.001; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

√p<0.05; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the

covariate. Kp<0.01; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the

the covariate.

*p<0.05; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.01; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate. p<0.001; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

Table 7-C. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Vinclozolin Treated F_1 Males (page 1 of 6)

	Vinc	lozolin (mg/kg/day	, po)
	0	30	100
No. of Males on Study	12 ^a	13 ^b	12 ^C
No. of Males at Scheduled Sacrifice	12	13	12
Sacrifice Body Weight (g) ^d			
#	316.31 <u>+</u> 6.46 Ÿ N=11 ^e	321.16 <u>+</u> 8.86 N=13	302.40 <u>+</u> 5.64 N=11 ^e
Pituitary Weight (g) ^d			
	0.0113 <u>+</u> 0.0003 N=12	0.0114 <u>+</u> 0.0004 N=13	0.0108 <u>+</u> 0.0004 N=12
Thyroid Weight (g) ^d			
#	0.0185 <u>+</u> 0.0012 N=12	0.0198 <u>+</u> 0.0007 N=13	0.0205 <u>+</u> 0.0006 N=12
Liver Weight (g) ^d			
	16.4133 <u>+</u> 0.6404 N=12	17.6915 <u>+</u> 0.7660 N=13	17.3103 <u>±</u> 0.6718 N=12
Paired Adrenal Gland Weight (g) ^d			
	0.0534 <u>+</u> 0.0025 N=12	0.0577 <u>+</u> 0.0021 N=13	0.0572 <u>+</u> 0.0039 N=11 ^f
Paired Kidney Weight (g) ^d			
	2.8524 <u>+</u> 0.0865 N=12	2.9890 <u>+</u> 0.1054 N=13	2.8058 <u>+</u> 0.0608 N=12
Paired Testis Weight (g) ^d			
	2.7402 <u>+</u> 0.0497 N=12	2.9605 <u>+</u> 0.0688 N=13	2.9348 <u>+</u> 0.0777 N=12
Paired Epididymis Weight (g) ^d			
	0.4856 ‡‡‡ <u>+</u> 0.0129 §§§ N=12	0.4561 <u>±</u> 0.0144 N=13	0.4001 *** <u>+</u> 0.0157 N=12

Table 7-C. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Vinclozolin Treated F_1 Males (page 2 of 6)

	Vincl	lozolin (mg/kg/day	, po)
	0	30	100
Ventral Prostate Weight (g) ^d			
	0.2407 ‡	0.2582	0.2064
	<u>+</u> 0.0113 §	<u>+</u> 0.0169	<u>+</u> 0.0117
	N=12	N=13	N=12
Dorsolateral Prostate Weight (g) ^d			
	0.1973 ‡‡	0.1907	0.1298 **
	<u>+</u> 0.0167 §§§	<u>+</u> 0.0136	<u>+</u> 0.0102
	N=12	N=13	N=12
Prostate Weight (g) ^d			
	0.4380 ‡ ‡	0.4489	0.3362 **
	<u>+</u> 0.0221 §§§	<u>+</u> 0.0252	<u>+</u> 0.0150
	N=12	N=13	N=12
Seminal Vesicles with Coagulating	Glands Weight (g) ^d		
	0.5529 ‡‡‡	0.4655	0.3044 **
	<u>+</u> 0.0332 §§§	<u>+</u> 0.0355	<u>+</u> 0.0200
	N=12	N=13	N=12
Levator Ani plus Bulbcavernosus M	uscle Complex Weight (g)a	
	0.7060 ‡ ‡	0.6857	0.5443 **
	<u>+</u> 0.0259 §§	<u>+</u> 0.0441	<u>+</u> 0.0273
	N=12	N=13	N=12
Adjusted Pituitary Weight (g) ^g			
	0.0114	0.0113	0.0112
	<u>+</u> 0.0003 N=11 ^e	<u>+</u> 0.0003 N=13	<u>+</u> 0.0004 N=11 ^e
Adjusted Thursid Waight (=)(14-11	14-10	14-11
Adjusted Thyroid Weight (g) ^g			
	0.0191	0.0198	0.0204
	<u>+</u> 0.0011 N=11 ^e	<u>+</u> 0.0007 N=13	<u>+</u> 0.0007 N=11 ^e
Adjusted Liver Weight (g) ⁹			
,	16.5142	17.1621	17.8317
	+ 0.4631	+ 0.4613	+ 0.4903
	N=11 ^e	N=13	N=11 ^e

Table 7-C. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Vinclozolin Treated F_1 Males (page 3 of 6)

	Vinclozolin (mg/kg/day, po)			
	0	30	100	
Adjusted Paired Adrenal Gland Weigh	nt (g) ^g			
	0.0529 <u>+</u> 0.0026 N=11 ^e	0.0563 <u>+</u> 0.0016 N=13	0.0598 <u>+</u> 0.0039 N=10 ^{e,f}	
Adjusted Paired Kidney Weight (g) ⁹				
	2.8566 <u>±</u> 0.0556 N=11 ^e	2.9193 <u>+</u> 0.0669 N=13	2.9180 <u>±</u> 0.0385 N=11 ^e	
Adjusted Paired Testis Weight (g) ⁹				
	2.7618 ♦ <u>+</u> 0.0425 <u>&</u> N=11 ^e	2.9337 ⊲ <u>+</u> 0.0534 N=13	2.9357	
Adjusted Paired Epididymis Weight (g)9			
	0.4848 ♦♦♦ ± 0.0112 ፊፊፊ N=11 ^e	0.4463 ⊲ <u>+</u> 0.0104 N=13	0.4177	
Adjusted Ventral Prostate Weight (g)9				
	0.2396 ♦ <u>+</u> 0.0107 N=11 ^e	0.2524 <u>+</u> 0.0127 N=13	0.2100 <u>±</u> 0.0131 N=11 ^e	
Adjusted Dorsolateral Prostate Weigh	t (g) ^g			
	0.1944 ♦♦ <u>+</u> 0.0146 ᠘᠘ N=11 ^e	0.1847 <u>+</u> 0.0135 N=13	0.1392	
Adjusted Prostate Weight (g) ^g				
	0.4340 ♦♦♦ ± 0.0173 ልልል N=11 ^e	0.4371 <u>+</u> 0.0196 N=13	0.3492	
Adjusted Seminal Vesicles with Coago	ulating Glands Weight	(g) ^g		
	0.5613 ♦♦♦ ± 0.0331 ፊፊፊ N=11 ^e	0.4551 ⊲ <u>+</u> 0.0307 N=13	0.3188	
Adjusted Levator Ani plus Bulbcavern	osus Muscle Complex	Weight (g) ^g		
	0.7158 ♦♦♦ ± 0.0234 ፊፊፊ N=11 ^e	0.6760 <u>+</u> 0.0424 N=13	0.5504	

Table 7-C. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Vinclozolin Treated F_1 Males (page 4 of 6)

	Vinclozolin (mg/kg/day, po)		
	0	30	100
Adjusted Pituitary Weight (g) ^h			
	0.0113	0.0114	0.0108
	<u>+</u> 0.0004	<u>+</u> 0.0004	<u>+</u> 0.0004
	N=12	N=13	N=12
Adjusted Thyroid Weight (g) ^h			
	0.0184	0.0198	0.0205
	+ 0.0011	+ 0.0008	+ 0.0006
	N=12	N=13	N=12
Adjusted Liver Weight (g)h			
	16.3517	17.6998	16.3628
	<u>+</u> 0.6436	<u>+</u> 0.6180	<u>+</u> 0.6435
	N=12	N=13	N=12
Adjusted Paired Adrenal Gland Weight	(g) ^h		
	0.0532	0.0577	0.0574
	<u>+</u> 0.0027	<u>+</u> 0.0026	<u>+</u> 0.0029
	N=12	N=13	N=11 ^f
Adjusted Paired Kidney Weight (g) ^h			
	2.8444	2.9901	2.8126
	+ 0.0796	+ 0.0765	+ 0.0796
	N=12	N=13	N=12
Adjusted Paired Testis Weight (g) ^h			
	2.7315 Ư ℧	2.9617 %	2.9422 %
	<u>+</u> 0.0512 ʎ	<u>+</u> 0.0491	<u>+</u> 0.0512
	N=12	N=13	N=12
Adjusted Paired Epididymis Weight (g)	า		
	0.4840 ƯƯ Ư	0.4563	0.4015 % %
	<u>+</u> 0.0122 ለ አለ	<u>+</u> 0.0117	<u>+</u> 0.0122
	N=12	N=13	N=12
Adjusted Ventral Prostate Weight (g)h			
	0.2402 ℧	0.2583	0.2068
	<u>+</u> 0.0139 ʎ	<u>+</u> 0.0134	<u>+</u> 0.0139
	N=12	N=13	N=12
Adjusted Dorsolateral Prostate Weight	(g) ^h		
	0.1969 ԾԾ	0.1908	0.1301 %
	<u>+</u> 0.0140 ለ አአ	<u>+</u> 0.0134	<u>+</u> 0.0140
	N=12	N=13	N=12

Table 7-C. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Vinclozolin Treated F_1 Males (page 5 of 6)

	Vinclozolin (mg/kg/day, po)		
	0	30	100
Adjusted Prostate Weight (g) ^h			
	0.4371	0.4491 <u>+</u> 0.0207 N=13	0.3370 ንን <u>+</u> 0.0216 N=12
Adjusted Seminal Vesicles with Coa	agulating Glands Weight	(g) ^h	
	0.5515 ƯƯƯ ± 0.0307 ʎʎʎ N=12	0.4657 <u>+</u> 0.0295 N=13	0.3056
Adjusted Levator Ani plus Bulbcave	rnosus Muscle Complex	:Weight (g) ^h	
	0.7028 ƯƯ <u>+</u> 0.0309 ʎʎʎ N=12	0.6862 <u>+</u> 0.0297 N=13	0.5470 ንን ± 0.0309 N=12
Thyroxine Hormone (T4) (ug/dL) ^d			
	6.46 ‡‡‡ <u>±</u> 0.16 §§§ N=12	4.87 *** <u>+</u> 0.24 N=13	4.28 *** <u>+</u> 0.23 N=12
Thyroid Stimulating Hormone (TSH)	(ng/ml) ^d		
	10.95 <u>±</u> 1.06 N=12	10.57 <u>+</u> 0.62 N=13	12.86 <u>+</u> 1.16 N=12

- ^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be
- bMales 79 and 115 were removed from the study because their correct postnatal day 0 could not be
- ^CMales 24, 114 and 131 were removed from the study because their correct postnatal day 0 could not be confirmed.
- dReported as the mean + S.E.M.
- ^eDecrease in N is due to the body weight for one animal inadvertently not being recorded prior to blood being taken.
- ^fDecrease in N is due to one organ weight being a statistical outlier and therefore it was excluded.
- 9Reported as the adjusted mean + S.E.M. (sacrifice weight as covariate).
- hReported as the adjusted mean \pm S.E.M. (postnatal day 21 body weight as covariate).
- #Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects. Yp<0.05; Linear trend test in robust regression model.
- ‡p<0.05; ANOVA Test.
- **‡**‡p<0.01; ANOVA Test.
- **‡‡‡**p<0.001; ANOVA Test.
- \$p<0.05; Test for Linear Trend.
- §§p<0.01; Test for Linear Trend.
- §§9p<0.001; Test for Linear Trend.
- **p<0.01; Dunnett's Test.
- p<0.001; Dunnett's Test.
- •p<0.05; Wald Chi-square Test for overall treatment effect in robust regression model with body weight as covariate. (17)
- ♦♦p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model with body weight as covariate. (17)
- ♦♦♦ p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model with body weight as covariate. (17)
- △p<0.05; Linear trend test in robust regression model with body weight as covariate. (17)
- △△p<0.01; Linear trend test in robust regression model with body weight as covariate. (17)
- ΔΔΔp<0.001; Linear trend test in robust regression model with body weight as covariate. (17)
- <0.05; Individual t-test for pairwise comparisons to control in robust regression model with body weight</p> as covariate. (15)
- ¬¬¬<0.01; Individual t-test for pairwise comparisons to control in robust regression model with body weight</p> as covariate. (15)
- ⁴⁴⁴p<0.001; Individual t-test for pairwise comparisons to control in robust regression model with body weight as covariate. (15)
- ¹⁰p<0.05; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.
- ^{UU}p<0.01; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.
- ^{UUU}p<0.001; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.
- √p<0.05; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the
- KMp<0.001; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.
- *p<0.05; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.
- p<0.01; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.
- p<0.001; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

Table 7-D. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Methoxychlor Treated F₁ Males (page 1 of 6)

	Meth	noxychlor (mg/kg/da	ıy, po)
	0	25	50
No. of Males on Study	12 ^a	15	13 ^b
No. of Males at Scheduled Sacrifice	12	15	13
Sacrifice Body Weight (g) ^C			
	316.31 <u>+</u> 6.46	301.97 <u>+</u> 5.46	297.66 <u>+</u> 8.19
	N=11 ^d	N=15	N=13
Pituitary Weight (g) ^C			
	0.0113 <u>+</u> 0.0003	0.0109 <u>+</u> 0.0004	0.0106 <u>+</u> 0.0003
	<u>+</u> 0.0003 N=12	N=15	<u>∓</u> 0.0003 N=12 ^e
Thyroid Weight (g) ^C			
	0.0185 ‡	0.0210	0.0168
	<u>+</u> 0.0012 N=12	<u>+</u> 0.0010 N=15	<u>+</u> 0.0009 N=13
Liver Weight (g) ^C			
	16.4133	15.4169	15.1498
	<u>+</u> 0.6404 N=12	<u>+</u> 0.5109 N=15	<u>+</u> 0.5405 N=13
Paired Adrenal Gland Weight (g) ^C	11-12	14-10	14-10
	0.0534 ‡	0.0576	0.0647 *
	<u>+</u> 0.0025 §§ N=12	± 0.0025 N=13 ^{e,f}	<u>+</u> 0.0035 N=12 ^f
Paired Kidney Weight (g) ^C			
, , ,	2.8524	2.7784	2.8244
	<u>+</u> 0.0865 N=12	<u>+</u> 0.1042 N=15	<u>+</u> 0.1104 N=13
Paired Testis Weight (g) ^C	IN=12	IN=13	N=13
Tailed Testis Weight (g)	2.7402	2.7707	2.7534
	<u>+</u> 0.0470	<u>+</u> 0.0570	<u>+</u> 0.0753
Paired Epididymis Weight (g) ^C	N=12	N=15	N=13
i and Epididyinis Weight (g)	0.4856	0.4933	0.4669
	± 0.0129 N=12	+ 0.0123 N=15	± 0.0169 N=13

Table 7-D. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Methoxychlor Treated F₁ Males (page 2 of 6)

		oxychlor (mg/kg/da	
	0	25	50
Ventral Prostate Weight (g) ^C			
	0.2407	0.2377	0.2432
	<u>+</u> 0.0113	<u>+</u> 0.0143	<u>+</u> 0.0149
	N=12	N=15	N=13
Dorsolateral Prostate Weight (g) ^C			
	0.1973	0.1722	0.1719
	<u>+</u> 0.0167	<u>+</u> 0.0119	<u>+</u> 0.0113
	N=12	N=15	N=13
Prostate Weight (g) ^C			
	0.4380	0.4099	0.4151
	<u>+</u> 0.0221	<u>+</u> 0.0228	<u>+</u> 0.0219
	N=12	N=15	N=13
Seminal Vesicles with Coagulating G	Blands Weight (g) ^C		
	0.5529 ‡‡	0.5013	0.4043 **
	<u>+</u> 0.0322 §§	<u>+</u> 0.0242	<u>+</u> 0.0374
	N=12	N=149	N=13
Levator Ani plus Bulbcavernosus Mu	scle Complex Weight	(g) ^C	
	0.7060	0.6840	0.6095
	<u>+</u> 0.0259	<u>+</u> 0.0381	<u>+</u> 0.0370
	N=12	N=15	N=12 ^h
Adjusted Pituitary Weight (g) ^I			
	0.0113	0.0109	0.0107
	± 0.0004	± 0.0003	<u>+</u> 0.0004
	N=1 ¹ d	N=15	N=12 ^e
Adjusted Thyroid Weight (g) ⁱ			
	0.0184	0.0212	0.0172
	<u>+</u> 0.0010 N=11 ^d	<u>+</u> 0.0008	<u>+</u> 0.0009
	N=11 ^u	N=15	N=13
Adjusted Liver Weight (g) ⁱ			
	15.8920	15.5956	15.6251
	± 0.3471	<u>+</u> 0.2879	<u>+</u> 0.3130
	N=11 ^d	N=15	N=13

Table 7-D. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Methoxychlor Treated F₁ Males (page 3 of 6)

	Meth	noxychlor (mg/kg/da	ay, po)
	0	25	50
Adjusted Paired Adrenal Gland Weigh	t (g) ⁱ		
	0.0505 OU <u>+</u> 0.0029 /// N=11 ^d	0.0581 + 0.0025 N=13 ^{e,f}	0.0668 ንንን <u>+</u> 0.0027 N=12 ^f
Adjusted Paired Kidney Weight (g) ⁱ			
	2.7527 <u>+</u> 0.0837 N=11 ^d	2.8068 <u>+</u> 0.0694 N=15	2.8999 <u>+</u> 0.0755 N=13
Adjusted Paired Testis Weight (g) ^j			
	2.7131 <u>+</u> 0.0588 N=11 ^d	2.7835 <u>+</u> 0.0488 N=15	2.7875 <u>±</u> 0.0531 N=13
Adjusted Paired Epididymis Weight (g)	i		
	0.4746 <u>+</u> 0.0139 N=11 ^d	0.4963 <u>+</u> 0.0115 N=15	0.4749 <u>±</u> 0.0125 N=13
Adjusted Ventral Prostate Weight (g) ⁱ			
	0.2307 <u>+</u> 0.0145 N=11 ^d	0.2401 <u>+</u> 0.0120 N=15	0.2496 <u>+</u> 0.0131 N=13
Adjusted Dorsolateral Prostate Weight	: (g) ⁱ		
	0.1857 <u>+</u> 0.0138 N=11 ^d	0.1746 <u>+</u> 0.0114 N=15	0.1783 <u>+</u> 0.0124 N=13
Adjusted Prostate Weight (g) ⁱ			
	0.4164 <u>+</u> 0.0220 N=11 ^d	0.4147 <u>+</u> 0.0183 N=15	0.4279 <u>+</u> 0.0199 N=13
Adjusted Seminal Vesicles with Coagu	ılating Glands Weig	ıht (g) ^İ	
	0.5446 ${rak U} = 0.0335$ () N=11d	0.5066 <u>+</u> 0.0287 N=149	0.4158 % <u>+</u> 0.0301 N=13
Adjusted Levator Ani plus Bulbcaverno	osus Muscle Compl	ex Weight (g) ⁱ	
	0.6935 <u>±</u> 0.0352 N=11 ^d	0.6952 <u>+</u> 0.0295 N=15	0.6191 <u>+</u> 0.0329 N=12 ^h

Table 7-D. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Methoxychlor Treated F₁ Males (page 4 of 6)

	Meth	oxychlor (mg/kg/da	y, po)
	0	25	50
Adjusted Pituitary Weight (g) ^j			
	0.0114 <u>+</u> 0.0004 N=12	0.0109 <u>+</u> 0.0003 N=15	0.0106 <u>±</u> 0.0004 N=12 ^e
Adjusted Thyroid Weight (g) ^j			
	0.0186 ଫଫ <u>+</u> 0.0009 N=12	0.0209 <u>+</u> 0.0008 N=15	0.0169 <u>+</u> 0.0009 N=13
Adjusted Liver Weight (g) ^j			
	16.5011 <u>+</u> 0.4156 ʎ N=12	15.3167 <u>+</u> 0.3719 N=15	15.1843 <u>+</u> 0.3991 N=13
Adjusted Paired Adrenal Gland Weight	(g) ^j		
	0.0536	0.0571 <u>+</u> 0.0025 N=13 ^{e,f}	0.0650 % <u>+</u> 0.0026 N=14 ^f
Adjusted Paired Kidney Weight (g) ^j			
	2.8657 <u>+</u> 0.0879 N=12	2.7633 <u>+</u> 0.0786 N=15	2.8296 <u>±</u> 0.0844 N=13
Adjusted Paired Testis Weight (g) ^j			
	2.7483 <u>+</u> 0.0530 N=12	2.7614 <u>+</u> 0.0474 N=15	2.7565 <u>+</u> 0.0509 N=13
Adjusted Paired Epididymis Weight (g) ^j			
	0.4875 <u>+</u> 0.0119 N=12	0.4911 <u>+</u> 0.0106 N=15	0.4677 <u>+</u> 0.0114 N=13
Adjusted Ventral Prostate Weight (g) ^j			
	0.2423 <u>+</u> 0.0124 N=12	0.2358 <u>+</u> 0.0111 N=15	0.2438 ± 0.0119 N=13
Adjusted Dorsolateral Prostate Weight (g) ^j		
	0.1985 <u>+</u> 0.0129 N=12	0.1709 <u>+</u> 0.0116 N=15	0.1724 <u>+</u> 0.0124 N=13

Table 7-D. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Methoxychlor Treated F₁ Males (page 5 of 6)

	Metho	oxychlor (mg/kg/da	ıy, po)
_	0	25	50
Adjusted Prostate Weight (g) ^j			
	0.4408 <u>±</u> 0.0196 N=12	0.4067 <u>+</u> 0.0175 N=15	0.4162 <u>+</u> 0.0188 N=13
Adjusted Seminal Vesicles with Coag	gulating Glands Weigh	nt (g) ^j	
	0.5543 ԾԾ ± 0.0322 ʎʎ N=12	0.4998 <u>+</u> 0.0298 N=149	0.4046 % <u>+</u> 0.0309 N=13
Adjusted Levator Ani plus Bulbcaver	nosus Muscle Comple	x Weight (g) ^j	
	0.7148 ± 0.0332 ⋌ N=12	0.6845 <u>+</u> 0.0296 N=15	0.6001 <u>+</u> 0.0332 N=12 ^h
Thyroxine Hormone (T4) (ug/dL) ^C			
	6.46 <u>±</u> 0.16 N=12	6.11 <u>+</u> 0.24 N=15	6.66 <u>+</u> 0.25 N=13
Thyroid Stimulating Hormone (TSH) (ng/ml) ^C		
	10.95 <u>±</u> 1.06 N=12	10.98 <u>+</u> 1.65 N=15	10.84 <u>+</u> 0.74 N=13

Table 7-D. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Methoxychlor Treated F₁ Males (page 6 of 6)

^aMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

^bMales 17 and 30 were removed from the study because their correct postnatal day 0 could not be confirmed.

^CReported as the mean + S.E.M.

dDecrease in N is due to the body weight for one animal inadvertently not being recorded prior to blood

^eDecrease in N is due to one organ weight being a statistical outlier and therefore it was excluded.

^fDecrease in N is due to one adrenal gland from one animal inadvertently being lost prior to weighing.

9Decrease in N is due to one seminal vesicles with coagulating glands inadvertently being nicked and leaking prior to weighing and therefore the weight was excluded.

hDecrease in N is due to one levator ani plus bulbcavernosus muscle complex inadvertently not being completely removed from the animal and therefore the weight was excluded.

ⁱReported as the adjusted mean <u>+</u> S.E.M. (sacrifice weight as covariate).

Reported as the adjusted mean + S.E.M. (postnatal day 21 body weight as covariate).

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

§§p<0.01; Test for Linear Trend.

p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

Up><0.05; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

^{OO}p<0.01; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

Ap<0.05; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the çovariate.

Kp<0.01; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the

the covariate.

p<0.05; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.01; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.001; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

Table 7-E. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Propylthiouracil Treated F_1 Males (page 1 of 6)

	Propyl	thiouracil (mg/kg/da	y, po)
	0	2	25
No. of Males on Study	15	15	15
No. of Males at Scheduled Sacrifice	14 ^a	15	14 ^b
Sacrifice Body Weight (g) ^C			
	320.70 ‡‡‡	294.04 **	173.91 ***
	<u>+</u> 6.74 §§§ N=14	<u>+</u> 7.18 N=15	<u>+</u> 3.95 N=13 ^d
Pituitary Weight (g) ^C	14-14	14-15	N=13
r natary weight (g)	0.0447 ++	0.0440	0.0000 **
	0.0117 ‡‡ <u>+</u> 0.0006 §§	0.0116 + 0.0003	0.0096 ** <u>+</u> 0.0005
	N=14	N=14 ^e	N=14
Thyroid Weight (g) ^C			
	0.0273 ‡‡‡	0.0770 ***	0.0886 ***
	<u>+</u> 0.0011 §§§ N=14	<u>+</u> 0.0044 N=15	<u>+</u> 0.0067 N=14
Liver Weight (a)C	N=14	N=13	N=14
Liver Weight (g) ^C	47.0400.111	45.0470.44	7 7000 ***
	17.6196 ‡‡‡ <u>+</u> 0.5792 §§§	15.2176 ** <u>+</u> 0.6546	7.7000 *** <u>+</u> 0.3260
	N=14	N=15	N=14
Paired Adrenal Gland Weight (g) ^C			
	0.0480 ‡‡‡	0.0385 ***	0.0254 ***
	<u>+</u> 0.0016 §§§ N=14	<u>+</u> 0.0014 N=15	<u>+</u> 0.0011 N=14
Paired Kidney Weight (g) ^C	11-14	N=13	11-14
Falled Kidney Weight (g)	0.4447.111	0.4700 444	4 4000 ***
	3.1147 ‡‡‡ + 0.0800 §§§	2.4769 *** + 0.0858	1.4226 *** + 0.0411
	N=14	N=15	N=14
Paired Testis Weight (g) ^C			
	2.8678 ‡‡	2.8014	2.6496 **
	<u>+</u> 0.0299 §§ N=14	<u>+</u> 0.0447 N=15	<u>+</u> 0.0539 N=14
Paired Epididymis Weight (g) ^C	IN- IT	N-10	14-17
i alieu Epididyiilis Weigiit (g)	0.4564 ++	0.4386	0.3791 **
	0.4564 ‡‡ <u>+</u> 0.0142 §§§	0.4386 <u>+</u> 0.0160	± 0.0138
	N=14	N=15	N=14

Table 7-E. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Propylthiouracil Treated F₁ Males (page 2 of 6)

	Propylt	Propylthiouracil (mg/kg/day, po)		
	0	2	25	
Ventral Prostate Weight (g) ^C				
5 .5	0.2657 ‡‡	0.2410	0.1888 **	
	<u>+</u> 0.0168 §§	<u>+</u> 0.0147	<u>+</u> 0.0157	
	N=14	N=15	N=14	
Dorsolateral Prostate Weight (g) ^C				
	0.1852 ‡	0.1692	0.1310 **	
	<u>+</u> 0.0130 §§	<u>+</u> 0.0125	<u>+</u> 0.0113	
	N=14	N=15	N=14	
Prostate Weight (g) ^C				
	0.4509 ‡‡	0.4101	0.3199 **	
	<u>+</u> 0.0258 §§§	<u>+</u> 0.0223	<u>+</u> 0.0207	
	N=14	N=15	N=14	
Seminal Vesicles with Coagulating G	Blands Weight (g) ^C			
	0.6396 ‡	0.6910	0.5244	
	+ 0.0462 §	<u>+</u> 0.0431	<u>+</u> 0.0372	
	N=13 ^f	N=15	N=14	
Levator Ani plus Bulbcavernosus Mu	scle Complex Weight (g) ^C		
	0.6384 ‡‡‡	0.6539	0.3702 **	
	<u>+</u> 0.0279 §§§	<u>+</u> 0.0326	<u>+</u> 0.0308	
	N=14	N=15	N=14	
Adjusted Pituitary Weight (g) ⁹				
	0.0106	0.0111	0.0115	
	± 0.0008	± 0.0006	± 0.0012	
	N=14	N=1 ⁴ ^e	N=13 ^d	
Adjusted Thyroid Weight (g) ^g				
	0.0140	0.0701 <i>୨</i> ୬୬	0.1076 %	
	<u>+</u> 0.0071	<u>+</u> 0.0050	± 0.0106	
	N=14	N=15	N=13 ^d	
Adjusted Liver Weight (g) ⁹				
	13.2806 ປັ	12.9385	15.0343	
	<u>+</u> 0.4405 	<u>+</u> 0.3085	<u>+</u> 0.6553	
	N=14	N=15	N=13 ^d	

Table 7-E. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Propylthiouracil Treated F₁ Males (page 3 of 6)

	Propylth	niouracil (mg/kg/day	, po)
	0	2	25
Adjusted Paired Adrenal Gland Weight	(g) ^g		
	0.0437 ℧℧ <u>+</u> 0.0023 N=14	0.0363 ** <u>+</u> 0.0016 N=15	0.0324 <u>+</u> 0.0034 N=13 ^d
Adjusted Paired Kidney Weight (g) ⁹			
	2.6024 ԾԾԾ <u>+</u> 0.0769 N=14	2.2132 ንንንን <u>+</u> 0.0539 N=15	2.3002 <u>+</u> 0.1145 N=13 ^d
Adjusted Paired Testis Weight (g)9			
	2.7938 <u>+</u> 0.0706 N=14	2.7633 <u>+</u> 0.0495 N=15	2.8045 <u>±</u> 0.1051 N=13 ^d
Adjusted Paired Epididymis Weight (g)	g		
	0.3881 <u>+</u> 0.0224 ʎ N=14	0.4035 <u>+</u> 0.0157 N=15	0.4958 ± 0.0334 N=13 ^d
Adjusted Ventral Prostate Weight (g) ^g			
	0.2045 <u>+</u> 0.0253 N=14	0.2094 <u>+</u> 0.0177 N=15	0.2924 <u>±</u> 0.0376 N=13 ^d
Adjusted Dorsolateral Prostate Weight	(g) ^g		
	0.1597 <u>+</u> 0.0213 N=14	0.1560 <u>+</u> 0.0149 N=15	0.1753 <u>±</u> 0.0317 N=13 ^d
Adjusted Prostate Weight (g) ^g			
	0.3641 <u>+</u> 0.0372 N=14	0.3654 <u>+</u> 0.0261 N=15	0.4677 <u>+</u> 0.0554 N=13 ^d
Adjusted Seminal Vesicles with Coagul	lating Glands Weight	(g) ^g	
	0.4696 ℧ <u>+</u> 0.0640 N=13 ^f	0.6022 ۶ <u>+</u> 0.0441 N=15	0.8212 * <u>+</u> 0.0912 N=13 ^d
Adjusted Levator Ani plus Bulbcaverno	sus Muscle Complex	Weight (g) ⁹	
	0.5227 <u>+</u> 0.0495 N=14	0.5943 <u>+</u> 0.0347 N=15	0.5669 <u>±</u> 0.0737 N=13 ^d

Table 7-E. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Propylthiouracil Treated F₁ Males (page 4 of 6)

	Propylt	hiouracil (mg/kg/day,	po)
	0	2	25
Adjusted Pituitary Weight (g) ^h			
	0.0116 ፓፓ <u>+</u> 0.0005 ʎʎ N=14	0.0117 <u>+</u> 0.0005 N=14 ^e	0.0097 ንን <u>+</u> 0.0005 N=14
Adjusted Thyroid Weight (g) ^h			
	0.0273	0.0770 ን ፇን <u>+</u> 0.0046 N=15	0.0885 ንንን፡ <u>+</u> 0.0048 N=14
Adjusted Liver Weight (g) ^h			
	17.5770	15.2090 % <u>+</u> 0.4901 N=15	7.7519 ንንን <u>+</u> 0.5077 N=14
Adjusted Paired Adrenal Gland Weight	(g) ^h		
	0.0479	0.0385 ንንን <u>+</u> 0.0013 N=15	0.0255 ንንን <u>+</u> 0.0014 N=14
Adjusted Paired Kidney Weight (g) ^h			
	3.1088 ƯƯƯ <u>+</u> 0.0671 ʎʎʎ N=14	2.4757 ۶۶۶۶ <u>+</u> 0.0648 N=15	1.4297
Adjusted Paired Testis Weight (g) ^h			
	2.8640 ƯƯ <u>+</u> 0.0400 ʎʎʎ N=14	2.8007 <u>±</u> 0.0386 N=15	2.6542 % ± 0.0400 N=14
Adjusted Paired Epididymis Weight (g) ^h	1		
	0.4550 000 <u>+</u> 0.0130 /// N=14	0.4383 <u>+</u> 0.0126 N=15	0.3808 ንንን <u>+</u> 0.0130 N=14
Adjusted Ventral Prostate Weight (g) ^h			
	0.2646 ƯƯ <u>+</u> 0.0149 ʎʎ N=14	0.2407 <u>+</u> 0.0143 N=15	0.1902 ንን <u>+</u> 0.0149 N=14
Adjusted Dorsolateral Prostate Weight ((g) ^h		
	0.1848 ℧ <u>+</u> 0.0124 ʎʎ N=14	0.1691 <u>+</u> 0.0120 N=15	0.1315 ንን <u>+</u> 0.0124 N=14

Table 7-E. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Propylthiouracil Treated F₁ Males (page 5 of 6)

	Propylthiouracil (mg/kg/day, po)		
_	0	2	25
Adjusted Prostate Weight (g) ^h			
	0.4494	0.4098	0.3217 ?? ?
	<u>+</u> 0.0221 ለ አለ	<u>+</u> 0.0213	<u>+</u> 0.0221
	N=14	N=15	N=14
Adjusted Seminal Vesicles with Coag	gulating Glands Weight	(g) ^h	
	0.6358 ℧	0.6905	0.5285
	<u>+</u> 0.0404 ፈ	<u>+</u> 0.0376	<u>+</u> 0.0390
	N=13 ^f	N=15	N=14
Adjusted Levator Ani plus Bulbcaverr	nosus Muscle Complex	: Weight (g) ^h	
	0.6367 ƯƯ ℧	0.6535	0.3722 ን ን
	<u>+</u> 0.0300 ፈፈ	<u>+</u> 0.0290	<u>+</u> 0.0300
	N=14	N=15	N=14
Thyroxine Hormone (T4) (ug/dL) ^C			
#	5.78 †††	0.53 ÞÞÞ	0.37 ÞÞÞ
	<u>+</u> 0.27 ŸŸŸ	<u>+</u> 0.08	<u>+</u> 0.01
	N=14	N=9 ⁱ	N=6 ⁱ
Thyroid Stimulating Hormone (TSH) (I	ng/ml) ^C		
#	11.54 †††	82.13 ÞÞÞ	134.63 ÞÞÞ
	<u>+</u> 0.90 ŸŸŸ	<u>+</u> 4.60	<u>+</u> 7.89
	N=14	N=15	N=14

```
<sup>a</sup>Male 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).
```

‡D<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

\$p<0.05: Test for Linear Trend.

§§p<0.01; Test for Linear Trend.

§§9c0.001; Test for Linear Trend.

p<0.01; Dunnett's Test.

***p<0.001; Dunnett's Test. $\underline{\sigma}_{p<0.05}$; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

^{UU}p<0.01; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

OOOp<0.001; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

√p<0.05; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the</p> covariate.

Kp<0.01; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the

covariate. \$\(\lambda \lambda \lambda \lambda \), covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.05; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.01; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate. p<0.001; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

††††p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model. p<0.001; Linear trend test in robust regression model.

pppp<0.001; Individual t-test for pairwise comparisons to control in robust regression model.

bMale 268 was found dead on postnatal day 50 prior to dosing.

^cReported as the mean + S.E.M.

dDecrease in N is due to one sacrifice weight inadvertently not being recorded.

^eDecrease in N is due to one organ weight being a statistical outlier and therefore it was excluded.

f Decrease in N is due to one seminal vesicles with coagulating glands inadvertently being nicked and leaking prior to weighing and therefore the weight was excluded.

⁹Reported as the adjusted mean <u>+</u> S.E.M. (sacrifice weight as covariate).

^hReported as the adjusted mean + S.E.M. (postnatal day 21 body weight as covariate).

Decrease in N is due to one or more thyroxine values being below the minimum detection limit of the assay and they were therefore excluded.

Table 7-F. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Ketoconazole Treated F_1 Males (page 1 of 6)

	Ketoco	onazole (mg/kg/day, ¡	00)
	0	50	100
No. of Males on Study	15	15	15
No. of Males at Scheduled Sacrifice	14 ^a	15	14 ^b
Sacrifice Body Weight (g) ^C			
	320.70	315.68	301.50
	<u>+</u> 6.74 N=14	<u>+</u> 6.57 N=15	<u>+</u> 7.51 N=14
Pituitary Weight (g) ^C	14-14	14-15	11-1-
r ituliary weight (g)	0.0117	0.0407	0.0447
	0.0117 <u>+</u> 0.0006	0.0107 <u>+</u> 0.0004	0.0117 <u>+</u> 0.0005
	N=14	N=15	N=14
Thyroid Weight (g) ^C			
	0.0273	0.0266	0.0267
	<u>+</u> 0.0011 N=14	<u>+</u> 0.0011 N=15	<u>+</u> 0.0006 N=14
Liver Weight (g) ^C	14-14	14-15	11-1-
Liver Weight (g)	17.6196	19.1954	19.1401
	+ 0.5792	+ 0.5408	± 0.8105
	N=14	N=15	N=14
Paired Adrenal Gland Weight (g) ^C			
#	0.0480 ###	0.0704 ÞÞÞ	0.0908 ÞÞÞ
	<u>+</u> 0.0016 ŸŸŸ N=14	<u>+</u> 0.0036 N=15	<u>+</u> 0.0047 N=14
Paired Kidney Weight (g) ^C	11-11	14-10	
r allog reality velgin (g)	3.1147	3.1021	3.1597
	<u>+</u> 0.0800	<u>+</u> 0.0708	<u>+</u> 0.1181
	N=14	N=15	N=14
Paired Testis Weight (g) ^C			
#	2.8678 †††	2.8051	2.7212 ÞÞÞ
	<u>+</u> 0.0299 ŸŸŸ N=14	<u>+</u> 0.0563 N=15	<u>+</u> 0.0223 N=14
Paired Epididymis Weight (g) ^C			
	0.4564	0.4294	0.4118
	<u>+</u> 0.0142 §	<u>+</u> 0.0139	<u>+</u> 0.0109
	N=14	N=15	N=14

Table 7-F. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Ketoconazole Treated F₁ Males (page 2 of 6)

_	Ketoco	onazole (mg/kg/day,	
	0	50	100
Ventral Prostate Weight (g) ^C			
#	0.2657 <u>+</u> 0.0168 Ÿ N=14	0.2372 <u>+</u> 0.0116 N=15	0.2058 <u>+</u> 0.0243 N=14
Dorsolateral Prostate Weight (g) ^C			
	0.1852 <u>+</u> 0.0130 N=14	0.1572 <u>+</u> 0.0143 N=15	0.1476 <u>+</u> 0.0126 N=14
Prostate Weight (g) ^C			
	0.4509 <u>+</u> 0.0258 § N=14	0.3944 <u>+</u> 0.0237 N=15	0.3534 <u>+</u> 0.0324 N=14
Seminal Vesicles with Coagulating G	lands Weight (g) ^C		
	0.6396 ‡‡‡ <u>+</u> 0.0462 §§§ N=13 ^d	0.4789 ** <u>+</u> 0.0215 N=15	0.4193 *** <u>+</u> 0.0372 N=14
Levator Ani plus Bulbcavernosus Mus	scle Complex Weight (g	i)c	
	0.6384 <u>+</u> 0.0279 § N=14	0.5757 <u>+</u> 0.0262 N=15	0.5425 <u>+</u> 0.0306 N=14
Adjusted Pituitary Weight (g) ^e			
	0.0114 <u>+</u> 0.0005 N=14	0.0106 <u>+</u> 0.0004 N=15	0.0120 <u>+</u> 0.0005 N=14
Adjusted Thyroid Weight (g) ^e			
	0.0271 <u>+</u> 0.0010 N=14	0.0265 <u>+</u> 0.0010 N=15	0.0270 <u>+</u> 0.0010 N=14
Adjusted Liver Weight (g) ^e			
	16.9686 ƯƯƯ <u>+</u> 0.3347 ʎʎʎ N=14	18.9523 *** <u>+</u> 0.3190 N=15	20.0516 % <u>+</u> 0.3397 N=14

Table 7-F. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Ketoconazole Treated F_1 Males (page 3 of 6)

	Ketoco	onazole (mg/kg/day,	00)
	0	50	100
Adjusted Paired Adrenal Gland Weight	t (g) ^e		
	0.0464 ♦♦♦ <u>+</u> 0.0020 ልልል N=14	0.0698	0.0930 ◀◀◀ <u>±</u> 0.0042 N=14
Adjusted Paired Kidney Weight (g) ^e			
	3.0337 ℧ <u>+</u> 0.0604 ʎ N=14	3.0718 <u>+</u> 0.0575 N=15	3.2730 % <u>+</u> 0.0613 N=14
Adjusted Paired Testis Weight (g) ^e			
	2.8591 ♦♦ <u>+</u> 0.0287 ᠘᠘ N=14	2.8019 <u>+</u> 0.0537 N=15	2.7334
Adjusted Paired Epididymis Weight (g)	е		
	0.4505 <u>±</u> 0.0126 N=14	0.4272 <u>+</u> 0.0120 N=15	0.4201 <u>±</u> 0.0128 N=14
Adjusted Ventral Prostate Weight (g) ^e			
	0.2616 <u>+</u> 0.0162 N=14	0.2356 <u>+</u> 0.0109 N=15	0.2117 <u>+</u> 0.0231 N=14
Adjusted Dorsolateral Prostate Weight	(g)e		
	0.1817 <u>+</u> 0.0135 N=14	0.1559 <u>+</u> 0.0129 N=15	0.1525 <u>+</u> 0.0137 N=14
Adjusted Prostate Weight (g) ^e			
	0.4432 <u>+</u> 0.0277 N=14	0.3915 <u>+</u> 0.0264 N=15	0.3642 <u>+</u> 0.0281 N=14
Adjusted Seminal Vesicles with Coagu	ılating Glands Weight	(g)e	
	0.6282 VV <u>+</u> 0.0363 /// N=13 ^d	0.4747 ንን <u>+</u> 0.0334 N=15	0.4344 ንን ± 0.0355 N=14
Adjusted Levator Ani plus Bulbcaverno	osus Muscle Complex	(Weight (g) ^e	
	0.6287 <u>+</u> 0.0280 N=14	0.5721 <u>+</u> 0.0267 N=15	0.5561 <u>+</u> 0.0285 N=14

Table 7-F. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Ketoconazole Treated F_1 Males (page 4 of 6)

	Ketoco	nazole (mg/kg/day,	po)
	0	50	100
Adjusted Pituitary Weight (g) ^f			
	0.0116 <u>+</u> 0.0005 N=14	0.0107 <u>+</u> 0.0005 N=15	0.0118 <u>+</u> 0.0005 N=14
Adjusted Thyroid Weight (g) ^f			
	0.0273 <u>+</u> 0.0010 N=14	0.0265 <u>+</u> 0.0010 N=15	0.0268 <u>+</u> 0.0010 N=14
Adjusted Liver Weight (g) ^f			
	17.5861 <u>+</u> 0.5568 ʎ N=14	19.1172 <u>+</u> 0.5382 N=15	19.2573 <u>+</u> 0.5575 N=14
Adjusted Paired Adrenal Gland Weight	(g) ^f		
	0.0478 ♦♦♦ ± 0.0021 △△△ N=14	0.0701 ⊲ ⊲ ⊲ ± 0.0029 N=15	0.0913
Adjusted Paired Kidney Weight (g) ^f			
	3.1101 <u>+</u> 0.0791 N=14	3.0915 <u>+</u> 0.0765 N=15	3.1756 <u>+</u> 0.0792 N=14
Adjusted Paired Testis Weight (g) ^f			
	2.8673 ♦♦♦ ± 0.0285 △△△ N=14	2.8038 <u>+</u> 0.0542 N=15	2.7232
Adjusted Paired Epididymis Weight (g) ^f	:		
	0.4559 <u>+</u> 0.0125 ʎ N=14	0.4284 <u>+</u> 0.0121 N=15	0.4134 <u>+</u> 0.0125 N=14
Adjusted Ventral Prostate Weight (g) ^f			
	0.2652 <u>+</u> 0.0143 ∆ N=14	0.2359 <u>+</u> 0.0122 N=15	0.2078 <u>+</u> 0.0222 N=14
Adjusted Dorsolateral Prostate Weight	(g) ^f		
	0.1849 <u>+</u> 0.0133 N=14	0.1565 <u>+</u> 0.0128 N=15	0.1486 ± 0.0133 N=14

Table 7-F. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Ketoconazole Treated F_1 Males (page 5 of 6)

	Ketoconazole (mg/kg/day, po)		
	0	50	100
Adjusted Prostate Weight (g) ^f			
	0.4501 <u>+</u> 0.0265 ʎ N=14	0.3924 <u>+</u> 0.0256 N=15	0.3564 <u>+</u> 0.0265 N=14
Adjusted Seminal Vesicles with Coa	agulating Glands Weight	(g) ^f	
	0.6389	0.4777 ንን <u>+</u> 0.0341 N=15	0.4212 <i>9</i> 99 <u>+</u> 0.0354 N=14
Adjusted Levator Ani plus Bulbcave	rnosus Muscle Complex	: Weight (g) ^f	
	0.6377 <u>+</u> 0.0280 ʎ N=14	0.5742 <u>+</u> 0.0270 N=15	0.5448 <u>+</u> 0.0280 N=14
Thyroxine Hormone (T4) (ug/dL) ^C			
	5.78 <u>+</u> 0.27 N=14	5.58 <u>+</u> 0.21 N=15	5.65 <u>+</u> 0.20 N=14
Thyroid Stimulating Hormone (TSH)	(ng/ml) ^C		
	11.54 <u>+</u> 0.90 N=14	10.02 <u>+</u> 0.64 N=15	11.15 <u>+</u> 0.88 N=14

Table 7-F. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Ketoconazole Treated F₁ Males (page 6 of 6)

^aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

bMale 242 was found dead on postnatal day 37 prior to dosing (misdirected dose).

^CReported as the mean + S.E.M.

^dDecrease in N is due to one seminal vesicles with coagulating glands inadvertently being nicked and leaking prior to weighing and therefore the weight was excluded.

eReported as the adjusted mean <u>+</u> S.E.M. (sacrifice weight as covariate).

^fReported as the adjusted mean <u>+</u> S.E.M. (postnatal day 21 body weight as covariate).

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

††††p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model. **Pp<0.05; Linear trend test in robust regression model. ***YP**Pp<0.001; Linear trend test in robust regression model.

PPPp<0.001; Individual t-test for pairwise comparisons to control in robust regression model.

‡‡‡p<0.001; ANOVA Test.

\$p<0.05; Test for Linear Trend.

§§p<0.001; Test for Linear Trend.

**p<0.01; Dunnett's Test.

*** *** p<0.001; Dunnett's Test. $^{\circ}$ p<0.05; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

OOp<0.01; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

UUUp<0.001; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

√p<0.05; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

\$\$\$\$p<0.001; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

%p<0.05; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.01; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.001; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

♦♦p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

♦♦♦ p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

△p<0.05; Linear trend test in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

△△p<0.01; Linear trend test in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

ΔΔΔp<0.001; Linear trend test in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

⁴⁴p<0.01; Individual t-test for pairwise comparisons to control in robust regression model with body weight</p> at sacrifice or on postnatal day 21 as covariate.

◄
4.0.001; Individual t-test for pairwise comparisons to control in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

Table 7-G. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Linuron Treated F_1 Males (page 1 of 6)

	Linuron (mg/kg/day, po)		
	0	50	100
No. of Males on Study	15	15	15
No. of Males at Scheduled Sacrifice	14 ^a	15	15
Sacrifice Body Weight (g) ^b			
	320.70 ‡‡‡	298.66 *	268.89 ***
	<u>+</u> 6.74 §§§ N=14	<u>+</u> 5.69 N=15	<u>+</u> 6.87 N=15
Pituitary Weight (g) ^b			
	0.0117 ‡‡‡	0.0097 **	0.0092 ***
	<u>+</u> 0.0006 §§§ N=14	<u>+</u> 0.0003 N=15	<u>+</u> 0.0003 N=15
Thyroid Weight (g) ^b	N=14	N=13	N=15
Triyroid Weight (g)	0.0273 ‡‡	0.0294	0.0242 *
	<u>+</u> 0.0011 §	<u>+</u> 0.0009	<u>+</u> 0.0008
	N=14	N=15	N=15
Liver Weight (g) ^b			
	17.6196 ‡‡ <u>+</u> 0.5792 §§	16.8580 <u>+</u> 0.6195	14.9885 **
	± 0.5792 99 N=14	<u>+</u> 0.6195 N=15	<u>+</u> 0.5601 N=15
Paired Adrenal Gland Weight (g)b			
	0.0480	0.0483	0.0464
	<u>+</u> 0.0016 N=14	<u>+</u> 0.0016 N=15	<u>+</u> 0.0025 N=15
Paired Kidney Weight (g) ^b	14-17	14-10	14-10
#	3.1147 †	2.9232 Þ	2.7279 ÞÞ
π	<u>+</u> 0.0800 ŸŸ	<u>+</u> 0.0549	<u>+</u> 0.1179
	N=14	N=15	N=15
Paired Testis Weight (g) ^b			
	2.8678 ‡ + 0.0299 §§	2.7752 <u>+</u> 0.0454	2.6670 ** <u>+</u> 0.0552
	<u>+</u> 0.0299 33 N=14	<u>+</u> 0.0434 N=15	<u>+</u> 0.0332 N=15
Paired Epididymis Weight (g) ^b			
	0.4564 ‡‡	0.4186	0.3809 ***
	<u>+</u> 0.0142 §§§ N=14	<u>+</u> 0.0134 N=15	<u>+</u> 0.0135 N=15

Table 7-G. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Linuron Treated F_1 Males (page 2 of 6)

_	Linuron (mg/kg/day, po)		
	0	50	100
Ventral Prostate Weight (g) ^b			
	0.2657 ‡‡‡ <u>+</u> 0.0168 §§§ N=14	0.1943 ** + 0.0090 N=14 ^c	0.1845 *** <u>+</u> 0.0143 N=15
Dorsolateral Prostate Weight (g) ^b			
	0.1852 ‡‡ <u>+</u> 0.0130 §§ N=14	0.1466 * <u>+</u> 0.0117 N=15	0.1275 ** <u>+</u> 0.0103 N=15
Prostate Weight (g) ^b			
	0.4509 ‡‡‡ <u>+</u> 0.0258 §§§ N=14	0.3343 *** + 0.0129 N=14 ^d	0.3120 *** <u>+</u> 0.0210 N=15
Seminal Vesicles with Coagulating Gl	ands Weight (g) ^b		
	0.6396 ‡‡‡ <u>±</u> 0.0462 §§§ N=13 ^e	0.4660 ** <u>+</u> 0.0344 N=15	0.3549 *** <u>+</u> 0.0370 N=14 ^e
Levator Ani plus Bulbcavernosus Mus	scle Complex Weight	(g) ^b	
	0.6384 ‡‡‡ <u>+</u> 0.0279 §§§ N=14	0.5437 * <u>+</u> 0.0320 N=15	0.4559 *** <u>+</u> 0.0224 N=15
Adjusted Pituitary Weight (g) ^f			
	0.0109 <u>+</u> 0.0005 N=14	0.0096 <u>+</u> 0.0004 N=15	0.0100 <u>+</u> 0.0005 N=15
Adjusted Thyroid Weight (g) ^f			
	0.0268 ℧ <u>±</u> 0.0011 N=14	0.0293 <u>+</u> 0.0009 N=15	0.0248 <u>+</u> 0.0011 N=15
Adjusted Liver Weight (g) ^f			
	15.6059 ℧ <u>+</u> 0.3403 ʎʎ N=14	16.6074 <i>9</i> * <u>+</u> 0.2832 N=15	17.1187 <i>9</i> * <u>+</u> 0.3373 N=15

Table 7-G. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Linuron Treated F_1 Males (page 3 of 6)

	L	inuron (mg/kg/day, po	p)
	0	50	100
Adjusted Paired Adrenal Gland Weigh	t (g) ^f		
	0.0462 <u>+</u> 0.0023 N=14	0.0481 <u>+</u> 0.0019 N=15	0.0483 <u>+</u> 0.0023 N=15
Adjusted Paired Kidney Weight (g) ^f			
	2.8363 <u>+</u> 0.0549 N=14	2.8885 <u>+</u> 0.0505 N=15	3.0223 <u>+</u> 0.0707 N=15
Adjusted Paired Testis Weight (g) ^f			
	2.8254 <u>+</u> 0.0531 N=14	2.7699 <u>+</u> 0.0442 N=15	2.7118 <u>+</u> 0.0526 N=15
Adjusted Paired Epididymis Weight (g) ^f		
	0.4372 <u>+</u> 0.0154 N=14	0.4162 <u>+</u> 0.0128 N=15	0.4011 <u>+</u> 0.0153 N=15
Adjusted Ventral Prostate Weight (g) ^f			
	0.2501 ℧ <u>+</u> 0.0157 N=14	0.1925 % <u>+</u> 0.0135 N=14 ^C	0.2008 <u>+</u> 0.0155 N=15
Adjusted Dorsolateral Prostate Weigh	t (g) ^f		
	0.1653 <u>+</u> 0.0126 N=14	0.1441 <u>+</u> 0.0105 N=15	0.1486 <u>+</u> 0.0125 N=15
Adjusted Prostate Weight (g) ^f			
	0.4157 ℧ <u>+</u> 0.0222 N=14	0.3302 % <u>+</u> 0.0190 N=14 ^d	0.3487 <u>+</u> 0.0219 N=15
Adjusted Seminal Vesicles with Coagu	ulating Glands Weig	ght (g) ^f	
	0.5873 ℧ <u>+</u> 0.0442 ʎ N=13 ^e	0.4618 <u>+</u> 0.0357 N=15	0.4081 ? <u>+</u> 0.0432 N=14 ^e
Adjusted Levator Ani plus Bulbcaverne	osus Muscle Compl	lex Weight (g) ^f	
	0.5780 <u>+</u> 0.0277 N=14	0.5362 <u>+</u> 0.0231 N=15	0.5199 <u>+</u> 0.0275 N=15

Table 7-G. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Linuron Treated F_1 Males (page 4 of 6)

	Lin	uron (mg/kg/day, po)	
	0	50	100
Adjusted Pituitary Weight (g) ^g			
	0.0117 ƯƯƯ <u>+</u> 0.0004 ʎʎʎ N=14	0.0097 % <u>+</u> 0.0004 N=15	0.0092 ንንን <u>+</u> 0.0004 N=15
Adjusted Thyroid Weight (g) ⁹			
	0.0273 ଫଫ <u>+</u> 0.0010 ʎ N=14	0.0294 <u>+</u> 0.0009 N=15	0.0242 % <u>+</u> 0.0009 N=15
Adjusted Liver Weight (g) ⁹			
	17.6360 ƯƯ <u>+</u> 0.5489 ʎʎ N=14	16.8589 <u>+</u> 0.5303 N=15	14.9724 ንን <u>+</u> 0.5303 N=15
Adjusted Paired Adrenal Gland Weight	(g) ^g		
	0.0480 <u>+</u> 0.0020 N=14	0.0483 <u>±</u> 0.0019 N=15	0.0464 ± 0.0019 N=15
Adjusted Paired Kidney Weight (g) ^g			
	3.1172 ♦♦ <u>+</u> 0.0768 △△ N=14	2.9233 ⊲ <u>+</u> 0.0457 N=15	2.7254
Adjusted Paired Testis Weight (g) ^g			
	2.8687 ℧℧ <u>+</u> 0.0449 ʎʎ N=14	2.7752 <u>+</u> 0.0434 N=15	2.6662 % ± 0.0434 N=15
Adjusted Paired Epididymis Weight (g)	9		
	0.4567 ƯƯƯ <u>+</u> 0.0134 ʎʎʎ N=14	0.4186 <u>+</u> 0.0129 N=15	0.3806 ንንን <u>+</u> 0.0129 N=15
Adjusted Ventral Prostate Weight (g)9			
	0.2662 ƯƯƯ <u>+</u> 0.0129 አ አአ N=14	0.1941 ንንን <u>+</u> 0.0129 N=14 ^C	0.1843 ን ምን <u>+</u> 0.0124 N=15
Adjusted Dorsolateral Prostate Weight	(g) ^g		
	0.1854	0.1466 % ± 0.0113 N=15	0.1273 <i>ን</i> ን <u>+</u> 0.0113 N=15

Table 7-G. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Linuron Treated F_1 Males (page 5 of 6)

	Linuron (mg/kg/day, po)		
	0	50	100
Adjusted Prostate Weight (g) ⁹			
	0.4516	0.3340 ንንን	0.3116 🤊 ୬ ୭
	<u>+</u> 0.0192 ለ አአ	<u>+</u> 0.0192	<u>+</u> 0.0186
	N=14	N=14 ^d	N=15
Adjusted Seminal Vesicles with Coa	gulating Glands Weigh	t (g) ^g	
	0.6398 UUU	0.4661 ንን	0.3547 % %
	<u>+</u> 0.0402 ለ አአ	<u>+</u> 0.0374	<u>+</u> 0.0387
	N=13 ^e	N=15	N=14 ^e
Adjusted Levator Ani plus Bulbcaver	nosus Muscle Complex	x Weight (g) ^g	
	0.6393 ƯƯ ℧	0.5437 %	0.4551 %
	<u>+</u> 0.0249 ለ አአ	<u>+</u> 0.0240	<u>+</u> 0.0240
	N=14	N=15	N=15
Thyroxine Hormone (T4) (ug/dL) ^b			
	5.78 ‡‡‡	4.60 **	3.40 ***
	<u>+</u> 0.27 §§§	<u>+</u> 0.30	<u>+</u> 0.15
	N=14	N=14	N=15
Thyroid Stimulating Hormone (TSH) ((ng/ml) ^b		
	11.54 ‡	8.98 *	9.49
	<u>+</u> 0.90	<u>+</u> 0.52	<u>+</u> 0.74
	N=14	N=14	N=15

```
<sup>a</sup>Male 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).
```

fReported as the adjusted mean <u>+</u> S.E.M. (sacrifice weight as covariate).

9Reported as the adjusted mean + S.E.M. (postnatal day 21 body weight as covariate).

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

\$p<0.05: Test for Linear Trend.

§\$p<0.01; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

_p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

p<0.001; Dunnett's Test.

tp<0.05; Wald Chi-square Test for overall treatment effect in robust regression model. YPp<0.01; Linear trend test in robust regression model.

p<0.05; Individual t-test for pairwise comparisons to control in robust regression model.

pbp<0.01: Individual t-test for pairwise comparisons to control in robust regression model.

Up<0.05; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

^{UU}p<0.01; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

^{UUU}p<0.001; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the

√p<0.05; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the

covariate. $\upmu_{p<0.01}$; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

KMp<0.001; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.05; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.03, Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.001; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

♦♦p<0.01; Wald Chi-square Test for overall treatment effect in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

△△p<0.01; Linear trend test in robust regression model with body weight at sacrifice or on postnatal day 21 as covariate.

<0.05; Individual t-test for pairwise comparisons to control in robust regression model with body weight</p> at sacrifice or on postnatal day 21 as covariate.

d<0.01; Individual t-test for pairwise comparisons to control in robust regression model with body weight</p> at sacrifice or on postnatal day 21 as covariate.

bReported as the mean + S.E.M.

^CDecrease in N is due to one organ weight being a statistical outlier and therefore it was excluded.

^dDecrease in N is due to one ventral prostate weight being a statistical outlier and therefore the total prostate weight could not be calculated.

eDecrease in N is due to one seminal vesicles with coagulating glands inadvertently being nicked and leaking prior to weighing and therefore the weight was excluded.

Table 7-H. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Phenobarbital Treated F_1 Males (page 1 of 6)

	Phenobarbital (mg/kg/day, po)		
	0	50	100
No. of Males on Study	15	15	15
No. of Males at Scheduled Sacrifice	₁₄ a	15	15
Sacrifice Body Weight (g) ^b			
	320.70	312.07	296.96
	<u>+</u> 6.74 § N=14	<u>+</u> 7.63 N=15	<u>+</u> 7.23 N=15
Pituitary Weight (g) ^b		-	
, 5 (6)	0.0117	0.0105	0.0104
	<u>+</u> 0.0006	<u>+</u> 0.0006	<u>+</u> 0.0002
b	N=14	N=14 ^C	N=13 ^C
Thyroid Weight (g) ^b			
	0.0273 ‡ <u>+</u> 0.0011 §§	0.0319 * <u>+</u> 0.0014	0.0325 * <u>+</u> 0.0014
	N=14	N=15	N=15
Liver Weight (g) ^b			
	17.6196 ‡‡‡	20.3434 *	21.8401 ***
	<u>+</u> 0.5792 §§§ N=14	<u>+</u> 0.6582 N=15	<u>+</u> 0.7753 N=15
Paired Adrenal Gland Weight (g)b			
r and r taronar claira worght (g)	0.0480	0.0529	0.0483
	<u>+</u> 0.0016	<u>+</u> 0.0024	<u>+</u> 0.0028
	N=14	N=15	N=15
Paired Kidney Weight (g) ^b			
	3.1147	3.0568	2.9835
	<u>+</u> 0.0800 N=14	<u>+</u> 0.0934 N=15	<u>+</u> 0.0821 N=15
Paired Testis Weight (g) ^b			
	2.8678 ‡ ‡	2.7704	2.6432 **
	<u>+</u> 0.0299 §§ N=14	<u>+</u> 0.0438 N=15	<u>+</u> 0.0580 N=15
Paired Epididymis Weight (g) ^b	14=14	IN=IO	IV= 10
i anda Epialayiina Weigitt (g)	0.4564 ‡	0.4508	0.4026 *
	<u>+</u> 0.0142 §§	<u>+</u> 0.0127	<u>+</u> 0.0145
	N=14	N=15	N=15

Table 7-H. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Phenobarbital Treated F_1 Males (page 2 of 6)

	Pheno	barbital (mg/kg/day,	
	0	50	100
Ventral Prostate Weight (g) ^b			
	0.2657 ‡	0.2772	0.2154
	<u>+</u> 0.0168	<u>+</u> 0.0220	<u>+</u> 0.0147
	N=14	N=15	N=15
Dorsolateral Prostate Weight (g) ^b			
	0.1852	0.1585	0.1805
	<u>+</u> 0.0130	<u>+</u> 0.0134	<u>+</u> 0.0149
	N=14	N=15	N=15
Prostate Weight (g) ^b			
	0.4509	0.4357	0.3959
	<u>+</u> 0.0258	<u>+</u> 0.0297	<u>+</u> 0.0267
	N=14	N=15	N=15
Seminal Vesicles with Coagulating G	lands Weight (g) ^b		
	0.6396 ‡	0.6410	0.4873 *
	<u>+</u> 0.0462 §	<u>+</u> 0.0428	<u>+</u> 0.0344
	N=13 ^d	N=15	N=15
Levator Ani plus Bulbcavernosus Mu	scle Complex Weight (g) ^b	
	0.6384 ‡‡	0.6065	0.5252 **
	<u>+</u> 0.0279 §§	<u>+</u> 0.0190	<u>+</u> 0.0237
	N=14	N=15	N=15
Adjusted Pituitary Weight (g) ^e			
	0.0116	0.0105	0.0105
	± 0.0005	± 0.0005	± 0.0006
	N=14	N=1 ⁴ ^C	N=13 ^C
Adjusted Thyroid Weight (g) ^e			
	0.0268 UU	0.0317 %	0.0332 %
	<u>+</u> 0.0013 ʎʎ	± 0.0013	<u>+</u> 0.0013
	N=14	N=15	N=15
Adjusted Liver Weight (g) ^e			
	16.6809 VVV	20.1385 ንንን	22.9211 %
	<u>+</u> 0.3085 ʎʎʎ	<u>+</u> 0.2907	<u>+</u> 0.3012
	N=14	N=15	N=15

Table 7-H. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Phenobarbital Treated F_1 Males (page 3 of 6)

	Phen	obarbital (mg/kg/da	y, po)
	0	50	100
Adjusted Paired Adrenal Gland Weigh	nt (g) ^e		
	0.0474 <u>+</u> 0.0025 N=14	0.0528 <u>+</u> 0.0023 N=15	0.0490 <u>+</u> 0.0024 N=15
Adjusted Paired Kidney Weight (g) ^e			
	3.0108 <u>+</u> 0.0553 N=14	3.0341 <u>+</u> 0.0521 N=15	3.1031 <u>+</u> 0.0540 N=15
Adjusted Paired Testis Weight (g) ^e			
	2.8482 ℧ <u>+</u> 0.0470 ʎʎ N=14	2.7661 <u>+</u> 0.0443 N=15	2.6658 % <u>+</u> 0.0459 N=15
Adjusted Paired Epididymis Weight (g	₎ e		
	0.4507 <u>+</u> 0.0142 ʎ N=14	0.4495 <u>+</u> 0.0133 N=15	0.4091 <u>±</u> 0.0138 N=15
Adjusted Ventral Prostate Weight (g) ⁶)		
	0.2572 <u>+</u> 0.0184 N=14	0.2753 <u>+</u> 0.0173 N=15	0.2252 <u>+</u> 0.0179 N=15
Adjusted Dorsolateral Prostate Weigh	t (g)e		
	0.1809 <u>+</u> 0.0144 N=14	0.1576 <u>+</u> 0.0136 N=15	0.1854 <u>+</u> 0.0141 N=15
Adjusted Prostate Weight (g) ^e			
	0.4381 <u>+</u> 0.0279 N=14	0.4329 <u>+</u> 0.0263 N=15	0.4107 <u>+</u> 0.0273 N=15
Adjusted Seminal Vesicles with Coagn	ulating Glands Weigl	nt (g) ^e	
	0.6114 <u>+</u> 0.0402 N=13 ^d	0.6347 <u>+</u> 0.0365 N=15	0.5180 <u>+</u> 0.0378 N=15
Adjusted Levator Ani plus Bulbcavern	osus Muscle Comple	ex Weight (g) ^e	
	0.6226 ℧ <u>+</u> 0.0226 ʎ N=14	0.6030 <u>+</u> 0.0213 N=15	0.5434 % <u>+</u> 0.0221 N=15

Table 7-H. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Phenobarbital Treated F_1 Males (page 4 of 6)

	Pheno	barbital (mg/kg/day	v, po)
	0	50	100
Adjusted Pituitary Weight (g) ^f			
	0.0117	0.0105	0.0104
	<u>+</u> 0.0005	<u>+</u> 0.0005	<u>+</u> 0.0005
	N=14	$N=1\overline{4}^{C}$	N=13 ^C
Adjusted Thyroid Weight (g) ^f			
	0.0273 ປັ	0.0319 %	0.0325 %
	<u>+</u> 0.0013 ʎʎ	<u>+</u> 0.0013	<u>+</u> 0.0013
	N=14	N=15	N=15
Adjusted Liver Weight (g) ^f			
	17.6425	20.3681 %	21.7942 ንንን
	<u>+</u> 0.6799 ፈፈ	<u>+</u> 0.6568	<u>+</u> 0.6572
	N=14	N=15	N=15
Adjusted Paired Adrenal Gland Weight	(g) ^f		
	0.0480	0.0530	0.0482
	± 0.0024	± 0.0023	<u>+</u> 0.0023
_	N=14	N=15	N=15
Adjusted Paired Kidney Weight (g) ^f			
	3.1177	3.0601	2.9773
	± 0.0852	<u>+</u> 0.0823	<u>+</u> 0.0823
	N=14	N=15	N=15
Adjusted Paired Testis Weight (g) ^f			
	2.8702 ଫଫ	2.7730	2.6383 🤊 ୬ ୬
	<u>+</u> 0.0434 ʎʎʎ	<u>+</u> 0.0419	<u>+</u> 0.0419
	N=14	N=15	N=15
Adjusted Paired Epididymis Weight (g) [†]			
	0.4570 VV	0.4515	0.4012 %
	<u>+</u> 0.0133 ʎʎ	<u>+</u> 0.0128	<u>+</u> 0.0128
A P. A. D. A. D. A. A. W. L. A. S.	N=14	N=15	N=15
Adjusted Ventral Prostate Weight (g) ^f			
	0.2666 ℧	0.2781	0.2136
	<u>+</u> 0.0174 	<u>+</u> 0.0168	<u>+</u> 0.0168
	N=14	N=15	N=15
Adjusted Dorsolateral Prostate Weight			
	0.1854	0.1587	0.1802
	<u>+</u> 0.0143 N=14	<u>+</u> 0.0138 N=15	<u>+</u> 0.0138 N=15
	IN= I4	IN= IO	IN=10

Table 7-H. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Phenobarbital Treated F₁ Males (page 5 of 6)

	Phenobarbital (mg/kg/day, po)			
	0	50	100	
Adjusted Prostate Weight (g) ^f				
	0.4520 <u>+</u> 0.0273 N=14	0.4368 <u>+</u> 0.0263 N=15	0.3938 <u>+</u> 0.0264 N=15	
Adjusted Seminal Vesicles with Co	pagulating Glands Weigh	nt (g) ^f		
	0.6400 ℧ <u>±</u> 0.0434 ʎ N=13 ^d	0.6416 <u>+</u> 0.0404 N=15	0.4863 * <u>+</u> 0.0405 N=15	
Adjusted Levator Ani plus Bulbcav	rernosus Muscle Comple	x Weight (g) ^f		
	0.6394 ԾԾ <u>+</u> 0.0230 አአአ N=14	0.6076 <u>+</u> 0.0222 N=15	0.5230 ንፃ <u>+</u> 0.0222 N=15	
Thyroxine Hormone (T4) (ug/dL) ^b				
	5.78 <u>+</u> 0.27 N=14	5.66 <u>+</u> 0.26 N=15	5.73 <u>+</u> 0.16 N=15	
Thyroid Stimulating Hormone (TSH	l) (ng/ml) ^b			
	11.54 <u>+</u> 0.90 N=14	16.37 <u>+</u> 1.58 N=15	14.47 <u>+</u> 1.61 N=15	

Table 7-H. Summary and Statistical Analysis of the Organ Weights and Hormone Data for the Phenobarbital Treated F₁ Males (page 6 of 6)

^aMale 217 was found dead on postnatal day 31 prior to dosing (misdirected dose).

bReported as the mean + S.E.M.

^CDecrease in N is due to one or more organ weights being statistical outliers and therefore they were excluded.

dDecrease in N is due to one seminal vesicles with coagulating glands inadvertently being nicked and leaking prior to weighing and therefore the weight was excluded.

^eReported as the adjusted mean + S.E.M. (sacrifice weight as covariate).

[†]Reported as the adjusted mean \pm S.E.M. (postnatal day 21 body weight as covariate).

‡p<0.05; ANOVA Test.

‡‡p<0.01; ANOVA Test.

‡‡‡p<0.001; ANOVA Test.

\$p<0.05; Test for Linear Trend.

§§p<0.01; Test for Linear Trend.

§§§p<0.001; Test for Linear Trend.

*p<0.05; Dunnett's Test.

**p<0.01; Dunnett's Test.

*** *** p<0.001; Dunnett's Test. $^{\circ}$ p<0.05; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

<u>υ</u>σρ<0.01; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

UUUp<0.001; Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the

^p<0.05; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

€ p<0.01; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the çovariate.

\$\text{p<0.001; Linear Trend Analysis of Covariance with body weight at sacrifice or on postnatal day 21 as the covariate.

⁹p<0.05; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

p<0.01; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate. p<0.001; Dunnett's Test with body weight at sacrifice or on postnatal day 21 as the covariate.

Table 8-A. Summary of Necropsy Findings for the Atrazine-Treated F_1 Males (page 1 of 1)

	Atra	Atrazine (mg/kg/day, po)		
Finding	0	75	150	
Epididymis: reduced in size, left		1		
Kidney: hydronephrosis, right	1	1	2	
Testis: reduced in size, left		1		
undescended, left		1		

B. Unscheduled Necropsy

	Atrazine (mg/kg/day, po)		
Finding	0	75	150
Misdirected dose		1	

Table 8-B. Summary of Necropsy Findings for the p,p'-Dichlorodiphenyldichloroethylene-Treated F $_1$ Males (page 1 of 1)

	p,p'-Dichlorodiphenyldichloroethane (mg/kg/day,p		
Finding	0	50	100
Chromodacryorrhea: nose			1
Intestines: distended with air			1
Kidney: hydronephrosis, bilateral			1
hydronephrosis, right	1	1	3

B. Unscheduled Necropsy

	p,p'-Dichlorodiphenyldichloroethane (mg/kg/day,po)		
Finding	0	50	100
Left metatarsal extremely swollen and edematous with ankle scabbed over and venous return appeared constricted by underlying tissue		1	

Table 8-C. Summary of Necropsy Findings for the Vinclozolin-Treated F_1 Males (page 1 of 1)

	Vinc	Vinclozolin (mg/kg/day, po)		
Finding	0	30	100	
Kidney: hydronephrosis, right	1	4	3	
Seminal Vesicles: reduced in size			1	

Table 8-D. Summary of Necropsy Findings for the Methoxychlor-Treated F_1 Males (page 1 of 1)

A. Scheduled Necropsy

	Methoxychlor (mg/kg/day, po)			
Finding	0	25	50	
Kidney: hydronephrosis, right	1		1	

Table 8-E. Summary of Necropsy Findings for the Propylthiouracil-Treated F_1 Males (page 1 of 1)

	Propylthiouracil (mg/kg/day, po)		
Finding	0	2	25
Adrenal Gland: reduced in size, bilateral			4
Kidney: hydronephrosis, right		1	2
reduced in size, bilateral			1
Liver: mottled			2
reduced in size			4
Lungs: multiple foci		1	
Pituitary: reduced in size			1
Dorsolateral Prostate: reduced in size		1	1
Ventral Prostate: reduced in size		1	1
Seminal Vesicles: reduced in size, bilateral		1	
Thyroid: darkened and right side enlarged		1	
enlarged		3	2
enlarged, bilateral		1	4
enlarged and darkened		1	
enlarged and darkened, left side		1	
enlarged and reddened		1	3
enlarged and reddened, bilateral		1	5
Urinary Bladder: multiple 1 to 3 mm calculi and wall thickened	1		

B. Unscheduled Necropsy

	Propylthiouracil (mg/kg/day, po)		
Finding	0	2	25
Lungs: congested and oil present on cut surface, misdirected dose	1		
Trachea: oil present			1

Table 8-F. Summary of Necropsy Findings for the Ketoconazole-Treated F_1 Males (page 1 of 1)

A. Scheduled Necropsy

	Ketoconazole (mg/kg/day, po)		
Finding	0	50	100
Adrenal Gland: dark tan/brown, bilateral		1	
enlarged, bilateral		1	5
enlarged, left			1
pale, bilateral		2	
Kidney: hydronephrosis, right		1	2
Lung: pinpoint foci, right			1
Dorsolateral Prostate: reduced in size		1	1
Ventral Prostate: reduced in size			3
Seminal Vesicle: reduced in size			1
Seminal Vesicles: reduced in size		1	1
reduced in size, bilateral			2
Urinary Bladder: multiple 1 to 3 mm calculi and wall thickened	1		

B. Unscheduled Necropsy

	Ketoconazole (mg/kg/day, po)		
Finding	0	50	100
Lungs: congested and oil present on cut surface, misdirected dose	1		
congested, dark red, small amount of corn oil on cut surface, misdirected dose			1

Table 8-G. Summary of Necropsy Findings for the Linuron-Treated F_1 Males (page 1 of 1)

A. Scheduled Necropsy

	Linuron (mg/kg/day, po)		
Finding	0	50	100
Kidney: hydronephrosis, right			1
Lungs: multiple reddened areas			1
Pituitary: reduced in size			1
Dorsolateral Prostate: reduced in size		2	3
Ventral Prostate: reduced in size		2	4
Seminal Vesicle: reduced in size, right		1	
Seminal Vesicles: reduced in size			4
reduced in size, bilateral		2	2
Spleen: enlarged with white foci			1
Urinary Bladder: multiple 1 to 3 mm calculi and wall thickened	1		

B. Unscheduled Necropsy

	Linuron (mg/kg/day, po)		
Finding	0	50	100
Lungs: congested and oil present on cut surface, misdirected dose	1		

Table 8-H. Summary of Necropsy Findings for the Phenobarbital-Treated F_1 Males (page 1 of 1)

A. Scheduled Necropsy

	Phenobarbital (mg/kg/day, po)		day, po)
Finding	0	50	100
Kidney: hydronephrosis, right		2	2
Dorsolateral Prostate: reduced in size		1	2
Ventral Prostate: reduced in size		1	2
Seminal Vesicles: reduced in size	inal Vesicles: reduced in size		2
reduced in size, bilateral		1	1
Urinary Bladder: multiple 1 to 3 mm calculi and wall thickened	1		

B. Unscheduled Necropsy

	Phenobarbital (mg/kg/day, po)		
Finding	0	50	100
Lungs: congested and oil present on cut surface, misdirected dose	1		

APPENDIX 1

Individual Animal Data Tables

Memorandum

Date:

January 5, 2004

To:

To the record

From:

Julia D. George, Study Director

Subject:

Correlation of treatment group designations within the documentation of RTI Study

Juleal Gron

No. Rt02-ED03

During the course of this study, more than one set of designating numbers was used to denote the individual treatment groups in the two components. This memo serves to correlate the treatment group designations used in the different records of the report.

Date: January 5, 2004

Page 2 of 6

Study Protocol, RTI-831, Amendment 1

Group No.	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)				
COMPONENT 1							
1	Corn oil (vehicle control)	0	0.0				
2	Atrazine	75	15.0				
3		150	30.0				
4	p,p'DDE	50	10.0				
5		100	20.0				
6	Vinclozolin	30	6.0				
7		100	20.0				
8	Methoxychlor	25	5.0				
9		50	10.0				
		COMPONENT 2					
10	Propylthiouracil	2	0.4				
11		25	5.0				
12	Ketoconazole	50	10.0				
13		100	20.0				
14	Linuron	50	10.0				
15		100	20.0				
16	Phenobarbital	50	10.0				
17		100	20.0				
18	Finasteride ^b	25	5.0				
19		50	10.0				
20	Corn oil (vehicle control)		0.0				

^a Finasteride was unavailable, and was not tested in this study.

To the record

Correlation of treatment group designations within the documentation of RTI Study No. Rt02-ED03

Date: January 5, 2004

Page 3 of 6

Dose Code Form/Study Data Sheets

		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Group No.	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)	5 digit Rx Code	Color Cod
		СОМІ	PONENT 1		
1	Corn oil (vehicle control)	0	0.0	78967	Orange
2	Methoxychlor	25	5.0	96509	Blue
3		50	10.0	68843	Red
4	Atrazine	75	15.0	84156	Purple
5		150	30.0	39239	Brown
6 - 6	4,4' DDE	50	10.0	29505	Pink
7		100	20.0	48266	Yellow
8	Vinclozolin	30	6.0	15492	Green
9		100	20.0	07983	Black
		COMP	PONENT 2		
.1	Corn oil (vehicle control)	0	0.0	82703	Purple
2	Propylthiouracil	2	0.4	04691	Pink
3		25	5.0	65437	Black
4	Linuron	50	10.0	46916	Green
5		100	20.0	59969	Yellow
6	Ketoconazole	50	10.0	27489	Red
7		100	20.0	16317	Blue
8	Phenobarbital	50	10.0	34563	Orange
9		100	20.0	95962	Brown

To the record

Correlation of treatment group designations within the documentation of RTI Study No. Rt02-ED03

Date: January 5, 2004

Page 4 of 6

Battelle, Sequim Formulation ID Number

Chemical	Concentration (mg/ml)	Formulation ID Number
	COMPONENT 1	
Corn oil (vehicle control)	0	2-14-H-M
Vinclozolin	6	2-14-J-M
	20	2-14-K-M
Methoxyclor	5	2-14-L-M
	10	2-14-M-M
4,4' DDE	10	2-14-N-M
	20	2-14-P-M
Atrazine	15	2-14-Q-M
	30	2-14-R-M
	COMPONENT 2	
Corn oil (vehicle control)	0	2-14-A-M
Propylthiouracil	0.4	2-14-B-M
	5	2-14-C-M
Linuron	10	2-14-D-M
	20	2-14-E-M
Ketoconazole	10	2-14-F-M
	20	2-14-G-M
Phenobarbital	10	2-14-H-M
	20	2-14-I-M

To the record Correlation of treatment group designations within the documentation of RTI Study No. Rt02-ED03 Date: January 5, 2004 Page 5 of 6

Histopathology report (EPL, Inc.)

Group No.	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)
	C	OMPONENT 1	
1	Corn oil (vehicle control)	0	0.0
2	Methoxychlor	25	5.0
3		50	10.0
4	Atrazine	75	15.0
5		150	30.0
6	p,p'DDE	50	10.0
7		100	20.0
8	Vinclozolin	30	6.0
9		100	20.0
	C	OMPONENT 2	
1	Corn oil (vehicle control)	0	0.0
2	Propylthiouracil	2	0.4
3		25	5.0
4	Linuron	50	10.0
5		100	20.0
6	Ketoconazole	50	10.0
7		100	20.0
8	Phenobarbital	50	10.0
9		100	20.0

To the record

Correlation of treatment group designations within the documentation of RTI Study No. Rt02-ED03 Date: January 5, 2004

Page 6 of 6

Appendix I - Individual Animal Data Tables

Group No.	Chemical	Dose (mg/kg/day)	Concentration (mg/mi)
	C	OMPONENT 1	
1	Corn oil (vehicle control)	0	0.0
2	Atrazine	75	15.0
3		150	30.0
4	p,p'DDE	50	10.0
5		100	20.0
6	Vinclozolin	30	6.0
7		100	20.0
8	Methoxychlor	25	5.0
9		50	10.0
10	Corn oil (vehicle control)	0	0.0
11	Propylthiouracil	2	0.4
12		25	5.0
13	Ketoconazole	50	10.0
14		100	20.0
15	Linuron	50	10.0
16		100	20.0
17	Phenobarbital	50	10.0
18		100	20.0

Table A-1. Individual F₁ Male Fate (page 1 of 7)

Group ^a	Animal ID	Phase of Study	Postnatal Day
1	1	Scheduled Sacrifice	52
	15	Scheduled Sacrifice	52
	32	Scheduled Sacrifice	52
	33	Scheduled Sacrifice	52
	50	Scheduled Sacrifice	52
	51	Scheduled Sacrifice	52
	68	Scheduled Sacrifice	52
	69 ^b		
	86 ^b		
	87	Scheduled Sacrifice	53
	104	Scheduled Sacrifice	53
	105	Scheduled Sacrifice	53
	122	Scheduled Sacrifice	53
	123	Scheduled Sacrifice	53
	135 ^b	Contradict Cashines	00
2	4 18 ^C	Scheduled Sacrifice	52
	29	Scheduled Sacrifice	52
	36	Scheduled Sacrifice	52
	47	Scheduled Sacrifice	52
	54	Post Wean Period	37
	65	Scheduled Sacrifice	52
	72	Scheduled Sacrifice	52
	83	Scheduled Sacrifice	53
	90	Scheduled Sacrifice	53
	101	Scheduled Sacrifice	53
	108	Scheduled Sacrifice	53
	119 ^b	Ocheduled Gaernice	33
	126	Scheduled Sacrifice	53
	133	Scheduled Sacrifice	53
	133	Scrieduled Sacrifice	33
3	5	Scheduled Sacrifice	52
3	13	Scheduled Sacrifice	52 52
	19	Scheduled Sacrifice	52
	28	Scheduled Sacrifice	52
	37	Scheduled Sacrifice	52 52
	46	Scheduled Sacrifice	52
	55 ^b		
	64	Scheduled Sacrifice	52
	73	Scheduled Sacrifice	52
	82	Scheduled Sacrifice	53
	91	Scheduled Sacrifice	53
	100	Scheduled Sacrifice	53
	109 118 ^b	Scheduled Sacrifice	53
	118 ^b 127 ^b		

Table A-1. Individual F₁ Male Fate (page 2 of 7)

Group ^a	Animal ID	Phase of Study	Postnatal Day
4	6	Scheduled Sacrifice	52
	12	Scheduled Sacrifice	52
	20	Post Wean Period	29
	27	Scheduled Sacrifice	52
	38	Scheduled Sacrifice	52
	45	Scheduled Sacrifice	52
	56	Scheduled Sacrifice	52
	63 - 4b	Scheduled Sacrifice	52
	74 ^b	Cabadulad Cassifias	50
	81	Scheduled Sacrifice	53
	92	Scheduled Sacrifice	53
	99	Scheduled Sacrifice	53
	110	Scheduled Sacrifice	53
	117	Scheduled Sacrifice	53
	128	Scheduled Sacrifice	53
5	7	Scheduled Sacrifice	52
	21	Scheduled Sacrifice	52
	26	Scheduled Sacrifice	52
	39	Scheduled Sacrifice	52
	44	Scheduled Sacrifice	52
	57	Scheduled Sacrifice	52
	62	Scheduled Sacrifice	52
	75	Scheduled Sacrifice	52
	80	Scheduled Sacrifice	53
	93	Scheduled Sacrifice	53
	98	Scheduled Sacrifice	53
	111	Scheduled Sacrifice	53
	116	Scheduled Sacrifice	53
	129	Scheduled Sacrifice	53
	132	Scheduled Sacrifice	53
6	8	Scheduled Sacrifice	52
	11	Scheduled Sacrifice	52
	22	Scheduled Sacrifice	52
	25	Scheduled Sacrifice	52
	40	Scheduled Sacrifice	52
	43	Scheduled Sacrifice	52
	58	Scheduled Sacrifice	52
	61	Scheduled Sacrifice	52
	76	Scheduled Sacrifice	53
	79 ^b		
	94	Scheduled Sacrifice	53
	97	Scheduled Sacrifice	53
		Scheduled Sacrifice	53
	112 115 ^b 130	Scheduled Sacrifice	53
	130	Scrieduled Sacrifice	00

Table A-1. Individual F₁ Male Fate (page 3 of 7)

Group ^a	Animal ID	Phase of Study	Postnatal Day
7	9	Scheduled Sacrifice	52
	10	Scheduled Sacrifice	52
	23	Scheduled Sacrifice	52
	24 ^b		
	41	Scheduled Sacrifice	52
	42	Scheduled Sacrifice	52
	59	Scheduled Sacrifice	52
	60	Scheduled Sacrifice	52
	77	Scheduled Sacrifice	53
	78	Scheduled Sacrifice	53
	95	Scheduled Sacrifice	53
	96	Scheduled Sacrifice	53
	113	Scheduled Sacrifice	53
	114 ^b		
	131 ^b		
8	2	Scheduled Sacrifice	52
	16	Scheduled Sacrifice	52
	31	Scheduled Sacrifice	52
	34	Scheduled Sacrifice	52
	49	Scheduled Sacrifice	52
	52	Scheduled Sacrifice	52
	67	Scheduled Sacrifice	52
	70	Scheduled Sacrifice	52
	85	Scheduled Sacrifice	53
	88	Scheduled Sacrifice	53
	103	Scheduled Sacrifice	53
	106	Scheduled Sacrifice	53
	121	Scheduled Sacrifice	53
	124	Scheduled Sacrifice	53
	134	Scheduled Sacrifice	53
9	3	Scheduled Sacrifice	52
	14	Scheduled Sacrifice	52
	17 ^b 30 ^b		
	35	Scheduled Sacrifice	52
	48	Scheduled Sacrifice	52
	53	Scheduled Sacrifice	52
	66	Scheduled Sacrifice	52
	71	Scheduled Sacrifice	52
	84	Scheduled Sacrifice	53
	89	Scheduled Sacrifice	53
	102	Scheduled Sacrifice	53
	107	Scheduled Sacrifice	53
	120	Scheduled Sacrifice	53
	125	Scheduled Sacrifice	53

Table A-1. Individual F₁ Male Fate (page 4 of 7)

10 136 Scheduled Sacrifice 52 153 Scheduled Sacrifice 52 154 Scheduled Sacrifice 52 171 Scheduled Sacrifice 52 172 Scheduled Sacrifice 52 182 Scheduled Sacrifice 52 Scheduled Sacrifice 52 Scheduled Sacrifice 52	
154Scheduled Sacrifice52171Scheduled Sacrifice52172Scheduled Sacrifice52	
171 Scheduled Sacrifice 52 172 Scheduled Sacrifice 52	
172 Scheduled Sacrifice 52	
100 Cahadulad Caprifica FO	
199 Scheduled Sacrifice 52	
200 Scheduled Sacrifice 52	
217 Post Wean Period 31	
218 Scheduled Sacrifice 52	
Scheduled Sacrifice 53	
236 Scheduled Sacrifice 53	
253 Scheduled Sacrifice 53	
Scheduled Sacrifice 53	
270 Scheduled Sacrifice 53	
11 137 Scheduled Sacrifice 52	
152 Scheduled Sacrifice 52	
155 Scheduled Sacrifice 52	
170 Scheduled Sacrifice 52	
173 Scheduled Sacrifice 52	
183 Scheduled Sacrifice 52	
198 Scheduled Sacrifice 52	
201 Scheduled Sacrifice 52	
216 Scheduled Sacrifice 52	
219 Scheduled Sacrifice 52	
234 Scheduled Sacrifice 53	
237 Scheduled Sacrifice 53	
252 Scheduled Sacrifice 53	
255 Scheduled Sacrifice 53	
269 Scheduled Sacrifice 53	
12 138 Scheduled Sacrifice 52	
151 Scheduled Sacrifice 52	
156 Scheduled Sacrifice 52	
169 Scheduled Sacrifice 52	
174 Scheduled Sacrifice 52	
184 Scheduled Sacrifice 52	
197 Scheduled Sacrifice 52	
202 Scheduled Sacrifice 52	
215 Scheduled Sacrifice 52	
Scheduled Sacrifice 52	
Scheduled Sacrifice 53	
238 Scheduled Sacrifice 53	
251 Scheduled Sacrifice 53	
256 Scheduled Sacrifice 53	
268 Post Wean Period 50	

Table A-1. Individual F₁ Male Fate (page 5 of 7)

Group ^a	Animal ID	Phase of Study	Postnatal Day
13	141	Scheduled Sacrifice	52
	148	Scheduled Sacrifice	52
	159	Scheduled Sacrifice	52
	166	Scheduled Sacrifice	52
	177	Scheduled Sacrifice	52
	187	Scheduled Sacrifice	52
	194	Scheduled Sacrifice	52
	205	Scheduled Sacrifice	52
	212	Scheduled Sacrifice	52
	223	Scheduled Sacrifice	52
	230	Scheduled Sacrifice	53
	241	Scheduled Sacrifice	53
	248	Scheduled Sacrifice	53
	259	Scheduled Sacrifice	53
	265	Scheduled Sacrifice	53
14	142	Scheduled Sacrifice	52
	147	Scheduled Sacrifice	52
	160	Scheduled Sacrifice	52
	165	Scheduled Sacrifice	52
	178	Scheduled Sacrifice	52
	188	Scheduled Sacrifice	52
	193	Scheduled Sacrifice	52
	206	Scheduled Sacrifice	52
	211	Scheduled Sacrifice	52
	224	Scheduled Sacrifice	52
	229	Scheduled Sacrifice	53
	242	Post Wean Period	37
	247	Scheduled Sacrifice	53
	260	Scheduled Sacrifice	53
	264	Scheduled Sacrifice	53
15	139	Scheduled Sacrifice	52
	150	Scheduled Sacrifice	52
	157	Scheduled Sacrifice	52
	168	Scheduled Sacrifice	52
	175	Scheduled Sacrifice	52
	185	Scheduled Sacrifice	52
	196	Scheduled Sacrifice	52
	203	Scheduled Sacrifice	52
	214	Scheduled Sacrifice	52
	221	Scheduled Sacrifice	52
	232	Scheduled Sacrifice	53
	239	Scheduled Sacrifice	53
	250	Scheduled Sacrifice	53
	257	Scheduled Sacrifice	53
	267	Scheduled Sacrifice	53

Table A-1. Individual F₁ Male Fate (page 6 of 7)

Group ^a	Animal ID	Phase of Study	Postnatal Day
16	140	Scheduled Sacrifice	52
	149	Scheduled Sacrifice	52
	158	Scheduled Sacrifice	52
	167	Scheduled Sacrifice	52
	176	Scheduled Sacrifice	52
	186	Scheduled Sacrifice	52
	195	Scheduled Sacrifice	52
	204	Scheduled Sacrifice	52
	213	Scheduled Sacrifice	52
	222	Scheduled Sacrifice	52
	231	Scheduled Sacrifice	53
	240	Scheduled Sacrifice	53
	249	Scheduled Sacrifice	53
	258	Scheduled Sacrifice	53
	266	Scheduled Sacrifice	53
17	143	Scheduled Sacrifice	52
	146	Scheduled Sacrifice	52
	161	Scheduled Sacrifice	52
	164	Scheduled Sacrifice	52
	179	Scheduled Sacrifice	52
	189	Scheduled Sacrifice	52
	192	Scheduled Sacrifice	52
	207	Scheduled Sacrifice	52
	210	Scheduled Sacrifice	52
	225	Scheduled Sacrifice	52
	228	Scheduled Sacrifice	53
	243	Scheduled Sacrifice	53
	246	Scheduled Sacrifice	53
	261	Scheduled Sacrifice	53
	263	Scheduled Sacrifice	53
18	144	Scheduled Sacrifice	52
	145	Scheduled Sacrifice	52
	162	Scheduled Sacrifice	52
	163	Scheduled Sacrifice	52
	180	Scheduled Sacrifice	52
	181	Scheduled Sacrifice	52
	190	Scheduled Sacrifice	52
	191	Scheduled Sacrifice	52
	208	Scheduled Sacrifice	52
	209	Scheduled Sacrifice	52
	226	Scheduled Sacrifice	52
	227	Scheduled Sacrifice	52
	244	Scheduled Sacrifice	53
	245	Scheduled Sacrifice	53
	262	Scheduled Sacrifice	53
	202	Concadica Caomica	

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 6 is 30 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2. bMale was removed from the study because his correct postnatal day 0 could not be confirmed.

^CMale was removed from the study because it was not dosed on the correct postnatal days.

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 1 of 10)

		Postnatal Day											
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31	
1	1	38.77	42.81	47.94	54.02	60.51	66.45	73.44	80.29	87.50	96.07	102.03	
	15	53.35	57.55	65.10	71.02	76.68	79.84	84.54	91.31	98.13	105.00	111.60	
	32	53.82	55.99	63.43	70.07	75.81	82.96	89.26	97.16	104.83	112.68	119.37	
	33	55.27	58.80	67.00	74.16	79.83	84.59	91.02	100.55	105.52	114.15	120.06	
	50	56.06	60.17	67.67	72.24	75.62	82.97	88.61	94.81	99.94	111.05	119.09	
	51	56.79	58.39	62.87	67.50	74.18	79.54	86.46	92.50	99.47	106.10	114.67	
	68	57.24	60.02	68.12	75.65	82.68	88.74	97.19	105.55	113.14	121.23	132.28	
	69	b b											
	86	.b											
	87	58.71	64.54	72.11	79.63	89.73	95.17	103.98	111.26	122.12	131.78	142.08	
	104	59.74	64.52	71.70	77.46	85.19	91.51	101.10	107.44	116.40	127.86	134.12	
	105	59.85	63.90	69.58	76.77	84.59	91.39	98.25	104.50	112.95	121.75	130.79	
	122	60.66	65.58	72.11	80.15	86.51	92.40	100.18	107.31	116.29	124.02	132.60	
	123	61.35	64.32	71.00	77.92	83.23	89.70	94.42	103.28	106.81	117.14	124.00	
	135	b											
2	4	42.21	49.07	54.88	56.86	60.09	62.33	68.83	73.30	80.37	87.13	95.05	
	18	.c											
	29	54.03	58.22	63.66	66.18	70.38	75.97	81.48	87.52	95.27	101.47	107.96	
	36	55.25	60.19	65.94	68.73	75.66	82.20	88.80	95.88	103.04	110.21	118.06	
	47	56.19	58.88	64.50	68.18	72.72	79.27	85.12	91.80	100.36	107.28	116.00	
	54	56.40	59.46	64.85	67.26	73.56	79.60	83.53	89.76	97.25	104.15	111.97	
	65	57.03	63.42	69.50	71.75	77.37	82.75	89.61	96.64	102.36	109.63	114.04	
	72	57.26	62.74	66.99	68.38	74.49	80.86	88.41	96.84	105.10	113.33	122.00	
	83	58.17	62.03	67.07	69.01	74.95	80.92	86.04	93.21	99.34	107.10	112.70	
	90	58.76	64.58	70.20	73.89	79.05	87.33	93.67	101.98	106.45	117.53	104.69	
	101	58.98	63.67	70.44	73.56	80.46	84.29	91.90	99.66	106.49	113.99	119.59	
	108	59.89	63.74	69.33	71.18	75.73	80.11	86.65	92.60	99.25	107.23	114.00	
	119	.b											
	126	60.82	65.75	70.65	73.41	79.02	83.81	91.00	95.78	102.80	110.18	118.52	
	133	62.77	65.77	70.99	74.54	79.74	87.07	93.22	99.81	105.96	114.65	121.34	

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 2 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31
3	5	41.91	45.32	50.85	52.88	55.21	62.16	61.84	67.12	73.13	78.28	85.34
	13	47.38	53.65	58.04	57.81	62.86	65.27	70.39	75.55	82.30	87.45	95.80
	19	54.94	60.48	64.52	63.77	65.45	68.86	75.83	82.20	90.92	96.03	104.02
	28	55.60	59.28	63.83	65.31	71.10	75.21	82.80	89.01	98.45	103.31	111.16
	37	55.93	61.78	65.83	66.89	67.32	73.51	80.88	87.95	95.30	102.12	109.22
	46	56.78	62.46	66.69	69.46	72.76	77.42	83.94	87.98	93.86	100.86	107.12
	55	.b										
	64	57.49	60.92	67.73	67.52	72.02	80.96	81.84	91.52	100.68	107.86	112.72
	73	58.42	63.42	69.21	68.82	70.85	76.92	84.90	90.01	97.73	104.12	110.14
	82	58.78	65.18	71.80	69.32	72.39	80.13	85.53	93.74	101.34	108.20	113.27
	91	59.14	66.15	71.80	72.21	73.89	79.02	86.03	92.77	100.47	108.48	115.27
	100	60.03	63.41	69.13	69.68	72.54	78.67	85.70	91.03	97.29	104.09	110.69
	109	60.75	65.44	73.21	72.55	76.18	81.81	84.00	92.34	103.15	108.53	112.08
	118	.b										
	127	.b										
4	6	38.89	43.36	47.96	53.10	57.83	63.10	68.96	72.97	77.97	84.24	91.95
	12	43.14	45.02	50.30	54.00	60.13	64.97	70.43	76.79	82.85	89.16	96.60
	20	54.02	57.58	59.63	65.32	71.40	65.31	76.87	83.76	90.89	.d	
	27	55.80	59.87	66.11	72.01	80.43	87.79	94.45	102.98	110.88	117.57	125.90
	38	56.26	60.49	65.99	72.42	78.99	85.46	92.40	102.04	109.50	117.55	123.81
	45	56.42	59.75	63.86	70.30	75.21	82.10	88.15	93.12	103.55	110.16	117.09
	56	57.15	63.60	68.76	75.26	81.84	87.33	95.14	101.90	111.03	118.83	126.33
	63	57.89	63.06	67.78	73.66	81.23	88.37	95.46	103.43	111.56	119.31	128.86
	74	.b										
	81	58.64	60.99	67.84	75.39	81.84	87.25	94.04	101.30	108.30	114.30	122.42
	92	59.24	65.76	70.62	75.36	81.36	88.44	94.78	101.99	109.00	116.27	124.32
	99	59.96	65.66	73.20	76.66	84.30	91.33	98.00	106.61	113.65	124.25	134.60
	110	60.51	64.41	70.27	76.02	82.63	90.21	96.56	103.42	110.11	119.37	126.42
	117	61.34	64.68	70.61	77.00	83.76	90.80	98.17	105.49	112.98	122.79	113.92
	128	63.44	67.32	72.00	77.89	86.18	92.62	102.19	110.66	118.07	127.94	137.00

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 3 of 10)

							Postnatal Da	У				
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31
5	7	36.87	39.27	44.54	48.42	52.70	59.07	63.72	70.15	75.10	84.90	91.20
	21	53.16	58.42	64.74	72.40	78.74	87.35	93.50	103.00	112.67	123.92	129.64
	26	54.89	56.62	60.24	65.64	73.09	80.87	85.60	93.35	104.14	113.25	119.33
	39	55.25	58.81	63.05	69.54	76.41	82.31	88.80	97.62	104.14	114.26	119.92
	44	55.94	59.14	63.82	70.34	74.58	80.72	88.24	94.92	102.14	111.20	116.38
	57	56.69	61.56	64.93	71.57	77.07	84.87	91.02	98.62	106.72	114.10	122.42
	62	57.07	61.11	66.04	68.41	73.18	78.10	85.73	92.07	101.10	106.46	112.86
	75	57.97	63.40	68.57	73.04	78.40	86.14	90.70	98.42	108.00	115.10	121.18
	80	58.32	52.44	56.72	62.22	68.20	74.90	80.22	87.07	94.66	102.28	110.28
	93	58.73	61.42	66.96	70.34	78.18	84.39	88.11	96.66	106.74	113.84	120.89
	98	59.47	63.62	69.08	73.70	82.50	88.88	94.62	103.77	111.95	118.81	127.40
	111	59.88	62.56	68.46	70.57	78.42	86.17	94.40	100.32	110.50	119.47	127.96
	116	60.61	66.88	73.78	79.74	87.08	95.60	100.45	110.32	119.80	128.12	138.72
	129	61.55	66.85	73.65	79.51	87.76	95.43	104.45	112.25	121.12	130.56	138.12
	132	61.98	66.05	70.66	77.37	82.82	91.85	97.70	108.45	115.32	122.60	133.04
6	8	41.39	46.38	52.50	57.44	61.22	65.49	72.03	78.71	84.65	91.83	99.68
	11	45.16	47.58	53.71	59.58	65.29	70.41	76.35	82.18	88.73	95.25	102.69
	22	54.30	59.94	64.45	69.45	78.74	86.06	93.86	102.24	109.22	119.88	126.98
	25	55.49	60.51	65.10	71.28	77.47	84.04	88.99	94.75	101.67	107.45	115.45
	40	55.96	61.02	67.50	74.28	80.12	87.89	94.20	101.97	109.21	117.44	124.37
	43	56.56	59.90	65.15	71.78	77.04	83.25	88.84	95.11	101.03	110.63	116.75
	58	56.79	58.00	61.05	66.40	72.79	80.33	87.45	93.10	99.90	108.16	117.31
	61	57.74	62.60	69.22	76.25	83.46	88.41	98.66	105.96	114.12	123.88	133.26
	76	58.23	62.23	68.58	75.03	79.45	85.92	91.18	98.54	105.38	113.10	120.98
	79	.b										
	94	58.85	69.24	73.70	79.87	87.24	93.61	100.30	107.23	116.26	123.66	134.19
	97	60.07	63.57	71.43	76.67	81.77	88.84	94.20	101.49	108.74	117.50	124.46
	112	60.35	66.25	70.89	76.28	84.02	89.95	97.43	105.31	113.77	121.09	130.17
	115	.b										
	130	61.68	68.39	74.83	81.51	89.36	96.93	104.33	113.71	123.19	131.91	139.49

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 4 of 10)

			Postnatal Day												
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31			
7	9	38.28	42.14	49.03	53.52	59.41	64.61	71.07	78.12	84.92	90.54	97.85			
	10	47.97	50.63	58.01	62.31	66.04	74.50	79.70	86.66	92.50	100.71	107.13			
	23 24	54.38 .b	58.21	63.66	68.42	74.56	81.19	87.68	95.40	103.02	112.63	105.84			
	41	55.98	60.40	65.89	71.09	75.99	82.33	89.44	96.87	104.57	111.09	106.04			
	42	56.29	61.91	66.30	72.07	79.32	86.29	92.78	98.80	105.70	112.56	121.27			
	59	56.92	59.23	64.70	68.55	74.80	80.44	87.56	94.13	102.06	109.38	117.03			
	60	57.57	59.67	65.67	68.42	76.08	81.48	86.45	94.27	103.57	110.11	116.94			
	77	58.28	61.45	67.36	73.06	80.34	82.50	87.53	96.18	103.75	108.92	113.59			
	78	58.72	64.95	70.94	74.88	82.59	89.78	96.50	103.63	112.97	120.73	128.81			
	95	58.88	63.57	68.53	73.27	79.81	85.61	91.76	100.74	106.81	114.75	124.61			
	96	60.31	65.22	70.79	74.39	81.93	88.49	95.12	102.69	112.24	121.10	129.98			
	113	60.49	66.62	71.64	76.19	82.56	89.83	97.61	103.94	111.89	117.64	126.85			
	114	.b													
	131	.b													
8	2	39.30	42.12	47.20	53.10	58.46	64.50	70.35	76.60	82.40	88.45	95.40			
	16	53.61	56.52	64.87	71.14	77.30	84.08	92.55	98.62	108.58	119.10	129.42			
	31	54.53	58.36	64.03	69.18	77.12	83.41	93.58	98.57	107.65	116.21	108.80			
	34	55.17	59.12	66.17	71.30	78.18	84.82	91.05	99.50	106.73	116.36	123.83			
	49	55.87	55.30	62.71	70.25	76.90	83.65	90.68	98.33	107.49	117.11	124.90			
	52	56.29	57.72	63.81	72.25	79.66	87.02	96.02	105.82	114.54	124.52	132.83			
	67	57.17	60.80	67.29	73.19	78.73	84.74	91.05	99.33	103.11	111.76	117.62			
	70	57.43	60.90	69.14	74.42	82.21	88.51	98.80	104.93	114.81	123.59	129.72			
	85	58.43	63.00	70.20	74.32	81.89	88.26	96.34	102.20	109.83	119.26	125.88			
	88	58.82	63.60	71.08	76.85	83.59	89.94	97.28	104.77	112.18	121.55	129.84			
	103	59.84	65.54	72.14	78.63	83.81	91.54	98.68	105.35	111.82	119.56	125.90			
	106	59.99	63.02	70.35	75.81	84.59	90.53	97.61	104.32	111.93	119.10	129.14			
	121	60.63	64.35	70.50	75.61	82.91	89.57	96.13	105.25	112.05	120.66	127.50			
	124	61.29	62.49	70.18	78.06	83.48	90.25	98.92	106.35	112.94	119.19	129.22			
	134	63.07	65.52	72.66	78.99	84.17	92.14	99.59	107.07	114.25	123.35	130.41			

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 5 of 10)

							Postnatal Da	ıy				
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31
9	3	37.88	41.44	47.57	51.21	58.76	64.03	70.51	75.95	81.06	88.23	94.26
	14	44.30	46.14	50.66	54.64	60.25	66.77	72.90	78.25	84.15	89.25	98.59
	17	.b										
	30	b										
	35	55.99	61.83	67.92	73.37	78.45	84.00	91.50	99.42	105.71	112.98	120.2
	48	56.34	61.12	64.56	71.99	78.75	84.53	92.03	100.45	105.77	114.09	121.6
	53	56.85	57.41	61.14	68.53	76.33	82.61	89.29	98.16	103.05	109.75	119.7
	66	57.86	61.77	67.00	71.83	81.00	86.64	92.37	100.47	108.71	118.42	125.1
	71	58.12	63.71	69.62	75.74	82.47	89.23	97.99	106.21	115.58	122.06	126.0
	84	58.54	63.82	69.60	75.93	83.64	90.40	97.85	104.19	114.62	123.50	130.6
	89	59.71	63.69	69.75	75.66	82.85	90.78	98.98	107.04	115.78	120.30	128.0
	102	59.89	63.62	70.70	78.54	85.94	93.21	101.38	110.85	118.53	129.50	136.7
	107	60.77	67.17	74.00	80.65	88.62	97.60	103.87	109.25	118.67	129.45	135.7
	120	61.61	66.22	74.17	79.52	87.42	94.70	104.23	109.30	120.21	129.50	138.0
	125	62.65	66.52	73.47	80.23	84.42	92.35	101.09	108.73	116.20	124.87	131.8
10	136	44.55	45.95	51.97	57.42	62.65	67.67	74.21	79.63	87.25	93.50	99.25
	153	49.80	52.72	60.61	66.51	72.03	77.75	84.08	91.01	97.63	104.03	113.5
	154	50.58	55.02	61.62	68.36	74.79	83.14	87.57	96.70	104.21	113.00	121.0
	171	56.10	58.73	66.22	72.59	76.30	81.84	89.12	95.24	103.80	110.91	118.7
	172	62.74	65.15	71.15	76.26	83.84	88.59	96.10	103.26	110.84	118.30	125.9
	182	55.86	61.32	68.60	74.86	81.42	88.80	97.60	106.78	116.58	126.52	133.4
	199	56.75	62.71	69.98	75.54	81.97	88.34	93.39	96.01	105.48	116.31	122.5
	200	57.39	62.01	67.83	75.23	82.79	90.35	98.06	108.12	116.30	123.75	127.5
	217	57.92	62.96	69.32	74.60	79.82	87.03	94.59	103.08	109.48	115.88	.e
	218	58.56	61.34	68.71	74.80	81.32	87.52	95.26	101.90	110.32	117.66	124.5
	235	59.69	65.19	71.46	77.27	85.94	93.48	101.97	109.85	118.05	126.48	134.9
	236	59.84 63.42 70.25	70.25	74.89	83.34	89.20	96.32	106.25	112.62	120.47	131.5	
	253	60.79	61.52	67.20	73.77	80.90	85.78	93.15	101.87	108.49	114.24	122.2
	254	61.78	63.30	71.91	79.15	87.33	94.47	101.35	109.29	117.32	125.85	136.5
	270	62.43	66.23	72.60	79.08	87.81	93.72	102.33	110.67	119.31	128.69	137.7

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 6 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31
11	137	46.70	47.76	55.19	60.78	67.97	77.21	83.68	91.44	98.49	104.62	111.63
	152	50.39	53.12	59.67	66.29	73.87	79.86	85.75	95.39	104.27	109.31	119.42
	155	51.09	54.55	61.12	68.13	75.40	83.94	92.19	101.20	109.43	117.45	126.62
	170	52.95	58.22	64.55	72.29	79.75	85.79	93.72	98.94	107.54	117.04	124.48
	173	58.84	63.51	70.92	78.04	86.43	92.46	100.54	109.89	118.23	128.13	136.03
	183	55.08	57.81	63.32	70.28	76.93	82.31	88.40	95.54	101.58	106.79	117.50
	198	56.72	59.44	66.66	73.75	81.10	87.84	95.30	103.22	113.45	121.47	128.49
	201	56.89	60.88	67.69	74.82	82.32	87.69	96.33	104.38	111.12	117.68	128.94
	216	58.17	64.46	69.58	75.67	82.90	90.50	96.79	106.93	113.14	120.59	128.32
	219	58.78	60.42	66.63	73.98	80.89	87.63	95.87	105.47	111.68	118.29	127.91
	234	59.80	66.79	71.01	78.06	85.46	92.52	98.88	106.72	113.74	120.22	128.91
	237	60.11	61.37	68.28	75.56	83.02	89.38	96.83	105.10	113.45	122.43	129.52
	252	60.70	66.67	75.46	81.70	89.72	97.91	105.70	113.48	122.33	132.18	138.63
	255	61.50	65.24	73.51	79.68	88.33	94.68	100.75	109.44	116.25	124.63	134.18
	269	63.05	69.25	73.88	80.94	88.69	95.52	102.74	110.40	117.38	127.96	137.51
12	138	43.70	47.56	53.00	59.45	65.88	69.33	77.55	84.59	89.95	94.39	98.54
	151	48.12	52.32	58.47	67.45	72.88	79.92	84.13	91.00	96.69	99.99	104.84
	156	51.34	52.41	57.95	65.02	71.60	78.23	85.68	92.55	99.64	103.25	111.68
	169	56.31	60.25	65.04	71.32	77.21	86.56	90.85	93.66	108.02	114.30	121.94
	174	62.30	65.26	72.54	78.58	87.79	94.13	100.26	110.20	117.89	127.09	133.78
	184	55.23	60.22	65.47	71.93	79.03	87.45	94.15	101.42	108.20	114.67	120.95
	197	56.02	59.99	64.23	70.08	75.17	82.31	87.90	96.07	102.58	109.48	115.03
	202	57.39	62.97	68.45	74.49	81.33	88.55	94.90	103.15	109.10	112.55	123.52
	215	57.64	62.17	69.06	75.48	83.58	89.41	99.94	108.02	114.35	121.19	132.01
	220	58.32	61.76	68.08	74.35	81.37	88.35	91.28	105.08	110.46	119.99	129.14
	233	59.60	64.06	70.81	77.50	85.33	92.25	99.35	110.56	115.12	123.36	131.56
	238	59.88	63.95	70.15	75.67	82.77	91.84	99.40	111.22	119.48	124.58	133.71
	251	61.14	62.24	66.39	73.10	80.51	85.79	92.83	100.16	106.80	113.82	121.59
	256	62.05	65.71	73.46	79.38	84.27	90.25	96.38	106.71	114.29	122.22	129.29
	268	62.80	68.10	73.38	78.62	87.26	93.18	102.16	108.62	113.68	121.22	127.45

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 7 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31
13	141	46.10	49.87	51.90	58.07	65.15	72.07	78.73	85.21	92.61	99.77	106.55
	148	48.04	51.09	56.93	63.64	70.11	76.63	84.71	93.82	101.95	111.31	120.52
	159	50.62	54.59	59.39	66.11	72.19	76.80	82.27	88.62	96.58	103.60	109.55
	166	57.43	62.02	66.60	71.46	78.76	84.69	91.67	99.13	107.44	115.45	124.54
	177	63.34	65.66	70.36	77.98	86.45	93.23	100.33	108.63	117.53	126.86	136.35
	187	55.36	57.90	67.47	73.61	80.29	86.80	93.41	100.30	107.27	115.27	124.09
	194	56.61	54.15	60.24	65.11	71.13	78.69	84.68	90.83	97.52	104.32	112.39
	205	57.40	62.13	69.69	77.15	81.11	88.60	94.50	100.49	108.15	115.77	125.63
	212	58.29	63.53	68.85	77.67	82.52	87.06	96.88	103.41	114.02	124.97	131.11
	223	58.56	62.37	70.31	75.66	83.05	89.59	97.26	105.63	112.02	120.42	129.93
	230	59.43	62.55	67.88	73.44	79.10	84.77	90.73	98.15	103.70	111.54	119.22
	241	59.88	61.96	71.69	78.88	85.98	92.64	100.87	109.66	119.12	128.49	137.11
	248	60.65	61.32	68.32	73.90	82.61	86.71	94.74	102.75	110.97	117.41	126.69
	259	61.53	64.47	71.66	78.22	85.91	94.54	100.96	109.19	117.44	127.65	137.87
	265	63.15	62.33	74.50	80.58	89.69	94.51	103.87	113.36	122.14	128.76	137.03
14	142	43.18	46.90	50.80	56.38	63.55	69.79	76.10	82.19	90.09	95.80	103.38
	147	49.25	53.54	59.64	64.73	71.03	75.63	82.44	89.44	97.52	103.76	111.86
	160	52.25	55.81	61.17	65.19	71.65	78.85	82.70	90.89	97.47	103.63	111.37
	165	53.50	56.33	59.33	65.24	72.38	76.50	82.71	87.89	93.45	99.81	104.75
	178	59.49	61.47	70.86	74.61	82.00	89.80	96.51	103.30	109.35	118.32	127.84
	188	55.74	59.16	65.83	70.13	74.94	81.31	86.14	93.45	100.97	108.65	117.41
	193	56.18	57.38	66.52	72.13	78.42	85.01	91.09	96.96	106.16	113.61	120.45
	206	57.61	60.60	69.38	75.24	79.18	86.10	90.17	100.00	108.60	114.65	125.07
	211	58.13	60.54	68.41	72.02	78.26	84.24	91.35	99.41	105.17	113.71	122.51
	224	58.65	61.92	68.81	74.19	79.04	84.27	89.25	98.04	103.81	112.55	120.36
	229	59.60	61.46	68.54	74.01	80.88	87.11	95.16	103.12	110.87	119.32	128.48
	242	59.84	63.48	71.12	77.49	82.74	88.55	96.13	103.49	111.37	119.19	126.66
	247	60.68	65.76	73.83	78.69	84.60	90.71	99.16	107.40	114.15	123.51	131.90
	260	61.91	61.06	66.91	73.51	80.53	88.06	96.55	103.48	114.90	119.82	131.87
	264	62.46	65.48	74.74	80.02	86.07	93.98	103.33	110.39	117.48	126.77	136.32

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 8 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31
15	139	47.66	50.76	57.00	62.27	67.55	72.85	79.22	88.03	92.71	99.12	105.28
	150	50.10	52.88	59.65	64.89	69.88	75.45	80.81	85.55	94.40	101.81	108.47
	157	50.63	54.12	59.70	64.06	70.17	73.96	79.89	85.46	91.98	97.64	104.34
	168	55.14	57.62	66.48	70.40	76.10	81.47	88.31	95.49	103.98	112.62	118.94
	175	62.77	66.28	72.16	77.52	81.17	87.09	92.08	98.42	106.06	111.63	118.40
	185	55.34	57.61	65.29	68.78	75.56	81.92	87.19	95.50	102.25	109.27	119.24
	196	56.09	61.70	69.75	74.54	78.94	87.48	89.81	101.90	109.17	117.22	125.30
	203	56.81	58.43	65.37	69.07	74.98	80.63	88.51	94.30	102.64	109.19	117.93
	214	57.65	60.36	66.55	70.96	75.69	77.49	82.58	91.17	97.99	101.31	110.16
	221	58.73	64.56	71.91	73.19	78.41	85.04	91.51	100.35	104.98	114.45	119.98
	232	59.07	60.20	67.76	73.06	77.85	82.34	85.41	97.57	103.22	112.20	117.12
	239	59.86	62.47	72.66	73.40	81.53	88.28	94.55	104.14	112.43	120.11	125.27
	250	61.00	63.74	70.45	74.60	80.72	87.30	93.42	98.66	104.81	112.72	120.97
	257	61.28	66.21	73.88	78.07	86.49	91.45	100.52	109.50	116.50	123.31	132.31
	267	62.80	62.52	68.09	74.74	80.22	84.76	91.12	100.33	107.71	115.00	124.86
16	140	47.43	51.61	57.84	62.20	67.28	72.84	79.18	85.12	88.61	97.48	103.74
	149	48.90	51.74	57.06	59.13	64.50	68.48	74.91	79.73	84.18	92.57	98.71
	158	52.59	56.52	62.86	67.41	72.69	76.78	82.49	88.30	96.29	103.32	109.61
	167	57.35	59.58	62.00	61.53	62.63	68.23	72.36	77.65	83.49	89.89	94.89
	176	59.29	63.17	67.30	73.29	79.13	83.68	89.77	97.26	105.59	112.45	117.27
	186	55.75	58.25	64.55	68.92	74.74	79.87	86.35	94.28	100.24	107.75	114.30
	195	56.06	53.80	65.94	69.59	75.19	82.53	89.04	96.95	104.64	110.54	115.77
	204	57.01	58.06	62.44	65.83	72.09	76.60	81.70	87.84	93.75	99.85	106.03
	213	58.16	61.10	67.74	69.08	73.46	77.84	82.68	89.85	95.22	99.75	106.70
	222	58.76	59.86	65.11	69.43	73.94	80.12	85.20	93.46	100.69	107.18	114.46
	231	59.23	59.15	66.21	67.55	71.59	77.23	82.13	88.97	92.05	96.05	103.26
	240	60.32	60.12	65.70	70.04	76.92	81.45	87.72	95.50	103.70	110.74	119.40
	249	60.92	66.20	74.05	75.02	80.76	85.72	91.45	98.84	103.37	109.46	116.07
	258	61.72	69.25	72.18	77.55	84.97	88.64	97.51	106.55	114.01	121.38	129.24
	266	62.70	64.89	73.08	79.32	84.04	89.18	94.35	102.08	110.67	118.90	125.91

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 9 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	21	22	23	24	25	26	27	28	29	30	31
17	143	47.12	50.17	55.12	61.52	67.73	72.34	78.36	84.92	91.70	99.81	107.66
	146	48.48	50.97	54.84	63.85	70.81	76.10	83.33	90.26	98.01	105.47	113.43
	161	50.71	55.19	62.37	69.09	75.71	80.22	87.73	96.14	101.92	109.89	116.91
	164	57.07	62.39	67.09	73.86	82.36	88.44	96.42	104.66	111.90	123.25	132.79
	179	61.73	66.29	73.99	82.28	88.19	96.31	105.93	112.41	120.05	129.08	139.66
	189	55.36	56.54	65.82	73.29	78.50	84.31	90.88	96.57	103.89	112.35	119.32
	192	55.90	56.85	65.09	75.43	84.18	90.67	97.63	104.95	117.55	126.50	135.36
	207	57.32	60.78	68.25	76.84	81.34	87.12	95.28	101.42	108.97	117.06	125.15
	210	57.66	59.55	68.13	72.42	76.39	81.51	87.06	93.00	99.44	106.26	112.23
	225	58.68	64.82	73.42	79.61	84.87	91.82	99.91	106.54	115.50	123.11	131.50
	228	58.84	60.52	69.37	76.36	81.13	87.45	94.00	98.71	109.36	116.46	123.07
	243	60.39	65.13	72.40	79.80	86.36	92.26	100.04	108.58	117.57	126.28	135.23
	246	60.57	62.54	71.56	78.68	84.00	89.84	94.79	102.03	109.80	114.55	122.25
	261	61.49	57.57	68.20	76.02	82.50	88.95	92.12	101.74	109.87	116.49	123.63
	263	62.26	64.87	72.38	79.95	85.34	92.37	99.27	106.06	114.18	123.21	131.39
18	144	44.23	47.72	53.01	59.19	63.55	69.85	75.66	83.91	90.41	97.40	104.54
	145	49.04	52.61	57.28	64.33	70.51	75.50	82.26	87.93	93.92	104.70	111.10
	162	50.79	53.19	57.84	64.74	71.67	76.32	82.94	88.68	93.94	101.53	107.57
	163	56.79	61.40	64.78	70.87	76.12	80.13	86.40	93.54	100.52	110.62	118.27
	180	61.92	64.32	69.83	76.37	82.37	86.14	94.07	99.61	106.35	114.67	121.32
	181	64.22	64.63	66.92	74.56	80.12	85.03	88.72	93.19	98.76	105.20	110.90
	190	56.09	57.19	66.98	73.29	79.29	84.98	90.40	96.68	105.32	112.11	119.13
	191	57.07	56.14	64.88	72.12	75.85	82.14	88.62	94.44	102.20	108.78	116.04
	208	57.86	60.90	68.33	75.82	80.52	85.48	95.38	101.92	109.15	118.35	124.33
	209	58.57	62.66	71.52	77.34	82.51	87.62	95.30	102.52	112.69	119.36	125.81
	226	59.00	63.27	72.91	80.88	86.98	91.95	99.85	109.29	118.01	128.01	135.59
	227	60.56	64.36	72.48	78.21	84.21	87.55	95.72	102.11	111.87	119.26	126.87
	244	60.61	64.92	72.69	79.39	83.15	89.80	97.53	104.89	113.97	123.44	130.12
	245	62.11	64.52	72.61	79.02	84.03	89.76	96.02	102.18	110.84	118.21	124.44
	262	62.72	63.61	70.30	80.32	85.77	92.33	99.41	100.49	109.15	104.13	108.61

Table A-2. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 21 Through 31 (page 10 of 10)

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Fropylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2.

bMale was removed from the study because his correct postnatal day 0 could not be confirmed. CMale was removed from the study because it was not dosed on the correct postnatal days.

dMale was euthanized on postnatal day 29 after dosing due to a leg injury.

eMale was found dead on postnatal day 31 prior to dosing (misdirected dose).

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 1 of 10)

							Postnatal Day	у				
Group ^a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
1	1	109.82	120.49	127.89	137.29	146.15	157.05	167.57	177.72	186.02	193.45	200.26
	15	120.92	127.99	135.96	147.91	155.94	161.08	173.63	181.08	190.40	197.94	206.13
	32	130.62	138.61	148.72	157.41	171.00	180.44	189.11	197.29	207.57	206.83	215.55
	33	128.82	139.14	145.86	155.03	165.86	176.38	185.00	188.37	199.01	205.43	219.86
	50	130.59	140.56	150.52	158.51	170.10	180.77	192.22	202.55	211.21	219.97	229.20
	51	122.40	130.21	141.27	152.16	161.46	170.55	179.33	187.42	198.35	206.65	213.25
	68	140.54	146.82	155.60	167.45	178.72	185.51	195.10	204.28	212.40	218.80	231.20
	69	.b										
	86	.b										
	87	152.83	163.96	173.82	182.45	197.00	204.04	217.30	226.06	233.18	239.20	253.00
	104	144.66	155.76	164.24	176.66	189.35	200.57	212.46	217.50	228.57	236.78	253.47
	105	140.77	149.16	162.84	169.86	180.75	189.60	200.22	209.51	218.73	233.56	246.13
	122	138.29	148.91	158.12	166.85	174.71	185.44	194.13	198.72	209.90	221.71	224.12
	123	132.61	141.31	149.80	157.69	166.49	174.43	186.04	193.41	200.95	211.76	216.45
	135	.b						1		1	1	
2	4	101.88	109.70	115.55	123.19	134.72	143.90	149.25	160.35	164.09	173.66	182.36
	18	.c										
	29	117.64	127.00	134.27	146.78	156.32	166.09	171.81	179.80	186.26	195.66	202.17
	36	126.73	134.44	143.06	153.19	161.54	170.11	179.10	185.12	194.10	200.52	210.46
	47	126.62	134.50	143.27	154.61	163.10	171.80	178.98	185.09	194.04	200.10	209.10
	54	120.62	130.44	137.23	146.96	157.23	166.59	.d				
	65	123.77	132.46	140.26	150.15	159.84	167.15	175.60	186.14	192.09	201.90	207.47
	72	131.02	140.47	150.83	159.52	169.44	175.53	188.12	195.91	204.31	211.30	219.27
	83	122.24	130.82	139.15	148.72	159.50	167.00	172.50	182.47	188.75	194.88	203.84
	90	120.00	96.16	127.05	136.18	149.00	163.49	168.43	179.15	187.78	197.45	203.16
	101	127.64	137.17	144.58	152.91	168.42	173.78	182.97	192.41	199.54	206.00	219.15
	108	.e	130.64	140.39	150.12	161.00	174.04	180.20	189.00	194.29	205.60	213.09
	119	.b										
	126	128.00	132.43	141.72	149.99	165.03	170.00	177.50	188.24	190.85	200.35	209.25
	133	130.66	142.18	148.06	158.12	169.80	175.14	186.31	193.00	202.47	210.44	217.17

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 2 of 10)

							Postnatal Day	y				
<u>Group</u> a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
3	5	91.50	97.11	106.10	112.27	121.53	130.76	136.46	143.30	151.04	156.56	171.66
	13	99.15	106.00	115.17	123.75	132.05	142.23	146.19	150.56	168.24	173.16	182.02
	19	113.15	120.32	132.10	138.27	152.49	156.03	162.45	175.50	185.50	194.75	197.41
	28	120.40	127.99	137.82	147.12	156.45	164.79	166.65	179.22	184.99	211.60	194.88
	37	116.49	123.75	129.20	139.28	151.44	157.28	165.70	171.23	180.25	186.20	192.15
	46	109.90	121.97	129.11	139.16	148.17	155.15	163.83	170.45	175.86	184.32	190.86
	55	.b										
	64	119.50	124.99	132.01	142.13	153.95	157.95	165.62	176.29	184.65	193.50	199.87
	73	120.92	130.44	137.48	151.37	162.24	167.02	172.56	180.54	190.10	193.13	200.66
	82	121.80	127.69	137.18	144.68	154.86	163.30	173.41	180.25	186.81	194.84	204.39
	91	123.47	132.16	141.02	150.06	164.48	166.20	172.48	183.74	193.93	204.35	207.14
	100	118.99	125.34	134.06	145.43	152.54	161.91	169.22	176.15	186.30	190.26	196.17
	109	120.97	126.78	133.98	145.43	154.69	159.15	165.40	173.62	179.26	183.81	191.88
	118	.b										
	127	.b										
4	6	95.11	103.21	110.98	119.86	127.67	137.35	144.60	151.50	163.10	167.44	179.60
	12	101.52	110.94	119.87	126.36	136.20	145.72	155.40	162.99	173.81	182.60	188.82
	20	.f										
	27	136.16	144.71	155.02	163.19	171.94	182.66	191.70	201.30	209.91	218.32	227.44
	38	135.07	144.80	155.17	164.63	171.60	183.51	193.94	202.10	213.91	224.28	232.58
	45	126.60	134.27	145.53	153.84	162.61	171.49	181.19	190.64	203.40	212.65	219.44
	56	137.62	147.49	158.78	166.57	179.92	190.80	196.12	205.66	219.95	227.07	235.12
	63	136.58	145.36	153.65	162.30	171.37	180.14	192.64	200.10	211.28	219.36	231.24
	74	.b										
	81	131.66	141.12	154.29	163.70	173.62	184.11	193.11	205.77	216.01	225.86	236.23
	92	132.96	140.77	148.04	157.89	167.37	177.75	183.83	196.01	202.76	210.67	219.83
	99	144.71	152.11	164.02	172.62	183.90	191.60	203.22	212.11	225.67	233.21	243.14
	110	136.86	147.07	155.34	163.40	175.38	182.19	193.54	201.18	209.31	222.95	229.12
	117	108.99	107.36	104.45	140.42	150.18	159.40	170.88	184.20	196.06	207.88	216.21
	128	147.44	157.10	165.98	175.70	187.00	197.04	208.44	216.43	229.20	237.64	246.56

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 3 of 10)

							Postnatal Day	y				
Group ^a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
5	7	96.22	107.04	114.00	122.94	129.33	139.67	147.02	154.10	161.07	171.34	180.90
	21	138.66	149.43	160.18	168.13	180.32	188.60	200.56	213.26	222.03	232.11	240.32
	26	131.45	142.90	150.86	161.42	173.71	180.16	193.67	201.95	211.24	219.80	229.08
	39	128.61	138.48	147.39	154.56	168.35	175.60	185.38	192.51	204.11	210.22	219.60
	44	128.77	138.83	148.23	156.20	166.13	175.72	186.62	193.75	205.95	211.13	221.04
	57	134.02	142.68	150.47	159.66	171.38	180.12	190.86	201.42	207.24	214.62	226.45
	62	123.00	130.19	138.11	148.12	154.13	164.60	171.99	181.00	188.29	196.84	203.35
	75	128.01	140.22	147.80	155.78	165.55	175.79	183.10	192.07	202.92	208.20	219.44
	80	117.80	129.29	136.29	146.30	158.07	165.15	175.30	185.97	194.48	203.74	215.27
	93	130.60	141.45	150.76	160.77	169.35	177.44	187.88	198.22	206.48	216.03	227.36
	98	138.99	148.15	160.41	168.96	180.22	187.14	200.42	210.17	220.95	228.36	237.34
	111	138.56	147.61	158.12	169.00	179.54	191.91	204.13	213.29	222.71	233.90	240.55
	116	144.99	158.47	169.15	181.04	189.12	202.14	212.07	217.20	228.50	240.15	250.01
	129	148.75	159.33	171.43	180.43	193.06	200.74	209.90	220.24	233.42	238.60	251.02
-	132	142.00	152.00	161.72	172.49	183.41	189.50	201.53	208.70	217.74	226.00	235.07
6	8	106.00	114.95	123.22	131.18	139.70	149.74	157.52	168.62	174.31	187.06	191.99
	11	107.13	116.20	126.79	133.48	143.89	152.74	160.37	171.50	177.20	188.36	197.16
	22	139.16	149.11	159.19	170.06	180.73	193.22	205.70	213.79	223.44	238.15	246.99
	25	122.07	130.10	136.43	145.58	153.85	161.77	171.07	176.55	182.77	189.87	198.55
	40	134.67	144.44	153.78	165.98	175.18	187.22	197.21	206.48	218.08	226.10	234.99
	43	124.54	133.30	142.02	150.95	160.18	171.41	181.48	181.99	195.60	204.15	211.97
	58	125.60	135.05	142.26	152.62	161.82	169.40	181.11	191.15	199.10	208.04	218.50
	61	143.25	152.66	161.14	169.70	180.53	193.04	201.01	209.75	222.28	229.10	240.71
	76	131.00	141.07	149.22	158.11	170.98	179.17	185.36	197.63	208.01	216.64	228.02
	79	b										
	94	143.10	157.15	164.21	178.36	189.64	199.50	209.40	221.60	233.25	241.50	248.75
	97	132.08	145.00	154.27	163.89	173.41	183.89	193.56	202.40	211.64	218.88	229.45
	112	140.80	150.21	162.07	171.15	184.11	190.22	204.00	217.00	222.19	231.44	246.32
	115	.b										
	130	151.80	163.00	174.92	184.11	198.22	206.00	218.93	226.63	237.79	247.30	258.07

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 4 of 10)

							Postnatal Day	у				
Group ^a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
7	9	102.99	112.47	121.16	129.22	139.93	145.96	155.02	164.73	172.50	185.05	193.82
	10	115.39	122.81	132.38	140.82	151.22	157.60	168.02	180.16	185.00	195.62	204.07
	23	126.60	137.79	146.50	156.07	164.84	171.25	182.95	189.40	199.45	210.28	217.33
	24	.b										
	41	124.48	134.83	142.47	152.02	159.98	172.10	183.17	191.54	203.03	212.51	217.53
	42	131.04	136.41	147.13	154.26	163.01	171.60	181.00	190.45	199.12	204.41	213.39
	59	126.11	133.25	147.10	155.82	166.75	176.00	186.59	193.44	203.34	210.78	220.14
	60	124.39	135.24	145.21	156.45	168.46	176.67	187.03	194.66	205.88	216.25	225.36
	77	123.10	133.04	139.65	151.44	158.69	168.35	173.72	178.87	191.04	199.92	207.24
	78	135.03	145.70	153.05	163.81	174.16	182.04	184.04	191.04	200.30	208.29	217.28
	95	132.64	142.53	149.08	161.51	168.52	179.04	189.41	198.62	208.37	217.95	225.22
	96	139.02	149.01	158.19	168.11	178.95	192.52	200.21	208.70	219.48	229.48	239.27
	113	135.01	141.98	150.87	162.74	171.28	182.59	195.35	205.23	217.41	229.32	234.56
	114	.b										
	131	.b				1		1	1	1	1	
8	2	101.50	107.74	115.51	122.19	131.27	138.32	146.31	155.91	160.27	169.35	176.97
	16	134.66	144.05	153.08	163.71	171.60	185.76	194.67	200.23	211.90	220.54	232.09
	31	105.13	101.14	97.31	97.15	137.46	144.52	154.95	166.05	177.11	184.56	197.76
	34	132.64	142.87	152.49	159.63	170.73	176.70	189.99	173.07	200.07	210.34	218.05
	49	136.19	145.93	153.05	163.28	172.76	184.23	192.46	203.60	209.40	.e	230.41
	52	142.99	151.55	161.39	171.19	181.66	192.11	202.03	217.60	222.95	228.69	247.58
	67	127.52	134.62	139.59	151.87	160.84	167.13	176.00	185.11	196.13	200.13	213.26
	70	137.11	148.53	157.46	170.47	180.30	187.06	197.94	206.54	215.68	220.92	233.78
	85	135.42	145.30	157.48	166.84	179.17	187.12	196.94	206.76	216.66	221.31	232.31
	88	136.54	145.29	151.57	162.31	170.91	181.34	190.28	198.16	205.17	213.01	223.70
	103	133.37	142.04	153.59	161.62	172.60	184.45	193.65	200.64	205.53	215.06	232.40
	106	139.40	148.52	157.98	169.23	177.26	185.10	197.81	202.00	209.09	220.22	225.94
	121	135.45	144.38	153.14	161.11	171.22	180.59	193.07	199.94	210.66	221.55	231.95
	124	138.58	148.81	157.01	164.59	175.26	183.71	192.46	200.05	208.17	217.90	222.07
	134	138.56	148.12	157.21	170.21	181.78	190.50	200.25	206.97	218.40	223.21	232.16

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 5 of 10)

							Postnatal Day	y				
Group ^a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
9	3	101.42	108.13	117.63	121.11	128.60	138.03	144.12	151.50	155.06	165.40	171.10
	14	104.20	112.91	118.09	124.75	137.69	147.31	151.00	161.40	167.54	172.11	179.13
	17	.b .b										
	30	.b										
	35	128.55	138.72	149.86	159.16	169.40	176.81	187.76	194.26	206.84	211.21	219.57
	48	129.03	140.40	150.48	157.27	167.18	179.07	187.28	194.27	209.61	212.80	223.16
	53	130.80	140.01	147.58	155.66	167.54	175.18	187.20	192.77	204.32	209.55	220.00
	66	136.02	144.22	152.34	164.68	173.16	183.99	193.00	202.70	210.08	218.14	225.20
	71	141.35	148.88	160.17	169.18	181.12	191.90	199.31	207.60	217.38	226.17	234.78
	84	141.12	149.26	156.42	164.11	181.19	187.90	195.15	199.10	211.77	219.40	226.54
	89	139.38	149.30	156.38	163.42	178.10	187.66	197.98	201.84	213.60	222.22	229.52
	102	149.76	158.02	164.91	171.08	185.83	193.60	201.64	210.57	220.30	230.30	241.49
	107	146.32	154.55	165.14	172.91	186.81	197.46	206.99	208.00	218.30	220.18	236.16
	120	148.03	157.53	171.86	181.22	191.60	205.89	215.85	223.77	236.77	245.12	256.74
	125	138.92	150.59	159.15	169.14	183.00	192.58	198.71	209.56	219.26	226.81	232.29
10	136	107.26	115.51	123.48	129.98	138.62	148.37	156.40	163.77	172.02	183.16	187.58
	153	119.74	128.27	136.58	143.67	152.52	163.93	172.69	181.96	190.05	199.29	208.83
	154	129.79	139.16	148.50	158.47	168.55	181.50	190.90	200.52	211.92	219.16	226.95
	171	126.77	137.36	148.18	153.55	163.07	175.12	184.49	192.22	199.42	212.35	223.72
	172	136.67	145.77	153.68	162.00	169.80	181.91	189.97	198.80	207.50	218.76	223.81
	182	149.39	157.58	169.00	180.88	192.90	204.51	215.62	227.87	239.12	246.52	259.10
	199	134.36	141.98	156.62	154.47	169.71	178.02	187.97	200.07	209.24	215.51	229.46
	200	140.40	151.96	159.75	172.37	180.33	192.20	203.97	210.10	220.87	227.34	237.86
	217	<u>.</u> g										
	218	132.48	142.55	150.43	160.46	168.76	175.67	185.14	193.38	202.42	208.22	215.75
	235	147.81	158.12	167.48	178.31	191.48	200.38	212.62	216.30	223.60	231.00	241.64
	236	140.13	148.84	159.02	171.30	180.67	190.63	203.09	210.85	219.50	228.42	237.41
	253	130.25	140.57	147.57	157.00	166.07	175.85	186.48	195.63	204.81	207.72	223.14
	254	145.65	154.19	161.61	171.80	178.37	189.90	198.93	207.37	217.51	224.37	233.00
	270	148.68	158.59	169.55	179.34	190.23	199.52	210.18	219.01	228.98	237.18	245.26

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 6 of 10)

							Postnatal Day	y				
<u>Group</u> ^a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
11	137	121.59	129.16	138.56	145.32	151.44	162.09	168.68	177.24	177.25	190.97	191.62
	152	128.51	135.92	147.89	151.16	165.29	171.61	180.79	192.47	203.45	212.28	217.48
	155	137.41	146.11	158.68	166.76	178.56	185.79	196.78	207.97	216.40	226.95	230.49
	170	135.69	145.24	155.71	164.20	174.14	184.22	194.06	202.83	212.50	219.31	224.64
	173	147.35	156.65	167.79	180.77	191.72	203.95	218.66	223.72	236.04	247.78	257.99
	183	124.72	133.26	139.42	152.92	162.33	171.87	180.40	192.84	202.30	206.37	215.10
	198	138.05	147.51	156.12	165.10	177.32	188.95	198.66	205.77	216.00	224.83	231.98
	201	136.59	147.09	153.96	166.05	173.88	185.08	198.11	208.07	216.59	223.34	233.17
	216	136.62	147.56	154.11	165.52	175.52	189.86	197.22	208.25	227.80	225.57	238.19
	219	137.77	145.71	154.14	164.52	172.98	184.52	193.19	200.90	212.01	217.60	226.60
	234	136.41	146.60	154.07	164.81	168.85	179.49	188.47	196.91	203.18	212.72	219.03
	237	141.31	150.28	160.37	168.15	182.44	189.65	200.47	209.05	219.40	227.52	237.43
	252	151.33	160.09	170.48	178.83	190.48	199.95	212.48	222.62	231.72	239.12	249.75
	255	144.05	152.15	161.92	171.36	181.85	192.16	200.66	210.06	221.36	227.79	234.66
	269	145.76	156.06	165.13	179.31	187.02	198.54	210.95	221.27	228.47	234.74	245.72
12	138	105.93	110.26	113.44	117.19	118.96	123.96	126.48	126.92	127.06	129.77	131.93
	151	108.79	111.07	114.03	117.75	120.91	124.58	126.08	128.67	128.72	132.52	131.16
	156	117.22	123.28	127.48	129.57	137.21	143.45	145.21	145.90	150.20	152.76	153.67
	169	130.37	136.75	141.29	149.02	151.46	156.41	162.29	165.22	170.28	170.69	171.95
	174	143.44	147.68	155.66	158.23	163.09	167.85	170.91	173.03	176.60	179.34	179.90
	184	126.89	132.77	133.82	139.56	143.00	144.13	147.16	149.00	151.21	150.82	151.25
	197	123.09	127.76	133.54	140.00	143.37	147.70	152.40	156.39	159.76	160.38	162.05
	202	128.99	133.66	138.50	145.03	148.92	150.32	156.31	157.49	158.02	157.54	159.99
	215	137.12	143.26	147.50	154.44	160.75	165.78	171.90	173.29	180.51	178.90	182.81
	220	133.75	141.60	146.24	150.84	156.04	160.83	162.31	167.50	170.99	171.88	174.84
	233	137.49	143.90	147.31	152.86	158.12	161.75	163.85	168.61	169.11	170.96	173.00
	238	139.69	146.75	148.38	155.63	162.53	163.26	168.50	169.21	172.86	173.38	176.16
	251	127.32	135.18	140.57	146.50	152.87	158.19	161.14	164.84	167.82	166.89	168.79
	256	138.46	146.32	153.22	160.00	165.37	168.77	175.28	178.04	183.15	182.43	184.71
	268	133.67	140.77	143.81	149.35	153.22	157.97	160.77	166.47	167.29	167.00	170.42

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 7 of 10)

							Postnatal Day	у				
Group ^a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
13	141	114.65	123.60	134.13	129.16	142.47	151.91	163.31	158.64	163.11	168.21	177.15
	148	130.96	141.73	150.40	162.52	170.70	183.54	193.19	203.04	211.06	221.16	232.70
	159	119.32	125.23	133.75	140.71	151.99	160.13	169.15	178.49	184.50	191.49	198.83
	166	133.46	142.88	154.09	162.35	171.85	177.78	191.60	201.29	211.28	218.10	222.72
	177	144.80	155.68	167.52	177.24	188.71	201.04	212.72	220.39	231.40	242.80	251.79
	187	132.19	141.32	149.54	159.90	167.56	177.44	184.13	193.19	202.59	210.83	220.70
	194	120.30	126.58	133.40	143.26	154.09	165.24	172.22	180.52	187.83	198.77	206.43
	205	133.91	144.70	153.92	165.68	175.35	182.46	192.44	204.79	214.57	223.38	231.96
	212	138.82	149.58	155.57	167.38	178.33	191.42	199.98	208.75	216.97	223.62	234.68
	223	138.54	143.59	150.00	170.17	175.53	186.59	194.99	200.31	209.88	215.16	227.93
	230	127.20	135.86	145.57	154.70	163.72	174.47	181.43	190.07	198.52	204.71	210.00
	241	145.44	155.70	163.71	178.58	187.73	204.66	214.82	225.12	233.89	237.51	248.75
	248	131.25	141.87	151.12	160.22	167.95	178.58	187.74	195.03	202.74	213.66	221.97
	259	146.42	154.94	164.11	176.13	184.09	193.27	205.27	210.24	218.55	225.33	234.61
	265	148.81	156.92	164.31	176.63	189.44	200.61	211.31	219.37	229.02	231.41	245.99
14	142	113.13	116.14	125.85	135.16	145.21	154.22	162.35	170.68	177.25	184.83	193.80
	147	117.65	127.77	135.83	142.94	150.35	160.24	166.36	174.75	183.57	191.65	198.95
	160	117.42	124.40	133.78	141.23	152.47	160.74	168.31	179.31	190.36	194.98	200.98
	165	114.55	120.66	128.97	135.49	147.17	153.38	166.19	172.99	180.23	190.14	197.76
	178	135.33	145.42	153.89	163.12	175.30	183.93	192.74	197.96	209.30	216.55	224.58
	188	125.18	133.72	141.45	149.12	157.65	167.58	176.61	185.20	192.64	199.77	209.23
	193	128.51	137.29	145.82	154.82	164.82	173.77	181.97	190.50	197.66	207.60	213.58
	206	131.91	144.56	150.34	159.80	168.07	180.69	191.51	200.55	206.78	213.10	224.02
	211	128.36	138.82	142.56	155.23	161.11	171.67	178.29	184.37	192.90	195.34	206.51
	224	129.42	136.88	143.38	151.73	163.72	172.44	179.89	191.65	201.91	203.15	212.46
	229	134.09	148.65	159.14	167.73	176.74	189.80	195.30	203.65	212.21	220.08	232.03
	242	135.27	144.28	149.49	163.24	170.74	.h					
	247	142.08	152.04	158.04	169.54	179.99	187.05	197.19	209.91	216.73	225.98	232.41
	260	135.56	149.57	158.03	169.93	180.46	192.98	202.07	214.23	221.82	230.06	243.32
	264	143.18	154.38	161.29	175.30	183.64	196.34	205.94	213.38	222.33	230.13	242.67

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 8 of 10)

							Postnatal Day	y				
Group ^a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
15	139	114.92	123.23	131.81	140.76	151.55	161.58	170.58	178.13	187.41	193.11	202.70
	150	116.75	122.80	130.52	140.88	148.85	157.44	167.48	175.84	185.71	195.73	196.96
	157	113.40	120.63	129.23	137.52	147.60	155.49	164.15	175.49	182.48	190.63	200.35
	168	127.20	135.56	144.43	151.01	162.33	170.48	180.15	188.17	194.85	201.47	213.32
	175	124.37	132.14	142.19	147.76	158.49	167.18	174.91	182.98	192.95	201.48	206.81
	185	124.70	133.96	142.71	152.23	160.00	170.49	175.72	187.07	195.03	205.11	209.36
	196	132.84	140.35	135.26	148.22	157.23	169.74	177.48	186.28	196.95	202.18	215.90
	203	125.27	135.04	145.05	154.92	164.38	173.65	183.38	191.36	201.57	207.56	215.00
	214	118.23	123.65	130.80	140.85	148.58	158.59	165.87	172.75	181.37	188.29	196.60
	221	128.42	139.14	148.25	160.38	170.27	181.38	189.38	194.64	204.15	216.30	226.92
	232	124.73	133.87	137.76	148.32	156.73	165.14	172.44	180.12	191.97	196.98	205.89
	239	135.23	143.65	151.95	160.22	168.69	178.47	186.65	199.97	206.21	216.58	226.45
	250	128.60	137.87	144.17	154.81	162.98	172.85	182.77	190.96	199.44	206.60	213.11
	257	142.78	152.45	161.82	171.10	182.00	196.67	204.46	215.73	227.32	236.33	245.47
	267	134.54	142.21	153.94	165.04	176.72	184.07	195.03	203.93	212.81	221.72	231.22
16	140	110.29	119.40	125.49	136.15	145.62	153.35	162.33	167.60	177.16	186.14	194.25
	149	104.52	111.86	118.60	127.71	134.00	143.26	149.58	154.66	159.80	166.31	163.70
	158	117.61	123.79	127.48	136.52	147.74	156.40	164.16	170.08	174.20	184.90	192.24
	167	100.99	108.15	113.45	121.85	128.34	136.74	144.76	151.45	155.54	163.23	172.38
	176	125.77	132.15	141.73	151.61	161.34	176.08	179.25	191.09	200.33	208.86	221.23
	186	120.75	129.09	133.51	144.49	151.14	163.99	170.61	180.22	184.01	190.69	196.67
	195	125.26	132.35	139.45	147.57	157.81	168.24	174.75	182.16	187.36	194.42	198.15
	204	111.60	118.02	124.77	135.85	142.21	150.20	155.20	162.16	168.22	174.94	183.15
	213	113.54	120.27	125.91	136.92	145.26	153.43	160.38	170.31	180.36	182.51	195.31
	222	121.40	130.10	134.61	147.04	156.00	167.12	170.74	178.97	187.10	195.73	204.10
	231	109.27	117.60	122.08	130.28	140.48	147.66	153.48	162.11	169.22	175.58	181.02
	240	126.68	136.68	142.80	152.24	164.40	171.73	180.48	192.01	196.97	206.76	218.19
	249	122.87	129.66	136.41	147.61	155.00	165.68	174.76	182.30	189.11	193.37	205.90
	258	136.74	147.50	154.67	166.76	174.09	188.22	192.50	203.45	210.58	217.74	226.57
	266	131.69	140.27	149.90	160.21	176.76	181.29	191.12	201.40	205.27	215.42	223.09

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 9 of 10)

							Postnatal Day	у				
Group a	Animal ID	32	33	34	35	36	37	38	39	40	41	42
17	143	114.14	122.56	131.66	138.47	150.84	159.53	166.51	179.34	185.80	196.13	199.66
	146	121.26	125.43	135.89	145.24	155.14	164.78	174.35	185.45	196.36	206.12	211.58
	161	126.23	133.01	141.79	149.04	160.40	171.67	181.58	190.60	200.40	211.62	215.78
	164	142.55	150.39	157.43	168.57	182.88	194.22	201.77	214.83	224.20	234.98	245.79
	179	149.93	158.57	167.83	181.40	190.21	200.31	208.60	216.27	229.70	237.55	248.22
	189	126.40	137.16	144.51	155.94	166.03	175.46	184.90	192.82	203.76	211.08	219.92
	192	147.19	151.29	166.83	175.20	188.17	197.57	212.69	219.83	232.05	240.06	250.22
	207	133.29	142.23	149.66	159.34	166.39	178.93	189.07	197.92	205.58	208.67	219.91
	210	118.59	126.86	134.59	143.43	152.75	161.38	172.87	180.12	188.94	193.97	204.99
	225	142.07	152.20	160.58	171.84	180.15	193.00	204.17	215.40	222.31	234.62	250.25
	228	132.43	141.36	152.00	161.96	169.12	180.34	190.69	200.99	208.02	213.25	227.03
	243	144.17	153.75	161.08	174.68	185.66	201.28	207.15	224.01	232.75	245.33	265.69
	246	127.86	138.28	146.06	154.09	160.87	169.72	178.19	186.56	194.76	200.14	209.81
	261	131.71	141.84	149.21	159.26	168.55	177.86	186.92	195.25	203.99	212.12	222.57
	263	139.49	150.29	156.17	166.06	175.51	184.07	193.91	202.44	210.63	216.92	223.37
18	144	110.52	116.45	125.63	133.51	145.40	153.37	159.71	163.63	170.22	177.58	184.72
	145	118.32	128.05	135.10	143.04	152.84	162.55	173.15	185.21	195.78	205.42	214.47
	162	114.53	120.00	126.54	135.45	143.68	153.51	161.21	171.34	180.25	187.15	196.50
	163	127.81	137.33	142.13	156.20	166.15	176.78	184.87	197.56	207.41	218.50	229.66
	180	127.33	133.07	141.87	151.17	160.45	166.42	176.08	186.40	195.90	197.98	206.64
	181	116.32	122.08	129.94	138.26	145.87	150.41	159.00	165.53	176.91	185.06	190.55
	190	124.75	132.91	138.65	147.46	157.36	166.37	174.79	182.26	189.93	193.14	202.39
	191	121.97	130.45	138.08	147.14	156.81	165.47	173.68	179.62	189.75	196.65	202.46
	208	130.03	140.28	149.60	159.54	165.28	171.49	182.72	188.82	197.31	202.25	213.20
	209	137.10	146.95	159.38	167.94	180.35	187.89	197.00	207.20	219.27	224.11	236.52
	226	141.31	154.51	164.55	176.85	184.70	195.21	203.26	214.44	229.19	237.27	248.00
	227	134.84	144.10	154.32	165.83	175.81	183.86	197.40	204.99	219.84	220.44	234.40
	244	140.62	150.46	161.31	169.86	179.49	192.33	204.18	211.09	224.74	231.72	241.62
	245	133.04	142.44	147.89	158.30	170.32	179.78	188.75	194.75	208.61	216.09	227.10
	262	121.01	129.98	139.22	147.63	155.73	164.42	171.62	180.83	190.04	199.12	210.74

Table A-3. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 32 Through 42 (page 10 of 10)

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 12

Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2.

bMale was removed from the study because his correct postnatal day 0 could not be confirmed.

cMale was removed from the study because it was not dosed on the correct postnatal days. dMale was found dead on postnatal day 37 after dosing (misdirected dose).

eBody weight inadvertently not recorded.

Male was euthanized on postnatal day 29 after dosing due to a leg injury.

9Male was found dead on postnatal day 31 prior to dosing (misdirected dose).

hMale was found dead on postnatal day 37 prior to dosing (misdirected dose).

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 1 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
1	1	209.27	220.42	232.42	239.03	245.70	254.95	267.85	275.23	282.90	290.31	
	15	216.61	225.62	236.10	240.92	250.71	263.11	269.74	280.43	283.45	293.56	
	32	230.46	238.60	250.02	250.58	260.87	270.95	277.81	285.73	288.82	300.05	
	33	223.55	235.03	242.73	243.95	257.93	267.41	275.18	295.88	293.71	312.83	
	50	241.37	250.87	261.50	267.13	272.76	282.16	294.18	302.38	305.90	320.45	
	51	225.36	235.80	244.70	252.08	264.47	270.36	277.06	291.26	294.84	307.18	
	68	238.47	251.23	262.11	273.17	282.29	290.37	300.16	310.47	318.00	326.72	
	69	.c										
	86	.c										
	87	267.85	275.90	285.71	291.71	299.96	309.99	322.11	332.60	340.14	348.74	358.34
	104	261.80	274.83	283.75	287.31	297.63	308.15	316.91	328.84	333.15	339.05	349.01
	105	251.48	262.12	268.14	279.82	291.09	294.03	301.78	312.00	324.86	332.66	341.00
	122	234.16	243.62	251.60	259.17	269.16	273.50	285.16	289.42	296.15	304.66	316.19
	123	227.38	233.27	243.64	254.36	263.78	270.18	274.50	284.75	294.78	302.30	309.18
	135	.c										
2	4	191.47	194.82	202.99	209.45	217.60	227.99	234.16	241.60	246.40	256.18	
	18	.d										
	29	211.58	217.02	225.68	231.67	241.51	248.16	256.43	262.25	273.11	275.98	
	36	217.66	230.61	237.55	242.40	250.00	263.18	271.16	278.08	285.26	290.08	
	47	212.22	220.40	223.79	232.78	236.95	246.11	251.61	255.86	260.70	264.61	
	54	.e										
	65	220.03	227.40	238.27	244.49	257.45	260.24	271.11	281.20	286.02	293.77	
	72	222.87	233.59	243.62	249.43	259.63	269.11	280.31	287.63	299.06	303.89	
	83	212.77	222.65	225.12	233.21	240.62	250.11	258.72	265.56	256.74	264.39	270.77
	90	213.52	221.41	228.41	238.45	247.82	252.12	265.89	271.89	277.46	284.80	291.54
	101	226.23	232.94	242.37	248.70	255.57	264.64	273.16	280.74	290.00	295.34	299.05
	108	221.85	229.11	236.25	238.83	247.69	254.19	263.11	271.50	276.59	286.32	280.48
	119	. ^C										
	126	216.76	223.16	229.36	235.89	242.60	245.14	256.73	262.47	268.84	275.21	275.28
	133	227.28	234.55	240.83	246.71	260.27	266.13	267.44	285.46	287.82	295.10	297.03

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 2 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
3	5	175.91	179.46	187.11	197.06	198.45	206.93	211.03	219.41	225.04	234.62	
	13	188.02	195.05	201.64	209.86	218.73	222.39	230.16	237.21	239.81	249.76	
	19	207.42	215.13	222.29	222.40	231.97	239.18	248.01	259.48	263.28	269.32	
	28	203.80	212.26	219.97	222.70	230.05	233.69	243.61	248.00	255.75	266.60	
	37	200.03	207.79	211.69	216.13	226.08	225.31	233.94	244.90	251.93	257.16	
	46	199.71	208.72	214.04	218.76	224.49	235.20	241.17	246.32	257.13	259.83	
	55	.c										
	64	209.36	216.04	220.29	228.33	229.74	242.11	248.61	256.13	262.94	268.71	
	73	209.16	218.05	227.35	227.57	235.99	243.18	251.73	262.30	265.66	269.52	
	82	211.44	217.46	223.57	228.23	234.67	244.18	251.57	255.94	265.05	266.75	276.80
	91	211.63	220.15	225.19	236.41	246.12	251.24	261.15	268.46	279.73	286.50	292.36
	100	201.52	212.20	220.91	225.34	232.52	238.16	246.12	250.10	259.84	262.06	272.55
	109	195.12	201.24	208.38	214.63	216.19	225.16	231.24	236.21	240.01	239.36	249.00
	118	.c										
	127	.c										
4	6	186.06	193.57	200.66	208.39	216.42	224.48	236.11	240.16	247.32	250.88	
	12	198.50	206.91	217.86	225.26	237.97	244.06	252.16	256.12	262.79	277.32	
	20	f										
	27	238.12	248.10	257.75	268.08	275.13	287.16	297.21	304.81	317.36	330.07	
	38	242.59	250.11	261.27	268.83	282.98	285.16	301.21	307.90	313.09	323.50	
	45	232.56	237.86	251.15	258.99	264.90	280.75	286.21	299.39	305.87	315.68	
	56	248.40	257.18	267.73	273.13	282.18	292.14	302.40	315.82	320.28	344.12	
	63	237.30	246.75	257.69	267.67	272.25	281.16	291.61	302.18	311.58	317.22	
	74	.c										
	81	246.86	255.15	263.05	271.26	281.68	290.76	296.12	309.33	314.89	326.77	332.24
	92	228.42	233.40	243.85	252.01	262.77	267.48	276.12	283.47	287.93	297.80	303.74
	99	253.66	262.46	270.41	282.29	295.52	300.59	311.48	326.44	329.52	341.65	352.23
	110	240.91	251.70	261.56	267.38	275.55	286.60	297.63	301.84	306.53	312.80	330.00
	117	231.16	239.12	248.83	258.31	267.89	275.28	285.01	297.15	304.26	311.50	321.40
	128	256.08	265.57	278.86	288.03	298.70	309.18	319.26	330.63	333.98	342.17	356.30

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 3 of 10)

							Postnatal Da	у				
<u>Group^a</u>	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
5	7	187.53	196.30	202.55	215.83	215.63	228.92	240.96	243.16	256.32	222.96	
	21	252.66	259.20	273.88	282.14	290.53	300.28	312.02	320.37	325.75	325.81	
	26	238.71	243.43	257.09	266.69	283.77	288.33	297.43	310.39	313.82	329.55	
	39	231.50	237.78	244.92	255.84	263.33	273.14	283.86	286.60	293.39	302.16	
	44	233.11	237.11	246.62	255.17	266.86	274.89	286.11	298.03	304.21	307.23	
	57	235.77	239.62	250.55	261.91	272.11	278.75	292.22	298.26	303.63	316.25	
	62	210.05	219.35	226.68	235.63	244.66	252.86	260.28	269.78	274.90	280.11	
	75	226.30	233.15	244.02	249.88	259.22	266.23	275.21	284.57	292.79	299.36	
	80	223.90	234.26	242.03	253.25	261.92	274.71	280.11	290.68	300.96	307.01	318.19
	93	237.56	242.29	252.32	263.06	275.37	278.69	290.01	300.71	309.01	319.31	335.81
	98	245.44	253.44	260.87	269.09	280.98	284.19	296.90	305.68	315.17	317.62	327.03
	111	247.02	254.45	267.84	276.10	286.07	293.72	303.16	315.40	318.74	330.80	338.28
	116	259.31	269.47	279.39	286.36	296.80	307.68	320.14	326.75	336.82	344.51	356.71
	129	257.97	262.92	275.09	278.56	294.53	300.03	311.43	322.18	331.32	339.04	356.40
	132	245.12	253.44	259.38	268.68	276.58	285.99	295.85	301.11	306.15	318.80	327.05
6	8	203.15	211.31	219.24	232.04	238.67	247.40	259.05	266.17	273.26	284.20	
	11	205.63	215.98	224.36	233.09	236.38	251.79	257.18	266.74	276.66	280.65	
	22	260.22	267.38	283.90	289.72	301.20	312.64	326.11	342.88	351.43	366.80	
	25	207.34	214.62	224.42	233.92	241.47	252.61	261.21	273.73	276.99	287.55	
	40	246.32	259.39	270.16	278.72	290.88	300.92	312.68	319.12	326.35	344.56	
	43	219.00	227.08	235.96	242.47	249.01	257.07	266.21	274.50	276.50	290.02	
	58	228.66	235.56	242.15	247.17	259.10	270.24	277.16	285.72	291.01	301.40	
	61	247.43	258.84	266.63	272.19	283.31	293.41	302.01	315.72	317.13	329.24	
	76	237.07	243.19	248.87	258.27	267.33	273.09	283.16	296.18	303.02	307.80	332.33
	79	.c										
	94	263.64	270.81	280.61	291.56	294.36	310.02	319.11	326.08	333.95	347.74	362.92
	97	239.87	248.84	261.91	270.29	282.02	293.54	301.92	310.18	318.76	329.04	345.43
	112	253.37	264.50	275.07	288.35	297.61	310.97	321.48	332.38	335.93	354.04	358.56
	115	.c										
	130	265.60	277.67	288.74	294.09	306.77	320.95	326.11	336.35	350.61	362.02	371.02

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 4 of 10)

							Postnatal Day	у				
<u>Group</u> ^a	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
7	9	202.80	213.02	221.36	230.09	232.93	245.25	254.60	261.84	269.51	279.41	
	10	214.10	224.69	230.18	241.45	248.92	261.06	268.51	278.45	288.53	297.82	
	23	225.64	233.21	245.71	252.90	264.96	272.68	283.16	288.64	289.58	310.31	
	24	.c										
	41	224.50	235.17	243.70	252.39	262.32	269.55	276.22	285.79	291.75	305.23	
	42	222.01	229.66	240.01	245.99	254.77	261.29	273.02	279.31	284.01	297.86	
	59	231.18	235.02	248.54	250.44	258.30	270.20	280.45	288.00	289.04	300.60	
	60	233.28	241.15	250.26	256.29	267.19	276.21	284.01	298.21	307.30	316.21	
	77	218.11	227.88	233.87	216.77	244.52	254.35	263.91	273.47	277.56	288.56	294.07
	78	225.02	235.19	243.94	248.04	259.64	269.89	281.16	287.10	296.77	302.12	317.40
	95	233.03	240.79	250.03	256.95	267.24	276.13	285.11	292.78	300.91	310.10	317.36
	96	251.09	261.72	269.64	275.67	290.92	300.65	315.02	322.53	330.60	340.11	352.25
	113	247.23	255.71	263.75	271.50	283.57	292.70	300.64	308.98	320.03	332.16	342.29
	114	.c										
	131	.c					,					
8	2	183.25	191.86	200.05	209.30	213.00	221.48	230.15	238.92	247.04	255.61	
	16	239.90	251.27	260.03	267.46	276.62	286.15	299.01	305.63	308.83	322.13	
	31	206.90	212.87	222.20	227.51	238.66	250.11	261.01	270.55	279.19	292.14	
	34	222.70	228.54	238.21	248.75	254.98	264.21	272.18	283.10	289.27	300.25	
	49	236.82	249.07	257.72	266.49	278.03	284.05	295.15	298.57	304.47	307.71	
	52	250.21	261.73	269.65	271.36	285.48	287.16	300.95	305.87	317.18	327.70	
	67	215.04	219.01	228.11	229.05	238.46	244.16	252.18	257.23	263.35	270.81	
	70	238.84	249.23	258.46	267.12	275.60	284.01	294.84	302.40	311.03	314.80	
	85	238.64	248.56	256.51	269.04	278.60	289.23	299.03	308.97	308.26	316.42	334.50
	88	227.30	237.11	246.04	252.25	263.12	267.05	275.31	284.24	287.81	295.02	301.54
	103	234.11	238.10	253.83	260.32	263.34	274.16	280.95	289.33	300.27	303.46	311.85
	106	234.04	245.20	254.26	260.72	268.06	278.15	284.11	292.48	293.20	303.26	311.31
	121	239.14	245.92	259.18	266.11	277.99	287.31	296.16	302.83	304.10	315.02	327.16
	124	232.02	244.45	252.41	253.57	262.16	268.50	278.44	290.40	293.55	301.45	315.90
	134	238.34	249.59	258.66	266.24	277.78	285.14	292.21	301.24	299.44	314.60	327.36

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 5 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
9	3	174.76	180.04	194.42	198.13	208.03	209.25	216.41	229.49	231.73	237.30	
	14	184.43	195.35	200.70	207.65	216.57	221.72	227.18	230.91	243.99	248.72	
	17	.c										
	30	.c										
	35	225.52	236.41	246.51	255.04	263.03	274.98	285.16	284.58	289.46	298.60	
	48	233.86	235.44	244.71	255.70	265.10	273.18	280.17	287.71	284.02	294.12	
	53	228.00	238.60	247.04	254.35	262.10	275.26	285.41	291.26	288.71	297.40	
	66	232.87	241.17	249.87	258.84	266.67	275.63	284.16	295.83	292.42	302.91	
	71	238.43	246.95	256.30	262.83	274.66	280.16	291.61	295.77	296.20	305.00	
	84	233.37	241.12	247.42	255.18	267.58	275.11	281.23	287.57	290.80	299.01	307.85
	89	240.00	246.40	256.48	257.31	268.95	277.54	283.91	293.41	298.27	300.58	315.65
	102	250.37	256.56	261.91	272.70	280.73	293.31	302.13	311.86	315.42	322.16	342.08
	107	243.36	251.50	256.62	260.12	272.09	283.02	292.16	302.84	306.40	309.75	320.11
	120	264.94	275.47	287.00	295.38	302.23	311.23	323.16	334.60	342.04	349.66	359.56
	125	240.46	248.90	258.68	266.37	275.41	281.49	290.61	301.34	296.28	307.88	322.79
10	136	197.07	204.00	214.57	219.46	229.94	236.15	246.00	255.87	259.66	270.90	
	153	214.17	224.03	232.66	245.04	252.78	261.65	268.07	279.00	289.63	301.13	
	154	240.10	248.81	260.36	269.00	281.36	288.49	300.83	307.42	321.77	331.98	
	171	228.86	242.31	251.36	259.97	266.68	279.91	287.56	297.63	310.34	320.71	
	172	235.13	241.03	250.09	258.83	271.17	277.58	287.38	292.38	304.50	316.88	
	182	269.53	282.79	292.63	306.99	315.20	328.63	341.67	356.40	364.40	375.68	
	199	229.27	234.37	247.80	256.29	262.52	274.65	286.98	294.10	301.49	317.20	
	200	248.34	259.69	266.85	280.57	287.28	294.96	308.42	321.05	329.88	339.10	
	217	.9										
	218	223.48	229.75	238.58	246.42	254.73	263.10	269.87	277.44	285.78	293.03	
	235	254.00	262.50	273.21	283.61	291.91	300.41	310.78	319.42	328.49	339.16	349.07
	236	243.51	253.89	265.93	273.77	280.83	290.26	297.83	306.71	314.35	324.38	336.70
	253	231.00	237.89	246.42	254.50	264.91	271.17	281.48	292.47	301.18	309.71	311.74
	254	242.07	248.70	257.35	268.26	278.58	286.41	295.37	302.20	311.86	319.96	331.13
	270	255.02	261.76	271.37	284.75	291.94	302.62	309.57	324.29	328.98	341.39	353.57

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 6 of 10)

							Postnatal Da	у				
<u>Group^a</u>	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
11	137	198.79	205.55	212.66	216.64	221.85	223.37	224.52	232.25	234.44	238.72	
	152	224.34	231.70	240.37	250.21	255.70	265.86	273.51	277.29	282.12	288.94	
	155	239.25	247.06	254.69	263.00	269.45	274.40	274.87	280.84	287.64	290.80	
	170	232.79	237.66	247.49	256.52	260.09	267.11	269.29	274.41	279.33	284.54	
	173	271.02	280.95	290.31	301.05	308.69	315.09	331.24	338.51	349.29	356.86	
	183	224.88	233.81	244.55	248.72	257.27	263.50	270.75	279.08	285.44	290.86	
	198	241.59	248.90	261.40	271.35	279.53	288.22	294.91	301.40	310.14	314.50	
	201	241.67	248.65	255.01	265.53	270.36	276.20	283.20	290.33	297.77	301.69	
	216	248.56	259.30	266.67	274.20	285.72	292.18	302.40	314.14	320.40	328.90	
	219	232.98	237.38	240.92	245.92	250.02	253.49	253.92	251.24	258.84	260.21	
	234	225.55	234.85	242.35	251.19	257.82	263.40	270.58	278.44	288.22	292.64	300.78
	237	246.73	254.69	260.53	266.33	273.49	278.09	283.06	285.88	290.15	292.11	294.50
	252	258.08	263.90	273.03	278.09	284.33	288.87	293.41	295.04	297.95	299.87	303.35
	255	243.37	251.89	258.70	265.84	270.60	274.66	277.07	285.57	286.46	289.84	291.88
	269	258.23	263.24	272.78	284.57	292.24	298.22	309.87	315.97	326.37	327.75	331.45
12	138	135.80	135.94	136.23	138.98	139.48	139.53	139.76	143.15	143.07	144.60	
	151	132.21	133.78	135.35	136.24	136.58	137.39	137.80	139.91	140.71	140.36	
	156	154.24	154.55	157.85	159.76	158.77	160.07	161.20	162.32	158.08	162.80	
	169	173.28	175.67	176.96	175.42	177.94	177.98	178.91	182.29	181.56	181.23	
	174	179.52	179.33	179.97	178.38	178.94	180.57	178.14	174.90	174.72	176.78	
	184	153.27	153.07	152.35	155.00	155.78	154.50	157.48	157.94	158.58	156.78	
	197	162.88	165.75	165.36	166.53	169.08	170.51	168.20	169.64	171.37	173.06	
	202	160.75	159.50	162.17	163.75	164.66	163.17	163.58	165.48	164.92	166.25	
	215	185.10	185.76	186.03	185.96	188.93	188.27	188.25	190.19	193.26	194.12	
	220	173.91	174.85	178.03	176.83	178.73	176.90	177.59	180.77	178.38	178.93	
	233	172.35	172.38	173.75	173.19	176.60	175.07	176.60	174.66	176.75	176.61	177.40
	238	177.11	177.29	179.41	180.09	178.32	181.10	181.81	183.89	183.81	185.43	184.30
	251	174.86	174.91	175.42	177.28	179.18	178.60	180.35	182.52	186.54	185.35	185.24
	256	188.01	188.63	190.00	189.91	190.99	189.64	189.76	192.65	193.48	194.14	193.62
	268	171.64	173.04	172.00	174.32	170.92	171.80	173.88	.h			

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 7 of 10)

							Postnatal Da	у				
Group ^a	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
13	141	187.99	194.14	204.59	212.16	221.82	233.52	243.35	248.80	261.68	274.52	
	148	242.82	251.86	261.38	271.22	280.86	289.66	301.19	314.16	322.77	336.97	
	159	206.29	216.81	221.90	231.64	240.78	248.34	256.69	264.09	277.90	286.24	
	166	234.39	244.51	249.81	262.09	271.32	279.43	287.76	303.49	307.21	316.13	
	177	263.55	274.57	282.58	294.29	304.34	311.00	325.75	330.90	344.40	354.86	
	187	227.22	236.71	244.34	253.29	260.25	271.32	280.89	288.44	300.92	307.34	
	194	214.36	224.86	233.92	242.28	249.81	256.20	267.05	272.76	281.90	293.88	
	205	243.60	250.26	258.51	271.50	281.13	292.03	297.45	311.06	325.43	336.30	
	212	242.10	248.17	261.21	267.64	277.88	285.67	298.08	306.58	317.57	328.05	
	223	237.40	243.74	252.51	258.72	270.15	282.19	287.85	300.65	309.70	355.23	
	230	218.63	229.74	241.42	244.06	257.65	261.58	272.13	284.08	291.81	298.17	310.21
	241	260.55	267.87	272.08	284.66	296.18	298.33	309.53	318.96	327.18	342.82	353.57
	248	231.30	242.61	252.17	262.13	272.00	279.52	292.67	301.68	313.06	327.24	338.26
	259	243.38	251.63	262.27	269.31	275.36	281.66	293.12	302.49	311.87	321.99	329.37
	265	251.99	263.41	270.36	282.06	293.46	299.10	312.49	323.07	334.92	344.54	355.77
14	142	199.99	208.45	216.26	225.75	230.78	236.35	240.73	251.02	259.92	266.84	
	147	205.90	211.73	223.03	229.79	231.69	245.92	250.42	257.99	268.30	277.11	
	160	206.45	220.04	225.78	234.18	240.61	247.18	259.90	267.13	277.44	284.81	
	165	205.04	214.02	224.36	229.61	239.96	247.72	253.32	266.68	271.59	280.64	
	178	233.63	243.57	250.10	261.18	272.72	278.63	291.04	302.20	308.75	324.18	
	188	215.70	224.64	235.50	242.29	249.47	256.68	263.36	275.34	282.88	293.72	
	193	225.18	230.79	238.14	246.57	257.65	262.39	269.16	280.95	289.46	299.09	
	206	230.67	238.71	243.11	244.78	259.59	266.94	277.61	287.60	296.97	307.70	
	211	216.12	223.71	230.13	236.24	251.87	255.75	263.33	276.52	288.42	293.53	
	224	221.29	229.55	231.79	240.66	250.29	252.23	261.54	271.71	283.14	284.60	
	229	244.49	252.20	258.31	264.85	280.10	284.72	292.37	302.40	318.13	329.43	328.71
	242	į										
	247	245.95	253.42	262.68	272.43	280.22	292.71	306.52	314.03	321.11	333.18	341.71
	260	253.59	260.22	272.65	281.61	290.19	294.51	308.91	315.58	329.75	340.72	356.15
	264	250.59	259.76	265.59	275.94	293.11	292.80	298.44	315.44	330.31	334.41	346.21

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 8 of 10)

							Postnatal Day	у				
Group ^a	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
15	139	209.58	218.93	224.81	231.30	239.81	249.86	255.06	259.44	270.02	279.21	
	150	205.21	215.27	224.48	232.67	242.22	252.50	260.82	267.24	277.59	285.95	
	157	205.28	213.95	223.19	233.39	239.23	244.93	257.39	266.75	272.86	278.86	
	168	217.79	227.96	238.29	247.37	252.83	261.92	267.33	277.93	286.33	298.98	
	175	216.62	226.11	234.20	245.19	252.60	261.93	270.51	284.14	288.39	300.78	
	185	214.90	228.34	237.48	245.41	251.13	259.09	271.93	277.77	281.49	290.69	
	196	226.31	230.14	242.23	251.64	261.63	269.32	280.14	290.55	299.05	306.34	
	203	224.84	234.03	242.94	251.52	263.90	272.07	279.01	289.77	297.04	309.44	
	214	207.00	215.30	224.20	229.90	243.13	247.02	253.12	261.62	272.33	278.69	
	221	233.71	240.11	254.04	259.73	266.60	279.09	286.17	291.33	298.89	314.24	
	232	214.10	221.18	231.79	238.64	247.50	254.25	260.17	266.23	279.04	287.66	293.29
	239	232.18	241.03	252.04	261.97	274.10	287.58	295.43	307.78	314.81	325.65	337.38
	250	223.27	232.27	243.83	255.76	260.85	264.50	277.29	283.35	288.22	297.66	309.01
	257	256.66	267.40	279.35	291.09	299.61	311.76	319.43	328.84	339.67	349.61	354.74
	267	237.00	250.75	259.36	270.54	275.26	286.49	295.37	307.79	316.63	329.86	337.61
16	140	199.23	204.41	213.27	222.81	230.19	234.48	243.92	249.06	257.48	268.01	
	149	173.33	178.19	185.12	192.57	200.89	204.58	215.32	221.73	228.29	238.23	
	158	198.20	205.24	212.86	220.49	227.98	235.51	243.62	249.63	256.43	265.15	
	167	177.68	184.94	193.81	198.37	204.56	209.08	214.11	220.78	227.06	231.00	
	176	227.91	234.49	242.66	253.06	258.80	267.32	277.59	283.53	294.68	308.27	
	186	210.67	215.88	226.83	234.44	241.69	250.12	264.55	271.05	278.49	284.38	
	195	208.49	215.37	221.11	224.10	230.90	239.14	247.12	249.51	259.52	258.30	
	204	184.38	191.41	197.73	205.50	212.72	221.93	225.24	232.45	238.85	245.31	
	213	204.68	212.28	219.12	229.28	233.68	244.37	251.24	261.08	268.66	281.38	
	222	209.24	214.36	222.80	229.07	234.56	245.29	251.23	255.19	263.39	266.02	
	231	187.50	196.13	204.85	207.87	217.84	222.70	227.94	237.68	242.61	248.70	255.34
	240	223.14	228.40	243.30	246.64	258.82	267.32	273.19	279.58	295.31	306.34	318.45
	249	212.28	218.77	225.14	236.60	240.69	250.99	261.08	269.13	275.24	281.58	291.20
	258	233.59	244.77	253.23	258.07	263.10	272.96	281.29	287.60	300.73	306.15	311.40
	266	230.69	240.97	250.23	257.82	266.21	275.35	285.11	292.43	301.07	303.89	316.26

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 9 of 10)

							Postnatal Da	у				
<u>Group^a</u>	Animal ID	43	44	45	46	47	48	49	50	51	52	53 ^b
17	143	211.92	216.86	227.30	233.77	243.15	243.79	251.67	261.91	265.16	280.29	
	146	223.20	232.47	246.28	254.07	262.35	272.04	277.76	286.90	296.97	298.52	
	161	232.09	239.42	245.07	251.31	252.50	271.94	278.82	283.82	302.21	309.19	
	164	254.60	268.68	278.15	290.52	297.86	303.38	307.86	318.12	331.55	341.20	
	179	253.39	257.62	265.12	276.56	283.38	288.95	300.28	305.76	311.89	326.26	
	189	229.98	239.94	248.28	258.20	264.78	271.73	280.36	288.59	299.23	304.01	
	192	259.81	271.74	280.58	290.78	300.31	303.83	312.82	328.42	337.54	346.92	
	207	227.44	237.05	245.90	254.05	258.82	262.39	277.67	287.78	295.67	305.50	
	210	211.42	218.53	225.40	235.41	242.26	247.04	256.75	265.08	274.32	380.99	
	225	252.73	262.46	269.74	283.59	294.06	301.14	311.77	323.33	329.78	342.80	
	228	234.97	243.04	252.44	255.73	267.68	274.68	284.88	293.06	301.39	314.02	323.93
	243	269.82	284.95	287.80	298.81	318.89	325.14	338.28	347.78	360.08	377.65	390.26
	246	218.41	224.02	231.33	240.69	245.28	248.43	259.34	266.22	273.75	278.24	282.92
	261	228.90	230.40	247.52	254.56	262.49	270.65	282.04	290.62	296.67	305.64	311.10
	263	232.78	240.39	249.37	253.57	262.44	271.20	276.43	287.72	294.15	301.59	311.68
18	144	192.43	201.10	210.14	217.61	227.26	235.67	237.10	248.28	255.39	264.57	
	145	222.50	229.44	236.25	247.48	250.69	259.61	265.29	274.50	282.05	286.16	
	162	206.98	215.58	227.81	236.16	245.17	253.30	258.19	267.77	277.28	283.46	
	163	233.20	243.33	253.89	259.11	272.31	280.66	287.20	296.37	306.06	315.99	
	180	215.19	223.81	230.16	241.50	247.19	254.24	259.82	272.98	276.10	287.01	
	181	198.20	207.12	213.77	224.82	232.43	235.31	239.88	247.80	254.09	264.81	
	190	212.42	220.27	226.58	235.09	245.53	253.99	261.90	270.35	276.53	287.20	
	191	211.11	218.26	223.15	231.38	240.17	245.64	257.25	266.29	272.50	278.76	
	208	221.59	225.47	232.82	239.65	247.49	255.48	261.24	271.98	282.20	285.79	
	209	247.67	252.80	262.68	271.98	280.46	286.19	298.72	308.04	317.30	323.80	
	226	256.85	266.31	279.51	289.99	294.07	306.26	319.17	326.19	337.11	348.78	
	227	244.16	251.52	258.93	267.66	275.88	287.17	294.10	300.41	312.28	320.25	
	244	252.83	258.56	270.60	279.00	293.30	300.18	312.34	321.64	334.68	340.85	354.34
	245	238.94	250.79	256.76	265.02	277.83	283.01	293.57	302.77	316.40	322.93	332.25
	262	218.22	226.88	236.11	243.82	248.04	259.02	272.39	275.50	285.12	296.11	301.69

Table A-4. Individual F₁ Male Post Wean Body Weights (g) for Postnatal Days 43 Through 53 (page 10 of 10)

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-

Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 6 is 30 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2.

blincludes only those animals scheduled for necropsy on postnatal day 53.

^CMale was removed from the study because his correct postnatal day 0 could not be confirmed.

dMale was removed from the study because it was not dosed on the correct postnatal days.

eMale was found dead on postnatal day 37 after dosing (misdirected dose). Male was euthanized on postnatal day 29 after dosing due to a leg injury.

9Male was found dead on postnatal day 31 prior to dosing (misdirected dose).

Male was found dead on postnatal day 50 prior to dosing.

Male was found dead on postnatal day 37 prior to dosing (misdirected dose).

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 1 of 10)

						Postnat	tal Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-3
1	1	6.4	7.7	8.1	9.7	10.8	12.2	20.6	6.1	13.8	16.0
	15	b	13.5	11.1	12.2	9.2	15.9	11.8	13.0	12.2	10.4
	32	6.6	8.7	9.6	10.5	13.1	13.9	14.2	14.8	15.6	15.3
	33	7.0	10.1	10.8	10.9	11.3	13.7	14.7	12.9	15.1	14.7
	50	6.3	9.5	9.2	9.7	10.9	11.1	11.9	12.1	14.5	15.9
	51	7.6	7.3	8.5	10.3	9.7	11.4	10.8	11.8	12.5	15.0
	68	8.2	11.5	11.8	11.9	12.7	15.3	15.4	15.2	15.3	19.2
	69	.c									
	86	.c									
	87	10.1	10.5	11.6	13.7	12.9	15.1	15.2	16.6	18.5	18.7
	104	9.4	10.7	10.9	12.6	12.0	14.5	14.6	15.9	18.3	19.8
	105	8.0	9.2	12.0	12.5	12.1	14.6	12.8	15.1	15.1	15.3
	122	10.6	11.0	13.9	12.5	14.8	14.8	20.5	11.7	16.3	17.4
	123	7.5	9.9	10.9	11.0	12.6	10.8	13.4	12.1	14.9	15.6
	135	.c									
2	4	7.1	10.4	5.3	6.9	7.1	10.0	8.8	11.1	11.5	12.2
_	18	d									
	29	12.8	.b	8.1	9.9	11.2	11.6	12.5	14.0	13.9	15.9
	36	7.2	8.8	8.2	11.7	11.5	12.8	13.8	14.3	14.7	16.4
	47	15.4	7.7	9.2	9.4	11.9	11.5	12.2	14.1	13.0	15.
	54	11.9	6.3	6.9	9.4	10.2	9.8	11.0	13.0	11.3	18.9
	65	15.2	4.4	7.5	10.4	11.2	12.7	13.3	14.6	14.4	14.3
	72	19.3	1.0	7.6	9.2	11.5	12.8	15.8	14.4	15.2	e
	83	18.3	3.8	7.6	10.2	11.8	11.6	13.0	13.5	14.1	14.
	90	9.4	6.8	b	e	14.8	14.1	13.3	14.4	16.2	10.
	101	10.7	7.5	7.7	10.8	10.2	11.6	12.3	14.6	15.4	14.0
	108	7.8	9.1	7.5	14.9	7.1	11.1	13.5	13.1	15.8	e
	119	.c									•
	126	14.0	4.7	7.7	13.6	9.7	10.4	16.3	10.6	14.2	16.9
	133	8.9	8.8	9.3	11.9	11.7	13.6	13.6	15.5	15.1	17.2

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 2 of 10)

						Postnat	tal Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
3	5	15.0	0.1	7.6	5.4	7.4	6.9	9.8	10.4	10.8	11.3
	13	9.4	8.5	3.0	8.2	7.9	8.4	10.0	11.3	10.5	12.4
	19	12.0	6.3	5.2	7.5	7.7	9.4	10.2	14.0	12.1	15.6
	28	13.7	3.0	5.4	11.2	6.5	11.3	12.5	14.9	13.4	16.0
	37	10.2	8.6	7.4	7.6	8.1	11.2	11.8	14.6	12.8	15.9
	46	12.4	4.1	8.3	10.1	10.3	10.9	11.3	12.7	13.8	14.4
	55	.c									
	64	8.1	9.6	6.7	9.8	11.9	9.5	12.7	16.5	15.3	15.2
	73	11.6	7.7	5.7	9.5	11.2	13.0	12.4	14.3	14.7	15.2
	82	10.2	10.7	4.4	7.5	9.4	9.8	11.7	15.9	13.2	15.8
	91	10.9	10.6	7.6	8.6	8.8	10.6	11.9	13.3	14.0	15.3
	100	9.9	8.3	6.3	7.8	10.4	10.9	11.9	13.7	12.2	14.8
	109	9.9	9.8	6.8	.e	.b	6.1	10.2	13.7	14.0	14.7
	118	.c									
	127	.c									
4	6	13.3	0.4	8.2	9.0	10.3	9.6	9.1	10.2	11.6	11.6
	12	6.2	12.9	.e	9.7	10.9	11.0	11.5	11.6	12.8	13.7
	20	6.6	7.3	9.4	11.7	.e	12.9	16.2	13.1	.f	
	27	9.6	9.5	10.2	13.1	13.5	13.9	15.4	16.0	15.4	16.7
	38	8.7	9.3	10.3	12.2	11.9	12.6	14.2	14.8	14.5	14.8
	45	10.5	5.1	10.7	10.9	12.7	11.7	12.6	15.1	13.0	12.1
	56	12.0	8.6	12.3	14.1	13.1	15.2	15.1	17.2	16.4	16.6
	63	11.7	5.5	10.3	12.3	12.2	12.2	14.2	15.3	14.4	17.2
	74	·c									
	81	12.6	3.8	11.1	12.6	9.0	11.4	12.7	14.3	12.1	17.1
	92	9.8	8.6	10.5	11.8	11.0	12.8	13.3	14.6	14.1	15.7
	99	8.9	9.6	11.3	13.1	12.6	12.4	14.3	15.6	15.6	20.6
	110	8.8	8.7	10.5	12.2	11.9	13.3	11.9	14.9	13.2	15.6
	117	12.9	5.3	10.7	12.3	11.8	13.0	12.9	16.9	15.0	12.5
	128	12.3	5.8	11.1	12.9	12.0	14.8	13.0	15.5	16.7	18.0

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 3 of 10)

						Postnat	tal Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
5	7	5.2	9.2	6.8	7.8	12.5	9.6	9.9	9.6	13.9	11.0
	21	6.8	10.0	11.2	11.8	12.1	12.3	.g	16.0	16.0	17.6
	26	8.1	7.3	9.6	12.2	12.4	12.1	14.1	17.4	16.3	17.3
	39	6.8	7.4	9.4	11.6	10.3	12.3	13.9	14.6	15.6	16.3
	44	8.4	8.5	9.8	10.8	10.9	12.2	13.0	15.0	14.3	14.2
	57	12.5	4.3	9.2	11.0	12.5	12.8	13.8	15.4	13.9	16.7
	62	10.2	5.4	7.8	9.7	9.3	11.3	11.1	13.7	12.0	14.6
	75	9.1	8.5	9.5	10.1	11.3	9.8	12.3	14.2	13.2	14.5
	80	8.5	7.7	8.9	10.6	10.7	10.9	12.3	14.7	13.1	15.3
	93	16.7	1.9	7.9	11.5	11.6	10.1	12.5	16.1	14.0	16.8
	98	9.0	8.4	10.1	12.6	12.5	12.5	14.5	16.0	13.6	17.6
	111	11.1	7.4	8.7	11.7	12.8	12.8	12.2	16.0	16.0	17.5
	116	10.5	10.3	11.7	13.6	15.1	13.7	16.1	17.5	16.4	18.9
	129	10.6	10.2	11.2	13.4	14.0	14.5	15.0	17.8	17.1	17.5
	132	9.3	8.7	10.1	11.3	13.8	12.1	16.1	17.1	14.1	17.8
6	8	5.6	9.2	8.5	8.7	9.9	11.1	11.2	11.6	13.6	12.2
	11	5.1	10.1	7.2	9.8	10.2	10.8	11.1	11.8	12.8	11.5
	22	9.1	9.5	8.0	13.8	13.3	14.1	13.0	15.1	15.9	17.5
	25	10.4	8.6	11.1	12.3	13.3	11.7	13.2	15.4	13.1	17.0
	40	8.4	8.8	11.2	11.1	13.3	12.9	12.7	15.1	14.4	16.2
	43	8.5	7.4	10.0	10.7	11.4	11.3	11.9	12.2	14.4	13.6
	58	8.8	7.2	9.3	10.6	11.3	11.2	11.1	13.3	12.8	15.3
	61	9.9	9.9	11.6	13.2	12.5	15.2	13.6	16.9	17.4	17.6
	76	10.7	2.4	9.7	10.6	11.1	9.9	12.2	15.0	12.2	16.1
	79	.c									
	94	10.6	9.4	10.9	13.3	13.9	13.4	13.4	17.0	13.8	18.4
	97	12.7	7.5	10.6	12.5	14.1	12.6	13.0	16.2	18.5	17.8
	112	11.4	9.3	11.6	13.9	12.5	13.4	13.4	16.0	14.6	18.8
	115	.c									
	130	10.3	10.4	11.8	14.3	15.1	15.7	e	20.4	17.5	19.9

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 4 of 10)

						Postnat	al Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
7	9	5.9	9.6	7.6	10.6	11.8	12.5	12.4	13.2	15.2	14.2
	10	5.0	9.1	9.3	8.4	13.2	10.5	12.4	12.1	15.7	13.9
	23	12.5	.e	9.5	12.9	13.8	10.6	17.1	14.0	11.0	19.9
	24	.c									
	41	8.5	8.3	10.0	11.3	13.0	12.5	13.4	15.9	18.6	12.9
	42	12.4	5.8	10.8	12.8	13.1	11.3	13.1	16.3	13.4	18.7
	59	7.8	8.4	7.5	12.3	11.3	12.7	14.0	15.9	15.3	16.4
	60	7.9	7.9	9.0	11.8	11.5	10.8	12.4	15.6	13.1	14.4
	77	8.8	9.9	9.8	13.5	13.2	13.5	14.8	15.8	14.9	15.2
	78	9.6	7.9	11.3	13.6	13.7	13.0	14.6	15.7	20.2	22.4
	95	7.7	8.5	9.8	12.5	12.6	11.6	13.4	13.6	15.2	20.3
	96	10.1	8.7	10.0	12.9	13.6	12.6	13.2	16.3	15.9	17.9
	113	9.4	9.0	10.1	12.9	14.4	13.7	14.5	16.6	15.3	20.7
	114	c									
	131	.c									
8	2	10.4	5.4	6.0	14.2	6.0	11.3	10.1	12.1	11.3	11.4
	16	7.2	9.4	11.7	10.5	12.9	14.3	14.1	15.4	16.7	16.8
	31	9.2	8.6	11.6	11.2	12.7	14.5	13.6	15.5	15.4	12.0
	34	6.9	9.6	10.6	10.4	11.8	11.2	14.4	12.8	15.3	15.2
	49	7.9	8.9	10.7	11.2	11.8	12.7	12.2	14.5	15.0	14.9
	52	7.9	9.2	11.7	12.8	13.2	15.2	15.9	17.2	18.9	20.3
	67	11.6	7.4	10.6	11.6	12.7	12.9	14.1	13.6	14.4	16.1
	70	8.4	10.1	14.6	11.9	12.3	14.8	13.6	14.6	15.8	15.3
	85	9.7	10.2	10.2	12.4	12.7	13.7	13.5	15.7	16.0	14.7
	88	10.6	9.6	11.9	11.2	e .	14.9	e .e	14.9	e .e	20.5
	103	9.2	9.9	12.0	12.5	14.0	14.8	14.7	14.9	14.7	14.4
	106	9.2	9.0	10.1	11.9	12.5	14.4	13.4	12.9	15.4	16.1
	121	9.6	9.7	10.5	11.8	12.5	13.7	14.2	13.9	15.7	16.3
	124	8.4	10.2	11.3	11.6	13.0	12.9	13.4	14.0	16.0	15.4
	134	9.4	9.6	11.5	12.2	13.6	13.8	13.9	15.2	15.0	15.4

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 5 of 10)

						Postna	tal Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
9	3	16.5	0.7	7.0	10.2	9.8	12.0	11.2	11.1	12.5	12.1
	14	5.7	11.6	5.7	8.9	10.3	10.6	10.9	11.5	11.9	13.4
	17	.c									
	30	·c									
	35	10.7	9.0	10.6	11.3	12.3	12.6	13.5	14.1	15.2	15.1
	48	10.0	9.7	12.2	12.1	12.8	14.3	15.6	13.7	16.1	16.8
	53	9.2	5.2	10.0	11.9	13.0	13.7	14.8	13.5	14.6	17.4
	66	13.1	5.7	10.4	12.8	13.4	13.4	14.0	16.1	16.6	15.5
	71	10.8	12.7	7.9	13.3	14.2	13.5	14.7	16.2	16.5	16.2
	84	10.5	8.7	10.8	12.5	13.4	14.1	13.3	15.8	15.8	16.0
	89	14.3	3.6	10.9	12.6	17.3	9.4	14.6	15.2	13.9	14.5
	102	14.1	4.2	16.7	.e	12.8	14.3	15.4	15.4	16.9	17.3
	107	20.8	.b	8.8	12.1	14.3	14.1	14.6	16.0	16.8	17.2
	120	13.4	6.6	9.5	13.6	14.4	15.5	15.8	15.0	16.9	18.4
	125	7.6	11.3	11.8	11.7	14.7	14.5	14.9	15.7	16.8	16.2
10	136	5.3	7.6	.e	.e	9.3	10.7	10.9	12.2	10.9	12.1
	153	6.5	10.0	9.7	10.9	12.1	12.4	12.5	15.3	12.5	15.3
	154	7.3	9.1	10.3	10.7	12.5	10.8	13.8	13.9	14.4	14.9
	171	6.5	9.8	9.4	9.8	11.1	12.1	11.7	14.9	12.6	14.3
	172	7.2	8.6	10.3	12.1	13.2	12.2	18.1	15.9	13.8	15.7
	182	5.9	12.6	10.4	13.2	12.4	11.5	19.8	14.5	17.2	18.2
	199	3.4	9.9	10.7	11.3	10.3	13.5	9.3	14.3	15.9	13.9
	200	4.9	10.0	11.4	12.9	13.1	13.5	17.6	15.6	14.9	14.4
	217	4.9	11.4	10.0	9.9	10.4	13.1	14.2	12.3	14.1	.h
	218	3.3	10.6	.e	16.0	11.7	13.6	14.6	14.2	13.2	15.5
	235	3.2	10.7	10.5	12.8	13.4	15.2	17.4	15.5	17.0	17.0
	236	6.6	9.8	9.4	12.2	11.8	13.0	16.9	12.5	15.2	18.3
	253	6.6	10.0	9.9	11.7	11.0	13.5	15.6	12.5	13.1	14.6
	254	7.4	10.6	10.9	13.1	11.4	13.6	15.8	14.1	14.6	17.8
	270	6.8	11.2	11.1	12.5	12.7	13.9	16.8	14.5	16.8	16.5

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 6 of 10)

						Postnat	tal Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
11	137	6.0	8.1	8.7	10.8	13.1	11.5	13.2	14.6	12.6	14.4
	152	6.4	9.0	10.0	12.1	12.5	12.2	15.1	17.0	12.9	16.8
	155	6.9	8.8	10.6	11.0	13.0	13.9	14.9	16.9	14.4	16.5
	170	8.1	8.3	11.1	11.2	11.8	12.5	12.6	15.9	14.6	15.5
	173	8.4	9.5	11.2	13.6	13.3	14.9	16.1	18.0	18.3	16.8
	183	7.1	9.6	9.9	11.1	11.4	12.4	13.8	11.9	12.3	15.1
	198	7.4	10.9	11.9	13.1	13.6	14.0	17.5	16.0	16.1	18.5
	201	6.5	9.3	10.2	11.2	11.2	13.2	15.3	13.0	13.2	15.8
	216	3.3	10.3	10.8	12.2	13.2	12.9	17.7	12.8	15.4	15.7
	219	2.9	10.0	10.7	11.9	12.3	13.9	16.6	11.5	15.3	16.0
	234	3.1	8.2	11.7	16.0	13.2	8.3	15.2	11.3	13.8	16.5
	237	7.0	11.4	11.3	12.5	12.8	14.4	17.3	14.9	15.8	17.1
	252	9.7	12.4	12.2	13.3	17.0	12.1	16.0	14.6	17.1	15.5
	255	7.4	10.8	10.1	12.3	12.0	13.4	15.8	13.4	14.8	16.6
	269	6.3	10.5	10.9	13.2	14.0	14.3	16.7	14.2	16.7	17.9
12	138	6.1	8.1	9.5	10.3	9.9	12.2	12.9	13.7	10.8	11.8
	151	7.8	8.7	10.5	11.7	11.8	12.0	13.6	13.9	10.9	11.7
	156	5.9	7.9	9.8	10.5	10.9	12.0	12.5	14.2	10.2	13.6
	169	7.6	8.5	10.6	10.5	10.1	15.0	14.3	17.1	13.8	14.0
	174	8.6	10.8	11.8	13.4	13.1	14.2	15.6	16.2	15.2	14.5
	184	7.0	9.9	10.1	11.6	12.9	12.9	15.5	12.9	13.0	13.4
	197	6.2	9.3	9.8	10.1	11.2	11.4	14.0	12.3	12.4	12.8
	202	6.0	9.5	9.6	10.9	11.8	12.8	15.1	12.6	12.6	14.7
	215	3.9	10.7	11.1	11.9	12.1	14.5	15.7	14.0	14.3	17.5
	220	7.4	10.9	10.0	11.1	12.6	12.7	16.2	12.5	18.7	12.6
	233	6.5	11.0	11.0	11.7	12.7	14.5	15.9	12.5	14.8	15.2
	238	10.0	12.2	11.5	13.5	15.2	14.9	19.3	16.0	14.2	17.7
	251	7.6	9.8	9.8	12.2	11.6	13.5	14.2	12.9	13.5	15.3
	256	6.9	11.8	10.1	10.6	12.2	12.6	16.7	13.1	13.5	14.9
	268	8.3	10.8	9.9	12.5	12.9	13.5	15.0	12.3	14.2	_. e

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 7 of 10)

						Postnat	tal Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
13	141	11.8	4.7	11.0	11.1	11.7	11.5	12.5	14.8	11.9	14.8
	148	16.5	1.1	10.8	10.8	11.0	12.6	14.2	16.3	14.4	16.3
	159	10.4	6.4	11.1	10.6	10.3	10.8	12.1	15.7	13.0	13.0
	166	12.8	8.3	12.2	12.3	11.2	13.3	14.3	16.9	14.2	15.9
	177	11.1	10.0	11.8	13.3	12.2	13.7	15.0	17.3	14.9	17.2
	187	6.0	10.9	10.1	11.4	12.1	13.5	16.1	13.4	14.3	15.9
	194	5.6	9.1	9.6	10.7	11.4	13.6	11.0	14.6	12.7	12.9
	205	8.5	11.9	11.4	12.7	13.0	13.7	15.5	12.9	16.2	16.3
	212	7.6	10.4	13.1	10.5	11.4	14.5	15.8	14.9	18.0	14.7
	223	8.1	11.3	10.8	13.1	12.1	15.1	17.1	13.9	16.3	17.9
	230	8.2	9.9	10.0	12.1	11.8	13.2	19.0	8.6	14.4	14.9
	241	7.4	12.3	12.9	13.2	13.0	17.1	18.3	15.9	17.7	17.7
	248	.e	.b	11.0	12.4	10.9	14.1	15.8	14.6	13.7	17.4
	259	7.4	10.7	10.4	12.4	13.1	13.4	16.8	14.7	16.5	18.3
	265	8.4	12.8	12.1	14.2	13.7	17.4	19.9	17.2	17.2	18.5
14	142	7.0	6.1	9.1	10.8	10.4	10.8	11.5	14.0	11.4	13.4
	147	8.8	7.5	10.7	11.4	10.5	12.3	13.8	16.7	12.3	15.4
	160	6.7	9.9	10.0	10.7	11.6	10.5	14.2	15.8	12.3	14.1
	165	12.3	7.6	10.2	11.3	11.4	11.6	13.7	13.8	12.6	12.5
	178	11.1	10.9	10.9	12.5	12.5	12.3	14.5	14.7	14.3	16.4
	188	6.6	12.2	9.7	8.7	11.1	12.0	15.3	12.9	14.1	16.3
	193	6.2	11.0	10.8	10.9	11.5	12.3	14.7	.e	4.0	14.0
	206	6.1	11.3	12.8	.e	11.6	12.2	16.3	13.4	15.1	16.6
	211	6.0	11.0	10.1	12.5	13.3	7.6	17.0	11.2	14.5	13.7
	224	7.3	10.4	11.1	11.2	11.7	12.8	16.6	12.8	15.7	16.1
	229	8.9	11.1	12.1	11.9	12.5	15.2	17.6	15.2	16.4	e
	242	7.2	11.8	10.8	11.9	12.0	13.7	16.6	13.5	16.2	17.0
	247	9.0	11.9	11.1	11.9	10.9	15.0	17.0	14.4	15.8	17.9
	260	8.0	10.8	11.3	11.2	12.7	14.0	16.9	15.7	16.2	19.3
	264	9.0	12.9	12.1	13.3	15.2	16.6	19.5	15.6	18.6	19.9

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 8 of 10)

						Postnat	tal Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
15	139	6.2	9.2	9.3	9.7	10.4	10.6	12.8	13.1	11.9	13.8
	150	7.0	9.3	10.4	9.1	10.2	10.8	11.0	13.9	12.8	13.6
	157	9.6	7.2	9.6	9.6	9.0	11.1	10.5	12.9	11.7	12.5
	168	6.1	10.8	9.0	9.8	10.4	12.7	13.3	14.2	13.6	13.3
	175	7.3	9.0	10.8	10.6	11.8	11.1	12.6	14.9	12.3	13.7
	185	6.2	10.6	9.2	11.5	11.8	11.5	14.7	12.0	13.2	18.1
	196	11.4	12.6	9.3	10.4	12.6	13.1	14.7	12.7	15.0	15.7
	203	5.8	9.9	9.4	11.0	12.1	13.0	14.6	13.0	13.7	15.4
	214	3.5	9.7	9.3	8.3	8.3	9.8	11.0	10.8	10.7	12.8
	221	6.9	10.0	8.7	9.3	10.6	11.2	14.3	10.6	12.8	13.4
	232	4.1	8.1	9.0	9.2	8.8	11.4	13.4	10.7	12.6	13.2
	239	6.7	11.9	8.3	12.2	12.2	12.3	16.5	14.4	14.7	13.7
	250	6.7	11.4	10.4	11.2	11.3	11.5	12.8	12.1	13.2	13.4
	257	9.7	12.2	11.1	12.6	11.4	14.0	16.5	13.5	15.1	17.0
	267	7.6	10.2	10.0	9.6	10.2	11.9	13.6	12.5	13.0	15.7
16	140	15.2	4.8	7.2	9.7	11.3	12.5	11.1	13.8	14.5	13.5
	149	10.6	4.4	9.0	7.8	8.7	9.5	11.1	11.2	13.9	8.9
	158	7.1	10.3	9.6	10.3	9.6	10.4	12.3	13.5	11.8	13.7
	167	9.1	7.8	5.0	6.7	7.0	6.4	10.0	10.0	10.4	9.0
	176	7.9	8.2	11.0	10.7	10.8	10.3	12.4	15.0	11.6	12.8
	186	8.5	10.8	9.3	11.8	10.5	13.1	15.3	12.4	14.6	14.9
	195	6.2	11.2	10.0	12.3	9.6	12.4	14.3	13.1	13.8	14.7
	204	6.9	9.4	9.1	9.6	9.7	10.7	14.6	10.9	11.3	12.6
	213	6.8	10.9	7.8	8.8	8.8	9.6	12.3	10.4	9.5	13.0
	222	8.2	8.7	9.5	9.8	10.0	11.6	14.4	11.3	12.2	14.2
	231	7.0	9.8	6.8	7.7	9.0	9.8	11.1	7.1	10.1	12.7
	240	6.1	9.2	9.5	10.5	10.7	11.2	15.2	12.7	13.3	13.9
	249	12.3	9.6	8.2	10.2	8.9	10.8	13.5	9.5	11.6	12.6
	258	8.2	11.0	10.5	12.0	10.6	13.5	16.3	13.7	15.2	17.4
	266	7.0	12.3	12.1	10.7	10.6	12.4	14.9	12.9	15.4	14.1

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 9 of 10)

						Postna	tal Days				
Group ^a	Animal ID	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
17	143	10.1	4.1	7.3	10.9	10.9	11.9	12.2	15.3	12.9	14.7
	146	9.6	4.6	11.7	12.1	12.5	12.8	13.5	14.9	12.9	13.8
	161	8.0	9.4	11.8	11.9	11.1	12.3	15.3	14.2	14.2	15.1
	164	9.7	7.1	10.6	13.0	12.3	12.3	14.4	16.4	15.5	15.9
	179	10.0	11.9	14.4	13.3	15.4	14.4	16.3	17.7	15.9	17.7
	189	9.2	10.5	11.5	11.9	12.3	13.5	15.4	12.4	14.5	13.9
	192	6.3	10.5	13.2	13.7	12.6	15.1	17.4	15.2	16.9	20.2
	207	8.4	10.9	12.7	12.2	12.2	14.0	16.1	13.4	16.3	15.5
	210	8.2	11.4	11.2	10.8	11.1	12.8	13.7	11.5	14.0	14.5
	225	7.4	12.1	12.3	13.0	13.8	14.7	16.2	14.2	16.5	15.4
	228	7.6	13.7	12.5	12.3	12.9	12.9	14.0	15.3	14.5	14.2
	243	8.3	11.6	12.7	13.1	14.1	15.6	19.4	15.4	16.3	17.6
	246	8.3	12.3	12.7	12.8	13.1	14.1	15.8	13.1	15.1	15.4
	261	6.7	10.2	11.7	12.7	13.4	12.9	14.5	13.3	15.1	15.3
	263	6.2	11.5	12.8	12.8	13.5	13.6	15.2	15.0	15.7	16.9
18	144	6.1	8.7	10.8	10.5	12.4	12.5	14.3	16.6	12.4	16.3
	145	11.9	3.7	10.4	11.3	10.9	12.3	14.1	14.7	14.9	15.6
	162	6.9	8.7	10.4	11.9	11.9	13.2	13.8	15.8	13.3	15.1
	163	8.0	7.6	7.7	8.9	10.9	11.9	15.4	15.1	14.6	15.3
	180	7.9	8.3	12.1	11.5	12.5	14.3	14.1	16.8	13.6	15.2
	181	9.3	4.7	10.4	11.0	12.0	13.1	12.8	14.9	12.6	13.8
	190	7.7	10.9	10.7	12.4	13.0	13.4	15.4	13.0	15.4	14.6
	191	7.1	11.4	11.1	12.2	13.4	13.1	15.7	13.4	14.7	17.4
	208	6.5	11.7	11.6	12.5	13.0	16.0	16.8	14.4	17.6	18.0
	209	7.8	12.1	11.3	13.1	13.7	15.2	16.8	14.4	15.5	17.7
	226	7.2	13.3	12.5	13.4	13.7	15.2	18.6	16.6	19.2	18.5
	227	9.9	7.8	9.7	12.5	13.2	13.5	17.5	10.3	16.1	16.5
	244	4.6	10.5	11.1	11.9	13.7	15.2	17.2	14.7	17.5	17.7
	245	6.0	12.0	11.0	11.1	15.0	14.7	17.3	14.6	14.9	16.4
	262	7.2	10.7	12.1	14.0	14.0	15.8	13.5	14.5	25.3	e

Table A-5. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 21 Through 31 (page 10 of 10)

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Vinclozolin; 12 is 25 mg/kg/day of Vinclozolin; 12 Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2.

bFeed consumption value was excluded because it was unrealistic (i.e. negative).

Male was removed from the study because his correct postnatal day 0 could not be confirmed.

Male was removed from the study because it was not dosed on the correct postnatal days.

eFeed consumption value was excluded because it was a statistical outlier. Male was euthanized on postnatal day 29 after dosing due to a leg injury.

9Feed weight inadvertently not recorded.

hMale was found dead on postnatal day 31 prior to dosing (misdirected dose).

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 1 of 10)

						F	Postnatal Day	/S				
Group ^a	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42
1	1	15.3	17.4	16.6	18.0	21.1	24.7	19.4	21.7	24.8	22.1	21.3
	15	16.7	14.9	16.0	19.4	19.3	21.4	16.4	19.4	21.0	22.3	23.3
	32	18.3	17.7	19.9	22.5	23.6	23.7	22.5	24.5	25.8	20.0	22.6
	33	17.5	17.6	16.5	20.8	19.6	22.9	20.8	18.4	22.1	22.3	25.4
	50	17.7	18.1	19.4	20.7	22.3	23.1	23.4	23.8	24.3	22.7	27.9
	51	13.8	14.9	20.6	16.5	19.5	19.4	20.2	20.0	22.3	23.2	22.3
	68	17.8	16.8	19.3	21.1	21.5	19.8	20.7	22.6	20.9	21.8	24.8
	69	.b .b										
	86	.b										
	87	22.8	21.0	25.9	24.1	25.4	23.5	24.0	26.3	25.0	36.1	16.9
	104	18.2	20.6	20.9	23.7	24.2	24.5	25.2	23.5	26.8	27.7	.c
	105	17.1	17.7	20.2	19.3	22.7	22.0	22.4	23.7	24.4	30.3	24.0
	122	15.6	18.5	18.7	24.5	16.2	21.1	20.2	20.8	23.8	24.9	24.6
	123	18.0	19.2	18.5	18.3	19.1	20.0	19.9	21.7	21.9	21.6	22.2
	135	.b										
2	4	13.5	13.9	14.5	15.9	22.8	15.7	16.9	19.8	18.6	21.2	19.9
	18	.d										
	29	16.6	17.9	19.2	21.0	24.0	20.8	19.0	22.3	21.8	24.9	23.6
	36	16.6	16.0	18.8	21.0	23.3	19.6	22.1	20.2	24.4	19.7	21.5
	47	17.6	15.7	18.0	21.1	22.8	18.7	18.7	20.5	22.0	22.6	23.5
	54	15.6	16.1	.c	23.7	.c	19.5	.e				
	65	17.7	17.9	19.8	20.9	25.9	19.3	21.4	23.1	23.4	24.7	23.2
	72	14.4	15.4	21.5	20.3	28.9	25.2	21.5	.c	17.3	29.1	·c
	83	17.3	16.3	19.2	19.1	24.2	19.8	18.4	22.0	23.5	21.0	26.0
	90	7.1	5.1	17.9	21.5	24.1	21.4	17.2	24.2	22.8	23.5	22.7
	101	17.2	15.3	16.6	.c	.f	18.6	20.0	21.8	19.7	23.0	26.1
	108	.f	20.0	16.9	23.4	18.0	24.9	18.4	21.6	22.9	25.5	23.3
	119	.b										
	126	17.3	14.3	17.4	23.2	22.4	17.9	19.2	23.3	20.9	22.9	25.4
	133	17.7	18.2	17.9	21.3	24.7	20.8	20.8	21.6	24.0	25.2	22.9

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 2 of 10)

						F	Postnatal Day	'S				
<u>Group^a</u>	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42
3	5	12.7	13.1	13.7	14.6	18.9	20.2	15.8	17.5	20.3	18.7	25.8
	13	12.6	12.5	13.1	13.8	18.5	19.3	14.3	15.0	22.8	18.6	21.1
	19	16.2	16.7	19.2	19.3	29.3	18.0	18.5	23.6	25.0	24.2	20.0
	28	18.2	15.5	17.7	18.4	25.2	17.5	19.2	22.1	23.5	24.7	20.7
	37	15.0	.f	. ^C	18.9	23.5	16.1	16.0	20.0	20.3	22.3	19.3
	46	14.1	15.5	15.9	21.8	20.4	17.5	18.8	19.6	20.9	21.4	20.5
	55	.b										
	64	15.8	14.1	17.1	21.9	24.6	18.0	17.9	24.5	28.2	21.2	22.0
	73	17.8	17.2	16.6	22.4	26.4	19.2	18.0	23.0	23.1	22.6	23.6
	82	23.8	10.8	20.3	18.2	23.0	16.7	20.6	23.4	19.4	22.6	25.0
	91	17.2	16.3	17.8	23.2	28.6	18.1	.C	.f	25.5	26.8	23.1
	100	16.4	16.2	17.4	20.1	22.3	19.9	20.6	21.0	23.9	21.0	23.7
	109	17.3	17.0	14.5	23.7	21.4	14.1	16.1	19.4	18.9	20.6	18.8
	118	b										
	127	.b										
4	6	11.0	13.3	13.1	13.9	15.6	18.7	17.1	16.6	19.7	19.1	22.5
	12	12.2	10.5	21.3	.c	21.1	21.4	21.8	17.6	22.5	24.8	23.2
	20	.g										
	27	19.3	17.8	20.4	20.4	21.9	22.9	22.8	26.5	23.1	26.8	27.1
	38	18.4	17.2	19.9	21.2	20.2	20.3	22.1	23.8	24.5	26.5	24.5
	45	15.8	15.1	18.5	19.5	20.1	18.0	20.3	22.1	24.2	24.6	23.1
	56	19.0	20.2	23.1	21.1	26.0	25.2	20.9	24.2	27.1	25.6	26.9
	63	17.6	17.1	18.2	20.0	23.6	20.5	21.0	26.0	24.0	26.5	25.1
	74	.b										
	81	.f	.c	17.7	20.8	24.3	25.4	19.8	27.0	27.2	26.2	27.5
	92	16.3	17.0	14.9	19.7	22.3	23.9	19.5	22.2	23.9	24.3	22.4
	99	19.1	17.5	19.4	20.7	26.1	23.3	23.4	25.3	28.4	27.5	24.1
	110	16.6	17.2	15.5	21.4	27.1	21.9	22.4	23.4	25.3	25.7	21.8
	117	6.4	4.6	3.0	20.1	30.8	22.5	23.6	25.6	26.3	27.0	23.4
	128	20.2	17.3	18.7	21.1	24.8	25.0	22.2	26.1	28.0	25.2	25.6

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 3 of 10)

						F	Postnatal Day	'S				
Group ^a	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42
5	7	13.1	17.6	13.7	19.5	17.2	17.1	16.0	17.9	20.2	22.9	22.7
	21	19.1	19.5	20.3	19.4	26.2	24.2	26.3	28.7	26.3	26.1	25.7
	26	22.7	21.4	21.4	23.0	28.6	22.7	26.3	25.9	28.7	26.6	27.1
	39	18.1	17.8	17.6	18.5	23.5	22.4	22.9	23.0	25.9	27.3	21.0
	44	19.5	17.7	19.2	18.6	24.1	23.4	25.1	21.9	26.6	24.9	23.4
	57	19.2	17.2	18.2	21.8	26.3	24.2	24.3	26.0	24.5	26.0	26.8
	62	17.2	15.4	18.9	21.0	17.7	22.0	19.6	22.9	22.0	23.3	23.4
	75	16.1	17.1	15.9	18.6	23.1	22.5	18.8	25.1	23.1	21.1	25.0
	80	14.6	17.0	16.9	19.3	24.8	20.5	21.6	25.6	23.8	24.4	26.6
	93	18.0	19.0	20.8	19.3	23.3	22.4	21.6	26.5	25.4	24.4	27.3
	98	18.7	19.3	21.0	19.7	25.1	21.4	24.3	26.7	25.8	24.9	25.2
	111	19.7	18.1	21.4	22.5	25.9	25.8	25.9	25.5	26.1	28.7	31.8
	116	20.7	21.0	21.9	24.0	24.6	27.0	26.0	24.5	30.1	24.1	28.4
	129	19.2	20.5	24.4	21.8	27.9	23.1	23.6	27.3	28.6	26.1	30.6
	132	19.6	18.1	20.6	21.3	24.3	23.4	24.3	22.6	26.2	23.9	26.9
6	8	14.4	14.8	16.6	14.9	16.4	18.7	19.0	20.2	19.9	22.9	20.4
	11	14.6	16.0	15.8	15.3	18.1	20.0	19.0	20.9	19.9	23.8	21.5
	22	20.1	17.7	19.2	22.9	26.0	28.6	23.1	26.0	28.4	30.1	28.1
	25	17.6	16.8	16.5	19.1	23.7	21.7	19.2	21.5	22.5	22.5	23.6
	40	17.7	17.0	18.9	22.4	23.5	24.6	22.1	24.8	28.0	23.3	25.7
	43	15.3	14.1	15.0	18.2	21.2	19.4	20.2	16.8	22.2	21.4	21.5
	58	15.9	15.0	16.0	18.3	20.6	20.7	19.9	22.9	22.5	23.2	23.1
	61	19.1	18.5	18.9	19.7	25.1	22.1	20.9	22.7	26.5	21.9	25.8
	76	17.5	16.9	15.1	18.4	26.1	21.6	18.6	25.3	24.3	24.5	26.2
	79	.b										
	94	19.0	19.5	18.7	23.3	27.4	25.5	23.3	28.7	30.2	26.5	27.1
	97	22.8	17.6	18.0	14.7	24.7	22.6	20.9	23.5	25.4	22.8	24.4
	112	16.0	17.3	19.7	21.3	25.8	22.3	24.6	27.3	25.7	23.9	.c
	115	.b										
	130	22.4	21.7	24.9	25.4	31.1	26.0	26.4	30.9	30.8	30.3	31.0

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 4 of 10)

						F	Postnatal Day	'S				
Group ^a	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42
7	9	15.8	17.0	15.9	17.3	19.8	21.0	20.6	21.8	23.1	24.4	23.8
	10	14.3	17.2	16.2	18.1	19.1	21.0	22.3	21.0	20.7	23.8	26.0
	23 24	19.5 .b	·c	15.1	18.9	20.7	20.2	21.2	23.3	25.0	24.4	26.0
	41	18.4	16.9	17.9	19.3	20.8	22.6	22.0	22.1	24.5	24.6	23.3
	42	17.5	16.1	18.8	19.4	22.0	23.5	21.9	24.5	25.0	23.2	24.9
	59	19.4	17.5	20.9	20.1	24.3	21.4	22.2	23.2	25.8	23.2	25.1
	60	16.7	16.2	18.4	20.1	24.3	22.4	20.7	23.8	22.9	25.8	24.3
	77	18.1	13.8	16.9	18.1	21.0	20.0	18.2	19.3	23.5	23.3	21.5
	78	19.0	19.7	19.0	19.5	22.8	22.6	.c	19.5	26.5	19.3	22.7
	95	17.4	17.9	17.9	19.0	20.7	21.8	22.0	23.8	23.4	23.8	22.2
	96	20.9	14.8	20.0	20.6	23.2	24.5	20.9	22.7	25.4	24.6	28.6
	113 114	17.9 .b	16.7	19.5	20.6	24.3	23.9	24.4	26.7	27.5	28.6	24.1
	131	.b		,								
8	2	13.5	12.9	23.6	15.0	16.1	22.0	15.0	17.8	17.6	20.1	18.5
	16	17.3	17.8	19.9	20.9	22.3	26.0	21.5	22.5	26.3	25.9	25.6
	31	6.9	6.1	8.1	8.5	18.8	20.3	19.4	22.4	21.9	19.9	23.6
	34	16.6	17.7	18.5	19.0	22.5	19.5	22.1	12.9	19.9	24.9	22.4
	49	17.8	19.6	17.2	22.9	20.6	21.3	19.9	21.6	21.5	23.1	26.8
	52	19.2	21.6	27.8	24.5	26.9	26.6	27.3	30.0	27.0	26.7	32.8
	67	17.8	21.7	11.4	21.0	22.6	18.3	19.9	22.5	24.7	20.7	25.0
	70	17.3	22.2	15.0	22.7	23.5	20.8	22.6	22.4	24.6	22.3	25.7
	85	16.7	18.9	22.0	20.6	24.8	23.3	22.6	24.2	25.0	21.8	24.5
	88	.c	16.9	.h	23.7	18.0	20.6	22.0	22.8	22.1	22.2	26.3
	103	16.0	21.1	14.1	19.3	22.1	20.6	22.3	22.3	22.0	23.2	25.3
	106	16.6	17.4	19.9	20.3	21.9	19.0	21.2	19.3	21.3	23.6	22.1
	121	17.5	18.5	18.8	21.4	23.2	21.9	22.1	21.9	25.4	23.7	26.0
	124	19.1	15.3	20.2	16.1	22.8	20.6	19.8	21.1	19.8	22.1	20.0
	134	18.2	18.3	20.7	23.0	23.7	21.4	23.4	23.3	24.8	.f	24.6

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 5 of 10)

						F	Postnatal Day	/S				
Group ^a	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42
9	3	13.7	14.4	15.6	12.8	17.4	18.6	17.7	16.1	15.5	18.4	18.8
	14	13.4	14.5	12.8	14.3	19.7	20.8	15.9	19.6	20.3	17.8	22.9
	17	.b .b										
	30	.b										
	35	17.1	17.9	19.6	23.2	21.0	22.0	26.3	19.4	28.3	22.1	.c
	48	14.5	19.1	19.9	20.2	24.1	26.3	18.4	21.6	28.3	23.5	24.4
	53	18.5	18.9	19.3	20.5	23.3	20.5	25.8	17.9	25.4	21.9	25.7
	66	19.5	21.0	20.0	23.6	27.0	19.0	22.1	23.8	26.0	18.6	28.4
	71	18.1	18.6	25.0	38.8	6.6	21.9	21.6	25.2	24.0	22.5	23.9
	84	18.3	17.8	17.8	38.2	7.1	21.7	21.1	21.0	25.5	24.6	23.2
	89	17.5	17.4	17.9	18.4	24.7	19.7	22.9	21.4	22.1	25.0	22.8
	102	20.9	19.8	20.6	17.9	27.9	23.1	20.4	24.7	22.8	25.7	26.0
	107	20.3	19.8	22.3	23.8	24.9	25.0	23.0	24.3	23.9	23.5	26.4
	120	18.3	20.1	23.5	21.9	25.9	26.1	25.3	25.6	27.1	27.6	26.5
	125	16.3	25.3	19.8	31.3	15.9	23.0	25.9	21.5	24.0	29.6	21.7
10	136	13.1	13.7	16.4	14.5	16.5	17.5	17.7	20.5	20.5	18.2	18.4
	153	15.4	16.3	17.8	17.0	18.8	20.8	21.3	20.6	21.5	23.6	24.3
	154	16.4	16.5	18.1	19.0	19.8	22.5	21.9	23.3	24.3	20.6	22.9
	171	15.1	17.3	19.4	23.3	15.6	22.2	22.7	23.8	20.6	24.5	23.9
	172	18.1	16.8	19.7	18.7	20.5	20.8	22.8	20.0	24.5	23.7	24.3
	182	21.4	25.9	17.8	27.0	26.5	22.5	25.1	28.0	26.2	25.2	30.9
	199	18.7	18.6	20.4	10.2	20.3	22.7	20.3	26.0	24.3	24.3	27.2
	200	18.6	19.7	18.1	22.8	21.5	22.5	24.9	19.9	24.7	22.0	24.1
	217	į										
	218	17.0	19.2	17.2	19.6	18.3	22.0	20.2	23.2	20.6	22.4	23.3
	235	20.8	24.0	19.9	21.0	25.1	24.5	26.2	21.8	22.8	24.3	24.9
	236	18.1	17.3	19.2	22.0	20.0	23.9	23.5	23.4	22.7	23.0	24.4
	253	15.9	16.5	16.2	18.8	19.7	20.4	20.3	22.4	21.9	20.7	26.1
	254	17.7	17.8	18.0	19.8	20.4	21.8	20.9	22.9	21.4	22.2	23.1
	270	18.5	19.8	20.1	20.7	23.1	22.1	24.1	22.7	24.3	24.7	22.4

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 6 of 10)

						F	Postnatal Day	/S				
Group ^a	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42
11	137	16.7	15.2	16.7	20.9	16.8	19.2	19.6	19.1	18.8	20.2	17.1
	152	17.1	17.3	19.4	17.5	25.1	19.7	20.9	23.3	22.4	22.5	21.9
	155	18.3	19.6	20.3	20.1	22.8	20.8	23.9	23.6	22.2	23.3	20.8
	170	18.3	19.5	22.2	.C	25.1	22.5	21.6	22.7	23.6	23.0	20.1
	173	20.6	20.1	22.2	22.4	25.1	26.6	25.2	23.8	26.6	27.0	27.6
	183	18.4	15.5	15.5	19.4	18.9	20.9	20.0	22.0	24.1	19.1	21.5
	198	19.4	18.6	18.5	21.1	21.5	24.4	24.0	20.0	23.8	23.7	24.6
	201	16.9	17.9	17.6	21.3	19.6	19.3	27.0	24.3	21.1	23.4	26.5
	216	16.9	18.4	17.5	20.4	20.2	25.9	21.9	23.2	24.9	22.8	26.5
	219	17.0	17.3	18.4	20.6	19.1	21.7	21.2	22.1	22.8	21.6	25.4
	234	15.7	17.5	19.5	19.4	18.3	21.6	19.9	21.5	21.3	21.2	22.3
	237	18.9	21.1	18.1	21.1	21.6	23.1	23.0	22.1	26.5	22.0	24.5
	252	19.3	18.2	20.3	20.4	23.0	26.4	21.6	24.4	25.3	24.4	25.7
	255	18.1	17.0	18.1	19.8	20.4	21.0	21.7	22.4	23.7	20.9	21.9
	269	18.0	19.9	18.8	24.0	21.4	23.2	24.5	24.1	23.7	23.3	24.6
12	138	.c	18.1	10.8	24.5	10.9	11.1	11.9	13.7	10.0	8.0	9.8
	151	12.0	11.3	10.9	10.8	11.0	9.8	10.3	9.8	9.7	9.3	9.0
	156	12.9	14.0	12.8	18.7	13.0	12.7	12.0	11.2	12.2	11.5	12.2
	169	16.6	16.7	15.1	15.6	14.0	13.5	15.1	13.2	15.1	13.1	12.6
	174	16.6	11.4	14.5	13.7	15.4	14.5	22.8	4.4	13.5	10.0	12.1
	184	11.4	11.7	10.7	12.8	11.8	11.6	11.9	11.8	11.6	9.9	11.6
	197	13.6	12.9	13.7	13.1	13.2	13.5	13.5	14.2	13.2	12.5	12.8
	202	13.6	12.6	11.3	14.4	12.7	12.8	18.4	6.4	11.4	10.7	12.0
	215	16.1	17.0	14.9	17.8	15.8	17.6	17.2	15.3	16.8	12.3	16.5
	220	14.4	16.1	22.8	9.5	14.9	14.6	15.8	19.0	13.5	12.5	13.8
	233	15.0	15.0	14.5	15.4	15.0	14.0	12.9	19.1	12.4	12.5	14.0
	238	16.3	16.1	14.7	14.7	16.5	13.9	15.5	13.0	15.0	12.5	13.9
	251	14.5	15.2	13.7	14.1	15.1	14.3	23.7	9.6	13.5	12.3	13.5
	256	16.9	16.4	15.4	16.4	15.2	16.1	16.7	14.7	15.2	14.6	15.1
	268	14.5	14.1	13.4	13.5	13.7	14.0	12.6	14.4	12.9	10.6	13.4

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 7 of 10)

			Postnatal Days												
Group ^a	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42			
13	141	14.9	16.3	19.2	9.4	18.5	24.5	19.0	14.0	23.1	·c	18.8			
	148	18.2	19.6	20.0	22.2	21.5	24.6	26.7	25.8	24.0	24.9	25.0			
	159	15.0	14.8	16.8	15.7	19.6	18.3	20.1	20.9	18.5	19.5	19.1			
	166	17.6	18.8	19.8	19.7	22.0	21.0	32.3	16.6	28.5	25.8	22.1			
	177	17.4	20.5	21.8	21.5	24.3	24.2	25.8	25.6	26.5	25.5	24.4			
	187	16.3	17.3	18.3	21.8	18.9	22.4	20.8	23.0	25.9	25.3	25.7			
	194	14.7	17.1	16.8	17.3	18.5	21.0	20.2	21.9	20.1	24.3	22.7			
	205	17.5	19.0	19.6	18.9	22.7	26.5	22.0	23.0	23.0	23.1	26.6			
	212	16.6	21.0	17.1	22.5	21.5	24.9	23.2	24.6	21.9	22.8	26.5			
	223	19.5	18.9	22.1	21.6	20.3	26.1	22.1	26.7	24.1	23.6	27.4			
	230	16.3	18.8	19.1	19.5	20.6	22.4	17.8	21.8	21.6	22.0	22.7			
	241	19.8	23.2	21.1	24.8	23.6	28.8	25.4	27.0	25.4	25.3	27.5			
	248	17.1	18.3	18.2	20.2	19.3	24.1	21.7	21.5	22.4	24.4	24.4			
	259	18.9	19.1	20.9	21.7	22.0	23.9	29.2	20.6	25.5	23.3	26.0			
	265	19.7	20.8	19.1	23.8	24.2	27.3	26.0	24.8	25.3	23.6	30.5			
14	142	15.0	13.1	15.8	17.5	17.9	19.3	19.7	20.5	20.9	18.8	22.0			
	147	14.1	17.1	23.0	17.8	17.7	18.7	22.0	21.0	19.4	19.8	25.2			
	160	14.0	15.8	17.1	17.5	20.0	20.1	23.1	23.7	24.2	17.6	24.5			
	165	15.5	12.0	16.5	16.9	19.1	16.9	22.4	18.9	20.3	21.3	21.2			
	178	17.2	18.3	19.7	20.7	22.4	23.4	24.7	22.0	25.6	23.3	24.8			
	188	15.8	16.7	17.5	.f	.c	22.1	21.3	20.7	21.1	26.7	24.8			
	193	15.9	17.5	17.3	21.2	18.5	20.0	21.1	22.0	20.9	23.7	23.4			
	206	16.7	20.3	16.7	20.1	19.1	23.2	22.1	22.3	21.5	21.2	24.1			
	211	13.9	16.9	14.3	20.2	17.2	21.0	18.9	26.9	17.3	15.5	28.8			
	224	20.1	16.4	16.7	22.6	20.8	23.8	21.7	21.7	23.4	20.7	27.4			
	229	17.8	22.2	21.8	22.6	21.3	25.9	24.0	24.1	25.6	30.1	28.2			
	242	17.1	20.0	19.3	21.9	22.6	j								
	247	20.3	19.1	20.8	23.4	24.1	22.9	24.3	26.5	23.6	.c	.c			
	260	15.8	20.1	18.0	23.0	22.9	25.7	24.7	30.3	23.9	26.3	29.3			
	264	16.3	21.5	18.3	23.1	21.2	23.3	24.0	22.3	23.7	29.0	24.6			

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 8 of 10)

		Postnatal Days												
Group ^a	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42		
15	139	14.7	15.4	16.2	16.8	19.2	19.2	20.7	19.0	20.3	20.6	21.9		
	150	14.8	14.3	15.9	18.4	18.4	19.4	19.9	20.5	26.0	22.1	17.5		
	157	13.5	14.0	19.6	17.4	20.0	19.0	21.2	22.4	22.9	23.1	25.3		
	168	15.9	17.0	18.0	16.3	20.5	18.8	21.7	19.9	21.1	23.7	23.4		
	175	13.9	15.2	16.9	19.4	18.2	20.0	21.0	29.0	19.0	19.6	21.6		
	185	14.2	17.5	19.7	19.2	18.1	22.4	20.3	20.9	23.0	21.8	22.0		
	196	15.3	22.0	8.0	15.3	17.9	21.0	18.4	22.2	21.5	20.3	25.1		
	203	14.8	16.9	20.5	21.0	20.3	20.8	21.5	23.3	23.3	22.6	23.8		
	214	14.0	14.7	15.4	18.8	17.3	20.8	18.1	22.9	21.7	22.6	23.8		
	221	14.6	17.5	16.3	18.7	19.6	21.7	19.9	21.9	20.6	23.5	22.9		
	232	14.6	16.1	21.7	17.5	17.9	18.7	20.1	21.8	22.8	21.1	23.2		
	239	17.2	16.3	18.9	18.1	19.2	20.8	21.2	22.0	21.3	24.8	23.0		
	250	14.7	16.1	16.2	18.3	17.4	22.4	17.9	21.2	20.3	21.7	22.1		
	257	18.7	18.9	21.7	21.4	22.6	25.6	23.3	28.0	26.2	25.8	29.1		
	267	17.6	20.5	16.8	20.7	22.5	21.7	20.9	25.2	22.6	23.9	24.9		
16	140	13.5	16.4	14.3	17.5	19.0	19.6	20.5	29.7	10.0	21.8	22.7		
	149	12.2	13.1	14.4	15.4	15.4	17.0	19.7	38.1	.f	20.3	12.6		
	158	14.7	14.0	13.7	17.0	19.4	19.6	19.9	25.5	15.1	19.2	21.7		
	167	11.6	11.0	14.3	14.9	12.9	14.0	15.8	14.7	21.0	15.8	16.4		
	176	15.1	14.0	18.6	19.1	20.0	23.0	21.0	24.1	25.2	22.4	26.9		
	186	14.4	17.6	15.2	19.9	19.1	25.8	20.9	19.6	18.6	22.3	21.1		
	195	16.1	16.8	16.6	17.1	20.0	19.0	19.9	19.8	17.9	22.4	19.3		
	204	11.6	13.9	14.2	17.5	16.9	17.1	18.2	18.0	16.7	17.5	21.3		
	213	13.3	14.5	12.9	18.5	16.8	17.7	24.8	12.4	20.5	18.5	20.3		
	222	14.0	16.5	14.5	17.8	20.2	21.9	16.5	21.4	20.4	22.4	22.7		
	231	11.1	12.9	13.3	15.9	19.0	15.1	26.0	10.8	16.2	17.0	18.7		
	240	15.1	16.8	16.3	18.0	21.7	19.3	24.7	20.0	20.1	23.3	31.4		
	249	13.0	14.0	16.6	16.5	15.8	18.7	19.7	18.4	18.3	17.5	23.6		
	258	16.6	19.2	17.4	21.1	23.5	24.0	29.9	17.3	23.0	19.3	26.9		
	266	14.9	16.7	16.7	19.6	25.5	18.1	21.6	22.6	19.8	21.6	25.3		

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 9 of 10)

			Postnatal Days												
Group ^a	Animal ID	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42			
17	143	15.0	11.0	16.6	17.0	20.5	20.1	21.3	23.0	25.3	20.6	19.7			
	146	15.7	15.1	16.7	19.3	19.5	20.4	21.9	24.8	27.5	18.5	22.8			
	161	18.6	14.6	18.8	18.2	26.1	23.4	·c	29.6	14.1	6.8	.c			
	164	17.1	18.9	19.9	20.8	24.2	23.5	24.1	25.4	26.5	25.7	27.7			
	179	18.5	19.9	19.5	21.6	21.3	23.1	23.3	24.7	30.2	21.1	29.2			
	189	16.3	18.0	17.1	18.9	20.0	23.1	27.8	16.6	22.4	23.6	27.6			
	192	18.9	21.0	21.3	23.5	23.0	25.4	26.6	24.2	26.3	25.4	28.3			
	207	17.6	19.3	17.4	19.2	20.7	22.1	25.9	18.8	21.9	23.5	23.2			
	210	14.0	16.5	16.6	17.3	18.6	20.2	24.8	16.0	20.4	19.0	27.2			
	225	18.6	17.8	17.7	.c	12.8	.c	23.3	.f	25.3	27.4	28.8			
	228	17.3	17.6	19.9	21.4	19.8	23.3	23.7	25.1	21.4	23.4	25.8			
	243	18.3	20.3	18.5	23.1	23.0	29.8	24.7	32.0	25.6	39.4	30.9			
	246	15.5	18.6	15.8	18.4	18.2	20.8	20.0	19.6	20.3	19.7	25.7			
	261	17.1	18.5	17.9	20.4	20.5	21.5	22.8	22.6	23.3	23.2	28.5			
	263	17.1	18.4	18.4	21.0	20.4	23.5	23.1	22.8	21.6	22.1	23.6			
18	144	14.4	15.9	16.9	17.6	20.3	18.4	21.4	14.7	20.6	18.0	23.3			
	145	19.0	17.2	17.8	17.2	19.0	20.5	23.7	24.0	24.5	24.3	24.9			
	162	15.1	14.7	17.5	18.7	17.7	18.8	20.7	20.3	20.6	20.5	20.6			
	163	17.0	18.0	16.5	20.1	20.6	24.1	23.3	26.4	26.8	20.5	26.8			
	180	16.1	15.8	16.9	18.7	19.2	18.8	22.2	20.7	22.9	18.3	22.2			
	181	14.7	15.2	16.1	19.1	18.4	17.3	19.3	19.1	21.1	20.8	21.4			
	190	14.8	25.4	21.7	11.1	18.9	20.8	34.4	23.4	10.4	23.4	25.4			
	191	14.0	17.2	15.9	19.4	19.1	20.7	18.2	19.6	20.5	21.4	22.3			
	208	15.8	18.0	17.4	20.4	19.0	29.7	10.8	21.3	23.1	21.1	24.3			
	209	18.1	19.3	24.6	21.6	22.8	25.0	24.9	26.1	26.8	23.6	29.2			
	226	19.6	19.5	21.4	24.3	22.4	25.7	24.2	27.7	28.0	26.2	29.8			
	227	16.1	18.2	19.8	21.4	21.8	31.7	16.4	25.1	25.2	24.6	26.9			
	244	18.1	19.7	20.1	21.0	23.3	24.7	25.9	25.4	26.8	25.9	26.7			
	245	16.3	23.5	18.3	21.6	18.4	20.5	21.2	23.4	26.5	22.6	29.9			
	262	14.9	17.1	15.7	17.9	16.4	19.1	21.3	15.7	24.9	21.1	23.7			

Table A-6. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 31 Through 42 (page 10 of 10)

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p.p'-

Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 6 is 30 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2.

bMale was removed from the study because his correct postnatal day 0 could not be confirmed.

^CFeed consumption value was excluded because it was a statistical outlier.

^dMale was removed from the study because it was not dosed on the correct postnatal days.

eMale was found dead on postnatal day 37 after dosing (misdirected dose).

feed consumption value was excluded because it was unrealistic (i.e. negative).

9Male was euthanized on postnatal day 29 after dosing due to a leg injury.
PFeed consumption value was excluded because the animal had pulled feed into the cage and an accurate feed weight could not be obtained.

Male was found dead on postnatal day 31 prior to dosing (misdirected dose).

Male was found dead on postnatal day 37 prior to dosing (misdirected dose).

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 1 of 10)

			Postnatal Days												
Group ^a	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^b	
1	1	16.8	33.7	23.8	.c	23.0	24.2	21.1	28.1	19.7	22.6		.d		
	15	24.4	23.3	22.5	22.3	25.2	22.3	24.5	24.6	26.1	23.1		18.8		
	32	25.9	25.8	28.8	23.0	25.7	23.2	25.1	25.7	27.5	23.9		20.8		
	33	21.4	24.7	23.8	23.2	25.0	23.6	25.6	27.7	29.8	25.0		19.9		
	50	27.5	26.4	26.5	27.8	29.8	21.8	26.3	22.7	31.3	28.8		20.9		
	51	23.3	22.8	23.4	26.4	24.4	19.8	21.7	26.3	29.2	25.0		18.8		
	68	18.4	23.8	24.3	27.2	23.6	19.4	24.1	26.0	27.3	23.5		20.1		
	69	.e													
	86	.e													
	87	28.5	25.3	25.5	25.3	29.1	20.7	28.0	27.0	27.5	24.1	26.2	22.6	22.7	
	104	25.4	27.8	26.6	27.1	26.3	22.5	26.7	27.7	31.9	25.2	27.2	.d	.d	
	105	23.4	25.3	21.9	29.3	26.1	17.9	24.3	26.9	30.7	23.3	25.3	20.8	20.9	
	122	19.8	23.1	22.0	27.0	22.7	18.9	27.5	22.0	27.6	20.8	25.0	20.1	20.2	
	123	20.8	21.0	23.0	28.3	21.6	19.7	21.9	23.9	27.3	21.0	22.3	19.0	19.1	
	135	.e													
2	4	22.9	19.9	20.4	.c	23.2	23.0	23.1	17.3	21.2	19.7		.d		
	18	.f													
	29	25.6	22.8	20.7	23.1	23.1	22.1	21.9	22.2	22.3	21.9		19.1		
	36	30.6	24.8	21.8	23.4	23.3	24.7	24.0	24.3	22.2	23.3		19.6		
	47	19.4	20.7	18.4	22.1	20.2	21.9	20.1	21.7	19.2	25.1		18.1		
	54	.g													
	65	27.0	25.7	25.8	23.3	27.6	24.5	26.3	27.8	25.7	28.8		20.6		
	72	_. h	27.3	27.1	28.8	27.8	_. h	26.3	26.7	29.7	30.7		.d		
	83	24.0	23.1	21.6	22.9	23.4	25.0	23.9	28.6	17.0	15.8	21.0	18.9	19.0	
	90	24.6	23.0	24.4	26.5	25.3	23.0	27.9	24.9	23.2	24.9	25.1	.d	.d	
	101	23.9	21.3	24.4	22.1	24.8	23.0	23.6	20.7	22.6	23.2	18.8	.d	.d	
	108	25.3	19.9	24.6	26.1	25.2	23.6	23.9	22.5	21.9	27.7	18.3	.d	.d	
	119	.e													
	126	22.8	20.1	22.2	22.8	21.7	19.4	22.1	20.3	24.4	25.9	18.2	18.8	18.8	
	133	25.2	23.4	22.6	23.8	24.1	23.7	18.0	27.3	23.7	27.3	19.7	20.1	20.1	

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 2 of 10)

	Postnatal Days													
<u>Group^a</u>	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^b
3	5	20.1	20.5	19.9	.c	18.7	21.7	20.5	22.1	19.9	21.4		.d	
	13	18.1	20.5	21.1	.c	22.5	17.7	19.6	19.1	18.5	21.9		.d .d	
	19	23.6	22.8	.h	į.	21.0	22.4	22.8	27.9	22.6	26.3		.d	
	28	25.0	23.8	22.6	19.6	24.7	20.1	22.8	25.8	23.9	26.1		18.9	
	37	24.1	18.3	18.6	19.5	19.5	19.5	19.0	21.6	22.6	21.9		_. d	
	46	21.7	23.5	21.3	21.3	19.7	23.0	21.9	20.8	26.2	24.7		18.0	
	55	.e												
	64	.h	į.	22.0	21.6	20.0	26.5	22.5	23.2	22.6	28.8		.d	
	73	23.0	21.6	24.6	23.8	18.6	21.0	22.9	22.4	21.8	26.8		19.1	
	82	24.0	24.0	19.3	19.8	23.4	22.1	26.2	15.4	25.8	23.4	24.6	18.4	18.7
	91	24.8	25.6	23.9	26.9	24.3	23.7	25.5	25.5	24.7	28.8	25.1	.d	.d
	100	22.8	23.7	23.3	20.6	22.2	23.2	21.0	21.1	24.4	24.6	23.0	18.5	18.7
	109	17.2	21.1	19.2	23.6	17.8	17.8	18.4	19.3	17.4	21.7	20.3	.d	.d
	118	.e												
	127	.e												
4	6	21.9	21.4	20.5	.c	21.4	21.5	25.0	18.7	23.1	20.2		.d .d	
	12	22.6	24.4	26.7	·c	29.4	23.4	24.3	22.5	27.5	30.7		.d	
	20	j												
	27	26.9	27.8	27.6	30.1	26.7	29.5	30.2	28.7	29.5	33.0		22.5	
	38	25.1	24.2	24.2	25.7	28.5	23.3	30.3	24.8	24.7	29.1		20.8	
	45	26.2	22.0	26.7	26.8	21.6	27.6	24.4	28.3	24.1	28.1		19.9	
	56	29.5	26.5	26.1	25.9	28.4	28.9	29.4	30.4	28.6	39.5		23.2	
	63	24.7	24.8	24.3	25.8	24.0	25.8	24.5	26.9	26.9	26.9		20.8	
	74	.e												
	81	27.0	25.3	28.2	24.0	25.6	25.7	25.0	31.6	30.6	34.4	27.1	.d	.d
	92	22.8	23.3	23.4	22.2	24.1	20.4	24.5	24.1	24.4	27.0	22.4	19.5	19.6
	99	27.2	26.6	24.8	25.1	27.7	22.2	26.5	27.7	37.5	29.2	31.0	22.2	22.5
	110	24.3	26.4	23.5	.c	20.8	22.4	24.4	22.4	33.1	26.3	27.9	.d	.d
	117	29.6	26.5	.h	į	23.4	22.7	24.2	28.3	33.4	26.0	28.2	.d	.d
	128	23.7	27.0	27.7	26.8	24.3	24.1	26.5	25.7	31.2	26.6	29.3	21.8	22.0

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 3 of 10)

			Postnatal Days												
Group ^a	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^t	
5	7	.h	.h	į.	.c	21.9	23.5	24.4	21.2	29.1	_. h		.d		
	21	31.1	24.0	28.1	28.5	25.1	28.1	28.7	29.1	36.3	25.6		.d		
	26	26.6	26.1	29.7	29.1	33.0	25.6	28.0	35.2	36.9	30.9		23.7		
	39	26.3	27.3	23.1	29.4	23.1	24.9	26.7	23.6	33.2	24.0		20.8		
	44	28.2	23.1	24.6	24.4	24.5	24.0	26.2	27.8	34.7	21.7		20.8		
	57	28.0	23.2	26.9	32.3	26.0	25.7	28.5	27.6	35.0	31.4		22.2		
	62	22.6	22.3	20.7	28.4	22.3	20.4	22.1	23.8	29.9	22.9		18.9		
	75	25.5	22.4	23.6	25.8	21.4	22.5	25.3	26.6	33.0	25.6		19.8		
	80	26.9	23.5	25.2	29.7	27.4	27.2	27.3	28.0	33.2	24.6	26.0	20.8	21.0	
	93	27.8	24.2	28.0	27.6	29.5	24.7	28.0	30.5	34.9	28.1	33.9	21.8	22.2	
	98	25.0	24.6	24.5	26.1	25.5	22.6	26.5	26.7	33.4	21.8	27.0	21.3	21.5	
	111	18.4	25.8	27.0	25.2	25.1	23.8	25.1	28.2	29.8	26.6	26.2	21.9	22.0	
	116	28.2	28.2	28.3	27.4	25.5	28.2	31.5	29.5	36.8	27.1	29.9	23.6	23.9	
	129	25.4	22.2	27.9	25.4	31.1	25.3	28.8	33.4	34.6	26.6	33.2	23.2	23.6	
	132	25.7	26.3	26.8	23.8	24.3	26.4	27.3	27.2	30.3	27.5	25.1	21.7	21.8	
6	8	22.7	24.8	23.9	·c	22.9	23.8	23.3	23.3	27.6	26.7		.d		
	11	22.0	23.2	22.9	.c	20.2	24.5	22.4	22.9	26.6	21.4		.d		
	22	29.1	28.4	31.3	25.1	28.8	29.3	32.5	39.1	37.5	33.1		24.0		
	25	23.9	24.2	23.8	23.8	22.7	26.6	24.4	30.9	31.1	25.5		20.3		
	40	25.6	28.1	26.1	26.1	26.0	25.7	25.8	26.9	33.1	30.2		21.7		
	43	20.1	21.6	21.8	16.8	19.0	19.1	18.6	21.4	22.5	21.0		17.3		
	58	24.3	22.5	21.7	20.0	21.5	23.7	22.3	24.5	29.6	25.7		18.9		
	61	22.5	26.5	22.5	22.7	21.7	22.4	24.1	28.0	24.7	26.5		20.7		
	76	25.7	23.2	19.9	13.4	31.5	22.8	24.7	27.6	30.7	25.6	25.2	19.9	20.1	
	79	.e													
	94	28.9	26.9	24.3	27.1	24.1	26.3	25.8	25.7	31.8	28.4	27.8	22.5	22.7	
	97	25.7	25.7	25.7	26.6	24.2	27.1	28.2	28.4	34.9	26.6	28.4	21.6	21.8	
	112	13.6	27.3	27.2	40.1	15.2	29.0	28.1	31.1	33.7	34.4	22.6	.d	.d	
	115	e													
	130	30.1	30.2	29.1	28.2	30.8	29.0	31.5	35.3	43.4	33.9	30.8	.d	.d	

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 4 of 10)

	Postnatal Days													
<u>Group^a</u>	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^b
7	9	23.5	25.9	25.0	.c	20.3	25.0	25.1	24.3	28.0	29.0		.d	
	10	25.9	26.7	23.4	.c	23.3	23.9	25.1	24.0	26.4	28.2		.d .d	
	23	21.2	23.6	23.6	22.9	25.4	22.4	25.3	29.3	21.1	27.7		.d	
	24	.e												
	41	23.7	24.8	23.1	22.4	22.9	22.7	23.6	23.2	29.1	24.2		20.0	
	42	26.3	24.9	23.9	22.1	23.3	28.6	22.3	24.5	28.9	27.2		20.6	
	59	26.5	22.3	25.5	21.5	21.8	26.1	24.6	25.4	26.8	25.1		20.5	
	60	23.9	22.7	23.2	21.6	23.0	23.3	22.3	28.1	29.4	25.3		19.9	
	77	.h	.h	21.5	12.9	19.0	24.1	23.9	24.0	25.8	25.5	18.2	.d	.d
	78	24.6	25.8	22.9	22.1	23.6	25.1	24.4	25.3	31.2	24.1	24.3	.d	.d
	95	24.3	23.2	28.0	22.3	24.2	21.6	25.9	24.7	29.3	23.8	22.0	20.2	20.3
	96	26.5	28.0	25.4	23.2	27.3	26.1	29.9	28.4	34.1	24.2	27.4	21.8	22.0
	113	28.4	25.1	27.3	24.1	26.3	23.6	26.2	28.1	30.2	28.1	24.3	22.1	22.1
	114	.e												
	131	.e												
8	2	18.4	19.3	20.6	30.4	26.9	18.0	18.2	23.1	24.8	24.5		17.2	
	16	24.4	27.4	25.5	23.7	26.5	27.6	30.1	25.0	30.5	23.6		21.5	
	31	20.8	20.4	20.9	19.4	23.3	22.7	23.4	23.1	30.2	22.8		17.6	
	34	19.2	21.3	21.6	22.1	22.9	23.6	24.0	23.9	26.7	21.3		18.8	
	49	22.6	26.1	23.4	21.2	26.2	21.4	25.1	24.0	27.5	19.9		19.7	
	52	24.6	28.8	27.5	26.0	29.4	24.8	29.8	28.0	34.3	30.9		24.1	
	67	18.6	19.2	22.5	20.3	21.7	22.5	22.4	21.1	24.9	24.4		18.9	
	70	22.1	24.4	23.0	24.3	23.7	22.8	24.5	27.0	27.9	20.4		20.4	
	85	23.2	25.0	22.0	24.3	26.0	27.2	26.8	25.9	24.8	20.6	27.5	20.7	20.9
	88	18.4	22.4	23.0	21.3	26.3	22.8	22.7	24.5	25.1	20.5	21.9	.d	.d
	103	23.6	21.3	25.9	22.7	23.3	24.2	24.6	26.3	29.9	20.8	23.8	20.1	20.2
	106	20.5	22.7	21.1	20.0	23.0	23.0	19.3	24.1	21.2	21.3	20.9	18.8	18.9
	121	23.1	22.4	24.4	30.3	17.7	25.5	24.7	23.0	22.5	21.8	30.0	20.1	20.5
	124	22.3	22.2	20.6	17.3	22.7	19.4	21.0	24.2	24.5	18.7	23.4	18.5	18.7
	134	24.6	23.6	25.2	22.8	28.2	23.6	25.8	24.3	25.9	25.2	27.7	.d	.d

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 5 of 10)

			Postnatal Days												
<u>Group^a</u>	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^b	
9	3	17.2	18.2	22.4	.c	19.3	18.0	16.5	22.2	19.6	18.2		.d		
	14	18.6	19.5	18.7	.c	21.9	19.8	17.7	19.3	22.8	21.6		.d		
	17	.e													
	30	.e													
	35	30.0	21.6	.h	25.1	26.9	27.4	24.7	23.4	27.4	22.6		.d		
	48	24.9	20.0	22.8	24.3	27.4	25.5	25.6	25.6	25.8	23.0		20.6		
	53	24.6	24.5	22.0	22.7	26.8	27.2	26.3	26.2	23.5	24.2		20.5		
	66	22.3	23.0	24.3	24.1	24.4	22.7	21.7	26.2	23.1	21.8		20.5		
	71	21.9	21.0	23.5	22.2	23.8	23.0	23.9	21.9	26.8	21.5		20.3		
	84	23.0	22.3	21.4	23.3	25.1	23.1	23.7	24.0	27.8	20.7	25.2	20.1	20.3	
	89	22.7	20.9	23.0	20.9	29.8	25.4	22.9	22.6	27.7	18.6	23.6	19.7	19.9	
	102	24.3	20.8	22.4	26.1	24.8	23.5	24.9	26.3	28.8	21.3	28.8	.d	.d	
	107	26.2	24.7	25.7	22.1	24.2	28.1	27.2	28.6	25.3	22.0	25.5	21.6	21.7	
	120	25.2	24.5	26.9	25.2	23.9	23.2	25.6	29.2	27.6	22.5	25.0	22.1	22.2	
	125	22.1	25.3	27.2	28.7	24.4	25.3	25.2	31.7	28.4	23.3	32.3	21.8	22.2	
10	136	21.2	19.5	20.5	20.8	.h	.h	22.3	21.6	19.0	21.0		.d		
	153	21.5	22.9	23.0	24.5	24.0	24.1	23.5	24.3	26.9	25.9		19.3		
	154	26.4	23.7	24.7	24.4	26.2	23.7	24.7	24.5	26.6	26.6		19.9		
	171	23.3	24.9	24.0	24.1	24.8	26.1	23.3	25.1	27.7	26.6		19.8		
	172	24.5	21.5	23.1	22.7	25.2	24.3	21.3	21.0	28.5	23.0		19.9		
	182	26.8	28.4	28.2	31.3	29.1	28.1	33.3	34.5	31.1	31.5		24.0		
	199	16.0	16.3	21.4	25.0	25.5	22.8	28.1	25.7	27.0	28.0		19.6		
	200	27.0	25.4	23.6	29.5	25.9	25.5	30.7	29.3	28.9	26.2		21.5		
	217	.k													
	218	22.6	23.9	23.2	22.1	24.2	21.4	21.8	24.1	23.0	22.5		.d		
	235	23.9	25.3	23.4	28.3	22.0	25.3	26.5	26.2	28.0	26.5	27.0	21.7	21.9	
	236	22.2	24.1	24.7	23.0	22.4	23.3	24.2	24.4	25.1	24.5	26.7	20.2	20.4	
	253	24.3	21.8	23.9	23.8	25.7	24.6	25.1	26.8	26.9	25.0	22.9	19.6	19.7	
	254	21.5	22.6	22.6	23.2	24.9	23.3	23.1	23.8	25.7	23.6	24.6	19.7	19.9	
	270	25.0	23.0	24.6	27.9	23.8	26.8	25.2	30.0	28.0	28.2	28.4	21.4	21.6	

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 6 of 10)

							Р	ostnatal Da	ys					
Group ^a	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^b
11	137	22.2	18.5	16.0	17.1	17.1	17.6	14.7	17.5	15.9	14.8		16.2	
	152	21.0	22.4	22.8	22.5	22.7	20.8	23.2	20.4	19.3	20.0		19.0	
	155	26.7	21.8	21.5	23.1	19.5	20.4	16.9	19.5	21.0	18.0		19.1	
	170	22.6	21.8	22.6	23.0	22.2	20.5	19.8	19.7	20.5	20.3		.d	
	173	29.3	27.0	26.6	27.9	25.0	24.9	30.2	24.7	26.7	27.2		22.7	
	183	23.5	21.5	23.8	21.1	23.4	20.5	22.9	23.4	23.7	18.5		18.5	
	198	26.3	24.1	23.5	23.5	21.6	24.4	22.5	23.0	25.0	20.5		20.5	
	201	23.8	23.0	21.5	24.1	23.7	21.7	22.7	22.2	23.8	20.2		19.5	
	216	25.3	24.0	23.9	23.4	25.7	24.5	24.6	25.9	25.4	21.5		20.5	
	219	19.2	17.3	18.9	18.9	18.8	16.7	16.1	15.0	17.9	13.6		17.5	
	234	21.2	25.7	18.9	22.9	22.0	25.7	18.7	23.0	23.7	20.1	20.3	18.8	18.9
	237	24.2	25.3	21.7	23.3	23.2	20.8	22.9	21.1	21.3	19.0	17.6	20.0	19.9
	252	24.9	23.9	23.1	21.5	22.9	20.4	20.8	19.5	19.6	18.2	18.2	20.1	20.0
	255	22.4	23.1	21.2	23.4	18.7	18.6	19.7	20.6	20.3	17.4	15.9	18.6	18.5
	269	27.6	21.5	23.7	25.0	23.9	23.0	25.8	23.6	25.1	19.7	20.2	20.8	20.7
12	138	11.9	10.1	10.0	10.5	10.9	12.3	7.8	10.6	10.0	10.4		.d	
	151	9.4	9.9	8.8	10.1	9.0	9.5	7.7	9.8	9.3	8.7		10.4	
	156	12.7	9.9	10.8	11.3	10.4	10.7	9.6	10.8	10.1	9.4		11.8	
	169	13.6	12.7	11.3	11.6	12.3	11.3	10.8	10.7	10.0	10.3		13.1	
	174	11.8	11.5	10.3	10.4	11.2	11.5	10.2	10.0	9.1	9.3		12.7	
	184	10.6	9.9	9.0	10.5	10.6	8.4	11.6	8.6	10.2	8.0		11.3	
	197	11.6	12.6	11.4	13.0	12.6	12.8	11.7	11.0	12.7	9.9		12.4	
	202	10.6	9.8	10.8	10.7	10.5	9.2	10.6	10.4	9.7	9.8		11.7	
	215	14.5	12.6	15.2	12.1	13.3	14.8	13.1	12.6	12.7	10.4		14.5	
	220	12.4	11.7	11.4	10.6	11.1	11.2	11.6	11.8	11.0	8.9		13.3	
	233	12.0	10.6	.h	į	12.4	10.9	12.6	10.5	11.0	9.9	9.5	.d	.d
	238	12.7	12.2	11.9	11.1	11.1	11.9	12.1	12.4	10.7	10.1	8.7	13.8	13.6
	251	14.1	12.1	12.8	12.8	12.3	10.4	13.4	12.1	13.8	10.0	10.3	13.3	13.2
	256	13.9	10.3	14.3	11.2	11.6	10.7	11.5	11.8	11.5	9.0	10.3	13.5	13.4
	268	12.1	11.2	11.4	11.0	10.0	9.4	10.5	.!					

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 7 of 10)

							Р	ostnatal Da	ys					
<u>Group^a</u>	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^b
13	141	26.3	16.3	24.0	17.7	30.8	25.9	24.1	20.1	27.9	23.5		.d	
	148	28.4	26.4	25.2	25.8	25.6	26.5	26.0	28.6	27.9	29.5		21.7	
	159	22.9	22.4	19.9	22.0	21.7	21.9	21.9	20.8	25.4	23.8		17.9	
	166	26.8	26.8	24.3	26.1	25.9	28.4	25.7	30.0	24.6	_. h		.d	
	177	29.6	27.1	27.5	25.3	28.3	27.2	28.1	25.9	28.3	28.2		22.4	
	187	23.4	25.1	23.5	27.2	24.5	26.3	26.5	26.6	29.8	26.6		20.8	
	194	23.1	23.1	23.0	22.0	17.7	27.2	23.5	22.5	22.8	22.7		18.6	
	205	26.0	23.3	24.7	25.4	25.4	27.0	24.5	28.0	29.5	27.2		21.2	
	212	25.1	23.8	25.6	22.0	27.4	23.5	25.6	26.0	26.9	24.8		20.9	
	223	25.0	22.1	24.5	25.8	27.9	27.7	25.6	28.3	26.9	28.6		21.8	
	230	22.5	24.8	24.0	21.3	29.1	21.0	25.8	26.8	25.2	24.6	28.0	19.7	20.0
	241	27.5	26.7	24.1	25.2	27.5	24.0	28.1	28.8	28.3	26.6	26.9	22.9	23.0
	248	27.0	24.6	24.5	25.4	29.1	23.5	27.6	27.3	29.6	29.7	28.0	21.0	21.3
	259	24.4	23.5	26.1	23.2	25.6	24.0	24.3	26.5	27.4	25.1	25.3	21.3	21.4
	265	21.0	29.1	22.9	29.3	28.4	25.2	28.3	30.0	31.0	26.3	27.6	23.0	23.1
14	142	21.8	20.6	20.9	20.7	19.9	21.9	19.3	20.7	23.0	21.3		17.3	
	147	30.0	19.6	25.0	26.4	21.8	21.1	21.7	21.8	27.2	20.1		19.1	
	160	18.2	25.5	23.1	22.6	22.3	26.1	24.5	24.5	26.9	22.1		19.1	
	165	21.6	24.5	22.8	20.4	23.8	23.2	22.0	25.2	23.8	22.6		18.2	
	178	26.1	27.2	23.4	26.8	26.1	23.3	28.7	28.8	26.1	29.1		21.2	
	188	23.0	24.1	23.0	23.8	25.3	24.0	22.6	26.9	25.6	24.3		.d	
	193	22.3	22.9	22.1	21.1	25.4	19.7	21.3	26.5	23.8	23.4		.d	
	206	22.3	24.5	21.6	19.8	26.9	22.7	25.6	27.7	25.2	25.0		.d	
	211	15.6	20.0	18.8	20.3	26.1	19.3	21.1	25.5	25.0	20.7		18.0	
	224	24.9	24.6	20.2	24.0	25.0	21.9	22.6	26.3	25.3	20.0		19.9	
	229	28.4	28.4	23.3	27.6	29.0	24.7	27.9	28.5	31.6	30.0	24.9	.d	.d
	242	.m												
	247	28.8	26.0	25.4	28.5	27.3	29.7	30.0	28.9	29.1	28.3	28.7	.d	.d
	260	27.0	27.3	27.2	27.8	28.3	25.4	30.7	28.7	32.2	27.7	30.6	22.7	23.0
	264	24.4	26.0	22.9	27.2	30.1	22.3	27.4	28.5	31.8	22.2	29.6	22.1	22.4

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 8 of 10)

							Р	ostnatal Da	ys					
Group ^a	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^t
15	139	21.9	24.0	19.6	27.0	20.5	24.7	22.0	22.9	23.8	27.8		18.3	
	150	24.2	23.7	21.1	23.4	23.2	24.5	26.8	24.5	24.4	24.7		18.6	
	157	24.7	23.5	23.9	24.2	25.3	22.9	27.4	25.5	26.3	25.2		19.1	
	168	21.8	24.5	13.8	.h	23.8	24.0	23.8	25.1	25.0	25.9		.d	
	175	22.9	23.1	22.8	23.2	24.2	24.5	21.7	26.0	25.4	25.9		19.0	
	185	23.6	24.4	23.8	22.8	22.1	21.8	26.3	24.5	23.8	21.2		19.1	
	196	25.4	21.1	25.5	24.3	24.1	25.1	25.3	25.5	27.7	22.9		19.2	
	203	25.0	22.8	25.6	22.1	26.1	24.3	26.2	27.3	26.5	24.3		20.0	
	214	24.0	22.3	20.9	22.3	26.4	21.3	23.1	26.6	24.5	21.2		18.1	
	221	22.5	24.7	25.0	25.4	22.1	27.6	23.5	22.7	24.6	26.0		19.0	
	232	22.8	22.8	22.9	24.6	22.2	23.5	22.8	24.3	25.6	24.0	23.1	18.6	18.7
	239	20.2	22.0	24.9	24.5	27.1	27.7	27.1	25.6	26.8	26.6	28.7	20.0	20.3
	250	20.8	22.0	24.4	24.1	21.4	23.3	25.0	19.8	23.2	21.7	24.5	18.3	18.5
	257	26.8	26.3	29.4	28.4	25.0	29.8	26.6	28.3	29.0	30.7	26.3	22.5	22.6
	267	24.5	25.6	24.4	25.0	23.9	26.5	25.3	27.7	27.4	28.5	26.7	20.4	20.6
16	140	20.7	22.4	22.4	23.4	23.7	23.0	22.5	18.9	22.2	21.1		17.9	
	149	19.4	13.9	18.5	19.1	18.3	19.0	19.4	18.2	20.4	18.4		.d	
	158	19.9	20.0	19.6	20.7	21.0	20.5	20.5	18.8	21.7	23.5		17.1	
	167	16.7	18.4	17.6	17.6	22.4	18.4	18.8	19.5	17.1	19.1		14.2	
	176	24.5	25.5	24.1	24.9	27.5	24.8	24.5	22.8	26.8	25.9		19.8	
	186	26.3	22.8	23.2	22.4	25.4	26.1	25.2	26.7	27.3	25.3		19.6	
	195	21.6	20.6	19.0	18.8	23.6	19.7	19.5	21.8	22.7	16.0		17.5	
	204	16.4	19.2	19.5	18.5	22.8	22.8	19.3	18.2	20.8	20.3		16.2	
	213	25.5	21.2	.i	_. h	24.9	24.8	24.2	30.3	25.2	28.8		.d	
	222	21.1	21.6	21.4	20.6	21.7	21.5	17.1	22.1	22.3	17.7		17.5	
	231	19.7	18.0	22.5	19.5	18.7	19.6	20.7	20.7	19.2	17.5	20.3	15.4	15.6
	240	23.0	17.5	23.1	23.3	24.7	22.7	22.8	21.9	27.0	25.9	26.1	19.2	19.4
	249	21.3	18.3	22.6	22.8	21.2	20.8	23.4	23.8	23.0	21.8	24.4	17.1	17.4
	258	21.3	22.6	22.6	21.0	21.7	23.8	23.7	22.6	25.2	22.1	20.5	19.8	19.8
	266	20.1	22.1	21.3	22.4	24.3	23.3	24.3	21.8	22.8	20.8	24.6	18.9	19.1

Table A-7. Individual F₁ Male Post Wean Feed Consumption (g/day) for Postnatal Days 42 Through 53 (page 9 of 10)

							Р	ostnatal Da	ys					
<u>Group^a</u>	Animal ID	42-43	43-44	44-45	45-46	46-47	47-48	48-49	49-50	50-51	51-52	52-53 ^b	23-52	23-53 ^b
17	143	25.4	23.2	25.1	20.7	23.6	19.9	21.0	_. h	į.	26.6		.d	
	146	24.1	25.1	29.1	26.8	23.5	28.2	23.4	26.3	28.9	25.1		20.2	
	161	37.5	.h	23.6	24.7	26.4	28.9	24.5	21.9	31.7	25.9		.d	
	164	29.1	27.8	30.2	27.4	26.7	28.3	25.5	26.4	31.3	27.4		22.2	
	179	18.7	22.4	24.3	24.5	25.2	24.3	25.9	23.7	24.5	26.5		21.3	
	189	27.6	24.2	24.8	27.2	25.3	25.0	24.3	26.6	28.1	22.5		20.4	
	192	25.9	26.3	26.5	27.6	26.9	22.8	26.8	31.5	28.1	22.1		22.5	
	207	22.5	21.5	26.2	22.5	22.4	21.3	24.9	24.7	25.8	25.8		20.0	
	210	22.5	22.6	21.4	24.5	22.2	21.6	21.5	24.6	24.2	21.8		18.5	
	225	22.9	28.5	23.2	31.1	27.9	26.3	27.3	28.5	32.0	23.7		_. d	
	228	24.5	23.4	24.9	24.0	26.3	22.2	24.8	26.3	25.3	25.9	24.3	20.5	20.6
	243	27.0	32.8	25.1	32.8	37.2	31.7	33.8	35.2	34.4	37.6	36.5	25.4	25.8
	246	21.8	21.2	23.0	24.0	22.5	21.3	22.3	22.3	22.1	22.1	21.9	18.9	19.0
	261	21.1	26.8	25.5	25.6	26.0	25.4	24.0	28.6	25.5	27.4	27.0	20.7	20.9
	263	24.9	24.3	24.1	20.7	25.0	24.5	22.2	24.3	25.4	25.0	24.8	20.3	20.4
18	144	23.1	21.7	23.2	21.0	23.8	21.0	21.9	23.5	23.5	23.5		18.4	
	145	25.1	26.1	25.2	28.1	24.7	24.4	20.9	24.8	24.7	21.6		20.1	
	162	24.6	23.7	25.4	24.0	26.8	25.9	23.2	23.8	27.8	22.5		19.3	
	163	25.2	25.0	26.7	24.9	27.2	27.1	24.6	25.7	28.0	25.0		20.7	
	180	23.7	22.1	23.2	24.0	25.1	23.3	24.0	24.9	23.2	23.6		19.3	
	181	22.2	21.4	23.0	22.6	22.8	22.5	19.8	21.9	22.7	21.6		18.1	
	190	20.6	20.5	17.1	22.5	27.6	19.1	23.2	23.3	24.5	22.5		19.3	
	191	22.0	22.9	19.6	24.8	26.2	27.9	24.9	26.1	24.4	23.6		19.4	
	208	21.8	22.9	21.7	25.0	27.0	22.8	25.9	26.7	35.1	15.0		20.2	
	209	27.6	24.9	26.3	28.6	27.0	25.9	27.3	28.9	29.2	24.3		22.4	
	226	29.3	29.4	29.9	30.0	28.7	30.8	33.3	33.1	31.6	29.0		24.2	
	227	27.0	26.1	24.7	27.9	24.7	25.0	27.9	24.9	27.3	25.0		21.3	
	244	29.6	25.3	27.2	26.8	31.4	25.9	30.8	31.1	29.2	28.6	31.1	22.8	23.1
	245	22.4	27.2	23.3	26.0	28.3	25.3	24.9	29.1	30.4	25.0	25.8	21.4	21.5
	262	22.4	23.2	24.2	22.8	24.1	25.4	25.2	26.0	25.5	24.4	24.6	.d	.d

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in

blincludes only those animals scheduled for necropsy on postnatal day 53.

^cFeed weight inadvertently not recorded.

component 2.

dInterim feed consumption value(s) are missing and therefore this overall value could not be calculated.

Male was removed from the study because his correct postnatal day 0 could not be confirmed.

Male was removed from the study because it was not dosed on the correct postnatal days.

Male was found dead on postnatal day 37 after dosing (misdirected dose).

^hFeed consumption value was excluded because it was a statistical outlier.

Feed consumption value was excluded because it was unrealistic (i.e. negative).

Male was euthanized on postnatal day 29 after dosing due to a leg injury.

Male was found dead on postnatal day 31 prior to dosing (misdirected dose).

Male was found dead on postnatal day 50 prior to dosing.

mMale was found dead on postnatal day 37 prior to dosing (misdirected dose).

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 1 of 38)

Postnatal Groupa			Dootnotal	
1 50 47 Salivation: prior to dosing	Groupa	Animal ID		Clinical Observation
2 29 45 Rooting: post dosing 36 29 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Efflux of the dosing solution 38 Salivation: prior to dosing 40 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Rooting: post dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 40 Rooting: post dosing 41 Salivation: prior to dosing 42 Salivation: prior to dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Rooting: post dosing 50 Salivation: prior to dosing 50 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing	Огоир	Animand	Day	Cililical Observation
2 29 45 Rooting: post dosing 36 29 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Rooting: post dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Rooting: post dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Salivation: prior to dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing	1		47	
36 29 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing		68	47	Salivation: prior to dosing
36 29 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing				
36 29 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing				
30 Salivation: prior to dosing 31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Salivation: prior to dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Salivation: prior to dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing	2	29	45	Rooting: post dosing
31 Salivation: prior to dosing 32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Rooting: post dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Rooting: post dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 60 Salivation: prior to dosing 61 Salivation: prior to dosing 62 Salivation: prior to dosing 63 Salivation: prior to dosing		36	29	Salivation: prior to dosing
32 Salivation: prior to dosing 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Efflux of the dosing solution 38 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing 40 Rooting: post dosing 41 Salivation: prior to dosing 42 Rooting: post dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Rooting: post dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing			30	Salivation: prior to dosing
Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Salivation: prior to dosing 39 Efflux of the dosing solution 38 Salivation: prior to dosing 40 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Rooting: post dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Salivation: prior to dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing			31	Salivation: prior to dosing
34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Efflux of the dosing solution 38 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing			32	Salivation: prior to dosing
35 Salivation: prior to dosing 36 Salivation: prior to dosing 37 Salivation: prior to dosing 38 Efflux of the dosing solution 38 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing 41 Salivation: prior to dosing 42 Rooting: post dosing 43 Salivation: prior to dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing 46 Salivation: prior to dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing			33	Salivation: prior to dosing
36 Salivation: prior to dosing 37 Salivation: prior to dosing Efflux of the dosing solution 38 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing Rooting: post dosing 41 Salivation: prior to dosing Rooting: post dosing 43 Salivation: prior to dosing Rooting: post dosing 44 Salivation: prior to dosing Rooting: post dosing 45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 51 Rooting: post dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing			34	Salivation: prior to dosing
Salivation: prior to dosing Efflux of the dosing solution 38 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing Rooting: post dosing Rooting: post dosing 41 Salivation: prior to dosing Rooting: post dosing 43 Salivation: prior to dosing Rooting: post dosing 44 Salivation: prior to dosing Rooting: post dosing 45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing Sooting: post dosing 51 Rooting: post dosing 51 Rooting: post dosing 53 Salivation: prior to dosing			35	Salivation: prior to dosing
Efflux of the dosing solution 38 Salivation: prior to dosing 39 Salivation: prior to dosing 40 Salivation: prior to dosing Rooting: post dosing 41 Salivation: prior to dosing Rooting: post dosing 43 Salivation: prior to dosing Rooting: post dosing 44 Salivation: prior to dosing Rooting: post dosing 45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing Rooting: post dosing 40 Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing			36	Salivation: prior to dosing
Salivation: prior to dosing Salivation: prior to dosing Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing			37	Salivation: prior to dosing
Salivation: prior to dosing 40 Salivation: prior to dosing Rooting: post dosing 41 Salivation: prior to dosing Rooting: post dosing Rooting: post dosing 43 Salivation: prior to dosing Rooting: post dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing Footing: post dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing 57 Salivation: prior to dosing 58 Salivation: prior to dosing 59 Salivation: prior to dosing 50 Salivation: prior to dosing				Efflux of the dosing solution
40 Salivation: prior to dosing Rooting: post dosing 41 Salivation: prior to dosing Rooting: post dosing Rooting: post dosing Rooting: post dosing 43 Salivation: prior to dosing Rooting: post dosing 44 Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing			38	Salivation: prior to dosing
Rooting: post dosing 41 Salivation: prior to dosing Rooting: post dosing 43 Salivation: prior to dosing Rooting: post dosing Rooting: post dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			39	Salivation: prior to dosing
41 Salivation: prior to dosing Rooting: post dosing 43 Salivation: prior to dosing Rooting: post dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing Footing: post dosing Solivation: prior to dosing Footing: post dosing Salivation: prior to dosing			40	Salivation: prior to dosing
Rooting: post dosing 43 Salivation: prior to dosing Rooting: post dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing Rooting: post dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing Rooting: post dosing Rooting: post dosing Salivation: prior to dosing Rooting: post dosing Salivation: prior to dosing Footing: post dosing Salivation: prior to dosing				Rooting: post dosing
43 Salivation: prior to dosing Rooting: post dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing Rooting: post dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 51 Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			41	Salivation: prior to dosing
Rooting: post dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing Footing: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing Salivation: prior to dosing Salivation: prior to dosing				
Rooting: post dosing 44 Salivation: prior to dosing 45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing Footing: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing Salivation: prior to dosing Salivation: prior to dosing			43	Salivation: prior to dosing
45 Salivation: prior to dosing Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing Rooting: post dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing Footing: post dosing Salivation: prior to dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 51 Rooting: post dosing 51 Rooting: post dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing				
Rooting: post dosing 46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing Footing: post dosing 51 Rooting: post dosing 51 Rooting: post dosing 53 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			44	Salivation: prior to dosing
46 Salivation: prior to dosing Rooting: post dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 51 Rooting: post dosing 51 Rooting: prior to dosing 52 Salivation: prior to dosing 53 Salivation: prior to dosing 54 Salivation: prior to dosing 55 Salivation: prior to dosing 56 Salivation: prior to dosing			45	Salivation: prior to dosing
Rooting: post dosing 47 Salivation: prior to dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 51 Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing				Rooting: post dosing
47 Salivation: prior to dosing 48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 51 Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			46	Salivation: prior to dosing
48 Salivation: prior to dosing Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 51 Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing				Rooting: post dosing
Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			47	Salivation: prior to dosing
49 Salivation: prior to dosing Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 51 Rooting: prior to dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			48	Salivation: prior to dosing
Rooting: post dosing 50 Salivation: prior to dosing 51 Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing				Rooting: post dosing
50 Salivation: prior to dosing 51 Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			49	Salivation: prior to dosing
51 Rooting: post dosing 47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing				
47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			50	Salivation: prior to dosing
47 33 Salivation: prior to dosing 34 Salivation: prior to dosing 35 Salivation: prior to dosing 36 Salivation: prior to dosing			51	Rooting: post dosing
35 Salivation: prior to dosing 36 Salivation: prior to dosing		47		
36 Salivation: prior to dosing				Salivation: prior to dosing
· · · · · · · · · · · · · · · · · · ·			35	Salivation: prior to dosing
38 Salivation: prior to dosing				Salivation: prior to dosing
			38	Salivation: prior to dosing
42 Salivation: prior to dosing			42	Salivation: prior to dosing
50 Efflux of the dosing solution, small amount			50	Efflux of the dosing solution, small amount
54 33 Salivation: prior to dosing		54	33	Salivation: prior to dosing
37 Salivation: prior to dosing			37	Salivation: prior to dosing
Found dead after dosing				Found dead after dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 2 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
2	65	37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
		41	Salivation: prior to dosing
		44	Salivation: prior to dosing
		46	Salivation: prior to dosing
		50	Salivation: prior to dosing
	72	37	Salivation: prior to dosing
		39	Efflux of the dosing solution, slight
		41	Salivation: prior to dosing
		42	Salivation: prior to dosing
		43	Salivation: prior to dosing
			Rooting: post dosing
		44	Salivation: prior to dosing
		46	Salivation: prior to dosing
			Rooting: post dosing
		47	Salivation: prior to dosing
			Efflux of the dosing solution
			Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing
		50	Rooting: post dosing
	90	25	Efflux of the dosing solution
		39	Rooting: post dosing
	108	38	Salivation: prior to dosing
		39	Salivation: prior to dosing
		40	Salivation: prior to dosing
		41	Salivation: prior to dosing
		42	Salivation: prior to dosing
		43	Salivation: prior to dosing
		44	Salivation: prior to dosing
		45	Salivation: prior to dosing
		46	Salivation: prior to dosing
		47	Salivation: prior to dosing
		49	Salivation: prior to dosing
		50	Salivation: prior to dosing
		51	Salivation: prior to dosing
	126	38	Salivation: prior to dosing
		39	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 3 of 38)

Group ^a	Animal ID	Postnatal Day	Clinical Observation
2	133	33	Salivation: prior to dosing
		34	Salivation: prior to dosing
		35	Salivation: prior to dosing
		37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
			Rooting: post dosing
		40	Salivation: prior to dosing
			Rooting: post dosing
		43	Salivation: prior to dosing
			Rooting: post dosing
		44	Salivation: prior to dosing
		50	Rooting: post dosing
		52	Rooting: post dosing
3	5	34	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		45	Salivation: prior to dosing
	40	46	Rooting: post dosing
	13	24	Efflux of the dosing solution
		31	Salivation: prior to dosing
		33	Salivation: prior to dosing
		00	Rooting: post dosing
		36	Rooting: post dosing
		37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
			Efflux of the dosing solution Rooting: post dosing
		40	Salivation: prior to dosing
		41	Salivation: prior to dosing Salivation: prior to dosing
		71	Rooting: post dosing
		42	Salivation: prior to dosing
		44	Salivation: prior to dosing
		45	Salivation: prior to dosing
		-10	Rooting: post dosing
		46	Salivation: prior to dosing
		.0	Rooting: post dosing
		47	Salivation: prior to dosing
		••	Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 4 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
		•	
3	13	48	Salivation: prior to dosing
		40	Rooting: post dosing
		49	Salivation: prior to dosing
		50	Rooting: post dosing
		50	Salivation: prior to dosing
	40	20	Rooting: post dosing
	19	29	Salivation: prior to dosing
		20	Rooting: post dosing
		30	Salivation: prior to dosing
		32	Salivation: prior to dosing
		33	Salivation: prior to dosing
		34	Rooting: post dosing
		34	Rooting: prior to dosing
			Salivation: prior to dosing
		35	Rooting: post dosing
		33	Rooting: prior to dosing Salivation: prior to dosing
			Rooting: post dosing
		37	Salivation: prior to dosing
		31	Rooting: post dosing
		38	Salivation: prior to dosing
		30	Rooting: post dosing
		39	Salivation: prior to dosing
		40	Salivation: prior to dosing
		40	Rooting: post dosing
		41	Salivation: prior to dosing
		42	Salivation: prior to dosing
		43	Salivation: prior to dosing
		10	Rooting: post dosing
		44	Salivation: prior to dosing
		• •	Rooting: post dosing
		45	Salivation: prior to dosing
			Rooting: post dosing
		46	Salivation: prior to dosing
			Rooting: post dosing
		47	Salivation: prior to dosing
			Rooting: post dosing
		48	Salivation: prior to dosing
			Rooting: post dosing
		49	Salivation: prior to dosing
			Rooting: post dosing
		51	Salivation: prior to dosing
	28	37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 5 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
Огоар	Allillalib	Day	Cilifical Observation
3	28	41	Salivation: prior to dosing
		42	Salivation: prior to dosing
			Rooting: post dosing
		44	Salivation: prior to dosing
			Rooting: post dosing
		45	Salivation: prior to dosing
		49	Salivation: prior to dosing
		50	Salivation: prior to dosing
		51	Salivation: prior to dosing
	37	30	Rooting: post dosing
		32	Salivation: prior to dosing
		33	Salivation: prior to dosing
		34	Salivation: prior to dosing
		35	Salivation: prior to dosing
		36	Salivation: prior to dosing
		37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		20	Rooting: post dosing
		39	Salivation: prior to dosing
		41	Rooting: post dosing Salivation: prior to dosing
		42	
		43	Salivation: prior to dosing Salivation: prior to dosing
		44	Salivation: prior to dosing Salivation: prior to dosing
		77	Rooting: post dosing
		45	Salivation: prior to dosing
		46	Salivation: prior to dosing
		48	Salivation: prior to dosing
			Rooting: post dosing
		49	Salivation: prior to dosing
			Rooting: post dosing
		50	Salivation: prior to dosing
			Rooting: post dosing
		51	Salivation: prior to dosing
	46	33	Rooting: post dosing
		34	Rooting: post dosing
		35	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		42	Salivation: prior to dosing
		43	Salivation: prior to dosing
		44	Rooting: post dosing
		4-	Salivation: post dosing
		45 46	Salivation: prior to dosing
		46	Salivation: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 6 of 38)

		Destertel	
Craund	A raise al ID	Postnatal	Clinical Observation
Group ^a	Animal ID	Day	Clinical Observation
3	46	47	Rooting: post dosing
			Salivation: post dosing
		48	Salivation: prior to dosing
			Rust colored fur: chin
			Rooting: post dosing
		49	Salivation: prior to dosing
			Rust colored fur: chin
			Rooting: post dosing
		50	Salivation: prior to dosing
			Rust colored fur: chin
			Rooting: post dosing
	64	45	Salivation: prior to dosing
	73	38	Rooting: post dosing
		41	Rooting: post dosing
		43	Salivation: prior to dosing
			Rooting: post dosing
		44	Salivation: prior to dosing
			Rooting: post dosing
		45	Salivation: prior to dosing
			Rooting: prior to dosing
		46	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing
	82	37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
		40	Salivation: prior to dosing
		4.4	Rooting: post dosing
		41	Salivation: prior to dosing
		40	Rooting: post dosing
		42	Salivation: prior to dosing
		40	Rooting: post dosing
		43	Salivation: prior to dosing
		1.1	Rooting: post dosing
		44	Salivation: prior to dosing
		45	Rooting: post dosing
		40	Salivation: prior to dosing
		46	Rooting: post dosing
		46	Salivation: prior to dosing
		47	Rooting: post dosing
		4/	Salivation: prior to dosing
		40	Rooting: post dosing
		48	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 7 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
		•	
3	82	49	Salivation: prior to dosing
		50	Rooting: post dosing
		52	Salivation: prior to dosing
	04	20	Rooting: post dosing
	91	32	Rooting: post dosing
		33	Rooting: post dosing
		34	Rooting: post dosing
		35 37	Rooting: post dosing
		3 <i>1</i> 38	Rooting: post dosing
		30	Salivation: prior to dosing
		40	Rooting: post dosing Rooting: post dosing
		40 42	Salivation: prior to dosing
		44	Rooting: post dosing
		45	Salivation: prior to dosing
		40	Rooting: post dosing
		48	Rooting: post dosing
		52	Salivation: prior to dosing
		02	Rooting: post dosing
	100	32	Rooting: post dosing
		35	Rooting: post dosing
		43	Salivation: prior to dosing
			Efflux of the dosing solution
		44	Rooting: post dosing
		50	Efflux of the dosing solution
	109	32	Rooting: post dosing
		35	Salivation: prior to dosing
		36	Salivation: prior to dosing
		37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
		41	Salivation: prior to dosing
		42	Salivation: prior to dosing
			Rooting: post dosing
		43	Salivation: prior to dosing
			Rooting: post dosing
		44	Rooting: post dosing
		45	Salivation: prior to dosing
		49	Rooting: post dosing
		50	Rooting: post dosing
		51	Rooting: post dosing
		52	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 8 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
4	20	26	Injury of the left rear leg, swelling of the left metatarsal area, possible fracture but not evident
		27	Injury of the left rear leg, swelling of the left metatarsal area, possible fracture but not evident
		28	Injury of the left rear leg, swelling of the left metatarsal area, possible fracture but not evident
		29	Injury of the left rear leg, increased swelling of the left metatarsal area, possible fracture but not evident Euthanized after dosing due to a leg injury
	81	43	Rust colored fur: back
	•	44	Rust colored fur: back
	110	29	Rooting: post dosing
			Salivation: prior to dosing
		31	Salivation: prior to dosing
		32	Salivation: prior to dosing
			Rooting: post dosing
		34	Salivation: prior to dosing
		35	Salivation: prior to dosing
			Rooting: post dosing
		37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
		40	Salivation: prior to dosing
		41	Salivation: prior to dosing
		42	Salivation: prior to dosing
		43 45	Salivation: prior to dosing
		45 47	Salivation: prior to dosing
		47 49	Salivation: prior to dosing Salivation: prior to dosing
	117	34	Chromodacryorrhea: nose
5	7	35	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
	21	37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		43	Rooting: post dosing
		45	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 9 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
5	57	26	Efflux of the dosing solution
		35	Rooting: post dosing
		43	Efflux of the dosing solution, slight
	62	35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		40	Salivation: prior to dosing
		49	Rooting: post dosing
	80	41	Rooting: post dosing
	93	35	Rooting: post dosing
	111	35	Rooting: post dosing
		44	Chromodacryorrhea: eye, right
		45	Chromodacryorrhea: eye, right
		46	Chromodacryorrhea: eye, right
		47	Chromodacryorrhea: eye, right
		48	Chromodacryorrhea: eye, right, gone
	116	43	Rooting: post dosing
		45	Rooting: post dosing
	132	29	Rooting: post dosing
	.02	31	Salivation: prior to dosing
		•	Rooting: post dosing
6	25	39	Efflux of the dosing solution, slight
	40	41	Rooting: post dosing
		44	Rooting: post dosing
	43	43	Rooting: post dosing
	61	35	Rooting: post dosing
		46	Sore(s): neck
		47	Sore(s): neck
		48	Sore(s): neck
		49	Sore(s): neck
		50	Sore(s): neck, healed
	76	37	Salivation: prior to dosing
		38	Salivation: prior to dosing
	97	36	Salivation: prior to dosing
	- -	43	Rooting: post dosing
	112	50	Animal not dosed, no dosing solution available
	130	50	Animal not dosed, no dosing solution available

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 10 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
7	9	29	Salivation: prior to dosing
•	Ü	30	Salivation: prior to dosing
		32	Salivation: prior to dosing
		33	Salivation: prior to dosing
		34	Salivation: prior to dosing
		37	Salivation: prior to dosing
		07	Rooting: post dosing
		38	Salivation: prior to dosing
		00	Rooting: post dosing
		39	Salivation: prior to dosing
			Rooting: post dosing
		40	Salivation: prior to dosing
		-	Rooting: post dosing
		41	Salivation: prior to dosing
			Rooting: post dosing
		44	Salivation: prior to dosing
		45	Salivation: prior to dosing
	42	34	Salivation: prior to dosing
		35	Salivation: prior to dosing
		36	Salivation: prior to dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
		40	Salivation: prior to dosing
		43	Salivation: prior to dosing
		44	Salivation: prior to dosing
	60	37	Salivation: prior to dosing
		38	Salivation: prior to dosing
		40	Salivation: prior to dosing
		45	Salivation: prior to dosing
		51	Salivation: prior to dosing
	77	25	Efflux of the dosing solution
	78	29	Salivation: prior to dosing
			Efflux of the dosing solution
		38	Efflux of the dosing solution, slight
	0.5	40	Rooting: post dosing
	95	44	Rooting: post dosing
	96	30	Salivation: prior to dosing
		39	Salivation: prior to dosing
	440	41	Salivation: prior to dosing
	113	25	Efflux of the dosing solution Piloerection
		26	Rooting: post dosing
		45	Rooting: post dosing
		46	Efflux of the dosing solution
			Rooting: post dosing
		49	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 11 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
8	31	34	Chromodacryorrhea: nose
	121	23	Efflux of the dosing solution
	134	23	Efflux of the dosing solution
9	3	23	Efflux of the dosing solution
	71	44	Rooting: post dosing
		45	Rooting: post dosing
		48	Rooting: post dosing
	89	30	Rooting: post dosing
10	217	31	Found dead prior to dosing
	217	J1	Tourid dead prior to dosing
11	170	32	Rooting: post dosing
	173	30	Rough coat
	183	39	Rooting: post dosing
	234	38	Efflux of the dosing solution
	237	35	Salivation: prior to dosing
12	138	32	Rooting: post dosing
		34	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
	454	39	Rooting: post dosing
	151	41	Rooting: post dosing
	169	33 34	Rooting: post dosing
		3 4 36	Rooting: post dosing Rooting: post dosing
		39	Rooting: post dosing Rooting: post dosing
		41	Rooting: post dosing Rooting: post dosing
		43	Rooting: post dosing Rooting: post dosing
		45 45	Rooting: post dosing Rooting: post dosing
		46	Rooting: post dosing
		49	Rooting: post dosing
	174	34	Rooting: post dosing
		41	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 12 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
· · · · · · · · · · · · · · · · · · ·		•	
12	184	31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		45	Rooting: post dosing
		48	Rooting: post dosing
	197	30	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		44	Rooting: post dosing
		45	Efflux of the dosing solution
			Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		50	Efflux of the dosing solution
			Rooting: post dosing
	202	30	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
	215	30	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		44	Rooting: post dosing
	_	47	Rooting: post dosing
	220	30	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		37	Rooting: post dosing
		38	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 13 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
•		•	
12	220	44	Salivation: prior to dosing
		45	Rooting: post dosing
		45 47	Rooting: post dosing
		47	Rooting: post dosing
	000	48	Salivation: prior to dosing
	233	33	Rooting: post dosing
		34	Rooting: post dosing
		41 47	Rooting: post dosing
	220		Rooting: post dosing
	238	33	Rooting: post dosing
		48 51	Rooting: post dooing
	251	30	Rooting: post dosing Rooting: post dosing
	231	32	Rooting: post dosing Rooting: post dosing
		33	- · · · · · · · · · · · · · · · · · · ·
		33 37	Rooting: post dosing Rooting: post dosing
		38	Rooting: post dosing Rooting: post dosing
		47	Rooting: post dosing Rooting: post dosing
		48	Rooting: post dosing Rooting: post dosing
	256	33	Rooting: post dosing Rooting: post dosing
	230	37	Rooting: post dosing
		38	Rooting: post dosing Rooting: post dosing
		39	Rooting: post dosing Rooting: post dosing
		48	Rooting: post dosing
	268	33	Rooting: post dosing
	200	47	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing
		50	Found dead prior to dosing
13	141	31	Rooting: post dosing
		34	Salivation: prior to dosing
			Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		46	Rooting: post dosing
		48	Rooting: post dosing
	148	31	Rooting: post dosing
		35	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		46	Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 14 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
			Cilifical Observation
13	159	27	Rooting: post dosing
		28	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Salivation: prior to dosing
		41	Salivation: prior to dosing
			Rooting: post dosing
		42	Salivation: prior to dosing
	166	27	Rooting: post dosing
		28	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		45	Rooting: post dosing
		46	Rooting: post dosing
	177	36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		45	Rooting: post dosing
	407	46	Rooting: post dosing
	187	34	Salivation: prior to dosing
		35	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
	404	39	Rooting: post dosing
	194	37	Rooting: post dosing
		38	Rooting: post dosing
		39 45	Rooting: post dosing
	205	45 24	Rooting: post dosing
	205 212	24	Efflux of the dosing solution
		27	Rooting: post dosing
	223	32	Rooting: post dosing
		33	Rooting: post dosing
		37	Rooting: post desing
		38 44	Rooting: post dosing
		44 45	Rooting: post desing
		45 46	Rooting: post dosing
	000	46 27	Rooting: post dosing
	230	37 38	Rooting: post dosing
		აი	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 15 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
13	241	30	Rooting: post dosing
		34	Rough coat
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
	248	39	Rooting: post dosing
		40	Rooting: post dosing
		41	Salivation: prior to dosing
		44	Salivation: prior to dosing
		50	Rooting: post dosing
	259	37	Rooting: post dosing
	265	27	Rooting: post dosing
		31	Rooting: prior to dosing
		47	Rooting: post dosing
14	142	27	Rooting: post dosing
		28	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		34	Salivation: prior to dosing
			Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		42	Rooting: post dosing
		46	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing
	4.47	50	Rooting: post dosing
	147	26	Rooting: post dosing
		27	Rooting: post dosing
		28	Rooting: post dosing
		30	Rough coat
		31	Rooting: post dosing
		32 35	Rooting: post dosing
		35 38	Rooting: post dosing Rooting: post dosing
		36 39	Rooting: post dosing Rooting: post dosing
		39 40	Salivation: prior to dosing
		40 47	Rooting: post dosing
		41	Nooting. post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 16 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
·	400		D (1)
14	160	26	Rooting: post dosing
		27	Salivation: prior to dosing
		00	Rooting: post dosing
		28	Salivation: prior to dosing
		29	Rough coat
		30	Rough coat
		32	Salivation: prior to dosing
			Rough coat
		33	Salivation: prior to dosing
			Rooting: post dosing
			Rough coat
		34	Salivation: prior to dosing
			Rough coat
			Rooting: post dosing
		35	Salivation: prior to dosing
			Rough coat
		36	Salivation: prior to dosing
			Rough coat
		37	Salivation: prior to dosing
			Rough coat
			Rooting: post dosing
		38	Salivation: prior to dosing
			Rough coat
			Rooting: post dosing
		39	Salivation: prior to dosing
			Rough coat
			Rooting: post dosing
		40	Salivation: prior to dosing
			Rough coat
		41	Salivation: prior to dosing
			Rooting: post dosing
		42	Salivation: prior to dosing
			Rooting: post dosing
		43	Salivation: prior to dosing
		44	Salivation: prior to dosing
		45	Salivation: prior to dosing
			Rooting: post dosing
		46	Salivation: prior to dosing
			Rooting: post dosing
		47	Salivation: prior to dosing
			Rooting: post dosing
		48	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 17 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
			Calibration, union to desire
14	160	49 50	Salivation: prior to dosing
		50	Salivation: prior to dosing
		51	Rooting: post dosing Salivation: prior to dosing
	165	26	Rooting: post dosing
	103	20 27	Rooting: post dosing Rooting: post dosing
		28	Rooting: post dosing Rooting: post dosing
		32	Rooting: post dosing Rooting: post dosing
		33	Rooting: post dosing Rooting: post dosing
		34	Salivation: prior to dosing
		34	Rooting: post dosing
		35	Rooting: post dosing Rooting: post dosing
		36	Piloerection
		00	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
		43	Rooting: post dosing
		45	Rooting: post dosing
		48	Rooting: post dosing
	178	26	Rooting: post dosing
		27	Rooting: post dosing
		28	Rooting: post dosing
		33	Rooting: post dosing
		38	Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
		43	Rooting: post dosing
		48	Rooting: post dosing
	188	34	Salivation: prior to dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		44	Rooting: post dosing
	193	26	Rooting: post dosing
		27	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 18 of 38)

Group ^a Animal ID Day Clinical Observation 14 193 39 Rooting: post dosing 41 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 49 Salivation: prior to dosing 49 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Salivation: prior to dosing 49 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Salivation: prior to dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing			Postnatal	
14 193 39 Rooting: post dosing 46 Rooting: post dosing 48 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Salivation: prior to dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing	Grouna	Animal ID		Clinical Observation
41 Rooting: post dosing 48 Rooting: post dosing 49 Salivation: prior to dosing Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 40 Rooting: post dosing			Бау	Clinical Observation
46 Rooting: post dosing Rooting: post dosing Rooting: post dosing Rooting: post dosing 49 Salivation: prior to dosing 31 Rooting: post dosing 32 Rooting: post dosing	14	193		
48 Salivation: prior to dosing Rooting: post dosing salivation: prior to dosing salivation: post dosing salivation: prior to dosing salivation: post dosing salivation: prior to dosing salivation: prior dosing salivation: post dosing salivation: post dosing salivation: post dosing salivation: prior dosing sal				
Rooting: post dosing 49 Salivation: prior to dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Salivation: prior to dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Salivation: prior to dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing				
49 Salivation: prior to dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Salivation: prior to dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Salivation: prior to dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing			48	
206 31 Rooting: post dosing 32 Rooting: post dosing 33 Salivation: prior to dosing Rooting: post dosing 34 Salivation: prior to dosing Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 51 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing				
32 Rooting: post dosing 33 Salivation: prior to dosing Rooting: post dosing				
Salivation: prior to dosing Rooting: post dosing		206		
Rooting: post dosing Salivation: prior to dosing Rooting: post dosing				
Salivation: prior to dosing Rooting: post dosing			33	
Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Salivation: prior to dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing			0.4	
35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing			34	
36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 48 Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 52 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing 55 Rooting: post dosing 56 Rooting: post dosing 57 Rooting: post dosing 58 Rooting: post dosing 59 Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 52 Rooting: post dosing 53 Rooting: post dosing 54 Rooting: post dosing 55 Rooting: post dosing 56 Rooting: post dosing 57 Rooting: post dosing 58 Rooting: post dosing 59 Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 52 Rooting: post dosing 53 Rooting: post dosing 54 Rooting: post dosing 55 Rooting: post dosing 56 Rooting: post dosing 57 Rooting: post dosing 58 Rooting: post dosing 59 Rooting: post dosing 60 Rooting: post dosing 61 Rooting: post dosing 62 Rooting: post dosing 63 Rooting: post dosing 64 Rooting: post dosing 65 Rooting: post dosing 66 Rooting: post dosing 67 Rooting: post dosing			0.5	
37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 41 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing				
38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Salivation: prior to dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing				
40 Rooting: post dosing 41 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 48 Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 51 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing				
41 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing 48 Rooting: post dosing 49 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing				
44 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 48 Rooting: post dosing 48 Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 52 Rooting: post dosing 53 Rooting: post dosing 54 Salivation: prior to dosing 55 Rooting: post dosing 56 Rooting: post dosing 57 Rooting: post dosing 58 Rooting: post dosing 59 Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 52 Rooting: post dosing 53 Rooting: post dosing 54 Rooting: post dosing 55 Rooting: post dosing 56 Rooting: post dosing 57 Rooting: post dosing 58 Rooting: post dosing 59 Rooting: post dosing 60 Rooting: post dosing 61 Rooting: post dosing 62 Rooting: post dosing 63 Rooting: post dosing 64 Rooting: post dosing				
45 Rooting: post dosing 46 Rooting: post dosing 48 Salivation: prior to dosing 48 Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 211 26 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing				
46 Rooting: post dosing 48 Salivation: prior to dosing Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 51 Rooting: post dosing 211 26 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing				
48 Salivation: prior to dosing Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 211 26 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing				
Rooting: post dosing 50 Rooting: post dosing 51 Rooting: post dosing 211 26 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing				
50 Rooting: post dosing 51 Rooting: post dosing 211 26 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 30 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing			40	
51 Rooting: post dosing 26 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 46 Rooting: post dosing 47 Rooting: post dosing			50	
211 26 Rooting: post dosing 27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 39 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 42 Rooting: post dosing 43 Rooting: post dosing 44 Rooting: post dosing 45 Rooting: post dosing				
27 Rooting: post dosing 31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing		211		
31 Rooting: post dosing 32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing		211		
32 Rooting: post dosing 33 Rooting: post dosing 34 Salivation: prior to dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing				
33 Rooting: post dosing 34 Salivation: prior to dosing Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing				
34 Salivation: prior to dosing Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing				
Rooting: post dosing 35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing				
35 Rooting: post dosing 36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing			•	
36 Rooting: post dosing 37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing			35	
37 Rooting: post dosing 38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing				
38 Rooting: post dosing 40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing				
40 Rooting: post dosing 41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing				
41 Rooting: post dosing 45 Rooting: post dosing 47 Rooting: post dosing			40	- · · · · · · · · · · · · · · · · · · ·
47 Rooting: post dosing			41	
47 Rooting: post dosing				
			50	
51 Rooting: post dosing				
224 31 Rooting: post dosing		224		
229 26 Rooting: post dosing		229		
27 Rooting: post dosing			27	Rooting: post dosing
33 Salivation: prior to dosing			33	
Rooting: post dosing				Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 19 of 38)

0		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
14	229	36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		40	Salivation: prior to dosing
			Rooting: post dosing
		41	Salivation: prior to dosing
			Rooting: post dosing
		44	Rooting: post dosing
		45	Rooting: post dosing
		47	Salivation: prior to dosing
		48	Salivation: prior to dosing
		50	Salivation: prior to dosing
		51	Salivation: prior to dosing
		52	Salivation: prior to dosing
	242	25	Efflux of the dosing solution
		26	Rooting: post dosing
		27	Rooting: post dosing
		34	Salivation: prior to dosing
			Rooting: post dosing
		36	Salivation: prior to dosing
		37	Found dead prior to dosing
	247	25	Salivation: prior to dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
		46	Rooting: post dosing
	000	47	Rooting: post dosing
	260	26	Rooting: post dosing
		27 32	Rooting: post dosing
		32	Salivation: prior to dosing Rooting: post dosing
		34	Salivation: prior to dosing
		37	Rooting: post dosing
		38	Salivation: prior to dosing
		39	Salivation: prior to dosing
		40	Salivation: prior to dosing
		40	Rooting: post dosing
		41	Salivation: prior to dosing
		• •	Rooting: post dosing
		45	Rooting: post dosing
		48	Salivation: prior to dosing
		-	Rooting: post dosing
		49	Salivation: prior to dosing
	264	34	Salivation: prior to dosing
		36	Salivation: prior to dosing
		37	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period $\,$ (page 20 of 38)

Group ^a	Animal ID	Postnatal Day	Clinical Observation
14	264	38	Salivation: prior to dosing
			Rooting: post dosing
		40	Salivation: prior to dosing
		41	Salivation: prior to dosing
		45	Rooting: post dosing
		48	Salivation: prior to dosing
		4.0	Rooting: post dosing
		49	Salivation: prior to dosing
		50	Salivation: prior to dosing
		51 50	Salivation: prior to dosing
		52	Salivation: prior to dosing
15	139	31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		34	Rooting: post dosing
		38	Salivation: prior to dosing
		40	Rooting: post dosing
		40	Salivation: prior to dosing
		44	Rooting: post dosing
		41	Salivation: prior to dosing
		40	Rooting: post dosing
		42	Salivation: prior to dosing
		43	Rooting: post dosing Salivation: prior to dosing
		43	Rooting: post dosing
		44	Salivation: prior to dosing
		45	Salivation: prior to dosing
		46	Salivation: prior to dosing
		10	Rooting: post dosing
		47	Salivation: prior to dosing
		48	Salivation: prior to dosing
		-	Rooting: post dosing
		49	Salivation: prior to dosing
		-	Rooting: post dosing
		50	Salivation: prior to dosing
			Rooting: post dosing
	150	33	Rooting: post dosing
		34	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 21 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
15	150	43	Rooting: post dosing
		44	Rooting: post dosing
		45	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		49 50	Rooting: post dosing
	157	50	Rooting: post dosing
	157	31 32	Rooting: post dosing
		32 34	Rooting: post dosing Rooting: post dosing
		3 4 35	
		35 37	Rooting: post dosing Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		41	Rooting: post dosing
		42	Salivation: prior to dosing
		43	Salivation: prior to dosing
		40	Rooting: post dosing
		44	Rooting: post dosing
		45	Salivation: prior to dosing
		.0	Rooting: post dosing
		46	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing
		50	Rooting: post dosing
	168	31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		34	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
		43	Rooting: post dosing
		45	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 22 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
15	175	31	Rooting: post dosing
13	173	33	Rooting: post dosing
		34	Rooting: post dosing
		41	Rooting: post dosing
		43	Rooting: post dosing
		45	Rooting: post dosing
		49	Rooting: post dosing
	185	30	Rooting: post dosing
		33	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		44	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
	196	33	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
		44	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		51	Rooting: post dosing
	203	33	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		44	Rooting: post dosing
		51	Salivation: post dosing
			Rooting: post dosing
	214	32	Rooting: post dosing
		33	Rooting: post dosing
		34	Rooting: post dosing
		37	Rooting: post dosing
		39	Rooting: post dosing
		44	Rooting: post dosing
		45	Salivation: prior to dosing
		46	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 23 of 38)

		Dantantal	
Groupa	Animal ID	Postnatal	Clinical Observation
Groups	Animal ID	Day	Clinical Observation
15	221	31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
		44	Rooting: post dosing
		45	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		51	Rooting: post dosing
	232	30	Rooting: post dosing
		31	Rooting: post dosing
		33	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		51	Rooting: post dosing
	239	30	Salivation: prior to dosing
		32	Salivation: prior to dosing
		33	Salivation: prior to dosing
			Rooting: post dosing
		37	Salivation: prior to dosing
			Rooting: post dosing
		38	Salivation: prior to dosing
			Rooting: post dosing
		39	Salivation: prior to dosing
		4.0	Rooting: post dosing
		40	Salivation: prior to dosing
		40	Rooting: post dosing
		43	Salivation: prior to dosing
		44	Salivation: prior to dosing
		45	Rooting: post dosing
		45	Salivation: prior to dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
	050	51	Rooting: post dosing
	250	33	Rooting: post dosing
		37	Rooting: post dosing
		39	Rooting: post dosing
		40 51	Rooting: post dosing
	0.57	51	Rooting: post dosing
	257	30	Salivation: prior to dosing
		24	Rooting: post dosing
		31	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 24 of 38)

Group ^a	Animal ID	Postnatal	Clinical Observation
Groups	Animand	Day	Cililical Observation
15	257	32	Rooting: post dosing
		33	Rooting: post dosing
		34	Salivation: prior to dosing
		37	Salivation: prior to dosing
			Rooting: post dosing
		38	Salivation: prior to dosing
			Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		43	Salivation: prior to dosing
		44	Salivation: prior to dosing
			Rooting: post dosing
		45	Rooting: post dosing
		46	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		51	Rooting: post dosing
	267	30	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		40	Rooting: post dosing
		41	Salivation: prior to dosing
		42	Salivation: prior to dosing
		43	Salivation: prior to dosing
		44	Salivation: prior to dosing
		45	Salivation: prior to dosing
		40	Rooting: post dosing
		46	Salivation: prior to dosing
		47	Salivation: prior to dosing
		40	Rooting: post dosing
		48	Salivation: prior to dosing
		51	Salivation: prior to dosing
16	140	25	Efflux of the dosing solution
		27	Rooting: post dosing
		28	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
			Salivation: prior to dosing
		33	Salivation: prior to dosing
			Rooting: post dosing
		34	Salivation: prior to dosing
		35	Rooting: post dosing
		36	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 25 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
16	140	37	Posting: post desing
10	140	3 <i>1</i> 38	Rooting: post dosing Rooting: post dosing
		30	Salivation: prior to dosing
		39	Salivation: prior to dosing
		33	Rooting: post dosing
		40	Salivation: prior to dosing
		40	Rooting: post dosing
		41	Rooting: post dosing Rooting: post dosing
		49	Rooting: post dosing Rooting: post dosing
	149	27	Rooting: post dosing
	1 10	28	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		34	Rooting: post dosing
		35	Rooting: post dosing
		38	Rooting: post dosing
		40	Salivation: prior to dosing
			Rooting: post dosing
		41	Rooting: post dosing
			Difficult to dose
		42	Rooting: post dosing
		45	Rooting: post dosing
	158	27	Rooting: post dosing
		28	Rooting: post dosing
		31	Salivation: prior to dosing
			Rooting: post dosing
		32	Rooting: post dosing
		33	Salivation: prior to dosing
		07	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Salivation: prior to dosing
		42	Rooting: post dosing
		44	Salivation: prior to dosing Rooting: post dosing
		43	Salivation: prior to dosing
		45	Salivation: prior to dosing
		-10	Rooting: post dosing
		46	Salivation: prior to dosing
		47	Salivation: prior to dosing
		••	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 26 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
16	158	48	Salivation: prior to dosing
			Rooting: post dosing
		49	Salivation: prior to dosing
			Rooting: post dosing
		50	Rooting: post dosing
		51	Rooting: post dosing
	167	27	Rooting: post dosing
		28	Rooting: post dosing
		33	Rooting: post dosing
		34	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
		43	Rooting: post dosing
		45	Rooting: post dosing
	176	26	Rooting: post dosing
		27	Rooting: post dosing
		28	Rooting: post dosing
		29	Rooting: post dosing
		30	Salivation: prior to dosing
		31	Rooting: post dosing
		33	Rooting: post dosing
		34	Salivation: prior to dosing
			Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Salivation: prior to dosing
			Rooting: post dosing
		41	Salivation: prior to dosing
			Rooting: post dosing
		42	Salivation: prior to dosing
			Rooting: post dosing
		44	Rooting: post dosing
		45	Rooting: post dosing
		46	Rooting: post dosing
		50	Rooting: post dosing
	186	25	Rooting: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
		30	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 27 of 38)

		Dootsotol	
Group ^a	Animal ID	Postnatal	Clinical Observation
Gloup	Allillal ID	Day	Cililical Observation
16	186	31	Rooting: post dosing
		32	Salivation: prior to dosing
			Rooting: post dosing
		33	Salivation: prior to dosing
		34	Rooting: post dosing
		35	Rooting: post dosing
		37	Rooting: post dosing
		38	Salivation: prior to dosing
			Rooting: post dosing
		39	Rooting: post dosing
		40	Salivation: prior to dosing
		42	Salivation: prior to dosing
		44	Salivation: prior to dosing
			Rooting: post dosing
		45	Salivation: prior to dosing
		46	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		50	Rooting: post dosing
	195	25	Rooting: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
		30	Rooting: post dosing
		31	Rooting: post dosing
		32	Salivation: prior to dosing
			Rooting: post dosing
		33	Rooting: post dosing
		34	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Salivation: prior to dosing
		0.	Rooting: post dosing
		38	Salivation: prior to dosing
			Rooting: post dosing
		39	Rooting: post dosing
		41	Rooting: post dosing
		44	Rooting: post dosing
		45	Rooting: post dosing Rooting: post dosing
		46	Rooting: post dosing
		47	Rooting: post dosing Rooting: post dosing
		48	Rooting: post dosing
	204	26	Rooting: post dosing Rooting: post dosing
	207	27	Rooting: post dosing Rooting: post dosing
		30	Rooting: post dosing Rooting: post dosing
		31	Rooting: post dosing Rooting: post dosing
		32	Rooting: post dosing Rooting: post dosing
		JZ	Nothing, post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 28 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
16	204	33	Rooting: post dosing
10	204	34	Rooting: post dosing Rooting: post dosing
		35	Rooting: post dosing Rooting: post dosing
		36	Rooting: post dosing Rooting: post dosing
		37	Rooting: post dosing Rooting: post dosing
		38	Rooting: post dosing Rooting: post dosing
		39	Rooting: post dosing Rooting: post dosing
		40	Salivation: prior to dosing
		40	Rooting: post dosing
		41	Rooting: post dosing Rooting: post dosing
		44	Rooting: post dosing Rooting: post dosing
		46	Rooting: post dosing Rooting: post dosing
		47	Rooting: post dosing Rooting: post dosing
		48	Rooting: post dosing Rooting: post dosing
		50	Rooting: post dosing Rooting: post dosing
		51	Rooting: post dosing Rooting: post dosing
	213	25	Rooting: post dosing
	210	26	Rooting: post dosing Rooting: post dosing
		27	Rooting: post dosing
		30	Salivation: prior to dosing
		00	Rooting: post dosing
		31	Rooting: post dosing
		32	Salivation: prior to dosing
		02	Rooting: post dosing
		33	Rooting: post dosing
		34	Rooting: post dosing
		36	Rooting: post dosing Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Salivation: prior to dosing
		• • •	Rooting: post dosing
		44	Salivation: prior to dosing
		• • •	Rooting: post dosing
		48	Rooting: post dosing
		50	Rooting: post dosing
	222	25	Rooting: post dosing
		26	Salivation: prior to dosing
		20	Rooting: post dosing
		27	Rooting: post dosing Rooting: post dosing
		29	Salivation: prior to dosing
		30	Rooting: post dosing
		31	Rooting: post dosing Rooting: post dosing
		32	Rooting: post dosing Rooting: post dosing
		33	Rooting: post dosing Rooting: post dosing
		JJ	Nothing. post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 29 of 38)

		Destertel	
Craund	A mimo al ID	Postnatal	Clinical Observation
Group ^a	Animal ID	Day	Clinical Observation
16	222	34	Rooting: post dosing
		35	Rooting: post dosing
		36	Salivation: prior to dosing
			Rooting: post dosing
		37	Salivation: prior to dosing
			Rooting: post dosing
		38	Salivation: prior to dosing
			Rooting: post dosing
		39	Rooting: post dosing
		40	Salivation: prior to dosing
			Rooting: post dosing
		41	Salivation: prior to dosing
			Rooting: post dosing
		44	Salivation: prior to dosing
			Rooting: post dosing
		45	Rooting: post dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
		50	Rooting: post dosing
	004	51	Rooting: post dosing
	231	26	Rooting: post dosing
		27	Rooting: post dosing
		30	Rooting: post dosing
		31	Salivation: prior to dosing
		20	Rooting: post dosing
		32	Rooting: post dosing
		33 34	Rooting: post dosing
		3 4 35	Rooting: post dosing
			Rooting: post dosing
		36 37	Rooting: post dosing
		37 38	Rooting: post dosing Rooting: post dosing
		39	Salivation: prior to dosing
		39	Rooting: post dosing
		40	Salivation: prior to dosing
		40	Rooting: post dosing
		41	Salivation: prior to dosing
		44	Rooting: post dosing
		45	Salivation: prior to dosing
		46	Salivation: prior to dosing
		47	Salivation: prior to dosing
		48	Salivation: prior to dosing
		.0	Rooting: post dosing
		51	Rooting: post dosing
		52	Salivation: prior to dosing
		<u> </u>	Jan. and it prior to dooning

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 30 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
· · · · · · · · · · · · · · · · · · ·		Бау	Cilindal Observation
16	240	25	Rooting: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
		29	Salivation: prior to dosing
		30	Salivation: prior to dosing
			Rooting: post dosing
		31	Salivation: prior to dosing
			Rooting: post dosing
		32	Salivation: prior to dosing
			Rooting: post dosing
		33	Salivation: prior to dosing
		0.4	Rooting: post dosing
		34	Rooting: post dosing
		35	Salivation: prior to dosing
		36	Rooting: post dosing
		37	Salivation: prior to dosing
		20	Rooting: post dosing
		38	Salivation: prior to dosing
		39	Rooting: post dosing
		39	Salivation: prior to dosing Rooting: post dosing
		40	5 1
		40	Salivation: prior to dosing Rooting: post dosing
		41	Salivation: prior to dosing
		71	Rooting: post dosing
		42	Salivation: prior to dosing
		12	Rooting: post dosing
		43	Salivation: prior to dosing
		44	Salivation: prior to dosing
			Rooting: post dosing
		45	Salivation: prior to dosing
			Rooting: post dosing
		46	Salivation: prior to dosing
		47	Salivation: prior to dosing
		50	Salivation: prior to dosing
		51	Salivation: prior to dosing
			Rooting: post dosing
	249	26	Rooting: post dosing
		27	Rooting: post dosing
		29	Salivation: prior to dosing
		30	Salivation: prior to dosing
			Rooting: post dosing
		31	Rooting: post dosing
		32	Salivation: prior to dosing
			Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 31 of 38)

		Dootnotel	
Group ^a	Animal ID	Postnatal Day	Clinical Observation
		•	
16	249	33	Salivation: prior to dosing
		00	Rooting: post dosing
		36	Rooting: post dosing
		37	Salivation: prior to dosing
		20	Rooting: post dosing
		38	Salivation: prior to dosing
		20	Rooting: post dosing
		39 40	Rooting: post dosing Salivation: prior to dosing
		42	Salivation: prior to dosing Salivation: prior to dosing
		42 44	Salivation: prior to dosing Salivation: prior to dosing
		44	Rooting: post dosing
		46	Salivation: prior to dosing
		47	Rooting: post dosing
		48	Rooting: post dosing
	258	26	Rooting: post dosing
	200	27	Rooting: post dosing
		30	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		34	Salivation: prior to dosing
			Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Salivation: prior to dosing
		44	Salivation: prior to dosing
			Rooting: post dosing
	266	26	Rooting: post dosing
		27	Rooting: post dosing
		30	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		34	Salivation: prior to dosing
		00	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		44 47	Rooting: post dosing
		47 49	Rooting: post dosing
		48 50	Rooting: post dosing Rooting: post dosing
		:0U	Nooting, post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 32 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
17	143	25	Ataxia: post dosing
	161	24	Prone: post dosing
		50	Salivation: prior to dosing
	164	27	Rooting: post dosing
		28	Rooting: post dosing
		35	Rough coat
			Rooting: post dosing
		36	Rough coat
		38	Rough coat
			Rooting: post dosing
		39	Rough coat
			Rooting: post dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
		49	Rooting: post dosing
	179	24	Ataxia: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing
	189	24	Ataxia: post dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
	192	33	Rough coat
		40	Rooting: post dosing
		41	Rooting: post dosing
		47	Rooting: post dosing
	207	23	Ataxia: post dosing
		24	Prone: post dosing
		33	Rough coat
			Rooting: post dosing
		34	Rough coat
			Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		41	Rooting: post dosing
	210	31	Rooting: post dosing
	_10	34	Rooting: post dosing Rooting: post dosing
		36	Rooting: post dosing Rooting: post dosing
		39	Salivation: prior to dosing
		40	Salivation: prior to dosing Salivation: prior to dosing
		70	Rooting: post dosing
		48	Salivation: prior to dosing
		70	Rooting: post dosing
			receiring, post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 33 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
17	225		Atoviou poet docing
17	225	23 26	Ataxia: post dosing Rooting: post dosing
		20 27	Rooting: post dosing Rooting: post dosing
		30	
		34	Rooting: post dosing
		3 4 35	Rooting: post dosing
		35 37	Rooting: post dosing Rooting: post dosing
		38	Rooting: post dosing Rooting: post dosing
		39	Rooting: post dosing Rooting: post dosing
		41	Rooting: post dosing Rooting: post dosing
	228	23	Prone: post dosing
	220	24	Prone: post dosing Prone: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
		31	Rooting: post dosing
		33	Rooting: post dosing
		34	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
	243	24	Prone: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
	246	23	Efflux of the dosing solution
		24	Ataxia: post dosing
		26	Salivation: prior to dosing
			Rooting: post dosing
		27	Salivation: prior to dosing
			Rooting: post dosing
		28	Rooting: post dosing
		30	Rooting: post dosing
		31	Rooting: post dosing
		32	Salivation: prior to dosing
			Rooting: post dosing
		33	Salivation: prior to dosing
			Rooting: post dosing
		34	Salivation: prior to dosing
			Rough coat
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Salivation: prior to dosing
		00	Rooting: post dosing
		38	Salivation: prior to dosing
		20	Rooting: post dosing
		39	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 34 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
•		•	
17	246	40	Salivation: prior to dosing
		4.4	Rooting: post dosing
		41	Salivation: prior to dosing
		40	Rooting: post dosing
		42	Rooting: post dosing
		43 45	Rooting: post dosing
		45 47	Rooting: post dosing Rooting: post dosing
		51	Rooting: post dosing Rooting: post dosing
	261	31	Rooting: post dosing Rooting: post dosing
	201	40	Salivation: prior to dosing
		40	Rooting: post dosing
	263	30	Rooting: post dosing Rooting: post dosing
	200	48	Rooting: post dosing
			g. poor dooning
18	144	24	Prone: post dosing
		25	Prone: post dosing
		27	Rooting: post dosing
		28	Rooting: post dosing
		32	Rooting: post dosing
		35	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		46	Rooting: post dosing
	4.45	48	Rooting: post dosing
	145	24	Ataxia: post dosing
		25	Prone: post dosing
		25 26	Prone: post dosing
		26 27	Rooting: post dosing
		27 28	Rooting: post dosing
		26 32	Rooting: post dosing
		32 37	Rough coat
		31	Rough coat Rooting: post dosing
		38	Rough coat
		50	Rooting: post dosing
		39	Rough coat
		00	Rooting: post dosing
		40	Rooting: post dosing Rooting: post dosing
		41	Rooting: post dosing Rooting: post dosing
		42	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 35 of 38)

		Postnatal	
Group ^a	Animal ID	Postnatai Day	Clinical Observation
·		Вау	Cimical Obscrivation
18	162	24	Prone: post dosing
		25	Prone: post dosing
		27	Rooting: post dosing
		28	Rooting: post dosing
		32	Salivation: prior to dosing
		33	Rooting: post dosing
		34	Salivation: prior to dosing
			Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Salivation: prior to dosing
			Rooting: post dosing
		39	Salivation: prior to dosing
			Rooting: post dosing
		40	Salivation: prior to dosing
			Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
		43	Rooting: post dosing
		49	Rooting: post dosing
	163	24	Ataxia: post dosing
			Prone: post dosing
		25	Prone: post dosing
		27	Rooting: post dosing
		28	Rooting: post dosing
		32	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		42	Rooting: post dosing
		43	Rooting: post dosing
	180	24	Prone: post dosing
		25	Prone: post dosing
		27	Rooting: post dosing
		28	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		42	Rooting: post dosing
		49	Rooting: post dosing

Table A-8. Individual F_1 Male Clinical Observations During the Post Wean Period (page 36 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
· · · · · · · · · · · · · · · · · · ·		Buy	Cililion Observation
18	181	24	Prone: post dosing
		25	Prone: post dosing
		27	Rooting: post dosing
		28	Rooting: post dosing
		32	Salivation: prior to dosing
		33	Salivation: prior to dosing
			Rooting: post dosing
		38	Salivation: prior to dosing
			Rooting: post dosing
		39	Salivation: prior to dosing
			Rooting: post dosing
		40	Salivation: prior to dosing
			Rooting: post dosing
		41	Rooting: post dosing
		42	Rooting: post dosing
		48	Rooting: post dosing
		49	Rooting: post dosing
	190	23	Ataxia: post dosing
			Prone: post dosing
		24	Prone: post dosing
		26	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Rooting: post dosing
		41	Rooting: post dosing
	191	23	Ataxia: post dosing
			Prone: post dosing
		24	Prone: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
		30	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rough coat
		34	Salivation: prior to dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 37 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
•	200	-	Drong, nost desing
18	208	23 24	Prone: post dosing
			Prone: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
		32	Rooting: post dosing
	000	47	Rooting: post dosing
	209	23	Ataxia: post dosing
		0.4	Prone: post dosing
		24	Prone: post dosing
		26	Salivation: prior to dosing
			Rooting: post dosing
		27	Salivation: prior to dosing
			Rooting: post dosing
		30	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		33	Rough coat
		34	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		40	Salivation: prior to dosing
		41	Salivation: prior to dosing
			Rooting: post dosing
		47	Rooting: post dosing
	226	23	Prone: post dosing
		24	Prone: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
		31	Rooting: post dosing
		32	Rooting: post dosing
		34	Rooting: post dosing
		35	Rooting: post dosing
		36	Rooting: post dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Rooting: post dosing
		41	Rooting: post dosing
		47	Rooting: post dosing
		50	Salivation: prior to dosing
	227	23	Prone: post dosing
		24	Prone: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing

Table A-8. Individual F₁ Male Clinical Observations During the Post Wean Period (page 38 of 38)

		Postnatal	
Group ^a	Animal ID	Day	Clinical Observation
18	244	23	Prone: post dosing
10	211	24	Prone: post dosing
		26	Rooting: post dosing
		27	Rooting: post dosing
		32	Rooting: post dosing
		37	Rooting: post dosing
	245	23	Prone: post dosing
		24	Prone: post dosing
		27	Salivation: prior to dosing
			Rooting: post dosing
		32	Salivation: prior to dosing
		33	Salivation: prior to dosing
			Rooting: post dosing
		34	Salivation: prior to dosing
			Rooting: post dosing
		35	Salivation: prior to dosing
		37	Rooting: post dosing
		38	Rooting: post dosing
		39	Salivation: prior to dosing
			Rooting: post dosing
		40	Salivation: prior to dosing
		47	Rooting: post dosing
	000	48	Salivation: prior to dosing
	262	23	Prone: post dosing
		24	Efflux of the dosing solution
		20	Prone: post dosing
		30	Right front leg: bruised, animal not using it
		31	Right front leg: bruised, animal using it a little
		32	Right front leg: bruised, animal using it
		27	Rooting: post dosing
		37 38	Rooting: post dosing
		30 39	Rooting: post dosing Rooting: post dosing
		39 40	Rooting: post dosing Right front paw: second digit missing
		40	Right front paw: second digit missing Right front paw: second digit missing
		41	Rooting: post dosing
		42	Right front paw: second digit missing
		43	Right front paw: second digit missing

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 6 is 30 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2.

Table A-9. Individual F₁ Male Preputial Separation Data (page 1 of 7)

Group ^a	Animal ID	Day of Acquisition ^b	Body Weight (g)
1	1 15 32	42 40 40	200.26 190.40 207.57
	33 50 51	43 40 48	223.55 211.21 270.36
	68 69 ^c 86 ^c	41	218.80
	87 104 105	40 40 39	233.18 228.57 209.51
	122 123 135 ⁰	42 42	224.12 216.45
2	4 18 ^d	43	191.47
	29 36	40 44	186.26 230.61
	47 54 ^e 65	41 44	200.10 227.40
	72 83 90	44 41 40	233.59 194.88 187.78
	101 108 119 ^C	43 44	226.23 229.11
	126 133	39 41	188.24 210.44
3	5	45	187.11
	13 19 28	45 43 42	201.64 207.42 194.88
	37 46 55 ^C	41 43	186.20 199.71
	64 73 82	44 42 42	216.04 200.66 204.39
	91 100 109 118 ^C 127 ^C	43 43 42	211.63 201.52 191.88

Table A-9. Individual F₁ Male Preputial Separation Data (page 2 of 7)

Group ^a	Animal ID	Day of Acquisition ^b	Body Weight (g)
4	6	45	200.66
·	12	45	217.86
	12 20 ^f		
	27	46	268.08
	38	44	250.11
	45	46	258.99
	56	44	257.18
	63 74 ^c	46	267.67
		46	271.26
	81 92	46 44	271.26 233.40
	92 99	46	282.29
	110	45	261.56
	117	44	239.12
	128	43	256.08
5	7	49	240.96
	21	47	290.53
	26	46	266.69
	39	46	255.84
	44	48	274.89
	57	45	250.55
	62	46	235.63
	75	45	244.02
	80	45	242.03
	93	44	242.29
	98 111	44 46	253.44 276.10
	116	46	286.36
	129	46 45	275.09
	132	44	253.44
	102	TT	200.44
6	8	45	219.24
	11	45	224.36
	22	42	246.99
	25	44	214.62
	40	44	259.39
	43	44	227.08
	58	45	242.15
	61 76	44 44	258.84 243.19
	76 79 ^C	44	2 4 3.18
	94	41	241.50
	97	44	248.84
	112 115 ⁰	43	253.37
	130	44	277.67

Table A-9. Individual F₁ Male Preputial Separation Data (page 3 of 7)

Group ^a	Animal ID	Day of Acquisition ^b	Body Weight (g)
7	99		
	10	47	248.92
	23 24 ^c	48	272.68
	41	47	262.32
	42	48	261.29
	599		
	60	48	276.21
	77	46	216.77
	78 95	46 46	248.04 256.95
	96 96	45	269.64
	113	47	283.57
	114 ^C		
	131 ^C		
8	2	46	209.30
	16 31	42 45	232.09 222.20
	34	40	200.07
	49	39	203.60
	52	39	217.60
	67	43	215.04
	70	43	238.84
	85	39	206.76
	88 103	40 44	205.17 238.10
	103	44 45	254.26
	121	40	210.66
	124	40	208.17
	134 ^h		
_	_		
9	3	46	198.13
	14 17 ^C	42	179.13
	30 ^c		
	35	39	194.26
	48	42	223.16
	53	40	204.32
	66	42	225.20
	71 94	41 45	226.17
	84 89	45 44	247.42 246.40
	102	41	230.30
	107	39	208.00
	120	42	256.74
	125	41	226.81

Table A-9. Individual F₁ Male Preputial Separation Data (page 4 of 7)

Group ^a	Animal ID	Day of Acquisition ^b	Body Weight (g)
10	136	40	172.02
	153	42	208.83
	154	41	219.16
	171	41	212.35
	172	41	218.76
	182	40	239.12
	199 200	39 38	200.07
	200 217 ⁱ	36	203.97
	218	39	193.38
	235	38	212.62
	236	40	219.50
	253	39	195.63
	254	38	198.93
	270	38	210.18
11	137	41	190.97
	152	41	212.28
	155	41	226.95
	170	39	202.83
	173	42	257.99
	183	40	190.97
	198	40	216.00
	201	41	223.34
	216	38	197.22
	219	41	217.60
	234	44	234.85
	237	40	219.40
	252	40	231.72
	255	38	200.66
	269	40	228.47
12	138	46	138.98
	151	46	136.24
	156	45	157.85
	169	45	176.96
	174	41	179.34
	184	44	153.07
	197	41	160.38
	202	41	157.54
	215	40	180.51
	220	44	174.85
	233	43	172.35
	238	41	173.38
	251	44	174.91
	256	44	188.63
	268	44	173.04

Table A-9. Individual F₁ Male Preputial Separation Data (page 5 of 7)

Group ^a	Animal ID	Day of Acquisition ^b	Body Weight (g)
13	141	41	168.21
	148	40	211.06
	159	42	198.83
	166	41	218.10
	177	41	242.80
	187	41	210.83
	194	44	224.86
	205	44	250.26
	212	44	248.17
	223	44	243.74
	230 241	41 44	204.71 267.87
	248	44	202.74
	259	44	251.63
	265	44	263.41
			200.41
4.4	4.40	40	402.00
14	142 147	42 45	193.80 223.03
	160	45 45	225.78
	165	45 45	224.36
	178	45 45	250.10
	188	44	224.64
	193	43	225.18
	206	44	238.71
	211	44	223.71
	224	45	231.79
	229	44	252.20
	242 ^J		
	247	44	253.42
	260	44	260.22
	264	44	259.76
15	139	47	239.81
	150	45	224.48
	157	45	223.19
	168	45	238.29
	175	45	234.20
	185	44	228.34
	196	41 44	202.18 234.03
	203 214	44 44	234.03
	221	44	240.11
	232	44	221.18
	239	44	241.03
	250	40	199.44
	257	41	236.33
	267	41	221.72

Table A-9. Individual F₁ Male Preputial Separation Data (page 6 of 7)

Group ^a	Animal ID	Day of Acquisition ^b	Body Weight (g)
16	140	45	213.27
	149	47	200.89
	158	45	212.86
	167	47	204.56
	176	47	258.80
	186	45	226.83
	195	45	221.11
	204	44	191.41
	213	44	212.28
	222	44	214.36
	231	46	207.87
	240	46	246.64
	249	44	218.77
	258	44	244.77
	266	49	285.11
17	143	42	199.66
	146	41	206.12
	161	44	239.42
	164	42	245.79
	179	41	237.45
	189	40	203.76
	192	41	240.06
	207	40	205.58
	210	42	204.99
	225 228	44 40	262.46 208.02
	243	40	232.75
	246	41	200.14
	261	40	203.99
	263	41	216.92
18	144	45	210.14
	145	41	205.42
	162	41	189.15
	163	45	253.89
	180	45 45	230.16
	181	45	213.77
	190	44	220.27
	191	44	218.26
	208	44	225.47
	209	40	219.27
	226	44	266.31
	227 244	40 40	219.84
	244 245	40	224.74 238.94
	245 262	43 44	238.94 226.88
	202	11	220.00

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 6 is 30 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2. bPostnatal day.

Male was found dead on postnatal day 31 prior to dosing (misdirected dose).

JMale was found dead on postnatal day 37 prior to dosing (misdirected dose).

^CMale was removed from the study because his correct postnatal day 0 could not be confirmed.

^dMale was removed from the study because it was not dosed on the correct postnatal days.

^eMale was found dead on postnatal day 37 after dosing (misdirected dose).

^fMale was euthanized on postnatal day 29 after dosing due to a leg injury.

⁹Male was not positive for preputial separation by postnatal day 52 when it was necropsied and therefore it was excluded from the evaluation.

hMale was not positive for preputial separation by postnatal day 53 when it was necropsied and therefore it was excluded from the evaluation.

Table A-9a. Summary and Statistical Analysis of the Preputial Separation Data for the Component 1 F₁ Males with the Data for Male 51 in the Control Group Removed (page 1 of 2)

		Atrazine (mg/kg/day		p,p'DDI (mg/kg/day,		Vinclozo (mg/kg/da)		Methoxy (mg/kg/da	
	0	75	150	50	100	30	100	25	50
o. of Males on Study	12 ^b	13 ^C	12 ^d	14 ^e	15	13 ^f	129	15	13 ^h
Number of Males Evaluated	12	12 ⁱ	12	13 ^j	15	13	10 ^k	14	13
Average Postnatal Day of Prepu	ıtial Separation	m							
	40.8	42.0	42.9 Þ	ÞÞ 44.9 ***	45.7 ***	43.8 ***	46.8 ***	41.8	41.8
	<u>+</u> 0.4	<u>+</u> 0.5	<u>+</u> 0.4	<u>+</u> 0.3	<u>+</u> 0.4	<u>+</u> 0.3	<u>+</u> 0.3	<u>+</u> 0.7	<u>+</u> 0.6
	N=11 ⁿ	N=12	N=12	N=13	N=15	N=13	N=10	N=14	N=13
		# ††† ŸŸŸ	;	‡ ‡‡ §§§		### §§§		#	
Average Body Weight (g) on Da	y of Acquisition	m							
	214.87	208.84	200.26	ÞÞ 251.10 **	* 259.19 *	** 242.86 * [*]	** 259.64 *	** 218.70	220.46
	<u>+</u> 3.83	<u>+</u> 5.57	<u>+</u> 2.64	<u>+</u> 6.35	<u>+</u> 4.58	<u>+</u> 4.97	<u>+</u> 5.98	<u>+</u> 4.33	<u>+</u> 6.32
	N=11 ⁿ	N=12	N=12	N=13	N=15	N=13	N=10	N=14	N=13
		# †† ŸŸ		‡‡‡ §§§		### §§§			

Table A-9a. Summary and Statistical Analysis of the Preputial Separation Data for the Component 1 F₁ Males with the Data for Male 51 in the Control Group Removed (page 2 of 2)

^ap,p'-Dichlorodiphenyldichloroethylene.

bMales 69, 86 and 135 were removed from the study because their correct postnatal day 0 could not be confirmed.

^CMale 18 was removed from the study because it was not dosed on the correct postnatal days and male 119 was removed from the study because his correct postnatal day 0 could not be confirmed.

dMales 55, 118 and 127 were removed from the study because their correct postnatal day 0 could not be confirmed.

^eMale 74 was removed from the study because his correct postnatal day 0 could not be confirmed.

fMales 79 and 115 were removed from the study because their correct postnatal day 0 could not be confirmed.

9Males 24, 114 and 131 were removed from the study because their correct postnatal day 0 could not be confirmed.

hMales 17 and 30 were removed from the study because their correct postnatal day 0 could not be confirmed.

ⁱMale 54 was found dead on postnatal day 37 after dosing (misdirected dose).

JMale 20 was euthanized on postnatal day 29 after dosing due to a leg injury.

KMales 9 and 59 were not positive for preputial separation by postnatal day 52 when they were necropsied and therefore they were excluded from the evaluation.

Male 134 was not positive for preputial separation by postnatal day 53 when it was necropsied and therefore it was excluded from the evaluation.

 m Reported as the mean + S.E.M.; pnd = postnatal day.

ⁿDecrease in N is due to the study sponsor requesting that the data for male 51 be excluded.

#Levene's test for homogeneity of variances was significant (p<0.05), therefore robust regression methods were used to test all treatment effects.

‡‡‡p<0.001; ANO VA Test.

§§§p<0.001; Test for Linear Trend.

***p<0.001; Dunn ett's Test.

††p<0.01; W ald C hi-square Test for overall treatment effect in robust regression model.

p<0.001; Wald Chi-square Test for overall treatment effect in robust regression model.

YYp<0.01; Linear trend test in robust regression model.

ŸŸŸp<0.001; Linear trend test in robust regression model.

PPp<0.01; In dividual t-test for pairwise comparisons to control in robust regression model.

PPPp<0.001; Individual t-test for pairwise comparisons to control in robust regression model.

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 1 of 10)

Paired P																	
15 289.77 0.0117 0.0198 14.7843 0.0495 2.8075 2.7284 0.4301 0.2036 0.1988 0.3994 0.5937 0.6477 5.79 11.71 32 294.81 0.0102 0.0176 13.9965 0.0492 2.6208 2.6267 0.4519 0.1626 0.1773 0.3399 0.5705 0.6519 0.627 14.92 33 300.84 0.0115 0.0139 14.0399 0.0612 2.7764 2.7839 0.4334 0.1988 0.1789 0.3778 0.4301 0.7037 6.27 11.12 50 311.35 0.0117 0.0138 17.1200 0.0573 2.7948 2.9924 0.5224 0.2608 0.1313 0.3921 0.6732 0.8318 7.30 11.25 51 302.98 0.0112 0.0210 18.6603 0.0391 2.8095 2.6171 0.4862 0.2772 0.1158 0.3930 0.6620 0.6714 6.88 9.45 68 321.67 0.0102 0.0243 14.7715 0.0554 2.8144 2.7562 0.4383 0.2807 0.1697 0.4504 0.6095 0.9028 5.95 6.71 69 d	Group ^a						Adrenal Gland	Kidney	Testis	Epididymis	Prostate	lateral Prostate		Vesicles with Coagulating	Muscle Complex		Stimulating Hormone
32	1	1	.c	0.0102	0.0115	13.2886	0.0538	2.5402	2.4010	0.4574	0.2303	0.2066	0.4369	0.4206	0.5614	6.09	18.56
33 300.84 0.0115 0.0139 14.0039 0.0612 2.7764 2.7839 0.4334 0.1988 0.1790 0.3778 0.4301 0.7037 6.27 11.12 50 311.35 0.0117 0.0138 17.1200 0.0573 2.7948 2.9924 0.2608 0.1313 0.3921 0.6732 0.8318 7.30 11.25 51 302.98 0.0112 0.0210 18.6603 0.0391 2.8095 2.6171 0.4862 0.2772 0.1158 0.3930 0.6820 0.6614 6.88 9.45 68 321.67 0.0102 0.0243 14.7715 0.0554 2.8144 2.7562 0.4383 0.2807 0.1697 0.4504 0.6095 0.9028 5.95 6.71 87 355.20 0.0139 0.0178 17.6223 0.0588 3.4601 2.6754 0.5021 0.2563 0.3053 0.5816 0.7511 0.7117 5.69 7.75 104 343.86 0.0111 0.0218 20.0416 0.0611 3.4086 3.0541 0.5767 0.2216 0.1853 0.4069 0.4256 0.6489 7.41 7.33 105 340.34 0.0111 0.0223 18.8988 0.4599 2.6133 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 133 307.19 0.0120 0.0153 16.8751 0.0418 2.8699 2.6113 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 24 246.75 0.0091 0.0224 13.4750 0.0400 2.5788 2.4279 0.3558 0.1532 0.1458 0.2990 0.3297 0.3526 7.54 8.63 18		15	289.77	0.0117	0.0198	14.7843	0.0495	2.8075	2.7284	0.4301	0.2036	0.1958	0.3994	0.5937	0.6477	5.79	11.71
50 311.35 0.0117 0.0138 17.1200 0.0573 2.7948 2.9924 0.5224 0.2608 0.1313 0.3921 0.6732 0.8318 7.30 11.25 51 302.98 0.0112 0.0210 18.6603 0.0391 2.8995 2.6171 0.4862 0.2772 0.1158 0.3930 0.6820 0.6714 6.88 9.45 69 .d d .d 0.0122 0.0243 14.7715 0.0554 2.8144 2.7562 0.4383 0.2807 0.1697 0.4504 0.6095 0.9028 5.95 6.71 69 .d d .d 0.0139 0.0178 17.6223 0.0588 3.4601 2.6754 0.5021 0.2563 0.3053 0.6616 0.7511 0.7117 5.69 7.75 104 343.86 0.0111 0.0218 2.0416 0.0611 3.4086 3.0541 0.5767 0.2216 0.1853 0.4069 0.4256 0.6489 7.41 7.33		32	294.81	0.0102	0.0176	13.8965	0.0492	2.6208	2.8267	0.4519	0.1626	0.1773	0.3399	0.5705	0.6519	6.27	14.92
51 302.98 0.0112 0.0210 18.6603 0.0391 2.8095 2.6171 0.4862 0.2772 0.1158 0.3930 0.6820 0.6714 6.88 9.45 68 321.67 0.0102 0.0243 14.7715 0.0554 2.8144 2.7562 0.4383 0.2807 0.1697 0.4504 0.6095 0.9028 5.95 6.71 68 .d .d .d .d .d .d .687 355.20 0.0139 0.0178 17.6223 0.0588 3.4601 2.6754 0.5021 0.2563 0.3053 0.5616 0.7511 0.7117 5.69 7.75 104 343.86 0.0111 0.0218 2.0416 0.6011 3.4086 3.0541 0.5767 0.2216 0.1853 0.4699 0.4256 0.6489 7.41 7.33 105 340.34 0.0113 0.0225 17.0049 0.0678 2.4754 2.8888 0.5108 0.2352 0.1762 0.4114 0.4282		33	300.84	0.0115	0.0139	14.0039	0.0612	2.7764	2.7839	0.4334	0.1988	0.1790	0.3778	0.4301	0.7037	6.27	11.12
68 321.67 0.0102 0.0243 14.7715 0.0554 2.8144 2.7562 0.4383 0.2807 0.1697 0.4504 0.6095 0.9028 5.95 6.71 69 d d 86 d d 87 355.20 0.0139 0.0178 17.6223 0.0588 3.4601 2.6754 0.5021 0.2563 0.3053 0.5616 0.7511 0.7117 5.69 7.75 104 343.86 0.0111 0.0218 20.0416 0.0611 3.4086 3.0541 0.5767 0.2216 0.1853 0.4069 0.4256 0.6489 7.41 7.33 105 340.34 0.0111 0.0223 18.8908 0.0459 2.8508 2.7476 0.4944 0.2550 0.3032 0.5982 0.4781 0.7428 6.36 15.13 122 311.36 0.0113 0.0225 17.0049 0.0678 2.4754 2.6888 0.5108 0.2552 0.1762 0.4114 0.4282 0.7227 6.90 9.86 123 307.19 0.0120 0.0153 16.8751 0.0418 2.8699 2.6113 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 135 d		50	311.35	0.0117	0.0138	17.1200	0.0573	2.7948	2.9924	0.5224	0.2608	0.1313	0.3921	0.6732	0.8318	7.30	11.25
69		51	302.98	0.0112	0.0210	18.6603	0.0391	2.8095	2.6171	0.4862	0.2772	0.1158	0.3930	0.6820	0.6714	6.88	9.45
86 . d 87 355.20 0.0139 0.0178 17.6223 0.0588 3.4601 2.6754 0.5021 0.2563 0.3053 0.5616 0.7511 0.7117 5.69 7.75 104 343.86 0.0111 0.0221 820.0416 0.0611 3.4086 3.0541 0.5767 0.2216 0.1853 0.4069 0.4256 0.6489 7.41 7.33 105 340.34 0.0111 0.0223 18.8908 0.0459 2.8508 2.7476 0.4944 0.2950 0.3032 0.5982 0.4781 0.7428 6.36 15.13 122 311.36 0.0113 0.0225 17.0049 0.0678 2.4754 2.6888 0.5108 0.2352 0.1762 0.4114 0.4282 0.7227 6.90 9.86 123 307.19 0.0120 0.0153 16.8751 0.0418 2.8699 2.6113 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 135		68		0.0102	0.0243	14.7715	0.0554	2.8144	2.7562	0.4383	0.2807	0.1697	0.4504	0.6095	0.9028	5.95	6.71
87 355.20 0.0139 0.0178 17.6223 0.0588 3.4601 2.6754 0.5021 0.2563 0.3053 0.5616 0.7511 0.7117 5.69 7.75 104 343.86 0.0111 0.0218 20.0416 0.0611 3.4086 3.0541 0.5767 0.2216 0.1853 0.4069 0.4256 0.6489 7.41 7.33 105 340.34 0.0111 0.0223 18.8908 0.0459 2.8508 2.7476 0.4944 0.2950 0.3032 0.5982 0.4781 0.7428 6.36 15.13 122 311.36 0.0113 0.0225 17.0049 0.0678 2.4754 2.6888 0.5108 0.2352 0.1762 0.4114 0.4282 0.7227 6.90 9.86 123 307.19 0.0120 0.0153 16.8751 0.0418 2.8699 2.6113 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 135 .d 2 4 246.75 0.0091 0.0224 13.4750 0.0400 2.5788 2.4279 0.3558 0.1532 0.1458 0.2990 0.3297 0.3526 7.54 8.63 18 .e 29 275.50 0.0127 0.0209 13.1050 0.0481 2.4360 2.8329 0.3867 0.1767 0.1706 0.3473 0.5305 0.5968 7.26 19.63 36 297.47 0.0116 0.0191 14.7592 0.0536 2.6566 2.7253 0.4693 0.2131 0.1590 0.3721 0.3847 0.7131 5.65 12.67 47 263.90 0.0094 0.0219 13.4581 0.0532 2.5396 2.8331 0.4747 0.2329 0.2360 0.4689 0.5906 0.8472 5.52 16.71 54 .f 65 287.61 0.0102 0.0242 15.9369 0.0506 2.5868 2.8153 0.4075 0.2084 0.1805 0.3889 0.5451 0.6475 6.34 6.67 72 298.69 0.0120 0.0187 15.6290 0.0383 3.1124 3.1209 0.4668 0.3113 0.2019 0.5132 0.5821 0.6560 6.50 6.89 83 264.16 0.0106 0.0255 13.4238 0.0510 2.7684 3.0027 0.5305 0.1568 0.1691 0.3259 0.4191 0.5138 6.51 6.96 90 284.01 0.0087 0.0180 15.2215 0.0464 2.6899 2.9504 0.4517 0.1344 0.1695 0.3309 0.4185 0.5753 4.72 14.53 101 294.42 0.0103 0.0181 16.5752 0.0489 2.9086 2.5669 0.4472 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0176 15.7600 0.0612 2.7247 2.7093 0.4470 0.2329 0.2252 0.4574 0.3431 0.5381 7.77 5.83			•														
104 343.86 0.0111 0.0218 20.0416 0.0611 3.4086 3.0541 0.5767 0.2216 0.1853 0.4069 0.4256 0.6489 7.41 7.33 105 340.34 0.0111 0.0223 18.8908 0.0459 2.8508 2.7476 0.4944 0.2950 0.3032 0.5982 0.4781 0.7428 6.36 15.13 122 311.36 0.0113 0.0225 17.0049 0.0678 2.4754 2.6888 0.5108 0.2352 0.1762 0.4114 0.4282 0.7227 6.90 9.86 123 307.19 0.0120 0.0153 16.8751 0.0418 2.8699 2.6113 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 135 d. 2 4 246.75 0.0091 0.0224 13.4750 0.0400 2.5788 2.4279 0.3558 0.1532 0.1458 0.2990 0.3297 0.3526 7.54 8.63 18 .e. 29 275.50 0.0127 0.0209 13.1050 0.0481 2.4360 2.8329 0.3867 0.1767 0.1706 0.3473 0.5305 0.5968 7.26 19.63 36 297.47 0.0116 0.0191 14.7592 0.0536 2.6566 2.7253 0.4693 0.2131 0.1590 0.3721 0.3847 0.7131 5.65 12.67 47 263.90 0.0094 0.0219 13.4581 0.0532 2.5396 2.8331 0.4747 0.2329 0.2360 0.4689 0.5906 0.8472 5.52 16.71 54 .f. 65 287.61 0.0102 0.0242 15.9369 0.0506 2.5868 2.8153 0.4075 0.2084 0.1805 0.3889 0.5451 0.6475 6.34 6.67 72 298.69 0.0120 0.0187 15.6290 0.0383 3.1124 3.1209 0.4668 0.3113 0.2019 0.5132 0.5821 0.6560 6.50 6.89 83 264.16 0.0106 0.0255 13.4238 0.0510 2.7684 3.0027 0.5305 0.1568 0.1691 0.3259 0.4191 0.5138 6.51 6.96 90 284.01 0.0087 0.0180 15.2215 0.0464 2.6899 2.9504 0.4517 0.1344 0.1695 0.3039 0.4185 0.5753 4.72 14.53 101 294.42 0.0103 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83			•														
105 340.34 0.0111 0.0223 18.8908 0.0459 2.8508 2.7476 0.4944 0.2950 0.3032 0.5982 0.4781 0.7428 6.36 15.13 122 311.36 0.0113 0.0225 17.0049 0.0678 2.4754 2.6888 0.5108 0.2352 0.1762 0.4114 0.4282 0.7227 6.90 9.86 123 307.19 0.0120 0.0153 16.8751 0.0418 2.8699 2.6113 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 135 .d .d																	
122 311.36 0.0113 0.0225 17.0049 0.0678 2.4754 2.6888 0.5108 0.2352 0.1762 0.4114 0.4282 0.7227 6.90 9.86 123 307.19 0.0120 0.0153 16.8751 0.0418 2.8699 2.6113 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 1.355 0.4 0.																	
123 307.19 0.0120 0.0153 16.8751 0.0418 2.8699 2.6113 0.5240 0.2660 0.2224 0.4884 0.5722 0.6752 6.64 7.62 135 .d																	
2																	
2 4 246.75 0.0091 0.0224 13.4750 0.0400 2.5788 2.4279 0.3558 0.1532 0.1458 0.2990 0.3297 0.3526 7.54 8.63 18				0.0120	0.0153	16.8751	0.0418	2.8699	2.6113	0.5240	0.2660	0.2224	0.4884	0.5722	0.6752	6.64	7.62
18		135	. · · · · ·														
18	2	4	246.75	0.0091	0.0224	13.4750	0.0400	2.5788	2.4279	0.3558	0.1532	0.1458	0.2990	0.3297	0.3526	7.54	8.63
29 275.50 0.0127 0.0209 13.1050 0.0481 2.4360 2.8329 0.3867 0.1767 0.1706 0.3473 0.5305 0.5968 7.26 19.63 36 297.47 0.0116 0.0191 14.7592 0.0536 2.6566 2.7253 0.4693 0.2131 0.1590 0.3721 0.3847 0.7131 5.65 12.67 47 263.90 0.0094 0.0219 13.4581 0.0532 2.5396 2.8331 0.4747 0.2329 0.2360 0.4689 0.5906 0.8472 5.52 16.71 5.4 f 65 287.61 0.0102 0.0242 15.9369 0.0506 2.5868 2.8153 0.4075 0.2084 0.1805 0.3889 0.5451 0.6475 6.34 6.67 72 298.69 0.0120 0.0187 15.6290 0.0383 3.1124 3.1209 0.4668 0.3113 0.2019 0.5132 0.5821 0.6560 6.50 6.89 83 264.16 0.0106 0.0255 13.4238 0.0510 2.7684 3.0027 0.5305 0.1568 0.1691 0.3259 0.4191 0.5138 6.51 6.96 90 284.01 0.0087 0.0180 15.2215 0.0464 2.6899 2.9504 0.4517 0.1344 0.1695 0.3039 0.4185 0.5753 4.72 14.53 101 294.42 0.0103 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.016 15.7600 0.0612 2.7247 2.7093 0.4710 0.2322 0.2252 0.4574 0.3473 0.7609 6.90 13.42 119 d		18	.e														
47 263.90 0.0094 0.0219 13.4581 0.0532 2.5396 2.8331 0.4747 0.2329 0.2360 0.4689 0.5906 0.8472 5.52 16.71 54 .f 65 287.61 0.0102 0.0242 15.9369 0.0506 2.5868 2.8153 0.4075 0.2084 0.1805 0.3889 0.5451 0.6475 6.34 6.67 72 298.69 0.0120 0.0187 15.6290 0.0383 3.1124 3.1209 0.4668 0.3113 0.2019 0.5132 0.5821 0.6560 6.50 6.89 83 264.16 0.0106 0.0255 13.4238 0.0510 2.7684 3.0027 0.5305 0.1568 0.1691 0.3259 0.4191 0.5138 6.51 6.96 90 284.01 0.0087 0.0180 15.2215 0.0464 2.6899 2.9504 0.4517 0.1344 0.1695 0.3039 0.4185 0.5753 4.72 14.53 101 294.42 0.0103 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0176 15.7600 0.0612 2.7247 2.7093 0.4710 0.2322 0.2252 0.4574 0.3473 0.7609 6.90 13.42 119 .d 126 269.99 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83		29		0.0127	0.0209	13.1050	0.0481	2.4360	2.8329	0.3867	0.1767	0.1706	0.3473	0.5305	0.5968	7.26	19.63
54 .f. 65 287.61 0.0102 0.0242 15.9369 0.0506 2.5868 2.8153 0.4075 0.2084 0.1805 0.3889 0.5451 0.6475 6.34 6.67 72 298.69 0.0120 0.0187 15.6290 0.0383 3.1124 3.1209 0.4668 0.3113 0.2019 0.5132 0.5821 0.6560 6.50 6.89 83 264.16 0.0106 0.0255 13.4238 0.0510 2.7684 3.0027 0.5305 0.1568 0.1691 0.3259 0.4191 0.5138 6.51 6.96 90 284.01 0.0087 0.0180 15.2215 0.0464 2.6899 2.9504 0.4517 0.1344 0.1695 0.3039 0.4185 0.5753 4.72 14.53 101 294.42 0.0103 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0176 15.7600 0.0612 2.7247 2.7093 0.4710 0.2322 0.2252 0.4574 0.3473 0.7609 6.90 13.42 119 .d. 126 269.99 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83		36	297.47	0.0116	0.0191	14.7592	0.0536	2.6566	2.7253	0.4693	0.2131	0.1590	0.3721	0.3847	0.7131	5.65	12.67
65 287.61 0.0102 0.0242 15.9369 0.0506 2.5868 2.8153 0.4075 0.2084 0.1805 0.3889 0.5451 0.6475 6.34 6.67 72 298.69 0.0120 0.0187 15.6290 0.0383 3.1124 3.1209 0.4668 0.3113 0.2019 0.5132 0.5821 0.6560 6.50 6.89 83 264.16 0.0106 0.0255 13.4238 0.0510 2.7684 3.0027 0.5305 0.1568 0.1691 0.3259 0.4191 0.5138 6.51 6.96 90 284.01 0.0087 0.0180 15.2215 0.0464 2.6899 2.9504 0.4517 0.1344 0.1695 0.3039 0.4185 0.5753 4.72 14.53 101 294.42 0.0103 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0176 15.7600 0.0612 2.7247 2.7093 0.4710 0.2322 0.2252 0.4574 0.3473 0.7609 6.90 13.42 119 .d 126 269.99 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83		47	263.90	0.0094	0.0219	13.4581	0.0532	2.5396	2.8331	0.4747	0.2329	0.2360	0.4689	0.5906	0.8472	5.52	16.71
72 298.69 0.0120 0.0187 15.6290 0.0383 3.1124 3.1209 0.4668 0.3113 0.2019 0.5132 0.5821 0.6560 6.50 6.89 83 264.16 0.0106 0.0255 13.4238 0.0510 2.7684 3.0027 0.5305 0.1568 0.1691 0.3259 0.4191 0.5138 6.51 6.96 90 284.01 0.0087 0.0180 15.2215 0.0464 2.6899 2.9504 0.4517 0.1344 0.1695 0.3039 0.4185 0.5753 4.72 14.53 101 294.42 0.0103 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0176 15.7600 0.0612 2.7247 2.7093 0.4710 0.2322 0.2252 0.4574 0.3473 0.7609 6.90 13.42 119 .d 26 269.99 0.0078 0.0181 16.0756 0.0583 2.8921		54	.f														
83		65	287.61	0.0102	0.0242	15.9369	0.0506	2.5868	2.8153	0.4075	0.2084	0.1805	0.3889	0.5451	0.6475	6.34	6.67
90 284.01 0.0087 0.0180 15.2215 0.0464 2.6899 2.9504 0.4517 0.1344 0.1695 0.3039 0.4185 0.5753 4.72 14.53 101 294.42 0.0103 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0176 15.7600 0.0612 2.7247 2.7093 0.4710 0.2322 0.2252 0.4574 0.3473 0.7609 6.90 13.42 119 .d 126 269.99 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83		72	298.69	0.0120	0.0187	15.6290	0.0383	3.1124	3.1209	0.4668	0.3113	0.2019	0.5132	0.5821	0.6560	6.50	6.89
101 294.42 0.0103 0.0181 16.3522 0.0489 2.9086 2.5369 0.4712 0.1992 0.1704 0.3696 0.3838 0.4103 5.65 7.41 108 279.41 0.0078 0.0176 15.7600 0.0612 2.7247 2.7093 0.4710 0.2322 0.2252 0.4574 0.3473 0.7609 6.90 13.42 119 .d 126 269.99 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83		83	264.16	0.0106	0.0255	13.4238	0.0510	2.7684	3.0027	0.5305	0.1568	0.1691	0.3259	0.4191	0.5138	6.51	6.96
108 279.41 0.0078 0.0176 15.7600 0.0612 2.7247 2.7093 0.4710 0.2322 0.2252 0.4574 0.3473 0.7609 6.90 13.42 119 . ^d 126 269.99 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83		90	284.01	0.0087	0.0180	15.2215	0.0464	2.6899	2.9504	0.4517	0.1344	0.1695	0.3039	0.4185	0.5753	4.72	14.53
119 . ^d 126 269.99 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83		101	294.42	0.0103	0.0181	16.3522	0.0489	2.9086	2.5369	0.4712	0.1992	0.1704	0.3696	0.3838	0.4103	5.65	7.41
126 269.99 0.0078 0.0181 16.0756 0.0583 2.8921 2.8152 0.4452 0.2239 0.1640 0.3879 0.4331 0.5381 7.77 5.83		108	279.41	0.0078	0.0176	15.7600	0.0612	2.7247	2.7093	0.4710	0.2322	0.2252	0.4574	0.3473	0.7609	6.90	13.42
		119	.d														
<u>133 286.05 0.0096 0.0215 14.9008 0.0462 2.7829 3.0393 0.4434 0.2684 0.1629 0.4313</u> 0.4694 0.5414 5.89 11.32		126	269.99	0.0078	0.0181	16.0756	0.0583	2.8921	2.8152	0.4452	0.2239	0.1640	0.3879	0.4331	0.5381	7.77	5.83
		133	286.05	0.0096	0.0215	14.9008	0.0462	2.7829	3.0393	0.4434	0.2684	0.1629	0.4313	0.4694	0.5414	5.89	11.32

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 2 of 10)

Group ^a	Animal ID	Sacrifice Wt. (g)	Pituitary Wt. (g)	Thyroid Wt. (g)	Liver Wt. (g)	Paired Adrenal Gland Wt. (g)	Paired Kidney Wt. (g)	Paired Testis Wt. (g)	Paired Epididymis Wt. (g)	Ventral Prostate Wt. (g)	Dorso- lateral Prostate Wt. (g)	Prostate Wt. (g)	Seminal Vesicles with Coagulating Glands	LABC ^b Muscle Complex Wt. (g)	Thyroxine (ug/dL)	Thyroid Stimulating Hormone (ng/ml)
3	5	230.92	0.0071	0.0230	13.3966	0.0467	2.3889	2.1992	0.3156	0.2326	0.1389	0.3715	0.3886	0.4692	7.99	10.61
	13	250.22	0.0036	0.0184	14.3621	0.0467	2.4823	2.6660	0.4042	0.2058	0.1556	0.3614	0.3275	0.4056	6.72	9.27
	19	267.23	0.0100	0.0159	14.3547	0.0552	2.5810	2.9241	0.3970	0.1580	0.2223	0.3803	0.4078	0.5477	6.19	27.97
	28	257.00	0.0082	0.0178	13.5722	0.0584	2.6858	2.7516	0.4228	0.1582	0.1354	0.2936	0.3726	0.6273	6.60	16.25
	37	248.51	0.0087	0.0178	12.8434	0.0534	2.3125	2.7959	0.4353	0.2410	0.1591	0.4001	0.3212	0.3850	7.23	8.50
	46	255.04	0.0072	0.0236	14.1255	0.0633	2.4419	2.7616	0.4843	0.1133	0.1091	0.2224	0.4969	0.5151	5.85	8.09
	55	.d														
	64	255.74	0.0075	0.0173	13.6510	0.0446	2.5329	2.9607	0.4254	0.2340	0.2107	0.4447	0.4663	0.7752	5.64	7.97
	73	259.71	0.0087	0.0193	13.6200	0.0460	2.6055	3.0264	0.4829	0.2097	0.1683	0.3780	0.4128	0.7342	6.31	13.43
	82	267.31	0.0085	0.0170	13.7582	0.0578	2.4473	2.9128	0.4007	0.1648	0.1358	0.3006	0.3727	0.5500	5.57	21.33
	91	289.66	0.0094	0.0176	16.4653	0.0672	2.9448	3.0848	0.4233	0.1622	0.1266	0.2888	0.5851	0.6060	4.99	10.63
	100	261.37	0.0074	0.0186	14.9350	0.0524	2.7134	2.9302	0.4449	0.2505	0.1781	0.4286	0.4353	0.5537	5.29	9.16
	109	237.27	0.0090	0.0173	12.3738	0.0533	2.3170	2.8222	0.4120	0.2321	0.1323	0.3644	0.4584	0.5523	7.01	8.65
	118	.d														
	127	.d 														
4	6	255.04	0.0107	0.0209	20.1726	0.0508	2.8882	2.5374	0.4216	0.1821	0.1801	0.3622	0.4319	0.4588	5.18	14.99
	12	274.09	0.0101	0.0196	20.9250	0.0475	2.8140	2.6557	0.4294	0.1723	0.1531	0.3254	0.4519	0.4523	6.35	10.50
	20	.g														
	27	323.19	0.0097	0.0209	21.9346	0.0496	3.0406	2.7345	0.3785	0.1568	0.2149	0.3717	0.4612	0.5158	6.13	9.16
	38	319.03	0.0095	0.0237	21.9889	0.0465	3.3214	3.0784	0.4845	0.2323	0.1880	0.4203	0.6039	0.8856	6.59	25.32
	45	318.44	0.0105	0.0187	22.4093	0.0581	3.4293	3.0349	0.4831	0.3444	0.1933	0.5377	0.7772	0.8005	6.27	24.92
	56	342.49	0.0116	0.0218	23.9160	0.0648	3.0641	3.0415	0.4880	0.2905	0.1874	0.4779	0.5107	0.7751	6.64	14.30
	63	313.76	0.0128	0.0192	20.0843	0.0628	3.0843	2.6534	0.5520	0.2949	0.2521	0.5470	0.5965	0.6700	5.30	8.67
	74	.d														
	81	333.65	0.0109	0.0240	25.8598	0.0595	3.4473	2.7541	0.5227	0.2444	0.2692	0.5136	0.6546	0.6861	6.58	12.01
	92	305.48	0.0071	0.0199	20.0806	.h	2.9070	2.8503	0.4889	0.2022	0.2035	0.4057	0.6160	0.6252	5.68	17.52
	99	347.60	0.0140	0.0217	25.4090	0.0509	3.7538	2.6574	0.3923	0.2629	0.2402	0.5031	0.5238	0.6867	6.60	9.44
	110	319.19	0.0121	0.0254	19.9780	0.0501	3.0347	2.8293	0.4882	0.2478	0.2085	0.4563	0.5822	0.7489	4.98	12.15
	117	320.80	0.0103	0.0267	26.1122	0.0395	3.2171	2.7877	0.4433	0.3326	0.2478	0.5804	0.5365	0.6110	6.47	8.14
	128	345.70	0.0143	0.0232	23.4821	0.0634	3.4981	2.7339	0.4984	0.3862	0.3164	0.7026	0.5957	0.9416	3.88	15.60

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 3 of 10)

Group ^a	Animal ID	Sacrifice Wt. (g)	Pituitary Wt. (g)	Thyroid Wt. (g)	Liver Wt. (g)	Paired Adrenal Gland Wt. (g)	Paired Kidney Wt. (g)	Paired Testis Wt. (g)	Paired Epididymis Wt. (g)	Ventral Prostate Wt. (g)	Dorso- lateral Prostate Wt. (g)	Prostate Wt. (g)	Seminal Vesicles with Coagulating Glands	LABC ^b Muscle Complex Wt. (g)	Thyroxine (ug/dL)	Thyroid Stimulating Hormone (ng/ml)
5	7	218.95	.h	0.0132	14.7831	0.0583	2.0625	2.3136	0.3239	0.2342	0.1796	0.4138	0.2886	0.5138	3.75	6.48
	21	320.22	0.0114	0.0255	26.4993	0.0501	3.3607	2.4766	0.3901	0.1618	0.2086	0.3704	0.4125	0.6091	5.27	13.82
	26	328.65	0.0124	0.0145	24.2421	0.0713	3.4392	2.7868	0.3808	0.3184	0.1372	0.4556	0.4605	0.5931	6.90	13.53
	39	298.02	0.0114	0.0245	23.2136	0.0594	3.1548	2.6881	0.4337	0.2240	0.1584	0.3824	0.2098	0.4401	5.32	14.65
	44	311.50	0.0112	0.0170	20.6537	0.0633	2.9875	2.8081	0.4854	0.2402	0.1376	0.3778	0.3695	0.4584	6.86	15.20
	57	309.89	0.0147	0.0315	24.5415	0.0453	3.1702	3.0830	0.4650	0.2190	0.1224	0.3414	0.4491	0.8193	5.98	21.79
	62	281.55	0.0107	0.0246	23.2149	0.0380	3.1690	2.6809	0.4725	0.1985	0.0467	0.2452	0.6203	0.6419	4.17	15.23
	75	295.78	0.0102	0.0249	25.5471	0.0186	3.2511	2.5508	0.4318	0.0831	0.2976	0.3807	0.5379	0.6076	6.56	8.39
	80	312.51	0.0125	0.0304	22.6323	0.0442	3.0889	2.6529	0.3576	0.1734	0.2205	0.3939	0.5794	0.6834	5.35	34.68
	93	323.58	0.0111	0.0274	26.3418	0.0427	2.9567	2.8469	0.4473	0.2042	0.2510	0.4552	0.5449	0.5703	4.96	8.34
	98	321.77	0.0122	0.0228	24.1526	0.0584	3.1349	2.9790	0.5432	0.2888	0.2735	0.5623	0.4352	0.6590	4.54	9.67
	111	330.76	0.0090	0.0355	24.1677	0.0450	3.3675	2.8374	0.4228	0.2607	0.1735	0.4342	0.5082	0.6386	5.54	12.40
	116	339.64	0.0116	0.0218	27.1037	0.0606	3.9099	3.0402	0.4818	0.2534	0.2091	0.4625	0.7258	0.6481	5.70	19.24
	129	343.25	0.0129	0.0291	25.9342	0.0555	3.4942	2.7180	0.4309	0.3255	0.2998	0.6253	0.5906	0.5856	4.95	8.53
	132	330.30	0.0115	0.0221	24.1322	0.0544	3.4903	3.1778	0.4667	0.2429	0.2152	0.4581	0.6042	0.8572	3.92	14.42
6	8	282.43	0.0128	0.0218	16.4681	0.0522	2.8500	2.6754	0.3689	0.1748	0.1300	0.3048	0.4470	0.4895	5.54	11.54
O	11	279.78	0.0128	0.0215	15.7760	0.0522	2.6022	2.7085	0.3009	0.1746	0.1300	0.3046	0.4204	0.4893	6.52	11.86
	22	364.66	0.0107	0.0213	22.2210	0.0568	3.1328	2.6812	0.4174	0.4052	0.2783	0.4945	0.4204	0.4331	5.31	8.85
	25	286.90	0.0143	0.0190	12.9937	0.0300	2.5335	2.8351	0.3679	0.4052	0.2043	0.4198	0.4101	0.5531	3.63	5.85
	40	334.03	0.0113	0.0196	19.2067	0.0680	2.7023	2.9267	0.4546	0.2764	0.1402	0.4166	0.2338	0.5934	4.80	8.78
	43	284.97	0.0096	0.0177	12.7340	0.0530	2.4074	2.7798	0.4037	0.2543	0.1202	0.3745	0.5388	0.8911	5.38	9.87
	58	300.04	0.0105	0.0227	16.3954	0.0592	2.9989	3.0752	0.4716	0.1880	0.2263	0.4143	0.3278	0.7213	4.84	9.98
	61	323.66	0.0112	0.0169	18.4137	0.0568	3.0956	3.0001	0.5004	0.2399	0.1282	0.3681	0.2979	0.7703	4.91	12.08
	76	314.65	0.0113	0.0228	20.2619	0.0554	3.2945	3.0021	0.5016	0.2362	0.2326	0.4688	0.4579	0.6830	3.59	10.53
	79	.d														
	94	356.65	0.0094	0.0160	20.0673	0.0709	3.1400	3.1598	0.4701	0.2470	0.1963	0.4433	0.4858	0.5777	3.80	14.14
	97	338.81	0.0113	0.0157	18.3495	0.0486	3.0026	2.9375	0.5097	0.3024	0.1753	0.4777	0.5861	0.8192	4.32	12.18
	112	343.66	0.0129	0.0226	18.0244	0.0560	3.2632	3.5780	0.5277	0.3261	0.1918	0.5179	0.6301	1.0304	5.23	8.55
	115	.d														
	130	364.84	0.0122	0.0195	19.0774	0.0702	3.8339	3.1272	0.4725	0.2255	0.2269	0.4524	0.6397	0.6741	5.40	13.23

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 4 of 10)

Group ^a	Animal ID	Sacrifice Wt. (g)	Pituitary Wt. (g)	Thyroid Wt. (g)	Liver Wt. (g)	Paired Adrenal Gland Wt. (g)	Paired Kidney Wt. (g)	Paired Testis Wt. (g)	Paired Epididymis Wt. (g)	Ventral Prostate Wt. (g)	Dorso- lateral Prostate Wt. (g)	Prostate Wt. (g)	Seminal Vesicles with Coagulating Glands	LABC ^b Muscle Complex Wt. (g)	Thyroxine (ug/dL)	Thyroid Stimulating Hormone (ng/ml)
7	9	276.51	0.0098	0.0187	14.6754	0.0455	2.5529	2.4298	0.3547	0.2291	0.0977	0.3268	0.2740	0.5238	6.20	20.49
	10	288.68	0.0116	0.0234	16.6082	0.0476	2.6018	2.5511	0.3279	0.1919	0.1240	0.3159	0.3243	0.4530	5.03	11.12
	23	307.67	0.0112	0.0194	16.6452	0.0459	2.7785	2.8337	0.3582	0.1617	0.1598	0.3215	0.2897	0.5218	4.16	12.03
	24	.d														
	41	298.31	0.0127	0.0184	17.7970	0.0686	2.8362	3.0495	0.4283	0.2091	0.1770	0.3861	0.1879	0.4556	4.55	16.47
	42	292.89	0.0104	0.0187	15.4234	0.0458	2.5784	3.1554	0.4007	0.2854	0.1271	0.4125	0.3449	0.5648	4.59	7.80
	59	293.84	0.0116	0.0191	16.1725	0.0748	2.8525	3.0597	0.3663	0.1726	0.1305	0.3031	0.1670	0.4256	4.17	10.13
	60	315.86	0.0092	0.0187	21.6926	.h	2.9851	2.9918	0.4725	0.2129	0.0517	0.2646	0.3494	0.7211	4.54	8.58
	77	286.89	0.0105	0.0253	15.6958	0.0552	2.6850	2.8882	0.4104	0.1812	0.1224	0.3036	0.3403	0.4440	3.70	14.26
	78	310.52	0.0133	0.0222	14.9983	0.0548	2.7221	3.0836	0.4188	0.1476	0.1061	0.2537	0.3436	0.5234	3.62	13.11
	95	309.28	0.0090	0.0196	17.1613	0.0524	3.1049	2.6961	0.3724	0.2231	0.1614	0.3845	0.2973	0.6544	4.03	8.01
	96	345.93	0.0118	0.0212	20.3813	0.0840	3.2289	3.1023	0.5191	0.1975	0.1724	0.3699	0.4136	0.6032	3.81	14.92
	113	C	0.0089	0.0213	20.4721	0.0549	2.7435	3.3767	0.3720	0.2650	0.1271	0.3921	0.3205	0.6403	3.01	17.43
	114	.d														
	131	.d														
8	2	249.62	0.0106	0.0163	11.5504	0.0485	1.8262	2.2830	0.4201	0.1551	0.1208	0.2759	0.3819	0.4816	5.73	22.15
	16	316.99	0.0123	0.0231	16.2780	0.0470	2.7041	2.6073	0.4153	0.1369	0.1298	0.2667	0.4504	0.6238	6.91	12.25
	31	290.35	0.0113	0.0183	13.7935	0.0444	2.7131	2.8704	0.5113	0.2112	0.1638	0.3750	0.5024	0.7980	7.08	11.41
	34	295.50	0.0114	0.0177	13.9106	į.	2.6817	2.8405	0.4663	0.1832	0.1868	0.3700	0.5428	0.5494	6.25	14.91
	49	302.08	0.0118	0.0230	14.5328	0.0592	3.1307	2.7539	0.5393	0.2512	0.1664	0.4176	0.6575	0.6769	6.82	11.51
	52	321.72	0.0077	0.0196	17.7581	.h	2.9748	2.9260	0.5437	0.2660	0.1412	0.4072	0.6642	0.7733	5.88	27.93
	67	267.23	0.0095	0.0194	13.0736	0.0572	2.5671	2.7283	0.5182	0.2446	0.1793	0.4239	0.3404	0.4858	6.19	8.13
	70	314.21	0.0115	0.0276	17.4700	0.0647	3.4145	2.8813	0.4640	0.2502	0.1214	0.3716	0.5384	0.7843	6.99	6.32
	85	327.87	0.0120	0.0167	17.3200	0.0648	2.9511	2.8848	0.5133	0.2451	0.1658	0.4109	0.5152	0.6621	6.60	7.60
	88	297.04	0.0106	0.0213	13.8654	0.0501	2.4354	2.6506	0.4230	0.2017	0.1708	0.3725	0.4181	0.5797	7.37	8.08
	103	311.16	0.0107	0.0221	16.7954	0.0560	2.2682	2.6103	0.5530	0.3667	0.2479	0.6146	j	0.7125	6.24	7.01
	106	301.47	0.0077	0.0230	13.9063	0.0539	2.7307	2.7370	0.4956	0.2740	0.1049	0.3789	0.4677	0.7879	5.60	6.72
	121	321.29	0.0125	0.0221	17.5331	0.0609	3.1978	3.3115	0.5450	0.2423	0.2071	0.4494	0.5246	0.9893	4.32	5.44
	124	296.88	0.0114	0.0282	16.9468	0.0769	2.9474	2.8223	0.4667	0.2700	0.2606	0.5306	0.4894	0.5105	5.49	8.90
	134	316.18	0.0120	0.0170	16.5189	0.0655	3.1334	2.6528	0.5248	0.2676	0.2161	0.4837	0.5252	0.8450	4.22	6.40

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 5 of 10)

Group ^a	Animal ID	Sacrifice Wt. (g)	Pituitary Wt. (g)	Thyroid Wt. (g)	Liver Wt. (g)	Paired Adrenal Gland Wt. (g)	Paired Kidney Wt. (g)	Paired Testis Wt. (g)	Paired Epididymis Wt. (g)	Ventral Prostate Wt. (g)	Dorso- lateral Prostate Wt. (g)	Prostate Wt. (g)	Seminal Vesicles with Coagulating Glands	LABC ^b Muscle Complex Wt. (g)	Thyroxine (ug/dL)	Thyroid Stimulating Hormone (ng/ml)
9	3	238.34	0.0103	0.0120	10.7471	0.0499	2.0486	2.1970	0.3572	0.1615	0.1240	0.2855	0.2538	.k	5.58	10.10
	14	248.60	0.0112	0.0139	12.7138	0.0463	2.4471	2.5543	0.3773	0.1563	0.1238	0.2801	0.4307	0.4612	7.13	11.21
	17	.d														
	30	.d														
	35	296.39	0.0107	0.0170	14.3110	0.0669	2.7639	3.0660	0.4339	0.2101	0.1872	0.3973	0.3293	0.5598	5.86	13.21
	48	290.45	.h	0.0172	15.1739	0.0679	2.9837	2.6561	0.4899	0.2327	0.0761	0.3088	0.3184	0.4348	7.17	9.92
	53	294.82	0.0096	0.0124	14.9200 14.9000	0.0560	2.8656	2.8866	0.4790	0.3274	0.1803	0.5077	0.2409	0.6770	6.92	10.85 8.62
	66 71	297.38 297.45	0.0123 0.0092	0.0154 0.0166	14.6546	0.0516 0.0607	3.0540 2.8959	2.6535 2.6802	0.4370 0.5067	0.3030 0.2527	0.1567 0.1958	0.4597 0.4485	0.5032 0.4385	0.8630 0.5128	5.46 6.83	8.62 11.35
	84	300.39	0.0092	0.0150	14.8100	0.0007	2.3291	2.3780	0.3067	0.2327	0.1956	0.4463	0.43654	0.5126	7.26	13.55
	89	306.70	0.0007	0.0130	16.1744	0.0703	2.5820	2.8520	0.5613	0.2429	0.1054	0.4802	0.4293	0.5725	8.10	10.07
	102	331.45	0.0124	0.0190	17.5206	0.0731	3.5649	2.9401	0.4817	0.3186	0.1897	0.5083	0.7663	0.7445	7.58	7.49
	107	310.65	0.0109	0.0197	17.0916	0.0811	3.2342	3.1744	0.5435	0.2622	0.2084	0.4706	0.4793	0.5869	7.32	10.64
	120	352.75	0.0101	0.0189	17.9763	į.	3.0133	2.8643	0.4776	0.2085	0.2068	0.4153	0.3511	0.6128	5.42	17.05
	125	304.15	0.0118	0.0187	15.9546	0.0817	2.9351	2.8912	0.5125	0.2202	0.1855	0.4057	0.3494	0.7563	5.97	6.90
10	136	268.43	0.0107	0.0215	15.2893	0.0430	2.6217	2.7582	0.3986	0.1648	0.1906	0.3554	0.5333	0.4819	5.68	9.66
	153	299.89	0.0104	0.0335	15.6513	0.0460	3.0356	2.8389	0.4221	0.2276	0.1245	0.3521	0.6563	0.5056	7.89	13.45
	154	323.42	0.0101	0.0257	17.3441	0.0606	3.0151	2.9145	0.4233	0.2765	0.1636	0.4401	0.6422	0.5711	6.80	10.55
	171	316.44	0.0109	0.0242	17.9430	0.0473	2.8261	2.7569	0.4200	0.2606	0.1646	0.4252	j	0.5749	6.09	7.92
	172	308.18	0.0073	0.0297	15.8077	0.0504	3.2064	2.8078	0.3990	0.2297	0.1298	0.3595	0.5305	0.5521	6.73	7.03
	182	373.28	0.0132	0.0339	23.9654	0.0462	3.8580	3.0265	0.5179	0.2345	0.2445	0.4790	0.8294	0.7450	5.51	11.90
	199	320.07	0.0130	0.0264	17.2041	0.0460	3.3432	2.7246	0.5315	0.1636	0.1248	0.2884	0.5526	0.7710	4.67	12.89
	200	334.72	0.0123	0.0247	17.8729	0.0457	3.3308	2.8490	0.4754	0.2739	0.2257	0.4996	0.4834	0.6448	5.93	10.72
	217	.!														
	218	293.28	0.0110	0.0338	16.7044	0.0459	2.9051	2.9551	0.4506	0.3341	0.2355	0.5696	0.5100	0.6788	4.57	7.57
	235	339.88	0.0132	0.0269	17.7423	0.0479	3.3063	2.9322	0.4252	0.3924	0.1919	0.5843	0.8445	0.7672	4.29	9.65
	236	329.09	0.0127	0.0266	18.2380	0.0511	3.1269	2.8797	0.4766	0.2922	0.2046	0.4968	0.8253	0.7634	4.45	20.07
	253	310.97	0.0110	0.0285	16.1014	0.0505	2.9009	3.1066	0.5671	0.3322	0.2800	0.6122	0.4582	0.6664	6.12	12.95
	254	326.23	0.0169	0.0215	17.1801	0.0559	2.9385	2.7379	0.4779	0.2507	0.1379	0.3886	0.9490	0.7031	6.14	14.01
	270	345.87	0.0105	0.0254	19.6305	0.0349	3.1905	2.8616	0.4042	0.2875	0.1749	0.4624	0.5005	0.5125	6.07	13.12

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 6 of 10)

Group ^a	Animal ID	Sacrifice Wt. (g)	Pituitary Wt. (g)	Thyroid Wt. (g)	Liver Wt. (g)	Paired Adrenal Gland Wt. (g)	Paired Kidney Wt. (g)	Paired Testis Wt. (g)	Paired Epididymis Wt. (g)	Ventral Prostate Wt. (g)	Dorso- lateral Prostate Wt. (g)	Prostate Wt. (g)	Seminal Vesicles with Coagulating Glands	LABC ^b Muscle Complex Wt. (g)	Thyroxine (ug/dL)	Thyroid Stimulating Hormone (ng/ml)
11	137	233.90	0.0120	0.0697	11.0393	0.0275	1.8680	2.6308	0.2898	0.1774	0.1961	0.3735	0.4110	0.5617	_. m	111.64
	152	286.22	0.0131	0.0593	13.6800	0.0443	2.1539	2.6230	0.3766	0.2428	0.1657	0.4085	0.6138	0.5689	0.34	60.43
	155	284.64	0.0116	0.0489	14.4095	0.0336	2.3819	2.6660	0.3887	0.2023	0.1597	0.3620	0.4839	0.5934	.m	92.25
	170	276.66	0.0116	0.0961	13.2111	0.0378	2.4590	2.8952	0.4034	0.2183	0.1839	0.4022	0.6410	0.5943	0.50	71.98
	173	345.04	0.0115	0.1082	18.4648	0.0430	2.7076	2.9261	0.4525	0.3249	0.2606	0.5855	0.7725	0.6680	1.06	55.86
	183	291.65	0.0083	0.0774	15.2806	0.0422	2.5439	2.9280	0.4841	0.2518	0.1077	0.3595	0.7525	0.9834	0.52	83.31
	198	311.13	0.0108	0.0947	15.4070	0.0413	2.5878	2.6507	0.4429	0.2075	0.1199	0.3274	0.7237	0.5446	.m	64.26
	201	297.92	0.0117	0.0831	14.9490	0.0356	3.0038	2.8033	0.5072	0.2865	0.2339	0.5204	0.6601	0.7380	.m	83.76
	216	325.70	0.0119	0.1003	19.6343	0.0452	2.9837	2.5508	0.4213	0.1811	0.1599	0.3410	0.9681	0.7408	0.67	57.72
	219	255.98	0.0116	0.0597	10.9364	0.0348	2.0614	2.8392	0.3987	0.1874	0.1173	0.3047	0.6144	0.5324	0.38	91.48
	234	299.54	0.0114	0.0820	16.2718	0.0444	2.4796	3.0582	0.4826	0.2397	0.2003	0.4400	0.4375	0.5910	.m	77.95
	237	287.25	0.0119	0.0697	16.7200	0.0350	2.5874	2.7908	0.4889	0.2124	0.1121	0.3245	0.7227	0.5763	0.34	108.04
	252	296.39	.h	0.0714	15.0702	0.0347	2.3820	3.0835	0.4760	0.2166	0.1519	0.3685	0.9560	0.5838	0.42	102.04
	255	288.51	0.0127	0.0674	14.3812	0.0350	2.1144	2.9722	0.4320	0.2861	0.2353	0.5214	0.8465	0.6952	.m	92.07
	269	330.03	0.0129	0.0671	18.8092	0.0432	2.8390	2.6039	0.5342	0.3796	0.1330	0.5126	0.7616	0.8364	0.50	79.12
12	138	.n	0.0082	0.1316	6.6111	0.0278	1.1421	2.2432	0.3447	0.1743	0.1103	0.2846	0.2091	0.3249	.m	61.44
	151	139.78	0.0072	0.0484	5.4073	0.0232	1.1506	2.5026	0.3054	0.1072	0.0639	0.1711	0.3950	0.2385	.m	117.78
	156	162.05	0.0102	0.0760	6.4584	0.0210	1.3181	2.6500	0.3501	0.2057	0.1185	0.3242	0.5886	0.3297	.m	133.31
	169	178.36	0.0105	0.1511	7.6015	0.0311	1.3356	2.7359	0.3412	0.1463	0.1502	0.2965	0.4691	0.3072	0.33	128.91
	174	175.63	0.0107	0.0723	6.4552	0.0314	1.3778	2.9400	0.4246	0.1929	0.1006	0.2935	0.4843	0.3529	0.38	161.75
	184	157.46	0.0089	0.0885	7.3402	0.0230	1.4106	2.4126	0.3025	0.1310	0.1035	0.2345	0.5307	0.2823	.m	113.40
	197	175.07	0.0089	0.0959	8.5362	0.0240	1.5312	2.6979	0.4466	0.3006	0.0649	0.3655	0.6943	0.6849	.m	125.53
	202	166.32	0.0082	0.0796	7.1411	0.0245	1.5318	2.6613	0.3851	0.1779	0.1719	0.3498	0.6053	0.3099	.m	173.42
	215	190.83	0.0090	0.0817	9.5966	0.0313	1.6059	2.9126	0.4554	0.3014	0.1511	0.4525	0.3809	0.4185	.m	155.11
	220	179.65	0.0098	0.0896	8.4431	0.0304	1.5608	2.5119	0.4420	0.2337	0.2038	0.4375	0.6627	0.5001	0.41	151.06
	233	178.52	0.0146	0.0786	8.4094	0.0217	1.3674	2.4587	0.3911	0.1819	0.1623	0.3442	0.5302	0.2810	_. m	143.44
	238	185.84	0.0090	0.0791	8.4734	0.0211	1.4182	2.7717	0.4111	0.1189	0.1223	0.2412	0.7354	0.4512	0.36	107.24
	251	182.42	0.0085	0.0848	7.7825	0.0245	1.5429	2.7335	0.3736	0.1737	0.1245	0.2982	0.4694	0.3890	0.36	141.69
	256	188.92	0.0113	0.0831	9.5444	0.0212	1.6238	2.8623	0.3340	0.1983	0.1867	0.3850	0.5870	0.3124	0.40	170.73
	268	.0														

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 7 of 10)

Group ^a	Animal ID	Sacrifice Wt. (g)	Pituitary Wt. (g)	Thyroid Wt. (g)	Liver Wt. (g)	Paired Adrenal Gland Wt. (g)	Paired Kidney Wt. (g)	Paired Testis Wt. (g)	Paired Epididymis Wt. (g)	Ventral Prostate Wt. (g)	Dorso- lateral Prostate Wt. (g)	Prostate Wt. (g)	Seminal Vesicles with Coagulating Glands	LABC ^b Muscle Complex Wt. (g)	Thyroxine (ug/dL)	Thyroid Stimulating Hormone (ng/ml)
13	141	265.43	0.0085	0.0206	15.2718	0.0523	2.6358	2.6178	0.3818	0.1824	0.1183	0.3007	0.4915	0.5835	5.53	6.75
	148	320.05	0.0116	0.0261	19.8011	0.0613	3.2611	2.9561	0.4098	0.2847	0.1393	0.4240	0.5170	0.6287	5.61	14.18
	159	282.82	0.0102	0.0278	17.3819	0.0435	2.7373	2.7048	0.3149	0.2425	0.1655	0.4080	0.3664	0.5081	6.24	7.43
	166	310.07	0.0114	0.0234	17.6193	0.0836	2.9049	2.9963	0.4414	0.1931	0.0796	0.2727	0.5111	0.3560	5.15	13.48
	177	347.18	0.0102	0.0192	20.7444	0.0785	3.2210	3.1680	0.4317	0.1976	0.0817	0.2793	0.5409	0.5558	5.31	10.47
	187	301.81	0.0109	0.0247	16.6796	0.0661	3.0240	3.0187	0.3842	0.2401	0.1244	0.3645	0.4503	0.6340	5.17	10.69
	194	287.93	0.0115	0.0298	15.7052	0.0543	2.6834	2.5441	0.4123	0.2158	0.1364	0.3522	0.4269	0.4804	4.89	8.60
	205	328.08	0.0090	0.0318	21.3076	0.0747	3.0509	2.4632	0.4403	0.1910	0.1570	0.3480	0.4054	0.7173	4.02	7.31
	212	323.32	0.0138	0.0281	20.0329	0.0879	3.0942	2.9565	0.4101	0.2966	0.1769	0.4735	0.4646	0.5682	6.75	9.63
	223	314.23	0.0115	0.0327	19.5372	0.0852	3.3423	2.8108	0.4426	0.1728	0.1142	0.2870	0.4657	0.4277	5.76	7.24
	230	304.78	0.0090	0.0301	20.5532	0.0720	3.2662	3.0906	0.5293	0.3007	0.2768	0.5775	0.5598	0.6337	5.48	8.30
	241	355.54	0.0109	0.0278	20.3301	0.0889	3.3114	2.7684	0.5202	0.3077	0.2112	0.5189	0.3921	0.5584	6.09	9.55
	248	326.86	0.0116	0.0195	21.1596	0.0731	3.2142	2.5377	0.4043	0.2461	0.1727	0.4188	0.6243	0.5940	4.77	10.68
	259	314.11	0.0089	0.0303	21.5657	0.0747	3.1372	2.6603	0.4353	0.2518	0.1574	0.4092	0.6130	0.7204	7.30	13.09
	265	353.06	0.0113	0.0264	20.2411	0.0599	3.6472	2.7836	0.4835	0.2350	0.2469	0.4819	0.3547	0.6699	5.56	12.96
14	142	261.19	0.0097	0.0265	15.5572	0.0619	2.5635	2.5962	0.3990	0.0589	0.1286	0.1875	0.2932	0.4956	6.23	11.54
	147	276.11	0.0107	0.0239	16.8246	0.0860	2.7581	2.7823	0.3983	0.2140	0.1259	0.3399	0.3268	0.4761	5.83	11.24
	160	276.03	0.0100	0.0288	16.5424	0.0790	2.5782	2.6642	0.3476	0.1233	0.0686	0.1919	0.3116	0.4002	5.70	10.31
	165	273.75	0.0102	0.0279	16.8484	0.0738	2.6895	2.8157	0.4230	0.2334	0.1503	0.3837	0.4540	0.4975	6.92	9.76
	178	309.03	0.0097	0.0244	17.7653	0.1075	3.2857	2.8237	0.3712	0.2020	0.1020	0.3040	0.4583	0.4160	5.33	8.49
	188 193	288.14 296.85	0.0142 0.0140	0.0235 0.0278	17.1234 18.7725	0.1131 0.1084	3.6148 3.8480	2.7062 2.7640	0.4322 0.4613	0.3413 0.3380	0.1365 0.1887	0.4778 0.5267	0.5426 0.7379	0.7763 0.7512	6.10 5.36	8.89 8.69
	206	301.20	0.0140	0.0276	18.1900	0.1064	3.1269	2.7645	0.4613	0.3360	0.1867	0.3267	0.7379	0.7312	5.25	15.64
	200	290.34	0.0116	0.0270	18.1705	0.1141	2.8332	2.7645	0.3542	0.0697	0.0740	0.1637	0.4161	0.4337	5.25	9.43
	224	287.98	0.0117	0.0203	17.8265	0.0724	2.8541	2.7954	0.4494	0.1393	0.1841	0.5415	0.2056	0.4942	4.25	9.43 19.48
	229	337.76	0.0031	0.0227	23.8740	0.0812	3.4362	2.7373	0.4494	0.3022	0.2393	0.2733	0.5398	0.5715	4.23	11.52
	242	.p	0.0100	0.0201	20.0170	0.0027	0.4002	2.7070	0.7201	0.0000	0.1700	0.2100	0.0000	0.07 10	7.02	11.02
	247	 335.92	0.0147	0.0289	24.0545	0.1104	3.6851	2.7310	0.4978	0.2019	0.1788	0.3807	0.5506	0.5461	5.94	14.33
	260	345.72	0.0147	0.0306	23.0081	0.0998	3.5310	2.7431	0.4015	0.2523	0.1782	0.3905	0.3756	0.5203	6.27	8.32
	264	341.02	0.0132	0.0270	23.4041	0.0815	3.4309	2.6171	0.4018	0.2672	0.1757	0.4429	0.3693	0.6476	6.34	8.39

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 8 of 10)

Group ^a	Animal ID	Sacrifice Wt. (g)	Pituitary Wt. (g)	Thyroid Wt. (g)	Liver Wt. (g)	Paired Adrenal Gland Wt. (g)	Paired Kidney Wt. (g)	Paired Testis Wt. (g)	Paired Epididymis Wt. (g)	Ventral Prostate Wt. (g)	Dorso- lateral Prostate Wt. (g)	Prostate Wt. (g)	Seminal Vesicles with Coagulating Glands	LABC ^b Muscle Complex Wt. (g)	Thyroxine (ug/dL)	Thyroid Stimulating Hormone (ng/ml)
15	139	275.54	0.0099	0.0289	16.1382	0.0430	2.6605	2.5875	0.3176	0.1937	0.0714	0.2651	0.2377	0.3136	4.69	10.77
	150	278.12	0.0092	0.0298	14.8480	0.0510	2.8287	2.6633	0.4269	0.1581	0.1867	0.3448	0.4718	0.4634	4.84	9.64
	157	272.77	0.0098	0.0234	13.5665	0.0491	2.5701	2.8482	0.3941	0.1793	0.1005	0.2798	0.3912	0.4360	4.70	10.40
	168	290.77	0.0075	0.0289	14.6707	0.0526	2.8529	2.9119	0.3942	0.1933	0.1193	0.3126	0.4706	0.4360	5.23	8.11
	175	293.71	0.0067	0.0367	15.2936	0.0478	3.2323	3.0946	0.3248	0.1825	0.1131	0.2956	0.3476	0.4266	7.48	8.19
	185	290.21	0.0099	0.0283	15.9456	0.0555	2.8810	2.9281	0.4741	0.2662	0.1365	0.4027	0.4701	0.5060	4.73	5.92
	196	304.09	0.0118	0.0352	16.4432	0.0580	3.1694	2.7290	0.4584	.h	0.2385	.q	0.2301	0.7321	4.30	12.05
	203	302.45	0.0114	0.0296	19.3331	0.0529	3.2074	2.8674	0.4311	0.1826	0.1765	0.3591	0.6403	0.5591	3.65	11.85
	214	271.87	0.0099	0.0335	15.4315	0.0354	2.7740	2.5462	0.3888	0.1587	0.1518	0.3105	0.5490	0.5239	.r	.r
	221	303.05	0.0084	0.0249	17.9891	0.0535	2.9334	2.4024	0.4149	0.1745	0.1852	0.3597	0.3787	0.6710	3.38	7.15
	232	293.40	0.0094	0.0297	16.0940	0.0486	2.7364	2.8840	0.4133	0.2057	0.0785	0.2842	0.4801	0.6298	3.52	10.86
	239	330.67	0.0097	0.0254	19.5265	0.0468	3.2445	2.6971	0.4172	0.1720	0.1786	0.3506	0.5658	0.5928	3.02	7.35
	250	299.68	0.0104	0.0263	16.0117	0.0449	2.8277	2.8962	0.5021	0.1929	0.1301	0.3230	0.5258	0.4827	5.46	8.32
	257	348.48	0.0106	0.0298	22.8121	0.0479	3.0446	2.8008	0.4820	0.1934	0.1614	0.3548	0.5225	0.6310	5.00	6.88
	267	325.02	0.0103	0.0300	18.7668	0.0374	2.8845	2.7712	0.4398	0.2674	0.1702	0.4376	0.7088	0.7515	4.43	8.23
								0.40=4								
16	140	260.17	0.0083	0.0237	14.1313	0.0444	2.6644	2.4274	0.3547	0.1421	0.1250	0.2671	0.4570	0.3967	3.38	8.75
	149	230.84	0.0088	0.0262	11.9581	0.0395	2.0354	2.6111	0.3138	0.1443	0.1234	0.2677	0.1659	0.3684	2.99	7.87
	158	254.01	0.0085	0.0249	12.7527	0.0516	2.3124	2.8141	0.3623	0.1422	0.0906	0.2328	0.3618	0.4678	4.77	8.00
	167	226.14	0.0074	0.0200	11.9257	0.0433	2.0480	2.3887	0.3455	0.1643	0.0925	0.2568	,J	0.3378	2.82	8.07
	176	295.37	0.0113	0.0230	16.0468	0.0539	3.0134	2.7385	0.3915	0.1911	0.1600	0.3511	0.4521	0.5135	3.90	10.80
	186	281.14	0.0098	0.0255	15.7303	0.0563	3.2833	2.6922	0.4170	0.2165	0.1332	0.3497	0.4862	0.4876	3.43	12.78
	195 204	258.00 242.97	0.0082 0.0087	0.0278 0.0204	13.1759 14.0914	0.0377 0.0323	2.4408 2.5294	2.4968 2.3517	0.3732	0.1605	0.1218 0.0705	0.2823 0.2822	0.3575	0.4117	2.99 3.20	6.78 9.24
	204	242.97 271.42	0.0087	0.0204	16.2752	0.0323	2.5294	2.5244	0.3741 0.3533	0.2117	0.0705	0.2822	0.1204 0.4820	0.4396	3.20 3.76	9.24 13.10
	213	264.04	0.0089	0.0209	15.0096	0.0493	2.0902	2.5244	0.3533	0.1911 0.2175	0.1000	0.2977	0.4620	0.4117 0.4632	3.76	8.36
	231	251.29	0.0082	0.0233	14.8029	0.0365	2.7310	3.1639	0.4025	0.2173	0.1027	0.3202	0.4730	0.4632	2.73	8.98
	240	312.12	0.0003	0.0213	20.3758	0.0501	3.3832	2.6137	0.3606	0.1731	0.1294	0.2696	0.2648	0.4492	2.73	15.51
	249	282.84	0.0108	0.0241	15.5000	0.0301	2.5402	2.7903	0.3922	0.0912	0.1603	0.2515	0.5363	0.7025	3.66	5.99
	258	292.75	0.0116	0.0302	16.2961	0.0708	3.3319	2.8636	0.5374	0.3022	0.2022	0.5044	0.3951	0.5279	4.09	5.60
	266	310.27	0.0092	0.0281	16.7564	0.0441	3.3700	2.8096	0.3282	0.2801	0.2046	0.4847	0.1550	0.4752	3.66	12.50

Table A-10. Individual F₁ Male Necropsy Weights and Hormone Data (page 9 of 10)

Group ^a	Animal ID	Sacrifice Wt. (g)	Pituitary Wt. (g)	Thyroid Wt. (g)	Liver Wt. (g)	Paired Adrenal Gland Wt. (g)	Paired Kidney Wt. (g)	Paired Testis Wt. (g)	Paired Epididymis Wt. (g)	Ventral Prostate Wt. (g)	Dorso- lateral Prostate Wt. (g)	Prostate Wt. (g)	Seminal Vesicles with Coagulating Glands	LABC ^b Muscle Complex Wt. (g)	Thyroxine (ug/dL)	Thyroid Stimulating Hormone (ng/ml)
17	143	273.85	0.0118	0.0327	17.4827	0.0525	2.6100	2.6287	0.3848	0.2413	0.1351	0.3764	0.4640	0.5216	6.87	13.78
	146	299.66	0.0104	0.0252	19.4050	0.0397	3.2166	2.6791	0.3959	0.1732	0.1532	0.3264	0.7568	0.5670	6.46	9.35
	161	300.98	.h	0.0408	20.3494	0.0494	2.6725	2.6065	0.3874	0.1532	0.1640	0.3172	0.5862	0.4875	7.38	13.54
	164	329.63	0.0085	0.0380	21.1594	0.0517	2.8652	2.8191	0.4368	0.3024	0.1636	0.4660	0.7494	0.6194	6.44	10.97
	179	319.42	0.0115	0.0385	18.3210	0.0560	3.0156	2.8640	0.4528	0.3413	0.1680	0.5093	0.7000	0.6032	5.88	21.09
	189	301.96	0.0101	0.0372	18.3697	0.0724	3.3204	2.5850	0.4861	0.2920	0.1191	0.4111	0.5548	0.5884	5.11	20.13
	192	350.01	0.0106	0.0352	23.1780	0.0524	3.2665	2.8597	0.4565	0.2903	0.1411	0.4314	0.6508	0.6614	3.93	14.16
	207	293.91	0.0123	0.0254	19.4894	0.0643	3.0786	2.7945	0.4300	0.3252	0.1870	0.5122	0.6488	0.6695	5.47	27.72
	210	273.90	0.0061	0.0265	18.1859	0.0442	2.4734	2.5635	0.4274	0.1835	0.0852	0.2687	0.5686	0.5279	4.58	18.00
	225	334.96	0.0090	0.0330	22.0598	0.0678	3.2548	2.5916	0.4671	0.2399	0.2323	0.4722	0.3421	0.7889	5.40	12.55
	228	320.45	0.0117	0.0274	21.3093	0.0492	3.1297	2.7863	0.4363	0.2814	0.1172	0.3986	1.0679	0.6373	3.82	22.24
	243	385.09	0.0067	0.0293	27.6322	0.0528	3.8360	2.9371	0.4706	0.3602	0.1730	0.5332	0.7584	0.6156	5.81	27.64
	246	283.85	0.0144	0.0257	19.1822	0.0439	2.6191	2.7855	0.4704	0.1554	0.1287	0.2841	0.4876	0.5553	5.80	13.36
	261	308.31	0.0112	0.0299	19.2691	0.0526	3.0840	3.1979	0.5855	0.4097	0.2957	0.7054	0.6243	0.6569	5.53	12.10
	263	305.11	0.0123	0.0330	19.7582	0.0449	3.4090	2.8572	0.4737	0.4088	0.1145	0.5233	0.6549	0.5975	6.43	8.86
40	444	005.74	0.0400	0.0004	40.0500	0.0405	0.0040	0.4770	0.0700	0.4074	0.0070	0.4040	0.2004	0.4504	C 10	0.45
18	144 145	265.71 284.21	0.0100 0.0107	0.0291 0.0383	19.6582 21.4656	0.0495 0.0225	2.6840 2.7613	2.1776 2.5154	0.3720 0.2891	0.1971 0.1990	0.2072 0.1757	0.4043 0.3747	0.3804 0.4779	0.4591 0.5153	6.19 6.39	9.45 27.86
	162	281.88	0.0107	0.0363	17.8585	0.0225	2.6733	2.7159	0.4086	0.1806	0.1737	0.3036	0.4779	0.5155	5.31	25.80
	163	310.28	0.0102	0.0209	22.7501	0.0409	3.0806	2.7456	0.4134	0.1600	0.1230	0.3030	0.5861	0.4362	6.12	6.91
	180	280.63	0.0113	0.0303	20.0776	0.0443	2.7880	2.5379	0.3080	0.2333	0.2190	0.3962	0.3247	0.4841	7.05	9.43
	181	258.14	0.0083	0.0346	16.7381	0.0658	2.4313	2.7614	0.3919	0.1750	0.0835	0.2585	0.3812	0.4243	6.08	11.05
	190	272.49	0.0101	0.0257	19.8510	0.0411	2.8755	2.8303	0.4188	0.1711	0.1149	0.2860	0.4023	0.4646	5.79	15.61
	191	278.03	0.0106	0.0238	20.0250	0.0547	3.0560	2.4089	0.4790	0.2450	0.2494	0.4944	0.3641	0.6640	5.17	11.12
	208	279.73	0.0105	0.0340	20.7203	0.0467	3.0073	2.7213	0.4388	0.2552	0.1534	0.4086	0.3827	0.4431	6.37	10.74
	209	314.58	0.0121	0.0395	22.6696	0.0546	3.4696	2.8889	0.4950	0.3205	0.2615	0.5820	0.4382	0.7720	5.32	15.89
	226	340.04	0.0105	0.0353	25.1465	0.0482	3.4563	2.3825	0.3738	0.1525	0.0876	0.2401	0.4928	0.4932	5.07	12.01
	227	312.83	.h	0.0361	25.1488	0.0534	3.3847	3.0764	0.4315	0.2878	0.2268	0.5146	0.7653	0.5247	4.77	15.60
	244	352.47	.h	0.0337	26.8862	0.0686	3.3225	2.7033	0.4442	0.2689	0.1843	0.4532	0.7167	0.5099	5.62	20.02
	245	327.11	0.0105	0.0363	26.1542	0.0453	3.0440	2.6680	0.4119	0.1042	0.1789	0.2831	0.4799	0.5948	5.30	17.46
	262	296.28	0.0107	0.0362	22.4525	0.0439	2.7181	2.5148	0.3624	0.2185	0.2454	0.4639	0.4752	0.5505	5.35	8.03

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p.p'-

Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 6 is 30 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2.

bLevator ani plus bulbcavernosus muscle complex.

^cBody weight was inadvertently not recorded prior to blood being taken.

dMale was removed from the study because his correct postnatal day 0 could not be confirmed.

^eMale was removed from the study because it was not dosed on the correct postnatal days.

Male was found dead on postnatal day 37 after dosing (misdirected dose).

gMale was euthanized on postnatal day 29 after dosing due to a leg injury.

hOrgan weight was a statistical outlier and therefore it was excluded.

Adrenal gland was inadvertently lost prior to being weighed.

Seminal vesicles with coagulating glands was inadvertently nicked and leaked prior to weighing and therefore the weight was excluded.

Levator ani plus bulbcavernosus muscle complex was inadvertently not completely removed from the animal and therefore the weight was excluded.

Male was found dead on postnatal day 31 prior to dosing (misdirected dose).

mValue was below the minimum detection limit.

ⁿWeight was inadvertently not recorded.

OMale was found dead on postnatal day 50 prior to dosing.

PMale was found dead on postnatal day 37 prior to dosing (misdirected dose).

^QValue could not be determined since the ventral prostate weight was a statistical outlier and therefore it was excluded.

^rThe blood tube was accidentally dropped therefore no sample was available for this animal.

Table A-11. Individual F₁ Male Necropsy Findings (page 1 of 5)

Group ^a	Animal ID	Necropsy Finding
1	15	Kidney: hydronephrosis, right
2	101	Testis: undescended, left
		Testis: reduced in size, left
	133	Epididymis: reduced in size, left Kidney: hydronephrosis, right
	40	
3	13 91	Kidney: hydronephrosis, right Kidney: hydronephrosis, right
4	12	Kidney: hydronephrosis, right
5	7	Chromodacryorrhea: nose
Ü	26	Intestines: distended with air
	39	Kidney: hydronephrosis, bilateral
	44	Kidney: hydronephrosis, right
	98	Kidney: hydronephrosis, right
	116	Kidney: hydronephrosis, right
•		
6	8	Kidney: hydronephrosis, right
	11 22	Kidney: hydronephrosis, right Kidney: hydronephrosis, right
	61	Kidney: hydronephrosis, right
7	10	Kidney: hydronephrosis, right
	42	Kidney: hydronephrosis, right
	59	Kidney: hydronephrosis, right
		Seminal Vesicles: reduced in size
9	89	Kidney: hydronephrosis, right
10	199	Urinary Bladder: multiple 1 to 3 mm calculi and wall thickened

Table A-11. Individual F₁ Male Necropsy Findings (page 2 of 5)

Group ^a	Animal ID	Necropsy Finding
11	152	
11	170	Thyroid: enlarged and darkened, left side
	170	Thyroid: enlarged and darkened Kidney: hydronephrosis, right
	173	
	183	Thyroid: darkened and right side enlarged
	198	Thyroid: enlarged
	201	Thyroid: enlarged, bilateral Thyroid: enlarged
	219	Ventral Prostate: reduced in size
	219	Dorsolateral Prostate: reduced in size
		Seminal Vesicles: reduced in size, bilateral
		Thyroid: enlarged and reddened, bilateral
	237	Thyroid: enlarged and reddened, bilateral Thyroid: enlarged and reddened
	252	Thyroid: enlarged and reddefied Thyroid: enlarged
	269	Lungs: multiple foci
		Langs. matupic root
12	138	Thyroid: enlarged
	151	Thyroid: enlarged, bilateral
	156	Thyroid: enlarged and reddened, bilateral
	169	Kidney: hydronephrosis, right
		Thyroid: enlarged and reddened, bilateral
	174	Liver: reduced in size
		Thyroid: enlarged and reddened, bilateral
	184	Thyroid: enlarged and reddened, bilateral
	197	Liver: mottled
		Thyroid: enlarged, bilateral
	202	Thyroid: enlarged and reddened, bilateral
		Pituitary: reduced in size
	215	Adrenal Gland: reduced in size, bilateral
		Thyroid: enlarged
	220	Adrenal Gland: reduced in size, bilateral
		Thyroid: enlarged, bilateral
	233	Kidney: hydronephrosis, right
		Liver: mottled
		Thyroid: enlarged, bilateral
	238	Liver: reduced in size
		Adrenal Gland: reduced in size, bilateral
		Kidney: reduced in size, bilateral
		Thyroid: enlarged and reddened
	251	Liver: reduced in size
		Ventral Prostate: reduced in size
		Dorsolateral Prostate: reduced in size
		Thyroid: enlarged and reddened

Table A-11. Individual F₁ Male Necropsy Findings (page 3 of 5)

Group ^a	Animal ID	Necropsy Finding
12	256	Liver: reduced in size Adrenal Gland: reduced in size, bilateral Thyroid: enlarged and reddened
13 177		Seminal Vesicles: reduced in size Dorsolateral Prostate: reduced in size
	194	Adrenal Gland: dark tan/brown, bilateral
	205	Adrenal Gland: pale, bilateral
	212	Adrenal Gland: enlarged, bilateral
	223	Kidney: hydronephrosis, right
	230	Adrenal Gland: pale, bilateral
14	160	Kidney: hydronephrosis, right
17	178	Adrenal Gland: enlarged, bilateral
	188	Adrenal Gland: enlarged, bilateral
	193	Adrenal Gland: enlarged, bilateral
	206	Ventral Prostate: reduced in size
		Dorsolateral Prostate: reduced in size
		Seminal Vesicles: reduced in size, bilateral
		Adrenal Gland: enlarged, bilateral
	211	Ventral Prostate: reduced in size
		Seminal Vesicle: reduced in size
		Adrenal Gland: enlarged, bilateral
	224	Seminal Vesicles: reduced in size
	229	Seminal Vesicles: reduced in size, bilateral
		Ventral Prostate: reduced in size
	247	Lung: pinpoint foci, right
	264	Kidney: hydronephrosis, right
		Adrenal Gland: enlarged, left
4-	400	
15	139	Seminal Vesicles: reduced in size, bilateral Ventral Prostate: reduced in size
	196	Seminal Vesicle: reduced in size, right
	214	Ventral Prostate: reduced in size, fight
		Dorsolateral Prostate: reduced in size
	232	Seminal Vesicles: reduced in size, bilateral
		Dorsolateral Prostate: reduced in size

Table A-11. Individual F₁ Male Necropsy Findings (page 4 of 5)

Group ^a	Animal ID	Necropsy Finding
16	149	Seminal Vesicles: reduced in size
	158	Seminal Vesicles: reduced in size, bilateral
		Ventral Prostate: reduced in size
		Dorsolateral Prostate: reduced in size
	195	Seminal Vesicles: reduced in size, bilateral
		Ventral Prostate: reduced in size
		Dorsolateral Prostate: reduced in size
		Pituitary: reduced in size
	204	Ventral Prostate: reduced in size
		Dorsolateral Prostate: reduced in size
		Seminal Vesicles: reduced in size
	231	Seminal Vesicles: reduced in size
	240	Seminal Vesicles: reduced in size
	249	Ventral Prostate: reduced in size
	258	Spleen: enlarged with white foci
		Lungs: multiple reddened areas
		Kidney: hydronephrosis, right
17	164	Kidney: hydronephrosis, right
! !	210	Ventral Prostate: reduced in size
	2.0	Dorsolateral Prostate: reduced in size
		Seminal Vesicles: reduced in size, bilateral
	246	Kidney: hydronephrosis, right
18	163	Kidnovi hvdronophropia right
10	181	Kidney: hydronephrosis, right Seminal Vesicles: reduced in size
	101	Dorsolateral Prostate: reduced in size
	208	
18	206 226	Kidney: hydronephrosis, right Ventral Prostate: reduced in size
10	220	Dorsolateral Prostate: reduced in size
		Seminal Vesicles: reduced in size, bilateral
	245	Ventral Prostate: reduced in size
	240	Seminal Vesicles: reduced in size

Table A-11. Individual F₁ Male Necropsy Findings (page 5 of 5)

B. Unscheduled Necropsy

Group ^a	Animal ID	Necropsy Finding
2	54	Misdirected dose
4	20	Left metatarsal extremely swollen and edematous with ankle scabbed over and venous return appeared constricted by underlying tissue
 10	217	Lungs: congested and oil present on cut surface, misdirected dose
 12	268	Trachea: oil present
 14	242	Lungs: congested, dark red, small amount of corn oil on cut surface, misdirected dose

^aDose groups are as follows: 1 is 0 mg/kg/day; 2 is 75 mg/kg/day Atrazine; 3 is 150 mg/kg/day Atrazine; 4 is 50 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 5 is 100 mg/kg/day of p,p'-Dichlorodiphenyldichloroethane; 6 is 30 mg/kg/day of Vinclozolin; 7 is 100 mg/kg/day of Vinclozolin; 8 is 25 mg/kg/day of Methoxychlor; 9 is 50 mg/kg/day of Methoxychlor; 10 is 0 mg/kg/day; 11 is 2 mg/kg/day of Propylthiouracil; 12 is 25 mg/kg/day of Propylthiouracil; 13 is 50 mg/kg/day of Ketoconazole; 14 is 100 mg/kg/day of Ketoconazole; 15 is 50 mg/kg/day of Linuron; 16 is 100 mg/kg/day of Linuron; 17 is 50 mg/kg/day of Phenobarbital and 18 is 100 mg/kg/day of Phenobarbital. Groups 1 through 9 were in component 1 and groups 10 through 18 were in component 2.

Table B-1. Summary of the F_0 Reproductive and Lactational Indexes of the Untreated Females for the F_1 Litters (page 1 of 2)

No. of Females	
No. of Pregnant Females	
	₄₈ a
No. of Females with Live Litters (pnd 0)	
" ,	48
Gestational Index (no. females with live litters/no. females pregna	
Cooled order (no. fortalist with the filters, no. fortalist progne	100.0
	100.0
and the second s	
Gestational Length (days) ^b	
	21.8
	<u>+</u> 0.1 N=48
No. of Live Litters:	
Postnatal Day 0	48
Postnatal Day 4	48
Postnatal Day 7	48
Postnatal Day 14 Postnatal Day 21	48 48
Number of Live Pups on Postnatal Day 0 ^b	40
Number of Live Pups on Postilatal Day 0°	10.0
	12.6 <u>+</u> 0.3
	<u>-</u> 0.0 N=48
Number of Dead Pups on Postnatal Day 0 ^b	
	0.1
	<u>+</u> 0.1
.	N=48
Total Number of Pups on Postnatal Day 0 ^b	
	12.7
	<u>+</u> 0.3 N=48
Stillbirth Index (no. dead on pnd 0/total no. on pnd 0)b	-
Same and the dead on pile of total field of	1.4
	<u>+</u> 0.7
	N=48

Table B-1. Summary of the F_0 Reproductive and Lactational Indexes of the Untreated Females for the F_1 Litters (page 2 of 2)

Live Birth Index (no. live on pnd 0/total no. on pnd 0)b	
	98.6
	+ 0.8
	N=48
4 Dev Comitael Index (on a sumition 4 developed live on and 0)D	
4 Day Survival Index (no. surviving 4 days/no. live on pnd 0) ^b	
	99.1
	<u>+</u> 0.4
	N=48
7 Day Survival Index (no. surviving 7 days/no. live on pnd 4) ^b	
	100.0
	<u>+</u> 0.0
	N=48
14 Day Cumiyal Inday (no. aumiying 14 daya/no. liya an and 7\b	
14 Day Survival Index (no. surviving 14 days/no. live on pnd 7) ^b	
	100.0
	<u>+</u> 0.0
	N=48
21 Day Survival Index (no. surviving 21 days/no. live on pnd 14) ^b	
	99.7
	<u>+</u> 0.3
	N=48
Lactational Index (no. surviving 21 days/no. live on pnd 4)b	
	99.7
	+ 0.3
	<u>-</u> 0.0 N=48
	11-10

^aFemales 4 and 12 were removed from the study because their correct postnatal day 0 could not be confirmed. b Reported as the mean \pm S.E.M.; pnd=postnatal day. All indexes are the average percent per litter.

Table B-2. Summary of the F_1 Litter Size, Pup Body Weights, and Percent Male Pups During Lactation from the F_0 Untreated Females (page 1 of 3)

No. of Live Litters:	
Postnatal Day 0 Postnatal Day 4 Postnatal Day 7 Postnatal Day 14 Postnatal Day 21	48 48 48 48 48
Average Number of Live Pups per Litter (pnd 0) ^a	
	12.6 <u>+</u> 0.3 N=48
Average Number of Live Pups per Litter (pnd 4) ^a	
	12.5 <u>+</u> 0.3 N=48
Average Number of Live Pups per Litter (pnd 7) ^a	
	9.7 <u>±</u> 0.1 N=48
Average Number of Live Pups per LItter (pnd 14) ^a	
	9.7 <u>+</u> 0.1 N=48
Average Number of Live Pups per Litter (pnd 21) ^a	
	9.7 <u>+</u> 0.2 N=48
Average Pup Body Weight (g) per Litter (pnd 0) ^a	
	6.63 <u>±</u> 0.08 N=48
Average Male Body Weight (g) per Litter (pnd 0) ^a	
	6.78 ± 0.08 N=47 ^b
Average Female Body Weight (g) per Litter (pnd 0) ^a	
	6.44 ± 0.08 N=48

Table B-2. Summary of the F_1 Litter Size, Pup Body Weights, and Percent Male Pups During Lactation from the F_0 Untreated Females (page 2 of 3)

Average Pup Body Weight (g) per Litter (pnd 4) ^a	
	10.79
	<u>+</u> 0.15
	N=48
Average Male Body Weight (g) per Litter (pnd 4) ^a	
	11.03
	<u>+</u> 0.16
	N=47 ^b
Average Female Body Weight (g) per Litter (pnd 4) ^a	
	10.48
	<u>+</u> 0.16
	N=48
Average Pup Body Weight (g) per Litter (pnd 7) ^a	
	17.22
	+ 0.25
	N=48
Average Male Body Weight (g) per Litter (pnd 7) ^a	,, ,,
Average wate body weight (g) per Litter (prid 7)	
	17.50
	<u>+</u> 0.25 N=47 ^b
	N=47 ⁶
Average Female Body Weight (g) per Litter (pnd 7) ^a	
	16.67
	<u>+</u> 0.28
	N=44 ^C
Average Pup Body Weight (g) per Litter (pnd 14) ^a	
	33.97
	<u>+</u> 0.46
	N=48
Average Male Body Weight (g) per Litter (pnd 14) ^a	
	34.43
	+ 0.47
	± 0.47 N=47 ^b
Average Female Body Weight (g) per Litter (pnd 14) ^a	
	33.14
	<u>+</u> 0.50
	$N=\overline{44}^{C}$

Table B-2. Summary of the F_1 Litter Size, Pup Body Weights, and Percent Male Pups During Lactation from the F_0 Untreated Females (page 3 of 3)

Average Pup Body Weight (g) per Litter (pnd 21) ^a	
	55.89
	± 0.83
	<u>+</u> 0.03 N=48
	N= 1 0
Average Male Body Weight (g) per Litter (pnd 2	21) ^a
	FG 94
	56.81
	± 0.86
	N=47 ^b
Average Female Body Weight (g) per Litter (pn	d 21) ^a
	54.15
	<u>+</u> 0.89
	N=44 ^C
	11-44
5 5	
Percent Male Pups per Litter (pnd 0) ^a	
	51.5
	<u>+</u> 2.3
	N=48
	N= 1 0
Percent Male Pups per Litter (pnd 4) ^a	
	51.5
	± 2.3
	N=48
	11=10

^aReported as the mean \pm S.E.M.; pnd=postnatal day. ^bDecrease in N is due to one litter having only female pups. ^cDecrease in N is due to four litters having only male pups.

Table B-3. Summary of the Clinical Observations on Postnatal Days 0 Through 21 for the F_1 Pups from the F_0 Untreated Females (page 1 of 1)

Day ^a	Sexb	Clinical Observation	
0	F	Found dead	4
	М	Found dead	3
		No milk band	1
4	F	Missing and presumed dead	2
	М	Missing and presumed dead	4
		Tail: thread-like; Pup culled	1
14	F	Eye(s): not open	1
		Thin fur: back	3
	М	Tail: kinked	1
		Thin fur: back	3
21	F	Cannibalized, 1 x 2 cm piece of fur/skin only	1
-		Eye(s): not open; Head: domed	1

^aPostnatal day. ^bF is female and M is male.

Table B-4. Summary of the Necropsy Findings on Postnatal Days 0 Through 21 for the F_1 Pups from the F_0 Untreated Females (page 1 of 1)

Day ^a	Sexb	Necropsy Finding	
0	F	Ductus open; Digestive tract too autolyzed to evaluate	1
		Ductus open; No air in lungs; No milk in stomach	2
		Necropsy inadvertently not performed	1
	М	Ductus open; Milk in stomach	1
		Ductus open; No air in lungs; No milk in stomach	1
		Placenta still attached; Ductus open; No air in lungs; No milk in stomach	1
21	F	Cannibalized, unable to evaluate	1

^aPostnatal day. ^bF is female and M is male.

 $\label{thm:conditional} \textbf{Table B-5. Individual F}_0 \ \textbf{Untreated Female Reproductive and Lactational Indexes} \quad \textbf{(page 1 of 2)}$

<u> </u>		Live	Gestational	Live	Dead	Total	Live	Live	Live	Live
Female ID	Pregnant	Litter	Length	PND 0	PND 0	PND 0	PND 4	PND 7		PND 21
2 ^a	Yes	Yes	22	13	0	13	13	10	10	10
4b					_					
6	Yes	Yes	22	15	0	15	15	10	10	10
8	Yes	Yes	22	12	0	12	12	10	10	10
10	Yes	Yes	22	15	0	15	15	10	10	10
12 ^b	.,		0.0	4.5		4.5	4.5	4.0	4.0	4.0
14	Yes	Yes	22	15	0	15	15	10	10	10
16	Yes	Yes	21	15	1	16	15	10	10	10
18	Yes	Yes	22	13	0	13	12	10	10	10
20	Yes	Yes	22	15	0	15	15	10	10	10
22	Yes	Yes	22	10	1	11	10	10	10	10
24	Yes	Yes	21	10	0	10	10	10	10	10
26	Yes	Yes	22	11	0	11	10	10	10	10
28	Yes	Yes	22	12	1	13	12	10	10	10
30	Yes	Yes	22	7	1	8	7	6	6	6
32	Yes	Yes	22	13	0	13	13	10	10	10
34	Yes	Yes	22	15	0	15	15	10	10	10
36	Yes	Yes	22	12	0	12	12	10	10	10
38	Yes	Yes	22	11	0	11	11	10	10	10
40	Yes	Yes	22	6	3	9	6	6	6	6
42	Yes	Yes	22	12	0	12	12	10	10	10
44	Yes	Yes	22	9	0	9	9	9	9	9
46	Yes	Yes	22	6	0	6	6	6	6	5
48	Yes	Yes	22	14	0	14	14	10	10	10
50	Yes	Yes	22	13	0	13	13	10	10	10
52	Yes	Yes	22	13	0	13	13	10	10	10
54	Yes	Yes	22	14	0	14	14	10	10	10
56	Yes	Yes	22	15	0	15	14	10	10	10
58	Yes	Yes	22	13	0	13	13	10	10	10
60	Yes	Yes	21	13	0	13	12	10	10	10
62	Yes	Yes	22	13	0	13	13	10	10	10
64	Yes	Yes	22	14	0	14	14	10	10	10
66	Yes	Yes	22	13	0	13	13	10	10	10
68	Yes	Yes	22	14	0	14	14	10	10	10
70 70	Yes	Yes	21	15	0	15	15	10	10	10
72 74	Yes	Yes	22	12	0	12	12	10	10	10
74	Yes	Yes	22	15	0	15	15	10	10	10
76 70	Yes	Yes	21	13	0	13	13	10	10	10
78	Yes	Yes	21	11	0	11	11	10	10	10

Table B-5. Individual F_0 Untreated Female Reproductive and Lactational Indexes (page 2 of 2)

Female ID	Pregnant	Live Litter	Gestational Length	Live PND 0	Dead PND 0	Total PND 0	Live PND 4	Live PND 7	Live PND 14	Live PND 21
80	Yes	Yes	22	16	0	16	16	10	10	10
82	Yes	Yes	22	12	0	12	12	10	10	10
84	Yes	Yes	22	14	0	14	13	10	10	10
86	Yes	Yes	22	11	0	11	11	10	10	10
88	Yes	Yes	21	13	0	13	13	10	10	10
90	Yes	Yes	21	13	0	13	13	10	10	10
92	Yes	Yes	21	13	0	13	13	10	10	10
94	Yes	Yes	22	16	0	16	15	10	10	10
96	Yes	Yes	22	11	0	11	11	10	10	10
98	Yes	Yes	22	15	0	15	15	10	10	10
100	Yes	Yes	21	8	0	8	8	8	8	8

^aFemales 2 through 50 were in component 1 and females 52 through 100 were in component 2. ^bFemale was removed from the study because her correct postnatal day 0 could not be confirmed.

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 1 of 16)

				Postnatal Da	V	
Female ID	Sex	0	4	7	14	21
2 ^b	М	6.70	11.15	16.69	28.80	53.16
		6.69	10.62	15.98	31.67	52.97
		6.81	11.53	15.53	29.51	54.30
		7.37	10.68	17.51	31.89	58.32
		6.14	10.69	16.72	31.56	46.80
	F	6.41	9.70	16.17	29.23	50.02
		6.57	10.78	15.13	31.21	51.77
		6.46	10.31	15.17	31.36	52.88
		6.05	10.47	14.47	31.42	49.40
		6.22	10.81	16.12	30.67	53.23
		6.56	10.82			
		5.97	10.44			
4 ^c		6.35	10.98			
6	М	7.66	12.26	18.68	39.33	60.49
		7.16	10.48	19.58	38.88	64.44
		7.57	11.04	19.72	34.71	58.85
		7.56	12.25	20.09	38.16	65.20
		7.07	11.66	19.40	37.24	61.61
		6.10	10.90	18.81	38.24	64.58
		7.05	12.22	17.79	38.37	65.86
		7.02	10.80	20.17	36.05	65.27
		7.43	11.14	18.33	37.02	62.77
		7.39	12.13	19.93	37.44	65.47
		6.86	11.74			
		6.84	10.47			
		7.36	9.96			
		7.16				
	F	6.93	10.36			
		.d	10.93			
8	M	6.40	10.95	11.95	33.36	56.78
		7.21	11.35	16.80	36.41	59.24
		7.62	12.30	16.53	35.50	58.23
		7.02	11.42	17.96	27.36	60.03
		6.63	10.71	19.16	33.09	56.56
		4.31	7.33	18.10	33.39	59.99
		6.88	11.57	19.06	35.45	46.90
	_	7.12	11.95	18.34	35.40	56.40
	F	7.26	10.51	17.95	36.27	57.96
		5.97	9.59	17.99	35.65	59.44
		7.10	11.96			
		6.52	11.69			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 2 of 16)

				Destrotal De		
Female ID	Sex	0	1	Postnatal Da	1 <u>y</u> 14	21
	Sex	0	4	,	14	21
10	М	7.02	7.50	17.46	34.17	55.98
		6.70	10.96	15.93	34.41	55.25
		5.98	11.19	17.93	34.00	56.92
		6.84	10.57	18.50	32.93	52.47
		6.52	11.16	17.16	31.04	50.80
		6.73	10.48	16.18	34.71	55.96
		6.72	11.44	16.73	29.83	57.74
		. ^d	10.60	18.00	32.33	55.27
	F	5.66	10.35	16.82	27.58	51.20
		6.69	10.67	14.73	31.32	46.65
		6.74	10.55			
		6.69	10.73			
		6.50	10.91			
		6.47	8.92			
		6.86	10.52			
		6.88				
12 ^C						
14	M	6.48	10.46	17.35	35.32	59.89
		6.96	10.74	17.96	36.38	60.82
		6.47	10.39	17.49	34.80	57.57
		6.78	9.91	16.95	34.94	58.64
		6.65	10.34	17.08	36.55	57.97
		6.45	10.29	16.85	35.39	61.35
		6.44	10.01	18.13	36.13	58.88
		6.73	10.00	16.99	35.30	61.34
		6.91	9.90	17.25	35.46	56.79
	F	6.72	10.06	17.12	34.94	56.34
		6.54	10.38			
		6.18	10.20			
		6.52	9.74			
		6.10	10.12			
		6.11	10.37			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 3 of 16)

				Postnatal Da	ıy	
Female ID	Sex	0	4	7	14	21
16	М	6.55	9.60	13.59	26.88	44.30
		7.04	9.40	16.40	29.56	38.89
		6.86	10.89	13.62	30.03	45.16
		7.27	9.53	17.01	25.66	47.97
		6.64	8.19	14.86	31.82	42.21
		6.87	10.13	15.47	29.27	47.38
		6.65	10.09	15.52	27.96	41.91
		7.21	8.95	12.30	31.38	41.39
		6.34	10.13	16.19	28.73	43.14
	F	6.52	10.11	16.33	30.23	45.73
		6.31	9.89			
		6.00	9.69			
		6.15	7.94			
		6.31	8.90			
		6.38	10.07			
18	M	7.90	11.59	19.56	33.41	54.03
		6.92	12.32	18.93	31.81	56.69
		7.06	12.38	19.33	32.82	57.07
		7.90				
		7.29	.e			
	F	6.88	10.82	16.94	32.30	56.46
		6.66	9.58	17.18	33.53	49.84
		6.95	11.26	18.11	33.66	51.79
		7.37	12.31	18.12	31.81	53.90
		6.80	10.81	17.41	30.76	52.50
		6.91	11.18	18.45	30.55	52.67
		6.97	11.77	18.27	33.25	54.81
		6.49	11.29			
		.d	11.58			
20	M	7.37	11.15	17.83	37.17	60.63
		7.00	10.98	19.33	35.17	55.49
		6.70	11.44	18.71	32.33	55.99
		6.83	10.25	17.85	35.12	60.35
		6.59	11.46	18.85	35.14	59.14
		7.39	10.78	17.48	34.72	58.43
		7.26	11.15	18.96	35.33	57.26
		7.31	11.25	17.21	36.77	50.24
		6.66	10.66	18.62	35.70	52.33
	F	7.30	11.36	17.32	34.44	58.76
		6.60	11.53			
		7.03	10.84			
		7.07	6.97			
		5.75	10.59			
		6.69	11.09			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 4 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
22	М	7.48	12.28	18.35	34.36	60.31
		5.56	12.85	19.08	35.15	55.25
		7.67	12.39	18.04	34.89	60.07
		7.58	12.67	18.37	35.89	60.61
		7.54	12.45	18.77	35.64	58.12
		7.39	12.52	18.31	33.09	58.78
		7.87				
	F	7.87	8.28	16.86	34.67	41.04
		7.00	11.44	18.44	32.53	58.51
		7.61	12.12	17.37	34.64	54.29
		.d	11.69	12.49	27.71	57.35
24	М	6.18	9.98	13.74	24.51	37.88
		6.13	9.62	13.21	24.70	38.28
		6.08	10.13	14.70	23.50	38.77
		5.74	9.43	14.12	24.20	39.30
		5.89	9.39	13.46	23.90	36.87
	F	4.60	7.71	13.33	22.61	35.55
		5.13	6.41	9.29	22.01	32.70
		5.09	9.17	12.17	20.40	34.78
		5.60	8.48	11.66	22.50	36.41
		5.16	8.75	10.48	18.70	30.24
26	М	7.76	12.43	17.60	33.97	51.71
		7.74	12.70	18.43	32.68	53.47
		7.55	11.71	17.70	31.46	55.93
		7.73	11.48	18.28	33.36	56.85
		7.24	11.90	17.57	32.29	54.53
		d	12.25	16.68	32.46	58.42
	F	7.06	11.69	17.61	29.32	47.61
	•	7.23	11.83	16.92	31.78	53.07
		7.06	11.72	15.26	31.80	52.45
		7.16	10.41	17.38	31.36	51.82
		6.82			000	00_
		6.85	.e			
28	М	7.00	11.60	17.89	38.98	63.07
		7.18	11.86	18.29	37.59	57.17
		7.08	11.09	15.78	37.32	61.98
		6.68	10.85	16.11	34.00	58.72
		6.98	11.02	18.53	37.00	62.65
		7.40	9.79	19.29	37.07	64.19
		7.86	8.94	17.95	34.14	55.80
	F	6.52	10.29	16.97	34.49	58.95
	•	6.29	10.12	16.79	35.29	53.79
		6.52	10.19	16.62	35.05	58.20
		6.16	10.50	10.02	00.00	33.20
		6.42	9.92			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 5 of 16)

				Postnatal Da	11/	
Female ID	Sex	0	4	7	14	21
30	M	8.02	14.19	21.35	40.62	67.61
		8.26	13.93	22,19	42.18	69.55
		8.68	13.53	.f		
	F	7.41	12.58	20.29	39.72	66.16
		7.53	12.36	20.93	39.09	63.96
		7.76	12.65	19.73	39.55	63.81
		7.45	13.31	19.44	37.66	65.29
32	M	7.41	12.24	16.03	35.05	56.29
		7.21	10.26	18.16	33.66	57.03
		7.54	11.02	17.84	33.65	59.47
		7.09	11.74	15.83	33.94	57.49
		6.23	11.74	17.11	32.55	58.73
		7.97	10.33	18.17	31.86	53.61
	F	6.78	11.16	16.84	32.71	50.29
		6.95	9.30	14.78	31.18	52.18
		6.37	10.43	16.24	33.05	53.55
		6.67	10.79	16.20	30.16	51.23
		6.79	11.02			
		7.00	10.84			
		5.47	10.73			
34	M	7.47	10.85	18.45	35.83	56.42
		6.81	9.61	17.16	35.18	57.15
		6.61	11.13	16.54	32.80	56.34
		7.84	11.41	15.50	34.63	55.94
		7.25	10.34	18.30	33.98	54.94
		7.09	10.26	16.79	33.17	61.68
		.d	10.50	16.97	34.19	59.89
		.d	10.42	12.43	33.49	54.89
	F	7.00	10.13	17.05	31.92	56.52
		6.45	10.32	15.81	33.77	55.13
		7.23	10.74			
		6.79	9.68			
		5.51	9.05			
		7.27	10.15			
		6.90	10.05			
		7.02				
		6.36				

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 6 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
36	М	8.03	10.73	16.96	34.29	56.26
		7.46	10.25	16.74	32.24	55.87
		7.05	11.03	15.57	33.50	56.79
		7.19	10.84	16.67	34.19	56.19
		7.11	10.91	17.16	33.02	55.17
	F	7.06	10.59	15.76	33.95	54.16
		7.32	11.17	16.02	32.50	51.46
		7.12	10.07	15.54	32.46	54.70
		7.25	10.22	17.20	33.06	54.40
		6.14	10.01	16.56	33.26	52.94
		7.12	9.15			
		6.48	10.70			
38	M	7.21	11.51	17.91	34.89	52.87
		7.08	11.88	17.59	34.39	52.15
		7.09	12.13	18.82	33.89	54.38
		6.46	11.59	19.65	37.26	57.43
	_	.d	12.59	18.11	34.36	58.98
	F	6.98	12.17	18.31	33.61	56.85
		6.77	11.56	18.16	36.18	55.16
		6.81	11.74	18.14	36.04	56.48
		7.73	11.91	18.19	34.70	55.91
		7.11	11.39	18.82	34.76	56.89
		6.57	12.18			
40		6.95	44.05	00.44	44.00	00.04
40	M	7.11	11.95	20.11	41.60	68.01
		7.07 d	12.13	19.66	37.85	69.65
	_	.d	12.33	18.76	41.76	65.38
	F	6.75	11.95	18.18	39.45	64.98
		5.35	9.29	19.52	38.58	66.26
		6.07	11.10	15.40	35.02	57.22
40		7.09	40.04	10.01	25.00	E7 04
42	M	8.01	12.91	19.94	35.00	57.24
		7.74	12.63	19.86	37.66	57.86
		8.17	12.50	19.78	37.20	60.51
		8.31	12.68 12.70	19.66	35.48 37.84	61.55 59.71
		8.02		19.37		58.71
		7.98 7.74	12.64 12.70	19.38 18.78	35.57 36.93	59.88 59.96
		7.74 8.19	12.70	18.83	36.66	63.44
		8.02	12.71	19.23	36.50	57.89
		6.02 7.55	12.80	19.23	36.50 37.16	60.75
		7.55 7.17	12.82	19.43	31.10	00.75
	F	7.17 7.18	12.50			
	Г	1.10	11.8 <i>1</i>			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 7 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
44	М	6.41	12.44	17.03	35.29	56.06
		6.59	11.04	18.78	31.27	53.35
		7.20	11.62	16.29	31.25	50.19
		7.28				
	F	6.52	11.42	18.47	33.89	55.19
		6.97	11.10	16.45	31.78	53.22
		6.73	11.91	17.29	31.30	50.74
		6.58	10.80	17.90	32.52	52.69
		7.02	11.68	16.38	31.92	53.34
		.d	11.92	16.20	29.81	49.95
46	F	7.68	11.16	18.83	25.70	60.53
		8.26	13.21	18.76	35.59	58.28
		7.87	12.82	17.46	37.68	60.95
		7.23	12.37	18.63	34.75	53.53
		7.86	13.59	17.30	33.71	59.97
		7.97	12.69	20.14	35.25	<u>.</u> 9
48	M	6.37	10.42	18.16	35.51	58.82
		6.20	11.20	17.76	35.71	59.84
		6.41	10.56	17.56	36.95	61.29
		6.46	10.92	18.23	36.99	58.54
		6.70	11.36	17.67	37.53	60.66
		6.49	11.78	17.86	36.13	59.71
	F	6.58	10.66	17.87	35.83	55.26
		6.25	10.50	17.33	34.42	55.53
		5.93	10.43	16.93	34.91	54.86
		5.75	10.45	17.56	34.20	55.55
		6.15	10.51			
		6.14	10.82			
		5.84	11.32			
		6.76	11.35			
50	M	7.51	11.35	19.26	31.68	59.85
		7.25	11.89	18.13	35.42	58.17
		6.79	11.30	19.03	35.11	58.28
		7.01	11.66	18.62	33.72	55.60
		6.89	11.10	19.12	34.16	58.76
		6.92	12.17	18.52	34.99	53.82
		7.28	10.09	17.17	34.56	60.77
		6.85	10.63	17.28	31.36	59.74
		7.48	11.12	16.74	35.76	54.02
		7.26	10.78	18.20	35.06	56.29
	F	5.27	8.35			
		5.86	8.93			
		6.47	9.62			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 8 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
52	М	7.51	12.08	17.86	37.80	59.69
		6.70	11.72	18.23	39.02	59.84
		7.13	12.05	17.28	38.35	57.65
		6.75	12.22	18.95	40.46	56.09
		6.63	12.27	19.48	36.97	62.80
		6.69	11.50	20.34	36.72	59.84
		7.37	11.36	19.36	38.81	57.92
		7.39	10.64	20.13	38.40	58.84
		.d .d	11.20	18.30	36.05	58.65
		.d	11.87	_. h	37.97	63.21
	F	6.52	11.69			
		7.40	11.04			
		6.26	11.63			
		6.67				
		6.98				
54	M	6.54	10.75	18.03	34.49	56.06
		7.14	11.09	18.99	34.41	59.60
		6.10	11.35	18.92	37.31	59.88
		6.70	10.81	16.96	35.87	63.05
		6.86	11.33	17.70	35.56	62.46
		6.60	10.33	16.53	31.97	66.53
		6.80	11.20	18.41	34.66	63.83
		6.52	12.10	18.36	36.77	57.07
	F	6.00	11.60	17.92	32.57	63.36
		6.45	11.78	15.92	35.21	57.47
		6.77	10.96			
		6.32	11.14			
		6.07	9.40			
		6.84	9.99			
56	М	7.02	11.21	18.39	38.64	58.56
		6.56	10.63	19.54	37.16	64.27
		7.06	12.00	18.93	35.04	62.05
		6.78	12.15	19.43	37.57	60.68
		6.98	11.56	20.08	35.96	61.72
		6.25	11.75	17.37	38.39	61.53
		6.06	0			
	_	6.56	.e			
	F	6.53	10.69	18.55	34.75	56.29
		6.19	10.25	18.06	34.66	57.86
		6.10	10.20	16.44	32.04	55.02
		6.18	10.13	16.87	35.33	59.14
		6.44	9.81			
		5.93	10.60			
		5.90	11.72			
		.d	10.71			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 9 of 16)

				Postnatal Da	ıv	
Female ID	Sex	0	4	7	14	21
58	М	5.74	11.41	20.85	36.80	66.86
		6.99	11.43	19.78	42.69	60.32
		7.10	11.86	16.58	38.89	70.55
		7.20	11.92	19.06	40.56	62.70
		7.13	9.81	20.12	40.69	63.15
	F	6.97	8.32	15.33	37.56	56.95
		6.70	11.68	19.71	40.31	65.02
		7.07	11.34	18.09	34.22	58.38
		6.91	9.51	20.36	39.61	65.06
		5.28	10.91	19.73	40.52	64.82
		5.94	11.92			
		6.72	11.79			
		6.49	9.90			
60	M	5.90	9.54	6.30	29.59	50.63
		4.53	9.51	13.92	30.60	50.58
		5.50	9.68	15.93	32.89	48.90
		6.14	9.27	15.42	29.24	44.55
		5.71	8.65	14.89	32.06	47.12
		5.73	9.97	15.40	30.97	47.43
		5.75	.e			
	F	5.54	6.86	15.00	30.25	49.40
		5.62	9.07	14.24	26.06	40.25
		5.52	7.20	11.34	25.30	36.57
		5.77	9.03	12.56	31.41	50.32
		5.24	8.80			
		4.72	8.76			
62	M	6.33	11.34	15.35	35.58	59.23
		5.71	10.53	17.82	35.58	61.49
		6.44	10.28	16.51	35.97	60.79
		6.52	10.31	17.12	35.52	61.14
		6.29	10.85	16.68	34.81	56.89
		6.31	10.44	17.33	36.17	59.07
		6.08	9.40	17.35	37.08	59.80
		6.00	10.99	17.50	34.02	55.36
		6.20	10.74	17.95	35.88	55.36
	F	6.10	10.98	16.90	35.62	58.27
		5.81	9.96			
		6.24	9.56			
		5.88	10.37			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 10 of 16)

				Postnatal Da	ıv	
Female ID	Sex	0	4	7	14	21
64	М	6.87	10.88	18.70	36.20	60.61
		6.84	10.61	18.50	34.62	56.09
		6.49	10.44	18.78	35.02	57.39
		6.64	11.64	17.77	34.57	53.58
		6.20	11.03	19.06	36.66	60.39
		6.64	11.79	18.73	37.00	55.86
		6.50	11.77	18.13	35.73	57.64
	F	6.32	11.73	17.07	35.57	54.17
		6.04	11.59	18.28	35.78	54.32
		6.04	10.68	18.00	33.86	52.40
		6.25	10.81			
		6.18	10.80			
		6.74	10.77			
		6.91	10.16			
66	M	7.06	11.66	17.08	37.84	56.72
		6.51	10.64	19.64	35.18	61.91
		7.07	12.63	17.61	35.48	56.61
		6.42	12.08	17.73	35.09	62.11
		6.09	11.10	18.72	35.89	61.28
		6.63	10.93	18.24	35.01	65.27
	F	6.08	11.80	18.76	34.79	59.35
		6.17	11.02	19.01	36.61	59.93
		6.07	10.41	17.58	35.11	59.82
		5.57	12.08	18.84	35.79	57.86
		6.18	11.47			
		6.78	10.64			
		7.22	9.49			
68	M	6.35	11.16	18.12	34.50	60.11
		6.13	9.93	17.60	36.89	60.57
		6.33	10.25	17.63	36.61	56.02
		6.40	11.00	18.24	34.44	59.60
		6.55	10.67	17.01	35.41	58.76
		6.31	10.31	17.51	35.89	58.32
		6.73	10.56	17.28	35.68	57.66
		6.52	10.22	16.98	34.92	58.57
	F	6.11	10.07	17.27	35.65	60.13
		5.98	10.59	18.03	35.70	56.93
		6.58	10.87			
		6.24	10.07			
		5.88	10.95			
		6.16	9.84			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 11 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
70	М	5.92	9.96	12.69	30.69	49.25
		5.77	9.47	16.04	31.75	43.70
		5.74	8.96	14.51	30.51	52.25
		6.03	9.55	15.53	30.94	50.62
		6.02	8.41	15.20	31.40	50.71
		6.24	9.23	15.08	26.61	47.66
	F	5.69	9.33	14.59	31.73	41.01
		5.89	9.26	14.30	29.18	51.17
		5.61	8.16	14.81	25.36	49.44
		5.48	6.33	10.25	30.99	48.05
		5.85	8.84			
		4.87	9.36			
		5.51	9.06			
		5.39	8.57			
		6.00	9.19			
72	M	7.41	13.19	21.07	38.41	61.78
		7.40	13.17	22.22	36.60	66.85
		7.72	13.34	21.25	35.97	61.50
		7.69	13.53	20.34	37.60	63.24
		7.60	13.88	21.20	37.96	62.80
		7.48	13.47	21.16	38.22	60.92
		7.38	13.00	20.60	39.14	60.70
		7.47	13.04	20.44	36.83	60.65
	F	6.74	12.33	20.28	39.01	62.48
		7.22	13.12	21.22	37.77	59.77
		7.15	12.96			
		7.60	11.88			
74	M	6.89	9.59	17.74	33.72	62.70
		6.56	9.19	16.50	38.46	57.86
		6.31	10.72	18.36	36.91	63.75
		6.21	11.48	18.45	36.04	61.00
		6.44	9.82	14.74	34.36	63.67
		5.10	10.68	16.10	34.10	55.23
		6.81				
	F	6.21	9.75	16.86	33.89	53.63
		5.82	10.21	15.68	33.67	55.70
		5.79	9.33	13.07	33.85	50.31
		6.10	10.26	15.46	31.43	55.83
		5.91	9.29			
		5.94	9.90			
		6.46	9.21			
		.h	7.54			
		.d	9.25			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 12 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
76	М	5.82	9.09	15.76	34.01	53.50
		5.65	10.00	15.92	33.33	59.29
		6.04	9.36	16.14	34.24	58.84
		6.18	9.78	15.02	33.66	57.07
		5.29	9.54	14.64	34.08	56.10
		5.86	9.70	16.15	32.34	56.79
		5.93	8.84	16.20	31.09	56.31
		6.15				
	F	5.58	9.34	14.75	31.07	55.16
		5.46	8.19	15.03	30.72	51.89
		5.17	9.33	15.35	32.47	54.70
		5.54	9.59			
		5.64	9.29			
		.d	9.07			
78	M	6.76	11.35	16.33	33.87	61.73
		7.21	11.01	18.07	35.73	62.30
		6.94	11.84	18.41	34.47	63.34
		7.08	11.64	16.77	34.86	59.49
		6.23	10.96	17.80	33.70	57.43
		7.10	10.17	15.91	33.92	57.35
	F	6.24	9.57	15.23	29.73	53.46
		6.61	11.17	13.34	30.72	59.16
		6.55	10.01	16.89	32.62	54.97
		6.51	10.61	17.38	34.99	50.94
		5.88	10.78			
80	M	5.96	9.76	16.42	36.90	55.34
		5.64	9.00	16.17	33.66	56.81
		6.33	9.49	17.30	34.21	52.72
		6.32	9.43	16.57	33.95	57.39
		6.22	8.77	15.57	31.04	58.16
		6.18	9.82	17.37	31.90	60.56
		6.47	9.15	15.01	35.27	59.43
		5.87	10.05	15.32	33.27	58.56
		5.96	9.60	15.79	32.12	62.72
	F	6.05	9.95	16.46	34.09	57.14
		6.29	10.01			
		5.91	10.27			
		6.43	9.57			
		5.95	9.95			
		6.28	9.77			
		6.16	9.25			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 13 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
82	М	6.52	11.49	18.09	34.14	58.29
		6.42	12.04	17.41	35.89	57.61
		6.89	10.61	17.64	35.41	57.32
		6.68	11.44	18.92	34.12	59.88
		6.92	11.32	18.30	34.50	58.78
		7.35	11.53	18.22	34.09	55.90
	F	6.78	11.26	17.01	32.72	58.14
		6.73	11.11	17.85	34.46	55.22
		6.42	11.14	17.36	34.05	55.40
		6.68	10.56	17.17	33.95	57.06
		6.14	10.85			
		6.84	11.39			
84	M	6.70	10.85	11.00	36.11	58.73
		5.92	10.54	17.85	35.77	59.00
		6.27	11.06	17.92	36.52	28.10
		6.64	10.98	18.14	35.44	58.68
		6.34	10.71	17.84	34.22	58.17
		6.41	7.53	17.86	22.04	59.86
		6.27	11.04	18.03	35.98	57.40
		6.39	11.52	17.43	34.99	58.13
	F	5.58	11.36	18.42	35.76	58.99
		6.51	9.88	18.56	36.71	57.85
		5.12	11.44			
		6.15	9.94			
		6.14	10.50			
		6.61	.e			
86	M	7.22	12.32	17.52	34.71	62.26
		7.35	12.03	17.91	32.68	55.74
		7.09	12.16	17.97	33.68	55.75
		7.08	12.07	17.61	36.11	56.18
	F	6.11	10.98	17.00	32.76	54.67
		6.28	11.17	16.46	33.11	55.15
		6.14	11.54	15.53	32.97	55.52
		6.26	11.28	16.71	32.01	53.54
		6.82	11.43	16.63	32.38	49.03
		6.57	9.98	17.66	30.55	53.04
		6.80	11.15			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 14 of 16)

				Postnatal Da	ıv	
Female ID	Sex	0	4	7	14	21
88	М	6.46	10.33	17.61	34.36	52.95
		6.36	9.59	15.54	33.14	55.14
		6.20	10.65	16.51	31.99	49.80
		6.31	10.58	15.20	31.14	49.04
		6.50	10.16	15.98	33.12	50.79
		5.91	9.53	16.94	31.30	52.59
		6.54	10.36	16.73	32.58	50.10
		6.18	10.25	16.88	29.32	48.12
	F	5.77	9.99	15.88	30.27	45.59
		6.30	9.46	15.82	31.50	48.62
		5.79	9.38			
		6.02	9.63			
		5.90	10.46			
90	M	6.33	9.55	12.85	26.90	48.48
		5.21	9.86	14.85	30.73	51.34
		6.26	8.25	15.78	31.18	50.39
		6.47	9.99	15.80	32.20	44.23
	F	5.55	9.41	13.83	30.63	47.78
		6.25	9.79	13.64	28.94	49.07
		5.55	9.21	14.28	29.43	37.27
		4.85	8.68	15.39	29.24	48.98
		5.94	6.24	15.03	23.00	49.47
		5.92	9.15	9.79	30.39	46.84
		6.11	8.80			
		5.74	8.87			
		5.59	9.40			
92	M	6.20	10.24	15.78	28.51	51.09
		5.55	9.87	14.46	28.88	48.04
		5.74	9.72	15.09	30.12	43.18
		5.89	9.13	15.27	29.11	46.70
		6.23	9.33	14.33	28.05	46.10
	F	5.68	9.12	14.04	28.18	45.03
		5.63	9.46	14.25	26.67	47.71
		5.51	9.66	14.90	29.10	46.47
		5.78	9.27	14.61	27.63	42.69
		5.75	8.87	14.18	27.31	47.82
		5.63	8.96			
		5.77	9.34			
		5.81	9.56			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 15 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
94	М	5.97	9.78	14.74	31.46	46.57
		6.10	9.21	14.86	29.68	48.02
		6.20	9.16	14.71	30.05	46.08
		6.33	9.81	15.81	31.34	49.33
		6.03	9.48	14.49	31.84	45.58
		6.64	9.95	14.68	29.27	45.41
		6.15	9.76	15.74	30.34	48.70
		6.64	9.19	14.47	29.57	48.42
		6.55	9.17	15.23	30.56	46.97
		6.45				
		6.30	.e			
	F	5.98	9.07	14.28	30.81	46.58
		6.34	9.58			
		6.50	8.44			
		6.15	10.19			
		5.77	9.24			
		. ^d	8.93			
96	M	7.43	12.99	20.70	40.12	63.59
		7.38	12.28	19.36	40.53	62.43
		6.58	12.12	19.27	38.89	66.62
		7.07	12.52	19.10	40.20	56.75
		7.01	11.89	20.33	40.10	64.13
		6.86	12.78	19.31	37.90	63.65
	F	6.97	12.91	20.95	38.75	63.32
		6.95	12.42	18.82	38.03	59.95
		7.34	12.37	20.59	39.98	62.33
		7.04	12.79	19.49	38.08	63.25
		7.44	13.04			
98	M	6.24	11.18	16.26	31.15	54.36
		6.76	9.90	18.01	33.90	55.08
		6.98	11.27	19.00	35.85	49.83
		6.37	11.21	18.17	32.16	57.01
		6.78				
		6.75				
	F	6.41	11.10	18.69	34.39	50.41
		6.60	10.62	16.45	32.58	52.72
		6.82	11.61	17.58	30.61	51.27
		4.78	10.60	17.77	32.72	48.37
		6.14	11.24	17.08	33.28	51.09
		6.54	10.04	17.22	31.59	51.06
		6.15	10.46			
		7.07	11.40			
		5.97	11.14			
		.d	8.78			
		.d	6.36			

Table B-6. Individual Body Weight (g) during Lactation for the F_1 Pups from the F_0 Untreated Females^a (page 16 of 16)

				Postnatal Da	ay	
Female ID	Sex	0	4	7	14	21
100	М	7.11	11.25	19.35	39.82	61.92
		7.67	11.90	18.01	38.32	62.77
		7.04	11.34	17.65	37.85	64.22
		.d	12.52	18.26	38.17	62.74
	F	7.15	9.74	9.88	34.92	57.75
		6.72	11.05	16.90	37.40	54.54
		6.66	7.01	15.77	27.25	60.08
		4.60	11.03	16.66	35.81	43.77
		7.26				

^aPup body weights are not comparable across columns because the pups were not uniquely identified until postnatal day 21. Litters were culled to 10 pups (maximum number of males) on postnatal day 4 bFemales 2 through 50 were in component 1 and females 52 through 100 were in component 2. cFemale was removed from the study because her correct postnatal day 0 could not be confirmed.

dPup was missexed.

^ePup missing and presumed dead on postnatal day 4.

fPup was culled on postnatal day 4 due to a physical malformation.

 ⁹Pup was found dead on postnatal day 21.
 ^hBody weight was inadvertently not recorded.

Table B-7. Individual Clinical Observations during Lactation for the F_1 Pups from the F_0 Untreated Females (page 1 of 1)

Female ID	Day	Sex	Clinical Observation
₈ a	0	М	No milk band
16	0	M	Found dead
18	4	M	Missing and presumed dead
22	0	F	Found dead
	14	F	Eye(s): not open
	21	F	Eye(s): not open; Head: domed
26	4	F	Missing and presumed dead
28	0	F	Found dead
30	0	F	Found dead
	4	M	Tail: thread-like; Pup culled
40	0	F	Found dead
		M	Found dead
			Found dead
	14	F	Thin fur: back
			Thin fur: back
			Thin fur: back
		M	Thin fur: back
			Thin fur: back
			Thin fur: back
46	21	F	Cannibalized, 1 x 2 cm piece of fur/skin only
56	4	M	Missing and presumed dead
60	4	M	Missing and presumed dead
64	14	M	Tail: kinked
84	4	F	Missing and presumed dead
94	4	M	Missing and presumed dead

^aFemales 2 through 50 were in component 1 and females 52 through 100 were in component 2.

Table B-8. Individual Necropsy Findings during Lactation for the F_1 Pups from the F_0 Untreated Females (page 1 of 1)

F	em ale ID	Day	Sex	Necropsy Finding
	16	0	М	Ductus open; Milk in stomach
	22	0	F	Necropsy inadvertently not performed
	28	0	F	Ductus open; Digestive tract too autolyzed to evaluate
	30	0	F	Ductus open; No air in lungs; No milk in stomach
	40	0	F	Ductus open; No air in lungs; No milk in stomach
			M	Ductus open; No air in lungs; No milk in stomach
				Placenta still attached; Ductus open; No air in lungs;
				No milk in stomach
	46	21	F	Cannibalized, unable to evaluate

^aFemales 2 through 50 were in component 1 and females 52 through 100 were in component 2.

FINAL REPORT APPENDICES II - V

Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals Administered by Gavage on Postnatal Days 23 to 52/53

Authors:

Julia D. George, Ph.D. Rochelle W. Tyl, Ph.D., DABT Bonnie T. Hamby, B.S. Christina B. Myers, M.S. Melissa C. Marr, B.A., RLATG

Sponsor:

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201-2693

Study Initiation Date:

May 20, 2002

Experimental Dates:

October 7, 2002 - October 22, 2003 January 26, 2003 - October 22, 2003

Performing Laboratory:

Center for Life Sciences and Toxicology Science and Engineering RTI International P. O. Box 12194 Research Triangle Park, NC 27709-2194

Sponsor's Representative:

David P. Houchens, Ph.D. EDSP Program Manager Battelle

In-Life Performance Dates:

September 5, 2002 - November 7, 2002 (Component 1)

December 26, 2002 - February 26, 2003 (Component 2)

Final Report Date:

February 9, 2004

RTI Identification Number:

08055.001.015.001

Appendix II

Histopathology Report

- ♦ Corrected pages with transmittal letter dated January 22, 2004
- ♦ Pathology report (October 22, 2003), Experimental Laboratories, Inc.

EXPERIMENTAL PATHOLOGY LABORATORIES, INC. P.O. BOX 12766, RESEARCH TRIANGLE PARK, NC 27709 (919)998-9407 Fax: (919)998-9607

January 22, 2004

Dr. Julia George Senior Toxicologist Research Triangle Institute P.O. Box 12194 Research Triangle Park, NC 27709-2194

Dear Dr. George:

Please find an original and one punched copy of page 2 and the leader pages for the two components from the final pathology report entitled "Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Spague-Dawley) Rats After Exposure to Selected Chemicals Administered by Gavage on Postnatal Days 23 Through 52/53" - Client ID 65U-08055.001.015.001(M) - EPL Project No. 237-006.

If there are any questions regarding these pages, please do not hesitate to contact me.

Sincerely,

ohi Centris Seely, DUM

JOHN CURTIS SEELY, D.V.M.

Diplomate ACVP Senior Pathologist

JCS:amh

Enclosures

DESIGN OF THE STUDY

Eight test chemicals were administered via gavage once daily for 31-32 consecutive days (pnd 22 to pnd 52 or 53) to male CD® (Sprague-Dawley) rats under the study conditions outlined in the study protocol (RTI Master Protocol No.: RTI-831).

The study began with 15 weight-matched F1 males/group. The study design, test chemicals and target dose levels are presented in Table 1.

Table 1 – Study Design Component 1

Group No.	No. F1 Males	Chemical	Dose mg/kg/day	Concentration mg/ml	Dose Volume ml/kg
1	15	_a	0	0.0	5.0
2	15	Methoxychlor	25	5.0	5.0
3	15		50	10.0	5.0
4	15	Atrazine	75	15.0	5.0
5	15		150	30.0	5.0
6	15	p,p-DDE	50	10.0	5.0
7	15		100	20.0	5.0
8	15	Vinclozolin	30	6.0	5.0
9	15		100	20.0	5.0

a corn oil, vehicle control

Component 2

Group	No. F1		Dose	Concentration	Dose Volume
No.	Males	Chemical	mg/kg/day	mg/ml	ml/kg
1	15	_a	0	0.0	5.0
2	15	Propylthiouracil	2	0.4	5.0
3	15		25	5.0	5.0
4	15	Linuron	50	10.0	5.0
5	15		100	20.0	5.0
6	15	Ketoconazole	50	10.0	5.0
7	15		100	20.0	5.0
8	15	Phenobarbital	50	10.0	5.0
9	15		100	20.0	5.0

a corn oil, vehicle control

Study Design

Component 1

Group No.	No. F1 Males	Chemical	Dose mg/kg/day	Concentration mg/ml	Dose Volume ml/kg
1	15	_a	0	0.0	5.0
2	15	Methoxychlor	25	5.0	5.0
3	15		50	10.0	5.0
4	15	Atrazine	75	15.0	5.0
5	15		150	30.0	5.0
6	15	p,p-DDE	50	10.0	5.0
7	15		100	20.0	5.0
8	15	Vinclozolinp	30	6.0	5.0
9	15		100	20.0	5.0

a corn oil, vehicle control

Study Design

Component 2

Group	No. F1		Dose	Concentration	Dose Volume
No.	Males	Chemical	mg/kg/day	mg/ml	ml/kg
1	15	_a	0	0.0	5.0
2	15	Propylthiouracil	2	0.4	5.0
3	15		25	5.0	5.0
4	15	Linuron	50	10.0	5.0
5	15		100	20.0	5.0
6	15	Ketoconazole	50	10.0	5.0
7	15		100	20.0	5.0
8	15	Phenobarbital	50	10.0	5.0
9	15		100	20.0	5.0

^a corn oil, vehicle control

65U-08055.001.015.001(M)

ASSESSMENT OF PUBERTAL DEVELOPMENT AND THYROID FUNCTION IN JUVENILE MALE CD® (SPRAGUE-DAWLEY) RATS AFTER EXPOSURE TO SELECTED CHEMICALS ADMINISTERED BY GAVAGE ON POSTNATAL DAYS 23 THROUGH 52/53

65U-08055.001.015.001(M)

EPL PROJECT NO. 237-006

PATHOLOGY REPORT

Submitted to

Research Triangle Institute P.O. Box 12194 Research Triangle Park, NC 27709

Submitted by

Experimental Pathology Laboratories, Inc. P.O. Box 12766 Research Triangle Park, NC 27709

October 22, 2003

65U-08055.001.015.001(M)

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
SUMMARY	1
DESIGN OF STUDY	2
RESULTS	3
REFERENCES	6
QUALITY ASSURANCE FINAL CERTIFICATION	7
Component 1	
SUMMARY INCIDENCE TABLES	8
HISTOPATHOLOGY INCIDENCE TABLES	10
CORRELATION OF GROSS AND MICROSCOPIC FINDINGS	19
TABLES	
Component 2	
SUMMARY INCIDENCE TABLES	27
HISTOPATHOLOGY INCIDENCE TABLES	29
CORRELATION OF GROSS AND MICROSCOPIC FINDINGS	38
TARI ES	

ASSESSMENT OF PUBERTAL DEVELOPMENT AND THYROID FUNCTION IN JUVENILE MALE CD® (SPRAGUE-DAWLEY) RATS AFTER EXPOSURE TO SELECTED CHEMICALS ADMINISTERED BY GAVAGE ON POSTNATAL DAYS 23 THROUGH 52/53

65U-08055.001.015.001(M)

EPL PROJECT NO. 237-006

NARRATIVE SUMMARY

INTRODUCTION

The objective of this study was to quantify the effects of environmental compounds on pubertal development and thyroid function in the intact juvenile/peripubertal male rat. This assay detects compounds that display antithyroid, estrogenic, androgenic, antiandrogenic [androgen receptor (AR) or steroid enzyme mediated] activity, or alter follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin, growth hormone (GH), or hypothalamic function.

For this study, the following chemicals were tested: Methoxychlor, Atrazine, p-p-DDE, Vinclozolin, Propylthiouracil, Linuron, Ketoconazole, and Phenobarbital. The study was conducted in two components. Each component consisted of two dose groups per test material and one vehicle control group, each group comprised of 15 weight-matched F1 male weanlings, for each of the two components.

The testes, epididymides and thyroids were examined microscopically.

SUMMARY

Administration of the test chemicals by gavage to male, CD® (Sprague-Dawley) rats, under the conditions of this study, was associated with the following histopathologic changes:

 The presence and dose-related increased severity of thyroid, follicular cell hypertrophy/hyperplasia in both the 2 and 25 mg/kg dosed Propylthiouracil animals.

DESIGN OF THE STUDY

Eight test chemicals were administered via gavage once daily for 31-32 consecutive days (pnd 22 to pnd 52 or 53) to male CD[®] (Sprague-Dawley) rats under the study conditions outlined in the study protocol (RTI Master Protocol No.: RTI-831).

The study began with 15 weight-matched F1 males/group. The study design, test chemicals and target dose levels are presented in Table 1.

Table 1 – Study Design

Component 1

Group	No. F1	Chemical	Dose	Concentration	Dose Volume
No.	Males		mg/kg/day	mg/ml	ml/kg
1	15	_a	0	0.0	5.0
2	15	Methoxychlor	25	5.0	5.0
3	15		50	10.0	5.0
4	15	Atrazine	75	15.0	5.0
5	15		150	30.0	5.0
6	15	p,p-DDE	50	10.0	5.0
7	15		100	20.0	5.0
8	15	Vinclozolin	30	6.0	5.0
9	15		100	20.0	5.0

^a stripped corn oil, vehicle control

Component 2

Group	No. F1	Chemical	Dose	Concentration	Dose Volume
No.	Males		mg/kg/day	mg/ml	ml/kg
1	15	_a	0	0.0	5.0
2	15	Propylthiouracil	2	0.4	5.0
3	15		25	5.0	5.0
4	15	Linuron	50	10.0	5.0
5	. 15		100	20.0	5.0
6	15	Ketoconazole	50	10.0	5.0
7	15		100	20.0	5.0
8	15	Phenobarbital	50	10.0	5.0
9	15		100	20.0	5.0

a stripped corn oil, vehicle control

Individual treatment groups within each component of the study were given unique five digit codes that are presented in Table 2.

Group	Component 1	Component 2
1	78967	82703
2	96509	04691
3	68843	65437
4	84156	46916
5	39239	59969
6	29505	27489
7	48266	16317
8	15492	34563
9	07983	95962

Table 2 - Treatment Group Designations

According to the study protocol, all F1 males were subjected to a complete necropsy with selected organs dissected and weighed. The testes and epididymides were fixed in Bouin's fixative for 24 hours, after which they were rinsed and stored in 70% alcohol. The thyroid with attached portion of trachea was fixed in 10% buffered neutral formalin. All tissues were trimmed, embedded in paraffin, sectioned and stained with Hematoxylin and Eosin (H&E).

Histopathological examination of selected organs was conducted on the protocol-required tissues. The protocol-required tissues were: testis, epididymis and thyroid glands.

The gross and histopathologic data were entered in the Experimental Pathology Laboratories, Inc. Computerized Pathology Reporting System. Each lesion was graded according to a four-grade severity scale (1-4). "Aspermia" of the epididymis was designated only as "Present".

RESULTS

The individual animal data are presented by group in the Histopathology Incidence Table (HIT) and the group summary data in the Summary Incidence Tables (SIT). Gross necropsy findings were correlated to the microscopic findings, whenever possible. These findings are presented in the section "Correlation of Gross and Microscopic Findings Tables".

A limited number of histopathologic changes were observed during the study. No lesions were noted in any control animals from either Component 1 or Component 2. A few degenerative lesions of the testicular seminiferous tubules associated, in some cases, with the presence of exfoliated germ cells in epididymal tubule lumens were occasionally observed. None of these changes appeared to be treatment-related because of their overall low incidence and lack of any dose response.

In addition, because of the young age of the animals, the epididymal tubules appeared to be slightly immature and fewer sperm compared to older animals were present. This was particularly noted in the epididymal cauda of all animals examined.

The following chemicals were not associated with any treatment-related histopathologic changes: Component 1 = Methoxychlor (25 and 50 mg/kg); Atrazine (75 and 150 mg/kg), p,p-DDE (50 and 100 mg/kg), and Vinclozolin (30 and 100 mg/kg); Component 2 = Linuron (50 and 100 mg/kg), Ketoconazole (50 and 100 mg/kg), and Phenobarbital (50 and 100 mg/kg).

Although some relative and/or adjusted organ weight changes were statistically different (either increased or decreased) for the testes, epididymides or thyroid glands for several of the above chemicals, no related histopathology by routine H&E examination was detected in these tissues to account for the weight changes.

TREATMENT-RELATED FINDINGS BY CHEMICAL

Propylthiouracil

Administration of both 2 and 25 mg/kg Propylthiouracil was associated with the presence and dose-related increased severity of thyroid follicular cell hypertrophy/hyperplasia which was clearly related to increased thyroid weights and levels of TSH and decreased levels of T4.

Follicular cell hypertrophy/hyperplasia was characterized by a spectrum of histologic changes including the increased size and apparent number of follicular cells, the reduction in follicular lumen size, the presence of thyroid follicles. The severity of hypertrophy/hyperplasia was subjectively based on a

number of criteria: minimal = multifocal follicles affected, size and number of follicular cells slightly enlarged and increased; mild = diffuse change with further increased cell size and hyperplasia; moderate = enhanced severity with the presence of notable numbers of follicular cell mitoses; marked = increased mitotic rate, some degenerative cells (deeply eosinophilic cytoplasm and pyknotic nuclei) within the follicular epithelium, and obvious thyroid gland size and shape enlargement. No alteration of the thyroid vasculature was noted.

The incidence and severity of thyroid hypertrophy/hyperplasia is presented in Table 3.

Table 3 – Incidence and Severity of Thyroid Hypertrophy/Hyperplasia Propylthiouracil

Dose (mg/kg)	0	2	25
THYROID (No. Examined)	(14)	(15)	(14)
Hypertrophy/Hyperplasia	0	15	14
Mild	0	10	1
Moderate	0	5	9
Marked	0	0	4

Results of the microscopic examination of the thyroid gland are compatible with previous reports on the direct action of Propylthiouracil on the thyroid gland (Thomas and Williams, 1999).

JOHN CURTIS SEELY, D.V.M.

Diplomate, ACVP Senior Pathologist

October 22, 2003

Date

REFERENCES

Thomas GA and Williams ED. Thyroid Stimulating Hormone (TSH) – Associated Follicular Hypertrophy and Hyperplasia as a Mechanism of Thyroid Carcinogenesis in Mice and Rats. In. Species Differences in Thyroid, Kidney, and Urinary Bladder Carcinogenesis. Capen CC, Dybing E, Rice JM, and Wilbourn (Eds) IARC Scientific Publications No. 147, pp 45-59, 1999.

EXPERIMENTAL PATHOLOGY LABORATORIES, INC. QUALITY ASSURANCE FINAL CERTIFICATION

Study Title: Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals Administered by Gavage on Postnatal Days 23 Through 52/53

Client Study: RTI Contract 65U-08055.001.015.001(M) EPL Project Coordinator: Dr. John Curtis Seely

EPL Project Number: 237-006

EPL Pathologist: Dr. John Curtis Seely

The following aspects of this study were inspected by the Quality Assurance Unit of Experimental Pathology Laboratories, Inc. Dates inspections were performed and findings reported to the EPL Project Coordinator and Management are indicated below.

Dates

October 22, 2003

Area Inspected	Inspection	Reporting
EPL Project Sheets	October 8, 2002;	October 8, 2002;
	December 13, 2002;	December 13, 2002;
	March 10, 2003	March 10, 2003
Project Setup	November 26&27, 2002;	November 27, 2002;
	March 11, 2003	March 11, 2003
Histology Setup	November 27, 2002;	November 27, 2002;
	March 12, 2003	March 12, 2003
Data Review	January 17, 2003;	January 17, 2003;
	April 11, 2003	April 11, 2003
Draft Report	July 2&3, 2003	July 3, 2003
Final Report	October 22, 2003	October 22, 2003
Date Reported to Study Direct	tor/Management: October 22, 2003	
Date of last quarterly facility in	nspection: August 2003	

Study Design

Component 1

Group	No. F1	Chemical	Dose	Concentration	Dose Volume
No.	Males		mg/kg/day	mg/ml	ml/kg
1	15	a	0	0.0	5.0
2	15	Methoxychlor	25	5.0	5.0
3	15		50	10.0	5.0
4	15	Atrazine	75	15.0	5.0
5	15		150	30.0	5.0
6	15	p,p-DDE	50	10.0	5.0
7	15	P,P = = =	100	20.0	5.0
8	15	Vinclozolin	30	6.0	5.0
9	15		100	20.0	5.0

a stripped corn oil, vehicle control

SUMMARY INCIDENCE TABLES COMPONENT #1

SUMMARY INCIDENCE TABLE

08055.001 F1 Sacrifice Male Rat

	GROUP 1	GROUP 2	GROUP 3	GROUP 4	GROUP 5	GROUP 6
EPIDIDYMIS (NO. EXAMINED)	(12)	(15)	(13)	(12)	(12)	(13)
Aspermia		, , , ,		1		
Exfoliated Germ Cells, Lumen				1		
PROPERTY (NO. DVANCENED)	(10)	(15)	(12)	(10)	(10)	(12)
TESTIS (NO. EXAMINED)	(12)	(15)	(13)	(12)	(12)	(13)
Degeneration, Seminiferous Tubule				1		
Tubule			,	<u> </u>		
THYROID (NO. EXAMINED)	(12)	(15)	(13)	(12)	(12)	(13)
<u> </u>						
				-		
				·		
				•		
	-					
· .						

EPL	·	Experimental Pathology Laboratories, Inc
	EPL	

SUMMARY INCIDENCE TABLE

08055.001 F1 Sacrifice Male Rat

	GROUP 7	GROUP 8	GROUP 9			
EPIDIDYMIS (NO. EXAMINED)	(15)	(13)	(12)			
Aspermia	•					
Aspermia Exfoliated Germ Cells, Lumen						
TESTIS (NO. EXAMINED)	(15)	(13)	(12)			
Degeneration, Seminiferous Tubule						
Tubule		1				
THYROID (NO. EXAMINED)	(15)	(13)	(12)			
		-				
· ·						
				1		
						
		1	L	L	L	

EPL	
	Experimental Pathology Laboratories, Inc.

HISTOPATHOLOGY INCIDENCE TABLES COMPONENT #1

GROUP 1 08055.001 F1 Sacrifice Male Rat М Α 1 1 1 0 2 3 5 6 8 2 5 2 3 0 7 3 1 8 EPIDIDYMIS X X Χ Χ X X Χ X Χ Χ X X Aspermia Exfoliated Germ Cells, Lumen TESTIS XX X Χ X X $X \mid X$ Х X $X \mid X$ Degeneration, Seminiferous Tubule THYROID X X X X X X XX X Х X X

GROUP 2

			_	1											1	1				T
										1					l					
08055.001	l	1				ĺ				l										
	l															1	1			
F1 Sacrifice	l	1					1			[1			
		1																		
Maie Kai																				
N N	ŀ																			
·										ŀ						i				
<u>;</u>		1	İ				1		ĺ											
M							1								ļ			1		1
· A	İ					ŀ														
										ŀ										1
L	ŀ	1									1	1	1	1	1					
		-	_	_		_	_	_	_	_				_			1	ĺ		1
		1	3	3	4	5	6	7	8	8	0	0	2	2	3					
	١٠	6	۱,	4	_	-	7	0	5	8		6	1	4	4					
	2	О	1	4	9	2	/	0			3									1
EPIDIDYMIS	X	X	X	X	X	Х	X	X	X	X	X	X	Х	X	Х					
	Λ.	Λ	Λ	Λ	Λ	Λ	Λ	Λ	11	Λ	Λ	Λ	Λ	21	Λ					1
Aspermia						l										ļ				1
Hopermaa																				+
Exfoliated Germ Cells, Lumen																				İ
		-					-													+
	l						1								l					
TESTIS	X	Х	Х	X	Х	Х	Х	Х	X	Х	X	X	X	X	Х					
10119	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ					ļ
Degeneration, Seminiferous																				1
Dogonotacton, Deministration	 			ļ	ļ			ļ			ļ					ļ				+
Tubule	l							ĺ									1			
	 				<u> </u>		-	<u> </u>	_							-		-		+
	i	1																		1
THYROID	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х		1			
THIKOTD	Λ	Λ	Λ	Λ	Λ	Λ	Λ	V	Λ	Λ	Λ	Λ	Λ	Λ	Λ					_
	1	1																		
	<u> </u>								_		 									\leftarrow
		1															1			
																				+-
						ŀ					ł					İ				
	1																			
		i							ļ								١.			
		ļ																1		₩
							1	İ												
	-	<u> </u>				<u> </u>														+
								l												
		 	·			i			 -											+
	ļ.																			
	ļ																			
	ŀ																			
	1						 											-		+-
	l			l			l			1					1	1	l			
	T		l								-				l	ļ	T			1
	<u> </u>										L :					L	L	L		
										l										
	—		ļ	<u> </u>							ļ									₩
	ı			l												1	l			
	 		 	ļ				 	—	 					-					+
	l	1		l	1			l								1	l			
	t	-			<u> </u>	l		l									-			†
	<u>L</u>			<u></u>	L	<u></u>	<u></u>		L_ '	<u>i</u>		L				<u></u>	L_			L
	1									i										
	 																			₩
	l			ĺ				1							-					
	t	t	-		 		-		 	····	l					 	 	-		+
	l	1		1	1	l		1	1	l					1	[l			
	1				l	l										l	l — —			
	L					<u></u>														
	├							-	ļ	ļ										+
	l			l	1	l			1	1	l					1	l			
	1	 	<u> </u>			l	-	 		 							<u> </u>			+
								1	1						İ	1				1
									T	l							I			T
	<u> </u>								ļ											
	l					l		1									I -	i -	_	
	 		<u> </u>			<u> </u>	-			ļ						-	├		<u> </u>	₩
	1						İ		1											
	†	-	l	 					 						 		-			+-
	ŀ	1	1	l			1	!								1	l			
	1						-		 	l										$\overline{}$
					L															
	1															1				
	 			ļ			_	<u> </u>		ļ					<u> </u>		<u> </u>			₩
	,								1							-	1			
	L	<u> </u>		L					1		L				1	<u> </u>				Щ.

GROUP

08055.001 F1 Sacrifice Male Rat N ı 1 1 1 7 8 0 0 2 2 3 6 8 2 7 5 5 8 3 6 1 9 0 Χ Χ X X Х X EPIDIDYMIS X Χ X X X Х X Aspermia Exfoliated Germ Cells, Lumen TESTIS X X X X X X X X X X Х Χ Χ Degeneration, Seminiferous Tubule X Х X X XX X X X X X Χ Χ THYROID

GROUP

08055.001 F1 Sacrifice Male Rat N 1 1 1 1 9 0 0 2 3 3 6 7 8 2 3 9 6 7 5 3 0 1 8 6 Х Χ EPIDIDYMIS X X Х X X X X Х X P Aspermia Exfoliated Germ Cells, Lumen 3 TESTIS X X X X X X X X Х Χ Х Degeneration, Seminiferous Tubule 3 X THYROID Χ Х Х X X X X X X Χ Х

GROUP 5

08055.001 F1 Sacrifice Male Rat A N																		
M A L	5	1 3	1 9	2 8	3 7	4 6	4	7 3	8 2	9 1	1 0 0	1 0 9				-		
EPIDIDYMIS	X	X	X	X	Х	X	Х	Х	X	X	X	Х						
Aspermia																		
Exfoliated Germ Cells, Lumen																		
																		1
TESTIS	Х	Х	Х	X	Х	X	Х	X	Х	Х	Х	Х				*** ****		\vdash
Degeneration, Seminiferous	 	 																
Tubule	 		-															+-
	l		-													 	\vdash	+
THYROID	X	X	X	X	Х	X	Х	Х	X	X	X	X					 ļ	+-
							- 11	41			**							+
																		\vdash
																 		\vdash
															-	-		\vdash
	 														-	 	 	-
	<u> </u>															 	 	-
	 													•		 -		-
				*****														\vdash
	<u> </u>															 	 <u> </u>	<u> </u>
	<u> </u>														<u> </u>			\vdash
	<u> </u>									_								\vdash
	<u> </u>																 	\vdash
	ļ									-			73					\vdash
																		-
																		-
																 		<u> </u>
	ļ															 	 	_
	ļ																	-
											·							
																 	 	<u> </u>
																		Ш
	<u> </u>																	Ŀ
	<u> </u>																	
- 11 / 2 - 114																 	 	

GROUP 6 08055.001 F1 Sacrifice

Male Rat																				
M A L											1	1	1							
	6	1 2	2 7	3	4 5	5 6	6	8 1	9	9	1	1 7	2							
PIDIDYMIS	X	X	X			X	X		X	X	X	X	X	-					-	\dagger
Aspermia																				T
Exfoliated Germ Cells, Lumen													·							Ŧ
ESTIS	X	X	X	X	X	X	X	X	X	X	Х	X	X							+
Degeneration, Seminiferous																				
Tubule																-	<u> </u>			+
PHYROID	X	X	X	X	Х	X	Х	Х	X	Х	Х	Х	X							+
																				+
																				1
																	-		-	\downarrow
																-	_			+
																				1
																		<u> </u>		+
																	-		ļ	+
																1				1
<u>.</u>		<u> </u> 																		-
																				1
																				+
																	-			+
																				1
	-	-																		+
																				†
																				1
																			 	+
																				†
																				1
		-							_								-			+
				-																+
																				1
			İ				1	1	1	1	1	1	l	1	1	1	1	ľ	1 .	-[

GROUP

																		 	-
08055.001 F1 Sacrifice Male Rat																,			
N I M A I								-				_							
L	7	2	2	3 9	4	5 7	6 2	7 5	8	9	9	1 1 1	1 1 6	1 2 9	1 3 2	*			
EPIDIDYMIS	Х	X	Х	Х	X	X	X	Х	Х	Х	X	Х	Х	X	X				\Box
Aspermia	<u>-</u>											-							\Box
Exfoliated Germ Cells, Lumen																			
TESTIS	Х	X	Х	Х	X	X	Х	X	X	Х	Х	Х	Х	X	X				\vdash
Degeneration, Seminiferous	Δ	Λ		Λ	Λ	Λ.	Λ	Λ	Λ	Λ	Λ	^	Λ	Λ	Λ			 	\vdash
Tubule																			
MINDOTO	37	37	37	37	37	37	37	37	37	37	77	37	37	37	37				
THYROID	X	X	X	Х	Х	X	X	X	X	X	Х	Х	X	_X_	X			 	\vdash
																		 	\vdash
																		-	\vdash
	ļ																		\vdash
																-		 	\vdash
																			Н
																			\Box
																			\forall
																	-		\vdash
																		 	\Box
																			П
																			\Box
																			П
				-															П
																			П
																			\Box
																			\Box
·																			
															٠.				
																		 	Ш
																			Ш
	<u></u>																		Ш
																			Ш

GROUP

							٥												
2025 221																			
08055.001																			
F1 Sacrifice	ŀ																		
Male Rat A																			
N .																			
<u> </u>																			
M																			
A																			
· L												1	1						
		1	2	2	4	4	5	6	7	9	9	1	3						
	١,	1	2	5	0	2	8	1	6	,	7	2	0						
	8			3		3	- 8	1	6	4	7								\vdash
EPIDIDYMIS	Х	X	X	X	X	X	X	X	X	X	X	X	Х						
Aspermia																			
Exfoliated Germ Cells, Lumen																			
TESTIS	X	Х	X		X	X	X	X	Х	X	X	X	X						 +
100110	_^_	Λ	Λ		Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ						 -
Degeneration, Seminiferous																			\sqcup
Tubule				1															
														-					
THYROID	Х	Х	X	X	X	X	X	Х	X	X	X	X	X					-	
INIKOID		Λ	Λ	Λ	Λ	Λ		Λ	Α				Λ.						
																			\vdash
																			 -
																			 \square
																			
	<u> </u>													-					
	ļ																		
	l																		
																			\vdash
	ļ																		 \vdash
	:																		
	l						-										·		
					_						-						· · · · ·		\vdash
																			 1
																	-		 \vdash
	├																		 \vdash
	<u> </u>																		
	L																		
																			\Box
	-												-						\vdash
	 										_					ļ			
· · · · · · · · · · · · · · · · · · ·	<u> </u>																		
	ŀ							ĺ											
				-															\Box
	L	<u> </u>	<u> </u>		<u> </u>			L		L	<u> </u>				L	L			

GROUP 9

												_	-							
08055.001 F1 Sacrifice Male Rat																				
I M A L		1	2	4	4	5	6	7	7	9	9	1								
	9	0	3	1	2		0	7	8	5	6	3								
EPIDIDYMIS	X	X	X	X		X	X	X	X	X	X	X								П
Aspermia	1																			
Exfoliated Germ Cells, Lumen																				
TESTIS	X	Х	X	Х	X	Х	X	X	X	X	X	X								
Degeneration, Seminiferous																				
Tubule																				
MILLIO O T D	ļ.,,	37		17	17	77	77	37	37	37	37	37								
THYROID	X	X	X	X	X	X	X	X	X	Х	Х	Х								
	-																			
	1																			\Box
	1																			
	_																		<u> </u>	
																	_			\vdash
																				\vdash
	-								-											
	-								-										-	-
	+																			
	-																		<u> </u>	\vdash
	1																			
																				\Box
																				Ш
	4	ļ							ļ	ļ									ļ	
									-										<u> </u>	\vdash
	-					-									_				-	\vdash
	-								-											\vdash
<u> </u>	-		-	-	-				-										-	\vdash
	╁			-										-						$\mid - \mid$
			Ь		L	L	L	L	L	L	1				L	L	<u> </u>	L		لــــــــــــــــــــــــــــــــــــــ

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS TABLES COMPONENT #1

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Males Sex:

١			<u> </u>		Г		1			<u> </u>	<u> 100 000 000 000 000 000 000 000 000 00</u>		١
	Microscopic Observations	Intentionally Not Sampled											
	Client Gross Observations	Right side, hydronephrosis											不是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
	Client Topography / Site	KIDNEY											多多的, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	Animal Number	51											

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex Males

1					133				3.5		
Microscopic Observations	Intentionally Not Sampled										
Client Gross Observations	Right, hydronephrosis										
Client Topography / Site	KIDNEY										
Animal Number	68										

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

Microscopic Observations	No Comment Required	Degeneration, Seminiferous Tubule	Exfoliated Germ Cells, Lumen; Aspermia	Intentionally Not Sampled								
Client Gross Observations	Left, not descended	Left, smaller in size	smaller in size	Right, hydronephrosis								
Client Topography / Site	TESTIS	TESTIS	EPIDIDYMIS	KIDNEY								
Animal Number	101			133								

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Males Sex:

Group Identification:

tions											
Microscopic Observations	Sampled	Sampled									
Microscopi	ly Not	ly Not									
	Intentionally Not Sampled	Intentionally Not Sampled									
	Inte	Inte									
S											
servation	, mild	,									
Client Gross Observations	phrosi	phrosi									
Client	hydrone	hydrone									
	Right, hydronephrosis, mild	Right, hydronephrosis									
hy / Site											
Client Topography / Site											
Client 7	Į.	Y									
	KIDNEY	KIDNEY									
Animal Number	6	91									

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

Group Identification:

Microscopic Observations	Intentionally Not Sampled									
Client Gross Observations	Right side, hydronephrosis, slight									
Client Topography / Site	KIDNEY									
Animal Number	12									

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex:

Males

Group Identification:

œ

Animal Number	Client Topography / Site	Client Gross Observations	Microscopic Observations
80	KIDNEY	Right side, hydronephrosis	Intentionally Not Sampled
7	KIDNEY	Right, hydronephrosis	Intentionally Not Sampled
22	KIDNEY	Right side, hydronephrosis	Intentionally Not Sampled
19	KIDNEY	Right, hydronephrosis	Intentionally Not Sampled

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

Group Identification:

,	Client Topography / Site	Client Gross Observations	Microscopic Observations
KIDNEY		Right side, hydronephrosis	Intentionally Not Sampled
KIDNEY		Right, hydronephrosis	Intentionally Not Sampled
KIDNEY		Right side, hydronephrosis	Intentionally Not Sampled
ᅰ	SEMINAL VESICLE	Reduced in size	Intentionally Not Sampled
34			
5.37			
1			

Study Design

Component 2

Group No.	No. F1 Males	Chemical	Dose mg/kg/day	Concentration mg/ml	Dose Volume ml/kg
1	15		0	0.0	5.0
2	15	Propylthiouracil	2	0.4	5.0
3	15		25	5.0	5.0
4	15	Linuron	50	10.0	5.0
5	15		100	20.0	5.0
6	15	Ketoconazole	50	10.0	5.0
7	15		100	20.0	5.0
8	15	Phenobarbital	50	10.0	5.0
9	15		100	20.0	5.0

a stripped corn oil, vehicle control

SUMMARY INCIDENCE TABLES COMPONENT #2

SUMMARY INCIDENCE TABLE

08055.001 Terminal Sacrifice Male Rat

	GROUP 1	GROUP 2	GROUP 3	GROUP 4	GROUP 5	GROUP 6
EPIDIDYMIS (NO. EXAMINED)	(14)	(15)	(14)	(15)	(15)	(15)
Exfoliated Germ Cells, Lumen						1
TESTIS (NO. EXAMINED)	(14)	(15)	(14)	(15)	(15)	(15)
Degeneration, Seminiferous						
Tubule			1			1
THYROID (NO. EXAMINED)	(14)	(15)	(14)	(15)	(15)	(15)
Congestion		1				
Hemorrhage, Follicle						
Hypertrophy/Hyperplasia,						
Follicular Cell		15	14		-	
						•
						· · · · · · · · · · · · · · · · · · ·
			-			
,						
	_					
<u> </u>						
		-				
		I			<u> </u>	I

SUMMARY INCIDENCE TABLE

08055.001 Terminal Sacrifice Male Rat

	GROUP 7	GROUP 8	GROUP 9	-	
EPIDIDYMIS (NO. EXAMINED)	(14)	(15)	(15)		
Exfoliated Germ Cells, Lumen			1		
TESTIS (NO. EXAMINED)	(14)	(15)	(15)		
Degeneration, Seminiferous					
Tubule					
THYROID (NO. EXAMINED)	(14)	(15)	(15)		
Congestion	1 (14)	(13)	(13)		
Hemorrhage, Follicle			1		
Hypertrophy/Hyperplasia.				 	
Hypertrophy/Hyperplasia, Follicular Cell					
·					
		,			
/					
				 :	
	ļ				
				·	
	-				
				 -	
	· · · · · · · · · · · · · · · · · · ·				
	1	L	<u> </u>		

HISTOPATHOLOGY INCIDENCE TABLES COMPONENT #2

GROUP

							1											
08055.001 Terminal Sacrifice Male Rat A														-				
I M A L	1 3	1 5	1 5	1 7	1 7	1 8	1 9	2	2	2	2	2 5	2 5	2 7				
EPIDIDYMIS	6 X	3 X	4 X	1 X	2 X		9 X	0 X	8 X	5 X	6 X	3 X	4	0 X				
Exfoliated Germ Cells, Lumen		Λ	Λ	Λ	Λ	Λ	Λ	Λ	A	Λ	Λ	Λ	Λ					
TESTIS Degeneration, Seminiferous Tubule	X	X	X	X	X	Х	Х	Х	Х	X	X	Х	Х	Х				
THYROID	X	X	X	X	X	X	Х	X	X	X	X	X	Х	Х				
Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia,																-		
Hypertrophy/Hyperplasia, Follicular Cell																		
																	,	
																		
											<u> </u>		<u> </u>	<u></u>	<u> </u>	<u></u>	<u>L</u>	

GROUP

08055.001 Terminal Sacrifice Male Rat									2												
Terminal Sacrifice Male Rat A N N N N N N N N N N N N N N N N N N	08055 001																				
Male Rat A N																					
N																					
A	Male Rat																				
A																			ĺ		
TESTIS	M																				
TESTIS	A																				
TESTIS	. L	1									2	2	2	2					i		
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia,														5							
Exfoliated Germ Cells, Lumen TESTIS	·	7	2	5	0	3	3	8	1	6	9	4	7	2	5	9		:			
TESTIS X X X X X X X X X X X X X X X X X X X	EPIDIDYMIS	Х	X	X	X	X	X	Х	X	Х	Х	Х	Х	Х	X	X					
TESTIS X X X X X X X X X X X X X X X X X X X	Exfoliated Germ Cells, Lumen																				
Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia,		l									-										T
Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia,	TESTIS	X	Х	X	X	X	X	X	X	Х	Х	Х	х	х	Х	X					\vdash
Tubule THYROID Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia,		 																		<u> </u>	+
THYROID Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia,	Tubula															:				-	+
Congestion 2 Hemorrhage, Follicle Hypertrophy/Hyperplasia,	iubule	<u> </u>	-	-																	+
Congestion 2 Hemorrhage, Follicle Hypertrophy/Hyperplasia,	MUVIDOTE	 	ļ	-																	
Hemorrhage, Follicle Hypertrophy/Hyperplasia,																			—		ــــ
Hypertrophy/Hyperplasia,	Congestion			2																	L
Hypertrophy/Hyperplasia, Follicular Cell 2 3 2 3 3 2 3 2 3 2 2 2 2 2 2 2 2 2 2	Hemorrhage, Follicle																				
Follicular Cell 2 3 2 3 3 2 3 2 3 2 2 2 2 2 2 2 3	Hypertrophy/Hyperplasia,																		ĺ		
	Follicular Cell	2	3	2	3	3	2	3	2	3	2	2	2	2	2	2					
																					Г
													-								
	<u> </u>	<u> </u>																			-
		<u> </u>																		-	\vdash
				-																-	+
																			-		
																			 	<u> </u>	
																				ļ	ļ.
																			ļ	<u> </u>	L
		<u> </u>																			
			}																ĺ		
																					\Box
	. , , , , , , , , , , , , , , , , , , ,																				<u> </u>
																					\vdash
																					+-
																			·		+
			ļ	ļ																<u> </u>	+
		ļ	ļ	ļ																	-
			<u> </u>																	<u> </u>	-
																				<u></u>	-
																				<u> </u>	
																			<u> </u>		
															-						
			 				-						-							 	1
		 	 																	 	-
		ļ	ļ															-		-	\vdash
		ļ	<u> </u>	-																	-
		l	ļ	<u> </u>													L.,	لبلا			

GROUP

2
_
J

3 5	5 1 X	1 1 5 6 9 X X X	4 X	8	1 9 7 X	2 0 2 X	2 1 5 X	2 2 0 X	2 3 3 X	2 3 8 X	2 5 1 X	2 5 6 X					
Terminal Sacrifice Male Rat A N I M A L 1 1 3 5 8 1 EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	5 1 X	6 9 X X	7 4 X	8 4 X	9 7 X	X	X	Х	3 X	8 X	Х	5 6 X					
Male Rat A N I M A L 1 1 1 3 5 8 1 EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	5 1 X	6 9 X X	7 4 X	8 4 X	9 7 X	X	X	Х	3 X	8 X	Х	5 6 X					
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	5 1 X	6 9 X X	7 4 X	8 4 X	9 7 X	X	X	Х	3 X	8 X	Х	5 6 X					
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	5 1 X	6 9 X X	7 4 X	8 4 X	9 7 X	X	X	Х	3 X	8 X	Х	5 6 X					
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	5 1 X	6 9 X X	7 4 X	8 4 X	9 7 X	X	X	Х	3 X	8 X	Х	5 6 X					
EPIDIDYMIS X X Exfoliated Germ Cells, Lumen TESTIS X X Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	5 1 X	6 9 X X	7 4 X	8 4 X	9 7 X	X	X	Х	3 X	8 X	Х	5 6 X					
EPIDIDYMIS X X Exfoliated Germ Cells, Lumen TESTIS X X Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	5 1 X	6 9 X X	7 4 X	8 4 X	9 7 X	X	X	Х	3 X	8 X	Х	5 6 X					
EPIDIDYMIS X X Exfoliated Germ Cells, Lumen TESTIS X X Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	1 X	6 9 X X	4 X	4 X	7 X	X	X	Х	3 X	8 X	Х	6 X					
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	1 X	6 9 X X	4 X	4 X	7 X	X	X	Х	3 X	8 X	Х	Х					_
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	X	XX	X	X	Х	X	X	Х	Х	Х	Х	Х					
Exfoliated Germ Cells, Lumen TESTIS X X Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle																	_
TESTIS X X Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	X	X X	X	X	Х	Х	X	X	7	Х	Х	X					
Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	X	ХХ	X	X	X	Х	X	X	7	Х	X	Х					
Degeneration, Seminiferous Tubule THYROID Congestion Hemorrhage, Follicle	X	X X	X	X	X	X	X	X	1	X	Λ	X					
Tubule THYROID Congestion Hemorrhage, Follicle									7		- 1		 				
THYROID Congestion Hemorrhage, Follicle									7								
Congestion Hemorrhage, Follicle													 				
Congestion Hemorrhage, Follicle							1									T	
Congestion Hemorrhage, Follicle																\Box	
Hemorrhage, Follicle															-	-	
Hypertrophy/Hyperplasia,			+										 			\rightarrow	
Hypertrophy/Hyperplasia,													-				—
Follicular Cell 4 2	2	3 4	3	4	3	3	3	3	4	3	3	3					
														-	1		ı
																	_
																	—
			+									-					
				ļ									 				
															•		
													 				_
	-												 			-	_
						-				-			 - : -			\rightarrow	
		-															
			-		i i						-						
						Ī	Ţ	T	Ţ	I			Ţ		T		
	_		<u> </u>													$\neg \uparrow$	_
		-					-										
			-	-									 				
	-			-													
															- 1		_
																\Box	_
		-											 				_
				-									 			\dashv	—
	+		-										 				
	+												 				_

GROUP 4

EPIDIDYMIS Exfoliated Germ Cells, Lumen	1 3 9 X	1 5 0 X	1 5 7 X	1 6 8	1 7 5	1 8	1 9	2	2		2	2	2	2	2					
Terminal Sacrifice Male Rat A N I M A L EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	3 9 X	5 0 X	5 7	6 8	7	8					2	2	2	2	2					
Male Rat A N I M A L EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	3 9 X	5 0 X	5 7	6 8	7	8					2	2	2	2	2					
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	3 9 X	5 0 X	5 7	6 8	7	8					2	2	2	2	2					
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	3 9 X	5 0 X	5 7	6 8	7	8					2	2	2	2	2					
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	3 9 X	5 0 X	5 7	6 8	7	8					2	2	2	2	2		,			
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	3 9 X	5 0 X	5 7	6 8	7	8					2	2	2	2	2				1	
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	3 9 X	5 0 X	5 7	6 8	7	8					2	2	2	2	2					
EPIDIDYMIS Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	9 X	0 X	7	8			9	0 1			- 1									
Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous	X	Х			5			0	1		3	3	5	5	6					
Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous			Х	X	_	5	6	3	4	1	2	9	0	7	7				<u> </u>	丄
TESTIS Degeneration, Seminiferous	X	Х			X	X	X	X	X	X	X	Х	X	X	X					
Degeneration, Seminiferous	X	Х																	<u> </u>	\perp
Degeneration, Seminiferous	X	Х																	<u> </u>	\perp
			X	X	X	X	X	X	X	Х	X	X	X	Х	X					<u> </u>
Tubule																				\perp
· [<u> </u>
																				_
	X	X	X	X	X	X	X	X	X	X	Χ	X	X	X	X					\perp
Congestion																				_
Hemorrhage, Follicle																				
Hypertrophy/Hyperplasia,																				
Follicular Cell																				
				-															-	L
						·														
·																				
·																				Γ
,																				
	İ																			
·																				
																•				
										-7										
										•				$\neg \uparrow$			-			
												$\neg \neg$								-
			ıl	L														- 1	'	1

GROUP

5 08055.001 Terminal Sacrifice Male Rat M A L 2 2 2 1 1 1 1 1 1 1 2 2 2 2 5 6 4 5 6 7 8 9 0 1 2 3 4 4 5 3 2 9 6 9 8 7 6 б 4 1 0 8 EPIDIDYMIS Х Х XX X XX Χ Χ X Х Х X X X Exfoliated Germ Cells, Lumen TESTIS X X XX X Х X X X X X Х Х X X Degeneration, Seminiferous Tubule THYROID $X \mid X \mid$ X Х X Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia, Follicular Cell

GROUP

6 08055.001 Terminal Sacrifice Male Rat 1 1 2 2 2 5 7 9 0 1 2 3 4 5 6 8 6 1 7 5 2 8 9 6 7 4 3 0 8 9 5 **EPIDIDYMIS** X XX Х X X X X XX X Х X X Exfoliated Germ Cells, Lumen 2 TESTIS X X Χ X X X X Х X Χ Χ X X X Degeneration, Seminiferous Tubule 1 THYROID $X \mid X \mid X$ X X X $X \mid X$ Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia, Follicular Cell

GROUP

•							7													
08055.001	1																			
Terminal Sacrifice																				
4	1																			1
Male Rat	i																			
	1																			
' M		İ																		
1¥1 A	1																			
^	1								_	_	_	_	_	_						
	1	1	1	1	1	1	1	2	2	2		2	2	2						
	4	4	6	6	7	8	9	0	1	2	2	4	б	6						li
	2	7	0	5	8		3	6	1	4	9	7	0	4						
EPIDIDYMIS	X	X	X	X	Х	X	X	X	X	X	X	X	X	X						-
	^_	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ.	Λ	Λ	Λ						_
Exfoliated Germ Cells, Lumen																				
TESTIS	X	X	Х	Х	Х	X	X	X	X	X	Х	X	X	X						
	1	- **			- 22						**	**	4.							\vdash
Degeneration, Seminiferous		ļ	ļ		ļ															\sqsubseteq
Tubule																				
THYROID	Х	X	Х	Х	Х	Х	X	Х	Х	X	X	X	X	X					-	П
							**								-					
Congestion	_																			\vdash
Hemorrhage, Follicle							1													Ш
Hypertrophy/Hyperplasia, Follicular Cell																				
Follicular Cell																				
				-																
																				_
	_																			
		ļ														<u> </u>				\vdash
				-																
							-													
								_												-
																				_
'																				
			1																	
	T									i i										
	-			-											<u> </u>	-				
	-	-		-		-											-			\vdash
	1							ļ												Ш
·							L	L			<u> </u>									
		†																		
		-	<u> </u>			-		ļ 		_		-					-			-
:	+	-	-	-		-				-										\vdash
			ļ																	<u></u>
			[
		T																		
	-	1		 		-		\vdash		l										\vdash
·	-	-			-			ļ				-				 			-	\vdash
		<u> </u>				1			ļ	ļ					ļ	ļ	<u> </u>	L	-	H.
																				$oxed{oxed}$
				- Ī																
	1	T-		ļ					İ		l	· ·								
				l		-		l								-				-
	_1		l	ļ		L	<u> </u>			L	L		l			<u> </u>	Ц		<u> </u>	Ŀ

HISTOPATHOLOGY INCIDENCE TABLE

GROUP 8

08055.001 Terminal Sacrifice Male Rat 1				,					8												
Terminal Sacrifice Male Rat A B B B B B B B B B B B B B B B B B B																					
Male Rat M																					
### The National Property of the National Prop	•																				
	Male Kal		ľ																	ĺ	
Testis																					
## A	M																			l	
## A	A																				
## A	L L	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2					
EPIDIDYMIS							8									1				1	
EPIDIDYMIS Exfoliated Germ Cells, Lumen			1	l .		l .									3					l	
Exfoliated Germ Cells, Lumen TESTIS Degeneration, Seminiferous Tubule THYROID X X X X X X X X X X X X X X X X X X X	EDITITIVATE		1																<u> </u>	 	\vdash
TESTIS		^_		Λ_		Λ	Λ.	Λ	Λ.	Λ	Λ			Λ	Λ	Λ					
Degeneration, Seminiferous Tubule THYROID XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Exidiated Germ Cells, Lumen	.																			-
Degeneration, Seminiferous Tubule THYROID XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX																				<u> </u>	ļ
THYROID X X X X X X X X X X X X X X X X X X X		X	X	X	X	X	X	X	X	X	X	X	_X	X	X	X				<u> </u>	
THYROID X X X X X X X X X X X X X X X X X X X																				L	<u> </u>
Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia, Follicular Cell	Tubule																			L	
Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia, Follicular Cell																					
Congestion Hemorrhage, Follicle Hypertrophy/Hyperplasia, Follicular Cell	THYROID	Х	Х	Х	X	X	Х	Х	X	X	Х	X	X	Х	X	Х					
Hemorrhage, Follicle Hypertrophy/Hyperplasia, Follicular Cell		†																-			
Hypertrophy/Hyperplasia, Follicular Celi	Hemorrhage Follicle	·													-				<u>-</u>	 	
	Hypertrophy/Hyperplacia		-							-										<u> </u>	\vdash
	Fellionles Coll																<u> </u>			<u> </u>	╁
	Foliacular Cell	-										-								<u> </u>	
																					\vdash
														ļ.,			j				L
																				i .	
																				<u> </u>	
		<u> </u>	 																	<u> </u>	
			-																		
																					\vdash
																					┼
		_																			┼
																				<u> </u>	_
																				<u> </u>	
	-	1																			\top
		1		-						-											\vdash
		1					ļ		<u> </u>	-						-				\vdash	\vdash
		1							-												\vdash
		1							-												
	· · · · · · · · · · · · · · · · · · ·	1						ļ								ļ					<u> </u>
		1																		<u> </u>	<u>_</u>
																				<u> </u>	
	<u> </u>	L																			
		1		-																	
		1	 													 			-	<u> </u>	\vdash
			L	L	<u> </u>		1	l	L	L	L			L		L			<u></u>		

36

EPL	

HISTOPATHOLOGY INCIDENCE TABLE

GROUP 9

		_				,	,									 			
08055.001 Terminal Sacrifice Male Rat														·	-	-			
I M A L	1 4	1 4	1 6	1 6	1 8	1 8	1 9	1 9		2	2 2	2 2	2 4	2 4	2 6				
	4 4	5	2		0	1	0		8	9	6	7	4	5	2				
EPIDIDYMIS	X	X	X	X	X	X		X		Х		X	Х	X	X				
Exfoliated Germ Cells, Lumen						-	1_									 			
TESTIS	Х	X	X	X	X	Х	X	X	X	X	Х	X	X	X	X	 			-
Degeneration, Seminiferous																			
Tubule																			
THYROID	X	-	Х	Х	X	X	X	X	Х	X	X	X	Х	X	X				-
Congestion																			
Hemorrhage, Follicle	ļ	1																	<u> </u>
Hypertrophy/Hyperplasia, Follicular Cell																			\vdash
FOILICUIAL CELL					-											 			
									•										Г
																			-
																 <u>.</u>			_
	<u> </u> .															 			
							-		-	-									-
				-	-		-				_								
	-	-														 			
		-												<u>-</u>					 -
	<u> </u>																		
· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ	-		-											 			
	<u> </u>			<u></u>			L	L	<u></u>	<u> </u>			L	L		 L	L		<u> </u>

37

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS TABLES COMPONENT #2

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Rat

Species:

Sex:

Males

Cron

			 ,	,	 ,	 	 	 	 	 	 	_
Microscopic Observations	Intentionally Not Sampled	Intentionally Not Sampled										
Client Gross Observations	Multiple 1-3mm calculi	Wall, thickened										
Client Topography / Site	URINARY BLADDER	URINARY BLADDER										
Animal Number	199											1

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

Animal Number	Client Topography / Site	Client Gross Observations	Microscopic Observations
152	THYROID	Left side, enlarged and darkened	Hypertrophy/Hyperplasia, Follicular Cell
170	THYROID	Slightly enlarged and darkened	Hypertrophy/Hyperplasia, Follicular Cell
173	KIDNEY	Right, hydronephrosis	Intentionally Not Sampled
	THYROID	Right side, slightly enlarged	Hypertrophy/Hyperplasia, Follicular Cell
	THYROID	Darkened	Hypertrophy/Hyperplasia, Follicular Cell
183	THYROID	Increased in size	Hypertrophy/Hyperplasia, Follicular Cell
198	THYROID	Enlarged, bilateral	Hypertrophy/Hyperplasia, Follicular Cell
201	THYROID	Increased in size	Hypertrophy/Hyperplasia, Follicular Cell
219	PROSTATE	Ventral and dorsolateral, reduced in size	Intentionally Not Sampled
	SEMINAL VESICLE	Reduced in size, bilateral	Intentionally Not Sampled
	THYROID	Enlarged and reddened, bilateral	Hypertrophy/Hyperplasia, Follicular Cell
237	THYROID	Enlarged and reddened	Hypertrophy/Hyperplasia, Follicular Cell
252	THYROID	Enlarged	Hypertrophy/Hyperplasia, Follicular Cell
269	LUNG	Multiple foci	Intentionally Not Sampled

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

			Management of the state of the
Animal Number	Client Topography / Site	Client Gross Observations	Microscopic Observations
138	THYROID	Increased in size	Hypertrophy/Hyperplasia, Follicular Cell
151	THYROID	Enlarged, bilaterally	Hypertrophy/Hyperplasia, Follicular Cell
156	THYROID	Enlarged and red, bilaterally	Hypertrophy/Hyperplasia, Follicular Cell
169	KIDNEY	Right, hydronephrosis	Intentionally Not Sampled
	THYROID	Enlarged/reddened, bilateral	Hypertrophy/Hyperplasia, Follicular Cell
174	LIVER	Reduced in size	Intentionally Not Sampled
	THYROID	Enlarged and reddened, bilateral	Hypertrophy/Hyperplasia, Follicular Cell
184	THYROID	Enlarged and reddened, bilateral	Hypertrophy/Hyperplasia, Follicular Cell
197	LIVER	Appears mottled	Intentionally Not Sampled
	THYROID	Enlarged	Hypertrophy/Hyperplasia, Follicular Cell
202	THYROID	Enlarged and reddened, bilateral	Hypertrophy/Hyperplasia, Follicular Cell
	PITUITARY	Reduced in size	Intentionally Not Sampled
215	ADRENAL	Reduced in size, bilateral	Intentionally Not Sampled
	THYROID	Increased in size	Hypertrophy/Hyperplasia, Follicular Cell
220	ADRENAL	Reduced in size, bilateral	Intentionally Not Sampled

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

Group Identification:

ᠻ

Animal Number	Client Topography / Site	Client Gross Observations	Microscopic Observations
220 (cont)	THYROID	Increased in size, bilateral	Hypertrophy/Hyperplasia, Follicular Cell
233	KIDNEY	Right, hydronephrosis	Intentionally Not Sampled
	LIVER	Mottled	Intentionally Not Sampled
÷	THYROID	Enlarged	Hypertrophy/Hyperplasia, Follicular Cell
238	LIVER	Reduced in size	Intentionally Not Sampled
-	ADRENAL	Reduced in size, bilateral	Intentionally Not Sampled
	KIDNEY	Reduced in size, bilateral	Intentionally Not Sampled
	THYROID	Enlarged and reddened	Hypertrophy/Hyperplasia, Follicular Cell
251	LIVER	Ventral, reduced in size	Intentionally Not Sampled
	PROSTATE	Dorsolateral, reduced in size	Intentionally Not Sampled
	THYROID	Enlarged and reddened	Hypertrophy/Hyperplasia, Follicular Gell
256	LIVER	Reduced in size	Intentionally Not Sampled
	ADRENAL	Reduced in size, bilateral	Intentionally Not Sampled
	THYROID	Enlarged and reddened	Hypertrophy/Hyperplasia, Follicular Cell
-			

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

	and the second s	An anni anni anti anni anni anni anni ann	
Animal Number	Client Topography / Site	Client Gross Observations	Microscopic Observations
139	SEMINAL VESICLE	Reduced in size, bilateral	Intentionally Not Sampled
	PROSTATE	Ventral, reduced in size	Intentionally Not Sampled
196	SEMINAL VESICLE	Right, reduced in size	Intentionally Not Sampled
214	PROSTATE	Ventral and dorsolateral, reduced in size	Intentionally Not Sampled
232	SEMINAL VESICLE	Reduced in size, bilateral	Intentionally Not Sampled
	PROSTATE	Dorsal, reduced in size	Intentionally Not Sampled
·			
-			

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat	ţ	Sex: Males Group I	Group Identification: 5
Animal Number	Client Topography / Site	Client Gross Observations	Microscopic Observations
149	SEMINAL VESICLE	Reduced in size	Intentionally Not Sampled
158	SEMINAL VESICLE	Reduced in size, bilaterally	Intentionally Not Sampled
	PROSTATE	Ventral and dorsolateral, reduced in size	Intentionally Not Sampled
195	SEMINAL VESICLE	Reduced in size, bilateral	Intentionally Not Sampled
	PROSTATE	Ventral and dorsolateral, reduced in size	Intentionally Not Sampled
	PITUITARY	Reduced in size	Intentionally Not Sampled
204	SEMINAL VESICLE	Ventral/dorsolateral, with coagulating glands, reduced in size	Intentionally Not Sampled
231	SEMINAL VESICLE	Reduced in size	Intentionally Not Sampled
240	SEMINAL VESICLE	Reduced in size	Intentionally Not Sampled
249	PROSTATE	Ventral, reduced in size	Intentionally Not Sampled
258	SPLEEN	Enlarged white foci	Intentionally Not Sampled
	LUNG	Multiple reddened areas	Intentionally Not Sampled
	KIDNEY	Right, hydronephrosis	Intentionally Not Sampled
·			
-			
-			

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

									 		 	_	 	 ·	
	Microscopic Observations	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled							
	Client Gross Observations	Reduced in size	Dorsal, reduced in size	Dark tan to brown in color	Pale in color, both	Slightly enlarged	Right side, hydronephrosis	Pale in color							
	Client Topography / Site	SEMINAL VESICLE	PROSTATE	ADRENAL	ADRENAL	ADRENAL	KIDNEY	ADRENAL							
_	Animal Number	177		194	205	212	223	230		:					

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

	the state of the s		
Animal Number	Client Topography / Site	Client Gross Observations	Microscopic Observations
160	KIDNEY	Right, hydronephrosis	Intentionally Not Sampled
178	ADRENAL	Enlarged	Intentionally Not Sampled
188	ADRENAL	Increased in size, bilateral	Intentionally Not Sampled
193	ADRENAL	Increased in size, bilateral	Intentionally Not Sampled
206	PROSTATE	Ventral and dorsolateral, reduced in size	Intentionally Not Sampled
	SEMINAL VESICLE	Reduced in size, bilateral	Intentionally Not Sampled
	ADRENAL	Enlarged, bilateral	Intentionally Not Sampled
211	PROSTATE	Ventral, reduced in size	Intentionally Not Sampled
	SEMINAL VESICLE	Reduced in size	Intentionally Not Sampled
	ADRENAL	Increased in size, bilateral	Intentionally Not Sampled
224	SEMINAL VESICLE	Reduced in size	Intentionally Not Sampled
229	SEMINAL VESICLE	Reduced in size, bilateral	Intentionally Not Sampled
	PROSTATE	Ventral, reduced in size	Intentionally Not Sampled
247	LUNG	Right, pinpoint foci	Intentionally Not Sampled
264	KIDNEY	Right, hydronephrosis	Intentionally Not Sampled
	ADRENAL	Left, increased in size	Intentionally Not Sampled

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

Group Identification:

ω

Microscopic Observations Intentionally Not Sampled Intentionally Not Sampled Intentionally Not Sampled Intentionally Not Sampled Ventral and dorsolateral, reduced in size Client Gross Observations Reduced in size, bilateral Right, hydronephrosis Right, hydronephrosis Client Topography / Site SEMINAL VESICLE PROSTATE KIDNEY KIDNEY Animal Number 164 210 246

CORRELATION OF GROSS AND MICROSCOPIC FINDINGS

Species: Rat

Sex: Males

Group Identification:

9

Microscopic Observations	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled	Intentionally Not Sampled						
Client Gross Observations	Right, hydronephrosis	Reduced in size	Dorsal, reduced in size	Right, hydronephrosis	Ventral and dorsolateral, reduced in size	Reduced in size, bilateral	Ventral, reduced in size	Reduced in size						
Lient Topography / Site	KIDNEY	SEMINAL VESICLE	PROSTATE	KIDNEY	PROSTATE	SEMINAL VESICLE	PROSTATE	SEMINAL VESICLE						
Animal Number	163	181		208	226		245							

Appendix III Analytical Chemistry Reports

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Atrazine in Mazola Corn Oil

November 10, 2003

Prepared By:

Approved By:

Eric A. Crecelius, Ph.D.

Chemical Repository Manager

03 km

Richard M. Ecker

Date

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Atrazine in Mazola Corn Oil

Reviewed by: Detailor Colley Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03

Chemistry Report for WA 2-14 Atrazine in Mazola Corn Oil

Parameter	Chemical
Compound Name	Atrazine
CAS#	1912-24-9
Central File No.	CF-1826
Initial Receipt Date	5/30/02
Expiration Date	01/2005
Manufacturer	ChemService, Inc
Lot Number	277-93B
Battelle Study #	WA 2-14-02-02
Method	SW 846, 8015B Modified

Executive Summary

The chemical purity of atrazine determined by the manufacturer was 98%. The purity result from Battelle-Sequim by GC-FID was determined to be 99.9%. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of atrazine was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 12 weeks. Thus, stability testing of the atrazine stock solution in Mazola corn oil was considered stable at both the 15 mg/mL and 30 mg/mL concentrations for the required testing and holding period of 12 weeks.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on target concentrations ranged from 105% to 114%.

TABLE OF CONTENTS

	Pag	зe
1.0 IN	TRODUCTION	.1
2.0 GE	ENERAL METHODS	.1
2.1	1 CHEMICAL PROCUREMENT	1
2.2	2 CHEMICAL PURITY	3
2.3	3 PREPARATION OF STOCK MATRICES FOR STABILITY ANALYSIS	3
2.4	4 ANALYTICAL CHEMISTRY FOR STABILITY TESTING	4
2.5	5 STATISTICAL ANALYSIS OF STABILITY	4
2.6	6 ANALYTICAL CHEMISTRY FOR IN-LIFE TESTING	4
3.0 RE	ESULTS	.5
3.1	1 CHEMICAL PURITY	5
3.2	2 ANALYTICAL CHEMISTRY FOR STABILITY TESTING	5
3.3	3 STATISTICAL RESULTS OF STABILITY TRIAL	5
3.4	4 CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES	5
4.0 CC	ONCLUSIONS	.7
APPEN	NDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY A.	1
APPEN	NDIX B: PURITY AND STABILITY TESTING PLAN	l
APPEN	NDIX C: ANALYTICAL RESULTS OF STABILITY TESTING	l
	NDIX D: STATISTICAL REPORT	
	NDIX E: CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES E.	
	LIST OF TABLES	
	Pa	gе
Table 1	Chemical Procurement Information	3
Table 2	2. Stock Matrix Composition for Stability Testing	4
	3. Summary of Statistical Results for Atrazine	
14010	5. Sometiment of Sound 100 and 101 1	•
	LIST OF FIGURES	
	Paş	gе
Figure	1. EDSP Requisition Form for Atrazine	2
_	2. Observed Concentration of Atrazine with a Target Concentration of 15,000 μg/mL (A) nd 30,000 μg/mL (B) Against Time	

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA 2-14-02-02, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of atrazine (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_Atrazine-cornoil.doc, PSTP_WA-2-14_Atrazine_cornoil.doc, DSUM_WA2-14_Atrazine-Fenarimol-crnoil.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, atrazine, (CAS No. 1912-24-9) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). Atrazine was purchased from ChemService, Inc and lot number 277-93B was initially received on 5/30/02 with an expiration date of 01/2005 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1826) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-02

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Atrazine (MSL CF 1826)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 15 mg/mL and 30 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Testing/holding duration: 12 weeks

Chemical Information

Chemical Name: Atrazine

CAS: 1912-24-9

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

Any known stability information: may refer to

attached documentation

Desired purity (%) for test? 95% or greater

98% pure

Manufacturer's Stability Information:

stable

Figure 1. EDSP Requisition Form for Atrazine

Table 1. Chemical Procurement Information

Parameter	Chemical
Compound Name	Atrazine
CAS#	1912-24-9
Central File No.	CF-1826
Initial Receipt Date	5/30/02
Expiration Date	01/2005
Manufacturer	ChemService, Inc
Lot Number	277-93B
Manufacturer's Purity	98%
Storage Conditions	Cool, dry place/room temp.
Battelle Study #	WA2-14-02-02
Method	SW 846, 8015B Modified

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted by taking a solution in hexane of about $100 \,\mu g/mL$. This matrix was then run on a gas chromatograph with a flame ionization detector (GC-FID). A blank hexane was also run on the GC-FID. The purity was determined by first identifying the peaks in the chromatogram of the atrazine that were the same as the peaks in the analysis of the hexane blank sample. The areas associated with these common peaks were then eliminated by inhibiting integration and the remaining peaks were reported as a percentage of the total peak area. The percentage associated with the largest peak represented the purity of atrazine. The GC was set up with an autosampler and a $30 \, \text{mx} \, 0.25 \, \text{mm}$, DB-5 capillary column. The temperature program was set to start at 50°C , and ramped at $20^{\circ}\text{C}/\text{min}$ to a final temperature of 320°C . The injection port temperature was set at 270°C and the detector temperature at 320°C . The autosampler was set to inject $1 \, \mu\text{L}$ of the matrix dilution. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. Stock solutions were prepared at the chemical concentrations requested for stability analysis (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

Atrazine stock solutions were prepared on 8-22-02 for testing as described in Table 2. Briefly, for the 15 mg/mL atrazine solution, 3 g of atrazine was weighed into a 250 mL amber wide-mouth jar containing 180 g corn oil, a stir bar was added, and the solution was agitated on a stir plate to suspend the chemical. For the 30 mg/mL atrazine solution, 6 g was weighed into 180 g corn oil as described above. Again a stir bar was added, and the solution was mixed on a stir

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA 2-14-02-02	Atrazine	15 mg/mL (15,000 μg/mL)	1826-1-2	3 g in 180 g Mazola corn oil
12 Weeks	Allazine	30 mg/mL (30,000 µg/mL)	1826-1-3	6 g in 180 g Mazola corn oil

plate to suspend the chemical. All solutions were transferred to ashed, amber glass bottles. Bottles were labeled and stored at $4^{\circ}C \pm 2^{\circ}C$ for the duration of the test.

Density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentration was determined by chromatographic analysis. Triplicate aliquots of each concentration were tested. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

Atrazine stock solution was sampled by weighing ~1 g of sample into a 30 mL amber, ashed vial and adding 25 mL of methylene chloride using a volumetric pipette. For 1826-1-2, analysis was done by taking 0.1 mL of the hexane solution and 0.02 ml of internal standard REP7, 5a androstane and 0.88 mL of hexane. For 1826-1-3, 0.025 mL taken with 0.02 mL REP7 and 0.96 mL hexane. This solution was then analyzed on the GC-FID. A corn oil blank was prepared and analyzed in the same way. The major peak determined during the purity analysis of atrazine was used for this analysis. Continuing calibration verification (CCV) samples were analyzed to demonstrate on-going calibration accuracy.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fit to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a GC-FID purity scan on the atrazine. The chromatogram, after solvent blank correction, showed one large peak that had the appropriate retention time for atrazine. The area of the atrazine peak was 99.9% of the total area of all peaks in the chromatogram. Chemical purity of atrazine determined by the manufacturer was 98% (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 08/22/02. Chemical concentrations were determined over 12 sampling intervalsfrom 08/22/02 to 11/14/02. The analytical and quality control (QC) results are presented in Appendix C. A single preparation blank was analyzed with every sample batch. There were no detectable concentrations of atrazine in the blanks. CCV results ranged from 92.2% to 104%. Internal standards were analyzed with each sample and these results ranged from 91.3% to 113%. The MDL was 115 μ g/mL.

Both lots of Mazola corn oil had peroxide numbers less than 3 meq/kg, as required for biological testing (Appendix C). The average peroxide number in the Mazola corn oil with an expiration date of 6/03 was 1.77 meq/kg (RSD = 6.41%). The average peroxide number in the Mazola corn oil with an expiration date of 1/04 was 1.34 meg/kg (RSD = 8.31%).

3.3 Statistical Results of Stability Trial

A plot of atrazine with a target concentration of $15,000\,\mu\text{g/mL}$ against time shows very little decay in chemical concentration (Figure 2). All but two data points were greater than 90% of the target concentration. Homogeneity of the chemical concentration within the test container was evaluated at time 0 and at 1 week. At time 0, a significant difference was detected (p = 0.05) between the concentrations obtained from the top and bottom sections of the container, but the difference was no longer significant by week 1. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of atrazine was expected to stay greater than or equal to 90% of the target concentration for an unlimited amount of time (Table 3). Thus, this stock solution was considered stable for the required biological testing and holding period of 12 weeks. The complete statistical analysis is presented in Appendix D.

All observations of atrazine with a target concentration of $30,000~\mu g/mL$ were greater than 90% of the average target concentration (Figure 2). Homogeneity of the chemical concentration within the test container was evaluated at time 0 and at 1 week. At time 0, a significant difference was detected (p = 0.05) between the concentrations obtained from the top and bottom sections of the container, but the difference was no longer significant by week 1. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of atrazine was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 31 weeks (Table 3). Thus, this stock solution was considered stable for the required biological testing and holding period of 12 weeks. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries for all doses ranged from 105% to 114%. The complete analysis is presented in Appendix E.

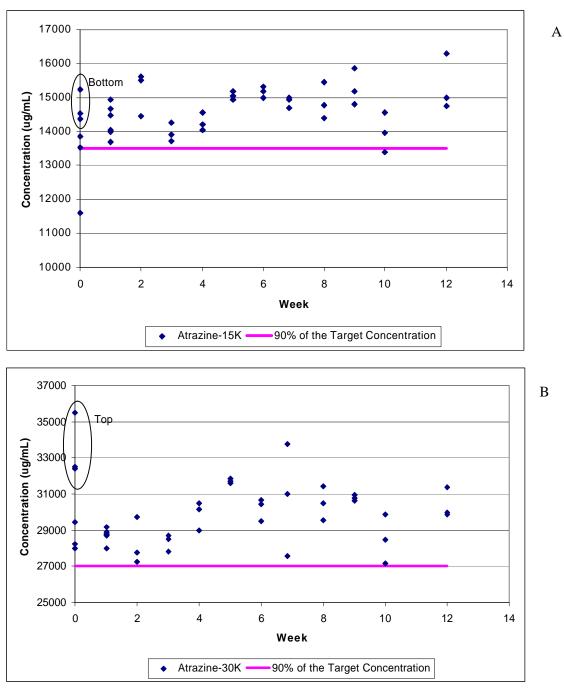


Figure 2. Observed Concentration of Atrazine with a Target Concentration of 15,000 ng/mL (A) and 30,000 ng/mL (B) Against Time

Table 3. Summary of Statistical Results for Atrazine

WA 2-14-02-02		
Statistical Analysis conducted by Valerie Cullinan	1826-1-2	1826-1-3
Using Minitab Version 13.32, Minitab Inc., 1999.	Atrazine-15K	Atrazine-30K
Target Concentration (μg/mL)	15000	30000
Number of determinations	1	1
Number of weeks tested	12	12
Number of replicates per day	3	3
Number of outliers removed	0	0
Number of observations removed	0	0
Overall Mean Concentration	14592	29913
95% Upper CL	14799	30376
error degrees of freedom	41	41
1-sample t-test of Ho: μ >= Target	S ^a	NS
estimated intercept of In(concentration) against time	9.5586	10.2952
estimated slope of In(concentration) against time	0.0058	0.0019
standard error of slope	0.0022	0.0024
error degrees of freedom	40	40
Significance test of lack-of-fit for final model	NS ^b	NS
Significance test of Ho: $\beta = 0$ vs. H1: β ? 0	S	NS
Lower 95% CL of β	0.001	-0.003
Upper 95% CL of β	0.010	0.007
Maximum Percent Loss (using LCL)	-1.1%	2.3%
Mean Percent Loss (using bhat)	-4.7%	-1.5%
LN(90% of Target)	9.5104	10.2036
Number of weeks until at 90% of Target (using LCL)	NA	31
Conclusion using Target Concentration:	Stable for 12 wks	Stable for 12 wks

4.0 **CONCLUSIONS**

Purity as determined by the manufacturer was 98%; Battelle-Sequim determined purity to be 99.9%. Stability testing of atrazine in Mazola corn oil concluded that the chemical was stable at both the 15 mg/mL and 30 mg/mL concentrations for a period of 12 weeks.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses ranged from 105% to 114%.

^a Significant at $\alpha = 0.05$ ^b Not Significant at $\alpha = 0.05$

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

660 Tower Lane • P.O. Box 599 • West Chester, PA 19381-0559 1-800-452-9994 • 1-610-692-3026 • Fax 1-610-692-8729 into@chemservice.com • www.chemservice.com

CERTIFICATE OF ANALYSIS

INVOICE #: CS229018 PO #: 11114099EAC

CATALOG #: PS-380

CAS #: 1912-24-9

DESCRIPTION: Atrazine

LOT #: 277-93B

PURITY: 98%

EXPIRATION DATE: 01/05

Chem Service, Inc. guarantees the purity of this chemical ± 0.5% deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

John Conrad CSM/TC

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Atrazine

Chemical Name: Atrazine (MSL CF 1826), CMS 173754

CAS Number: 1912-24-9

Lot Number: 277-93B, stored at RT in MSL5, Rm 219

Expiration date: 01/2005

Manufacturer's Purity Information: 98%

Manufacturer's Stability Information: stable

MSL Purity Results:

Purity (%) To be determined at MSL by GC-FID scan

MDL has not been determined.

Bioassay Information: Pesticide, see MSDS

Study Director

Name: Dr. Julia George

Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay:

Test Chemical: Atrazine

CAS: 1912-24-9

Carrier(s): Mazola corn oil

Concentrations/Dilution Series: 15 and 30 mg/mL

Below MDL determined in Purity Analysis?

In vitro or in vivo tests?: In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Testing/holding duration: 12 weeks

EDSP Purity Analysis and Stability Testing Plan for Atrazine, Continued

Design of Stability Test: Two concentrations, 15.0 mg/mL and 30.0 mg/mL in Mazola corn oil, will be tested. The chemical will be sieved through an 80 mesh screen and material that passes will be suspended in Mazola corn oil with a magnetic stirrer. Samples of the suspension will be taken with a gavage needle, while the suspension is being vigorously stirred, at mid-depth in a 250 mL amber glass bottle, except for the first sampling, which will be sampled at 25% and 75% depth in triplicate to demonstrate homogeneity. The suspension will be stored in glass at 4 deg. C in the dark for 12 weeks, sampled at least 8 times in triplicate and analyzed monthly by GC detector.

Number of replicates: 3

Duration: 12 weeks, sampling at least 8 time points with triplicate samples taken each time

Other factors:

Temperature regime(s): 4 deg. C Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other: None

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity

MSDS Records:

- date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity:
 - Chemical repository test results of lot-to-lot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- QC data reports;
- data qualifying flags; and
- dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C1. Atrazine concentration in Mazola Corn Oil $(\mu g/mL)$

Target						4
Concentration	Sample ID	Date	Atrazine	Average	RSD	Recovery
15000 ug/ml	1826-1-2-1 top R-1	8/22/2002	13853			
15000 ug/ml	1826-1-2-1 top R-2	8/22/2002	11607	12999	9.35%	86.8%
15000 ug/ml	1826-1-2-1 top R-3	8/22/2002	13535			
15000 ug/ml	1826-1-2-1 bottom R-1	8/22/2002	15228			
15000 ug/ml	1826-1-2-1 bottom R-2	8/22/2002	14359	14708	3.12%	98.1%
15000 ug/ml	1826-1-2-1 bottom R-3	8/22/2002	14537			
30000 ug/ml	1826-1-3-1 top R-1	8/22/2002	32521			
30000 ug/ml	1826-1-3-1 top R-2	8/22/2002	35497	33474	5.24%	112%
30000 ug/ml	1826-1-3-1 top R-3	8/22/2002	32404			
30000 ug/ml	1826-1-3-1 bottom R-1	8/22/2002	29465			
30000 ug/ml	1826-1-3-1 bottom R-2	8/22/2002	27978	28554	2.80%	95.2%
30000 ug/ml	1826-1-3-1 bottom R-3	8/22/2002	28218			
Blank	Corn Oil (T=0)	8/22/2002	115 U			
15000 ug/ml	1826-1-2-2 top R-1	8/29/2002	14473			
15000 ug/ml	1826-1-2-2 top R-2	8/29/2002	14655	14376	2.35%	95.8%
15000 ug/ml	1826-1-2-2 top R-3	8/29/2002	14000			
15000 ug/ml	1826-1-2-2 bottom R-1	8/29/2002	13681			
15000 ug/ml	1826-1-2-2 bottom R-2	8/29/2002	14045	14218	4.50%	94.8%
15000 ug/ml	1826-1-2-2 bottom R-3	8/29/2002	14927			
30000 ug/ml	1826-1-3-2 top R-1	8/29/2002	28879			
30000 ug/ml	1826-1-3-2 top R-2	8/29/2002	29161	28907	0.84%	96.4%
30000 ug/ml	1826-1-3-2 top R-3	8/29/2002	28680			
30000 ug/ml	1826-1-3-2 bottom R-1	8/29/2002	28757			
30000 ug/ml	1826-1-3-2 bottom R-2	8/29/2002	27993	28516	1.59%	95.1%
30000 ug/ml	1826-1-3-2 bottom R-3	8/29/2002	28799			
Blank	Corn oil (week 1)	8/29/2002	115 U			
Blank	Corn oil (week 1)	8/29/2002	115 U			
15000 ug/ml	1826-1-2-3 R-1	9/5/2002	14450			
15000 ug/ml	1826-1-2-3 R-2	9/5/2002	15502	15187	4.21%	101%
15000 ug/ml	1826-1-2-3 R-3	9/5/2002	15607			
30000 ug/ml	1826-1-3-3 R-1	9/5/2002	29748			
30000 ug/ml	1826-1-3-3 R-2	9/5/2002	27271	28258	4.65%	94.2%
30000 ug/ml	1826-1-3-3 R-3	9/5/2002	27753			
Blank	Corn oil (week 2)	9/5/2002	115 U			
15000 ug/ml	1826-1-2-4 R-1	9/12/2002	13902			
15000 ug/ml	1826-1-2-4 R-2	9/12/2002	14254	13956	1.97%	93.0%
15000 ug/ml	1826-1-2-4 R-3	9/12/2002	13713			
30000 ug/ml	1826-1-3-4 R-1	9/12/2002	27792			
30000 ug/ml	1826-1-3-4 R-2	9/12/2002	28508	28336	1.70%	94.5%
30000 ug/ml	1826-1-3-4 R-3	9/12/2002	28709			
Blank	Corn oil (week 3)	9/12/2002	115 U			
15000 ug/ml	1826-1-2-5 R-1	9/19/2002	14050			
15000 ug/ml	1826-1-2-5 R-2	9/19/2002	14571	14272	1.88%	95.1%
15000 ug/ml	1826-1-2-5 R-3	9/19/2002	14194			
J						

Table C1. Continued

Target Concentration	Sample ID	Date	Atrazine	Average	RSD	Recovery ¹
30000 ug/ml	1826-1-3-5 R-1	9/19/2002	29006			-
30000 ug/ml	1826-1-3-5 R-2	9/19/2002	30502	29886	2.62%	99.6%
30000 ug/ml	1826-1-3-5 R-3	9/19/2002	30149			
Blank	Corn oil (week 4)	9/19/2002	115 U			
15000 ug/ml	1826-1-2-6 R-1	9/26/2002	15194			
15000 ug/ml	1826-1-2-6 R-2	9/26/2002	14938	15063	0.85%	100%
15000 ug/ml	1826-1-2-6 R-3	9/26/2002	15057			
30000 ug/ml	1826-1-3-6 R-1	9/26/2002	31851			
30000 ug/ml	1826-1-3-6 R-2	9/26/2002	31609	31718	0.39%	106%
30000 ug/ml	1826-1-3-6 R-3	9/26/2002	31693			
Blank	Corn oil (week 5)	9/26/2002	115 U			
15000 ug/ml	1826-1-2-7 R-1	10/3/2002	14998			
15000 ug/ml	1826-1-2-7 R-2	10/3/2002	15178	15161	1.02%	101%
15000 ug/ml	1826-1-2-7 R-3	10/3/2002	15307			
30000 ug/ml	1826-1-3-7 R-1	10/3/2002	30661			
30000 ug/ml	1826-1-3-7 R-2	10/3/2002	30438	30201	2.03%	101%
30000 ug/ml	1826-1-3-7 R-3	10/3/2002	29504			
Blank	Corn oil (week 6)	10/3/2002	115 U			
15000 ug/ml	1826-1-2-8 R-1	10/10/2002	14696			
15000 ug/ml	1826-1-2-8 R-2	10/10/2002	14929	14875	1.07%	99.2%
15000 ug/ml	1826-1-2-8 R-3	10/10/2002	15000			
30000 ug/ml	1826-1-3-8 R-1	10/10/2002	33760			
30000 ug/ml	1826-1-3-8 R-2	10/10/2002	31014	30788	10.04%	103%
30000 ug/ml	1826-1-3-8 R-3	10/10/2002	27589			
Blank	Corn oil (week 7)	10/102002	115 U			
15000 ug/ml	1826-1-2-9 R-1	10/17/2002	14389			
15000 ug/ml	1826-1-2-9 R-2	10/17/2002	14775	14873	3.63%	99.2%
15000 ug/ml	1826-1-2-9 R-3	10/17/2002	15456			
30000 ug/ml	1826-1-3-9 R-1	10/17/2002	29528			
30000 ug/ml	1826-1-3-9 R-2	10/17/2002	31405	30480	3.08%	102%
30000 ug/ml	1826-1-3-9 R-3	10/17/2002	30506			
Blank	Corn oil (week 8)	10/17/2002	115 U			
15000 ug/ml	1826-1-2-10 R-1	10/24/2002	15176			
15000 ug/ml	1826-1-2-10 R-2	10/24/2002	15868	15278	3.58%	102%
15000 ug/ml	1826-1-2-10 R-3	10/24/2002	14790			
30000 ug/ml	1826-1-3-10 R-1	10/24/2002	30611			
30000 ug/ml	1826-1-3-10 R-2	10/24/2002	30947	30778	0.55%	103%
30000 ug/ml	1826-1-3-10 R-3	10/24/2002	30776			
Blank	Corn oil (week 9)	10/24/2002	115 U			
15000 ug/ml	1826-1-2-11 R-1	10/31/2002	13973			
15000 ug/ml	1826-1-2-11 R-2	10/31/2002	14565	13972	4.24%	93.2%
15000 ug/ml	1826-1-2-11 R-3	10/31/2002	13379			
30000 ug/ml	1826-1-3-11 R-1	10/31/2002	28468			
30000 ug/ml	1826-1-3-11 R-2	10/31/2002	29871	28492	4.80%	95.0%
30000 ug/ml	1826-1-3-11 R-3	10/31/2002	27137			
Blank	Corn oil (week 10)	10/31/2002	115 U			

Table C1. Continued

Target Concentration	Sample ID	Date	Atrazine	Average	RSD	Recovery ¹
15000 ug/ml	1826-1-2-12 R-1	11/14/2002	14760			
15000 ug/ml	1826-1-2-12 R-2	11/14/2002	14984	15346	5.40%	102%
15000 ug/ml	1826-1-2-12 R-3	11/14/2002	16294			
30000 ug/ml	1826-1-3-12 R-1	11/14/2002	29858			
30000 ug/ml	1826-1-3-12 R-2	11/14/2002	29952	30392	2.78%	99.7%
30000 ug/ml	1826-1-3-12 R-3	11/14/2002	31366			
Blank	Corn oil (week 12)	11/14/2002	115 U			

Recovery is relative to the target concentration U = Not detected at a value greater than the MDL

Table C.2. CCV Data for Atrazine Concentration in Mazola Corn Oil

Time	Sample Name	Atrazine (µg/mL)	Recovery	PD
T=0	EDSP Mix1 5 ug/ml	4.85	97.0%	3.00%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
Week 1	EDSP Mix1 5 ug/ml	4.77	95.4%	4.60%
	EDSP Mix1 5 ug/ml	4.95	99.0%	1.00%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	5.07	101%	1.40%
	EDSP Mix1 5 ug/ml	5.11	102%	2.20%
	EDSP Mix1 5 ug/ml	5.10	102%	2.00%
Week 2	EDSP Mix1 5 ug/ml	5.05	101%	1.00%
	EDSP Mix1 5 ug/ml	5.11	102%	2.20%
	EDSP Mix1 5 ug/ml	5.10	102%	2.00%
Week 3	EDSP Mix1 5 ug/ml	4.80	96.0%	4.00%
	EDSP Mix1 5 ug/ml	4.92	98.4%	1.60%
	EDSP Mix1 5 ug/ml	4.88	97.6%	2.40%
Week 4	EDSP Mix1 5 ug/ml	4.84	96.8%	3.20%
	EDSP Mix1 5 ug/ml	4.97	99.4%	0.60%
	EDSP Mix1 5 ug/ml	4.92	98.4%	1.60%
Week 5	EDSP Mix1 5 ug/ml	4.96	99.2%	0.80%
	EDSP Mix1 5 ug/ml	5.16	103%	3.20%
	EDSP Mix1 5 ug/ml	5.11	102%	2.20%
Week 6	EDSP Mix1 5 ug/ml	4.61	92.2%	7.80%
	EDSP Mix1 5 ug/ml	5.18	104%	3.60%
	EDSP Mix1 5 ug/ml	5.18	104%	3.60%
Week 7	EDSP Mix1 5 ug/ml	4.92	98.4%	1.60%
	EDSP Mix1 5 ug/ml	5.05	101%	1.00%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
Week 8	EDSP Mix1 5 ug/ml	4.79	95.8%	4.20%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	4.97	99.4%	0.60%
Week 9	EDSP Mix1 5 ug/ml	4.82	96.4%	3.60%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
Week 10	EDSP Mix1 5 ug/ml	4.76	95.2%	4.80%
	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	4.97	99.4%	0.60%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
Week 12	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.05	101%	1.00%

Calibration Standard EDSP Mix 1

Calibrations were performed using a five-point calibration curve labeled EDSP Mix 1 A thru E. This mix is used for Atrazine, Fenarimol, p,p'-DDE, Methoxychlor and Vinclozolin analyzed by GC-FID. These standards were made by serial dilutions of standards for each compound.

- Atrazine standard was made by weighing 0.0499 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with Methylene chloride and labeled 1826-1-1.
- Fenarimol standard was made by weighing 0.0506 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1829B-1.
- p,p'-DDE standard was made by weighing 0.0501 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1832-1a-1.
- Methoxychlor standard was made by weighing 0.0513 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1808-1-3.
- Vinclozolin standard was made by weighing 0.0512 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1779-78.

This analysis used an internal standard, in this case 5a androstane, which is made by weighing 0.0511 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane, this is then labeled REP7.

The EDSP Mix 1 series (A through E) was made as follows.

- Solution A, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 0.02 ml REP7 added to a 10 ml volumetric flask and diluted to the mark with hexane.
- Solution B, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane.
- Solution C, 0.25 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane.
- Solution D, 0.1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.
- Solution E, 0.05 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.

Table C.3. Internal Standards Data for Atrazine in Mazola Corn Oil

Sample Name	Date	5A androstane Recovery
Corn oil	8/22/2002	101%
1826-1-2-1 top R-1	8/22/2002	104%
1826-1-2-1 top R-2	8/22/2002	108%
1826-1-2-1 top R-3	8/22/2002	109%
1826-1-2-1 bottom R-1	8/22/2002	107%
1826-1-2-1 bottom R-2	8/22/2002	108%
1826-1-2-1 bottom R-3	8/22/2002	110%
1826-1-3-1 top R-1	8/22/2002	107%
1826-1-3-1 top R-2	8/22/2002	110%
1826-1-3-1 top R-3	8/22/2002	108%
1826-1-3-1 bottom R-1	8/22/2002	107%
1826-1-3-1 bottom R-2	8/22/2002	106%
1826-1-3-1 bottom R-3	8/22/2002	107%
Corn oil	8/29/2002	101%
1826-1-2-2 top R-1	8/29/2002	109%
1826-1-2-2 top R-2	8/29/2002	111%
1826-1-2-2 top R-3	8/29/2002	113%
1826-1-2-2 bottom R-1	8/29/2002	112%
1826-1-2-2 bottom R-2	8/29/2002	111%
1826-1-2-2 bottom R-3	8/29/2002	111%
1826-1-3-2 top R-1	8/29/2002	109%
1826-1-3-2 top R-2	8/29/2002	111%
1826-1-3-2 top R-3	8/29/2002	110%
1826-1-3-2 bottom R-1	8/29/2002	108%
1826-1-3-2 bottom R-2	8/29/2002	110%
1826-1-3-2 bottom R-3	8/29/2002	109%
Corn oil	9/5/2002	100%
1826-1-2-3 R-1	9/5/2002	109%
1826-1-2-3 R-2	9/5/2002	103%
1826-1-2-3 R-3	9/5/2002	108%
1826-1-3-3 R-1	9/5/2002	105%
1826-1-3-3 R-2	9/5/2002	107%
1826-1-3-3 R-3	9/5/2002	107%
Corn oil	9/12/2002	112%
1826-1-2-4 R-1	9/12/2002	102%
1826-1-2-4 R-2	9/12/2002	105%
1826-1-2-4 R-3	9/12/2002	106%
1826-1-3-4 R-1	9/12/2002	103%
1826-1-3-4 R-2	9/12/2002	104%
1826-1-3-4 R-3	9/12/2002	103%

Table C.3, Continued

		5A androstane
Sample Name	Date	Recovery
Corn oil	9/19/2002	97.1%
1826-1-2-5 R-1	9/19/2002	100%
1826-1-2-5 R-2	9/19/2002	98.9%
1826-1-2-5 R-3	9/19/2002	101%
1826-1-3-5 R-1	9/19/2002	96.5%
1826-1-3-5 R-2	9/19/2002	97.4%
1826-1-3-5 R-3	9/19/2002	99.2%
Corn oil	9/26/2002	101%
1826-1-2-6 R-1	9/26/2002	106%
1826-1-2-6 R-2	9/26/2002	106%
1826-1-2-6 R-3	9/26/2002	106%
1826-1-3-6 R-1	9/26/2002	104%
1826-1-3-6 R-2	9/26/2002	104%
1826-1-3-6 R-3	9/26/2002	102%
Corn oil	10/3/2002	99.2%
1826-1-2-7 R-1	10/3/2002	107%
1826-1-2-7 R-2	10/3/2002	106%
1826-1-2-7 R-3	10/3/2002	103%
1826-1-3-7 R-1	10/3/2002	101%
1826-1-3-7 R-2	10/3/2002	105%
1826-1-3-7 R-3	10/3/2002	105%
Corn oil	10/10/2002	96.6%
1826-1-2-8 R-1	10/10/2002	101%
1826-1-2-8 R-2	10/10/2002	98.8%
1826-1-2-8 R-3	10/10/2002	99.0%
1826-1-3-8 R-1	10/10/2002	98.2%
1826-1-3-8 R-2	10/10/2002	96.6%
1826-1-3-8 R-3	10/10/2002	96.8%
Corn oil	10/17/2002	96.7%
1826-1-2-9 R-1	10/17/2002	104%
1826-1-2-9 R-2	10/17/2002	101%
1826-1-2-9 R-3	10/17/2002	97.1%
1826-1-3-9 R-1	10/17/2002	100%
1826-1-3-9 R-2	10/17/2002	97.1%
1826-1-3-9 R-3	10/17/2002	98.5%
Corn oil	10/24/2002	98.0%
1826-1-2-10 R-1	10/24/2002	101%
1826-1-2-10 R-2	10/24/2002	99.5%
1826-1-2-10 R-3	10/24/2002	101%
1826-1-3-10 R-1	10/24/2002	98.3%
1826-1-3-10 R-2	10/24/2002	100%
1020-1-3-10 K-2	10/24/2002	10070

Table C.3, Continued

Sample Name	Date	5A androstane Recovery
Corn oil	10/31/2002	97.2%
1826-1-2-11 R-1	10/31/2002	106%
1826-1-2-11 R-2	10/31/2002	104%
1826-1-2-11 R-3	10/31/2002	111%
1826-1-3-11 R-1	10/31/2002	104%
1826-1-3-11 R-2	10/31/2002	101%
1826-1-3-11 R-3	10/31/2002	109%
Corn oil	11/14/2002	101%
1826-1-2-12 R-1	11/14/2002	99.5%
1826-1-2-12 R-2	11/14/2002	99.3%
1826-1-2-12 R-3	11/14/2002	91.3%
1826-1-3-12 R-1	11/14/2002	97.9%
1826-1-3-12 R-2	11/14/2002	96.7%
1826-1-3-12 R-3	11/14/2002	97.3%

Table C.4. Peroxide Concentration in Mazola Corn Oil (meq/kg)

Sample	Analysis Date	Volume of Sodium Thiosulfate (mL)	Normality	Weight of Oil (g)	Peroxide Number	Average Peroxide Number	RSD
Blank	09/05/02	0.5	0.005	5.00	0.50		
Mazola Corn Oil							
Expiration 6-03 R-1	09/05/02	1.9	0.005	5.01	1.90		
Mazola Corn Oil							
Expiration 6-03 R-2	09/05/02	1.8	0.005	5.36	1.68	1.77	6.41
Mazola Corn Oil							
Expiration 6-03 R-3	09/05/02	1.8	0.005	5.16	1.74		
Mazola Corn Oil							
Expiration 1-04 R-1	09/05/02	1.2	0.005	4.92	1.22		
Mazola Corn Oil							
Expiration 1-04 R-2	09/05/02	1.5	0.005	5.2	1.44	1.34	8.31
Mazola Corn Oil							
Expiration 1-04 R-3	09/05/02	1.4	0.005	5.13	1.36		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-02

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

- 1/24/2003 2:48:30 PM

Subset worksheet Week 0 created. Subset worksheet Week 1 created.

Results for: Week 0

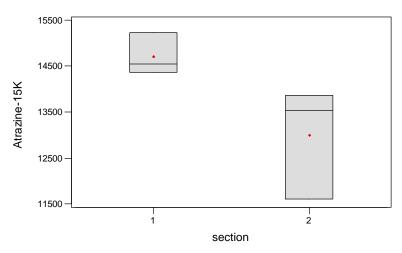
Two-Sample T-Test and CI: Atrazine-15K, section

Two-sample T for Atrazine-15K

section N Mean StDev SE Mean 1 3 14708 459 265 2 3 12999 1215 702 1 = bottom 2 = top

Difference = mu (1) - mu (2) Estimate for difference: 1709 95% CI for difference: (-1518, 4936)

T-Test of difference = 0 (vs not =): T-Value = 2.28 P-Value = 0.150 DF = 2


NS

Very poor

power!

Boxplots of Atrazine by section

(means are indicated by solid circles)

Kruskal-Wallis Test: Atrazine-15K versus section

Kruskal-Wallis Test on Atrazine

section N Median Ave Rank Ζ 1 14537 5.0 1.96 3 2 3 -1.96 13535 2.0 Overall 6 3.5

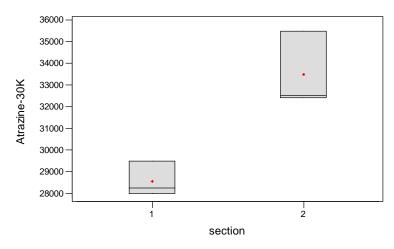
H = 3.86 DF = 1 P = 0.050

Sections are significantly different.

^{*} NOTE * One or more small samples

Two-Sample T-Test and CI: Atrazine-30K, section

Two-sample T for Atrazine-30K


section N Mean StDev SE Mean 1 3 28554 798 461 2 3 33474 1753 1012

Difference = mu (1) - mu (2) Estimate for difference: -4920 95% CI for difference: (-9706, -134)

T-Test of difference = 0 (vs not =): T-Value = -4.42 P-Value = 0.047 DF = 2

Boxplots of Atrazine by section

(means are indicated by solid circles)

Sections are significantly different.

Kruskal-Wallis Test: Atrazine-30K versus section

Kruskal-Wallis Test on Atrazine

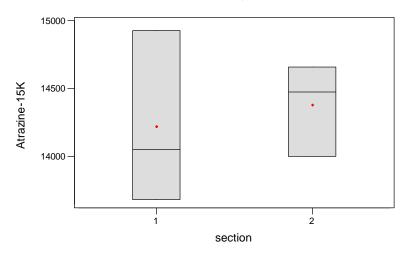
$$H = 3.86 DF = 1 P = 0.050$$

^{*} NOTE * One or more small samples

Results for: Week 1

Two-Sample T-Test and CI: Atrazine-15K, section

Two-sample T for Atrazine-15K


section N Mean StDev SE Mean 1 3 14218 640 370 2 3 14376 338 195

Difference = mu (1) - mu (2) Estimate for difference: -159 95% CI for difference: (-1489, 1172)

T-Test of difference = 0 (vs not =): T-Value = -0.38 P-Value = 0.730 DF = 3

Boxplots of Atrazine by section

(means are indicated by solid circles)

Can't reject the null that sections are the same.

Kruskal-Wallis Test: Atrazine-15K versus section

Kruskal-Wallis Test on Atrazine

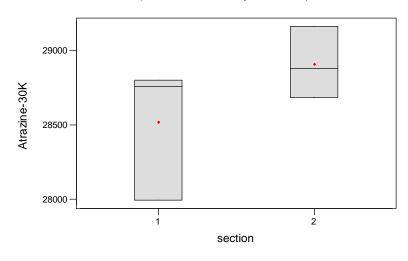
section N Median Ave Rank Z
1 3 14045 3.3 -0.22
2 3 14473 3.7 0.22
Overall 6 3.5

H = 0.05 DF = 1 P = 0.827

* NOTE * One or more small samples

Two-Sample T-Test and CI: Atrazine-30K, section

Two-sample T for Atrazine-30K


```
section N Mean StDev SE Mean
1 3 28516 454 262
2 3 28907 241 139
```

Difference = mu (1) - mu (2) Estimate for difference: -391 95% CI for difference: (-1335, 554)

T-Test of difference = 0 (vs not =): T-Value = -1.32 P-Value = 0.279 DF = 3

Boxplots of Atrazine by section

(means are indicated by solid circles)

Can't reject the null that sections are the same.

Kruskal-Wallis Test: Atrazine-30K versus section

Kruskal-Wallis Test on Atrazine

H = 1.19 DF = 1 P = 0.275

Conclusion: All test between sections have very poor power. For the week 0 data, both concentrations show a significant difference between the two sections.

By week 1, neither of the sections can be detected as significantly different.

^{*} NOTE * One or more small samples

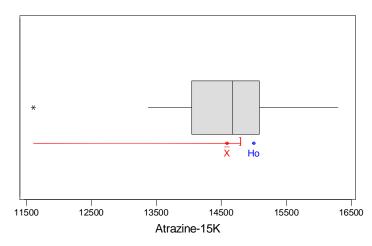
Stability Data

3/4/2003 12:29:24 PM -

Performs a one-sample t-test for mu less than TARGET &
 What is the target value for X 4
 DATA> 15000

One-Sample T: Atrazine-15K

Test of mu = 15000 vs mu < 15000


Variable N Mean StDev SE Mean Atrazine-15K 42 14592 798 123

Variable 95.0% Upper Bound T P Atrazine-15K 14799 -3.32 0.001

t Boxplot of Atrazine-15K

Boxplot of Atrazine-15K

(with Ho and 95% t-confidence bound for the mean)

Outliers are < Median-3*IQD OR > Median+3*IQD

Boundary for outliers are values < 11561.9 and > 17789.6

No outliers

• Transforms data to natural log

Week Rep Ln(Concentration)

9.6986

Conducts Simple Linear Regression

Regression Analysis: Atrazine-15K versus week

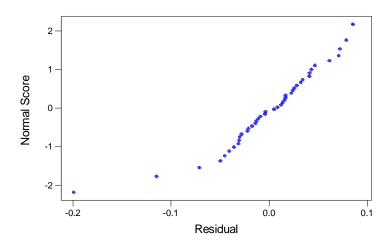
The regression equation is Atrazine-15K = 9.56 + 0.00578 week

Predictor Coef SE Coef T P
Constant 9.55862 0.01329 719.29 0.000
week 0.005776 0.002160 2.67 0.011

S = 0.05287 R-Sq = 15.2% R-Sq(adj) = 13.0%

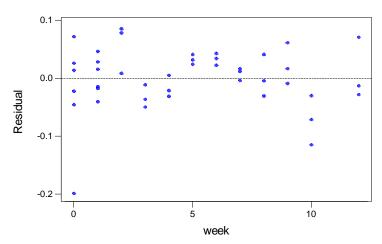
Analysis of Variance

DF Source SS MS Р Regression 1 0.019987 0.019987 7.15 0.011 Residual Error 40 0.111796 0.002795 Lack of Fit 10 0.042060 0.004206 1.81 0.102 Pure Error 30 0.069736 0.002325 41 Total 0.131783


Unusual Observations

Obs week Atrazine Fit SE Fit Residual St Resid 5 0.0 9.35940 9.55862 0.01329 -0.19922 -3.89R 39 10.0 9.50146 9.61638 0.01378 -0.11492 -2.25R

R denotes an observation with a large standardized residual


Normal Probability Plot of the Residuals

(response is Atrazine)

Residuals Versus week

(response is Atrazine)

Do you want to remove any data points? (yes OR no) no

Should a quadratic be fit? (yes OR no) no

Power analysis for t-test of slope less than zero

Power and Sample Size

1-Sample t Test

Testing mean = null (versus < null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.0528668

Sample

Size Power Difference 40 0.9900 -0.0338

• That means we would detect a mean of 9.582 as significantly less than ln(15000) = 9.6158 or a change of 14501 from 15000 = 3.3% loss.

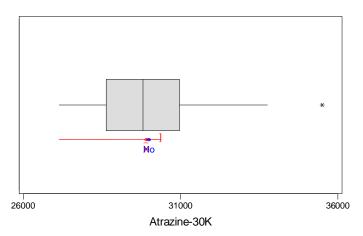
Fitted Line Plot: Atrazine-15K versus week

Regression Plot

- Conclusion stable for 12 weeks.
- Performs a one-sample t-test for mu less than TARGET &
 What is the target value for X 5
 DATA> 30000

week

One-Sample T: Atrazine-30K


Test of mu = 30000 vs mu < 30000

Variable N Mean StDev SE Mean Atrazine-30K 42 29913 1783 275

Variable 95.0% Upper Bound T P Atrazine-30K 30376 -0.32 0.376

Boxplot of Atrazine-30K

(with Ho and 95% t-confidence bound for the mean)

Outliers are < Median-3*IQD OR > Median+3*IQD

		Transforms data to natural log
Week	R	ep Ln(Concentration)
0	1	10.2910
Ö	1	10.2392
Ö	1	10.2477
Ö	2	10.3896
Ö	2	10.4772
Ö	2	10.3860
1	1	10.2666
1	1	10.2397
1	1	10.2681
1	2	10.2709
1	2	10.2806
1	2	10.2640
2	0	10.3005
2 2 2 3 3	0	10.2136
2	0	10.2311
3	0	10.2325
3	0	10.2579
3	0	10.2650
4	0	10.2753
4	0	10.3255
4	0	10.3139
5	0	10.3688
5	0	10.3612
5	0	10.3638
6	0	10.3308
6	0	10.3234
6	0	10.2923
7	0	10.4270
7	0	10.3422
7	0	10.2252
8 8	0	10.2931
8	0	10.3547
9	0	10.3257 10.3291
9	0	10.3400
9	0	10.3345
10	0	10.2565
10	0	10.3046
10	0	10.2087
12	0	10.3042
12	0	10.3074
12	0	10.3535
-	-	

• Conducts Simple Linear Regression

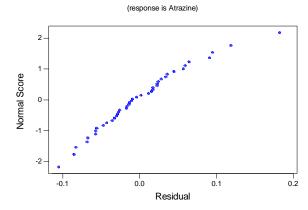
The regression equation is Atrazine-30K = 10.3 + 0.00188 week

Predictor Coef SE Coef T P
Constant 10.2952 0.0148 697.01 0.000
week 0.001881 0.002401 0.78 0.438

S = 0.05876 R-Sq = 1.5% R-Sq(adj) = 0.0%

Analysis of Variance

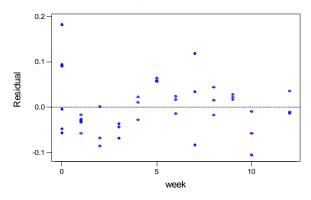
Source DF SS MS Regression 1 0.002119 0.002119 0.61 0.438 Residual Error 40 0.138112 0.003453 Lack of Fit 10 0.057009 0.005701 2.11 0.056 Pure Error 30 0.081103 0.002703 Total 41 0.140231


Unusual Observations

Obs week Atrazine Fit SE Fit Residual St Resid 5 0.0 10.4772 10.2952 0.0148 0.1820 3.20R 28 7.0 10.4270 10.3084 0.0104 0.1187 2.05R

R denotes an observation with a large standardized residual

Normplot of Residuals for Atrazine


Normal Probability Plot of the Residuals

Residuals from Atrazine vs week

Residuals Versus week

(response is Atrazine)

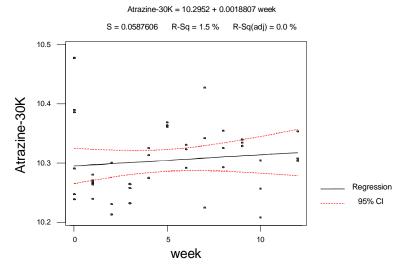
Do you want to remove any data points? (yes OR no) no Should a quadratic be fit? (yes OR no) no

Power analysis for t-test of slope less than zero

Power and Sample Size

1-Sample t Test

Testing mean = null (versus < null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.05876


Sample

Size Power Difference 40 0.9900 -0.0376

- That means we would detect a mean of 10.271 as significantly less than ln(30000) = 10.309 or a change of 28893 from 30000 = 3.7% loss.
 - Fit 95% confidence bands about the fitted simple linear model

Fitted Line Plot: Atrazine-30K versus week

Regression Plot

Conclusion – stable for 12 weeks.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Atrazine in-life test suspension samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Atrazine suspended in corn oil

TEST SOLUTION SAMPLE CUSTODY AND PROCESSING: Test suspension samples were prepared by the EDSP Chemical Repository, Sequim, WA, using atrazine (CAS 1912-24-9, CF 1848, Chem Service lot # 285-63B, expiration date 6/05, 98% purity; CF 1898, Chem Service lot # 289-102A, expiration date 9/05, 98% purity; and CF 1826, Chem Service lot # 277-93B, expiration date 11/05, 98% purity) suspended in Mazola corn oil (corn oil was from containers with the following expiration dates: 6/12/03, 1/1/04, and 4/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time. Samples were prepared at two test concentrations for all replicates and exposures: 15 mg/mL and 30 mg/mL. The 15 mg/mL concentration was prepared by suspending 3.0 g of atrazine in 183 g of corn oil in a pre-cleaned, amber-glass container. The 30 mg/mL concentration was prepared by suspending 6.0 g of atrazine in 180 g of corn oil. Atrazine was sieved through an 80-mesh screen prior to use.

Samples for female rat exposures were prepared at two different times: Replicate 1 – prepared on 09/09/02 and shipped on 09/10/02

Replicate 2 – prepared on 09/15/02 and shipped on 09/16/02.

Results of verification of concentrations for Replicate 1 are presented in Table 1.

Samples for male rat exposures were prepared at three different times:

Replicate 1 – prepared on 09/25/02 and shipped on 09/26/02

Replicate 2 – prepared on 10/02/02 and shipped on 10/03/02

Replicate 3 – prepared on 11/03/02 and shipped on 11/04/02.

Results of verification of concentrations for Replicates 1 and 2 are presented in Table 2.

The test suspension was sampled four times during the female test (9/18/02, 9/24/02, 10/01/02, and 10/08/02). Data are reported in Table 3. The test suspension was sampled four times during the male test (10/7/02, 10/14/02, 10/21/02, and 10/28/02). Data are reported in Table 4. Remaining formulation samples after dosing to assess changes in test solution concentration from the beginning and end of the test were also returned and are reported in Table 5.

Processing

Test Suspension Samples for Concentration Verification Prior to Shipping:

The container was placed on a magnetic stir plate and stirred. Triplicate 1 mL samples from the top (about 0.25 inches below the surface) and bottom (about 1 inch from the bottom) of the container were sampled and placed in a tared, 30 mL, amber-glass bottle. The weight of the sample was determined

gravimetrically. A 1 g subsample was removed, placed in a 30 mL, amber ashed vial, and 25 mL of methylene chloride (MeCl) was added and the bottle agitated to mix. Then, 0.1 mL sample and 0.02 mL internal standard, 5a androstane, and 0.88 mL hexane were transferred to an auto sampler vial.

In-life and Returned Container Samples:

For the containers with sufficient material to analyze, the containers with remaining dosing solution were removed from the refrigerator, allowed to warm to room temperature, and then stirred using a magnetic stir bar and stir plate. About 1 mL was sampled and placed in a tared, 30 mL, amber-glass bottle. The weight of the sample was determined gravimetrically. 25 mL of MeCl was added and the bottle agitated to mix. For the 15 mg/mL solutions, 0.1 mL was transferred to a 1.8-mL vial with 0.02 mL of internal standard solution containing 5a androstane and 0.88 mL hexane. For the 30 mg/mL solutions, 0.025 mL was transferred to a 1.8-mL vial with 0.02 mL of internal standard solution containing 5a androstane and 0.955 mL hexane.

The in-life samples were returned in 20 mL scintillation vials, which contained a suspension with the atrazine settled to the bottom. The entire sample was extracted to ensure accurate analysis. The vial was weighed and the contents poured into a 60-mL, amber-glass bottle. 50 mL of MeCl was used for these samples. The scintillation vial was rinsed with part of the 50 mL MeCl; this rinse was then poured into the amber vial and the rinsing repeated to ensure complete transfer of the sample. The empty vial was dried and re-weighed. The amber bottles were agitated to mix, and 0.01 mL transferred to an auto sampler vial with 0.02 mL of internal standard solution containing 5a androstane and 0.97 mL hexane.

SAMPLE ANALYSIS:

The samples were analyzed by gas chromatograph (GC) with a flame ionization detector (FID). The GC was set up with an autosampler and a 30-m x 0.25-mm, DB-5 capillary column. The temperature program was set to start at 50°C, and ramped at 20°C/min to a final temperature of 320°C. The injection port temperature was set at 270°C and detector at 320°C. The autosampler was set to inject 1 μ L of the matrix dilution.

Data Quality Objectives	Control Limits
Procedural Blank	< 5 X MDL
Blank Spike Recovery	40% - 120%
Continuing Standard Recovery	75% – 125%

QA/QC SUMMARY

METHODS: GC-FID

CALIBRATION: Calibration with a five-point curve was done using standards EDSP Mix 1 (see

Appendix C) with a continuing calibration verification (CCV) sample analyzed

every 10 samples.

CONTINUING STANDARD

Percent recovery results for initial and CCV samples analyzed with the in-life

RECOVERY: sample data set ranged from 92% to 116% with a mean recovery of 100%.

There were no occurrences of recoveries exceeding the 75% to 125%

acceptability range.

BLANK: Atrazine was not detected above the detection limit in the corn oil blank

analyzed with the test solution and in-life samples.

DETECTION LIMIT: The atrazine detection limit in corn oil was 115 µg/mL as determined by an MDL

study. No data below this value were reported.

BLANK SPIKE SAMPLES:

Blank spike samples were not analyzed. In this analysis, sampling was performed by taking the sample material from flask through to analysis. Analyzing a spiked sample would be no different from analyzing a CCV.

INTERNAL STANDARD:

5a androstane was spiked into each sample and analyzed as the internal standard. Average percent recovery results were 96% and ranged from 79% to 111%. There were no cases in which the percent recovery of the internal

standard exceeded the acceptance range of 40% to 120%.

REPLICATE ANALYSIS:

The percent relative standard deviations (% RSDs) for the two test solutions prepared for female exposures ranged from 1.27 to 3.25.

The % RSDs for formulations prepared for exposure to males ranged from

0.673 to 2.33.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of Atrazine Concentrations in Formulations Prepared 09/09/02 for Female Exposures

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	%RSD
		440		
15 mg/mL	2-14 –D-F Top R-1, R-1	14.2		
15 mg/mL	2-14 –D-F Top R-1, R-2	13.9	14.0	1.27
15 mg/mL	2-14 –D-F Top R-1, R-3	13.8		
15 mg/mL	2-14 -D-F Bott R-1, R-1	14.6		
15 mg/mL	2-14 –D-F Bott R-1, R-2	13.9	14.2	2.74
15 mg/mL	2-14 –D-F Bott R-1, R-3	14.0		
30 mg/mL	2-14 –E-F Top R-1, R-1	26.9		
30 mg/mL	2-14 –E-F Top R-1, R-2	28.2	27.9	3.06
30 mg/mL	2-14 –E-F Top R-1, R-3	28.6		
30 mg/mL	2-14 –E-F Bott R-1, R-1	29.1		
30 mg/mL	2-14 –E-F Bott R-1, R-2	28.3	28.2	3.25
30 mg/mL	2-14 –E-F Bott R-1, R-3	27.3		

Table 2. Verification of Atrazine Concentrations in Formulation Prepared on 09/25/02 and 10/02/02 for Male Exposures

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	%RSD
09/25/02				
15 mg/mL	2-14 -Q-M Top R-1, R-1	13.7		
15 mg/mL	2-14 –Q-M Top R-1, R-2	14.1	13.8	2.33
15 mg/mL	2-14 -Q-M Top R-1, R-3	13.5		
15 mg/mL	2-14 -Q-M Bott R-1, R1	13.9		
15 mg/mL	2-14 -Q-M Bott R-1, R-2	13.8	14.0	1.70
15 mg/mL	2-14 -Q-M Bott R-1, R-3	14.3		
30 mg/mL	2-14 -R-M Top R-1, R-1	27.5		
30 mg/mL	2-14 -R-M Top R-1, R-2	28.6	28.3	2.31
30 mg/mL	2-14 -R-M Top R-1, R-3	28.7		
30 mg/mL	2-14 -R-M Bott R-1, R-1	28.6		
30 mg/mL	2-14 -R-M Bott R-1, R-2	29.3	29.0	1.17
30 mg/mL	2-14 -R-M Bott R-1, R-3	29.0		
10/02/02				
15 mg/mL	2-14-Q-M R-2, R-1	15.7		
15 mg/mL	2-14-Q-M R-2, R-2	15.9	15.8	0.673
15 mg/mL	2-14-Q-M R-2, R-3	15.7		
30 mg/mL	2-14-R-M R-2, R-1	30.7		
30 mg/mL	2-14-R-M R-2, R-2	30.7	30.6	0.771
30 mg/mL	2-14-R-M R-2, R-3	30.3		

Table 3. In-life Sample Atrazine – Females

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
09/18/02	10/16/02	6/4/03	15 mg/mL	WA2-14D-F 9-18 Vial	16.77	112%
09/24/02	10/16/02	6/4/03	15 mg/mL	WA2-14D-F 9-24 Vial	16.93	113%
10/01/02	10/16/02	6/4/03	15 mg/mL	WA2-14D-F 10-1 Vial	16.90	113%
10/08/02	10/16/02	6/4/03	15 mg/mL	WA2-14D-F 10-8 Vial	16.44	110%
09/18/02	10/16/02	6/4/03	30 mg/mL	WA2-14E-F 9-18 Vial	33.63	112%
09/24/02	10/16/02	6/4/03	30 mg/mL	WA2-14E-F 9-24 Vial	32.95	110%
10/01/02	10/16/02	6/4/03	30 mg/mL	WA2-14E-F 10-1 Vial	33.28	111%
10/08/02	10/16/02	6/4/03	30 mg/mL	WA2-14E-F 10-8 Vial	33.11	110%

Table 4. In-life Sample Atrazine - Males

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
10/07/02	11/13/02	06/05/03	15 mg/mL	WA2-14Q-M 10-7 Vial	17.15	114%
10/14/02	11/13/02	06/05/03	15 mg/mL	WA2-14Q-M 10-14Vial	16.81	112%
10/21/02	11/13/02	06/05/03	15 mg/mL	WA2-14Q-M 10-21Vial	16.85	112%
10/28/02	11/13/02	06/05/03	15 mg/mL	WA2-14Q-M 10-28Vial	17.02	113%
10/07/02	11/13/02	06/05/03	30 mg/mL	WA2-14R-M 10-7 Vial	33.80	113%
10/14/02	11/13/02	06/05/03	30 mg/mL	WA2-14R-M 10-14Vial	33.10	110%
10/21/02	11/13/02	06/05/03	30 mg/mL	WA2-14R-M 10-21Vial	31.43	105%
10/28/02	11/13/02	06/05/03	30 mg/mL	WA2-14R-M 10-28Vial	32.11	107%

Table 5. Post-Test Atrazine Concentrations in Formulations Returned to Battelle

Date Sample Prepared	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
Female						
Exposures						
09/15/02	10/16/02	11/22/02	15 mg/mL	WA 2-14-D-F Rep2Jar	14.0	93%
09/15/02	10/16/02	11/22/02	30 mg/mL	WA 2-14-E-F Rep2Jar	27.8	93%
Male						
Exposures						
10/2/02	11/13/02	11/22/02	15 mg/mL	WA 2-14-Q-M Rep3Jar	14.1	94%
10/2/02	11/13/02	11/22/02	30 mg/mL	WA 2-14-R-M Rep3Jar	28.8	96%

Deviation Documentation Form

•	DSP WA 2-14/ atrazine
Deviation No	. WA 2-14-D-002
Project Manag	ger: Eric Crecelius
	EDSP WA 2-14 and The EDSP Chemical Repository
Entered by:	Lohna O'Rourke Date: 2/12/03
[x] a miscell	information is (check one) aneous documentation n from Protocol, Work Plan or QA Plan (give title) -
[] a deviation (give number	
Description:	According to LRB 009 three lots of atrazine were used in the preparation of the formulations. All lots were analyzed by Battelle for purity and were determined to be 98% or greater. However, the chemical inventory records book is not in agreement with the quantity of chemical remaining for each lot.
Corrective Action:	No corrective action.
Action to Prev Recurrence:	vent Staffs that work in the Chemical Repository have received additional training on maintaining the chemical inventory records.
Impact on Project:	No impact to the project. Both lots were analyzed and had purities of 98% or greater.
APPROVED E	Eric Crecelius, Study Manager Chemical Repository 2/12/03 Date

File in project notebook or study archive Send a copy to the MSL QA Officer

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: WA 2-14			DATE: 10/30/03					
DEVIATION NUMBER: WA 2-14-D-003;			03;		WAL/STUDY DIRECTOR: Michael Blanton/			
Atrazine, DDE, Methoxychl	•					Eric Crecelius		
phenobarbital, propylthioura								
ketoconazole, Linuron, fena								
NOTEBOOK NUMBER: NA								
TITLE OF STUDY: WA 2-14								
QAPP/PROTOCOL ID:								
DEVIATION RELATING TO)·							
[] QAPP	, Г	1	QMP			Г	1	Protocol
[] SOP	<u> </u>	-				L]	
bd		1						Miscellaneous Documentation
ORIGINAL DOCUMENT SE								
								lations was determined to be
adequate for the period of t	ıme tr	nat ai	nımals w	ould	be dose	ed.	•	
				d wit	thin the	sta	ibility	time determined during the
testing of the stability of the	form	ulatio	on.					
								be within the acceptable target
				edure	es and w	/er	e us	ed within the known stability
time periods determined for	each	i form	nulation.					
PROPOSED CORRECTIVE				CHE	DULE F	OF	S CC	MPLETION: No corrective
action is required beyond the	is do	cume	entation.					
		RREI	NCE: Up	per r	managei	me	ent w	vill review testing schedules for
return shipments and analysis.								
Approval:							,	
1 4: 1 151 /		., ·	11		7/4	4	_	1171
Michael Blanton,		Vics	bef <		Sulm	سر	>	Date 11/3/03
WAL			~					, , ,
).	\Box	0	٠			Date 11/3/03
Eric Crecelius,	<u></u>	n	here	e Li	us			Date
Study Director								/ /
Chemical Repository								
		1						
Deborah Coffey,	6	1/.			11			1 ,
MSL QA Manager	/\	190	dan	(ملا المدد			Date
3		1			7	K		1. 5,00
						,		
Richard Ecker,	/	7-m	E	0	•			Date ///3/03
MSL Laboratory Director	1	_///	Carl	u		-		Date
WOL Laboratory Director			1 - 1					
David Houshess):/	1-72	د . مد ا	<u> </u>			Date /0/3//03
David Houchens,	علاء	en.	1 1/2	ny	res	_		Date
EDSP Program Manageme	ΙŢ		. (
Tami Dalla di	$\bigcap V$, .	· 11/1	001) ~ (Date 10-31-03
Terri Pollock,	(U)	\mathcal{M}	-011		WX-	_		Date 10-31-03

EDSP Battelle QAM

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: MA 2	1.4	DATE: 40/20	2/00		
STUDY NUMBER: WA 2- DEVIATION NUMBER: W		DATE: 10/30/03			
		WAL/STUDY DIRECTOR: Michael Blanton/			
Atrazine, DDE, vinclozolin	, ivietnoxycnior,	Eric Crecelius	\$		
Fenarimol					
NOTEBOOK NUMBER: N					
TITLE OF STUDY: WA 2-	14				
QAPP/PROTOCOL ID:					
DEVIATION RELATING T					
[] QAPP	[] QMP	[X]	Protocol		
[] SOP	[] Method	[]	Miscellaneous Documentation		
ORIGINAL DOCUMENT S	SPECIFICATIONS: 2.	3 of protocol WA	2-14 states "an aliquot of each		
level per formulation will b	evel was tested in the	first preparation t	or each chemical. However,		
and procedures as the firs	pact. Subsequent ba t batches.	tches were prepa	red using the same methods DMPLETION: No corrective		
ACTIONS TO PREVENT I schedule prior to the start Approval:	RECURRENCE: Upper of the studies.	er management v	vill review the analyses		
The comment		+			
Michael Blanton, WAL	The fort	Behn	Date 11-3-03		
Eric Crecelius, Study Director Chemical Repository	En here	lin_	Date		
Deborah Coffey, MSL QA Manager	/ Jarodun (My	Date		
Richard Ecker, MSL Laboratory Director	RM En	·	Date ///3/03		
David Houchens, EDSP Program Manageme	Daul P- The	melies	Date 10/3//03		
Terri Pollock, EDSP Battelle QAM	(Yuni & P	ollod	Date 10-31-03		

EDSP Battelle QAM

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Bisphenol A in Mazola Corn Oil

November 3, 2003

Prepared By:

Approved By:

Eric A. Crecelius, Ph.D.

Chemical Repository Manager

KIII Can

Date

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

11/11/03 Date

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology

Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Bisphenol A in Mazola Corn Oil

Reviewed by: _

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03

Chemistry Report for WA 2-14 Bisphenol A in Mazola Corn Oil

Parameter	Chemical
Compound Name	Bisphenol A
CAS#	80-05-7
Central File No.	CF-1825
Receipt Date	10/15/2002
Expiration Date	10/2004
Manufacturer	Fisher Scientific
Lot Number	A0147444
Battelle Study #	WA2-14-02-02
Method	SW 846, 8316 Modified

Executive Summary

The chemical purity of Bisphenol A determined by the manufacturer was 99.6%. The purity result from Battelle-Sequim by HPLC was determined to be 100.00%. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of Bisphenol A was expected to stay greater than or equal to 90% of the target concentration for up to 12 weeks. Thus, stability testing of the Bisphenol A stock solution in Mazola corn oil was considered stable at 80 mg/mL for the required testing and holding period of 12 weeks.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries based on target concentrations for all doses ranged from 99% to 112%.

TABLE OF CONTENTS

	Page
1.0 INTRODUCTION	1
2.0 GENERAL METHODS	1
2.1 CHEMICAL PROCUREMENT	
3.0 RESULTS	5
3.1 CHEMICAL PURITY	5 5
4.0 CONCLUSIONS	8
APPENDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY	B.1 C.1 D.1
LIST OF TABLES	
	Page
Table 1. Chemical Procurement Information.	3
Table 2. Stock Matrix Composition for Stability Testing	4
Table 3. Summary of Statistical Results for Bisphenol A	7
LIST OF FIGURES	
	Page
Figure 1. EDSP Requisition Form for Bisphenol A	2
Figure 2. Observed Concentration of Bisphenol A with a Target Concentration of 80,000,000 ng/mL Against Time	6

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA2-14-02-02, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of Bisphenol A (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_BisphenolA-cornoil.doc, DSUM_WA2-14_BisphenolA-cornoil.xls, and DAF_WA-2-14_BisphenolA-cornoil.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, Bisphenol A, (CAS No. 80-05-7) was purchased for purity and stability analysis to support a pubertal study on rats (Figure 1). Bisphenol A was purchased from Fisher Scientific and lot number A0147444 was received on 10/15/2002 with an expiration date of 10/2004 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1825) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-02

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Bisphenol A (MSL CF 1825)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 80 mg/mL and 120 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Planned/proposed testing/holding

duration: 12 weeks

Chemical Information

Chemical Name: Bisphenol A

CAS: 80-05-7

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

Any known stability information: may refer to

attached documentation

99.6% pure

Manufacturer's Stability Information:

stable

Desired purity (%) for test? 95% or greater

Figure 1. EDSP Requisition Form for Bisphenol A

Table 1. Chemical Procurement Information

Parameter	Chemical
Compound Name	Bisphenol A
CAS#	80-05-7
Central File No.	CF-1825
Receipt Date	10/15/2002
Expiration Date	10/2004
Manufacturer	Fisher Scientific
Lot Number	A0147444
Manufacturer's Purity	99.6%
Storage Conditions	Cool, dry place/room temp.
Battelle Study #	WA2-14-02-02
Method	SW 846, 8316 Modified

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak, and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted using high performance liquid chromatograph (HPLC) with ultraviolet (UV) absorbance at 275 nm by making a solution of 1 mL of the stock solution and diluting it with 9 mL of a 60% acetonitrile (ACN): 40% de-ionized water solution. This matrix was then run on the HPLC and the purity determined by comparing the peak heights of the peaks in the chromatogram. The HPLC was set up with an auto sampler and a column oven. The column oven temperature was set at 30°C, and the auto sampler was set to inject 250 μ L of the matrix dilution. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. A single stock solution was prepared to arrive at the 80 mg/mL concentration requested for stability analysis (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

A Bisphenol A stock matrix was prepared on 10/17/02 for testing as described in Table 2. The first analysis was done 10/18/02; this was considered the start of the test. Briefly, to prepare the 80 mg/mL Bisphenol A concentration, 16.0 g of Bisphenol A was weighed into a 250 mL amber glass wide mouth jar containing 170 g of corn oil, a stir bar was added, and the solution was mixed on a stir plate over night to suspend the chemical. The stock was transferred to an ashed, amber glass bottle, labeled, and stored at $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for the duration of the test.

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA2-14-02-02 12 Weeks	Bisphenol A	80 mg/mL	1825-1a-2	16.0 g in 170 g Mazola corn oil

Density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the stock concentration was determined by chromatographic analysis. Triplicate aliquots of each concentration were tested. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

The samples were analyzed using an HPLC with an ultraviolet/visible (UV/VIS) detector at the 275 nm wavelength. A 60:40% ACN:water mix was used for the eluent at 1.5 mL/minute. Separation was attained using a Supelco PAH (25 cm x 4.8 mm, C-18 column). Calibrations were performed using dilutions prepared from standard PP-1190. For samples analyzed using the HPLC system, data are stored in MSL5, room 219 on the computer with a property number of WV04738.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fit to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a HPLC purity scan on the Bisphenol A. The chromatogram, after solvent blank correction, showed one large peak that had the appropriate retention time for Bisphenol A and several very small peaks. The area of the Bisphenol A peak was 100.00% of the total area of all peaks in the chromatogram. Chemical purity of Bisphenol A as determined by the manufacturer was 99.6% (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 10/18/02. Chemical concentration was determined 10 times from 10/18/02 to 01/08/03. The analytical and quality control (QC) results are presented in Appendix C. A single preparation blank was analyzed with every batch for quality control purposes. There were no detectable concentrations of Bisphenol A in the blanks. CCV results ranged from 89.2% to 107%. Internal standards were not run. The MDL was 500,000 ng/mL or 0.5 mg/mL.

Both lots of Mazola corn oil had peroxide numbers less than 3 meq/kg as required for biological testing (Appendix C). The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn was 1.77 meg/kg and 1.34 meg/kg for samples expiring on 6/03 and 1/04, respectively.

3.3 Statistical Results of Stability Trial

A plot of Bisphenol A with a target concentration of 80,000,000 ng/mL against time suggests virtually no chemical decay (Figure 2). Homogeneity of the top and bottom concentrations of Bisphenol A in the testing container was tested at time 0. Concentrations in the bottom of the container averaged 87406525 ng/mL with a standard deviation of 526768. Concentrations in the top of the container averaged 85362947 ng/mL with a standard deviation of 1436907. Although the bottom concentration was greater than the top, there was not enough power to reject the null hypothesis that the average concentrations were the same. For the final regression model, the three bottom samples were removed from the analysis. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of Bisphenol A was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 12 weeks (Table 3). Thus, this stock solution was considered stable for the required 12-week testing/holding period. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries for all doses ranged from 99% to 112%. The complete analysis is presented in Appendix E.

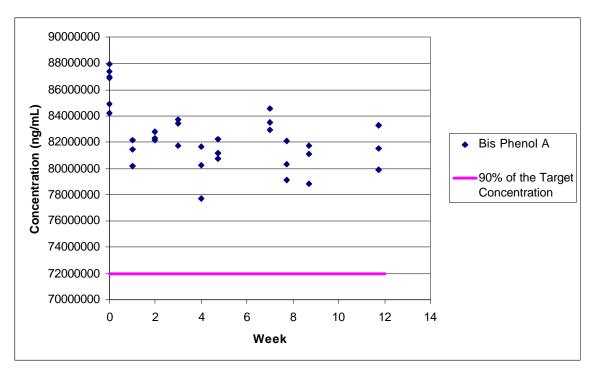


Figure 2. Observed Concentration of Bisphenol A with a Target Concentration of 80,000,000 ng/mL Against Time

Table 3. Summary of Statistical Results for Bisphenol A

WA-2-14-02-02	
Statistical Analysis conducted by Valerie Cullinan	1825-1a-2
Using Minitab Version 13.32, Minitab Inc., 1999.	Bisphenol A
Target Concentration (ng/mL)	8000000
Number of determinations	1
Number of weeks tested	12
Number of replicates per day	3
Number of outliers removed	0
Number of observations removed	3 ^a
Overall Mean Concentration	82450509
95% Upper CL	83172788
error degrees of freedom	32
1-sample t-test of Ho: $\mu >=$ Target	NS ^b
Estimated intercept of In(concentration) against time	18.2329
Estimated slope of In(concentration) against time	-0.0022
standard error of slope	0.0011
error degrees of freedom	28
Significance test of lack-of-fit for final model	S ^c
Significance test of Ho: $\beta = 0$ vs. H1: $\beta = 0$	NS
Lower 95% CL	-0.005
Upper 95% CL	0.000
Maximum Percent Loss (using LCL)	3.6%
Mean Percent Loss (using bhat)	1.8%
LN(90% of Target)	18.0922
Number of weeks until at 90% of Target (using LCL)	31
Conclusion:	Stable for 12 wks

^aRemoved for regression only ^bNot Significant at a = 0.05 ^cSignificant at a = 0.05

4.0 CONCLUSIONS

Chemical purity of Bisphenol A determined by the manufacturer was 99.6%; purity determined by Battelle-Sequim was 100%. Stability testing of Bisphenol A in Mazola corn oil concluded that the chemical was stable at the 80 mg/mL concentration for a period of 12 weeks.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meg/kg.

In-life chemistry recoveries for all doses ranged from 99% to 112%.

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

Product 15824-0000

4,4'4SOPROPYLIDENEDIPHENOL, 97%

Specifications

Infrared spectromeby Meling point

Separat Inchn. GC

165°C to 158°C >86.0 % White prits AUTHENTIC

2017033159

FISHER SCIENTIFIC

General Product Data

11/28/2001 12:39

CAS No

Molecular formula Molecular weight

00 80-05-7 228.39 C16 H16 O2 (CH3)2C(C6H4OH)2 227

Linear formula Flash point (°C)

Lot No. A0147444

Lot Specific Data

White prills authentic 157.3°C 99.6 % Appearance Infrared spectrometry

Melting point Separat, techn. GC

Beher Sclentific Worldwide compan

This report has been computer generated and does not contain a signature. A. Vanneste Quality Control Manager ssued: 20/11/01

Acres Organics byte. Geel West Zone 2, Jesseen Phermaneutkaltum 1a, B-2446 Geel, Britch "Tel: +53(t)/457 52-11 "Fax +52(t)/455 34.54 "briannet http://saw.acres.ibe 2000 Park Lans Delve, Pitsburgt, DA 15275-1120, USA "Tel: 802765-700 "Fax:1-800-805-11-56 "internet http://www.febreroleidifo.com

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Bisphenol A

Chemical Name: Bisphenol A (MSL CF 1825), CMS 173720

CAS Number: 80-05-7

Lot Number: A0147444, stored at RT in MSL5, Rm 219

Expiration date: 10/2004

Manufacturer's Purity Information: 99.6%

Manufacturer's Stability Information: stable

MSL Purity Results:

Purity (%) To be determined at MSL by LC scan

MDL has not been determined.

Bioassay Information:

Study Director

Name: Dr. Julia George

Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: Bisphenol A

CAS: 80-05-7

Carrier(s): suspended in Mazola corn oil

Concentrations/Dilution Series: 80 mg/mL and 120 mg/mL

Below MDL determined in Purity Analysis?

In vitro or in vivo tests? In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Planned/Proposed testing/holding duration: 12 weeks

EDSP Purity Analysis and Stability Testing Plan for Bishenol A, Continued

Design of Stability Test: One concentration of Bisphenol A, 80 mg/mL in Mazola corn oil, will be tested. The chemical will be sieved through an 80 mesh screen and material that passes will be suspended in Mazola corn oil with a magnetic stirrer. Samples of the suspension will be taken with a gavage needle, while the suspension is being vigorously stirred, at mid-depth in a 250 mL amber glass bottle, except for the first sampling, which will be sampled at 25% and 75% depth in triplicate to demonstrate homogeneity. The suspension will be stored in glass at 4 deg. C in the dark for 12 weeks, sampled at least 8 times in triplicate and analyzed monthly by LC.

Number of replicates: 3

Duration: 12 weeks, sampling at least 8 time points with triplicate samples taken each time

Other factors:

Temperature regime(s): 4 deg. C

Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other: None

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity

MSDS Records:

- date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-to-lot variation in chemical purity:
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- QC data reports;
- data qualifying flags; and
- Dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C1. Bisphenol A concentration in Mazola Corn Oil (ng/mL)

Target Concentration.	Sample ID	Date	Bisphenol A	Average	RSD	Recovery ^b
80000000	1825-1a-2-1 Top R-1 ^a	10/18/02	84187864			
80000000	1825-1a-2-1 Top R-2 ^a	10/18/02	86964928	85362947	1.68%	107%
80000000	1825-1a-2-1 Top R-3 ^a	10/18/02	84936048			
80000000	1825-1a-2-1 Bottom R-1 ^a	10/18/02	87954672			
80000000	1825-1a-2-1 Bottom R-2 ^a	10/18/02	87360784	87406525	0.60%	109%
80000000	1825-1a-2-1 Bottom R-3 ^a	10/18/02	86904120			
Blank	1825-1a-2-1 Blank1	10/18/02	500000 U			
80000000	1825-1a-2-2 R-1	10/25/02	82182592			
80000000	1825-1a-2-2 R-2	10/25/02	81433368	81255619	1.26%	102%
80000000	1825-1a-2-2 R-3	10/25/02	80150896			
Blank	1825-1a-2-2 Blank2	10/25/02	500000 U			
80000000	1825-1a-2-3 R-1	11/1/02	82178864			
80000000	1825-1a-2-3 R-2	11/1/02	82765736	82418317	0.37%	103%
80000000	1825-1a-2-3 R-3	11/1/02	82310352			
Blank	1825-1a-2-2 Blank3	11/1/02	500000 U			
80000000	1825-1a-2-4 R-1	11/8/02	83436800			
80000000	1825-1a-2-4 R-2	11/8/02	81713344	82949379	1.30%	104%
80000000	1825-1a-2-4 R-3	11/8/02	83697992			
Blank	1825-1a-2-2 Blank4	11/8/02	500000 U			
80000000	1825-1a-2-5 R-1	11/15/02	80263496			
80000000	1825-1a-2-5 R-2	11/15/02	81660944	79866467	2.53%	99.8%
80000000	1825-1a-2-5 R-3	11/15/02	77674960			
Blank	1825-1a-2-2 Blank5	11/15/02	500000 U			
80000000	1825-1a-2-6 R-1	11/20/02	80763600			
80000000	1825-1a-2-6 R-2	11/20/02	81146368	81383843	0.94%	102%
80000000	1825-1a-2-6 R-3	11/20/02	82241560			
Blank	1825-1a-2-2 Blank6	11/20/02	500000 U			
80000000	1825-1a-2-7 R-1	12/6/02	83523000			
80000000	1825-1a-2-7 R-2	12/6/02	84591336	83685379	1.00%	105%
80000000	1825-1a-2-7 R-3	12/6/02	82941800			
Blank	1825-1a-2-2 Blank7	12/6/02	500000 U			
80000000	1825-1a-2-8 R-1	12/11/02	79119720			
80000000	1825-1a-2-8 R-2	12/11/02	80287136	80500971	1.86%	101%
80000000	1825-1a-2-8 R-3	12/11/02	82096056			
Blank	1825-1a-2-2 Blank8	12/11/02	500000 U			
80000000	1825-1a-2-9 R-1	12/18/02	81761024			
80000000	1825-1a-2-9 R-2	12/18/02	81071256	80543776	1.92%	101%
80000000	1825-1a-2-9 R-3	12/18/02	78799048			
Blank	1825-1a-2-2 Blank9	1218/02	500000 U			
80000000	1825-1a-2-10 R-1	01/8/03	79886664			
80000000	1825-1a-2-10 R-2	01/8/03	81546472	81582376	2.10%	102%
80000000	1825-1a-2-10 R-3	01/8/03	83313992			
Blank	1825-1a-2-2 Blank10	1/8/03	500000 U			

^aTime 0 samples collected from top and bottom of container to assess homogeneity
^b Recovery is relative to the target concentration
U = Not detected at a value greater than the MDL

Table C.2. CCV Data for Bisphenol A Concentration in Mazola Corn Oil

		Bisphenol A		
Time	Sample Name	(µg/L)	Recovery	PD
-	Bis 500 PP-1190C	470.83	94.17%	5.83%
-	Bis 500 PP-1190C	508.41	101.68%	1.68%
-	Bis 500 PP-1190C	488.62	97.72%	2.28%
-	Bis 500 PP-1190C	469.30	93.86%	6.14%
-	Bis 500 PP-1190C	494.70	98.94%	1.06%
-	Bis 500 PP-1190C	486.65	97.33%	2.67%
-	Bis 500 PP-1190C	499.71	99.94%	0.06%
-	Bis 500 PP-1190C	487.66	97.53%	2.47%
-	Bis 500 PP-1190C	485.70	97.14%	2.86%
-	Bis 500 PP-1190C	447.91	89.58%	10.42%
-	Bis 500 PP-1190C	445.92	89.18%	10.82%
-	Bis 500 PP-1190C	507.29	101.46%	1.46%
-	Bis 500 PP-1190C	495.77	99.15%	0.85%
-	Bis 500 PP-1190C	497.27	99.45%	0.55%
-	Bis 500 PP-1190C	535.30	107.06%	7.06%
-	Bis 500 PP-1190C	493.11	98.62%	1.38%
-	Bis 500 PP-1190C	489.18	97.84%	2.16%
-	Bis 500 PP-1190C	482.24	96.45%	3.55%
-	Bis 500 PP-1190C	494.87	98.97%	1.03%
-	Bis 500 PP-1190C	507.29	101.46%	1.46%
-	Bis 500 PP-1190C	495.77	99.15%	0.85%

Table C.3. Internal Standards Data for Bisphenol A in Mazola Corn Oil

		5A Androstane
Sample Name	Date	Recovery

Not applicable

Table C.4. Peroxide Concentration in Mazola Corn Oil (meq/kg)

Sample	Analysis Date	Volume of Sodium Thiosulfate (mL)	Normality	Weight of Oil (g)	Peroxide Number	Average Peroxide Number	RSD
Blank	09/05/02	0.5	0.005	5.00	0.50		
Mazola Corn Oil Expiration 6-03 R-1 Mazola Corn Oil	09/05/02	1.9	0.005	5.01	1.90		
Expiration 6-03 R-2 Mazola Corn Oil	09/05/02	1.8	0.005	5.36	1.68	1.77	6.41
Expiration 6-03 R-3	09/05/02	1.8	0.005	5.16	1.74		
Mazola Corn Oil Expiration 1-04 R-1 Mazola Corn Oil	09/05/02	1.2	0.005	4.92	1.22		
Expiration 1-04 R-2 Mazola Corn Oil	09/05/02	1.5	0.005	5.2	1.44	1.34	8.31
Expiration 1-04 R-3	09/05/02	1.4	0.005	5.13	1.36		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-02

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

----- 5/23/2003 12:40:38 PM -----

Results for: Week 0

Two-Sample T-Test and CI: Bisphenol A, section

Two-sample T for Bisphenol A

 section
 N
 Mean
 StDev
 SE Mean

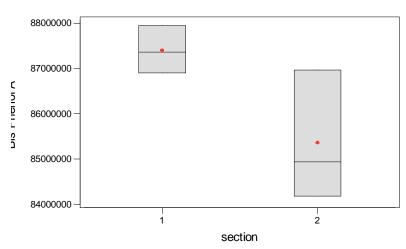
 1
 3
 87406525
 526768
 304129

 2
 3
 85362947
 1436907
 829599

Difference = mu (1) - mu (2) Estimate for difference: 2043579

95% CI for difference: (-1758197, 5845354)

T-Test of difference = 0 (vs not =): T-Value = 2.31 P-Value = 0.147 DF = 2


1 = bottom 2 = top

NS

Very poor power!

Boxplots of Bis Phen by section

(means are indicated by solid circles)

Kruskal-Wallis Test: Bisphenol A versus section

Kruskal-Wallis Test on Bisphenol

 section
 N
 Median
 Ave Rank
 Z

 1
 3
 87360784
 4.7
 1.53

 2
 3
 84936048
 2.3
 -1.53

 Overall
 6
 3.5

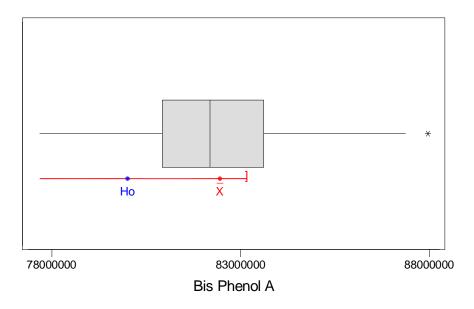
H = 2.33 DF = 1 P = 0.127 NS
* NOTE * One or more small samples

Conclusion: For the week 0 data, the test between sections has very poor power, note the width of the 95% CI of the difference (-1758197, 5845354). Because one sample from the top section was about the same concentration as one sample of the bottom section, no difference could be detected.

Results for: Stability Data

 \bullet Performs a one-sample t-test for mu less than TARGET & What is the target value for X $\,$ 3 DATA> 80000000

One-Sample T: Bisphenol A


Test of mu = 80000000 vs mu < 80000000

Variable N Mean StDev SE Mean Bisphenol A 33 82450509 2449500 426403

Variable 95.0% Upper Bound T P Bisphenol A 83172788 5.75 1.000 NS

Boxplot of Bis Phenol A

(with Ho and 95% t-confidence bound for the mean)

Outliers are < Median-3*IQD OR > Median+3*IQD

Boundary for outliers are values < 74099660 and > 90258068

No outliers

• Transforms data to natural log

Week Rep Ln(Concentration)

Conducts Simple Linear Regression

Regression Analysis: Bisphenol A versus Week

The regression equation is Bisphenol A = 18.2 - 0.00382 Week

Predictor Coef SE Coef T P

Constant 18.2450 0.0072 2541.21 0.000

Week -0.003822 0.001201 -3.18 0.003

S = 0.02603 R-Sq = 24.6% R-Sq(adj) = 22.2%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

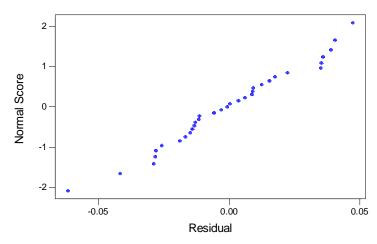
 Regression
 1
 0.0068616
 0.0068616
 10.13
 0.003

 Residual Error
 31
 0.0210054
 0.0006776

 Lack of Fit
 8
 0.0148455
 0.0018557
 6.93
 0.000

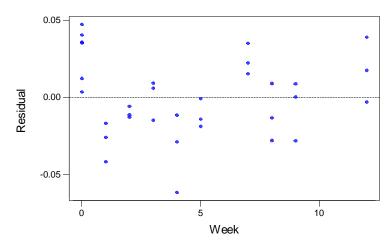
 Pure Error
 23
 0.0061598
 0.0002678

Total 32 0.0278670


Unusual Observations

Obs Week Bisphen Fit SE Fit Residual St Resid 18 4.0 18.1680 18.2297 0.0046 -0.0617 -2.41R

R denotes an observation with a large standardized residual


Normal Probability Plot of the Residuals

(response is Bis Phen)

Residuals Versus Week

(response is Bis Phen)

Do you want to remove any data points? (yes OR no) no

Should a quadratic be fit? (yes OR no) No

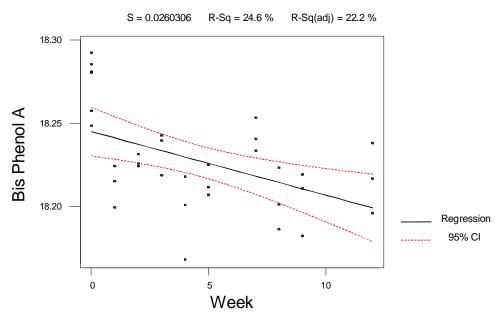
Power analysis for t-test of slope less than zero

Power and Sample Size

1-Sample t Test

Testing mean = null (versus < null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.0260306

Sample


Size Power Difference 31 0.9900 -0.0190

• That means we would detect a mean of 18.178 as significantly less than ln(80000000) = 18.198 or a change of 78494349 from 80000000 = 1.9% loss.

• Fit 95% confidence bands about the fitted simple linear model

Regression Plot

Bis Phenol A = 18.2450 - 0.0038224 Week

Remove the three bottom samples from Week 0 from the analysis

Regression Analysis: Bisphenol A versus Week

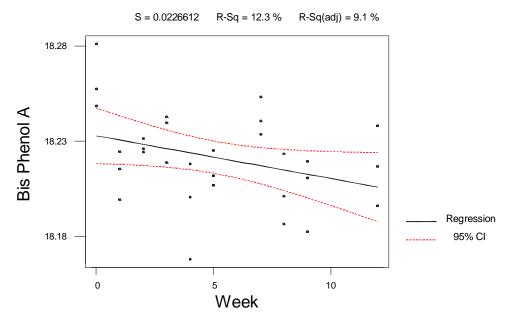
The regression equation is Bisphenol A = 18.2 - 0.00225 Week 30 cases used 3 cases contain missing values

Predictor Coef SE Coef T P
Constant 18.2329 0.0071 2562.71 0.000
Week -0.002247 0.001135 -1.98 0.058

S = 0.02266 R-Sq = 12.3% R-Sq(adj) = 9.1%

Analysis of Variance

Source DF SS MS 3.92 Regression 1 0.0020124 0.0020124 0.058 Residual Error 28 0.0143788 0.0005135 Lack of Fit 8 0.0091369 0.0011421 4.36 Pure Error 20 0.0052419 0.0002621 Total 29 0.0163912


Unusual Observations

Obs Week Bisphenol Fit SE Fit Residual St Resid 2 18.2810 0.0 18.2329 0.0071 0.0482 2.24R 18 4.0 18.1680 18.2239 0.0043 -0.0558 -2.51R

R denotes an observation with a large standardized residual

Regression Plot

Bis Phenol A = 18.2329 - 0.0022466 Week

• Conclusion - stable for 12 weeks.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Bisphenol A in-life test solution samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Bisphenol A suspended in corn oil

TEST SOLUTION SAMPLE CUSTODY AND PROCESSING:

Test solution samples were prepared by the EDSP Chemical Repository, Sequim, WA, using Bisphenol A (CF 1825, Fisher Acros lot # A0147444, expiration date 10/04) suspended in Mazola corn oil (corn oil was from containers with the following expiration dates: 06/12/03, 01/01/04, and 04/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time. Two test solutions at each of the test concentrations were prepared at one time on 11/20/02 and shipped on two different dates, 11/21/02 (Rep 1) and 11/25/02 (Rep 2). Samples were prepared at two test concentrations: 80 mg/mL and 120 mg/mL. The 80 mg/mL concentration was prepared by adding 16.0 g of Bisphenol A in 170 g of corn oil in a pre-cleaned, amber glass container. The 120 mg/mL concentration was prepared by adding 24.0 g of Bisphenol A in 162 g of corn oil. Bisphenol A was sieved through an 80-mesh, stainless-steel screen prior to weighing. Stir bars were added to aid in mixing to keep the chemical in suspension. The samples were analyzed on 11/20/02 to verify concentrations prior to shipping (Table 1).

The test solution was sampled four times during the test on 11/27/02, 12/3/02, 12/10/02, and 12/17/02, for each of the two test concentrations with no replication. These samples were returned in scintillation vials at the conclusion of the test. Empty containers with trace amounts of chemical, containers with remaining chemical volumes (from 140 mL to 190 mL), and scintillation vials with in-life samples were returned for analysis. These samples were received from RTI on 12/20/02. Empty containers with trace amounts of chemical were not analyzed. Two containers with remaining chemical volumes were analyzed and labeled "remain."

Processing

Test Solution Samples for Concentration Verification Prior to Shipping:

The container was placed on a magnetic stir plate and stirred. 1 mL triplicate samples were removed and each placed in a tared, 120 mL amber glass bottle. The weight of the sample was determined gravimetrically. 100 mL of acetonitrile (ACN) was added and the bottle agitated to mix. For the 80 mg/mL concentration, 0.01 mL was then transferred to an auto sampler vial with 0.99 mL of 60% ACN in water. For the 120 mg/mL concentration, 0.005 mL was then transferred to an auto sampler vial with 0.995 mL of 60% ACN in water.

<u>In-life and Returned Container Samples</u>:

For the containers with sufficient material to analyze, the containers were removed from the refrigerator, allowed to warm to room temperature, and then stirred using a magnetic stir bar and stir plate. About 1 mL was sampled and placed in a tared, 120 mL, amber glass bottle. The weight of the sample was determined gravimetrically. Some of the containers contained a slurry with Bisphenol A settled to the bottom. The entire sample was extracted to ensure accurate analysis. For the smaller scintillation vial samples, the vial was weighed, the contents poured into 20 mL, amber glass bottle, and the vial rinsed with part of the 100 mL ACN to be used, ensuring that the vials were rinsed as completely as possible to recover all of the chemical. The amber bottles were agitated to mix, and 0.1 mL transferred to an auto sampler vial with 0.9 mL ACN. Then 0.01 mL was transferred to another auto sampler vial with 0.99 mL 60% ACN in water. For the "remainder" sample, 0.01 mL was transferred to an auto sampler vial with 0.99 mL 60% ACN:water mixture, and then 0.005 mL transferred to a vial with 0.995 mL ACN:water.

SAMPLE ANALYSIS:

The samples were analyzed using a high performance liquid chromatograph (HPLC) with an ultraviolet/visible (UV/VIS) detector at the 275-nm wavelength. A 60:40% ACN:water mix was used for the eluent at 1.5 mL/minute. Separation was attained using a Supelco PAH (25 cm x 4.8 mm, C-18) column. Calibrations were performed using dilutions prepared from standard PP-1190. For samples analyzed using the HPLC system, data are stored in MSL5, room 219 on the computer with a property number of WV04738.

Data Quality Objectives	Control Limits
Procedural Blank	<5 X MDL
Blank Spike Recovery	40% - 120%
Continuing Standard Recovery	75% - 125%

QA/QC SUMMARY

METHODS: HPLC with a UV/VIS detector at the 275 nm wavelength.

CALIBRATION: Calibration with a five-point curve was done using standards prepared from

dilutions of PP-1190 (curve from 10/17/02) and a continuing calibration verification (CCV) samples analyzed every 10 samples. Although a calibration series was run with each sample run to assess drift or change in the curve,

the 10/17/02 calibration curve was used.

CONTINUING STANDARD RECOVERY: Percent recovery results for four CCV samples analyzed with the in-life sample data set ranged from 89% to 99%, with a mean recovery of 96%. There were no occurrences of recoveries exceeding the 75% to 125% acceptability

range.

BLANK: Bisphenol A was not detected above the detection limit in the two blanks

analyzed with the test solution and in-life samples.

DETECTION LIMIT: The Bisphenol A method detection limit (MDL) was 500 µg/mL as determined

by an MDL study. No data below this value were reported.

BLANK SPIKE

Blank spike samples were not analyzed. In this analysis, sampling was performed by taking the sample material from flask through to analysis.

Analyzing a spiked sample would be no different from analyzing a CCV.

REPLICATE The percent relative standard deviations (% RSDs) for the two test solutions

ANALYSIS: ranged from 0.859 to 3.29.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of Test Solution Concentrations
Prepared and Analyzed on 11/20/2002

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	%RSD
80 mg/mL	WA2-14-W-F Rep1 R-1	81.2		
80 mg/mL	WA2-14-W-F Rep1 R-2	81.0	81.5	0.859
80 mg/mL	WA2-14-W-F Rep1 R-3	82.3		
120 mg/mL	WA2-14-X-F Rep1 R-1	125		
120 mg/mL	WA2-14-X-F Rep1 R-2	125	123	3.29
120 mg/mL	WA2-14-X-F Rep1 R-3	118		

Table 2. In-life and Post-Test Sample Concentrations

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
11/27/02	12/20/02	01/24/03	80 mg/mL	11-27 W-F R-1	83.4	104
11/27/02	12/20/02	01/24/03	120 mg/mL	11-27 X-F R-1	125	104
12/03/02	12/20/02	01/24/03	80 mg/mL	12-3 W-F R-1	81.4	102
12/03/02	12/20/02	01/24/03	120 mg/mL	12-3 X-F R-1	130	108
12/10/02	12/20/02	01/24/03	80 mg/mL	12-10 W-F R-1	87.5	109
12/10/02	12/20/02	01/24/03	120 mg/mL	12-10 X-F R-1	131	109
12/17/02	12/20/02	01/24/03	80 mg/mL	12-17 W-F R-1	78.9	99
12/17/02	12/20/02	01/24/03	120 mg/mL	12-17 X-F R-1	134	112
End of test	12/20/02	01/24/03	80 mg/mL	2-14 W-F Remain R2	80.1	100
End of test	12/20/02	01/24/03	120 mg/mL	2-14 X-F Remain R2	119	99

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 p,p'-DDE in Mazola Corn Oil

November 10, 2003

Prepared By:

Approved (One-over-one) By:

Eric A. Crecelius, Ph.D.

Chemical Repository Manager

11/11/03

Richard M. Ecker

Date

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 p,p'-DDE in Mazola Corn Oil

Reviewed by: DEboton Copy

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03_

Chemistry Report for WA 2-14 p,p'-DDE in Mazola Corn Oil

Parameter	Chemical
Compound Name	p,p'-DDE
CAS#	72-55-9
Central File No.	CF-1832
Initial Receipt Date	10/25/2001
Expiration Date	10/2004
Manufacturer	Aldrich, Inc.
Lot Number	09020KU
Battelle Study #	WA 2-14-02-01
Method	SW 846, 8015B Modified

Executive Summary

The chemical purity of p,p'-DDE determined by the manufacturer was 99.4%. The purity result from Battelle-Sequim by GC-FID was determined to be 99.4%. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of DDE was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 6 weeks. Thus, stability testing of the DDE stock solution in corn oil was considered stable at both the 10 mg/mL and 20 mg/mL concentrations for the required testing period of 4.5 weeks.

Mazola corn oil (expiration dates 4-03 and 9-03) were purchased on 9-04-01 and 6-17-02 from local grocery stores, Mark and Pack and Quality Foods Center respectively, to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentration was measured on 6-17-02 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn oil with an expiration date of 4-03 was 2.07 meq/kg (RSD = 5.9%). The average peroxide number in the Mazola corn oil with an expiration date of 9-03 was 1.38 meq/kg (RSD = 7.8%). This level of peroxide is consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on target concentrations ranged from 91% to 93%.

TABLE OF CONTENTS

	Pag	,e
1.0	INTRODUCTION	1
2.0	GENERAL METHODS	1
	2.1 CHEMICAL PROCUREMENT	3 4 4
3.0	RESULTS	
	3.1 CHEMICAL PURITY	5 5 5
4.0	CONCLUSIONS	7
API API API	PENDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY	
	LIST OF TABLES	
	Pag	je
Tab	le 1. Chemical Procurement Information	3
Tab	le 2. Stock Matrix Composition for Stability Testing	4
	le 3. Summary of Statistical Results for DDE	
	LIST OF FIGURES	
	Pag	,
	ure 1. EDSP Requisition Form for DDE	
Figu	ure 2. Observed Concentration of DDE with a Target Concentration of 10,000 μg/mL (A) and 20,000 μg/mL (B) Against Time	

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA 2-14-02-01, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of DDE (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_DDE-cornoil.doc, PSTP_ WA-2-14_DDE-cornoil.doc, DSUM_ WA-2-10_2-14_2-23.xls, and DAF_WA-2-10_2-14_2-23.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, p,p'-DDE, (CAS No. 72-55-9, referred hereafter as DDE) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). The chemical was purchased from Aldrich, Inc. and lot number 09020KU was initially received on 10/25/2001 with an expiration date of 10/2004 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1832) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Corn oil (expiration dates 4-03 and 9-03) was purchased on 9-04-01 and 6-17-02 from local grocery stores, Mark and Pack and Quality Foods Center respectively, to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentration was measured on 6-17-02 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-01

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: DDE (MSL CF 1832)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 10 mg/mL and 20 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Planned/proposed test duration: 4.5 weeks

Chemical Information

Chemical Name: DDE

CAS: 72-55-9

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

Any known stability information: may refer to

attached documentation

Desired purity (%) for test? 95% or greater

99.4% pure

Manufacturer's Stability Information:

stable

Figure 1. EDSP Requisition Form for DDE

Table 1. Chemical Procurement Information

Parameter	Chemical
Compound Name	p,p'-DDE
CAS#	72-55-9
Central File No.	CF-1832
Initial Receipt Date	10/25/2001
Expiration Date	10/2004
Manufacturer	Aldrich, Inc.
Lot Number	09020KU
Manufacturer's Purity	99.4%
Storage Conditions	Cool, dry place/room temp.
Battelle Study #	WA 2-14-02-01
Method	SW 846, 8015B Modified

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted by making a solution in hexane of about $100 \,\mu\text{g/mL}$. This matrix was then run on a gas chromatograph with a flame ionization detector (GC-FID). A hexane blank was also run on the GC-FID. The purity was determined by first identifying the peaks in the chromatogram of the DDE that are the same as the peaks in the analysis of the blank hexane sample. The areas associated with these common peaks were then eliminated by inhibiting integration and the remaining peaks were reported as a percentage of the total peak area. The percentage associated with the largest peak represented the purity of DDE. The GC was set up with an auto sampler and a $30 \, \text{m} \times 0.25 \, \text{mm}$, DB-5 capillary column. The temperature program was set to start at 50°C , and ramped at 20°C/min to a final temperature of 320°C . The injection port temperature was set at 270°C and the detector temperature at 320°C . The auto sampler was set to inject $1 \, \mu\text{L}$ of the matrix dilution. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. Stock solutions were prepared to arrive at the chemical concentrations requested for stability analysis (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

DDE stock matrices were prepared on 6-18-02 for testing as described in Table 2. Briefly, for the 10 mg/mL DDE stock, 0.5064 g was weighed into a 50 mL Class A volumetric flask and corn oil was added to the 50 mL mark. The solution was agitated by hand shaking for approximately five minutes until all of the DDE was dissolved. For the 20 mg/mL DDE stock, 1.0057 g was weighed into a 50 mL Class A volumetric flask and corn oil was added to the mark.

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA 2-14-02-01	DDE	10 mg/mL	1832-1a-2	0.5064 g in 50 mL corn oil
12 Weeks	DDL	20 mg/mL	1832-1a-3	1.0057 g in 50 mL corn oil

The solution was agitated in a similar manner until all of the chemical was dissolved. All solutions were transferred to ashed, amber bottles. Bottles were labeled and stored at $4^{\circ}C \pm 2^{\circ}C$ for the duration of the test.

Density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentration was determined by chromatographic analysis. Triplicate aliquots of each concentration were tested. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

DDE stock solution was sampled by weighing ~1 g of sample into a 30 mL amber, ashed vial and adding 25 mL of hexane using a volumetric pipette. For samples 1832-1a-2 and 1832-1a-3, analysis was then conducted by adding 0.1 mL of the hexane solution and 0.02 mL of internal standard 5a androstane and 0.88 mL of hexane to the GC auto sampler vial. A corn oil blank was prepared the same way. This solution was then run on the GC-FID for quantification. The major peak determined during the purity analysis of DDE was used for this analysis. Continuing calibration verification (CCV) samples were analyzed to demonstrate on-going calibration accuracy.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fitted to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability are used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a GC-FID purity scan on the DDE. The chromatogram, after solvent blank correction, showed one large peak that had the appropriate retention time for DDE and several very small peaks. The area of the DDE peak was 99.4% of the total area of all peaks in the chromatogram. Chemical purity of DDE determined by the manufacturer was 99.4% (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 6-18-02. Chemical concentration was determined 11 times over a period of 12 weeks. The analytical and QC results are presented in Appendix C. A single preparation blank was analyzed with every batch for quality control purposes. There were no detectable concentrations of DDE in the blanks. CCV results ranged from 99.4% to 101%. Internal standards were analyzed with each sample and these results ranged from 93.4% to 111%. The MDL was 115 μ g/mL.

Both lots of Mazola corn oil had peroxide numbers less than 3 meq/kg as required for biological testing (Appendix C). The average peroxide number in the Mazola corn oil with an expiration date of 4-03 was 2.07 meq/kg (RSD = 5.9%). The average peroxide number in the Mazola corn oil with an expiration date of 9-03 was 1.38 meg/kg (RSD = 7.8%).

3.3 Statistical Results of Stability Trial

A plot of DDE with a target concentration of $10,000 \,\mu\text{g/mL}$ against time suggests very little chemical decay (Figure 2). Only one data point was less than 90% of the target concentration. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of DDE was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 11 weeks (Table 3). Thus, this stock solution was considered stable for the required 4.5-week testing period. The complete statistical analysis is presented in Appendix D.

Eight observations of DDE with a target concentration of 20,000 μg/mL were less than 90% of the target concentration (Figure 2). Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of DDE was expected to stay greater than or equal to 90% of the target concentration for an estimated 6 weeks (Table 3). Thus, this stock solution was considered stable for the required testing period of 4.5 weeks. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries for all doses based on target concentrations ranged from 91% to 93%. The complete analysis is presented in Appendix E.

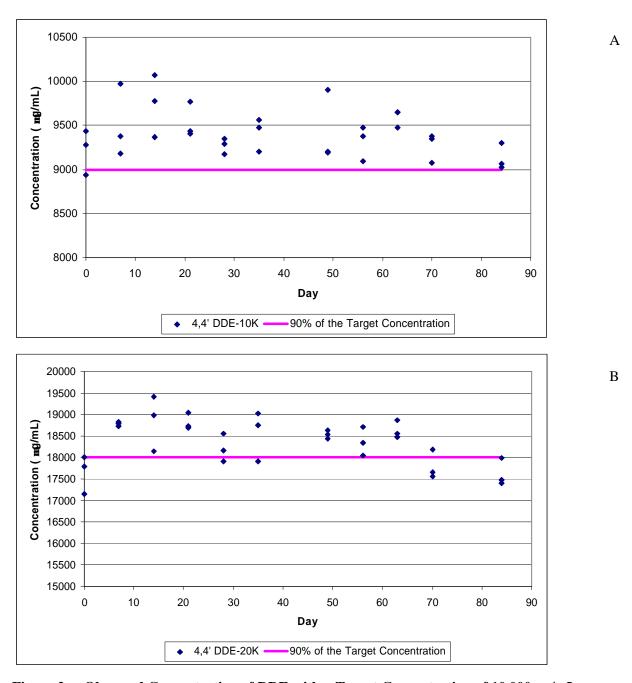


Figure 2. Observed Concentration of DDE with a Target Concentration of 10,000 ng/mL (A) and 20,000 ng/mL (B) Against Time

Table 3. Summary of Statistical Results for DDE

WA 2-14-02-01 Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.	1832-1a-2 DDE-10K	1832-1a-3 DDE-20K
Target Concentration (μg/mL)	10000	20000
Number of determinations	1	1
Number of days tested	84	84
Number of replicates per day	3	3
Number of outliers removed	0	0
Number of observations removed	0	0
Overall Mean Concentration	9401	18349
95% Upper CL	9482.5	18509
error degrees of freedom	32	32
1-sample t-test of Ho: μ >= Target	S ^a	S
estimated intercept of In(concentration) against time	9.1584	9.8300
estimated slope of In(concentration) against time	-0.0003	-0.0003
standard error of slope	0.0002	0.0002
error degrees of freedom	31	31
Significance test of lack-of-fit for final model	NS ^b	S
Significance test of Ho: $\beta = 0$ vs. H1: $\beta = 0$	NS	NS
Lower 95% CL of β	-0.001	-0.001
Upper 95% CL of β	0.000	0.000
Maximum Percent Loss (using LCL)	0.5%	0.6%
Mean Percent Loss (using bhat)	0.2%	0.3%
LN(90% of Target)	9.1050	9.7981
Number of days until at 90% of Target (using LCL)	82	44
Conclusion using Target Concentration:	Stable for 4.5 wks	Stable for 4.5 wks

4.0 **CONCLUSIONS**

Chemical purity of DDE determined by the manufacturer was 99.4%; purity determined by Battelle-Sequim was also 99.4%. Stability testing of DDE in corn oil concluded that the chemical was stable at both the 10 mg/mL and 20 mg/mL concentrations for a period of 4.5 weeks.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meg/kg.

In-life chemistry recoveries for all doses based on target concentrations ranged from 91% to 93%.

^a Significant at $\alpha = 0.05$ ^b Not significant at $\alpha = 0.05$

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

Certificate or Analysis

TEST

SPECIFICATION

LOT (09020KU) RESULTS

Product Name

4,4'-DDE

Product Number CAS Number

123897 72559

Formula

C14H8CI4

Formula Weight

318.0

APPEARANCE

WHITE CRYSTALS

CONFORMS TO STRUCTURE AND STANDARD AS ILLUSTRATED ON PAGE 1026C OF EDITION I, VOLUME 1 OF 'THE ALDRICH LIBRARY OF

FT-IR SPECTRA'.

AND STANDARD AS ILLUSTRATED ON PAGE 1763B OF EDITION I, VOLUME 2 OF THE ALDRICH LIBRARY OF

CONFORMS TO STRUCTURE

FT-IR SPECTRA'.

WHITE CRYSTALS

GAS LIQUID CHROMATOGRAPHY QUALITY CONTROL ACCEPTANCE DATE

INFRARED SPECTRUM

98.5% (MINIMUM)

99.4 %

AUGUST, 1999

David Swessel, Supervisor

Quality Control

11/13/02 10 48 AM

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for DDE

Chemical Name: DDE (MSL CF Login 1832), CMS 173725

CAS Number: 72-55-9

Lot Number: 09020KU, stored at RT in Bldg5 Rm 219

Expiration date: 10/04

Manufacturer's Purity Information: 99.4%

Manufacturer's Stability Information: stable

MSL Purity Results:

Purity (%) To be determined at MSL by GC-FID scan

MDL has not been determined.

Bioassay Information:

Study Director

Name: Dr. Julia George Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: DDE

CAS: 72-55-9

Carrier(s): corn oil

Concentrations/Dilution Series: 10 and 20 mg/mL

Below MDL determined in Purity Analysis?

In vitro or in vivo tests? In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Planned/Proposed test duration: 4.5 weeks

EDSP Purity Analysis and Stability Testing Plan for DDE, Continued

Design of Stability Test: 10 and 20 mg/mL in glass at 4 deg. C in the dark for 12 weeks, analyzed weekly in triplicate by GC detector

Number of replicates: 3

Duration: 12 weeks, sampling each week

other factors:

Temperature regime(s): 4 deg. C

Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity

MSDS Records:

- date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-to-lot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- QC data reports;
- · data qualifying flags; and
- dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C1. DDE concentration in Mazola Corn Oil $(\mu g/mL)$

Target Conc.	Sample ID	Date	DDE	Average	RSD	Recovery ¹
10000 ug/ml	1832-1a-2-1 R-1	6/18/2002	8940			
10000 ug/ml	1832-1a-2-1 R-2	6/18/2002	9277	9217	2.73%	92.2%
10000 ug/ml	1832-1a-2-1 R-3	6/18/2002	9434			
20000 ug/ml	1832-1a-3-1 R-1	6/18/2002	17796			
20000 ug/ml	1832-1a-3-1 R-2	6/18/2002	17144	17648	2.54%	88.2%
20000 ug/ml	1832-1a-3-1 R-3	6/18/2002	18004			
blank	Corn Oil (T=0)	6/19/2002	115 U			
10000 ug/ml	1832-1a-2-2 R-1	6/25/2002	9181			
10000 ug/ml	1832-1a-2-2 R-2	6/25/2002	9377	9511	4.36%	95.1%
10000 ug/ml	1832-1a-2-2 R-3	6/25/2002	9976			
20000 ug/ml	1832-1a-3-2 R-1	6/25/2002	18819			
20000 ug/ml	1832-1a-3-2 R-2	6/25/2002	18782	18776	0.24%	93.9%
20000 ug/ml	1832-1a-3-2 R-3	6/25/2002	18728			
blank	Corn Oil (week 1)	6/25/2002	115 U			
10000 ug/ml	1832-1a-2-3 R-1	7/2/2002	9368			
10000 ug/ml	1832-1a-2-3 R-2	7/2/2002	9773	9738	3.64%	97.4%
10000 ug/ml	1832-1a-2-3 R-3	7/2/2002	10074			
20000 ug/ml	1832-1a-3-3 R-1	7/2/2002	18140			
20000 ug/ml	1832-1a-3-3 R-2	7/2/2002	19420	18850	3.45%	94.3%
20000 ug/ml	1832-1a-3-3 R-3	7/2/2002	18991			0 110,0
blank	Corn Oil (week 2)	7/2/2002	115 U			
10000 ug/ml	1832-1a-2-4 R-1	7/9/2002	9771			
10000 ug/ml	1832-1a-2-4 R-2	7/9/2002	9435	9537	2.13%	95.4%
10000 ug/ml	1832-1a-2-4 R-3	7/9/2002	9403		,	33.173
20000 ug/ml	1832-1a-3-4 R-1	7/9/2002	18694			
20000 ug/ml	1832-1a-3-4 R-2	7/9/2002	18736	18821	0.98%	94.1%
20000 ug/ml	1832-1a-3-4 R-3	7/9/2002	19034	10021	0.0070	0 111 70
blank	Corn Oil (week 3)	7/9/2002	115 U			
10000 ug/ml	1832-1a-2-5 R-1	7/16/2002	9172			
10000 ug/ml	1832-1a-2-5 R-2	7/16/2002	9351	9270	0.98%	92.7%
10000 ug/ml	1832-1a-2-5 R-3	7/16/2002	9286	02.0	0.0070	02.1.70
20000 ug/ml	1832-1a-3-5 R-1	7/16/2002	18169			
20000 ug/ml	1832-1a-3-5 R-2	7/16/2002	18553	18210	1.78%	91.1%
20000 ug/ml	1832-1a-3-5 R-3	7/16/2002	17908	10210	070	011170
blank	Corn Oil (week 4)	7/16/2002	115 U			
10000 ug/ml	1832-1a-2-6 R-1	7/23/2002	9199			
10000 ug/ml	1832-1a-2-6 R-2	7/23/2002	9472	9410	1.99%	94.1%
10000 ug/ml	1832-1a-2-6 R-3	7/23/2002	9559	0110	1.0070	0 1.170
20000 ug/ml	1832-1a-3-6 R-1	7/23/2002	19017			
20000 ug/ml	1832-1a-3-6 R-2	7/23/2002	17911	18563	3.12%	92.8%
20000 ug/ml	1832-1a-3-6 R-3	7/23/2002	18759	10000	0.1270	02.070
blank	Corn Oil (week 5)	7/23/2002	115 U			
10000 ug/ml	1832-1a-2-7 R-1	8/6/2002	9192			
10000 ug/ml	1832-1a-2-7 R-2	8/6/2002	9206	9435	4.33%	94.4%
10000 ug/ml	1832-1a-2-7 R-3	8/6/2002	9907	J- 1 JJ	1.0070	OT.T/0
20000 ug/ml	1832-1a-3-7 R-1	8/6/2002	18542			
20000 ug/ml	1832-1a-3-7 R-1	8/6/2002	18437	18541	0.55%	92.7%
20000 ug/ml	1832-1a-3-7 R-3	8/6/2002	18643	10041	0.00/0	JZ.1 /0
blank	Corn Oil (week 7)		115 U			
DIALIK	Com Oil (week /)	8/6/2002	1100			

TABLE C.1, Continued

Target Conc.	Sample ID	Date	DDE	Average	RSD	Recovery ¹
10000 ug/ml	1832-1a-2-8 R-1	8/13/2002	9097			
10000 ug/ml	1832-1a-2-8 R-2	8/13/2002	9374	9316	2.10%	93.2%
10000 ug/ml	1832-1a-2-8 R-3	8/13/2002	9476			
20000 ug/ml	1832-1a-3-8 R-1	8/13/2002	18053			
20000 ug/ml	1832-1a-3-8 R-2	8/13/2002	18331	18363	1.78%	91.8%
20000 ug/ml	1832-1a-3-8 R-3	8/13/2002	18706			
blank	Corn Oil (week 8)	8/13/2002	115 U			
10000 ug/ml	1832-1a-2-9 R-1	8/20/2002	9472			
10000 ug/ml	1832-1a-2-9 R-2	8/20/2002	9652	9590	1.06%	95.9%
10000 ug/ml	1832-1a-2-9 R-3	8/20/2002	9646			
20000 ug/ml	1832-1a-3-9 R-1	8/20/2002	18476			
20000 ug/ml	1832-1a-3-9 R-2	8/20/2002	18875	18638	1.13%	93.2%
20000 ug/ml	1832-1a-3-9 R-3	8/20/2002	18563			
blank	Corn Oil (week 9)	8/20/2002	115 U			
10000 ug/ml	1832-1a-2-10 R-1	8/27/2002	9071			
10000 ug/ml	1832-1a-2-10 R-2	8/27/2002	9379	9264	1.82%	92.6%
10000 ug/ml	1832-1a-2-10 R-3	8/27/2002	9343			
20000 ug/ml	1832-1a-3-10 R-1	8/27/2002	17659			
20000 ug/ml	1832-1a-3-10 R-2	8/27/2002	17562	17802	1.88%	89.0%
20000 ug/ml	1832-1a-3-10 R-3	8/27/2002	18184			
blank	Corn Oil (week 10)	8/27/2002	115 U			
10000 ug/ml	1832-1a-2-12 R-1	9/10/2002	9025			
10000 ug/ml	1832-1a-2-12 R-2	9/10/2002	9060	9127	1.61%	91.3%
10000 ug/ml	1832-1a-2-12 R-3	9/10/2002	9295			
20000 ug/ml	1832-1a-3-12 R-1	9/10/2002	17398			
20000 ug/ml	1832-1a-3-12 R-2	9/10/2002	17478	17625	1.85%	88.1%
20000 ug/ml	1832-1a-3-12 R-3	9/10/2002	17998			
blank	Corn Oil (week 12)	9/10/2002	115 U			

¹ Recovery is relative to the target concentration U = Not detected at a value greater than the MDL

Table C.2. CCV Data for DDE Concentration in Mazola Corn Oil

Time	Sample Name	DDE (ng/mL)	Recovery	PD
T=0	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
Week 1	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
Week 2	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	4.97	99.4%	0.60%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
Week 3	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
Week 4	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
Week 5	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.97	99.4%	0.60%
Week 7	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
Week 8	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
Week 9	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
Week 10	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
Week 12	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	LDSI WIKTS ug/III	5.00	100 /0	0.00/0

Calibration Standard EDSP Mix 1

Calibrations were performed using a five-point calibration curve labeled EDSP Mix 1 A thru E. This mix is used for Atrazine, Fenarimol, p,p'-DDE, Methoxychlor and Vinclozolin analyzed by GC-FID. These standards were made by serial dilutions of standards for each compound.

- Atrazine standard was made by weighing 0.0499 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with Methylene chloride and labeled 1826-1-1.
- Fenarimol standard was made by weighing 0.0506 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1829B-1.
- p,p'-DDE standard was made by weighing 0.0501 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1832-1a-1.
- Methoxychlor standard was made by weighing 0.0513 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1808-1-3.
- Vinclozolin standard was made by weighing 0.0512 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1779-78.

This analysis used an internal standard, in this case 5a androstane, which is made by weighing 0.0511 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane, this is then labeled REP7.

The EDSP Mix 1 series (A through E) was made as follows.

- Solution A, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 0.02 ml REP7 added to a 10 ml volumetric flask and diluted to the mark with hexane.
- Solution B, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane
- Solution C, 0.25 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane.
- Solution D, 0.1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.
- Solution E, 0.05 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.

Table C.3. Internal Standards Data for DDE in Mazola Corn Oil

Sample Name	Date	5A Androstane Recovery
1832-1a-2-1 R-1	6/18/2002	108%
1832-1a-2-1 R-2	6/18/2002	107%
1832-1a-2-1 R-3	6/18/2002	107%
1832-1a-3-1 R-1	6/18/2002	107%
1832-1a-3-1 R-2	6/18/2002	108%
1832-1a-3-1 R-3	6/18/2002	105%
1832-1a-2-2 R-1	6/25/2002	104%
1832-1a-2-2 R-2	6/25/2002	103%
1832-1a-2-2 R-3	6/25/2002	102%
1832-1a-3-2 R-1	6/25/2002	103%
1832-1a-3-2 R-2	6/25/2002	105%
1832-1a-3-2 R-3	6/25/2002	105%
1832-1a-2-3 R-1	7/2/2002	102%
1832-1a-2-3 R-2	7/2/2002	101%
1832-1a-2-3 R-3	7/2/2002	97.3%
1832-1a-3-3 R-1	7/2/2002	104%
1832-1a-3-3 R-2	7/2/2002	98.1%
1832-1a-3-3 R-3	7/2/2002	101%
1832-1a-2-4 R-1	7/9/2002	96.3%
1832-1a-2-4 R-2	7/9/2002	99.7%
1832-1a-2-4 R-3	7/9/2002	101%
1832-1a-3-4 R-1	7/9/2002	101%
1832-1a-3-4 R-2	7/9/2002	99.6%
1832-1a-3-4 R-3	7/9/2002	98.0%
1832-1a-2-5 R-1	7/16/2002	103%
1832-1a-2-5 R-2	7/16/2002	104%
1832-1a-2-5 R-3	7/16/2002	105%
1832-1a-3-5 R-1	7/16/2002	107%
1832-1a-3-5 R-2	7/16/2002	105%
1832-1a-3-5 R-3 1832-1a-2-6 R-1	7/16/2002 7/23/2002	108%
1832-1a-2-6 R-1	7/23/2002	103% 103%
1832-1a-2-6 R-3		102%
1832-1a-3-6 R-1	7/23/2002	104%
1832-1a-3-6 R-2	7/23/2002	107%
1832-1a-3-6 R-3	7/23/2002	103%
1832-1a-3-0 R-3	8/6/2002	103%
1832-1a-2-7 R-2	8/6/2002	104%
1832-1a-2-7 R-3	8/6/2002	104%
1832-1a-3-7 R-1	8/6/2002	102%
1832-1a-3-7 R-2	8/6/2002	103%
1832-1a-3-7 R-3	8/6/2002	93.4%
1832-1a-2-8 R-1	8/13/2002	102%
1832-1a-2-8 R-2	8/13/2002	104%
1832-1a-2-8 R-3	8/13/2002	105%
1832-1a-3-8 R-1	8/13/2002	108%
1832-1a-3-8 R-2	8/13/2002	105%
1832-1a-3-8 R-3	8/13/2002	104%
.552 14 5 6 14 5	5, . 5, 2002	10170

Table C3. continued

Sample Name	Date	5A Androstane Recovery
1832-1a-2-9 R-1	8/20/2002	103%
1832-1a-2-9 R-2	8/20/2002	103%
1832-1a-2-9 R-3	8/20/2002	103%
1832-1a-3-9 R-1	8/20/2002	106%
1832-1a-3-9 R-2	8/20/2002	106%
1832-1a-3-9 R-3	8/20/2002	106%
1832-1a-2-10 R-1	8/27/2002	111%
1832-1a-2-10 R-2	8/27/2002	109%
1832-1a-2-10 R-3	8/27/2002	109%
1832-1a-3-10 R-1	8/27/2002	111%
1832-1a-3-10 R-2	8/27/2002	111%
1832-1a-3-10 R-3	8/27/2002	109%
1832-1a-2-12 R-1	9/10/2002	104%
1832-1a-2-12 R-2	9/10/2002	104%
1832-1a-2-12 R-3	9/10/2002	103%
1832-1a-3-12 R-1	9/10/2002	104%
1832-1a-3-12 R-2	9/10/2002	105%
1832-1a-3-12 R-3	9/10/2002	103%

Table C.4. Peroxide concentration in Mazola Corn Oil (meq/kg) measured on 6/17/02

	Volume of Sodium		Weight of Oil	Peroxide	Average Peroxide	
Sample	Thiosulfate (mL)	Normality	(g)	Number	Number	RSD
Blank	0.75	0.005	5.00	0.75		
Mazola Corn Oil						
Expiration 9-03 R-1	1.6	0.005	5.43	1.47		
Mazola Corn Oil						
Expiration 9-03 R-2	1.5	0.005	5.32	1.41	1.38	7.8%
Mazola Corn Oil						
Expiration 9-03 R-3	1.2	0.005	4.75	1.26		
Mazola Corn Oil						
Expiration 4-03 R-1	2.0	0.005	5.18	1.93		
Mazola Corn Oil						
Expiration 4-03 R-2	2.2	0.005	5.09	2.16	2.07	5.9%
Mazola Corn Oil						
Expiration 4-03 R-3	2.5	0.005	5.21	2.11		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-01

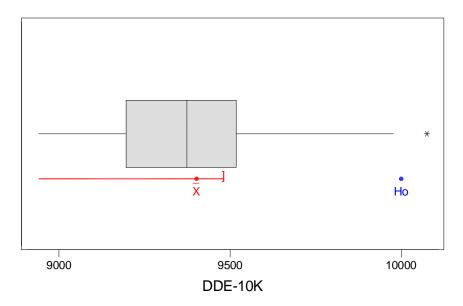
Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

——— 11/25/2002 11:22:30 AM —

Analysis of DDE-10k in corn oil

• Test to determine if the data are from a population with mean of 10000.

One-Sample T: DDE-10K


Test of mu = 10000 vs mu < 10000

Variable	N	Mean	StDev	SE Mean
DDE-10K	33	9401.3	275.3	47.9
Variable	95.0%	Upper Bound	T	P
DDE-10K		9482.5	-12.49	0.000

t Boxplot of DDE-10K

Boxplot of DDE-10K

(with Ho and 95% t-confidence bound for the mean)

• Nonparametric Test for outlier.

Outliers are < Median-3*IQD OR > Median+3*IQD Boundary for outliers are values < 8409.27 and > 10338.3 No outliers

Transform data to natural logarithm and conduct regression analysis.

```
Week
         Rep Ln(Concentration)
   0
           1
                  9.0983
   0
           2
                  9.1353
   0
           3
                  9.1520
                  9.1249
   7
           1
   7
           2
                  9.1460
  7
          3
                  9.2080
 14
          1
                 9.1450
          2
  14
                 9.1874
          3
 14
                 9.2177
  21
          1
                 9.1872
          2
  21
                 9.1522
                 9.1488
  21
          3
  28
          1
                 9.1239
  28
           2
                 9.1433
  28
           3
                 9.1363
  35
          1
                 9.1269
 35
          2
                9.1561
                9.1652
 35
          3
  49
                9.1261
          1
  49
          2
                9.1276
  49
          3
                9.2010
  56
          1
                9.1157
 56
          2
                9.1457
 56
          3
                9.1565
                 9.1561
  63
          1
                 9.1749
 63
          2
  63
          3
                 9.1743
  70
          1
                 9.1128
  70
           2
                 9.1462
  70
           3
                  9.1424
 84
           1
                  9.1077
 84
           2
                  9.1116
                  9.1373
 84
```

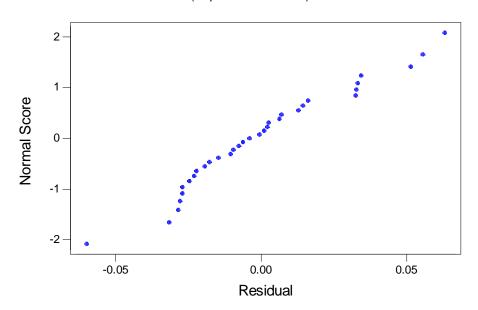
Conducts Simple Linear Regression

Regression Analysis: DDE-10K versus Day

The regression equation is DDE-10K = 9.16 -0.000263 Day

Predictor	Coef	SE Coef	Т	P
Constant	9.15840	0.00889	1030.19	0.000
Day	-0.0002628	0.0001897	-1.39	0.176
S = 0.02861	R-Sq =	5.8% R	R-Sq(adj) =	2.8%

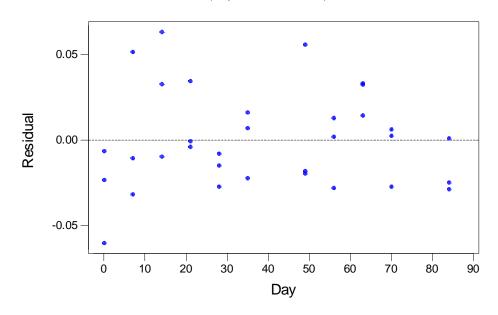
Analysis of Variance Source DF Regression 1 SS MS F Р 1 0.0015703 0.0015703 1.92 0.176 Residual Error 31 0.0253747 Lack of Fit 9 0.0095986 Pure Error 22 0.0157761 Total 32 0.0269450 0.0008185 0.0010665 1.49 0.214 0.0007171


Unusual Observations Day DDE-10K Obs Fit SE Fit Residual St Resid 1 0.0 9.09834 9.15840 0.00889 -0.06006 -2.21R 14.0 9.21775 9.15472 0.00685 0.06303 2.27R

R denotes an observation with a large standardized residual

Normplot of Residuals for DDE-10K

Normal Probability Plot of the Residuals


(response is DDE-10K)

Residuals from DDE-10K vs Day

Residuals Versus Day

(response is DDE-10K)

Power analysis for t-test of slope less than zero

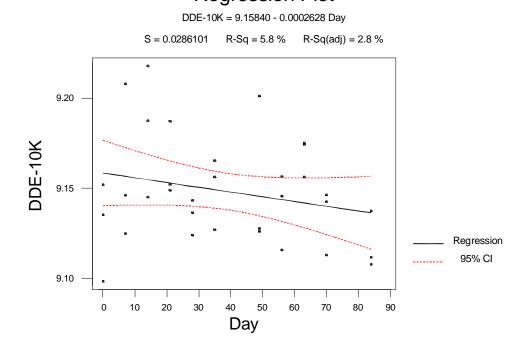
Power and Sample Size

```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.0286101


Sample

Size Power Difference

31 0.9900 -0.0209
```

- That means we would detect a mean of 9.1894 as significantly less than ln(10000) = 9.2103 or a change of 9793 from 10000 = 2.1% loss.
- Fit 95% confidence bands about the fitted simple linear model

Fitted Line Plot: DDE-10K versus Day Regression Plot

Conclusion - stable for 4.5 weeks.

WA-2-14-02-01

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

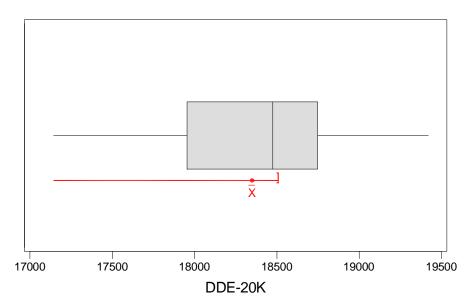
- 11/25/2002 11:22:30 AM -

Analysis of DDE-20k in corn oil

• Test to determine if the data are from a population with mean of 20000.

One-Sample T: DDE-20K

Test of mu = 20000 vs mu < 20000


Variable N Mean StDev SE Mean DDE-20K 33 18348.9 543.0 94.5

Variable 95.0% Upper Bound T P DDE-20K 18509.0 -17.47 0.000

t Boxplot of DDE-20K

Boxplot of DDE-20K

(with Ho and 95% t-confidence bound for the mean)

• Nonparametric Test for outlier.

Outliers are < Median-3*IQD OR > Median+3*IQD Boundary for outliers are values < 16096.0 and > 20856.5 No outliers Transform data to natural logarithm and conduct regression analysis.

```
Week
         Rep Ln(Concentration)
   0
           1
                  9.7868
                  9.7494
   0
           2
   0
           3
                  9.7984
                  9.8426
   7
           1
   7
           2
                  9.8406
   7
           3
                  9.8378
  14
           1
                  9.8059
           2
  14
                 9.8741
           3
  14
                 9.8517
  21
           1
                 9.8360
           2
  21
                 9.8382
  21
           3
                  9.8540
  28
           1
                  9.8075
  28
           2
                  9.8284
  28
           3
                  9.7930
  35
           1
                  9.8531
  35
           2
                 9.7932
  35
           3
                 9.8394
  49
                 9.8278
           1
  49
           2
                 9.8221
  49
           3
                 9.8332
  56
           1
                 9.8011
           2
  56
                 9.8164
  56
           3
                 9.8366
  63
           1
                 9.8242
  63
           2
                 9.8456
  63
           3
                  9.8290
  70
           1
                  9.7790
  70
           2
                  9.7735
  70
           3
                  9.8083
                  9.7641
  84
           1
  84
           2
                  9.7687
                  9.7980
  84
```

Conducts Simple Linear Regression

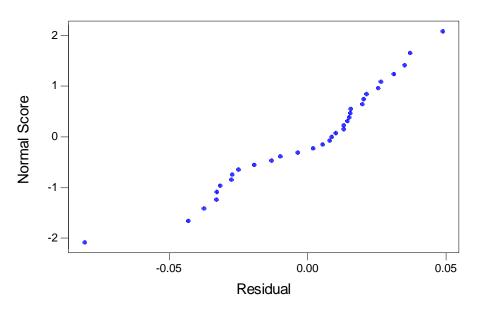
Regression Analysis: DDE-20K versus Day

The regression equation is DDE-20K = 9.83 -0.000338 Day

Predictor	Coef	SE Coef	Т	P
Constant	9.83000	0.00896	1097.18	0.000
Day	-0.0003377	0.0001912	-1.77	0.087
S = 0.02883	R-Sq =	9.1% R	-Sq(adj) =	6.2%

Analysis of Variance Source DF Regression 1 SS MS F 1 0.0025931 0.0025931 3.12 0.087 Residual Error 31 0.0257720 Lack of Fit 9 0.0169143 esidual Error
Lack of Fit 9 0.0008314 0.0018794 4.67 0.002 0.0088577 0.0004026 Total 32 0.0283651

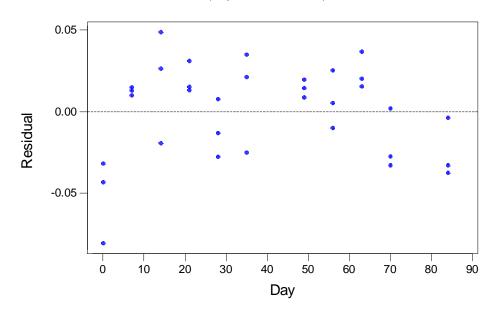
Unusual Observations


Obs Day DDE-20K Fit SE Fit Residual St Resid 2 0.0 9.74938 9.83000 0.00896 -0.08062 -2.94R

R denotes an observation with a large standardized residual

Normplot of Residuals for DDE-20K

Normal Probability Plot of the Residuals


(response is DDE-20K)

Residuals from DDE-20K vs Day

Residuals Versus Day

(response is DDE-20K)

Power analysis for t-test of slope less than zero

Power and Sample Size

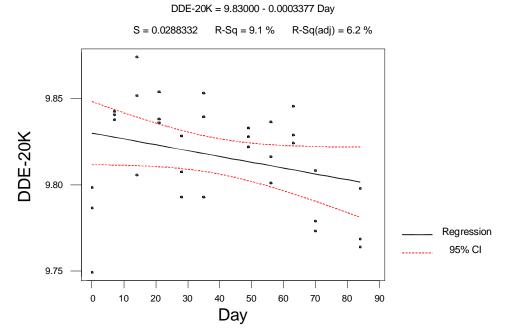
```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.0288332

Sample


Size Power Difference

31 0.9900 -0.0211
```

- That means we would detect a mean of 9.8824 as significantly less than ln(20000) = 9.9035 or a change of 19582 from 20000 = 2.1% loss.
- Fit 95% confidence bands about the fitted simple linear model

Fitted Line Plot: DDE-20K versus Day

Regression Plot

Conclusion - stable for 4.5 weeks.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: p,p'-DDE in-life test solution samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: p,p'-DDE in corn oil

TEST SOLUTION SAMPLE CUSTODY AND PROCESSING: Test solution samples were prepared by the EDSP Chemical Repository, Sequim, WA, using p,p'-DDE (CAS 72-55-9, CF 1832, Aldrich # 09020KU, expiration date 10/04) dissolved in Mazola corn oil (corn oil was from containers with the following expiration dates: 6/12/03, 1/1/04, and 4/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time. Samples were prepared at two test concentrations for all replicates in the male-only exposure; 10 mg/mL and 20 mg/mL. The 10 mg/mL concentration was prepared by dissolving 2.0 g of p,p'-DDE in 184 g of corn oil in a pre-cleaned amber glass container. The 20 mg/mL concentration was prepared by dissolving 4.0 g of p,p'-DDE in 182 g of corn oil.

Samples for male rat exposures were prepared at three different times: Replicate 1 – prepared on 09/09/02 and shipped on 09/26/02 Replicate 2 – prepared on 10/02/02 and shipped on 10/03/02 Replicate 3 – prepared on 11/03/02 and shipped 11/04/02.

Note: Only samples prepared on 09/09/02 were analyzed to verify concentrations of p,p'-DDE. These values are reported in Table 1.

The test solution was sampled four times during the male test (10/07/02, 10/14/02, 10/21/02, and 10/28/02). Data for the in-life samples are reported in Table 2 for male exposures. Table 3 provides results of analysis of remaining formulation samples after dosing to assess changes in test solution concentration from the beginning and end of the test.

Processing

<u>Test Solution Samples for Concentration Verification Prior to Shipping:</u>

The container was placed on a magnetic stir plate and stirred. 1 mL triplicate samples were removed and each placed in a tared 60 mL amberglass bottle. The weight of the sample was determined gravimetrically. A 1 g subsample was removed, placed in a 30 mL amber glass ashed vial, and 25 mL of hexane (JT Baker lot number X40E12) was added and the bottle agitated to mix. Then, 0.1 mL sample and 0.02 mL internal standard, 5a androstane, and 0.88 mL hexane were transferred to an auto sampler vial.

In-life and Returned Container Samples:

In-life and returned containers were analyzed the same way. Some of the returned containers were returned empty, so only containers with sufficient material were analyzed.

The samples were removed from the refrigerator and allowed to warm to room temperature. About 1 mL was sampled and placed in a tared 30 mL amber glass bottle. The weight of the sample was determined gravimetrically. 25 mL of hexane was added and the bottle agitated to mix. Then 0.1 mL was transferred to a 1.8 mL vial with 0.02 mL of internal standard solution containing 5a androstane, and 0.88 mL hexane.

SAMPLE ANALYSIS

The samples were analyzed by gas chromatograph (GC) with a flame ionization detector (FID). The GC was set up with an auto sampler and a 30-m x 0.25-mm, DB-5 capillary column. The temperature program was set to start at 50°C, and ramped at 20°C/min to a final temperature of 320°C. The injection port temperature was set at 270°C and the detector temperature at 320°C. The auto sampler was set to inject 1 μ L of the matrix dilution.

Data Quality Objectives:	Control Limits
Procedural Blank	<5 X MDL
Blank Spike Recovery	40% - 120%
Continuing Standard Recovery	75% - 125%

QA/QC SUMMARY

METHODS: GC-FID

CALIBRATION: Calibration using a five-point curve was done using standards EDSP Mix 1

(see Appendix C) with a continuing calibration verification (CCV) sample

analyzed every 10 samples.

CONTINUING STANDARD RECOVERY: Percent recovery results for initial and CCV samples analyzed with the in-life sample data set ranged from 91% to 117% with a mean recovery of 100%. There were no occurrences of recoveries exceeding the 75% to 125%

acceptability range.

BLANK p,p'-DDE was not detected above the detection limit in the corn-oil blank

analyzed with the test solution and in-life samples.

DETECTION LIMIT: The p,p'-DDE method detection limit (MDL) in corn oil was 115 ug/mL as

determined by an MDL study. No data below this value were reported.

BLANK SPIKE SAMPLES Blank spike samples were not analyzed. In this analysis, sampling was performed by taking the sample material from flask through to analysis. Analyzing a spiked sample would be no different from analyzing a CCV.

INTERNAL STANDARD 5a androstane was spiked into each sample and analyzed as the internal

standard. Average percent recovery results ranged from 99% to 103%. There were no cases in which the percent recovery of the internal standard

exceeded the acceptance range of 40% to 120%.

REPLICATE The percent relative standard deviations (% RSD) for the two test solutions

ANALYSIS: ranged from 1.34 to 2.34.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of p,p'-DDE Test Solution Concentrations for Male Exposures

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	% RSD
R-1; 9/9/02				
10 mg/mL	2-14 –N-M R-1, R-1	9.42		
10 mg/mL	2-14 –N-M R-1, R-2	9.14	9.19	2.34
10 mg/mL	2-14 –N-M R-1, R-3	9.00		
20 mg/mL	2-14 –P-M R-1, R-1	18.4		
20 mg/mL	2-14 –P-M R-1, R-2	18.3	18.2	1.34
20 mg/mL	2-14 -P-M R-1, R-3	18.0		

Table 2. p,p'-DDE In-life Sample - Males

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
10/07/02	11/13/02	11/23/02	10 mg/mL	WA2-14N-M 10-7 Vial	9.30	93%
10/14/02	11/13/02	11/23/02	10 mg/mL	WA2-14N-M 10-14Vial	9.29	93%
10/21/02	11/13/02	11/23/02	10 mg/mL	WA2-14N-M 10-21Vial	9.34	93%
10/28/02	11/13/02	11/23/02	10 mg/mL	WA2-14N-M 10-28Vial	9.30	93%
10/07/02	11/13/02	11/23/02	20 mg/mL	WA2-14P-M 10-7 Vial	18.1	91%
10/14/02	11/13/02	11/23/02	20 mg/mL	WA2-14P-M 10-14Vial	18.2	91%
10/21/02	11/13/02	11/23/02	20 mg/mL	WA2-14P-M 10-21Vial	18.4	92%
10/28/02	11/13/02	11/23/02	20 mg/mL	WA2-14P-M 10-28Vial	_ ^(a)	_

⁽a) – Missing sample; not on list of returned samples

Table 3. Post-Test p,p'-DDE Sample Concentrations for Formulations Returned to Battelle from RTI

Date Sample Prepared	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
Male						
Exposures						
11/03/02	11/13/02	11/22/02	10 mg/mL	WA 2-14-N-M Rep3Jar	9.40	94%
11/03/02	11/13/02	11/22/02	20 mg/mL	WA 2-14-P-M Rep3Jar	20.4	102%

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: WA 2-14				DATE: 10/30/03			
DEVIATION NUMBER: WA 2-14-D-003;				WAL/STUDY DIRECTOR: Michael Blanton/			
Atrazine, DDE, Methoxychlor,				Eric Cr			
phenobarbital, propylthiouracil,							
ketoconazole, Linuron, fena							
NOTEBOOK NUMBER: NA							
TITLE OF STUDY: WA 2-14							
QAPP/PROTOCOL ID:							
DEVIATION RELATING TO)·			<u> </u>			
[] QAPP	,. []	QMP		T	ГТ	Protocol	
[] SOP	- 	Metho	. d		[] [V]		
bd					[X]	Miscellaneous Documentation	
ORIGINAL DOCUMENT SE							
						nulations was determined to be	
adequate for the period of t	ıme tr	nat animals	would	be dose	ed.		
			zed wi	thin the	stabil	ity time determined during the	
testing of the stability of the	form	ulation.					
						be within the acceptable target	
				es and w	ere u	sed within the known stability	
time periods determined for	each	formulation	٦.				
DD0D005D 00DD50TW							
				DULE F	OR C	OMPLETION: No corrective	
action is required beyond th	iis do	cumentation	า.				
10TIONS TO DDE (ENT D							
ACTIONS TO PREVENT RECURRENCE: Upper management will review testing schedules for							
return shipments and analy	sis.						
Annanal							
Approval:					_		
Maria I Di T	_	11/	<i>ر</i> _ ہ	7/4	\leftarrow	21 21 22	
Michael Blanton,		Jungo	5 -/	Sulm	حمي	Date 11/3/03	
WAL	_	\sim				•	
-	()). []	0	٠		Date 11/3/03	
Eric Crecelius,	<u></u>	u he	ceri	us		Date	
Study Director						/ /	
Chemical Repository							
		0					
Deborah Coffey,	6	1. /		11		1 ,	
MSL QA Manager	/\	/Wodan		sal las	/	Date	
Ğ				7	(
	•	_			,		
Richard Ecker,	1	m Z	0	•		Date ///3/03	
MSL Laboratory Director	4	111 6	nu		-	Date	
WOL Laboratory Director		0 -	_				
David Houchens,		1:11-7	1	6		Date /0/3//03	
	_* <u>*</u>	th 1	un	way.	-	Date	
EDSP Program Manageme	III.	./	7				
Town Dallack	$\bigcap V_{\alpha}$	· 11-	100	0 ~ 0		Date 10-31-03	
Terri Pollock,	(1)	m of		$\omega \lambda$	_	Date 10-31-03	

EDSP Battelle QAM

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: MA 2	1.4	DATE: 40/20	2/00	
STUDY NUMBER: WA 2- DEVIATION NUMBER: W		DATE: 10/30/03		
		WAL/STUDY DIRECTOR: Michael Blanton/		
Atrazine, DDE, vinclozolin	, ivietnoxycnior,	Eric Crecelius	\$	
Fenarimol				
NOTEBOOK NUMBER: N				
TITLE OF STUDY: WA 2-	14			
QAPP/PROTOCOL ID:				
DEVIATION RELATING T				
[] QAPP	[] QMP	[X]	Protocol	
[] SOP	[] Method	[]	Miscellaneous Documentation	
ORIGINAL DOCUMENT S	SPECIFICATIONS: 2.	3 of protocol WA	2-14 states "an aliquot of each	
level per formulation will b	evel was tested in the	first preparation t	or each chemical. However,	
and procedures as the firs	pact. Subsequent ba t batches.	tches were prepa	red using the same methods DMPLETION: No corrective	
ACTIONS TO PREVENT I schedule prior to the start Approval:	RECURRENCE: Upper of the studies.	er management v	vill review the analyses	
The comment		+		
Michael Blanton, WAL	The fort	Behn	Date 11-3-03	
Eric Crecelius, Study Director Chemical Repository	En here	lin_	Date	
Deborah Coffey, MSL QA Manager	/ Jarodun (My	Date	
Richard Ecker, MSL Laboratory Director	RM En	·	Date ///3/03	
David Houchens, EDSP Program Manageme	Daul P- The	mpus	Date 10/3//03	
Terri Pollock, EDSP Battelle QAM	(Yuni & P	ollod	Date 10-31-03	

EDSP Battelle QAM

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Fenarimol in Mazola Corn Oil

November 10, 2003

Prepared By:

Approved By:

Chemical Repository Manager

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Fenarimol in Mazola Corn Oil

Reviewed by:

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03

Chemistry Report for WA 2-14 Fenarimol in Mazola Corn Oil

Parameter	Chemical		
Compound Name	Fenarimol		
CAS#	60168-88-9		
Central File No.	CF-1829		
Initial Receipt Date	9/6/2002		
Expiration Date	06/07		
Manufacturer	ChemService, Inc.		
Lot Number	287-5B		
Battelle Study #	WA 2-14-02-02		
Method	SW 846, 8015B Modified		

Executive Summary

The chemical purity of fenarimol determined by the manufacturer was 99.5%. The purity result from Battelle-Sequim by GC-FID was determined to be 99.7%. Two concentrations of fenarimol were tested for stability with target concentrations of 10 mg/mL and 50 mg/mL. Based on the final regression model and the lower 95% confidence limit of the slope, the 10 mg/mL concentration of fenarimol was expected to stay greater than or equal to 90% of the target concentration for an unlimited time. However, based on the final regression model and the lower 95% confidence limit of the slope, the 50 mg/mL concentration of fenarimol was expected to stay greater than or equal to 90% of the target concentration for only 6 weeks. Thus, the stability of fenarimol was concluded to be stable for only 6 weeks of the required testing and holding time of 12 weeks.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries based on target concentrations for all doses ranged from 99.8% to 116%.

TABLE OF CONTENTS

	Page	Э
1.0	INTRODUCTION	1
2.0	GENERAL METHODS	1
	2.1 CHEMICAL PROCUREMENT	3 4 4
3.0	RESULTS	
	3.1 CHEMICAL PURITY	5
4.0	CONCLUSIONS	7
API API	PENDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY	
	LIST OF TABLES	
	Pag	е
Tab	ble 1. Chemical Procurement Information	3
Tab	ole 2. Stock Matrix Composition for Stability Testing	1
	ole 3. Summary of Statistical Results for Fenarimol	
	LIST OF FIGURES	
	Pag	
	ure 1. EDSP Requisition Form for Fenarimol	2
Fig	ure 2. Observed Concentration of Fenarimol With a Target Concentration of 10,000 μg/mL (A) and 50,000 μg/mL (B) Against Time	5

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA 2-14-02-02, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of fenarimol (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_Fenarimol-cornoil.doc, PSTP_WA-2-14_Fenarimol-cornoil.doc, DSUM_WA2-14_Atrazine-Fenarimol-crnoil.xls, and DAF_WA 2 14_Atrazine-Fenerimol-crnoil.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, fenarimol, (CAS No. 60168-88-9) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). Fenarimol was purchased from ChemService, Inc. and lot number 287-5B was initially received on 9/6/2002 with an expiration date of 06/07 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1829) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Mazola corn oil with expiration dates of 6/03 and 1/04 were purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-02

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Fenarimol (MSL CF 1829)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 10 mg/mL and 50 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Planned/proposed testing/holding

duration: 12 weeks

Chemical Information

Chemical Name: Fenarimol

CAS: 60168-88-9

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

99.5% pure

Any known stability information: may refer to

Manufacturer's Stability Information:

attached documentation

stable

Desired purity (%) for test? 95% or greater

Figure 1. EDSP Requisition Form for Fenarimol

Table 1. Chemical Procurement Information

Parameter	Chemical		
Compound Name	Fenarimol		
CAS#	60168-88-9		
Central File No.	CF-1829		
Initial Receipt Date	9/6/2002		
Expiration Date	06/07		
Manufacturer	ChemService, Inc.		
Lot Number	287-5B		
Manufacturer's Purity	99.5%		
Storage Conditions	Cool, dry place/room temp.		
Battelle Study #	WA 2-14-02-02		
Method	SW 846, 8015B Modified		

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted by making a solution in hexane of about $100 \,\mu\text{g/mL}$. This matrix was then run on a gas chromatograph with a flame ionization detector (GC-FID). A hexane blank was also run on the GC-FID. The purity was determined by first identifying the peaks in the chromatogram of the fenarimol that were the same as the peaks in the analysis of the blank hexane sample. The areas associated with these common peaks were then eliminated by inhibiting integration and the remaining peaks were reported as a percentage of the total peak area. The percentage associated with the largest peak represented the purity of fenarimol. The GC was set up with an auto sampler and a 30 m x 0.25 mm, DB-5 capillary column. The temperature program was set to start at 50°C, and ramped at 20°C/min to a final temperature of 320°C. The injection port temperature was set at 270 °C and the detector temperature at 320°C. The auto sampler was set to inject 1 μ L of the matrix dilution. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. Stock solutions were prepared at the chemical concentrations requested for stability analysis (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

Fenarimol stock matrices were prepared on 08/22/02 for testing as described in Table 2. Briefly, for the 10 mg/mL fenarimol, 2.0 g were weighed into a 250 mL amber wide-mouth jar containing 180 g corn oil, a stir bar was added, and the solution was mixed on a stir plate to suspend the mixture. For the 50 mg/mL fenarimol concentration, 9.5 g were weighed into a 250 mL amber glass wide-mouth jar containing 168 g corn oil and handled as described above.

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA 2-14-02-02 12 weeks	Fenarimol	10 mg/mL	1829-1-2	2.0 g in 180 g Mazola corn oil
		50 mg/mL	1829-1-3	9.5 g in 168 g Mazola corn oil

All solutions were transferred to ashed, amber glass bottles. Bottles were labeled and stored at $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for the duration of the test.

Density of the Mazola corn oil was measured as 0.92~g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89~and~0.93~g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentrations were determined by chromatographic analysis. Triplicate aliquots of the stock solutions were tested. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

A Fenarimol stock solution was sampled by weighing ~1 g of sample into a 30 mL amber glass, ashed vial and adding 25 mL of methylene chloride using a volumetric pipette. For samples 1829-1-2 analysis was then conducted by adding 0.1 mL of the methylene chloride solution and 0.02 mL of internal standard 5a androstane and 0.88 mL of hexane to the GC auto sampler vial. For samples 1829-1-3, 0.025 mL of the methylene chloride solution was added to a GC auto sampler vial with 0.02 mL of internal standard 5a androstane and 0.955 mL hexane. A corn oil blank was prepared the same way. This solution was then run on the GC-FID for quantification. The major peak determined during the purity analysis of fenarimol was used for this analysis. Continuing calibration verification (CCV) samples were analyzed to demonstrate on-going calibration accuracy.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fit to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a GC-FID purity scan on the fenarimol. The chromatogram, after solvent blank correction, showed one large peak that had the appropriate retention time for fenarimol and several very small peaks. The area of the fenarimol peak was 99.7% of the total area of all peaks in the chromatogram. Chemical purity of fenarimol determined by the manufacturer was 99.5% (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 08/22/02. Chemical concentration was determined 12 times from 08/22/02 to 11/14/02. The analytical and quality control (QC) results are presented in Appendix C. A single preparation blank was analyzed with every batch for quality control purposes. There were no detectable concentrations of fenarimol in the blanks with the exception of one blank on 08/29/02 with a reported concentration of $209~\mu g/mL$. CCV results ranged from 71.0% to 121%. Internal standards were analyzed with each sample and these results ranged from 91.5% to 113%. The MDL was $115~\mu g/mL$.

Both lots of Mazola corn oil had peroxide numbers less than 3 meq/kg as required for biological testing (Appendix C). The average peroxide number in the Mazola corn oil was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively.

3.3 Statistical Results of Stability Trial

A plot of fenarimol with a target concentration of $10,000~\mu g/mL$ against time suggests very little chemical decay (Figure 2). Only one data point during the 09/12/02 (Week 3) analyses was less than 90% of the target concentration. Homogeneity of the chemical concentration within the test container was evaluated at time 0 and at 1 week. At neither time was a significant difference detected ($\alpha = 0.05$) between the concentrations obtained from the top and bottom sections of the container. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of fenarimol was expected to stay greater than or equal to 90% of the target concentration for an unlimited time (Table 3). Thus, this stock solution was considered stable for the required 12-week testing/holding period. The complete statistical analysis is presented in Appendix D.

Observations of fenarimol associated with the target concentration of 50,000 μ g/mL showed most samples were at or above 90% of the target concentration through the 6th week of sampling (Figure 2). After 6 weeks, concentrations began to fall below 90% of the target concentration. Homogeneity of the chemical concentration within the test container was evaluated at time 0 and at 1 week. At neither time was a significant difference detected ($\alpha = 0.05$) between the concentrations obtained from the top and bottom sections of the container. One large concentration of 62530 μ g/mL observed at time 0 was removed from the analysis and the resulting average day 0 concentration was tested for stability. Based on the final regression model and the lower 95% confidence limit of the slope, the 50,000 μ g/mL concentration of fenarimol was expected to stay greater than or equal to 90% of the target concentration for an estimated 6 weeks (Table 3). Thus, this stock solution was considered stable for only 6 weeks of the required 12 week holding time. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries based on target concentrations for all doses ranged from 99.8% to 116%. The complete analysis is presented in Appendix E.

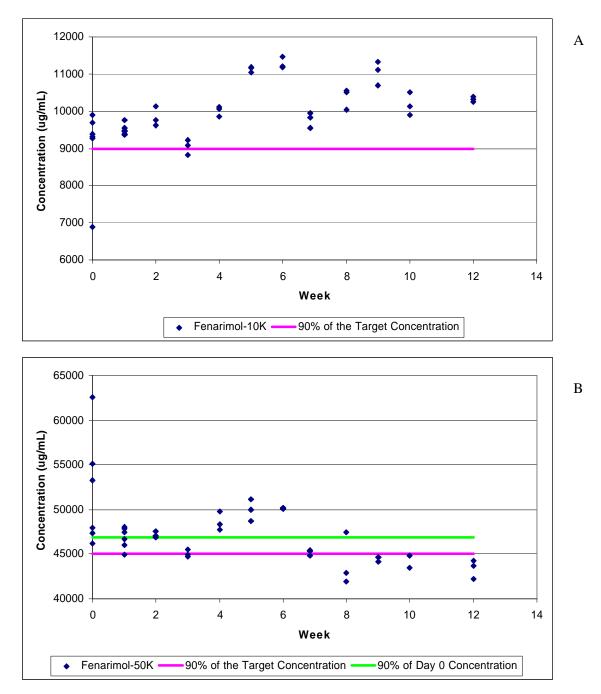


Figure 2. Observed Concentration of Fenarimol With a Target Concentration of 10,000 ng/mL (A) and 50,000 ng/mL (B) Against Time

Table 3. Summary of Statistical Results for Fenarimol

WA-2-14-02-02 Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.	1829-1-2 Fenarimol-10K	1829-1-3 Fenarimol-50K
Target Concentration (ug/mL)	10000	50000
Number of determinations	1	1
Number of weeks tested	12	12
Number of replicates per day	3	3
Number of outliers removed	0	1
Number of observations removed	0	0
Overall Mean Concentration	10010	46794
95% Upper CL	10230	47453
error degrees of freedom	41	40
1-sample t-test of Ho: μ >= Target	NS ^a	S
estimated intercept of In(concentration) against time	9.1448	10.7957
estimated slope of In(concentration) against time	0.0129	-0.0088
standard error of slope	0.0031	0.0021
error degrees of freedom	40	39
Significance test of lack-of-fit for final model	s ^b	S
Significance test of Ho: $\beta = 0$ vs. H1: β ? 0	S	S
Lower 95% CL	0.0067	-0.013
Upper 95% CL	0.0192	-0.005
Maximum Percent Loss (using LCL)	-5.5%	9.9%
Mean Percent Loss (using bhat)	-10.9%	6.8%
LN(90% of Target)	9.1050	10.7144
Number of weeks until at 90% of Target (using LCL)	NA	6
Conclusion:	Stable for 12 wks	Stable for 6 wks
Average Day 0 Concentration (without outlier)		49962
LN(90% of Day 0 Concentration)		10.7137
Number of weeks until at 90% of Day 0 Concentration (using LCL)		6
Conclusion:		Stable for 6 wks

^a Not Significant at $\alpha = 0.05$

4.0 CONCLUSIONS

Chemical purity of fenarimol as determined by the manufacturer was 99.5%; purity determined by Battelle-Sequim was 99.7%. Stability testing of fenarimol in Mazola corn oil concluded that the chemical was stable at 10 mg/mL for a period of at least 12 weeks, and stable at 50 mg/mL concentrations for a period of 6 weeks.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries based on target concentrations for all doses ranged from 99.8% to 116%.

^b Significant at $\alpha = 0.05$

APPENDIX A

MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

660 Tower Lane • P.O. Box 599 • West Chester, PA 19381-0599 1-800-452-9994 • 1-610-692-3026 • Fax 1-610-692-8729 info@chemservice.com • www.chemservice.com

CERTIFICATE OF ANALYSIS

INVOICE #: CS229742 PO #: 11120453EAC

CATALOG #: PS-1073

CAS #: 60168-88-9

DESCRIPTION: Fenarimol

LOT #: 287-5B

PURITY: 99.5%

EXPIRATION DATE: 06/07

Chem Service, Inc. guarantees the purity of this chemical \pm 0.5% deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

John Conrad CSM/TC

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Fenarimol

Chemical Name: Fenarimol (MSL CF Login 1829), CMS 174299

CAS Number: 60168-88-9

Lot Number: 287-5B, stored at RT in Bldg5 Rm 219

Expiration date: 6/07

Manufacturer's Purity Information: 99.5%

Manufacturer's Stability Information: Stable

MSL Purity Results:

Purity (%) To be determined at MSL by GC-FID scan

MDL has not been determined.

Bioassay Information:

Study Director

Name: Dr. Julia George Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: Fenarimol

CAS: 60168-88-9

Carrier(s): Mazola corn oil

Concentrations/Dilution Series: 10 and 50 mg/mL

Below MDL determined in Purity Analysis?

In vitro or in vivo tests? In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Planned/Proposed testing/holding duration: 12 weeks

EDSP Purity Analysis and Stability Testing Plan for Fenarimol, Continued

Design of Stability Test: Two concentrations, 10.0 mg/mL and 50.0 mg/mL in Mazola corn oil, will be tested. The chemical will be sieved through an 80 mesh screen and material that passes will be suspended in Mazola corn oil with a magnetic stirrer. Samples of the suspension will be taken with a gavage needle, while the suspension is being vigorously stirred, at mid-depth in a 250 mL amber glass bottle, except for the first sampling, which will be sampled at 25% and 75% depth in triplicate to demonstrate homogeneity. The suspension will be stored in glass at 4 deg. C in the dark for 12 weeks, sampled weekly or biweekly in triplicate and analyzed monthly by GC detector.

Number of replicates: 3

Duration: 12 weeks, sampling every week or two so that 8 time points are produced with triplicate samples taken each time

Other factors:

Temperature regime(s): 4 deg. C

Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity

MSDS

Records:

- date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-to-lot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- QC data reports;
- data qualifying flags; and
- dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C1. Fenarimol concentration in Mazola Corn Oil $(\mu g/mL)$

Target Conc.	Sample Name	Date	Fenarimol	Average	RSD	Recovery
10000 ug/ml	1829-1-2-1 top R-1	8/22/2002	6889			
10000 ug/ml	1829-1-2-1 top R-2	8/22/2002	9322	8534	16.7%	85.3%
10000 ug/ml	1829-1-2-1 top R-3	8/22/2002	9389			
10000 ug/ml	1829-1-2-1 bottom R-1	8/22/2002	9898			
10000 ug/ml	1829-1-2-1 bottom R-2	8/22/2002	9696	9618	3.39%	96.2%
10000 ug/ml	1829-1-2-1 bottom R-3	8/22/2002	9260			
50000 ug/ml	1829-1-3-1 top R-1	8/22/2002	62530			
50000 ug/ml	1829-1-3-1 top R-2	8/22/2002	47327	52013	17.6%	104%
50000 ug/ml	1829-1-3-1 top R-3	8/22/2002	46181			
50000 ug/ml	1829-1-3-1 bottom R-1	8/22/2002	47986			
50000 ug/ml	1829-1-3-1 bottom R-2	8/22/2002	55084	52102	7.07%	104%
50000 ug/ml	1829-1-3-1 bottom R-3	8/22/2002	53235			
Blank	Corn Oil (T=0)	8/22/2002	115 U			
10000 ug/ml	1829-1-2-2 top R-1	8/29/2002	9767			
10000 ug/ml	1829-1-2-2 top R-2	8/29/2002	9356	9526	2.25%	95.3%
10000 ug/ml	1829-1-2-2 top R-3	8/29/2002	9457			
10000 ug/ml	1829-1-2-2 bottom R-1	8/29/2002	9538			
10000 ug/ml	1829-1-2-2 bottom R-2	8/29/2002	9385	9468	0.81%	94.7%
10000 ug/ml	1829-1-2-2 bottom R-3	8/29/2002	9479			
50000 ug/ml	1829-1-3-2 top R-1	8/29/2002	47869			
50000 ug/ml	1829-1-3-2 top R-2	8/29/2002	46697	46848	2.04%	93.7%
50000 ug/ml	1829-1-3-2 top R-3	8/29/2002	45978			
50000 ug/ml	1829-1-3-2 bottom R-1	8/29/2002	47509			
50000 ug/ml	1829-1-3-2 bottom R-2	8/29/2002	48050	46823	3.59%	93.7%
50000 ug/ml	1829-1-3-2 bottom R-3	8/29/2002	44909			
Blank	Corn oil (week 1)	8/29/2002	115 U			
Blank	Corn oil (week 1)	8/29/2002	209			
10000 ug/ml	1829-1-2-3 R-1	9/5/2002	10136			
10000 ug/ml	1829-1-2-3 R-2	9/5/2002	9764	9841	2.70%	98.4%
10000 ug/ml	1829-1-2-3 R-3	9/5/2002	9622			
50000 ug/ml	1829-1-3-3 R-1	9/5/2002	47056			
50000 ug/ml	1829-1-3-3 R-2	9/5/2002	46870	47157	0.74%	94.3%
50000 ug/ml	1829-1-3-3 R-3	9/5/2002	47546			
Blank	Corn oil (week 2)	9/5/2002	115 U			
10000 ug/ml	1829-1-2-4 R-1	9/12/2002	9231			
10000 ug/ml	1829-1-2-4 R-2	9/12/2002	9092	9049	2.28%	90.5%
10000 ug/ml	1829-1-2-4 R-3	9/12/2002	8824			
50000 ug/ml	1829-1-3-4 R-1	9/12/2002	45496			
50000 ug/ml	1829-1-3-4 R-2	9/12/2002	44781	45086	0.82%	90.2%
50000 ug/ml	1829-1-3-4 R-3	9/12/2002	44981			
Blank	Corn oil (week 3)	9/12/2002	115 U			
10000 ug/ml	1829-1-2-5 R-1	9/19/2002	10104			
10000 ug/ml	1829-1-2-5 R-2	9/19/2002	9856	10009	1.34%	100%
10000 ug/ml	1829-1-2-5 R-3	9/19/2002	10069			

Table C1. Continued

Target Conc.	Sample Name	Date	Fenarimol	Average	RSD	Recovery ¹
50000 ug/ml	1829-1-3-5 R-1	9/19/2002	47781			
50000 ug/ml	1829-1-3-5 R-2	9/19/2002	48316	48643	2.19%	97.3%
50000 ug/ml	1829-1-3-5 R-3	9/19/2002	49832			
Blank	Corn oil (week 4)	9/19/2002	115 U			
10000 ug/ml	1829-1-2-6 R-1	9/26/2002	11157			
10000 ug/ml	1829-1-2-6 R-2	9/26/2002	11035	11126	0.72%	111%
10000 ug/ml	1829-1-2-6 R-3	9/26/2002	11187			
50000 ug/ml	1829-1-3-6 R-1	9/26/2002	48760			
50000 ug/ml	1829-1-3-6 R-2	9/26/2002	49986	49962	2.38%	99.9%
50000 ug/ml	1829-1-3-6 R-3	9/26/2002	51140			
Blank	Corn oil (week 5)	9/26/2002	115 U			
10000 ug/ml	1829-1-2-7 R-1	10/3/2002	11190	44000	4.000/	4.4007
10000 ug/ml	1829-1-2-7 R-2	10/3/2002	11453	11286	1.28%	113%
10000 ug/ml	1829-1-2-7 R-3	10/3/2002	11216			
50000 ug/ml 50000 ug/ml	1829-1-3-7 R-1 1829-1-3-7 R-2	10/3/2002 10/3/2002	50147 50080	50142	0.12%	100%
50000 ug/ml	1829-1-3-7 R-2 1829-1-3-7 R-3	10/3/2002	50080	30142	0.12%	100%
Blank	Corn oil (week 6)	10/3/2002	115 U			
10000 ug/ml	1829-1-2-8 R-1	10/10/2002	9944			
10000 ug/ml	1829-1-2-8 R-2	10/10/2002	9555	9778	2.05%	97.8%
10000 ug/ml	1829-1-2-8 R-3	10/10/2002	9835	00	2.0070	0.1070
50000 ug/ml	1829-1-3-8 R-1	10/10/2002	44798			
50000 ug/ml	1829-1-3-8 R-2	10/10/2002	45399	45163	0.71%	90.3%
50000 ug/ml	1829-1-3-8 R-3	10/10/2002	45293			
Blank	Corn oil (week 7)	10/10/2002	115 U			
10000 ug/ml	1829-1-2-9 R-1	10/17/2002	10549			
10000 ug/ml	1829-1-2-9 R-2	10/17/2002	10506	10367	2.70%	104%
10000 ug/ml	1829-1-2-9 R-3	10/17/2002	10044			
50000 ug/ml	1829-1-3-9 R-1	10/17/2002	41978			
50000 ug/ml	1829-1-3-9 R-2	10/17/2002	42925	44108	6.59%	88.2%
50000 ug/ml	1829-1-3-9 R-3	10/17/2002	47419			
Blank	Corn oil (week 8)	10/17/2002	115 U			
10000 ug/ml	1829-1-2-10 R-1	10/24/2002	11107	44000	0.000/	4400/
10000 ug/ml	1829-1-2-10 R-2	10/24/2002	11317	11036	2.92%	110%
10000 ug/ml	1829-1-2-10 R-3	10/24/2002	10685			
50000 ug/ml 50000 ug/ml	1829-1-3-10 R-1 1829-1-3-10 R-2	10/24/2002 10/24/2002	44699 44176	44524	0.68%	89.1%
50000 ug/ml	1829-1-3-10 R-2	10/24/2002	44699	44324	0.0076	09.176
Blank	Corn oil (week 9)	10/24/2002	115 U			
10000 ug/ml	1829-1-2-11 R-1	10/24/2002	10140			
10000 ug/ml	1829-1-2-11 R-2	10/31/2002	10503	10181	2.98%	102%
10000 ug/ml	1829-1-2-11 R-3	10/31/2002	9901.00		,	/ -
50000 ug/ml	1829-1-3-11 R-1	10/31/2002	44821			
50000 ug/ml	1829-1-3-11 R-2	10/31/2002	44816	44381	1.71%	88.8%
50000 ug/ml	1829-1-3-11 R-3	10/31/2002	43505			

Table C1. Continued

Target Conc.	Sample Name	Date	Fenarimol	Average	RSD	Recovery ¹
	Corn oil (week					
Blank	10)	10/31/2002	115 U			
10000 ug/ml	1829-1-2-12 R-1	11/14/2002	10258			
10000 ug/ml	1829-1-2-12 R-2	11/14/2002	10379	10322	0.59%	103%
10000 ug/ml	1829-1-2-12 R-3	11/14/2002	10329			
50000 ug/ml	1829-1-3-12 R-1	11/14/2002	43728			
50000 ug/ml	1829-1-3-12 R-2	11/14/2002	44270	43409	2.43%	86.8%
50000 ug/ml	1829-1-3-12 R-3	11/14/2002	42231			
	Corn oil (week					
Blank	12)	11/14/2002	115 U			

Recovery is relative to the target concentration
U = Not detected at a value greater than the MDL

Table C2. CCV Data for Fenarimol Concentration in Mazola Corn Oil

Time	Sample Name	Fenarimol (mg/mL)	Recovery	PD
T=0	EDSP Mix1 5 ug/ml	4.09	81.8%	18.2%
	EDSP Mix1 5 ug/ml	4.66	93.2%	6.80%
	EDSP Mix1 5 ug/ml	4.72	94.4%	5.60%
	EDSP Mix1 5 ug/ml	4.63	92.6%	7.40%
Week 1	EDSP Mix1 5 ug/ml	3.55	71.0%	29.0%
	EDSP Mix1 5 ug/ml	4.40	88.0%	12.0%
	EDSP Mix1 5 ug/ml	4.52	90.4%	9.60%
	EDSP Mix1 5 ug/ml	4.36	87.2%	12.8%
	EDSP Mix1 5 ug/ml	5.19	104%	3.80%
	EDSP Mix1 5 ug/ml	5.13	103%	2.60%
	EDSP Mix1 5 ug/ml	5.14	103%	2.80%
Week 2	EDSP Mix1 5 ug/ml	5.05	101%	1.00%
	EDSP Mix1 5 ug/ml	5.16	103%	3.20%
	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
Week 3	EDSP Mix1 5 ug/ml	4.47	89.4%	10.6%
	EDSP Mix1 5 ug/ml	4.84	96.8%	3.20%
	EDSP Mix1 5 ug/ml	4.61	92.2%	7.80%
Week 4	EDSP Mix1 5 ug/ml	4.76	95.2%	4.80%
	EDSP Mix1 5 ug/ml	5.06	101%	1.20%
	EDSP Mix1 5 ug/ml	4.85	97.0%	3.00%
Week 5	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.99	120%	19.8%
	EDSP Mix1 5 ug/ml	5.41	108%	8.20%
Week 6	EDSP Mix1 5 ug/ml	3.77	75.4%	24.6%
	EDSP Mix1 5 ug/ml	6.04	121%	20.8%
	EDSP Mix1 5 ug/ml	6.05	121%	21.0%
Week 7	EDSP Mix1 5 ug/ml	4.79	95.8%	4.20%
	EDSP Mix1 5 ug/ml	5.29	106%	5.80%
	EDSP Mix1 5 ug/ml	5.09	102%	1.80%
Week 8	EDSP Mix1 5 ug/ml	4.80	96.0%	4.00%
	EDSP Mix1 5 ug/ml	5.15	103%	3.00%
	EDSP Mix1 5 ug/ml	5.14	103%	2.80%
Week 9	EDSP Mix1 5 ug/ml	4.53	90.6%	9.40%
	EDSP Mix1 5 ug/ml	5.12	102%	2.40%
	EDSP Mix1 5 ug/ml	4.77	95.4%	4.60%
Week 10	EDSP Mix1 5 ug/ml	4.19	83.8%	16.2%
	EDSP Mix1 5 ug/ml	5.10	102%	2.00%
	EDSP Mix1 5 ug/ml	4.73	94.6%	5.40%
	EDSP Mix1 5 ug/ml	5.31	106%	6.20%
	EDSP Mix1 5 ug/ml	5.36	107%	7.20%
Week 12	EDSP Mix1 5 ug/ml	5.23	105%	4.60%
	EDSP Mix1 5 ug/ml	5.32	106%	6.40%
	EDSP Mix1 5 ug/ml	5.29	106%	5.80%

Calibration Standard EDSP Mix 1

Calibrations were performed using a five-point calibration curve labeled EDSP Mix 1 A thru E. This mix is used for Atrazine, Fenarimol, p,p'-DDE, Methoxychlor and Vinclozolin analyzed by GC-FID. These standards were made by serial dilutions of standards for each compound.

- Atrazine standard was made by weighing 0.0499 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with Methylene chloride and labeled 1826-1-1.
- Fenarimol standard was made by weighing 0.0506 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1829B-1.
- p,p'-DDE standard was made by weighing 0.0501 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1832-1a-1.
- Methoxychlor standard was made by weighing 0.0513 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1808-1-3.
- Vinclozolin standard was made by weighing 0.0512 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1779-78.

This analysis used an internal standard, in this case 5a androstane, which is made by weighing 0.0511 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane, this is then labeled REP7.

The EDSP Mix 1 series (A through E) was made as follows.

- Solution A, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 0.02 ml REP7 added to a 10 ml volumetric flask and diluted to the mark with hexane.
- Solution B, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane
- Solution C, 0.25 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane.
- Solution D, 0.1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.
- Solution E, 0.05 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.

Table C3. Internal Standards Data for Fenarimol in Mazola Corn Oil

		5A
	_	androstane
Sample Name	Date	Recovery
Corn oil	8/22/2002	101%
1829-1-2-1 top R-1	8/22/2002	107%
1829-1-2-1 top R-2	8/22/2002	108%
1829-1-2-1 top R-3	8/22/2002	107%
1829-1-2-1 botm R-1	8/22/2002	109%
1829-1-2-1 botm R-2	8/22/2002	108%
1829-1-2-1 botm R-3	8/22/2002	110%
1829-1-3-1 top R-1	8/22/2002	108%
1829-1-3-1 top R-2	8/22/2002	108%
1829-1-3-1 top R-3	8/22/2002	107%
1829-1-3-1 botm R-1	8/22/2002	107%
1829-1-3-1 botm R-2	8/22/2002	106%
1829-1-3-1 botm R-3	8/22/2002	105%
Corn oil	8/29/2002	101%
1829-1-2-2 top R-1	8/29/2002	109%
1829-1-2-2 top R-2	8/29/2002	110%
1829-1-2-2 top R-3	8/29/2002	109%
1829-1-2-2 botm R-1	8/29/2002	111%
1829-1-2-2 botm R-2	8/29/2002	110%
1829-1-2-2 bottom R-3	8/29/2002	112%
1829-1-3-2 top R-1	8/29/2002	110%
1829-1-3-2 top R-2	8/29/2002	109%
1829-1-3-2 top R-3	8/29/2002	109%
1829-1-3-2 botm R-1	8/29/2002	107%
1829-1-3-2 botm R-2	8/29/2002	106%
1829-1-3-2 botm R-3	8/29/2002	110%
Corn oil	8/29/2002	109%
1829-1-2-2 top R-1	8/29/2002	112%
1829-1-2-2 top R-2	8/29/2002	113%
1829-1-2-2 top R-3	8/29/2002	113%
1829-1-2-2 botm R-1	8/29/2002	112%
1829-1-2-2 botm R-2	8/29/2002	111%
1829-1-2-2 botm R-3	8/29/2002	113%
1829-1-3-2 top R-1	8/29/2002	112%
1829-1-3-2 top R-2	8/29/2002	112%
1829-1-3-2 top R-3	8/29/2002	110%
1829-1-3-2 botm R-1	8/29/2002	108%
1829-1-3-2 botm R-2	8/29/2002	108%
1829-1-3-2 botm R-3	8/29/2002	113%
Corn oil	9/5/2002	100%
1829-1-2-3 R-1	9/5/2002	106%
1829-1-2-3 R-2	9/5/2002	108%
1829-1-2-3 R-3	9/5/2002	109%
1829-1-3-3 R-1	9/5/2002	105%
1829-1-3-3 R-2	9/5/2002	105%
1829-1-3-3 R-3	9/5/2002	108%
-		

Table C3. continued

		5A
		androstane
Sample Name	Date	Recovery
Corn oil	9/12/2002	112%
1829-1-2-4 R-1	9/12/2002	102%
1829-1-2-4 R-2	9/12/2002	105%
1829-1-2-4 R-3	9/12/2002	105%
1829-1-3-4 R-1	9/12/2002	102%
1829-1-3-4 R-2	9/12/2002	102%
1829-1-3-4 R-3	9/12/2002	103%
Corn oil	9/19/2002	97.1%
1829-1-2-5 R-1	9/19/2002	100%
1829-1-2-5 R-2	9/19/2002	103%
1829-1-2-5 R-3	9/19/2002	104%
1829-1-3-5 R-1	9/19/2002	100%
1829-1-3-5 R-2	9/19/2002	96.4%
1829-1-3-5 R-3	9/19/2002	97.8%
Corn oil	9/26/2002	101%
1829-1-2-6 R-1	9/26/2002	105%
1829-1-2-6 R-2	9/26/2002	111%
1829-1-2-6 R-3	9/26/2002	106%
1829-1-3-6 R-1	9/26/2002	109%
1829-1-3-6 R-2	9/26/2002	107%
1829-1-3-6 R-3	9/26/2002	106%
Corn oil	10/3/2002	99.2%
1829-1-2-7 R-1	10/3/2002	103%
1829-1-2-7 R-2	10/3/2002	104%
1829-1-2-7 R-3	10/3/2002	103%
1829-1-3-7 R-1	10/3/2002	107%
1829-1-3-7 R-1	10/3/2002	107%
1829-1-3-7 R-2		
Corn oil	10/3/2002 10/10/2002	105%
		96.6%
1829-1-2-8 R-1	10/10/2002	106%
1829-1-2-8 R-2	10/10/2002	109%
1829-1-2-8 R-3	10/10/2002	108%
1829-1-3-8 R-1	10/10/2002	101%
1829-1-3-8 R-2	10/10/2002	101%
1829-1-3-8 R-3	10/10/2002	99.6%
Corn oil	10/17/2002	96.7%
1829-1-2-9 R-1	10/17/2002	98.3%
1829-1-2-9 R-2	10/17/2002	99.5%
1829-1-2-9 R-3	10/17/2002	107%
1829-1-3-9 R-1	10/17/2002	108%
1829-1-3-9 R-2	10/17/2002	100%
1829-1-3-9 R-3	10/17/2002	98.2%
Corn oil	10/24/2002	98.0%
1829-1-2-10 R-1	10/24/2002	91.5%
1829-1-2-10 R-2	10/24/2002	93.4%
1829-1-2-10 R-3	10/24/2002	100%

Table C.3. continued

		5A androstane
Sample Name	Date	Recovery
1829-1-3-10 R-1	10/24/2002	101%
1829-1-3-10 R-2	10/24/2002	102%
1829-1-3-10 R-3	10/24/2002	101%
Corn oil	10/31/2002	97.2%
1829-1-2-11 R-1	10/31/2002	98.5%
1829-1-2-11 R-2	10/31/2002	101%
1829-1-2-11 R-3	10/31/2002	99.9%
1829-1-3-11 R-1	10/31/2002	102%
1829-1-3-11 R-2	10/31/2002	102%
1829-1-3-11 R-3	10/31/2002	103%
reruns		
1829-1-3-11 R-1	10/31/2002	97.9%
1829-1-3-11 R-2	10/31/2002	99.1%
1829-1-3-11 R-3	10/31/2002	101%
Corn oil	11/14/2002	101%
1829-1-2-12 R-1	11/14/2002	101%
1829-1-2-12 R-2	11/14/2002	99.3%
1829-1-2-12 R-3	11/14/2002	99.5%
1829-1-3-12 R-1	11/14/2002	98.5%
1829-1-3-12 R-2	11/14/2002	97.6%
1829-1-3-12 R-3	11/14/2002	101%

Table C.4. Peroxide concentration in Mazola Corn Oil (meq/kg)

Commis	Analysis Date	Volume of Sodium Thiosulfate	No was alita	Weight of Oil	Peroxide Number	Average Peroxide Number	Den
Sample		(mL)	Normality	(g)		Number	RSD
Blank Mazola Corn Oil	09/05/02	0.5	0.005	5.00	0.50		
Expiration 6-03 R-1 Mazola Corn Oil	09/05/02	1.9	0.005	5.01	1.90		
Expiration 6-03 R-2 Mazola Corn Oil	09/05/02	1.8	0.005	5.36	1.68	1.77	6.41
Expiration 6-03 R-3 Mazola Corn Oil	09/05/02	1.8	0.005	5.16	1.74		
Expiration 1-04 R-1 Mazola Corn Oil	09/05/02	1.2	0.005	4.92	1.22		
Expiration 1-04 R-2 Mazola Corn Oil	09/05/02	1.5	0.005	5.2	1.44	1.34	8.31
Expiration 1-04 R-3	09/05/02	1.4	0.005	5.13	1.36		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-02

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

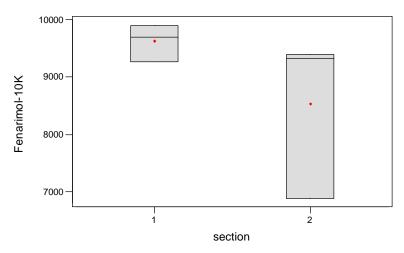
- 1/24/2003 2:48:30 PM -----

Results for: Week 0

Two-Sample T-Test and CI: Fenarimol-10K, section

Two-sample T for Fenarimol-10K

section	N	Mean	StDev	SE Mean
1	3	9618	326	188
2	3	8534	1425	822


1 = bottom 2 = top

Difference = mu (1) - mu (2) Estimate for difference: 1084 95% CI for difference: (-2546, 4715)

T-Test of difference = 0 (vs not =): T-Value = 1.29 P-Value = 0.327 DF = 2

Boxplots of Fenarimo by section

(means are indicated by solid circles)

Kruskal-Wallis Test: Fenarimol-10K versus section

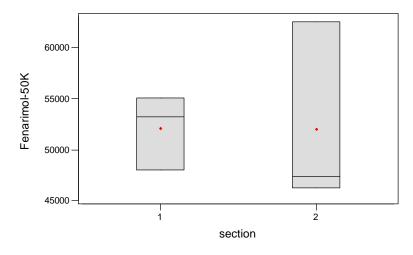
Kruskal-Wallis Test on Fenarimo

section	N	Median	Ave Rank	Z
1	3	9696	4.3	1.09
2	3	9322	2.7	-1.09
Overall	6		3 5	

H = 1.19 DF = 1 P = 0.275

* NOTE * One or more small samples

Can't reject the null that sections are the same.


Two-Sample T-Test and CI: Fenarimol-50K, section

Two-sample T for Fenarimol-50K

Section	IA	Mean	SCDEV	SE Mean					
1	3	52102	3683	2126					
	3	52013	9126	5269					
Difference	= mu	(1) - mu (2)						
Estimate f	or dif	ference:	89						
95% CI for difference: (-24358, 24537)									
T-Test of	differ	ence = 0 (vs not =)): T-Value =	0.02	P-Value =	0.989	DF = 2	

Boxplots of Fenarimo by section

(means are indicated by solid circles)

Kruskal-Wallis Test: Fenarimol-50K versus section

Kruskal-Wallis Test on Fenarimo

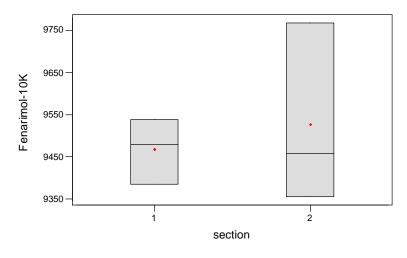
section	N	Median	Ave Rank	Z
1	3	53235	4.0	0.65
2	3	47327	3.0	-0.65
Overall	6		3.5	

H = 0.43 DF = 1 P = 0.513

Can't reject the null that sections are the same.

^{*} NOTE * One or more small samples

Results for: Week 1


Two-Sample T-Test and CI: Fenarimol-10K, section

Two-sample T for Fenarimol-10K

section	N	Mean	StDev	SE Mean			
1	3	9467.6	77.1	44			
2	3	9526	214	124			
Difference	e = mu	(1) - mu	(2)				
Estimate	for di	fference:	-59				
95% CI fo	r diff	erence: (-6	524, 507)				
T_Test of	diffe	rence - 0	(wa not -): T-Walue -	0 45	D - Value = 0.600	ר בת

Boxplots of Fenarimo by section

(means are indicated by solid circles)

Can't reject the null that sections are the same.

Kruskal-Wallis Test: Fenarimol-10K versus section

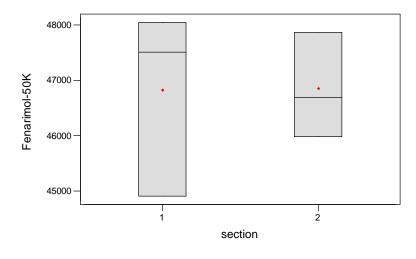
Kruskal-Wallis Test on Fenarimo

section	N	Median	Ave Rank	Z
1	3	9479	3.7	0.22
2	3	9457	3.3	-0.22
Overall	6		3 5	

H = 0.05 DF = 1 P = 0.827

* NOTE * One or more small samples

Two-Sample T-Test and CI: Fenarimol-50K, section


Two-sample T for Fenarimol-50K

```
section
                                   SE Mean
           Ν
                  Mean
                           StDev
                          1679
                 46823
                                       969
1
           3
            3
                 46848
                             955
                                       551
Difference = mu (1) - mu (2)
Estimate for difference: -25
95% CI for difference: (-3573, 3523)
T-Test of difference = 0 (vs not =): T-Value = -0.02 P-Value = 0.983 DF = 3
```

Boxplots of Fenarimo by section

Boxplots of Fenarimo by section

(means are indicated by solid circles)

Can't reject the null that sections are the same.

Kruskal-Wallis Test: Fenarimol-50K versus section

Kruskal-Wallis Test on Fenarimo

section	N	Median	Ave Rank	Z
1	3	47509	3.7	0.22
2	3	46697	3.3	-0.22
Overall	6		3.5	

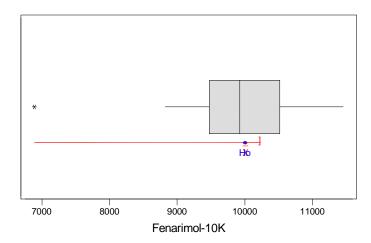
H = 0.05 DF = 1 P = 0.827

Conclusion: All tests between sections have very poor power. For both weeks, no significant differences between the two sections could be detected. Note that Fenarimol-10K is close to being different.

^{*} NOTE * One or more small samples

Stability Data

One-Sample T: Fenarimol-10K


Test of mu = 10000 vs mu < 10000

Variable	N	Mean	StDev	SE Mean
Fenarimol-10	42	10010	848	131
Variable	95.0%	Upper Bound	Т	P
Fenarimol-10		10230	0.08	0.530

t Boxplot of Fenarimol-10K

Boxplot of Fenarimol-10K

(with Ho and 95% t-confidence bound for the mean)

• Outliers are < Median-3*IQD OR > Median+3*IQD Boundary for outliers are values < 6792.54 and > 13052.3 No outliers

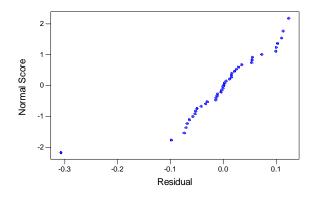
•	Tran	sforms data to natural	log
Week	Rep	Ln(Concentration)	
0	1	9.2001	
0	1	9.1794	
0	1	9.1335	
0	2	8.8377	
0	2	9.1402	
0	2	9.1473	
1	1	9.1630	
1	1	9.1469	
1	1	9.1569	
1	2	9.1867	
1	2	9.1437	
1	2	9.1545	
2	0	9.2238	
2	0	9.1865	
2	0	9.1718	
3	0	9.1303	
3	0	9.1152	
3	0	9.0852	
4	0	9.2207	
4	0	9.1958	
4	0	9.2172	
5	0	9.3198	
5 5	0	9.3088	
5 6	0	9.3225 9.3227	
6	0	9.3460	
6	0	9.3251	
7	0	9.2047	
7	0	9.1648	
7	0	9.1937	
8	0	9.2638	
8	0	9.2597	
8	0	9.2147	
9	0	9.3153	
9	0	9.3341	
9	0	9.2765	
10	0	9.2242	
10	0	9.2594	
10	0	9.2004	
12	0	9.2358	
12	0	9.2475	
12	0	9.2427	

• Conducts Simple Linear Regression

The regression equation is Fenarimol-10K = 9.14 + 0.0129 week

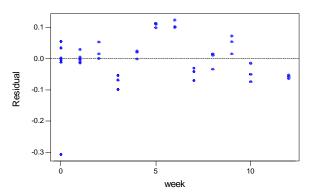
Predictor	Coef	SE Coef	Т	P
Constant	9.14478	0.01897	482.07	0.000
week	0.012931	0.003083	4.19	0.000

S = 0.07547 R-Sq = 30.5% R-Sq(adj) = 28.8%


Analysis of Var	iance				
Source	DF	SS	MS	F	P
Regression	1	0.10018	0.10018	17.59	0.000
Residual Error	40	0.22781	0.00570		
Lack of Fit	10	0.12759	0.01276	3.82	0.002
Pure Error	30	0.10022	0.00334		
Total	41	0.32799			

Unusual Observations Obs week Fenarimo Fit SE Fit Residual St Resid 4 0.0 8.8377 9.1448 0.0190 -0.3071 -4.20R

R denotes an observation with a large standardized residual


Normal Probability Plot of the Residuals

(response is Fenarimo)

Residuals Versus week

(response is Fenarimo)

Do you want to remove any data points? (yes OR no) no

```
Should a quadratic be fit? (yes OR no) no
```

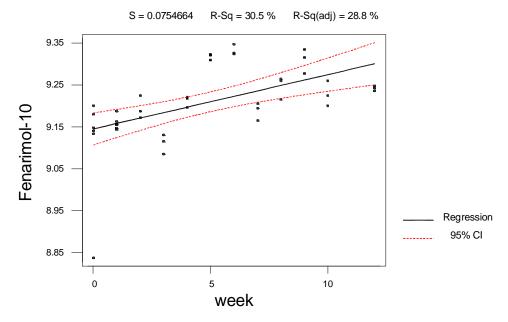
• Power analysis for t-test of slope less than zero

Power and Sample Size

```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.07547


Sample

Size Power Difference
40 0.9900 -0.0482
```

- That means we would detect a mean of 9.162 as significantly less than ln(10000) = 9.2103 or a change of 9529 from 10000 = 4.7% loss.
- Fit 95% confidence bands about the fitted simple linear model

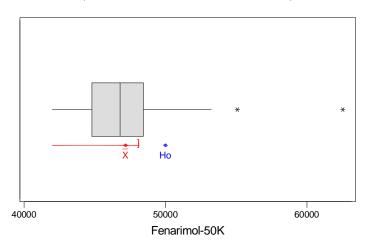
Regression Plot

Conclusion – stable for 12 weeks.

Performs a one-sample t-test for mu less than TARGET &

What is the target value for X $\dot{}$ DATA> 50000

One-Sample T: Fenarimol-50K


Test of mu = 50000 vs mu < 50000

Variable	N	Mean	StDev	SE Mean
Fenarimol-50	42	47169	3722	574
Variable	95.0%	Upper Bound 48135	T -4 93	P 0 000

t Boxplot of Fenarimol-50K

Boxplot of Fenarimol-50K

(with Ho and 95% t-confidence bound for the mean)

• Outliers are < Median-3*IQD OR > Median+3*IQD

Boundary for outliers are values < 35883.4 and > 57683.6

Week Rep High Value

0 2 62530.0

Do you want to remove any outliers? (yes OR no) yes How many would you like to remove DATA> 1 Type which rows to remove DATA> 4 $\,$

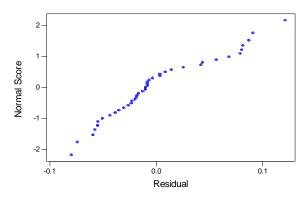
•	Transf	forms data to natural	log
Week	Rep L	n(Concentration)	
0	1	10.7787	
0	1	10.9166	
0	1	10.8825	
0	2	*	
0	2	10.7648	
0	2	10.7403	
1	1	10.7687	
1	1	10.7800	
1	1	10.7124	
1	2	10.7762	
1	2	10.7514	
1	2	10.7359	
2	0	10.7591	
2	0	10.7551	
2	0	10.7695	
3	0	10.7254	
3	0	10.7095	
3	0	10.7140	
4	0	10.7744	
4	0	10.7855	
4	0	10.8164	
5	0	10.7947	
5	0	10.8195	
5	0	10.8423	
6	0	10.8227	
6	0	10.8214	
6	0	10.8237	
7	0	10.7099	
7	0	10.7233	
7	0	10.7209	
8	0	10.6449	
8	0	10.6672	
8	0	10.7668	
9	0	10.7077	
9 9	0	10.6959	
	0	10.7077	
10	0	10.7104	
10 10	0 0	10.7103 10.6806	
12	0	10.6857	
12	0	10.6981	
12	0	10.6509	
12	U	10.0309	

• Conducts Simple Linear Regression

The regression equation is Fenarimol-50K = 10.8 - 0.00883 week

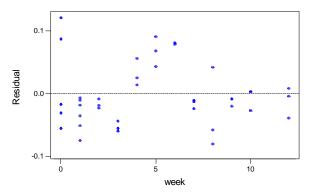
41 cases used 1 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	10.7957	0.0131	825.36	0.000
week	-0.008833	0.002100	-4.21	0.000
S = 0.05036	R-Sq =	31.2% R	-Sq(adj) =	29.4%


Analysis of Vari	ance				
Source	DF	SS	MS	F	P
Regression	1	0.044859	0.044859	17.69	0.000
Residual Error	39	0.098926	0.002537		
Lack of Fit	10	0.058462	0.005846	4.19	0.001
Pure Error	29	0.040464	0.001395		
Total	40	0.143785			

Unusual	Observat	cions				
Obs	week	Fenarimo	Fit	SE Fit	Residual	St Resid
2	0.0	10.9166	10.7957	0.0131	0.1209	2.49R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

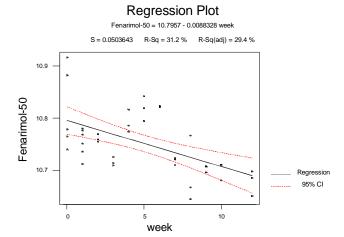

Normal Probability Plot of the Residuals

(response is Fenarimo)

Residuals Versus week

(response is Fenarimo)


```
Do you want to remove any data points? (yes OR no) no Should a quadratic be fit? (yes OR no) No
```

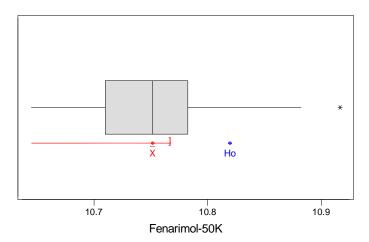

• Power analysis for t-test of slope less than zero

Power and Sample Size 1-Sample t Test

```
Testing mean = null (versus < null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.05036

Sample
Size Power Difference
39 0.9900 -0.0326
```

- That means we would detect a mean of 10.787 as significantly less than ln(50000) = 10.820 or a change of 48396 from 50000 = 3.2% loss.
- Fit 95% confidence bands about the fitted simple linear model


 \bullet $\,$ $\,$ One-sample t-test for mu less than LN(TARGET) after removal of data point

One-Sample T: Fenarimol-50K

```
Test of mu = 10.82 \text{ vs } mu < 10.82
Variable
                   Ν
                           Mean
                                     StDev
                                              SE Mean
Fenarimol-50
                  41
                        10.7517
                                    0.0600
                                               0.0094
Variable
               95.0% Upper Bound
                                           Т
Fenarimol-50
                          10.7675
                                      -7.29
                                              0.000
```

Boxplot of Fenarimol-50K

(with Ho and 95% t-confidence bound for the mean)

• Conclusion – stable for 6 weeks.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Fenarimol in-life test solution samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Fenarimol suspension in corn oil

TEST SOLUTION SAMPLE CUSTODY AND PROCESSING: Test solution samples were prepared by the EDSP Chemical Repository, Sequim, WA, using fenarimol (CAS 60168-88-9, CF 1829, Chem Service lot # 287-5B, expiration date 6/07) suspended in Mazola corn oil (corn oil was from containers with the following expiration dates: 6/12/03, 1/1/04, and 4/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time. Samples were prepared at two test concentrations for all replicates and exposures unless noted below; 10 mg/mL and 50 mg/mL. The 10 mg/mL concentration was prepared by suspending 2.0 g of fenarimol in 184 g of corn oil in a pre-cleaned, amber-glass container. The 50 mg/mL concentration was prepared by suspending 10.0 g of fenarimol in 176 g of corn oil. Fenarimol was sieved through an 80-mesh screen prior to use.

Samples for female-only rat exposures were prepared at two different times (Table 1):

Replicate 1 – prepared on 9/9/02 and shipped on 9/10/02 Replicate 2 – prepared on 9/15/02 and shipped on 9/16/02 Note: Replicate 2 was sent as a back-up, and was not analyzed.

The test solution was sampled four times during the female test (9/18/02, 9/24/02, 10/01/02, and 10/08/02) Data are reported in Table 2. Remaining formulation samples after dosing to assess changes in test solution concentration from the beginning and end of the test were analyzed and are reported in Table 3.

Processing

Test Solution Samples for Concentration Verification Prior to Shipping:

The container was placed on a magnetic stir plate and stirred. Triplicate 1 mL samples from the top (about 0.25 inches below the surface) and bottom (about 1 inch from the bottom) of the container were sampled and placed in a tared, 30 mL, amber bottle. This aliquot was placed in a 30 mL amber ashed vial (the weight of the sample was determined gravimetrically), and 25 mL of methylene chloride was added and the bottle agitated to mix. Then, 0.1 mL sample and 0.02 mL internal standard, 5a androstane, and 0.88 mL hexane were transferred to an auto sampler vial.

In-life and Returned Container Samples:

For the containers with sufficient material to analyze, the remaining containers were removed from the refrigerator, allowed to warm to room temperature, and

then stirred using a magnetic stir bar and stir plate. About 1 mL was sampled and placed in a tared, 30 mL, amber glass bottle. The weight of the sample was determined gravimetrically. 25 mL of methylene chloride (MeCl) was added and the bottle agitated to mix. For the 10 mg/mL solutions, 0.1 mL was transferred to a 1.8 mL vial with 0.02 mL of internal standard solution containing 5a androstane, and 0.88 mL hexane. For the 50 mg/mL solutions, 0.025 mL was transferred to a 1.8 mL vial with 0.02 mL of internal standard solution containing 5a androstane, and 0.955 mL hexane.

The in-life samples were returned in 20 mL scintillation vials, which contained a slurry with the fenarimol settled to the bottom. The entire sample was extracted to ensure accurate analysis. The vial was weighed and the contents poured into a 60 mL, amber glass bottle. 50 ml of MeCl was used for these samples. The scintillation vial was rinsed with part of the 50 mL of MeCl; this rinse was then poured into the amber vial and this rinsing repeated to ensure complete transfer of the sample. The empty vial was dried and re-weighed. The amber bottles were agitated to mix, and 0.01 mL transferred to an auto sampler vial with 0.02 mL of internal standard solution containing 5a androstane, and 0.97 mL hexane.

SAMPLE ANALYSIS:

The samples were analyzed by gas chromatograph (GC) with a flame ionization detector (FID). The GC was set up with an auto sampler and a 30 m x 0.25 mm, DB-5 capillary column. The temperature program was set to start at 50°C, and ramped at 20°C/min to a final temperature of 320°C. The injection port temperature was set at 270°C and the detector temperature at 320°C. The auto sampler was set to inject 1 μ L of the matrix dilution.

Data Quality Objectives	Control Limits
Procedural Blank	<5 X MDL
Blank Spike Recovery	40% - 120%
Continuing Standard Recovery	75% - 125%

QA/QC SUMMARY

METHODS: GC-FID

CALIBRATION: Calibration with a five-point curve was done using standard dilutions prepared

from EDSP Mix 1 (see Appendix C) with a continuing calibration verification

(CCV) sample analyzed every 10 samples.

CONTINUING STANDARD RECOVERY: Percent recovery results for initial and CCV samples analyzed with the in-life sample data set ranged from 75% to 121% with a mean recovery of 101%. There were no occurrences of recoveries exceeding the 75% to 125%

acceptability range.

BLANK: Fenarimol was not detected above the detection limit in the corn-oil blank

analyzed with the test solution and in-life samples.

DETECTION LIMIT: The fenarimol method detection limit (MDL) in corn oil was 115 μg/mL, as

determined by an MDL study. No data below this value were reported.

BLANK SPIKE SAMPLES:

Blank spike samples were not analyzed. In this analysis, sampling was performed by taking the sample material from flask through to analysis. Analyzing a spiked sample would be no different from analyzing a CCV.

INTERNAL STANDARD:

5a androstane was spiked into each sample and analyzed as the internal standard. Average percent recovery results were 96% and ranged from 79% to 111%. There were no cases in which the percent recovery of the internal standard exceeded the acceptance range of 40% to 120%.

REPLICATE ANALYSIS:

The percent relative standard deviations (% RSDs) for the two test solutions ranged from 1.79 to 3.84.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of Fenarimol Formulation Concentrations Prepared 09/09/02

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	%RSD
R-1; 09/09/02				
10 mg/mL	2-14-F-F Top R-1Fen	9.19		
10 mg/mL	2-14-F-F Top R-2Fen	9.18	9.29	2.01
10 mg/mL	2-14-F-F Top R-3Fen	9.51		
10 mg/mL	2-14-F-F Bot R-1Fen	9.37		
10 mg/mL	2-14-F-F Bot R-2Fen	9.04	9.23	1.79
10 mg/mL	2-14-F-F Bot R-3Fen	9.27		
50 mg/mL	2-14-G-F Top R-1Fen	44.1		
50 mg/mL	2-14-G-F Top R-2Fen	44.8	45.2	3.14
50 mg/mL	2-14-G-F Top R-3Fen	46.8		
50 mg/mL	2-14-G-F Bot R-1Fen	44.5		
50 mg/mL	2-14-G-F Bot R-2Fen	47.5	46.6	3.84
50 mg/mL	2-14-G-F Bot R-3Fen	47.7		

Table 2. Fenarimol In-life Samples

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
09/18/02	10/16/02	06/04/03	10 mg/mL	WA2-14F-F 9-18 Vial	10.91	109%
09/24/02	10/16/02	06/05/03	10 mg/mL	WA2-14F-F 9-24 Vial	10.95	109%
10/01/02	10/16/02	06/05/03	10 mg/mL	WA2-14F-F 10-1 Vial	11.17	112%
10/08/02	10/16/02	06/05/03	10 mg/mL	WA2-14F-F 10-8 Vial	11.55	116%
09/18/02	10/16/02	06/04/03	50 mg/mL	WA2-14G-F 9-18 Vial	49.88	99.8%
09/24/02	10/16/02	06/05/03	50 mg/mL	WA2-14G-F 9-24 Vial	54.63	109%
10/01/02	10/16/02	06/05/03	50 mg/mL	WA2-14G-F 10-1 Vial	54.70	109%
10/08/02	10/16/02	06/05/03	50 mg/mL	WA2-14G-F 10-8 Vial	55.59	111%

Table 3. Fenarimol Post-Test Sample Concentrations for Formulations Returned to Battelle from RTI

	Date Sample Prepared	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	· Conc.	
ĺ	09/15/02	10/16/02	11/22/02	10 mg/mL	WA 2-14-F-F Rep2Jar	9.98	100%
ĺ	09/15/02	10/16/02	11/22/02	50 mg/mL	WA 2-14-G-F Rep2Jar	51.0	102%

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: WA 2-14					DATE:	1	0/30	/03
DEVIATION NUMBER: WA					WAL/S	Τl	JDY	DIRECTOR: Michael Blanton/
Atrazine, DDE, Methoxychl	,				Eric Cr			
phenobarbital, propylthioura								
ketoconazole, Linuron, fenarimol								
NOTEBOOK NUMBER: NA								
TITLE OF STUDY: WA 2-14								
QAPP/PROTOCOL ID:								
DEVIATION RELATING TO	·							
[] QAPP	, Г	1	QMP			Г	1	Protocol
[] SOP	<u> </u>	-	Method			L]	
bd		1				[X		Miscellaneous Documentation
ORIGINAL DOCUMENT SE								
								lations was determined to be
adequate for the period of t	ıme tr	nat ai	nımals w	ould	be dose	ed.	•	
				d wit	thin the	sta	ibility	time determined during the
testing of the stability of the	form	ulatio	on.					
								be within the acceptable target
				edure	es and w	/er	e us	ed within the known stability
time periods determined for	each	i form	nulation.					
PROPOSED CORRECTIVE				CHE	DULE F	OF	S CC	MPLETION: No corrective
action is required beyond the	is do	cume	entation.					
		RREI	NCE: Up	per r	managei	me	ent w	vill review testing schedules for
return shipments and analy	sis.							
Approval:							,	
1 4: 1 151 /		., ·	11		7/4	4	_	1171
Michael Blanton,		Vics	before.		Sulm	سر	>	Date 11/3/03
WAL			~					, , ,
).	\Box	0	٠			Date 11/3/03
Eric Crecelius,	<u></u>	n	here	e Li	us			Date
Study Director								/ /
Chemical Repository								
		1						
Deborah Coffey,	6	1/.			11			1 ,
MSL QA Manager 1/2000 Colley, Date 11/3/03						Date 11/3/03		
3		1			7	1		1. 5,00
						,		
Richard Ecker,	/	7-m	E	0	•			Date ///3/03
MSL Laboratory Director	1	_///	Carl	u		-		Date
WOL Laboratory Director			1 - 1					
David Houshess):/	1-72	د . مد ا	<u> </u>			Date /0/3//03
David Houchens,	علاء	en.	1 1/2	ny	res	_		Date
EDSP Program Manageme	ΙŢ		. (
Tami Dalla di	$\bigcap V$, .	· 11/1	001) ~ (Date 10-31-03
Terri Pollock,	(1)	\mathcal{M}	-011		WX-	_		Date 10-31-03

EDSP Battelle QAM

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: MA 2	1.4	DATE: 40/20	2/00		
STUDY NUMBER: WA 2- DEVIATION NUMBER: W		DATE: 10/30/03			
		WAL/STUDY DIRECTOR: Michael Blanton/			
Atrazine, DDE, vinclozolin	, ivietnoxycnior,	Eric Crecelius	\$		
Fenarimol					
NOTEBOOK NUMBER: N					
TITLE OF STUDY: WA 2-	14				
QAPP/PROTOCOL ID:					
DEVIATION RELATING T					
[] QAPP	[] QMP	[X]	Protocol		
[] SOP	[] Method	[]	Miscellaneous Documentation		
ORIGINAL DOCUMENT S	SPECIFICATIONS: 2.	3 of protocol WA	2-14 states "an aliquot of each		
level per formulation will b	evel was tested in the	first preparation t	or each chemical. However,		
and procedures as the firs	pact. Subsequent ba t batches.	tches were prepa	red using the same methods DMPLETION: No corrective		
ACTIONS TO PREVENT I schedule prior to the start Approval:	RECURRENCE: Upper of the studies.	er management v	vill review the analyses		
The comment		+			
Michael Blanton, WAL	The fort	Behn	Date 11-3-03		
Eric Crecelius, Study Director Chemical Repository	En here	lin_	Date		
Deborah Coffey, MSL QA Manager	/ Jarodun (My	Date		
Richard Ecker, MSL Laboratory Director	RM En	·	Date ///3/03		
David Houchens, EDSP Program Manageme	Daul P- The	mpus	Date 10/3//03		
Terri Pollock, EDSP Battelle QAM	(Yuni & P	ollod	Date 10-31-03		

EDSP Battelle QAM

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Ketoconazole in Mazola Corn Oil

November 3, 2003

Prepared By:

Approved By:

Eric A. Crecelius, Ph.D.

Chemical Repository Manager

Richard M. Ecker

Dan

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Ketoconazole in Mazola Corn Oil

Reviewed by:

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03

Chemistry Report for WA 2-14 Ketoconazole in Mazola Corn Oil

Parameter	Chemical
Compound Name	Ketoconazole
CAS#	65277-42-1
Central File No.	CF-1850
Initial Receipt Date	6/21/02
Expiration Date	9/30/2005
	Spectrum Laboratory
Manufacturer	Products, Inc.
Lot Number	QL0352
Battelle Study #	WA 2-14-02-02
Method	SW 846, 8316 Modified

Executive Summary

The chemical purity of ketoconazole determined by the manufacturer was 99.7%. The purity result from Battelle-Sequim by HPLC was determined to be 100%. During stability testing, all but two data points were greater than the target concentration of 10 mg/mL. Thus, the average day 0 concentration of 11.3 mg/mL was tested for stability. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of ketoconazole was expected to stay greater than or equal to 90% of the day 0 concentration for up to an estimated 8 weeks. Thus, stability testing of the ketoconazole stock solution in corn oil was considered stable at the average day 0 concentration of 11.3 mg/mL concentration for only 8 weeks of the required testing and holding period of 12 weeks.

Mazola corn oil (expiration dates 6/03 and 1/04) was purchased from local grocery stores, to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentration was measured on 9/5/02 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn oil with an expiration date of 6/03 was 1.77 meq/kg (RSD = 6.41%). The average peroxide number in the Mazola corn oil with an expiration date of 1/04 was 1.34 meq/kg (RSD = 8.31%). This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses ranged from 58% to 109%.

TABLE OF CONTENTS

	Page
1.0 INTRODUCTION	1
2.0 GENERAL METHODS	1
2.1 CHEMICAL PROCUREMENT	3 NALYSIS
3.0 RESULTS	5
3.1 CHEMICAL PURITY	5 5
4.0 CONCLUSIONS	7
APPENDIX A: MANUFACTURER'S CERTIFICATE OF A APPENDIX B: PURITY AND STABILITY TESTING PLAN APPENDIX C: ANALYTICAL RESULTS OF STABILITY APPENDIX D: STATISTICAL REPORT	N B.1 TESTING C.1 D.1
LIST OF TABLES	
	Page
Table 1. Chemical Procurement Information	3
Table 2. Stock Matrix Composition for Stability Testing	4
Table 3. Summary of Statistical Results for Ketoconazole	
LIST OF FIGURES	5
	Page
Figure 1. EDSP Requisition Form for Ketoconazole	
Figure 2. Observed Concentration of Ketoconazole with a Tarng/mL Against Time	C

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA 2-14-02-02, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of ketoconazole (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_Ketoconazole-cornoil.doc, PSTP_WA-2-14_Ketoconazole_cornoil.doc, DSUM_WA-2-14_Ketoconazole-crnoil.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, ketoconazole, (CAS No. 65277-42-1) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). Ketoconazole was purchased from Spectrum Laboratory Products, Inc. and lot number QL0352 was initially received on 6/21/02 with an expiration date of 9/30/2005 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1850) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Corn oil (expiration dates 6/03 and 1/04) was purchased from local grocery stores, to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentration was measured on 9/5/02 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-02

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Ketoconazole (MSL CF 1850)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 10 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Testing/holding duration: 12 weeks

Chemical Information

Chemical Name: Ketoconazole

CAS: 65277-42-1

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

Any known stability information: may refer to

attached documentation

Desired purity (%) for test? 95% or greater

99.7% pure

Manufacturer's Stability Information:

stable

Figure 1. EDSP Requisition Form for Ketoconazole

Table 1. Chemical Procurement Information

Parameter	Chemical
Compound Name	Ketoconazole
CAS#	65277-42-1
Central File No.	CF-1850
Initial Receipt Date	6/21/2002
Expiration Date	9/30/2005
	Spectrum Laboratory
Manufacturer	Products, Inc.
Lot Number	QL0352
Manufacturer's Purity	99.7%
Storage Conditions	Cool, dry place/room temp.
Battelle Study #	WA 2-14-02-02
Method	SW 846, 8316 Modified

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted on a high performance liquid chromatography (HPLC) with ultraviolet (UV) absorbance at 245 nm. For analysis, 0.1009 grams of the ketoconazole was weighed into a 100 mL volumetric flask and diluted to the 100 mL mark with acetonitrile (ACN), labeled PP-1198. Next, 0.5 mL of this solution was transferred to another 100 mL volumetric flask and diluted to the 100 mL mark with a 70% Acetonitrile:30% 50mM phosphate buffer, labeled PP-1199A. This standard was run and compared to a blank ACN:water (60% ACN:40% deionized water) solution. These matrices were run on the HPLC and the purity determined by comparing the peak heights of the peaks in the chromatogram. The area of the ketoconazole peak was compared to all the peaks in the chromatogram after the blank peak areas were subtracted. The HPLC was set up with an auto sampler and a column oven. The column oven temperature was set at 30°C, and the auto sampler was set to inject 200 μ L of the matrix dilution. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. A stock solution was prepared to arrive at the chemical concentration requested for stability analysis (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

A ketoconazole stock matrix was prepared on 10/23/02 for testing as described in Table 2. Briefly, for the 10 mg/mL ketoconazole, 2.0 g was weighed into a wide-mouth amber glass bottle and 184 g of corn oil was added. The sample was stirred and stored in a refrigerator. Time 0 (T=0) samples were collected on 10/24/02 from the top and bottom of the container in

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA 2-14-02-02 12 Weeks	Ketoconazole	10 mg/mL	1850-1-2	2.0 g in 184 g Mazola corn oil

triplicate to assess mixing homogeneity. A corn oil blank sample was also collected. The bottle was labeled and stored at $4^{\circ}C \pm 2^{\circ}C$ for the duration of the test.

Density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentration was determined by chromatographic analysis. Triplicate aliquots were tested for the 10 mg/mL concentration. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

Ketoconazole stock solution was sampled for stability testing by removing the solution from the refrigerator, allowing it to warm to room temperature, and then stirring it overnight. Then, triplicate 1 mL samples were sampled and placed in a tared 60 mL amber bottle. The sample weight was determined gravimetrically. Then 50 mL ACN (JT Baker lot # 448346) was added and the container agitated. Then, 0.01 mL was transferred to an auto sampler vial with 0.99 mL 60% ACN in water. This solution was analyzed on the HPLC using a UV/VIS detector at the 245 nm wavelength. A 70:30% ACN:water buffer was used as an eluent at 1.5 mL/min. The eluent was made by adding 75 mL buffer (50 mM phosphate with pH adjusted to 7 with sodium hydroxide (NaOH), 75 mL DI water and 350 mL ACN. Separation was attained using a Supelco PAH column (a C-18 column). Calibration was done using standard PP-1191 with a 5point calibration curve for samples analyzed from 10/24/02 to 11/14/02. Given the high recoveries observed with these samples, a new calibration standard (PP-1199) was created on 11/18/02 and this standard and associated 5-point curve were used to calculate the concentrations for samples collected and analyzed from 11/19/02 to 1/16/03. HPLC run data were stored on computer WV04738. A multiplier of 5000 was used in the STAR software (50 mL ACN/ 0.01 mL sample). A corn oil blank was analyzed with the samples. The major peak determined during the purity analysis of ketoconazole was used for this analysis. Continuing calibration verification (CCV) samples were analyzed to demonstrate on-going calibration accuracy.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fit to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a HPLC purity scan on the ketoconazole. The chromatogram, after solvent blank correction, showed one large peak that had the appropriate retention time for ketoconazole and several very small peaks. The area of the ketoconazole peak was 100% of the total area of all peaks in the chromatogram. Chemical purity of ketoconazole determined by the manufacturer was 99.7% (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 10/24/2002. Chemical concentration was determined 10 times over a period of 12 weeks. The analytical and QC results are presented in Appendix C. A single preparation blank was analyzed with every batch for quality control purposes. There were no detectable concentrations of ketoconazole in the blanks. CCV results ranged from 92.0% to 111%. Internal standards were not analyzed. The MDL was 252,250 ng/mL.

Both lots of Mazola corn oil had peroxide numbers less than 3 meq/kg as required for biological testing (Appendix C). The average peroxide number in the Mazola corn oil with an expiration date of 6/03 was 1.77 meq/kg (RSD = 6.41%). The average peroxide number in the Mazola corn oil with an expiration date of 1/04 was 1.34 meq/kg (RSD = 8.31%).

3.3 Statistical Results of Stability Trial

A plot of ketoconazole with a target concentration of 10,000,000 ng/mL against time shows a potential decay in concentration (Figure 2). Homogeneity of the chemical concentration was tested at time 0. Because one sample from both the top and bottom sections of the container was about the same concentration, no difference could be detected. Over the 12 week testing period all but two data points were greater than the target concentration. Thus, the average day 0 concentration was used to test stability. Only two data points were less than 90% of the average day 0 concentration, however a significant (p < 0.001) decrease in concentration was observed. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of ketoconazole was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 8 weeks (Table 3). Thus, this stock solution was considered stable for only 8 weeks of the required 12-week testing/holding period. It should be noted that the observed decay in concentration could be an artifact of the change in the calibration standard. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries for all doses ranged from 58% to 109%. The complete analysis is presented in Appendix E.

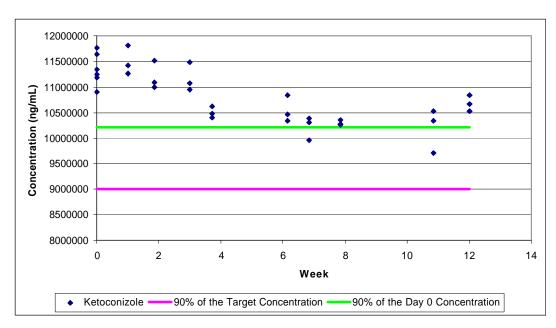


Figure 2. Observed Concentration of Ketoconazole with a Target Concentration of 10,000,000 ng/mL Against Time

Table 3. Summary of Statistical Results for Ketoconazole

WA 2-14-02-02	
Statistical Analysis conducted by Valerie Cullinan	1850-1-2
Using Minitab Version 13.32, Minitab Inc., 1999.	Ketoconazole
Target Concentration (ng/mL)	10000000
Number of determinations	1
Number of weeks tested	12
Number of replicates per week	3
Number of outliers removed	0
Number of observations removed	0
Overall Mean Concentration	10816801
95% Upper CL	10974792
Error degrees of freedom	32
1-sample t-test of Ho: μ >= Target	NS ^a
Estimated intercept of In(concentration) against time	16.2393
Estimated slope of In(concentration) against time	-0.0089
Standard error of slope	0.0015
Error degrees of freedom	31
Significance test of lack-of-fit for final model	S ^b
Significance test of Ho: $\beta = 0$ vs. H1: β ? 0	S
Lower 95% CL of β	-0.012
Upper 95% CL of β	-0.006
Maximum Percent Loss (using LCL)	9.1%
Mean Percent Loss (using bhat)	6.9%
LN(90% of Target)	16.0127
Number of weeks until at 90% of Target (using LCL)	19
Conclusion using Target Concentration:	Stable for 12 wks
Average Day 0 Concentration	11346232
LN(90% of Day 0 Concentration)	16.1390
Number of weeks until at 90% of Day 0 Concentration (using LCL)	8
Conclusion using Day 0 Concentration:	Stable for 8 wks

^a Not Significant at $\alpha = 0.05$

4.0 CONCLUSIONS

The chemical purity of ketoconazole determined by the manufacturer was 99.7%. The purity result from Battelle-Sequim by HPLC was determined to be 100%. Stability testing of ketoconazole in corn oil concluded that the chemical was stable at the 10 mg/mL concentration for only a period of 8 weeks out of the required 12 week biological testing period.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meg/kg.

In-life chemistry recoveries for all doses ranged from 58% to 109%.

^b Significant at $\alpha = 0.05$

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

CERTIFICATE OF ANALYSIS

Date: 06/19/02

Page 1

PRODUCT: KETOCONAZOLE USP

CATALOG NO: LOT NO: K1149 Qt0352 CUSTOMER P.O.:

2581

CUSTOMER NO: GSA772 COUNTRY OF ORIGINSA MANUFACTURER: SPECTRUM

DESCRIPTION	MIN. MAX.	RESULT
ASSAY (DRIED BASIS)	98.0 - 102.0 %	99.73 %
MELTING RANGE	148 - 152 C	149 - 150 €
SPECIFIC ROTATION (a)D	-1 to +1	-0.786
LOSS ON DRYING	- 0.5 %	0.22 %
RESIDUE ON IGNITION	~ 0.1 %	0.05 %
HEAVY METALS	- 0.002 %	< 0.002 %
CHROMATOGRAPHIC IMPURITIES	- TO PASS TEST	PASSES TEST
ORGANIC VOLATILE IMPURITIES	- TO PASS TEST	PASSES TEST
IDENTIFICATION	- TO PASS TEST	PASSES DIST
EXPIRATION DATE		09/30/2005

APPROVED BY:

Jeliam S. Canabar

LILIAN D. CASABAR Cola COORDINATOR New Brunswick, N.J. Plant

enc/ 194

Spectrum Laboratory Products, Inc.

Corporate Headquarters: East Coast Plant:
14422 S. San Pedro St. 755 Jerney Ave.
Gardena, CA 90248 New Brunswick, NJ 08901
(310) 516-8000 * Fax: (310) 536-9843 * (732) 214-1300

FROM FAXCOM

TO

6/19/2002 3:17 PM Page 2

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Ketoconazole

Chemical Name: Ketoconazole (MSL CF 1850)

CAS Number: 65277-42-1

Lot Number: QL0352, stored at RT in MSL5, Rm 219

Expiration date: 9/30/2005

Manufacturer's Purity Information: 99.7%

Manufacturer's Stability Information: stable

MSL Purity Results:

Purity (%) To be determined at MSL by LC or UV-VIS scan

MDL has not been determined.

Bioassay Information:

Study Director

Name: Dr. Julia George

Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: Ketoconazole

CAS: 65277-42-1

Carrier(s): suspended in Mazola corn oil

Concentrations/Dilution Series: 10 mg/mL

In vitro or in vivo tests? In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Testing/holding duration: 12 weeks

EDSP Purity Analysis and Stability Testing Plan for Ketoconazole, continued

Design of Stability Test: One concentration of Ketoconazole, 10 mg/mL in Mazola corn oil, will be tested. The chemical will be sieved through an 80 mesh screen and material that passes will be suspended in Mazola corn oil with a magnetic stirrer. Samples of the suspension will be taken with a gavage needle, while the suspension is being vigorously stirred, at mid-depth in a 250 mL amber glass bottle, except for the first sampling, which will be sampled at 25% and 75% depth in triplicate to demonstrate homogeneity. The suspension will be stored in glass at 4 deg. C in the dark for 12 weeks, sampled at least 8 times in triplicate and analyzed monthly by UV-VIS.

Number of replicates: 3

Duration: 12 weeks, sampling at least 8 time points with triplicate samples taken each time

Other factors:

Temperature regime(s): 4 deg. C

Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other: None

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity MSDS Records:

- · date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-to-lot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- · QC data reports;
- · data qualifying flags; and
- Dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C1. Ketoconazole concentration in Mazola Corn Oil (ng/mL)

Target Conc.	Sample ID	Date	Ketoconazole	Average	RSD	Recovery ¹
Blank	1850-1-2 Blank 1	10/24/2002	252250 U			
10000000 ng/ml	1850-1-2-1 Top R-1	10/24/2002	11177361			
10000000 ng/ml	1850-1-2-1 Top R-2	10/24/2002	11335902	11138266	1.97%	111%
10000000 ng/ml	1850-1-2-1 Top R-3	10/24/2002	10901535			
10000000 ng/ml	1850-1-2-1 Bott R-1	10/24/2002	11641456			
10000000 ng/ml	1850-1-2-1 Bott R-2	10/24/2002	11769411	11554197	2.33%	116%
10000000 ng/ml	1850-1-2-1 Bott R-3	10/24/2002	11251724			
Blank	1850-1-2 Blank 2	10/31/2002	252250 U			
10000000 ng/ml	1850-1-2-2 R-1	10/31/2002	11261977			
10000000 ng/ml	1850-1-2-2 R-2	10/31/2002	11809165	11495240	2.46%	115%
10000000 ng/ml	1850-1-2-2 R-3	10/31/2002	11414578			
Blank	1850-1-2 Blank 3	11/6/2002	252250 U			
10000000 ng/ml	1850-1-2-3 R-1	11/6/2002	11518386			
10000000 ng/ml	1850-1-2-3 R-2	11/6/2002	10995772	11202106	2.48%	112%
10000000 ng/ml	1850-1-2-3 R-3	11/6/2002	11092161			
Blank	1850-1-2 Blank 4	11/14/2002	252250 U			
10000000 ng/ml	1850-1-2-4 R-1	11/14/2002	11069468			
10000000 ng/ml	1850-1-2-4 R-2	11/14/2002	10948138	11168052	2.53%	112%
10000000 ng/ml	1850-1-2-4 R-3	11/14/2002	11486549			
Blank	1850-1-2 Blank 5	11/19/2002	252250 U			
10000000 ng/ml	1850-1-2-5 R-1	11/19/2002	10405755			
10000000 ng/ml	1850-1-2-5 R-2	11/19/2002	10625529	10501667	1.07%	105%
10000000 ng/ml	1850-1-2-5 R-3	11/19/2002	10473718			
Blank	1850-1-2 Blank 6	12/6/2002	252250 U			
10000000 ng/ml	1850-1-2-6 R-1	12/6/2002	10334737			
10000000 ng/ml	1850-1-2-6 R-2	12/6/2002	10469911	10545771	2.44%	105%
10000000 ng/ml	1850-1-2-6 R-3	12/6/2002	10832666			
Blank	1850-1-2 Blank 7	12/11/2002	252250 U			
10000000 ng/ml	1850-1-2-7 R-1	12/11/2002	9963159			
10000000 ng/ml	1850-1-2-7 R-2	12/11/2002	10391345	10219222	2.21%	102%
10000000 ng/ml	1850-1-2-7 R-3	12/11/2002	10303163			
Blank	1850-1-2 Blank 8	12/18/2002	252250 U			
10000000 ng/ml	1850-1-2-8 R-1	12/18/2002	10252964			
10000000 ng/ml	1850-1-2-8 R-2	12/18/2002	10266852	10292766	0.56%	103%
10000000 ng/ml	1850-1-2-8 R-3	12/18/2002	10358482			
Blank	1850-1-2 Blank 9	1/8/2003	252250 U			
10000000 ng/ml	1850-1-2-9 R-1	1/8/2003	10521219			
10000000 ng/ml	1850-1-2-9 R-2	1/8/2003	10340508	10189831	4.19%	102%
10000000 ng/ml	1850-1-2-9 R-3	1/8/2003	9707765			
Blank	1850-1-2 Blank 10	1/16/2003	252250 U			
10000000 ng/ml	1850-1-2-10 R-1	1/16/2003	10520070	40077055	4 4007	4.070/
10000000 ng/ml	1850-1-2-10 R-2	1/16/2003	10839213	10677690	1.49%	107%
10000000 ng/ml	1850-1-2-10 R-3	1/16/2003	10673788			

Recovery is relative to the target concentration U = Not detected at a value greater than the MDL

Table C.2. CCV Data for Ketoconazole Concentration in Mazola Corn Oil

Date	Sample Name	Ketoconazole (ng/mL)	Recovery	PD
10/24/02	PP-1191C500ng/mlCCV	513	103%	2.67%
10/24/02	PP-1191C500ng/mlCCV	500	100%	0.08%
10/31/02	PP-1191C500ng/mlCCV	557	111%	11.4%
10/31/02	PP-1191C500ng/mlCCV	487	97.4%	2.62%
11/6/02	PP-1191C500ng/mlCCV	501	100%	0.20%
11/6/02	PP-1191C500ng/mlCCV	496	99.2%	0.78%
11/14/02	PP-1191C500ng/mlCCV	516	103%	3.28%
11/14/02	PP-1191C500ng/mlCCV	460	92.0%	8.02%
11/19/02	PP-1199C500ng/mlCCV	493	98.6%	1.39%
11/19/02	PP-1199C500ng/mlCCV	461	92.2%	7.83%
11/19/02	PP-1199C500ng/mlCCV	496	99.1%	0.87%
12/06/02	PP-1199C500ng/mlCCV	470	94.1%	5.94%
12/06/02	PP-1199C500ng/mlCCV	487	97.3%	2.65%
12/11/02	PP-1199C500ng/mlCCV	547	109%	9.33%
12/11/02	PP-1199C500ng/mlCCV	462	92.3%	7.68%
12/18/02	PP-1199C500ng/mlCCV	534	107%	6.78%
12/18/02	PP-1199C500ng/mlCCV	486	97.2%	2.84%
1/8/03	PP-1199C500ng/mlCCV	514	103%	2.70%
1/8/03	PP-1199C500ng/mlCCV	470	94.1%	5.94%
1/16/03	PP-1199C500ng/mlCCV	472	94.5%	5.53%
1/16/03	PP-1199C500ng/mlCCV	530	106%	6.02%

Table C.3. Internal Standards Data for Ketoconazole in Mazola Corn Oil

 5A Andros Recover	Date	Sample Name
	Not Applicable	
	Not Applicable	

Table C.4. Peroxide concentration in Mazola Corn Oil (meq/kg)

Sample	Analysis Date	Volume of Sodium Thiosulfate (mL)	Normality	Weight of Oil (g)	Peroxide Number	Average Peroxide Number	RSD
Blank	09/05/02	0.5	0.005	5.00	0.50		
Mazola Corn Oil Expiration 6-03 R-1 Mazola Corn Oil	09/05/02	1.9	0.005	5.01	1.90		
Expiration 6-03 R-2 Mazola Corn Oil	09/05/02	1.8	0.005	5.36	1.68	1.77	6.41
Expiration 6-03 R-3	09/05/02	1.8	0.005	5.16	1.74		
Mazola Corn Oil Expiration 1-04 R-1 Mazola Corn Oil	09/05/02	1.2	0.005	4.92	1.22		
Expiration 1-04 R-2 Mazola Corn Oil	09/05/02	1.5	0.005	5.2	1.44	1.34	8.31
Expiration 1-04 R-3	09/05/02	1.4	0.005	5.13	1.36		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-02

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

------ 5/31/2003 8:08:10 AM -----

Results for: Week 0

Two-Sample T-Test and CI: Ketoconazole, section

```
1 = bottom
2 = top
```

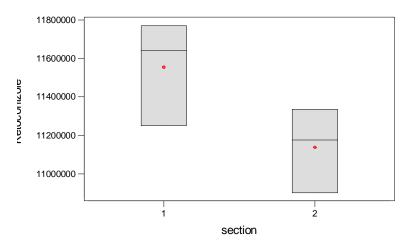
```
      Two-sample
      T for Ketoconazole

      section
      N
      Mean
      StDev
      SE Mean

      1
      3
      11554197
      269649
      155682

      2
      3
      11138266
      219807
      126905
```

Very poor power!


```
Difference = mu (1) - mu (2)
Estimate for difference: 415931
95% CI for difference: (-223273, 1055135)
T-Test of difference = 0 (vs not =): T-Value
```

T-Test of difference = 0 (vs not =): T-Value = 2.07 P-Value = 0.130 DF = 3

NS

Boxplots of Ketoconi by section

(means are indicated by solid circles)

Kruskal-Wallis Test: Ketoconazole versus section

Kruskal-Wallis Test on Ketoconazole

section	N	Median	Ave Rank	Z
1	3	11641456	4.7	1.53
2	3	11177361	2.3	-1.53
Overall	6		3.5	

H = 2.33 DF = 1 P = 0.127

* NOTE * One or more small samples

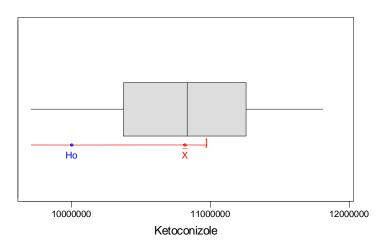
Conclusion: For the week 0 data, the test between sections has very poor power, note the width of the 95% CI of the difference (-223273, 1055135). Because one sample from both the top and bottom sections was about the same concentration, no difference could be detected.

Results for: Stability Data

Performs a one-sample t-test for mu less than TARGET &

What is the target value for X DATA> 10000000

One-Sample T: Ketoconazole


Test of mu = 10000000 vs mu < 10000000

Variable	N	Mean	StDev	SE Mean
Ketoconazole	33	10816801	535803	93271

Variable 95.0% Upper Bound T P Ketoconazole 10974792 8.76 1.000 NS

Boxplot of Ketoconizole

(with Ho and 95% t-confidence bound for the mean)

• Outliers are < Median-3*IQD OR > Median+3*IQD

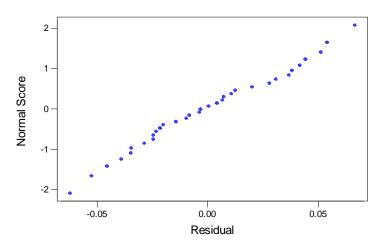
Boundary for outliers are values < 8186855 and > 13478477

No outliers

Transforms data to natural log

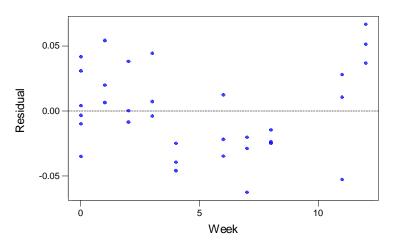
```
Week
         Rep Ln(Concentration)
                  16.2294
   0
   0
            2
                  16.2435
                  16.2044
   0
            3
                  16.2701
   0
            1
   0
            2
                  16.2810
   0
            3
                  16.2360
   1
            1
                  16.2369
            2
   1
                  16.2844
   1
            3
                  16.2504
   2
            1
                  16.2595
   2
            2
                  16.2130
   2
            3
                  16.2217
   3
            1
                  16.2197
   3
            2
                  16.2087
   3
                  16.2567
            3
   4
            1
                  16.1579
   4
            2
                  16.1788
   4
            3
                  16.1644
   6
            1
                  16.1510
   6
            2
                  16.1640
   6
            3
                  16.1981
   7
            1
                  16.1144
   7
            2
                  16.1565
   7
            3
                  16.1480
   8
            1
                  16.1431
   8
            2
                  16.1444
                  16.1533
   8
            3
  11
            1
                  16.1689
  11
            2
                  16.1516
  11
            3
                  16.0884
  12
            1
                  16.1688
  12
            2
                  16.1987
  12
            3
                  16.1833
```

Conducts Simple Linear Regression


Regression Analysis: Ketoconazole versus Week

```
The regression equation is
Ketoconazole = 16.2 - 0.00893 Week
Predictor
                 Coef
                          SE Coef
Constant
              16.2393
                           0.0093
                                      1748.65
                                                 0.000
Week
            -0.008933
                         0.001462
                                        -6.11
                                                 0.000
S = 0.03386
                R-Sq = 54.6%
                                 R-Sq(adj) = 53.2%
Analysis of Variance
Source
                  DF
                              SS
                                           MS
                                                      F
                                                               Ρ
Regression
                        0.042826
                                    0.042826
                                                  37.34
                                                           0.000
                  1
Residual Error
                  31
                        0.035551
                                    0.001147
 Lack of Fit
                        0.021483
                                     0.002685
                                                   4.39
                                                           0.002
                  8
                                    0.000612
 Pure Error
                  23
                        0.014068
                  32
                        0.078377
Total
Unusual Observations
Obs
          Week
                                                SE Fit
                                                          Residual
                                                                      St Resid
                 Ketoconazole
                                      Fit
32
          12.0
                  16.1987
                              16.1321
                                            0.0119
                                                        0.0666
                                                                       2.10R
```

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual


Normal Probability Plot of the Residuals

(response is Ketoconi)

Residuals Versus Week

(response is Ketoconi)

Do you want to remove any data points? (yes OR no) \mathbf{r}

Should a quadratic be fit? (yes OR no) n

• Power analysis for t-test of slope less than zero

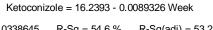
Power and Sample Size

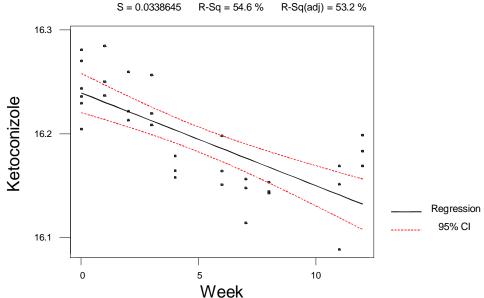
```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.0338645


Sample


Size Power Difference

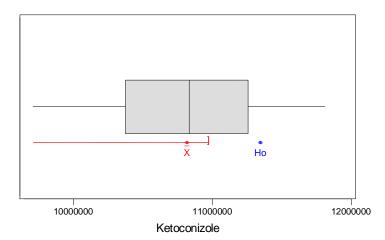
31 0.9900 -0.0247
```

- That means we would detect a mean of 16.093 as significantly less than ln(10000000) = 16.118 or a change of 9756025 from 10000000 = 2.4% loss.
 - Fit 95% confidence bands about the fitted simple linear model

Regression Plot

Evaluate stability using the average Day 0 concentration as the target

One-Sample T: Ketoconazole


Test of mu = 11346232 vs mu < 11346232

Variable	N	Mean	StDev	SE Mean	
Ketoconazole	33	10816801	535803	93271	
Variable Ketoconazole	95.0%	Upper Bound 10974792	T -5.68	P 0.000	**

t Boxplot of Ketoconazole

Boxplot of Ketoconizole

(with Ho and 95% t-confidence bound for the mean)

• Conclusion – all but two data points were greater than the target concentration of 10,000,000 mg/L, thus stability was evaluated using the average Day 0 concentration. The slope through time was significant and the concentration was expected to stay above 90% of the Day 0 concentration for only 8 weeks. Thus, the chemical is stable for only 8 weeks.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Ketoconazole in-life test suspension samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Ketoconazole suspended in corn oil

TEST SOLUTION, SAMPLE CUSTODY, AND PROCESSING: Test suspensions of ketoconazole (CAS 65277-42-1) supporting EDSP WA 2-14 were made on 11/20/02 (females) and 01/22/03 (males) at two test concentrations (10 mg/mL and 20 mg/mL) for female and male rat exposures. The 10 mg/mL concentration was prepared by weighing 2.0 g of ketoconazole (CF 1850, Spectrum Lot # QL0352, expiration date 09/05) into a 250 mL, widemouth, amber glass bottle and adding 184 g Mazola corn oil. The 20 mg/mL concentration was prepared by weighing 4.0 g ketoconazole and adding 182 g Mazola corn oil (corn oil was from containers with the following expiration dates: 6/12/03, 1/1/04, and 4/24/04).

The test suspension was sampled four times during the female test (11/27/02, 12/03/02, 12/10/02,and 12/17/02) and five times during the male test (01/26/03, 02/02/03, 02/09/03, 02/16/03,and 02/23/03). Data are reported in Table 3 for males and Table 4 for females. Table 5 provides results of analysis of remaining formulation samples after dosing to assess changes in test solution concentration from the beginning and end of the test.

Processing

Test Solution Samples for Concentration Verification Prior to Shipping:

The samples were stirred and stored in a refrigerator. Samples for female rat exposures were collected to verify test concentrations on 11/20/02 and analyzed on 11/21/02. Replicate 1 samples were shipped on 11/21/02 and Replicate 2 on 11/25/02. Samples for male rat exposures were collected to verify test concentrations on 01/23/03 and analyzed on 01/24/03. Replicate 1 samples were shipped on 01/23/03 and Replicates 2 and 3 on 01/27/03.

Test-suspension samples analyzed to verify test concentrations were stirred and 1 mL sampled from the middle of the container and transferred to a 60 mL, tared, amber glass bottle. Sample weight was determined gravimetrically. 50 mL acetonitrile (ACN, JT Baker lot # 448346) was added and the container agitated. Then, 0.01 mL (10 mg/mL concentration) or 0.995 mL (20 mg/mL concentration) was transferred to an auto sampler vial with either 0.99 mL or 0.005 mL, respectively, of 60% ACN in water. This solution was analyzed on the high-performance liquid chromatograph (HPLC) using an ultraviolet/visible (UV/VIS) detector at the 245 nm wavelength. A 70:30% ACN:water (v:v) buffer was used as an eluent at 1.5 mL/min. The eluent was made by adding 75 mL buffer (50 mM phosphate with pH adjusted to 7 with sodium hydroxide [NaOH]), 75 mL deionized water and 350 mL ACN. Separation was attained using a Supelco petroleum aromatic hydrocarbon (PAH) column (a C-18

column). Calibration with a five-point curve was conducted using dilutions prepared from calibration standard PP-1199. A-E.

In-life and Returned Container Samples:

Samples were returned from RTI at two different times, on 12/18/02 for female rat assays (received at Battelle, Sequim, WA, on 12/20/02) and on 03/04/03 for male rat assays (received at Battelle, Sequim, WA, on 03/05/03). Containers with remaining test solution from Replicate 2 samples were returned in 250 mL, amber glass bottles. In-life females exposure samples returned in 20 mL, scintillation vials contained about 5 mL of solution that was a slurry with much of the ketoconazole settled to the bottom of the vial, so the whole sample was extracted.

In-life samples were removed from the refrigerator and allowed to warm to ambient room temperature. Samples of remaining dosing solution were stirred overnight. On 01/16/03, a 0.5 or 1.0 mL subsample from the remaining containers was collected from the middle of the solution and placed in a tared, 60 mL, amber glass bottle. At this time, the sample weight was determined gravimetrically.

For the 20 mL scintillation vials, the vial was weighed, and the contents poured into a 60 mL, amber-glass bottle. Part of the 50 mL ACN was used to rinse the vial 3 times, and the amber bottles were agitated to mix. The vials were cleaned and dried using methylene chloride (MeCl) (JT Baker, lot# 36E04), air dried, and re-weighed. The sample volume is the difference between the initial sample plus the vial weight, minus the empty vial weight.

For the remaining samples, 50 mL ACN (JT Baker lot # 448346) was added and the container agitated. Then, 0.01 mL was transferred to an auto sampler vial with 0.99 mL 70:30% ACN:water (v:v) buffer. This solution was analyzed on the HPLC using a UV/VIS detector at the 245 nm wavelength. A 70:30% ACN:water (v: v) buffer was used as an eluent at 1.5 mL/min. The eluent was made by adding 75 mL buffer (50 mM phosphate with pH adjusted to 7 with NaOH), 75 mL DI water and 350 mL ACN or the equivalent in proportion. Separation was attained using a Supelco PAH column (a C-18 column). Calibration with a five-point curve was conducted using dilutions prepared from calibration standard PP-1199, A-E. Calibrations from data collected on 10/24/02, 11/19/02 and 12/06/02 were used, although calibration sets were analyzed with each batch of samples. Blanks were run with each sample batch and an initial calibration verification (ICV) sample and a continuing calibration verification (CCV) sample analyzed with each sample set analyzed. HPLC-run data are stored on computer WV04738. A multiplier of 5000 is used in the STAR software (50 mL ACN/ 0.01 mL sample). A corn oil blank is analyzed with the samples.

SAMPLE ANALYSIS

The samples were analyzed by a modified SW 846 method, 8316, using an HPLC with a UV/VIS detector at the 245 nm wavelength.

Data Quality ObjectivesControl LimitsProcedural Blank<5 X MDL</td>Continuing Standard Recovery75% - 125%

QA/QC SUMMARY

METHODS: Modified SW 846 method, 8316, using an HPLC with a UV/VIS detector

at the 245 nm wavelength.

CALIBRATION: Calibration with a five-point curve was conducted using dilutions

prepared from the calibration standard PP-1199, A-E, and a blank and a CCV sample were analyzed at the beginning and end of every run. Calibrations from 11/19/02 were used with the 11/21/02 run, and the calibration from 12/06/02 was used with the 01/16/03, 01/24/03, and

05/28/03 runs.

CONTINUING STANDARD RECOVERY: Percent recovery results for the nine initial and CCV samples analyzed with the in-life sample data set ranged from 90% to 108%, with a mean recovery of 99%. There were no occurrences of recoveries

exceeding the 75% to 125% acceptability range.

BLANK Ketoconazole was not detected above the detection limit in the five

blanks analyzed with the test solution and in-life samples.

DETECTION LIMIT: The ketoconazole detection limit was 252 mg/L, as determined by an

MDL study using the low calibration standard (50.45 mg/L) reported

with the data. No data below this value were reported.

BLANK SPIKE SAMPLES:

Blank spike samples were not analyzed.

REPLICATE ANALYSIS:

The percent relative standard deviation (% RSD) for the two test solutions prepared for the ketoconazole female test range from 2.18 to

3.09.

The % RSD for the two ketoconazole male test solutions ranged from

0.518 to 2.29.

Replicate samples were not submitted for the in-life sample sets.

Table 1. Verification of Ketoconazole Female Test Solution Concentrations Prepared on 11/20/2002 and Analyzed on 11/21/02

Nominal Conc.	Sample ID Number	Sample ID Number Conc. (mg/mL)		%RSD
	WA 2-14 Y,Z Blank	0.252 U		
10 mg/mL	WA 2-14-Y-F Rep1 R1	9.84		
10 mg/mL	WA 2-14-Y-F Rep1 R2	9.80	10.0	3.09
10 mg/mL	WA 2-14-Y-F Rep1 R3	10.4		
20 mg/mL	WA 2-14-Z-F Rep1 R1	17.9		
20 mg/mL	WA 2-14-Z-F Rep1 R2	18.5	18.4	2.18
20 mg/mL	WA 2-14-Z-F Rep1 R3	18.7		

Table 2. Verification of Ketoconazole Male Test Solution Concentrations Prepared on 1/22/03 and Analyzed on 1/24/03

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	%RSD
	Sent to RTI Blank1	0.252 U		
10 mg/mL	2-14 F-M rep1	10.3		
10 mg/mL	2-14 F-M rep2	10.7	10.6	2.29
10 mg/mL	2-14 F-M rep3	10.7		
20 mg/mL	2-14 G-M rep1	21.6		
20 mg/mL	2-14 G-M rep2	21.7	21.6	0.518
20 mg/mL	2-14 G-M rep3	21.5		

Table 3. In-life Sample Ketoconazole Concentrations - Males

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
01/26/03	03/05/03	05/23/03	10 mg/mL	1-26 F-M	8.46	85%
02/02/03	03/05/03	05/23/03	10.mg/mL	2-2 F-M	8.59	86%
02/09/03	03/05/03	05/23/03	10 mg/mL	2-9 F-M	9.98	100%
02/16/03	03/05/03	05/23/03	10 mg/mL	2-16 F-M	10.1	101%
02/23/03	03/05/03	05/23/03	10 mg/mL	2-23 F-M	10.2	102%
01/26/03	03/05/03	05/23/03	20 mg/mL	1-26 G-M	18.8	94%
02/02/03	03/05/03	05/23/03	20 mg/mL	2-2 G-M	19.8	99%
02/09/03	03/05/03	05/23/03	20 mg/mL	2-9 G-M	19.8	99%
02/16/03	03/05/03	05/23/03	20 mg/mL	2-16 G-M	19.1	96%
02/23/03	03/05/03	05/23/03	20 mg/mL	2-23 G-M	18.2	91%

Table 4. In-life Sample Ketoconazole Concentrations – Females

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
11/27/02	12/20/02	01/16/03	10 mg/mL	2-14-Y-F 11-27-02	8.09	81%
12/03/02	12/20/02	01/16/03	10.mg/mL	2-14-Y-F 12-03-02	10.8	108%
12/10/02	12/20/02	01/16/03	10 mg/mL	2-14-Y-F 12-10-02	10.9	109%
12/17/02	12/20/02	01/16/03	10 mg/mL	2-14-Y-F 12-17-02	8.37	84%
11/27/02	12/20/02	01/16/03	20 mg/mL	2-14-Z-F 11-27-02	19.2	96%
12/03/02	12/20/02	01/16/03	20 mg/mL	2-14-Z-F 12-03-02	19.4	97%
12/10/02	12/20/02	01/16/03	20 mg/mL	2-14-Z-F 12-10-02	20.5	103%
12/17/02	12/20/02	01/16/03	20 mg/mL	2-14-Z-F 12-17-02	11.6	58%

Table 5. Ketoconazole Post-Test Concentrations in Formulation Samples Returned to Battelle from RTI

Date Sample Prepared	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
11/20/02	12/20/02	01/16/03	10 mg/mL	2-14-y-f R-2, remainder	11.2	112%
01/22/03	03/05/03	05/28/03	10 mg/mL	Remain2-14 F-M rep3	10.1	101%
11/20/02	12/20/02	01/16/03	20 mg/mL	2-14-z-f R-2, remainder	21.9	110%
01/22/03	03/05/03	05/28/03	20 mg/mL	Remain2-14 G-M rep3	20.0	100%

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: WA 2-1				DATE: 10/30/03			
DEVIATION NUMBER: WA	2-14	-D-003;		WAL/S	TUD'	Y DIRECTOR: Michael Blanton/	
Atrazine, DDE, Methoxychl	chlor,			Eric Cr			
phenobarbital, propylthioura	ouracil,						
ketoconazole, Linuron, fena							
NOTEBOOK NUMBER: NA							
TITLE OF STUDY: WA 2-14							
QAPP/PROTOCOL ID:							
DEVIATION RELATING TO)·			<u> </u>			
[] QAPP	,. []	QMP		T	ГТ	Protocol	
[] SOP	- 	Metho	. d		[] [V]		
bd					[X]	Miscellaneous Documentation	
ORIGINAL DOCUMENT SE							
						nulations was determined to be	
adequate for the period of t	ıme tr	nat animals	would	be dose	ed.		
			zed wi	thin the	stabil	ity time determined during the	
testing of the stability of the	form	ulation.					
						be within the acceptable target	
				es and w	ere u	sed within the known stability	
time periods determined for	each	formulation	٦.				
DD0D005D 00DD50TW							
				DULE F	OR C	OMPLETION: No corrective	
action is required beyond th	iis do	cumentation	า.				
10TIONS TO DDE (ENT D							
		RRENCE: U	Ipper	manage	ment	will review testing schedules for	
return shipments and analy	sis.						
Annanal							
Approval:					_		
Maria I Di T	_	11/	<i>ر</i> _ ہ	7/4	\leftarrow	21 21 22	
Michael Blanton,		Jungo	<u> </u>	Sulm	حمي	Date 11/3/03	
WAL	_	\sim				•	
-	()). []	0	٠		Date 11/3/03	
Eric Crecelius,	<u></u>	u he	ceri	us		Date	
Study Director						/ /	
Chemical Repository							
		0					
Deborah Coffey,	6	1. /		11		1 ,	
MSL QA Manager	/\	/Wodan		sal las	/	Date	
Ğ				7	(
	•	_			,		
Richard Ecker,	/	m Z	0	•		Date ///3/03	
MSL Laboratory Director	4	111 6	nu		-	Date	
WOL Laboratory Director		0 -	_				
David Houchens,		1:11-7	1	6		Date /0/3//03	
	_* <u>*</u>	th 1	un	way.	-	Date	
EDSP Program Manageme	III.	./	7				
Town Dallack	$\bigcap V_{\alpha}$	· 11-	100	0 ~ 0		Date 10-31-03	
Terri Pollock,	(1)	m of		WX-	_	Date 10-31-03	

EDSP Battelle QAM

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Linuron in Mazola Corn Oil

November 3, 2003

Prepared By:

Approved By:

Eric A. Crecelius, Ph.D.

Chemical Repository Manager

11/11/03

Richard M. Ecker

Date

ger Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology

Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Linuron in Mazola Corn Oil

Reviewed by: _

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03

Chemistry Report for WA 2-14 Linuron in Mazola Corn Oil

Parameter	Chemical
Compound Name	Linuron
CAS #	330-55-2
Central File No.	CF-1824
Initial Receipt Date	9/3/2002
Expiration Date	11/05
Manufacturer	ChemService, Inc.
Lot Number	273-81B
Battelle Study #	WA 2-14-02-02
Method	SW 846, 8316 Modified

Executive Summary

The chemical purity of linuron determined by the manufacturer was 99%. The purity analysis by Battelle Sequim using HPLC showed it to be 99.5% pure. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of linuron was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 15 weeks. Thus, stability testing of the linuron stock solution in corn oil was considered stable at the 10 mg/mL concentration for the required testing and holding period of 12 weeks.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on the target concentration ranged from 95% to 123%.

TABLE OF CONTENTS

	Pa	ge
1.0 1	INTRODUCTION	1
2.0	GENERAL METHODS	1
2	2.1 CHEMICAL PROCUREMENT	. 1
2	2.2 CHEMICAL PURITY	3
	2.3 PREPARATION OF STOCK MATRICES FOR STABILITY ANALYSIS	
	2.4 ANALYTICAL CHEMISTRY FOR STABILITY TESTING	
	2.5 STATISTICAL ANALYSIS OF STABILITY	
4	2.6 ANALYTICAL CHEMISTRY FOR IN-LIFE TESTING	. 4
3.0 1	RESULTS	5
3	3.1 CHEMICAL PURITY	. 5
	3.2 ANALYTICAL CHEMISTRY FOR STABILITY TESTING	
	3.3 STATISTICAL RESULTS OF STABILITY TRIAL	
3	3.4 CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES	. 5
4.0	CONCLUSIONS	7
APP	PENDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY A	1
APP	ENDIX B: PURITY AND STABILITY TESTING PLAN B.	1
APP	ENDIX C: ANALYTICAL RESULTS OF STABILITY TESTING	1
APP	PENDIX D: STATISTICAL REPORT	.1
	ENDIX E: CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES E.	
	LIST OF TABLES	
		ge
T-1.1	e 1. Chemical Procurement Information	_
	e 2. Stock Matrix Composition for Stability Testing	
Tabl	e 3. Summary of Statistical Results for Linuron	7
	LIST OF FIGURES	
	Pa	ge
Figu	re 1. EDSP Requisition Form for Linuron	2
	are 2. Observed Concentration of Linuron with a Target Concentration of 10,000,000 ng/mL	
-	Against Time	

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA 2-14-02-02, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of linuron (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_Linuron-cornoil.doc, PSTP_WA-2-14_Linuron-cornoil.doc, DSUM_WA2-14_Linuron-crnoil.xls, and DAF_WA-2-14_Linuron-cornoil.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, linuron, (CAS No. 330-55-2) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). Linuron was purchased from ChemService, Inc., and lot number 273-81B was initially received on 9/3/2002 with an expiration date of 11/05 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1824) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-02

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Linuron (MSL CF 1824)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 10 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Testing/holding duration: 12 weeks

Chemical Information

Chemical Name: Linuron

CAS: 330-55-2

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

Any known stability information: may refer to

attached documentation

Desired purity (%) for test? 95% or greater

99% pure

None available

Figure 1. EDSP Requisition Form for Linuron

Table 1. Chemical Procurement Information

Parameter	Chemical
Compound Name	Linuron
CAS#	330-55-2
Central File No.	CF-1824
Initial Receipt Date	9/3/2002
Expiration Date	11/05
Manufacturer	ChemService, Inc.
Lot Number	273-81B
Manufacturer's Purity	99%
Storage Conditions	Cool, dry place/room temp.
Battelle Study #	WA 2-14-02-02
Method	SW 846, 8316 Modified

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted on a high performance liquid chromatograph (HPLC) with ultraviolet (UV) absorbance at 250 nm by taking a solution of about 5000 ng/mL in 60% acetonitrile (ACN): 40% de-ionized water solution. This matrix was then run on the HPLC and the purity determined by comparing the peak heights of the peaks in the chromatogram. The purity was determined by first identifying the peaks in the chromatogram of the linuron that were the same as the peaks in the analysis of the blank sample. The areas associated with these common peaks were then eliminated by inhibiting integration and the remaining peaks were reported as a percentage of the total peak area. The percentage associated with the largest peak represented the purity of linuron. The HPLC was set up with an auto sampler and a column oven. The column oven temperature was set at 30°C, and the auto sampler was set to inject 250 μ L of the matrix. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. A stock solution was prepared to arrive at the chemical concentration requested for stability analysis (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

A linuron stock matrix was prepared on 10/24/02 for testing as described in Table 2. Briefly, for the 10 mg/mL linuron, 2.0 g of linuron were weighed into a 250 mL wide-mouth amber glass bottle and 184 g of Mazola corn oil were added to obtain the desired concentration. A stir bar was added, and the mixture was agitated on a stir plate. All solutions were transferred to ashed, amber bottles. Bottles were labeled and stored at $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for the duration of the test.

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA 2-14-02-02 12 Weeks	Linuron	10 mg/mL	1824-2a-2	2.0 g Linuron in 184 g Mazola corn oil

Density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentration was determined by chromatographic analysis. Triplicate aliquots were tested for the 10 mg/mL concentration. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

Stability testing of linuron was performed by removing the stock from the refrigerator, allowing it to warm to room temperature, and then removing triplicate 1 mL samples from the middle of the container. Each sample was placed in a tared 60 mL amber bottle, and the sample weight was determined gravimetrically. Next, 50 mL of ACN (JT Baker lot # 44836) were added and the container was agitated. Then, 0.01 mL was transferred to an auto sampler vial with 0.99 mL 60% ACN in water. This solution was analyzed on the HPLC using a UV/VIS detector at the 250 nm wavelength. A 60:40% ACN:water buffer was used as an effluent at 1.5 mL/min. Separation was attained using a Supelco PAH column (a C-18 column). Calibration was done using dilutions prepared from standard PP-1192 with a 5-point standard curve. HPLC run data were stored on computer WV04738. A multiplier of 5000 was used in the STAR software (50 mL ACN/ 0.01 mL sample). A corn oil blank was analyzed with the samples.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fit to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a HPLC purity scan on the linuron. Standard PP-1192A at 5000 ng/ml was run and compared to the blank. The area of the linuron peak was then compared to all the peaks in the chromatogram which have had the blank peak areas subtracted and a percent purity was determined by the percent the linuron peak contributed to the total peak area. The area of the linuron peak was 99.5% of the total area of all peaks in the chromatogram. Chemical purity of linuron determined by the manufacturer was 99% (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 10/25/02. Chemical concentration was determined 10 times between 10/25/02 and 01/17/03. The analytical and quality control (QC) results are presented in Appendix C. A single preparation blank was analyzed with every batch for quality control purposes. There were no detectable concentrations of linuron in the blanks. Continuing calibration verification (CCV) results ranged from 92.5% to 103%. Internal standards were not analyzed. The MDL was 247,900 ng/mL. The dilution factor of the formulation can be taken into account, and thus, the MDL of the diluted sample was 49.6 ng/mL.

Both lots of Mazola corn oil had peroxide numbers less than 3 meq/kg as required for biological testing (Appendix C). The average peroxide number in the Mazola corn oil was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide is consistent with the request that the oil have a peroxide number less than 3 meq/kg.

3.3 Statistical Results of Stability Trial

A plot of linuron with a target concentration of 10,000,000 ng/mL against time shows that all but one observation was greater than the target concentration (Figure 2). Therefore, the average day 0 concentration was tested for stability. Only one data point was less than 90% of the average day 0 concentration. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of linuron was expected to stay greater than or equal to 90% of the average day 0 concentration for up to an estimated 15 weeks (Table 3). Thus, this stock solution was considered stable for the required 12-week testing/holding period. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries for all doses based on target concentrations ranged from 95% to 123%. The complete analysis is presented in Appendix E.

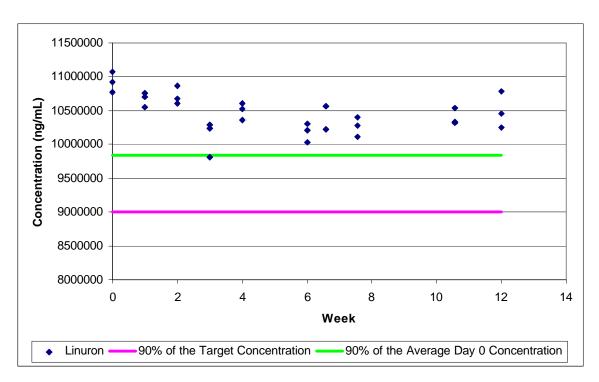


Figure 2. Observed Concentration of Linuron with a Target Concentration of 10,000,000 ng/mL Against Time

Table 3. Summary of Statistical Results for Linuron

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.	WA-2-14-02-02 1824-2a-2 Linuron
Average Day 0 Concentration (ng/mL)	10925553
Number of determinations	1
Number of weeks tested	12
Number of replicates per day	3
Number of outliers removed	0
Number of observations removed	0
Overall Mean Concentration	10472557
95% Upper CL	10559845
error degrees of freedom	29
1-sample t-test of Ho: μ >= Target	S ^a
estimated intercept of In(concentration) against time	16.1783
estimated slope of In(concentration) against time	-0.0027
standard error of slope	0.0012
error degrees of freedom	28
Significance test of lack-of-fit for final model	S
Significance test of Ho: b = 0 vs. H1: b ? 0	S
Lower 95% CL	-0.005
Upper 95% CL	0.000
Maximum Percent Loss (using LCL)	4.0%
Mean Percent Loss (using bhat)	2.1%
LN(90% of Target)	16.1013
Number of weeks until at 90% of Target (using LCL)	15
Conclusion:	Stable for 12 wks

^aSignificant at a = 0.05

4.0 CONCLUSIONS

According to the manufacturer, the purity of linuron was 99%; Battelle-Sequim determined linuron purity to be 99.5%. Stability testing of linuron in Mazola corn oil concluded that the chemical was stable at the 10 mg/mL concentration for a period of 12 weeks.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on target concentrations ranged from 95% to 123%.

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

600 Tower Lane • P.O. Box 599 • West Chaster, PA 19351-0599 1-800-452-9994 • 1-610-692-3026 • Fax 1-610-692-8729 into⊕chemservice.com • www.chamservice.com

CERTIFICATE OF ANALYSIS

INVOICE #: CS237091 PO #: 11180291EAC

CATALOG #: PS-372

CAS #: 330-55-2

DESCRIPTION: Linuron

LOT #: 273-81B

PURITY: 99%

EXPIRATION DATE: 11/05

Chem Service, Inc. guarantees the purity of this chemical \pm 0.5% deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, FTIR, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

John Conrad CSM/TC

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Linuron

Chemical Name: Linuron (MSL CF 1824)

CAS Number: 330-55-2

Lot Number: 273-81B stored at RT in MSL5, Rm 219

Expiration date: 11/05

Manufacturer's Purity Information: 99%

Manufacturer's Stability Information: none

MSL Purity Results:

Purity (%) To be determined at MSL by LC

MDL has not been determined.

Bioassay Information:

Study Director

Name: Dr. Julia George Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: Linuron

CAS: 330-55-2

Carrier(s): Mazola corn oil

Concentrations/Dilution Series: 10mg/mL

In vitro or in vivo tests? In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Testing/holding duration: 12 weeks

EDSP Purity Analysis and Stability Testing Plan for Linuron, continued

Design of Stability Test: 10 mg/mL in glass at 4 deg. C in the dark for 12 weeks, analyzed at least 8 times in triplicate

Number of replicates: 3

Duration: 12 weeks

Other factors:

Temperature regime(s): 4 deg. C

Test container type: glass

Light or dark: dark except when container is removed for sampling or handling

Other

Statistical testing: regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity

MSDS Records:

- date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-to-lot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- QC data reports;
- data qualifying flags; and
- Dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C1. Linuron Concentration in Mazola Corn Oil (ng/mL)

Target Concentration	Sample Name	Date	Linuron	Average	RSD	Recovery ¹
Blank	1824-2a-2 Blank 1	10/25/2002	247900 U			
10000000 ng/ml	1824-2a-2-1 R-1	10/25/2002	10919504			
10000000 ng/ml	1824-2a-2-1 R-2	10/25/2002	11081135	10925553	1.40%	109%
10000000 ng/ml	1824-2a-2-1 R-3	10/25/2002	10776021			
Blank	1824-2a-2 Blank 2	11/1/2002	247900 U			
10000000 ng/ml	1824-2a-2-2 R-1	11/1/2002	10700503			
10000000 ng/ml	1824-2a-2-2 R-2	11/1/2002	10752458	10670332	0.94%	107%
10000000 ng/ml	1824-2a-2-2 R-3	11/1/2002	10558034			
Blank	1824-2a-2 Blank 3	11/8/2002	247900 U			
10000000 ng/ml	1824-2a-2-3 R-1	11/8/2002	10674884			
10000000 ng/ml	1824-2a-2-3 R-2	11/8/2002	10868587	10715381	1.28%	107%
10000000 ng/ml	1824-2a-2-3 R-3	11/8/2002	10602671			
Blank	1824-2a-2 Blank 4	11/15/2002	247900 U			
10000000 ng/ml	1824-2a-2-4 R-1	11/15/2002	10291960			
10000000 ng/ml	1824-2a-2-4 R-2	11/15/2002	9812076	10115202	2.61%	101%
10000000 ng/ml	1824-2a-2-4 R-3	11/15/2002	10241571			
Blank	1824-2a-2 Blank 5	11/22/2002	247900 U			
10000000 ng/ml	1824-2a-2-5 R-1	11/22/2002	10365415			
10000000 ng/ml	1824-2a-2-5 R-2	11/22/2002	10601550	10498879	1.15%	105%
10000000 ng/ml	1824-2a-2-5 R-3	11/22/2002	10529671			
Blank	1824-2a-2 Blank 6	12/6/2002	247900 U			
10000000 ng/ml	1824-2a-2-6 R-1	12/6/2002	10036127			
10000000 ng/ml	1824-2a-2-6 R-2	12/6/2002	10216465	10187538	1.37%	102%
10000000 ng/ml	1824-2a-2-6 R-3	12/6/2002	10310022			
Blank	1824-2a-2 Blank 7	12/10/2002	247900 U			
10000000 ng/ml	1824-2a-2-7 R-1	12/10/2002	10227916			
10000000 ng/ml	1824-2a-2-7 R-2	12/10/2002	10572080	10455898	1.89%	105%
10000000 ng/ml	1824-2a-2-7 R-3	12/10/2002	10567697			
Blank	1824-2a-2 Blank 8	12/17/2002	247900 U			
10000000 ng/ml	1824-2a-2-8 R-1	12/17/2002	10399085			
10000000 ng/ml	1824-2a-2-8 R-2	12/17/2002	10112981	10262147	1.40%	103%
10000000 ng/ml	1824-2a-2-8 R-3	12/17/2002	10274375			
Blank	1824-2a-2 Blank 9	1/7/2003	247900 U			
10000000 ng/ml	1824-2a-2-9 R-1	1/7/2003	10329196			
10000000 ng/ml	1824-2a-2-9 R-2	1/7/2003	10319294	10396262	1.20%	104%
10000000 ng/ml	1824-2a-2-9 R-3	1/7/2003	10540296			
Blank	1824-2a-2 Blank 10	1/17/2003	247900 U			
10000000 ng/ml	1824-2a-2-10 R-1	1/17/2003	10252507			
10000000 ng/ml	1824-2a-2-10 R-2	1/17/2003	10781512	10498379	2.54%	105%
10000000 ng/ml	1824-2a-2-10 R-3	1/17/2003	10461118			

Recovery is relative to the target concentration U = Not detected at a value greater than the MDL

Table C.2. CCV Data for Linuron Concentration in Mazola Corn Oil

Commis Nome	Linuxan (na/ml)	Dagayamı	DD.
Sample Name	Linuron (ng/ml)	Recovery	PD
PP-1192C500ng/mlCCV	483	96.6%	3.38%
PP-1192C500ng/mICCV	489	97.8%	2.19%
PP-1192C500ng/mICCV	486	97.2%	2.85%
PP-1192C500ng/mICCV	489	97.8%	2.24%
PP-1192C500ng/mICCV	509	102%	1.82%
PP-1192C500ng/mICCV	517	103%	3.47%
PP-1192C500ng/mICCV	466	93.2%	6.83%
PP-1192C500ng/mICCV	462	92.5%	7.52%
PP-1192C500ng/mlCCV	482	96.3%	3.70%
PP-1192C500ng/mICCV	479	95.7%	4.28%
PP-1192C500ng/mICCV	474	94.8%	5.23%
PP-1192C500ng/mICCV	472	94.5%	5.54%
PP-1192C500ng/mICCV	479	95.8%	4.15%
PP-1192C500ng/mICCV	476	95.2%	4.78%
PP-1192C500ng/mICCV	477	95.3%	4.68%
PP-1192C500ng/mICCV	480	95.9%	4.07%
PP-1192C500ng/mlCCV	495	98.9%	1.05%
PP-1192C500ng/mICCV	492	98.4%	1.65%
PP-1192C500ng/mICCV	495	99.0%	0.98%
PP-1192C500ng/mICCV	490	98.0%	1.98%
PP-1192C500ng/mlCCV	494	98.8%	1.16%

Table C.3. Internal Standards Data for Linuron in Mazola Corn Oil

Sample Name	Date	Recovery

Not applicable

Table C.4. Peroxide Concentration in Mazola Corn Oil (meq/kg)

Sample	Analysis Date	Volume of Sodium Thiosulfate (mL)	Normality	Weight of Oil (g)	Peroxide Number	Average Peroxide Number	RSD
Blank	09/05/02	0.5	0.005	5.00	0.50		
Mazola Corn Oil Expiration 6-03 R-1 Mazola Corn Oil	09/05/02	1.9	0.005	5.01	1.90		
Expiration 6-03 R-2	09/05/02	1.8	0.005	5.36	1.68	1.77	6.41
Mazola Corn Oil Expiration 6-03 R-3	09/05/02	1.8	0.005	5.16	1.74		
Mazola Corn Oil Expiration 1-04 R-1 Mazola Corn Oil	09/05/02	1.2	0.005	4.92	1.22		
Expiration 1-04 R-2 Mazola Corn Oil	09/05/02	1.5	0.005	5.2	1.44	1.34	8.31
Expiration 1-04 R-3	09/05/02	1.4	0.005	5.13	1.36		

APPENDIX D STATISTICAL REPORT

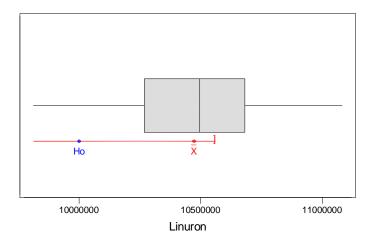
WA-2-14-02-02

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

6/3/2003 1:05:25 PM

Performs a one-sample t-test for mu less than 10,000,000

One-Sample T: Linuron


Test of mu = 10000000 vs mu < 10000000

Variable	N	Mean	StDev	SE Mean
Linuron	30	10472557	281376	51372
Variable	95.0%	Upper Bound	T	P
Linuron		10559845	9.20	1.000

t Boxplot of Linuron

Boxplot of Linuron

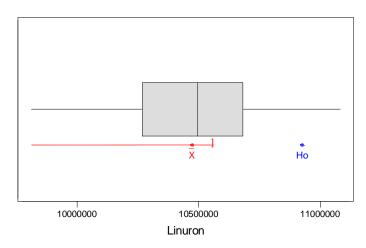
(with Ho and 95% t-confidence bound for the mean)

• All but one observation is less than the target concentration of 10,000,000 ng/mL. Therefore, test the average day 0 concentration for stability.

• Performs a one-sample t-test for mu less than the average day 0 concentration

What is the target value for X DATA> 10925553

One-Sample T: Linuron


Test of mu = 10925553 vs mu < 10925553

Variable	N	Mean	StDev	SE Mean	
Linuron	30	10472557	281376	51372	
Variable Linuron	95.0%	Upper Bound 10559845	T -8.82	P 0.000	,

t Boxplot of Linuron

Boxplot of Linuron

(with Ho and 95% t-confidence bound for the mean)

Outliers are < Median-3*IQD OR > Median+3*IQD

Boundary for outliers are values < 9258252 and > 11732537

No outliers

• Transforms data to natural log

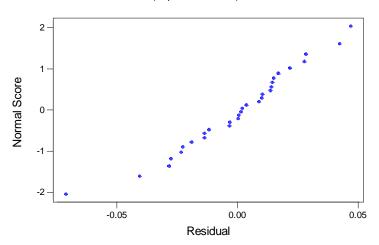
Week	Rep	Ln(Concentration
0	1	16.2061
0	2	16.2208
0	3	16.1928
1	1	16.1858
1	2	16.1906
1	3	16.1724
2	1	16.1834
2	2	16.2014
2	3	16.1766
3	1	16.1469
3	2	16.0991
3	3	16.1420
4	1	16.1540
4	2	16.1765
4	3	16.1697
6	1	16.1217
6	2	16.1395
6	3	16.1486
7	1	16.1406
7	2	16.1737
7	3	16.1733
8	1	16.1572
8	2	16.1293
8	3	16.1452
11	1	16.1505
11	2	16.1495
11	3	16.1707
12	1	16.1430
12	2	16.1933
12	3	16.1632

• Conducts Simple Linear Regression

Regression Analysis: Linuron versus Week

The regression equation is Linuron = 16.2 - 0.00267 Week

		SE Coef 0.0078 0.001177 15.5% F	T 2063.15 -2.27 R-Sq(adj) = 1	P 0.000 0.031 12.5%	*			
Analysis of Va	riance							
Source	DF	SS	MS	F	P			
Regression	1	0.0032525	0.0032525	5.14	0.031			
Residual Error	28	0.0177292	0.0006332					
Lack of Fit	8	0.0121294	0.0015162	5.42	0.001	**		
Pure Error	20	0.0055998	0.0002800					
Total	29	0.0209816						
Unusual Observations								

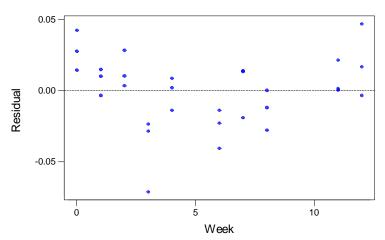

0bs Week Linuron SE Fit Residual St Resid Fit 3.0 16.0991 16.1703 0.0054 -0.0712 -2.90R 11 29 12.0 16.1933 16.1463 0.0090 0.0470 2.00R

R denotes an observation with a large standardized residual

Normplot of Residuals for Linuron

Normal Probability Plot of the Residuals

(response is Linuron)



Residuals from Linuron vs Week

Residuals Versus Week

(response is Linuron)

Curvature is apparent, however, a quadratic will not be fit.


```
Do you want to remove any data points? (yes OR no) n

Should a quadratic be fit? (yes OR no)
```

Power analysis for t-test of slope less than zero

Power and Sample Size

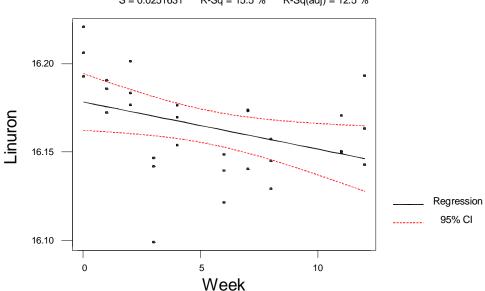
```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.0251631

Sample


Size Power Difference

28 0.9900 -0.0194
```

- That means we would detect a mean of 16.099 as significantly less than ln(10000000) = 16.118 or a change of 9807870 from 10000000 = 1.9% loss.
- Fit 95% confidence bands about the fitted simple linear model

Regression Plot

 $\label{eq:Linuron} \mbox{Linuron} = 16.1783 - 0.0026672 \mbox{ Week} \\ \mbox{S} = 0.0251631 \qquad \mbox{R-Sq} = 15.5 \mbox{ \%} \qquad \mbox{R-Sq(adj)} = 12.5 \mbox{ \%}$

Conclusion – stable for 12 weeks.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Linuron in-life test solution samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Linuron dissolved in corn oil

TEST SOLUTION, SAMPLE CUSTODY. AND PROCESSING: Test solution samples were prepared by the EDSP Chemical Repository, Sequim, WA, using linuron (CF 1824, Chem Service lot # 273-81B, expiration date 11/05) dissolved in Mazola corn oil (corn oil was from containers with the following expiration dates: 06/12/03, 01/01/04, and 04/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time.

Test solutions of linuron (CAS 330-55-2) supporting EDSP WA 2-14 were made on 1/22/03 at two test concentrations (10 mg/mL and 20 mg/mL) for male-only rat exposures. The 10 mg/mL concentration was prepared by weighing 2.0 g of linuron into a 250 mL, wide-mouth, amber glass bottle and adding 184 g corn oil to obtain the desired concentration. The 20 mg/mL concentration was prepared by weighing 4.0 g of linuron into a 250 mL, wide-mouth, amber glass bottle and adding 182 g corn oil to obtain the desired concentration. The samples were stirred and stored in a refrigerator prior to shipping. Samples were collected on 01/23/03 (Table 1) to verify the test concentrations. Replicate 1 samples were shipped on 01/23/03 and Replicate 2 and 3 samples were shipped on 01/27/03.

The test solution was sampled five times during the male test (01/26/03, 02/02/03, 02/09/03, 02/16/03, 02/23/03). Data are reported in Table 2. Table 3 provides results of analysis of remaining formulation samples after dosing to assess changes in test solution concentration from the beginning and end of the test.

Processing

Test Solution Samples for Concentration Verification Prior to Shipping: Test solution samples analyzed to verify test concentrations were stirred and 1 mL sampled from the middle of the container and transferred to a 60 mL, tared, amber glass bottle. Sample weight was determined gravimetrically. 50 mL acetonitrile (ACN, JT Baker lot # 448346) was added and the container agitated. Then, 0.01 mL (10 mg/mL concentration) or 0.005 mL (20 mg/mL concentration) was transferred to an auto sampler vial with either 0.99 mL or 0.995 mL, respectively of 60% ACN in water. This solution was analyzed on the high-performance liquid chromatograph (HPLC) using an ultraviolet/visible (UV/VIS) detector at the 250 nm wavelength. A 60:40% ACN:water (v:v) buffer was used as an eluent at 1.5 mL/min. Separation was attained using a Supelco petroleum aromatic hydrocarbon (PAH) column (a C-18 column). Calibration with a five-point curve was conducted using dilutions prepared from calibration standard PP-1192, A-E.

In-life and Returned Container Samples:

Samples were returned from RTI on 03/04/03 for male rat assays (received at Battelle, Sequim, WA, on 03/05/03). In-life samples and remaining formulation samples were removed from the refrigerator and allowed to warm to ambient room temperature. On 05/29/03, a 1.0 mL subsample from the containers was collected, placed in a tared, 60 mL, amber glass bottle, and the sample weight determined gravimetrically. 50 mL ACN (JT Baker lot # Y02820) was added. and the container vigorously agitated for two minutes. Then, 0.01 mL was transferred to an auto sampler vial with 0.99 mL 60% ACN in water. This solution was analyzed on the HPLC using a UV/VIS detector at the 250 nm wavelength. A 60:40% ACN:water (v:v) buffer was used as an eluent at 1.5 mL/min. Separation was attained using a Supelco PAH column (a C-18 column). Calibration with a five-point curve was conducted using dilutions prepared from calibration standard PP-1192, A-E. Calibrations from data collected on 04/24/03 were used, although a calibration set was analyzed with the batch of samples analyzed on 05/29/03. Blanks were run with each sample batch and an initial calibration verification (ICV) sample and a continuing calibration verification (CCV) sample were analyzed with each sample set. HPLC-run data are stored on computer WV04738. A corn-oil blank was analyzed with the samples.

SAMPLE ANALYSIS:

The samples were analyzed by a modified SW 846 method, 8316, using an HPLC with a UV/VIS detector at the 250 nm wavelength.

Data Quality Objectives	Control Limits
Procedural Blank	<5 X MDL
Continuing Standard Recovery	75% - 125%

OA/OC SUMMARY

METHODS: Modified SW 846 method, 8316, using an HPLC with a UV/VIS detector at the

250 nm wavelength.

CALIBRATION: Calibration with a five-point curve was conducted using dilutions prepared from

calibration standard PP-1192, A-E. Calibrations from data collected on 04/24/03 were used, although a calibration set was analyzed with the batch of samples

analyzed on 05/29/03.

CONTINUING STANDARD RECOVERY: Percent recovery results for two initial and three CCV samples analyzed with the in-life sample data set ranged from 96% to 101% with a mean recovery of 98%. There were no occurrences of recoveries exceeding the 75% to 125%

acceptability range.

BLANK: Linuron was not detected above the detection limit in the two blanks analyzed

with the test solution and in-life samples.

DETECTION LIMIT:

The linuron detection limit was 248 μ g/mL as determined by an MDL study using the low calibration standard (49.6 μ g/mL) reported with the data. No

data below this value were reported.

BLANK SPIKE Blank spike samples were not analyzed. SAMPLES:

REPLICATE The percent relative standard deviations (% RSDs) for the two test solutions

ANALYSIS: ranged from 1.81 to 1.83.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of Linuron Test Solution Concentrations Prepared on 01/22/2003 and Analyzed on 01/23/03

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	% RSD	% of Nominal
	Blank	0.248 U			
10 mg/mL	2-14-D-M R-1	10.3			
10 mg/mL	2-14-D-M R-2	10.7	10.5	1.81	105%
10 mg/mL	2-14-D-M R-3	10.5			
20 mg/mL	2-14-E-M R-1	19.7			
20 mg/mL	2-14-E-M R-2	20.3	20.1	1.83	101%
20 mg/mL	2-14-E-M R-3	20.4			

Table 2. Linuron In-life Sample Concentrations

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
1-26-03	3/5/03	5/29/03	10 mg/mL	1-26-03 D-M	12.3	123%
2-2-03	3/5/03	5/29/03	10 mg/mL	2-2-03 D-M	10.2	102%
2-9-03	3/5/03	5/29/03	10 mg/mL	2-9-03 D-M	10.8	108%
2-16-03	3/5/03	5/29/03	10 mg/mL	2-16-03 D-M	9.90	99%
2-23-03	3/5/03	5/29/03	10 mg/mL	2-23-03 D-M	10.4	104%
1-26-03	3/5/03	5/29/03	20 mg/mL	1-26-03 E-M	19.4	97%
2-2-03	3/5/03	5/29/03	20 mg/mL	2-2-03 E-M	19.0	95%
2-9-03	3/5/03	5/29/03	20 mg/mL	2-9-03 E-M	19.7	99%
2-16-03	3/5/03	5/29/03	20 mg/mL	2-16-03 E-M	19.8	99%
2-23-03	3/5/03	5/29/03	20 mg/mL	2-23-03 E-M	21.2	106%

Table 3. Linuron Post-Test Sample Concentrations for Formulations Returned to Battelle from RTI

Date Sample Prepared	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
1/22/03	3/5/03	5/29/03	10 mg/mL	Rec. 2-14-D-M Rep-3	11.9	119%
1/22/03	3/5/03	5/29/03	20 mg/mL	Rec. 2-14-E-M Rep-3	19.4	97%

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: WA 2-14				DATE: 10/30/03			
DEVIATION NUMBER: WA 2-14-D-003;				WAL/STUDY DIRECTOR: Michael Blanton/			
Atrazine, DDE, Methoxychl	zine, DDE, Methoxychlor,			Eric Cr			
phenobarbital, propylthioura							
ketoconazole, Linuron, fena							
NOTEBOOK NUMBER: NA							
TITLE OF STUDY: WA 2-14							
QAPP/PROTOCOL ID:							
DEVIATION RELATING TO)·			<u> </u>			
[] QAPP	,. []	QMP		T	ГТ	Protocol	
[] SOP	- 	Metho	. d		[] [V]		
bd					[X]	Miscellaneous Documentation	
ORIGINAL DOCUMENT SE							
						nulations was determined to be	
adequate for the period of t	ıme tr	nat animals	would	be dose	ed.		
			zed wi	thin the	stabil	ity time determined during the	
testing of the stability of the	form	ulation.					
						be within the acceptable target	
				es and w	ere u	sed within the known stability	
time periods determined for	each	formulation	٦.				
DD0D005D 00DD50TW							
				DULE F	OR C	OMPLETION: No corrective	
action is required beyond th	iis do	cumentation	า.				
10TIONS TO DDE (ENT D							
		RRENCE: U	Ipper	manage	ment	will review testing schedules for	
return shipments and analy	sis.						
Annanal							
Approval:					_		
Maria I Di T	_	11/	<i>ر</i> _ ہ	7/4	\leftarrow	21 21 22	
Michael Blanton,		Jungo	<u> </u>	Sulm	حمي	Date 11/3/03	
WAL	_	\sim				•	
-	()). []	0	٠		Date 11/3/03	
Eric Crecelius,	<u></u>	u he	ceri	us		Date	
Study Director						/ /	
Chemical Repository							
		0					
Deborah Coffey,	6	1. /		11		1 ,	
MSL QA Manager	/\	/Wodan		sal las	/	Date	
Ğ				7	(
	•	_			,		
Richard Ecker,	/	m Z	0	•		Date ///3/03	
MSL Laboratory Director	4	111 6	nu		-	Date	
WOL Laboratory Director		0 -	_				
David Houchens,		1:11-7	1	6		Date /0/3//03	
	_* <u>*</u>	th 1	un	way.	-	Date	
EDSP Program Manageme	III.	./	7				
Town Dallack	$\bigcap V_{\alpha}$	· 11-	100	0 ~ 0		Date 10-31-03	
Terri Pollock,	(1)	m or		$\omega \lambda$	_	Date 10-31-03	

EDSP Battelle QAM

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Methoxychlor in Mazola Corn Oil

November 10, 2003

Prepared By:

Approved By:

Chemical Repository Manager

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Methoxychlor in Mazola Corn Oil

Reviewed by:

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03

Chemistry Report for WA 2-14 Methoxychlor in Mazola Corn Oil

Parameter	Chemical
Compound Name	Methoxychlor
CAS#	72-43-5
Central File No.	CF-1839
Initial Receipt Date	6/13/02
Expiration Date	4/2006
Manufacturer	Sigma
Lot Number	049H1328
Battelle Study #	WA 2-14-02-01
Method	SW 846, 8015B Modified

Executive Summary

The chemical purity of methoxychlor determined by the manufacturer was 95.2%. The purity result from Battelle-Sequim by GC-FID was determined to be 89.7%. Two concentrations of methoxychlor, 5 and 10 mg/mL, were tested for stability in corn oil. Observed concentrations for both tests dropped below 90% of the target concentration within 0 to 7 days after initiation of the stability trial. Thus, the average day 0 concentration was used as the target concentration for testing stability. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of methoxychlor was expected to stay greater than or equal to 90% of the average day 0 concentration for up to an estimated 35 to 40 days. Thus, stability testing of the methoxychlor stock solution in corn oil was considered stable at the 5 and 10 mg/mL concentrations for the biological test duration of 4.5 weeks.

Mazola corn oil (expiration dates 4-03 and 9-03) was purchased on 9-04-01 and 6-17-02 from local grocery stores, Mark and Pack and Quality Foods Center respectively, to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentration was measured on 6-17-02 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn oil with an expiration date of 4-03 was 2.07 meq/kg (RSD = 5.9%). The average peroxide number in the Mazola corn oil with an expiration date of 9-03 was 1.38 meq/kg (RSD = 7.8%). This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on the target concentration ranged from 90% to 109%.

TABLE OF CONTENTS

Pag	ţе
1.0 INTRODUCTION	.1
2.0 GENERAL METHODS	.1
2.1 CHEMICAL PROCUREMENT	3 4 4
3.0 RESULTS	
3.1 CHEMICAL PURITY	5 5 5
4.0 CONCLUSIONS	.7
APPENDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY	l l 1
LIST OF TABLES	
Pag	ge
Table 1. Chemical Procurement Information	3
Table 2. Stock Matrix Composition for Stability Testing	4
Table 3. Summary of Statistical Results for Methoxychlor	
LIST OF FIGURES	
Pag	gе
Figure 1. EDSP Requisition Form for Methoxychlor	2
Figure 2. Observed Concentration of Methoxychlor with a Target Concentration of 5,000 µg/mL (A) and 10,000 µg/mL (B) Against Time	

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA 2-14-02-01, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of methoxychlor (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_Methoxychlor-cornoil.doc, PSTP_ WA-2-14_Methoxychlor-cornoil.doc, DSUM_ WA-2-10_2-14_2-23.xls, and DAF_WA-2-10_2-14_2-23.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, methoxychlor, (CAS No. 72-43-5) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). Methoxychlor was purchased from Sigma and lot number 049H1328 was initially received on 6/13/02 with an expiration date of 4/2006 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1839) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Corn oil (expiration dates 4-03 and 9-03) was purchased on 9-04-01 and 6-17-02 from local grocery stores, Mark and Pack and Quality Foods Center respectively, to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentration was measured on 6-17-02 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-01

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Methoxychlor (MSL CF 1839)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 5 mg/mL and 10 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Planned/proposed test duration: 4.5 weeks

Chemical Information

Chemical Name: Methoxychlor

CAS: 72-43-5

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

Any known stability information: may refer to

attached documentation

Desired purity (%) for test? 95% or greater

95.2% pure

Manufacturer's Stability Information:

stable

Figure 1. EDSP Requisition Form for Methoxychlor

Table 1. Chemical Procurement Information

Parameter	Chemical
Compound Name	Methoxychlor
CAS#	72-43-5
Central File No.	CF-1839
Initial Receipt Date	6/13/02
Expiration Date	4/2006
Manufacturer	Sigma
Lot Number	049H1328
Manufacturer's Purity	95.2%
Storage Conditions	Cool, dry place/room temp.
Battelle Study #	WA 2-14-02-01
Method	SW 846, 8015B Modified

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak, and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted by making a solution in hexane of about $100 \,\mu g/mL$. This matrix was then run on a gas chromatograph with a flame ionization detector (GC-FID). A hexane blank was also run on the GC-FID. The purity was determined by first identifying the peaks in the chromatogram of the methoxychlor that were the same as the peaks in the analysis of the blank hexane sample. The areas associated with these common peaks were then eliminated by inhibiting integration and the remaining peaks were reported as a percentage of the total peak area. The percentage associated with the largest peak represented the purity of methoxychlor. The GC was set up with an auto sampler and a $30 \,\mathrm{m} \times 0.25 \,\mathrm{mm}$, DB-5 capillary column. The temperature program was set to start at $50 \,^{\circ}\mathrm{C}$, and ramped at $20 \,^{\circ}\mathrm{C/min}$ to a final temperature of $320 \,^{\circ}\mathrm{C}$. The injection port temperature was set at $270 \,^{\circ}\mathrm{C}$ and detector at $320 \,^{\circ}\mathrm{C}$. The auto sampler was set to inject $1 \,\mu\mathrm{L}$ of the matrix dilution. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. Stock solutions were prepared to arrive at the chemical concentrations requested for stability analyses (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

Methoxychlor stock matrices were prepared on 6-18-02 for testing as described in Table 2. Briefly, for the 5 mg/mL methoxychlor, 0.2518 g was weighed into a 50 mL Class A volumetric flask and corn oil was added to the 50 mL mark. The solution was agitated by hand shaking for approximately five minutes until all of the methoxychlor was dissolved. For the

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA 2-14-02-01 12 Weeks	Methoxychlor	5 mg/mL	1839-1a-1	0.2518 g in 50 mL corn oil
	Methoxychio	10 mg/mL	1839-1a-2	0.5006 g in 50 mL corn oil

10 mg/mL methoxychlor, 0.5006 g was weighed into a 50 mL Class A volumetric flask and corn oil was added to the mark. The solution was agitated in a similar manner until all of the chemical was dissolved. All solutions were transferred to ashed, amber bottles. Bottles were labeled and stored at $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for the duration of the test.

Density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentration was determined by chromatographic analysis. Triplicate aliquots of each concentration were tested. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

Methoxychlor stock solution was sampled by weighing ~1 g of sample into a 30 mL amber, ashed vial and adding 25 mL of hexane using a volumetric pipette. For samples 1839-1a-1 and 1839-1a-2 analysis was then conducted by adding 0.1 mL of the hexane solution and 0.02 mL of internal standard, 5a androstane, and 0.88 mL of hexane to the GC auto sampler vial. A corn oil blank was prepared the same way. This solution was then run on the GC-FID for quantification. The major peak determined during the purity analysis of methoxychlor was used for this analysis. Continuing calibration verification (CCV) samples were analyzed to demonstrate on-going calibration accuracy.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fit to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a GC-FID purity scan on the methoxychlor. The chromatogram, after solvent blank correction, showed one large peak that had the appropriate retention time for methoxychlor and several very small peaks. The area of the methoxychlor peak was 89.7% of the total area of all peaks in the chromatogram. Chemical purity of methoxychlor determined by the manufacturer was 95.2% (Appendix A). The observed difference in purity results may be due to the difference in methods.

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 6-18-02. Chemical concentration was determined 11 times over a period of 12 weeks. The analytical and QC results are presented in Appendix C. A single preparation blank was analyzed with every batch for quality control purposes. There were no detectable concentrations of methoxychlor in the blanks. CCV results ranged from 87.4% to 112%. Internal standards were analyzed with each sample and these results ranged from 97.7% to 111%. The MDL was 115 $\mu g/mL$.

Both lots of Mazola corn oil had peroxide numbers less than 3 meq/kg as required for biological testing (Appendix C). The average peroxide number in the Mazola corn oil with an expiration date of 4-03 was 2.07 meq/kg (RSD = 5.9%). The average peroxide number in the Mazola corn oil with an expiration date of 9-03 was 1.38 meq/kg (RSD = 7.8%).

3.3 Statistical Results of Stability Trial

A plot of methoxychlor with a target concentration of 5,000 μ g/mL against time shows a significant decline in concentration (Figure 2). All data points were less than 90% of the target concentration after three weeks. Thus, the average day 0 concentration of 4673 μ g/mL was tested for stability. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of methoxychlor was expected to stay greater than or equal to 90% of the average day 0 concentration for up to an estimated 40 days (Table 3). Thus, this stock solution was considered stable for the biological test duration of 4.5 weeks. The complete statistical analysis is presented in Appendix D.

All observations of methoxychlor with a target concentration of $10,000~\mu g/mL$ were less than 90% of the target concentration after four weeks. Again, the average day 0 concentration of 9027 $\mu g/mL$ was tested for stability (Figure 2). Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of methoxychlor was expected to stay greater than or equal to 90% of the average day 0 concentration for an estimated 35 days (Table 3). Thus, this stock solution was considered stable for the biological test duration of 4.5 weeks. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries for all doses based on target concentrations ranged from 90% to 109%. The complete analysis is presented in Appendix E.

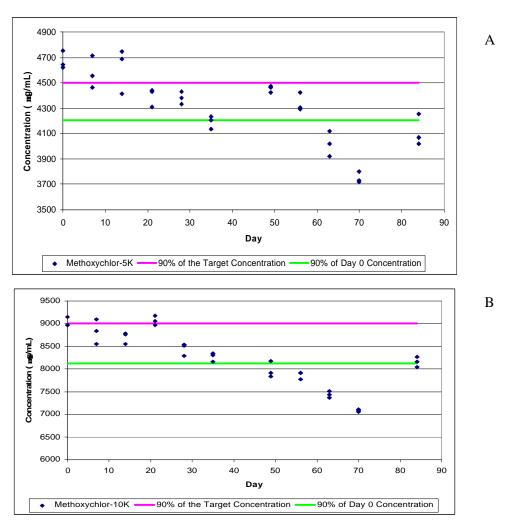


Figure 2. Observed Concentration of Methoxychlor with a Target Concentration of 5,000 ng/mL (A) and 10,000 ng/mL (B) Against Time

Table 3. Summary of Statistical Results for Methoxychlor

WA 2-14-02-01 Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.	1839-1a-1 Methoxychlor-5K	1839-1a-2 Methoxychlor-10K
Target Concentration (μg/mL)	5000	10000
Number of determinations	1	1
Number of days tested	84	84
Number of replicates per day	3	3
Number of outliers removed	0	0
Number of observations removed	0	0
Overall Mean Concentration	4319	8259
95% Upper CL	4402	8445
error degrees of freedom	32	32
1-sample t-test of Ho: μ >= Target	s ^a	S
estimated intercept of In(concentration) against time	8.4447	9.1075
estimated slope of In(concentration) against time	-0.0020	-0.0024
standard error of slope	0.0003	0.0003
error degrees of freedom	31	31
Significance test of lack-of-fit for final model	S	S
Significance test of Ho: $\beta = 0$ vs. H1: $\beta = 0$	S	S
Lower 95% CL of β	-0.003	-0.003
Upper 95% CL of β	-0.001	-0.002
Maximum Percent Loss (using LCL)	2.0%	2.4%
Mean Percent Loss (using bhat)	1.6%	1.9%
LN(90% of Target)	8.4118	9.1050
Number of days until at 90% of Target (using LCL)	13	1
Conclusion using Target Concentration:	Stable for 1 wks	Stable for 0 wks
Average Day O Concentration	4672	0027
Average Day 0 Concentration	4673	9027
LN(90% of Day 0 Concentration) Number of days until at 90% of Day 0 Concentration (using	8.3441	9.0026
LCL)	40	35
Conclusion using Day 0 Concentration:	Stable for 4.5 wks	Stable for 4.5 wks

^a Significant at $\alpha = 0.05$

4.0 CONCLUSIONS

The stated purity of methoxychlor by the manufacturer was 95.2%; Battelle-Sequim determined the compound to be 89.7% pure. Stability testing of methoxychlor in corn oil concluded that the chemical was stable at the 5 mg/mL and 10 mg/mL concentrations for the required biological testing duration of 4.5 weeks when compared to the average day 0 concentration, but not the nominal concentration.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on target concentrations ranged from 90% to 109%.

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

CF#1839

Certificateof**Analysis**

LOT (049H1320) RESULTS Methoxychlor

Product Name Product Number CAS Number Formula

M1501 72435 C16H16Cl3O2 345.7

Formula Weight

APPEARANCE LIGHT ORANGE POWDER WITH A LIGHT TAN CAST

SOLUBILITY CLEAR FAINT YELLOW SOLUTION AT 200 MG PLUS 4.0 ML OF ETHANOL

IR SPECTRUM CONSISTENT WITH STRUCTURE

PURITY BY GAS CHROMATOGRAPHY QC ACCEPTANCE DATE APRIL 1999

David Feldker, Manager Analytical Services

EDSP Work Assignment 2-14: Methoxychlor

1 of 1

06/18/2002 9:35 AM

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Methoxychlor

Chemical Name: Methoxychlor (MSL CF Login 1839)

CAS Number: 72-43-5

Lot Number: 049H1328, 2 100g bottles, stored at RT in Bldg5 Rm 219

Expiration date: 4/06

Manufacturer's Purity Information: 95.2%

Manufacturer's Stability Information: stable

MSL Purity Results:

Purity (%) To be determined at MSL by GC-FID scan

MDL has not been determined.

Bioassay Information: Pesticide LD50 (oral rat) 6000 mg/kg

Study Director

Name: Dr. Julia George

Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: Methoxychlor

CAS: 72-43-5

Carrier(s): Mazola corn oil

Concentrations/Dilution Series: 5 and 10 mg/mL

Below MDL determined in Purity Analysis?

In vitro or in vivo tests? In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Planned/Proposed test duration: 4.5 weeks

EDSP Purity Analysis and Stability Testing Plan for Methoxychlor continued

Design of Stability Test: 5 and 10 mg/mL in glass at 4 deg. C in the dark for 12 weeks, analyzed weekly in triplicate by GC detector

Number of replicates: 3

Duration: 12 weeks, sampling each week

Other factors:

Temperature regime(s): 4 deg. C

Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity MSDS

Records:

- date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-tolot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- QC data reports;
- data qualifying flags; and
- dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C1. Methoxychlor concentration in Mazola Corn Oil $(\mu g/mL)$

Target Conc.	Sample ID	Date	Methoxychlor	Average	RSD	Recovery ¹
5000 ug/ml	1839-1a-1-1 R-1	6/18/2002	4641			
5000 ug/ml	1839-1a-1-1 R-2	6/18/2002	4754	4673	1.51%	93.5%
5000 ug/ml	1839-1a-1-1 R-3	6/18/2002	4623			
10000 ug/ml	1839-1a-2-1 R-1	6/18/2002	8966			
10000 ug/ml	1839-1a-2-1 R-2	6/18/2002	8967	9027	1.16%	90.3%
10000 ug/ml	1839-1a-2-1 R-3	6/18/2002	9147			
blank	Corn Oil (T=0)	6/19/2002	115 U			
5000 ug/ml	1839-1a-1-2 R-1	6/25/2002	4558			
5000 ug/ml	1839-1a-1-2 R-2	6/25/2002	4716	4579	2.80%	91.6%
5000 ug/ml	1839-1a-1-2 R-3	6/25/2002	4462			
10000 ug/ml	1839-1a-2-2 R-1	6/25/2002	8550			
10000 ug/ml	1839-1a-2-2 R-2	6/25/2002	9101	8830	3.12%	88.3%
10000 ug/ml	1839-1a-2-2 R-3	6/25/2002	8840			
blank	Corn Oil (week 1)	6/25/2002	115 U			
5000 ug/ml	1839-1a-1-3 R-1	7/2/2002	4414			
5000 ug/ml	1839-1a-1-3 R-2	7/2/2002	4688	4617	3.86%	92.3%
5000 ug/ml	1839-1a-1-3 R-3	7/2/2002	4748			
10000 ug/ml	1839-1a-2-3 R-1	7/2/2002	8554			
10000 ug/ml	1839-1a-2-3 R-2	7/2/2002	8788	8701	1.47%	87.0%
10000 ug/ml	1839-1a-2-3 R-3	7/2/2002	8760			
blank	Corn Oil (week 2)	7/2/2002	115 U			
5000 ug/ml	1839-1a-1-4 R-1	7/9/2002	4432			
5000 ug/ml	1839-1a-1-4 R-2	7/9/2002	4310	4394	1.66%	87.9%
5000 ug/ml	1839-1a-1-4 R-3	7/9/2002	4441			
10000 ug/ml	1839-1a-2-4 R-1	7/9/2002	9058			
10000 ug/ml	1839-1a-2-4 R-2	7/9/2002	9171	9063	1.16%	90.6%
10000 ug/ml	1839-1a-2-4 R-3	7/9/2002	8961			
blank	Corn Oil (week 3)	7/9/2002	115 U			
5000 ug/ml	1839-1a-1-5 R-1	7/16/2002	4333			
5000 ug/ml	1839-1a-1-5 R-2	7/16/2002	4428	4381	1.08%	87.6%
5000 ug/ml	1839-1a-1-5 R-3	7/16/2002	4383			
10000 ug/ml	1839-1a-2-5 R-1	7/16/2002	8506			
10000 ug/ml	1839-1a-2-5 R-2	7/16/2002	8284	8444	1.65%	84.4%
10000 ug/ml	1839-1a-2-5 R-3	7/16/2002	8541			
blank	Corn Oil (week 4)	7/16/2002	115 U			
5000 ug/ml	1839-1a-1-6 R-1	7/23/2002	4132			
5000 ug/ml	1839-1a-1-6 R-2	7/23/2002	4205	4190	1.23%	83.8%
5000 ug/ml	1839-1a-1-6 R-3	7/23/2002	4232			
10000 ug/ml	1839-1a-2-6 R-1	7/23/2002	8302			
10000 ug/ml	1839-1a-2-6 R-2	7/23/2002	8156	8267	1.19%	82.7%
10000 ug/ml	1839-1a-2-6 R-3	7/23/2002	8344			
blank	Corn Oil (week 5)	7/23/2002	115 U			
5000 ug/ml	1839-1a-1-7 R-1	8/6/2002	4475			
5000 ug/ml	1839-1a-1-7 R-2	8/6/2002	4461	4453	0.61%	89.1%
5000 ug/ml	1839-1a-1-7 R-3	8/6/2002	4423			
10000 ug/ml	1839-1a-2-7 R-1	8/6/2002	7841			
10000 ug/ml	1839-1a-2-7 R-2	8/6/2002	7913	7975	2.18%	79.8%
10000 ug/IIII						

Table C1. continued

Target Conc.	Sample ID	Date	Methoxychlor	Average	RSD	Recovery ¹
blank	Corn Oil (week 7)	8/6/2002	115 U			
5000 ug/ml	1839-1a-1-8 R-1	8/13/2002	4295			
5000 ug/ml	1839-1a-1-8 R-2	8/13/2002	4302	4340	1.65%	86.8%
5000 ug/ml	1839-1a-1-8 R-3	8/13/2002	4423			
10000 ug/ml	1839-1a-2-8 R-1	8/13/2002	7775			
10000 ug/ml	1839-1a-2-8 R-2	8/13/2002	7916	7867	1.02%	78.7%
10000 ug/ml	1839-1a-2-8 R-3	8/13/2002	7910			
blank	Corn Oil (week 8)	8/13/2002	115 U			
5000 ug/ml	1839-1a-1-9 R-1	8/20/2002	4116			
5000 ug/ml	1839-1a-1-9 R-2	8/20/2002	3922	4018	2.41%	80.4%
5000 ug/ml	1839-1a-1-9 R-3	8/20/2002	4017			
10000 ug/ml	1839-1a-2-9 R-1	8/20/2002	7507			
10000 ug/ml	1839-1a-2-9 R-2	8/20/2002	7363	7434	0.97%	74.3%
10000 ug/ml	1839-1a-2-9 R-3	8/20/2002	7430			
blank	Corn Oil (week 9)	8/20/2002	115 U			
5000 ug/ml	1839-1a-1-10 R-1	8/27/2002	3731			
5000 ug/ml	1839-1a-1-10 R-2	8/27/2002	3719	3750	1.18%	75.0%
5000 ug/ml	1839-1a-1-10 R-3	8/27/2002	3801			
10000 ug/ml	1839-1a-2-10 R-1	8/27/2002	7057			
10000 ug/ml	1839-1a-2-10 R-2	8/27/2002	7087	7085	0.39%	70.9%
10000 ug/ml	1839-1a-2-10 R-3 Corn Oil (week	8/27/2002	7111			
blank	10)	8/27/2002	115 U			
5000 ug/ml	1839-1a-1-12 R-1	9/10/2002	4022			
5000 ug/ml	1839-1a-1-12 R-2	9/10/2002	4067	4115	3.01%	82.3%
5000 ug/ml	1839-1a-1-12 R-3	9/10/2002	4255			
10000 ug/ml	1839-1a-2-12 R-1	9/10/2002	8263			
10000 ug/ml	1839-1a-2-12 R-2	9/10/2002	8047	8157	1.33%	81.6%
10000 ug/ml	1839-1a-2-12 R-3 Corn Oil (week	9/10/2002	8160			
blank	12)	9/10/2002	115 U			

Recovery is relative to the target concentration
U = Not detected at a value greater than the MDL

Table C.2. CCV Data for Methoxychlor Concentration in Mazola Corn Oil

Time	Sample Name	Methoxychlor (mg/mL)	Recovery	PD
T=0	EDSP Mix1 5 ug/ml	4.81	96.2%	3.8%
	EDSP Mix1 5 ug/ml	5.16	103%	3.2%
	EDSP Mix1 5 ug/ml	5.12	102%	2.4%
	EDSP Mix1 5 ug/ml	5.10	102%	2.0%
Week 1	EDSP Mix1 5 ug/ml	4.94	98.8%	1.2%
	EDSP Mix1 5 ug/ml	5.06	101%	1.2%
	EDSP Mix1 5 ug/ml	5.08	102%	1.6%
	EDSP Mix1 5 ug/ml	5.07	101%	1.4%
Week 2	EDSP Mix1 5 ug/ml	4.99	100%	0.2%
	EDSP Mix1 5 ug/ml	5.02	100%	0.4%
	EDSP Mix1 5 ug/ml	4.94	98.8%	1.2%
	EDSP Mix1 5 ug/ml	4.97	99.4%	0.6%
Week 3	EDSP Mix1 5 ug/ml	5.00	100%	0.0%
	EDSP Mix1 5 ug/ml	5.13	103%	2.6%
	EDSP Mix1 5 ug/ml	5.05	101%	1.0%
	EDSP Mix1 5 ug/ml	5.07	101%	1.4%
	EDSP Mix1 5 ug/ml	4.88	97.6%	2.4%
Week 4	EDSP Mix1 5 ug/ml	4.85	97.0%	3.0%
	EDSP Mix1 5 ug/ml	5.03	101%	0.6%
	EDSP Mix1 5 ug/ml	4.95	99.0%	1.0%
	EDSP Mix1 5 ug/ml	4.97	99.4%	0.6%
Week 5	EDSP Mix1 5 ug/ml	5.00	100%	0.0%
	EDSP Mix1 5 ug/ml	4.80	96.0%	4.0%
	EDSP Mix1 5 ug/ml	4.67	93.4%	6.6%
	EDSP Mix1 5 ug/ml	4.48	89.6%	10.4%
Week 7	EDSP Mix1 5 ug/ml	4.93	98.6%	1.4%
	EDSP Mix1 5 ug/ml	5.25	105%	5.0%
	EDSP Mix1 5 ug/ml	5.62	112%	12.4%
	EDSP Mix1 5 ug/ml	5.52	110%	10.4%
Week 8	EDSP Mix1 5 ug/ml	4.86	97.2%	2.8%
oon o	EDSP Mix1 5 ug/ml	5.31	106%	6.2%
	EDSP Mix1 5 ug/ml	5.30	106%	6.0%
	EDSP Mix1 5 ug/ml	5.47	109%	9.4%
Week 9	EDSP Mix1 5 ug/ml	4.61	92.2%	7.8%
WCCK 5	EDSP Mix1 5 ug/ml	4.84	96.8%	3.2%
	EDSP Mix1 5 ug/ml	4.93	98.6%	1.4%
	EDSP Mix1 5 ug/ml		100%	0.2%
Week 10	EDSP Mix1 5 ug/ml	5.01	87.4%	
Week 10	EDSP Mix1 5 ug/ml	4.37		12.6%
	•	4.50	90.0%	10.0%
	EDSP Mix1 5 ug/ml	4.53	90.6%	9.4%
W 46	EDSP Mix1 5 ug/ml	4.54	90.8%	9.2%
Week 12	EDSP Mix1 5 ug/ml	4.75	95.0%	5.0%
	EDSP Mix1 5 ug/ml	4.95	99.0%	1.0%
	EDSP Mix1 5 ug/ml	4.97	99.4%	0.6%
	EDSP Mix1 5 ug/ml	4.96	99.2%	0.8%

Calibration Standard EDSP Mix 1

Calibrations were performed using a five-point calibration curve labeled EDSP Mix 1 A thru E. This mix is used for Atrazine, Fenarimol, p,p'-DDE, Methoxychlor and Vinclozolin analyzed by GC-FID. These standards were made by serial dilutions of standards for each compound.

- Atrazine standard was made by weighing 0.0499 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with Methylene chloride and labeled 1826-1-1.
- Fenarimol standard was made by weighing 0.0506 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1829B-1.
- p,p'-DDE standard was made by weighing 0.0501 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1832-1a-1.
- Methoxychlor standard was made by weighing 0.0513 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1808-1-3.
- Vinclozolin standard was made by weighing 0.0512 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1779-78.

This analysis used an internal standard, in this case 5a androstane, which is made by weighing 0.0511 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane, this is then labeled REP7.

The EDSP Mix 1 series (A through E) was made as follows.

- Solution A, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 0.02 ml REP7 added to a 10 ml volumetric flask and diluted to the mark with hexane.
- Solution B, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane
- Solution C, 0.25 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane.
- Solution D, 0.1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.
- Solution E, 0.05 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.

Table C.3. Internal Standards Data for Methoxychlor in Mazola Corn Oil

Sample Name	Date	5A Androstane Recovery
1839-1a-1-1 R-1	6/18/2002	105%
1839-1a-1-1 R-2	6/18/2002	103%
1839-1a-1-1 R-3	6/18/2002	105%
1839-1a-2-1 R-1	6/18/2002	105%
1839-1a-2-1 R-2	6/18/2002	107%
1839-1a-2-1 R-3	6/18/2002	108%
1839-1a-1-2 R-1	6/25/2002	101%
1839-1a-1-2 R-2	6/25/2002	105%
1839-1a-1-2 R-3	6/25/2002	104%
1839-1a-2-2 R-1	6/25/2002	104%
1839-1a-2-2 R-2	6/25/2002	102%
1839-1a-2-2 R-3	6/25/2002	103%
1839-1a-1-3 R-1	7/2/2002	104%
1839-1a-1-3 R-2	7/2/2002	97.7%
1839-1a-1-3 R-3	7/2/2002	100%
1839-1a-2-3 R-1	7/2/2002	104%
1839-1a-2-3 R-2	7/2/2002	102%
1839-1a-2-3 R-3	7/2/2002	102%
1839-1a-1-4 R-1	7/9/2002	103%
1839-1a-1-4 R-2	7/9/2002	103%
1839-1a-1-4 R-3	7/9/2002	101%
1839-1a-2-4 R-1	7/9/2002	99.4%
1839-1a-2-4 R-2	7/9/2002	98.5%
1839-1a-2-4 R-3	7/9/2002	98.7%
1839-1a-1-5 R-1	7/16/2002	107%
1839-1a-1-5 R-2	7/16/2002	105%
1839-1a-1-5 R-3	7/16/2002	104%
1839-1a-2-5 R-1	7/16/2002	103%
1839-1a-2-5 R-2	7/16/2002	110%
1839-1a-2-5 R-3	7/16/2002	103%
1839-1a-1-6 R-1	7/23/2002	107%
1839-1a-1-6 R-2	7/23/2002	105%
1839-1a-1-6 R-3	7/23/2002	105%
1839-1a-2-6 R-1	7/23/2002	106%
1839-1a-2-6 R-2	7/23/2002	103%
1839-1a-2-6 R-3	7/23/2002	106%
1839-1a-1-7 R-1	8/6/2002	102%
1839-1a-1-7 R-2	8/6/2002	102%
1839-1a-1-7 R-3	8/6/2002	102%
1839-1a-2-7 R-1	8/6/2002	103%
1839-1a-2-7 R-2	8/6/2002	102%
1839-1a-2-7 R-3	8/6/2002	102%
1839-1a-1-8 R-1	8/13/2002	103%
1839-1a-1-8 R-2	8/13/2002	105%
1839-1a-1-8 R-3	8/13/2002	105%
1839-1a-2-8 R-1	8/13/2002	106%
1839-1a-2-8 R-2	8/13/2002	102%
1839-1a-2-8 R-3	8/13/2002	103%
	-: -:	, -

Table C3. continued

Sample Name	Sample Name	Sample Name
1839-1a-1-9 R-1	8/20/2002	102%
1839-1a-1-9 R-2	8/20/2002	105%
1839-1a-1-9 R-3	8/20/2002	104%
1839-1a-2-9 R-1	8/20/2002	106%
1839-1a-2-9 R-2	8/20/2002	104%
1839-1a-2-9 R-3	8/20/2002	103%
1839-1a-1-10 R-1	8/27/2002	106%
1839-1a-1-10 R-2	8/27/2002	110%
1839-1a-1-10 R-3	8/27/2002	111%
1839-1a-2-10 R-1	8/27/2002	108%
1839-1a-2-10 R-2	8/27/2002	108%
1839-1a-2-10 R-3	8/27/2002	108%
1839-1a-1-12 R-1	9/10/2002	105%
1839-1a-1-12 R-2	9/10/2002	105%
1839-1a-1-12 R-3	9/10/2002	105%
1839-1a-2-12 R-1	9/10/2002	102%
1839-1a-2-12 R-2	9/10/2002	105%
1839-1a-2-12 R-3	9/10/2002	107%

Table C.4. Peroxide Concentration in Mazola Corn Oil (meq/kg) measured on 6/17/02

	Volume of		Weight		Average	
	Sodium		of Oil	Peroxide	Peroxide	
Sample	Thiosulfate (mL)	Normality	(g)	Number	Number	RSD
Blank	0.75	0.005	5.00	0.75		
Mazola Corn Oil						
Expiration 9-03 R-1	1.6	0.005	5.43	1.47		
Mazola Corn Oil						
Expiration 9-03 R-2	1.5	0.005	5.32	1.41	1.38	7.8%
Mazola Corn Oil						
Expiration 9-03 R-3	1.2	0.005	4.75	1.26		
Mazola Corn Oil						
Expiration 4-03 R-1	2.0	0.005	5.18	1.93		
Mazola Corn Oil						
Expiration 4-03 R-2	2.2	0.005	5.09	2.16	2.07	5.9%
Mazola Corn Oil						
Expiration 4-03 R-3	2.5	0.005	5.21	2.11		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-01

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

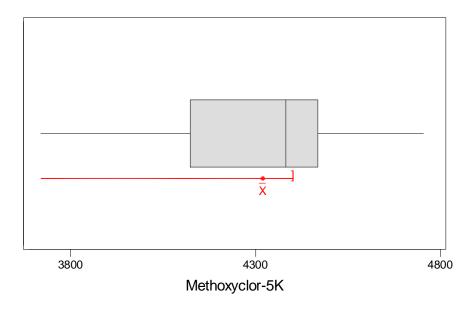
--- 11/25/2002 11:22:30 AM -----

Analysis of Methoxychlor-5k in corn oil

• Test to determine if the data are from a population with mean of 5000.

One-Sample T: Methoxychlor-5K

```
Test of mu = 5000 vs mu < 5000


Variable N Mean StDev SE Mean
Methoxychlor- 33 4319.0 281.5 49.0

Variable 95.0% Upper Bound T P
Methoxychlor- 4402.0 -13.90 0.000
```

t Boxplot of Methoxychlor-5K

Boxplot of Methoxyclor-5K

(with Ho and 95% t-confidence bound for the mean)

Nonparametric Test for outlier.

Outliers are < Median-3*IQD OR > Median+3*IQD Boundary for outliers are values < 3348.62 and > 5416.88 No outliers • Transform data to natural logarithm and conduct regression analysis.

```
Rep Ln(Concentration)
Week
   0
           1
                  8.4428
   0
           2
                  8.4667
  0
           3
                 8.4388
                 8.4246
  7
          1
  7
          2
                 8.4587
  7
          3
                 8.4034
 14
          1
                 8.3925
          2
 14
                 8.4529
          3
                 8.4654
 14
  21
          1
                 8.3965
          2
  21
                 8.3687
          3
  21
                 8.3985
          1
                 8.3740
  28
  28
          2
                 8.3957
  28
          3
                 8.3854
  35
          1
                 8.3266
 35
          2
                 8.3441
 35
          3
                 8.3504
 49
                 8.4063
          1
 49
          2
                8.4030
 49
          3
                 8.3945
 56
          1
                 8.3651
 56
          2
                 8.3669
 56
          3
                 8.3945
 63
          1
                 8.3225
          2
 63
                 8.2743
          3
 63
                 8.2983
 70
          1
                 8.2245
  70
          2
                 8.2212
 70
          3
                  8.2430
 84
          1
                  8.2996
 84
          2
                  8.3106
 84
                  8.3559
```

Conducts Simple Linear Regression

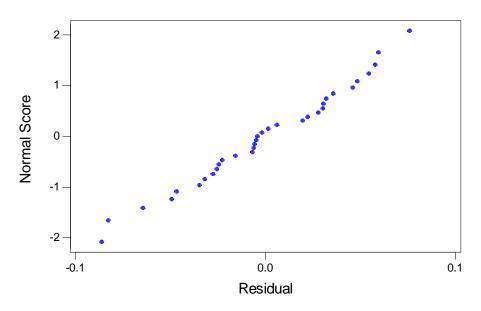
Regression Analysis: Methoxychlor-5K versus Day

The regression equation is Methoxychlor-5K = 8.44 - 0.00196 Day

Predictor	Coef	SE Coef	Т	P
Constant	8.44471	0.01299	650.13	0.000
Day	-0.0019588	0.0002772	-7.07	0.000
S = 0.04180	R-Sq =	61.7% R-	-Sq(adj) =	60.5%

Analysis of Vari	iance				
Source	DF	SS	MS	F	P
Regression	1	0.087268	0.087268	49.94	0.000
Residual Error	31	0.054171	0.001747		
Lack of Fit	9	0.044193	0.004910	10.83	0.000
Pure Error	22	0.009978	0.000454		
Total	32	0.141440			

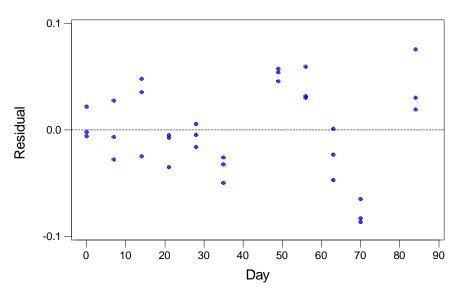
Unusual Observations Obs Day Methoxychlor Fit SE Fit Re


Obs	Day	Methoxychlor		Fıt	SE	Fıt	Residual	St 1	Resid
28	70.0	8.22455	8.30760		0.01130	-0.	08305	-2.0	бR
29	70.0	8.22122	8.30760		0.01130	-0.	08638	-2.1	5R

R denotes an observation with a large standardized residual

Normplot of Residuals for Methoxychlor

Normal Probability Plot of the Residuals


(response is Methoxyc)

Residuals from Methoxychlor vs Day

Residuals Versus Day

(response is Methoxyc)

Power analysis for t-test of slope less than zero

Power and Sample Size

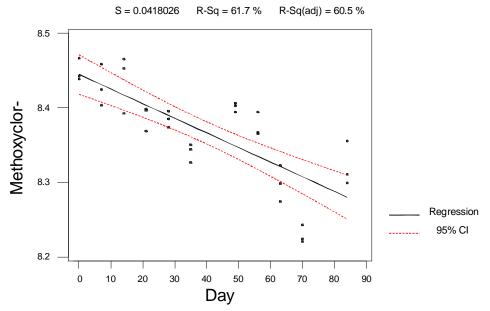
```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.0418026

Sample


Size Power Difference

31 0.9900 -0.0305
```

- That means we would detect a mean of 8.4867 as significantly less than ln(5000) = 8.5172 or a change of 4850 from 5000 = 3.0% loss.
- Fit 95% confidence bands about the fitted simple linear model

Fitted Line Plot: Methoxychlor- versus Day Regression Plot

Methoxyclor- = 8.44471 - 0.0019588 Day

- Conclusion stable for 1 weeks from target concentration.
- Conclusion stable for 4.5 weeks if from average of day 0 concentration (see Excel spreadsheet WA 2-10_WA2-14stability rev 1.xls).

WA-2-14-02-01

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

- 11/25/2002 11:22:30 AM -----

Analysis of Methoxychlor-10k in corn oil

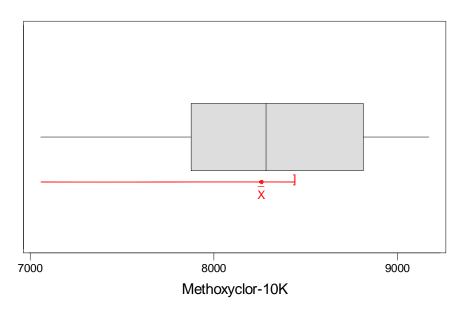
• Test to determine if the data are from a population with mean of 10000.

One-Sample T: Methoxychlor-10K

Test of mu = 10000 vs mu < 10000

Variable N Mean StDev SE Mean

Methoxychlor- 33 8259 630 110


Variable 95.0% Upper Bound T P

Methoxychlor- 8445 -15.89 0.000

t Boxplot of Methoxychlor-10K

Boxplot of Methoxyclor-10K

(with Ho and 95% t-confidence bound for the mean)

Nonparametric Test for outlier.

Outliers are < Median-3*IQD OR > Median+3*IQD Boundary for outliers are values < 5469.47 and > 11098.7 No outliers • Transform data to natural logarithm and conduct regression analysis.

```
Rep Ln(Concentration)
Week
   0
                  9.1012
   0
           2
                  9.1013
  0
           3
                  9.1212
  7
                  9.0537
          1
  7
          2
                  9.1162
  7
          3
                  9.0870
 14
          1
                 9.0541
          2
 14
                 9.0812
          3
                 9.0779
 14
  21
          1
                 9.1114
          2
  21
                 9.1238
          3
  21
                 9.1006
          1
                 9.0486
  28
  28
          2
                  9.0221
  28
          3
                  9.0527
  35
          1
                  9.0242
 35
          2
                 9.0065
 35
                 9.0293
          3
 49
          1
                 8.9671
 49
          2
                 8.9762
 49
          3
                 9.0084
  56
          1
                 8.9586
          2
 56
                 8.9766
 56
          3
                 8.9759
 63
          1
                 8.9237
          2
 63
                 8.9043
          3
  63
                 8.9133
 70
          1
                 8.8617
          2
  70
                  8.8660
 70
          3
                  8.8694
 84
          1
                  9.0195
 84
          2
                  8.9930
 84
                  9.0070
```

Conducts Simple Linear Regression

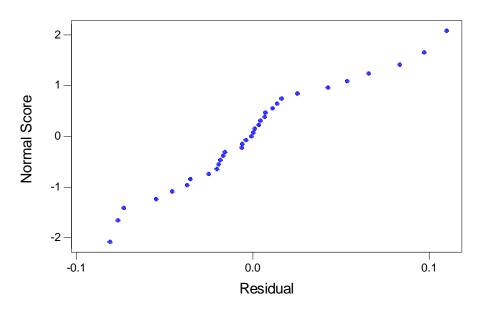
Regression Analysis: Methoxychlor-10K versus Day

The regression equation is Methoxychlor-10K = 9.11 - 0.00235 Day

Predictor	Coef	SE Coef	Т	P
Constant	9.10753	0.01442	631.66	0.000
Day	-0.0023535	0.0003077	-7.65	0.000
S = 0.04640	R-Sq =	65.4% R	-Sq(adj) =	64.2%

Analysis of Vari	lance				
Source	DF	SS	MS	F	P
Regression	1	0.12598	0.12598	58.51	0.000
Residual Error	31	0.06675	0.00215		
Lack of Fit	9	0.06127	0.00681	27.33	0.000
Pure Error	22	0.00548	0.00025		
Total	32	0.19273			

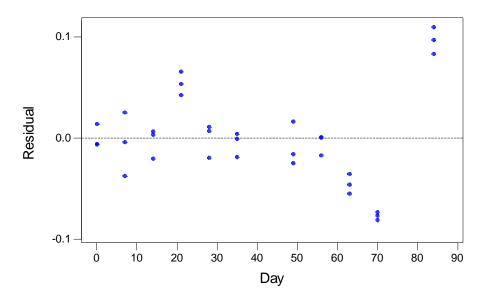
Unusual Observations


0bs	Day	Methoxychlor		Fit	SE	Fit	Residual	St Resid
31	84.0	9.01955	8.90984		0.01608		0.10971	2.52R
33	84.0	9.00696	8.90984		0.01608		0.09712	2.23R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Normplot of Residuals for Methoxychlor

Normal Probability Plot of the Residuals


(response is Methoxyc)

Residuals from Methoxychlor vs Day

Residuals Versus Day

(response is Methoxyc)

Power analysis for t-test of slope less than zero

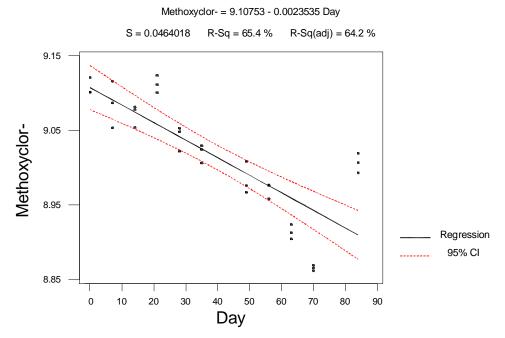
Power and Sample Size

```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.0464018


Sample

Size Power Difference

31 0.9900 -0.0339
```

- That means we would detect a mean of 9.1764 as significantly less than ln(10000) = 9.2103 or a change of 9667 from 10000 = 3.3% loss.
- Fit 95% confidence bands about the fitted simple linear model

Fitted Line Plot: Methoxychlor- versus Day Regression Plot

- Conclusion stable for 0 weeks from target concentration.
- Conclusion stable for 4.5 weeks if from average of day 0 concentration (see Excel spreadsheet WA 2-10_WA2-14stability rev 1.xls).

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Methoxychlor in-life test solution samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Methoxychlor in corn oil

TEST SOLUTION SAMPLE CUSTODY AND PROCESSING: Test solution samples were prepared by the EDSP Chemical Repository, Sequim, WA, using methoxychlor (CF 1839, Sigma lot #49H1328, expiration date 4/06) dissolved in Mazola corn oil (corn oil was from containers with the following expiration dates: 06/12/03, 01/01/04, and 04/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time. Samples were prepared at two test concentrations, 5 mg/mL and 10 mg/mL, for all replicates and exposures unless noted below. The 5 mg/mL concentration was prepared by dissolving 1.05 g of methoxychlor in 185 g of corn oil in a pre-cleaned, amber glass container. The 10 mg/mL concentration was prepared by dissolving 2.10 g of methoxychlor in 184 g of corn oil. Note: the weights used reflect adjustments made for the 95% purity of the methoxychlor.

Samples for female rat exposures were prepared at three different times (Table 1):

Replicate 1 – prepared on 09/09/02 and shipped on 09/10/02 Replicate 2 – prepared on 09/15/02 and shipped on 09/16/02

Replicate 3-5 mg/mL concentration only, prepared on 09/15/02 and shipped on 9/16/02 to replace Replicate 1 at the 5 mg/mL concentration, which was not verified upon analysis.

Samples for male rat exposures were prepared at four different times:

Replicate 1 – prepared on 09/09/02 and shipped on 09/26/02

Replicate 2 – prepared on 10/02/02 and shipped on 10/03/02

Replicate 3 – prepared on 10/16/02 and shipped on 10/17/02

Replicate 4 – prepared on 11/03/02 and shipped on 11/04/02.

Results of verification of concentrations for Replicates 1, 2, and 3 are reported in Table 2.

The test solution was sampled four times during the female test (9/18/02, 9/24/02, 10/01/02, and 10/08/02) and four times during the male test (10/07/02, 10/14/02, 10/21/02, and 10/28/02). Data are reported in Table 3 for females and Table 4 for males. Table 5 provides results of analysis of remaining formulation samples after dosing to assess changes in test solution concentration from the beginning and end of the test.

Processing

Test Solution Samples for Concentration Verification Prior to Shipping:

The container was sampled prior to shipment. 1 mL triplicate samples were removed and each placed in a tared, 60 mL, amber glass bottle. The weight of

the sample was determined gravimetrically. A 1 g subsample was removed, placed in a 30 mL amber ashed vial, and 25 mL of hexane (JT Baker lot number X40E12) was added and the bottle agitated to mix. Then, 0.1 mL sample and 0.02 mL internal standard, 5a androstane, and 0.88 mL hexane were transferred to an auto sampler vial.

In-life and Returned Container Samples:

In-life and returned containers were analyzed the same way. Some of the returned containers were returned empty, so only containers with sufficient material were analyzed.

The samples were removed from the refrigerator, allowed to warm to room temperature, and then stirred using a magnetic stir bar and stir plate. About 1 mL was sampled and placed in a tared, 30 mL, amber-glass bottle. The weight of the sample was determined gravimetrically. 25 mL of hexane was added and the bottle agitated to mix. Then 0.1 mL was transferred to a 1.8 mL vial with 0.02 mL of internal standard solution containing 5a androstane and 0.88 mL hexane.

SAMPLE ANALYSIS:

The samples were analyzed by gas chromatograph (GC) with a flame ionization detector (FID). The GC was set up with an auto sampler and a 30-m x 0.25-mm, DB-5 capillary column. The temperature program was set to start at 50°C, and ramped at 20°C/min to a final temperature of 320°C. The injection port temperature was set at 270°C and the detector temperature at 320°C. The auto sampler was set to inject 1 μ L of the matrix dilution.

Data Quality Objectives	Control Limits
Procedural Blank	<5 * MDL
Blank Spike Recovery	40% - 120%
Continuing Standard Recovery	75% - 125%

QA/QC SUMMARY

METHODS: GC-FID

CALIBRATION: Calibration with a five-point curve was done using dilutions prepared from

standard EDSP Mix 1 (see Appendix C) with a continuing calibration

verification (CCV) sample analyzed every 10 samples.

CONTINUING STANDARD RECOVERY: Percent recovery results for initial and CCV samples analyzed with the in-life sample data set ranged from 91% to 117% with a mean recovery of 100%. There were no occurrences of recoveries exceeding the 75% to 125%

acceptability range.

BLANK: Methoxychlor was not detected above the detection limit in the corn oil blank

analyzed with the test solution and in-life samples.

DETECTION LIMIT: The methoxychlor method detection limit (MDL) in corn oil was 115 μg/mL as

determined by an MDL study. No data below this value were reported.

BLANK SPIKE SAMPLES:

Blank spike samples were not analyzed. In this analysis, sampling was performed by taking the sample material from flask through to analysis. Analyzing a spiked sample would be no different from analyzing a CCV.

INTERNAL STANDARD:

5a androstane was spiked into each sample and analyzed as the internal standard. Average percent recovery results ranged from 99% to 103%. There were no cases in which the percent recovery of the internal standard exceeded the acceptance range of 40% to 120%.

REPLICATE ANALYSIS:

The percent relative standard deviations (% RSD) for the two test solution concentrations for female exposures ranged from 2.06 to 5.65.

The % RSD for the two methoxychlor concentrations for male exposures ranged from 0.600 to 2.46.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of Methoxychlor Test Solution Concentrations for Female Exposures

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	% RSD
R-1; 09/09/02				
5 mg/mL	2-14 –B-F R-1, R-1	N/A		
5 mg/mL	2-14 -B-F R-1, R-2	4.31 ^(a)	N/A	N/A
5 mg/mL	2-14 -B-F R-1, R-3	8.59 ^(a)	N/A	
10 mg/mL	2-14 -C-F R-1, R-1	9.57		
10 mg/mL	2-14 –C-F R-1, R-2	9.19	9.36	2.06
10 mg/mL	2-14 –C-F R-1, R-3	9.31		
R-2; 09/15/02				
5 mg/mL	2-14 -B-F R-2, R-1	5.12		
5 mg/mL	2-14 -B-F R-2, R-2	4.63	4.94	5.65
5 mg/mL	2-14 –B-F R-2, R-3	5.01		
R-3 09/15/02				
5 mg/mL	2-14 -B-F R-3, R-1	4.66		
5 mg/mL	2-14 –B-F R-3, R-2	4.94	4.87	3.98
5 mg/mL	2-14 –B-F R-3, R-3	5.03		

⁽a) Concentrations were not as expected, and replacement test solutions (R-3, 9/15/02) were provided.

Table 2. Verification of Methoxychlor Test Solution Concentrations for Male Exposures

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	% RSD
R-1; 09/09/02				
5 mg/mL	2-14 –L-M R-1, R-1	4.76		
5 mg/mL	2-14 –L-M R-1, R-2	4.61	4.69	1.54
5 mg/mL	2-14 –L-M R-1, R-3	4.69		
10 mg/mL	2-14 –M-M R-1, R-1	9.79		
10 mg/mL	2-14 –M-M R-1, R-2	9.58	9.62	1.59
10 mg/mL	2-14 –M-M R-1, R-3	9.50		
R-2; 10/02/02				
5 mg/mL	2-14 –L-M R-2, R-1	4.89		
5 mg/mL	2-14 –L-M R-2, R-2	4.87	4.90	0.600
5 mg/mL	2-14 –L-M R-2, R-3	4.93		
40	0.44 MMD 0.D.4	0.74		
10 mg/mL	2-14 –M-M R-2, R-1	9.71	0.05	2.46
10 mg/mL	2-14 –M-M R-2, R-2	9.71	9.85	2.46
10 mg/mL	2-14 –M-M R-2, R-3	10.13		
R-3 10/16/02				
5 mg/mL	2-14 –L-M R-3, R-1	5.38		
5 mg/mL	2-14 -L-M R-3, R-2	5.44	5.48	2.21
5 mg/mL	2-14 –L-M R-3, R-3	5.62		
10 mg/mL	2-14 –M-M R-3, R-1	10.93		
10 mg/mL	2-14 –M-M R-3, R-2	10.86	10.8	0.797
10 mg/mL	2-14 –M-M R-3, R-3	10.75		

Table 3. Methoxychlor In-life Sample – Females

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
09/18/02	10/16/02	11/23/02	5 mg/mL	WA2-14B-F 9-18 Vial	4.61	92%
09/24/02	10/16/02	11/23/02	5 mg/mL	WA2-14B-F 9-24 Vial	4.63	93%
10/01/02	10/16/02	11/23/02	5 mg/mL	WA2-14B-F 10-1 Vial	4.79	96%
10/08/02	10/16/02	11/23/02	5 mg/mL	WA2-14B-F 10-8 Vial	4.93	99%
09/18/02	10/16/02	11/23/02	10 mg/mL	WA2-14C-F 9-18 Vial	9.01	90%
09/24/02	10/16/02	11/23/02	10 mg/mL	WA2-14C-F 9-24 Vial	9.21	92%
10/01/02	10/16/02	11/23/02	10 mg/mL	WA2-14C-F 10-1 Vial	9.26	93%
10/08/02	10/16/02	11/23/02	10 mg/mL	WA2-14C-F 10-8 Vial	9.43	94%

Table 4. Methoxychlor In-life Sample- Males

Date Sample Collected	Date Sample	Date Sample	Nominal	Sample ID Number	Measured Conc.	% of Nominal
	Received	Analyzed	Conc.		mg/mL)	
10/07/02	11/13/02	11/23/02	5 mg/mL	WA2-14L-M 10-7 Vial	4.72	94%
10/14/02	11/13/02	11/23/02	5 mg/mL	WA2-14L-M 10-14Vial	4.63	93%
10/21/02	11/13/02	12/05/02 ^(a)	5 mg/mL	WA2-14L-M 10-21Vial	5.43 ^(a)	109%
10/28/02	11/13/02	11/23/02	5 mg/mL	WA2-14L-M 10-28Vial	4.52	90%
10/07/02	11/13/02	11/23/02	10 mg/mL	WA2-14M-M 10-7 Vial	9.23	92%
10/14/02	11/13/02	12/05/02 ^(a)	10 mg/mL	WA2-14M-M 10-14Vial	9.85 ^(a)	99%
10/21/02	11/13/02	12/05/02 ^(a)	10 mg/mL	WA2-14M-M 10-21Vial	9.26 ^(a)	93%
10/28/02	11/13/02	11/23/02	10 mg/mL	WA2-14M-M 10-28Vial	9.12	91%

⁽a) Re-analyzed on 12/05/02

Table 5. Methoxychlor Post-Test Sample Concentrations for Formulations Returned to Battelle from RTI

Date Sample Prepared	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
Female						
Exposures						
09/09/02	10/16/02	11/22/02	5 mg/mL	WA 2-14-B-F Rep1Jar	4.62	92%
09/15/02	10/16/02	11/22/02	5 mg/mL	WA 2-14-B-F Rep2Jar	4.93	99%
09/15/02	10/16/02	11/22/02	10 mg/mL	WA 2-14-C-F Rep2Jar	9.34	93%
Male						
Exposures						
09/09/02	11/13/02	11/22/02	5 mg/mL	WA 2-14-L-M Rep1Jar	4.57	91%
10/02/02	11/13/02	11/22/02	5 mg/mL	WA 2-14-L-M Rep2Jar	4.70	94%
11/03/02	11/13/02	11/22/02	5 mg/mL	WA 2-14-L-M Rep4Jar	4.62	92%
09/09/02	11/13/02	11/22/02	10 mg/mL	WA 2-14-M-M Rep1Jar	9.12	91%
10/02/02	11/13/02	11/22/02	10 mg/mL	WA 2-14-M-M Rep2Jar	9.42	94%
11/03/02	11/13/02	11/22/02	10 mg/mL	WA 2-14-M-M Rep4Jar	9.28	93%

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: WA 2-1			DATE: 10/30/03			
DEVIATION NUMBER: WA	2-14	-D-003;		WAL/S	TUD'	Y DIRECTOR: Michael Blanton/
Atrazine, DDE, Methoxychl	or,	·		Eric Cr		
phenobarbital, propylthioura						
ketoconazole, Linuron, fena						
NOTEBOOK NUMBER: NA						
TITLE OF STUDY: WA 2-14						
QAPP/PROTOCOL ID:						
DEVIATION RELATING TO)·			<u> </u>		
[] QAPP	,. []	QMP		T	ГТ	Protocol
[] SOP	- 	Metho	. d		[] [V]	
bd				4	[X]	Miscellaneous Documentation
ORIGINAL DOCUMENT SE						
						nulations was determined to be
adequate for the period of t	ıme tr	nat animals	would	be dose	ed.	
			zed wi	thin the	stabil	ity time determined during the
testing of the stability of the	form	ulation.				
						be within the acceptable target
				es and w	ere u	sed within the known stability
time periods determined for	each	formulation	٦.			
DD0D005D 00DD50TW						
				DULE F	OR C	OMPLETION: No corrective
action is required beyond th	iis do	cumentation	า.			
10TIONS TO DDE (ENT D						
		RRENCE: U	Ipper	manage	ment	will review testing schedules for
return shipments and analy	sis.					
Annanal						
Approval:					_	
Maria I Di T	_	11/	<i>ر</i> _ ہ	7/4	\leftarrow	21 21 22
Michael Blanton,		Jungo	<u> </u>	Sulm	حمي	Date 11/3/03
WAL	_	~				•
-	()). []	0	٠		Date 11/3/03
Eric Crecelius,	<u></u>	u he	ceri	us		Date
Study Director						/ /
Chemical Repository						
		0				
Deborah Coffey,	6	1. /		11		1 ,
MSL QA Manager	/\	/Wodan		sal las	/	Date
Ğ				7	(
	•	_			,	
Richard Ecker,	/	m Z	0	•		Date ///3/03
MSL Laboratory Director	4	111 6	nu		-	Date
WOL Laboratory Director		0 -	_			
David Houchens,		1:11-7	1	6		Date /0/3//03
	_* <u>*</u>	th 1	un	way.	-	Date
EDSP Program Manageme	III.	./	7			
Town Dallack	$\bigcap V_{\alpha}$	· 11-	100	0 ~ 0		Date 10-31-03
Terri Pollock,	(1)	m of		WX-	_	Date 10-31-03

EDSP Battelle QAM

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: MA 2	1.4	DATE: 40/20	2/00		
STUDY NUMBER: WA 2- DEVIATION NUMBER: W		DATE: 10/30/03 WAL/STUDY DIRECTOR: Michael Blanton/			
Atrazine, DDE, vinclozolin	, ivietnoxycnior,	Eric Crecelius	\$		
Fenarimol					
NOTEBOOK NUMBER: N					
TITLE OF STUDY: WA 2-	14				
QAPP/PROTOCOL ID:					
DEVIATION RELATING T					
[] QAPP	[] QMP	[X]	Protocol		
[] SOP	[] Method	[]	Miscellaneous Documentation		
ORIGINAL DOCUMENT S	SPECIFICATIONS: 2.	3 of protocol WA	2-14 states "an aliquot of each		
level per formulation will b	evel was tested in the	first preparation t	or each chemical. However,		
and procedures as the firs	pact. Subsequent ba t batches.	tches were prepa	red using the same methods DMPLETION: No corrective		
ACTIONS TO PREVENT I schedule prior to the start Approval:	RECURRENCE: Upper of the studies.	er management v	vill review the analyses		
The comment		+			
Michael Blanton, WAL	The fort	Behn	Date 11-3-03		
Eric Crecelius, Study Director Chemical Repository	En here	lin_	Date		
Deborah Coffey, MSL QA Manager	/ Jarodun (My	Date		
Richard Ecker, MSL Laboratory Director	RM En	·	Date ///3/03		
David Houchens, EDSP Program Manageme	Daul P- The	melies	Date 10/3//03		
Terri Pollock, EDSP Battelle QAM	(Yuni & P	ollod	Date 10-31-03		

EDSP Battelle QAM

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Phenobarbital in Mazola Corn Oil

November 10, 2003

Prepared By:

Approved By:

Eric A. Crecelius, Ph.D.

Chemical Repository Manager

Dichard M. Folzar

Date

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Phenobarbital in Mazola Corn Oil

Reviewed by: Debotan Colly

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03-

Chemistry Report for WA 2-14 Phenobarbital in Mazola Corn Oil

Parameter	Chemical
Compound Name	Phenobarbital
CAS#	50-06-6
Central File No.	CF-1837
Initial Receipt Date	6/6/2002
Expiration Date	06/06
Manufacturer	Sigma, Inc.
Lot Number	81K2620
Battelle Study #	WA2-14-02-02
Method	SW 846, 8316 Modified

Executive Summary

The chemical purity of phenobarbital was not specified by the manufacturer. The purity result from Battelle-Sequim by HPLC was determined to be 99.1%. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of phenobarbital was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 13 weeks. Thus, stability testing of the phenobarbital stock solution in Mazola corn oil was considered stable at 10 mg/mL for the required testing and holding period of 12 weeks.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 09/05/2002 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn oil was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on the target concentration ranged from 94% to 103%.

TABLE OF CONTENTS

Pa	ıge
1.0 INTRODUCTION	1
2.0 GENERAL METHODS	1
2.1 CHEMICAL PROCUREMENT	. 3 . 3 . 4
3.0 RESULTS	5
3.1 CHEMICAL PURITY	. 5 . 5
4.0 CONCLUSIONS	7
APPENDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY	.1 .1 .1
LIST OF TABLES	
Pa	ige
Table 1. Chemical Procurement Information	. 3
Table 2. Stock Matrix Composition for Stability Testing	. 4
Table 3. Summary of Statistical Results for Phenobarbital	
LIST OF FIGURES	
Pa	ige
Figure 1. EDSP Requisition Form for Phenobarbital	. 2
Figure 2. Observed Concentration of Phenobarbital with a Target Concentration of 10,000,000 ng/mL Against Time	. 6

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA2-14-02-02, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of phenobarbital (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_phenobarbital-cornoil.doc, PSTP_WA-2-14_phenobarbital-cornoil.doc, DSUM_WA2-14_Phenobarbital-crnoil.xls, and DAF_WA-2-14_Phenobarbital-cornoil.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, phenobarbital, (CAS No. 50-06-6) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). Phenobarbital was purchased from Sigma, Inc., and lot number 81K2620 was initially received on 6/6/2002 with an expiration date of 06/06 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1837) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored as a controlled substance in a lockbox at 4°C.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-02

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Phenobarbital (MSL CF 1837)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 10 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Testing/holding duration: 12 weeks

Chemical Information

Chemical Name: Phenobarbital

CAS: 50-06-6

Any known purity information: may refer to attached None available

documentation

Any known stability information: may refer to

attached documentation

.....

Manufacturer's Stability Information:

stable

Desired purity (%) for test? 95% or greater

Figure 1. EDSP Requisition Form for Phenobarbital

Table 1. Chemical Procurement Information

Parameter	Chemical
Compound Name	Phenobarbital
CAS#	50-06-6
Central File No.	CF-1837
Receipt Date	6/6/2002
Expiration Date	06/06
Manufacturer	Sigma, Inc.
Lot Number	81K2620
Manufacturer's Purity	Purity not specified
Storage Conditions	Cool, dry place at 4 °C
Battelle Study #	WA2-14-02-02
Method	SW 846, 8316 Modified

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak. A manufacturer's certificate of analysis/purity was not available (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted using an high performance liquid chromatography (HPLC) with ultraviolet (UV) absorbance at 225 nm by running standard PP-1189E (5000 ng/ml) in 60% acetonitrile (ACN): 40% de-ionized water solution (v:v). This matrix was run on the HPLC and the purity determined by comparing the peak heights of the peaks in the chromatogram. The HPLC was set up with an auto sampler and a column oven. The column oven temperature was set at 30°C, and the auto sampler was set to inject 250 μ L of the matrix dilution. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. A stock solution was prepared to arrive at the chemical concentrations requested for stability analysis (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

A phenobarbital stock matrix was prepared on 10/15/02 for testing as described in Table 2. The first analysis was done 10/16/02; this was considered the start of the test. Briefly, for the 10 mg/mL phenobarbital, 2 g was weighed into 250 mL wide-mouth amber glass bottle, 184 g of Mazola corn oil was added, the sample was stirred over night, and stored in a refrigerator at $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$.

Table 2. Stock Matrix Composition for Stability Testing

Study and		Target		
Duration	Test Chemical	Concentration	Sample ID	Stock Matrix
WA2-14-02-02 12 Weeks	Phenobarbital	10 mg/mL	1837-1-2	2 g in 184 g Mazola corn oil

The density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL, respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentration was determined by chromatographic analysis. Triplicate aliquots were tested for the 10 mg/mL concentration. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

Sample analyses were conducted by first placing the container on a magnetic stir plate, adding a stir bar and stirring overnight. After stirring, 1 mL triplicate samples were removed and each was placed in a tared 60 mL amber glass bottle. The weight of the sample was determined gravimetrically. Then, 50 mL of ACN was added and the bottle agitated to mix. After mixing, 0.01 mL was transferred to an auto sampler vial with 0.99 mL of 60% ACN in water. The samples were analyzed using an HPLC with a UV/VIS detector at the 225 nm wavelength. A 60:40% ACN:water mix (v:v) was used as the eluent at 1.5 mL/minute. Separation was attained using a Supelco (25 cm x 4.8 mm) C-18 column. For samples analyzed using the HPLC system, data were stored in MSL5, room 219 on the computer with a property number of WV04738.

Calibrations using a five-point calibration curve were performed using dilutions prepared from standard PP-1189, which is itself a serial dilution of PP-1183 which was made by weighing 0.1000 g of phenobarbital into a 100 mL volumetric flask. This was then diluted to the 100 mL mark with ACN. The PP-1189 series (A through E) was made using the following amounts of PP-1183 which was then diluted to the 100 mL mark with a 60:40% ACN:water mix (v:v): PP-1189A was 0.2 mL of PP-1183, PP-1189B was 0.05 mL of PP-1183; PP-1189C was 0.02 mL of PP-1183; PP-1189D was 0.005 mL of PP-1183; and PP-1189E was 0.5 mL of PP-1183.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fit to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a HPLC purity scan on the phenobarbital. The chromatogram, after solvent blank correction, showed one large peak that had the appropriate retention time for phenobarbital and several very small peaks. The area of the phenobarbital peak indicated the material was 99.1% pure. Chemical purity of phenobarbital was not documented by the manufacturer (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 10/16/02. Chemical concentrations were determined 10 times from 10/16/02 to 01/07/03. The analytical and quality control (QC) results are presented in Appendix C. A single preparation blank was analyzed with every batch for QC purposes. There were no concentrations of phenobarbital in the blanks above the detection limit. Continuing calibration verification (CCV) results ranged from 87.4% to 110%. Internal standards were not analyzed. The MDL was 250,000 ng/mL. The dilution factor of the formulation can be taken into account, and thus, the MDL of the diluted sample was 50 ng/mL.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

3.3 Statistical Results of Stability Trial

A plot of phenobarbital with a target concentration of 10,000,000 ng/mL against time showed that all samples were above 90% of the target concentration (Figure 2). Homogeneity of the chemical concentration within the testing container was evaluated at time 0. Because one sample from the bottom section was in the same range as concentrations from the top section, a statistical difference was not detected. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of phenobarbital was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 13 weeks (Table 3). Thus, this stock solution was considered stable for the required 12-week testing/holding period. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries for all doses based on target concentrations ranged from 94% to 103%. The complete analysis is presented in Appendix E.

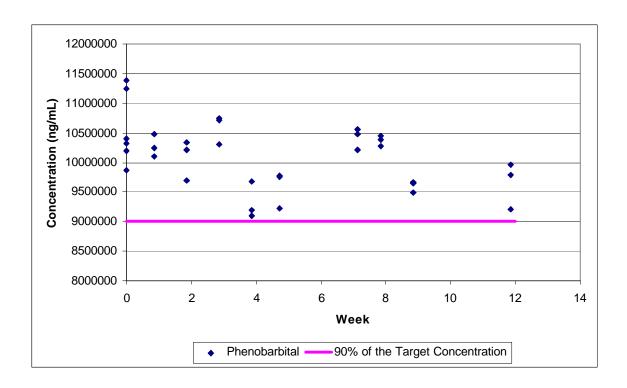


Figure 2. Observed Concentration of Phenobarbital with a Target Concentration of 10,000,000 ng/mL Against Time

Table 3. Summary of Statistical Results for Phenobarbital

WA-2-14-02-02 Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.	1837-1-2 Phenobarbital
Target Concentration (ng/mL)	10000000
Number of determinations	1
Number of weeks tested	12
Number of replicates per day	3
Number of outliers removed	0
Number of observations removed	0
Overall Mean Concentration	10094590
95% Upper CL	10256605
error degrees of freedom	32
1-sample t-test of Ho: m >= Target	NS ^a
estimated intercept of In(concentration) against time	16.1530
estimated slope of In(concentration) against time	-0.0058
standard error of slope	0.0023
error degrees of freedom	31
Significance test of lack-of-fit for final model	S ^b
Significance test of Ho: b = 0 vs. H1: b ? 0	S
Lower 95% CL	-0.011
Upper 95% CL	-0.001
Maximum Percent Loss (using LCL)	8.1%
Mean Percent Loss (using bhat)	4.5%
LN(90% of Target)	16.0127
Number of weeks until at 90% of Target (using LCL)	13
Conclusion:	Stable for 12 wks

^aNot Significant at a = 0.05

4.0 CONCLUSIONS

The phenobarbital stock used was determined to be 99.1% pure based on HPLC analyses at Battelle-Sequim; a certificate of purity was not available from the manufacturer. Stability testing of phenobarbital in Mazola corn oil concluded that the chemical was stable at the 10 mg/mL concentration for the required testing/holding period of 12 weeks.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on target concentrations ranged from 94% to 103%.

^bSignificant at a = 0.05

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

Certificate of Purity not Available from Manufacturer

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Phenobarbital

Chemical Name: Phenobarbital (MSL CF Login 1837), CMS 172554

CAS Number: 50-6-6

Lot Number: Lot 81K2620 - stored refrigerated in Bldg5 Rm 219

Expiration date: 6/2006

Manufacturer's Purity Information: not available

Manufacturer's Stability Information: stable

MSL Purity Results:

Purity (%) To be determined at MSL by LC or UV-VIS scan

MDL has not been determined.

Bioassay Information:

Study Director

Name: Dr. Julia George Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: Phenobarbital

CAS: 50-06-6

Carrier(s): suspended in Mazola corn oil

Concentrations/Dilution Series: 10 mg/mL

In vitro or in vivo tests?: In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Testing/holding duration: 12 weeks

EDSP Purity Analysis and Stability Testing Plan for Phenobarbital, Continued

Design of Stability Test: One concentration of Phenobarbital, 10 mg/mL in Mazola corn oil, will be tested. The chemical will be sieved through an 80 mesh screen and material that passes will be suspended in Mazola corn oil with a magnetic stirrer. Samples of the suspension will be taken with a gavage needle, while the suspension is being vigorously stirred, at mid-depth in a 250 mL amber glass bottle, except for the first sampling, which will be sampled at 25% and 75% depth in triplicate to demonstrate homogeneity. The suspension will be stored in glass at 4 deg. C in the dark for 12 weeks, sampled at 8 times in triplicate and analyzed monthly by UV-VIS.

Number of replicates: 3

Duration: 12 weeks, sampling at 8 time points with triplicate samples taken each time

Other factors:

Temperature regime(s): 4 deg. C

Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other: None

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity

MSDS

Records:

- · date sample received;
- date(s) sample analyzed;
- · sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-to-lot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- · QC data reports;
- · data qualifying flags; and
- Dilution factor(s).

Prepare by Eric Crecelius

Distribution; Tim Fortman Deborah Coffee Val Cullinan Whitney Hansen

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C.1. Phenobarbital concentration in Mazola Corn Oil (ng/mL)

Target Conc.	Sample Name	Date	Phenobarbital (ng/mL)	Average	RSD	Recovery ¹
10000000 ng/ml	1837-1-2-1 Top R-1	10/16/02	9871823			
10000000 ng/ml	1837-1-2-1 Top R-2	10/16/02	10405445	10159422	2.65%	102%
10000000 ng/ml	1837-1-2-1 Top R-3	10/16/02	10200998			
10000000 ng/ml	1837-1-2-1 Bott R-1	10/16/02	10317041			
10000000 ng/ml	1837-1-2-1 Bott R-2	10/16/02	11244260	10984072	5.30%	110%
10000000 ng/ml	1837-1-2-1 Bott R-3	10/16/02	11390916			
blank	1837 Pheno Blnk 1	10/16/02	250000 U			
10000000 ng/ml	1837-1-2-2 R-1	10/22/02	10473674			
10000000 ng/ml	1837-1-2-2 R-2	10/22/02	10107970	10276501	1.80%	103%
10000000 ng/ml	1837-1-2-2 R-3	10/22/02	10247858			
blank	1837 Pheno Blnk 2	10/22/02	250000 U			
10000000 ng/ml	1837-1-2-3 R-1	10/29/02	9698422			
10000000 ng/ml	1837-1-2-3 R-2	10/29/02	10215889	10084350	3.37%	101%
10000000 ng/ml	1837-1-2-3 R-3	10/29/02	10338738			
blank	1837 Pheno Blnk 3	10/29/02	250000 U			
10000000 ng/ml	1837-1-2-4 R-1	11/05/02	10309549			
10000000 ng/ml	1837-1-2-4 R-2	11/05/02	10706868	10587165	2.28%	106%
10000000 ng/ml	1837-1-2-4 R-3	11/05/02	10745078			
blank	1837 Pheno Blnk 4	11/05/02	250000 U			
10000000 ng/ml	1837-1-2-5 R-1	11/12/02	9679601			
10000000 ng/ml	1837-1-2-5 R-2	11/12/02	9198365	9323160	3.36%	93.2%
10000000 ng/ml	1837-1-2-5 R-3	11/12/02	9091514			
blank	1837 Pheno Blnk 5	11/12/02	250000 U			
10000000 ng/ml	1837-1-2-6 R-1	11/18/02	9218319			
10000000 ng/ml	1837-1-2-6 R-2	11/18/02	9779975	9585813	3.32%	95.9%
10000000 ng/ml	1837-1-2-6 R-3	11/18/02	9759146			
blank	1837 Pheno Blnk 6	11/18/02	250000 U			
10000000 ng/ml	1837-1-2-7 R-1	12/05/02	10209633			
10000000 ng/ml	1837-1-2-7 R-2	12/05/02	10479046	10414561	1.74%	104%
10000000 ng/ml	1837-1-2-7 R-3	12/05/02	10555004			
blank	1837 Pheno Blnk 7	12/05/02	250000 U			
10000000 ng/ml	1837-1-2-8 R-1	12/10/02	10277012			
10000000 ng/ml	1837-1-2-8 R-2	12/10/02	10386122	10369912	0.83%	104%
10000000 ng/ml	1837-1-2-8 R-3	12/10/02	10446602			
blank	1837 Pheno Blnk 8	12/10/02	250000 U			
10000000 ng/ml	1837-1-2-9 R-1	12/17/02	9496789			
10000000 ng/ml	1837-1-2-9 R-2	12/17/02	9663303	9601503	0.95%	96.0%
10000000 ng/ml	1837-1-2-9 R-3	12/17/02	9644418			
blank	1837 Pheno Blnk 9	12/17/02	250000 U			
10000000 ng/ml	1837-1-2-10 R-1	01/07/03	9214545			
10000000 ng/ml	1837-1-2-10 R-2	01/07/03	9789508	9654036	4.04%	96.5%
10000000 ng/ml	1837-1-2-10 R-3	01/07/03	9958054			
blank	1837 Pheno Blnk 10	01/07/02	250000 U			

Recovery is relative to the target concentration U = Not detected at a value greater than the MDL

Table C.2. CCV Data for Phenobarbital Concentration in Mazola Corn Oil

	Phenobarbital	
Sample Name	(ng/mL)	Recoveries
Phen200PP-1189C CCV	213.2	107%
Phen 200 PP-1189C	216.1	108%
Phen500PP-1189B CCV	529.7	106%
Phen 500 PP-1189B	521.1	104%
Phen200PP-1189C CCV	220.2	110%
Phen 200 PP-1189C	211.2	106%
Phen500PP-1189B CCV	523.1	105%
Phen 500 PP-1189B	511.1	102%
Phen500PP-1189B CCV	489.3	97.9%
Phen 500 PP-1189C	513.1	103%
Phen500PP-1189B CCV	526.0	105%
Phen 500 PP-1189B	436.9	87.4%
Phen500PP-1189B CCV	499.4	99.9%
Phen500PP-1189B CCV	493.9	98.8%
Phen500PP-1189B CCV	476.0	95.2%
Phen500PP-1189B CCV	491.1	98.2%
Phen500PP-1189B CCV	485.2	97.0%
Phen500PP-1189B CCV	492.3	98.5%
Phen500PP-1189B CCV	500.7	100%
Phen500PP-1189B CCV	497.0	99.4%
Phen500PP-1189B CCV	532.3	106%
Phen500PP-1189B CCV	457.7	91.5%

Table C.3. Internal Standards Data for Phenobarbital in Mazola Corn Oil

		5A Androstane
Sample Name	Date	Recovery

Not applicable

Table C.4. Peroxide Concentration in Mazola Corn Oil (meq/kg)

Sample	Analysis Date	Volume of Sodium Thiosulfate (mL)	Normality	Weight of Oil (g)	Peroxide Number	Average Peroxide Number	RSD
Blank	09/05/02	0.5	0.005	5.00	0.50		
Mazola Corn Oil Expiration 6-03 R-1 Mazola Corn Oil	09/05/02	1.9	0.005	5.01	1.90		
Expiration 6-03 R-2 Mazola Corn Oil	09/05/02	1.8	0.005	5.36	1.68	1.77	6.41
Expiration 6-03 R-3	09/05/02	1.8	0.005	5.16	1.74		
Mazola Corn Oil Expiration 1-04 R-1 Mazola Corn Oil	09/05/02	1.2	0.005	4.92	1.22		
Expiration 1-04 R-2 Mazola Corn Oil	09/05/02	1.5	0.005	5.2	1.44	1.34	8.31
Expiration 1-04 R-3	09/05/02	1.4	0.005	5.13	1.36		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-02

2

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

- 6/4/2003 11:16:50 AM -

Results for: Week 0

Two-Sample T-Test and CI: Phenobarbital, section

Two-sample T for Phenobarbital

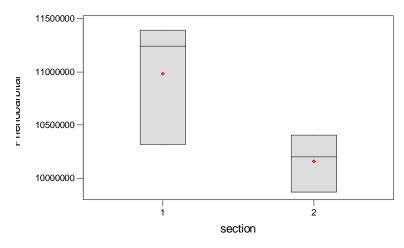
section SE Mean Ν Mean StDev 10984072 582302 336192 3 10159422 269230 155440

Difference = mu (1) - mu (2) Estimate for difference: 824650

95% CI for difference: (-768996, 2418297)

T-Test of difference = 0 (vs not =): T-Value = 2.23 P-Value = 0.156 DF = 2

1 = bottom2 = top


NS

Very poor power!

Boxplots of Phenobarbital by section

Boxplots of Phenobar by section

(means are indicated by solid circles)

Kruskal-Wallis Test: Phenobarbital versus section

Kruskal-Wallis Test on Phenobarbital

section Ν Median Ave Rank 11244260 4.7 1.53 2 3 10200998 2.3 -1.53Overall 3.5

H = 2.33 DF = 1 P = 0.127

* NOTE * One or more small samples

Conclusion: For the week 0 data, the test between sections has very poor power, note the width of the 95% CI of the difference (-768996, 2418297). Because one

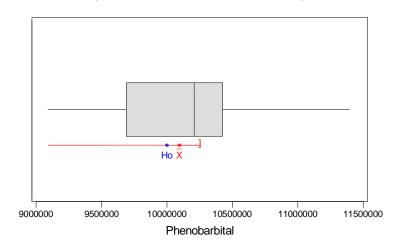
sample from the bottom section was in the same range as concentrations from the top section, no difference could be detected.

Results for: Stability Data

Performs a one-sample t-test for mu less than TARGET &

What is the target value for X $\dot{}$ 3 DATA> 10000000

One-Sample T: Phenobarbital


Test of mu = 10000000 vs mu < 10000000

Variable	N	Mean	StDev	SE Mean	
Phenobarbital	33	10094590	549446	95646	
Variable Phenobarbita	95.0% U	pper Bound 10256605	T 0.99	P 0.835	NS

t Boxplot of Phenobarbital

Boxplot of Phenobarbital

(with Ho and 95% t-confidence bound for the mean)

Outliers are < Median-3*IQD OR > Median+3*IQD

Boundary for outliers are values < 7998597 and > 12420669

No outliers

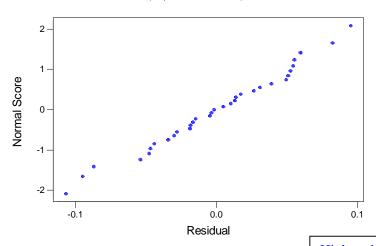
Transforms data to natural log

```
Week
         Rep Ln(Concentration)
   0
                  16.1052
   0
            2
                  16.1578
   0
                  16.1380
            3
   0
                  16.1493
            1
   0
            2
                  16.2354
   0
            3
                  16.2483
   1
            1
                  16.1644
            2
   1
                  16.1288
   1
            3
                  16.1426
                  16.0875
   2
            1
   2
            2
                  16.1395
   2
                  16.1514
            3
   3
            1
                  16.1486
   3
            2
                  16.1864
   3
                  16.1900
            3
   4
           1
                  16.0855
   4
            2
                  16.0345
   4
           3
                  16.0229
   5
                  16.0367
           1
   5
           2
                  16.0958
   5
           3
                  16.0937
   7
           1
                  16.1388
   7
           2
                  16.1649
   7
           3
                  16.1721
   8
           1
                  16.1454
   8
            2
                  16.1560
   8
           3
                  16.1618
   9
            1
                  16.0665
   9
            2
                  16.0838
   9
            3
                  16.0819
  12
           1
                  16.0363
 12
            2
                  16.0968
 12
            3
                  16.1139
```

Conducts Simple Linear Regression

Regression Analysis: Phenobarbital versus Week

```
The regression equation is
Phenobarbital = 16.2 - 0.00581 Week
Predictor
                 Coef
                          SE Coef
                                           Т
Constant
              16.1530
                           0.0139
                                     1161.92
                                                 0.000
Week
            -0.005811
                         0.002326
                                       -2.50
                                                 0.018
S = 0.05040
                R-Sq = 16.8%
                                 R-Sq(adj) = 14.1%
Analysis of Variance
Source
                  DF
                              SS
                                          MS
                                                      F
                                                               Ρ
Regression
                  1
                        0.015859
                                    0.015859
                                                   6.24
                                                           0.018
Residual Error
                  31
                        0.078755
                                    0.002540
                                                           0.001
 Lack of Fit
                  8
                        0.049845
                                    0.006231
                                                   4.96
                  23
                        0.028910
                                    0.001257
 Pure Error
Total
                  32
                        0.094614
```

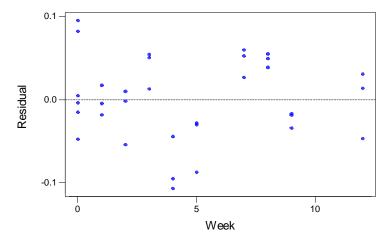

Unusual Observations
Obs Week Phenobar Fit SE Fit Residual St Resid
18 4.0 16.0229 16.1298 0.0089 -0.1069 -2.16R

R denotes an observation with a large standardized residual

Normplot of Residuals for Phenobar

Normal Probability Plot of the Residuals

(response is Phenobar)



Residuals from Phenobarbital vs Week

High and low residuals balance out each other, no data will be removed.

Residuals Versus Week

(response is Phenobar)

Do you want to remove any data points? (yes OR no) $\ensuremath{\text{n}}$

Should a quadratic be fit? (yes OR no)

Power analysis for t-test of slope less than zero

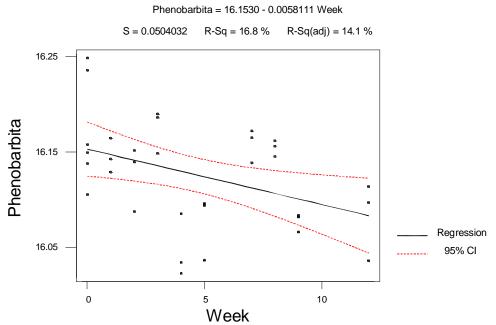
Power and Sample Size

```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.0504032


Sample

Size Power Difference

31 0.9900 -0.0368
```

- That means we would detect a mean of 16.081 as significantly less than ln(10000000) = 16.118 or a change of 9638689 from 100000000 = 3.6% loss.
 - Fit 95% confidence bands about the fitted simple linear model

• Conclusion – all data points were greater than 90% of the target concentration of 10,000,000 ng/mL. The slope through time was significant and the concentration was expected to stay above 90% of the target concentration for an estimated 13 weeks. Thus, the chemical is stable for the required 12 week testing period.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Phenobarbital in-life test suspension samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Phenobarbital in corn oil

TEST SOLUTION, SAMPLE CUSTODY, AND PROCESSING: Test suspension samples were prepared by the EDSP Chemical Repository, Sequim, WA, using phenobarbital (CF 1837, Sigma lot # 81K2620, expiration date 06/06) dissolved in Mazola corn oil (corn oil was from containers with the following expiration dates: 6/12/03, 1/1/04, and 4/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time. Three test suspensions at each of the test concentrations were prepared at one time on 01/22/03 and shipped on two different dates, 01/23/03 (Rep 1) and 01/27/03 (Reps 2 and 3). Samples were prepared at two test concentrations: 10 mg/mL and 20 mg/mL. The 10 mg/mL concentration was prepared by adding 2.0 g of phenobarbital in 184 g of corn oil in a precleaned, amber glass container. The 20 mg/mL concentration was prepared by adding 4.0 g of phenobarbital in 182 g of corn oil. Phenobarbital was sieved through an 80-mesh, stainless-steel screen prior to weighing. Stir bars were added to keep the chemical in suspension. The samples were analyzed on 01/23/03 to verify concentrations prior to shipping (Table 1).

The test suspension was sampled five times during the male test (1/26/03, 2/2/03, 2/9/03, 2/16/03, 2/23/03). Data are reported in Table 2. Table 3 provides results of analysis of remaining formulation samples after dosing to assess changes in test solution concentration from the beginning and end of the test.

Processing

<u>Test Solution Samples for Concentration Verification Prior to Shipping:</u>

The container was placed on a magnetic stir plate and stirred. 1-mL triplicate samples were removed and each placed in a tared, 60 mL, amber glass bottle. The weight of the sample was determined gravimetrically. 50 mL of acetonitrile (ACN) was added and the bottle agitated to mix. For the 10 mg/mL concentration, 0.01 mL was transferred to an auto sampler vial with 0.99 mL of 60% ACN in water. For the 20 mg/mL concentration, 0.005 mL was transferred to an auto sampler vial with 0.995 mL of 60% ACN in water.

In-life and Returned Container Samples:

For the containers with sufficient material to analyze, the samples of remaining dosing solution were removed from the refrigerator, allowed to warm to room temperature, and then stirred using a magnetic stir bar and stir plate. About 1 mL was sampled and placed in a tared, 60 mL, amber glass bottle. The weight of the sample was determined gravimetrically. 50 mL of acetonitrile (ACN, JT Baker lot # Y02820) was added and the bottle agitated to mix. Then,

0.01 was transferred to a 1.8-mL vial with 0.99 mL of 60% ACN:Water. This solution was then transferred to a high performance liquid chromatograph (HPLC) auto sampler vial for analysis.

The in-life samples were returned in 20 mL scintillation vials, which contained a slurry with the phenobarbital settled to the bottom. The entire sample was extracted to ensure accurate analysis. The vial was weighed and the contents poured into 120 mL, amber-glass bottle. 100 mL of ACN was used for these samples. The scintillation vial was rinsed with part of the 100 mL ACN. This rinse was then poured into the amber vial and the rinsing repeated to ensure complete transfer of the sample. The empty vial was dried and re-weighed. The amber bottles were agitated to mix, and 0.005 mL transferred to an auto sampler vial with 0.995 mL ACN:water. This was transferred to an HPLC vial for analysis.

SAMPLE ANALYSIS:

The samples were analyzed using an HPLC with an ultraviolet/visible (UV/VIS) detector at the 225-nm wavelength. A 60:40% ACN:water (v:v) mix was used as the eluent at 1.5 mL/minute. Separation was attained using a Supelco (25 cm x 4.8 mm) C-18 column for the samples analyzed on 1/23/03 and a Phenominex Synergi (25 cm X 4.8 mm, C-18 column) for all remaining samples. Calibration with a five-point curve was conducted using calibration standard PP-1189, A-E. For samples analyzed using the HPLC system, data are stored in MSL5, Room 219, on the computer with a property number of WV04738.

Data Quality Objectives	Control Limits
Procedural Blank	<5 X MDL
Blank Spike Recovery	40% - 120%
Continuing Standard Recovery	75% - 125%

QA/QC SUMMARY

METHODS: HPLC with a UV/VIS detector at the 225-nm wavelength.

CALIBRATION: Calibration with a five-point curve was conducted using dilutions prepared from

calibration standard PP-1189, A-E (curve from 10/17/02) for the initial test solutions and calibration standard PP-1189d (curve from 5/30/03) for the in-life and remainder samples, with a continuing calibration verification (CCV) sample

analyzed every 10 samples.

CONTINUING STANDARD RECOVERY: Percent recovery results for two initial and CCV samples analyzed with the inlife sample data set ranged from 92% to 106%, with a mean recovery of 100%. There were no occurrences of recoveries exceeding the 75% to 125%

acceptability range.

BLANK: Phenobarbital was not detected above the detection limit in the three blanks

analyzed with the test solution and in-life samples.

DETECTION LIMIT: The phenobarbital detection limit was 250 mg/L, determined by analysis of the

low concentration standard (50 μ g/L) and the dilution factor of 5,000 that used for the unknowns (MDL = 5,000 * 50 μ g/L). No data below this value were

reported.

BLANK SPIKE SAMPLES:

Blank spike samples were not analyzed. In this analysis, sampling was performed by taking the sample material from flask through to analysis. Analyzing a spiked sample would be no different from analyzing a CCV.

REPLICATE ANALYSIS:

The percent relative standard deviations (% RSD) for the two test solutions prepared and shipped were 1.0% for the 10-mg/mL replicates and 5.6% for the 20-mg/mL replicates.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of Formulation Concentrations Prepared on 1/22/03 and Analyzed on 1/23/03

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	% RSD
Corn oil blank	RTI-Blank-1	0.250U		
10 mg/mL	2-14 H-M R-1	9.55		
10 mg/mL	2-14 H-M R-2	9.64	9.64	1.0
10 mg/mL	2-14 H-M R-3	9.74		
20 mg/mL	2-14 I-M R-1	18.2		
20 mg/mL	2-14 I-M R-2	18.6	19.0	5.6
20 mg/mL	2-14 I-M R-3	20.2		

Table 2. Phenobarbital In-life Sample Concentrations - Males

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
01/26/03	03/05/03	05/30/03	10 mg/mL	1-26-03 H-M	9.40	94%
02/02/03	03/05/03	05/30/03	10 mg/mL	2-2-03 H-M	9.77	98%
02/09/03	03/05/03	05/30/03	10 mg/mL	2-9-03 H-M	9.92	99%
02/16/03	03/05/03	05/30/03	10 mg/mL	2-16-03 H-M	10.2	102%
02/23/03	03/05/03	05/30/03	10 mg/mL	2-23-03 H-M	10.3	103%
01/26/03	03/05/03	05/30/03	20 mg/mL	1-26-03 I-M	19.9	100%
02/02/03	03/05/03	05/30/03	20 mg/mL	2-2-03 I-M	20.5	103%
02/09/03	03/05/03	05/30/03	20 mg/mL	2-9-03 I-M	19.6	98%
02/16/03	03/05/03	05/30/03	20 mg/mL	2-16-03 I-M	19.7	99%
02/23/03	03/05/03	05/30/03	20 mg/mL	2-23-03 I-M	19.8	99%

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: WA 2-1	4			DATE: 10/30/03			
DEVIATION NUMBER: WA	2-14-	-D-003;		WAL/S	TUD'	Y DIRECTOR: Michael Blanton/	
Atrazine, DDE, Methoxychl	or,	·		Eric Cr			
phenobarbital, propylthiour							
ketoconazole, Linuron, fena							
NOTEBOOK NUMBER: NA							
TITLE OF STUDY: WA 2-14							
QAPP/PROTOCOL ID:							
DEVIATION RELATING TO)·		L				
[] QAPP). []	QMP		Т	ГТ	Protocol	
[] SOP	L J	Metho	d		[X]	Miscellaneous Documentation	
ORIGINAL DOCUMENT SI				protoco			
						nulations was determined to be	
adequate for the period of t	ime m	at animais	would	be dose	eu.		
DEVIATION: In life comple	o woro	not onch	اندا م	thin the	stabili	tutions data rosinad during the	
testing of the stability of the			.eu wi	umi me s	stabili	ty time determined during the	
testing of the stability of the	OIIIL	liation.					
DEASON/IMPACT: No imm	act T	bo formula	tiona	voro obc	wan te	ha within the acceptable torget	
						be within the acceptable target	
				es and w	ere u	sed within the known stability	
time periods determined for	eacn	iormulatior	1.				
PROPOSED CORRECTIVI	= ACT	ION AND S	CHE	DITE	SR C	OMPLETION: No corrective	
action is required beyond the				DOLLI		OMF ELTION. NO corrective	
action is required beyond ti	iis doc	umentation	1.				
ACTIONS TO PREVENT R	ECUR	PENCE: II	lnner i	manadai	ment	will review testing schedules for	
return shipments and analy		INLINOL. O	pperi	managei	пен	will review testing schedules for	
return shipments and analy	313.						
Approval:							
търго сен			ſ		2		
Michael Blanton,	7	Me hello	~1	Z//		Date <u>11/3/03</u>	
WAL		acreq .	12 /		-	11/3/	
	\sim		0	_		Date 11/3/03	
Eric Crecelius,		i he	eeli	is		Date 11/3/03	
Study Director					_		
Chemical Repository							
onomical repository		∽					
Deborah Coffey,			_			,	
MSL QA Manager		/2001 an	(`~\/\a.		Date	
WOL WA Wanager	'	- COM WK		ory my		Date 11 5100	
	,			1 (,	•	
Richard Ecker,		m Z	_			Data	
MSL Laboratory Director	1	111 2	hu	<u>ر</u>	_	Date <i> 3 03</i>	
MSL Laboratory Director			_				
David Houshops		11-7	<i>]</i>	<u> </u>		Date /0/3//03	
David Houchens,	nt <u>yel</u>	MINT	-ny	· car	_	Date	
EDSP Program Manageme	H		7				
Torri Dollook	\bigcap	· 1	100 I	0 0		Date 10-31-03	
Terri Pollock,	100	m	\mathcal{W}	WX-	_	Date 10-31-03	

EDSP Battelle QAM

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Propylthiouracil in Mazola Corn Oil

November 3, 2003

Prepared By:

Approved By:

Eric A. Crecelius, Ph.D.

Chemical Repository Manager

11/11/03

Richard M. Ecker

Date

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology

Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Propylthiouracil in Mazola Corn Oil

Reviewed by: DEterah Coffee

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03

Chemistry Report for WA 2-14 Propylthiouracil in Mazola Corn Oil

Parameter	Chemical
Compound Name	Propylthiouracil
CAS #	51-52-5
Central File No.	CF-1823
Initial Receipt Date	10/18/01
Expiration Date	Oct-04
Manufacturer	TCI America
Lot Number	GB01
Battelle Study #	WA2-14-02-02
Method	SW 846, 9065 Modified

Executive Summary

The chemical purity of propylthiouracil determined by the manufacturer was 99.6%. The purity result from Battelle-Sequim using gravimetric analysis was determined to be 99.9%. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of propylthiouracil was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 8 weeks. Thus, stability testing of the propylthiouracil stock solution in Mazola corn oil was not considered stable at 0.4 mg/mL for the entire required testing and holding period of 12 weeks.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/02 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on target concentrations ranged from 74% to 108%. Recoveries of post-test formulation samples returned to Battelle from RTI based on target concentrations ranged from 94% to 124%...

TABLE OF CONTENTS

	Page
1.0	INTRODUCTION1
2.0	GENERAL METHODS1
	2.1 CHEMICAL PROCUREMENT
3.0	RESULTS5
	3.1 CHEMICAL PURITY
4.0	CONCLUSIONS
API API API	PENDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY
	LIST OF TABLES
	Page
Tab	le 1. Chemical Procurement Information
Tab	le 2. Stock Matrix Composition for Stability Testing
Tab	le 3. Summary of Statistical Results for Propylthiouracil
	LIST OF FIGURES
	Page
Figu	are 1. EDSP Requisition Form for Propylthiouracil2
	are 2. Observed Concentration of Propylthiouracil with a Target Concentration of 400 μg/mL Against Time

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA2-14-02-02, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of propylthiouracil (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_propylthiouracil-cornoil.doc, PSTP_WA-2-14_propylthiouracil-cornoil.doc, DSUM_WA2-14_Propylthiouracil-crnoil.xls, and DAF_WA-2-14_Propylthiouracil-cornoil.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, propylthiouracil, (CAS No. 51-52-5) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). Propylthiouracil was purchased from TCI America and lot number GB01 was initially received on 10/18/01 with an expiration date of Oct-04 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1823) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Mazola corn oil with expiration dates of 6/03 and 1/04 was purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-02

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Propylthiouracil (MSL CF 1823)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 0.4 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Testing/holding duration: 12 weeks

Chemical Information

Chemical Name: Propylthiouracil

CAS: 51-52-5

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

Any known stability information: may refer to

attached documentation

99.6% pure

Manufacturer's Stability Information:

stable

Desired purity (%) for test? 95% or greater

Figure 1. EDSP Requisition Form for Propylthiouracil

Table 1. Chemical Procurement Information

Parameter	Chemical	
Compound Name	Propylthiouracil	
CAS#	51-52-5	
Central File No.	CF-1823	
Initial Receipt Date	10/18/01	
Expiration Date	Oct-04	
Manufacturer	TCI America	
Lot Number	GB01	
Manufacturer's Purity	99.6%	
Storage Conditions	Cool, dry place/room temp.	
Battelle Study #	WA2-14-02-02	
Method	SW 846, 9065 Modified	

2.2 Chemical Purity

Chemical purity was verified by a gravimetric method and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted by creating a solution of propylthiouracil by adding 0.4998 g propylthiouracil to a 25 mL volumetric flask. A 0.5 mL aliquot of 50% sodium hydroxide (NaOH) was then added to the flask which was then diluted to the 25 mL mark with deionized water. To perform the analysis, 5 mL of the solution was pushed through a 0.2 um syringe filter followed by 10 mL of deionized water. Then the filter was dried by blowing helium through the filter for about 10 minutes. Syringe filters were then stored in a dessicator for 12 hours and weighed. The percent purity was determined by comparing a blank with the filtered material and the remainder was considered impurities. Three replicates were analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. A stock solution was prepared to arrive at the chemical concentration requested for stability analysis (Table 2). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

A propylthiouracil stock matrix was prepared on 10/14/02 for testing as described in Table 2. Briefly, for the 0.4 mg/mL propylthiouracil concentration, 0.080 g was weighed into a 250 mL wide-mouth amber glass bottle, 186 g of Mazola corn oil was added, the sample was stirred, and stored in a refrigerator at $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ during the duration of the study..

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA2-14-02-02 12 Weeks	Propylthiouracil	0.4 mg/mL	1823-1b-2	0.080 g Propylthiouracil in 186 g Mazola corn oil

Density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentration was determined by ultra violet (UV) absorption analysis. Triplicate aliquots were tested for the 0.4 mg/mL concentration. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

The propylthiouracil stock solution was sampled by removing it from the refrigerator, allowing it to warm to room temperature, stirring it overnight, removing triplicate 1 mL samples, and placing them in a tared 30 mL amber bottle. At the beginning of the stability trial (10/16/02), vertical homogeneity was assessed by removing samples from the top (about 0.25 inches below the surface) and bottom (about 1 inch from the bottom). Subsequent samples were removed from the center of the sample container. After samples were collected, the actual weight was determined gravimetrically, then 25 mL NaOH in deionized water was added. The alkaline water was prepared from 0.6 mL of a 50% by weight NaOH in water diluted to 1 L. The container was agitated for about two minutes to mix. After addition of NaOH, 3 mL of solution was transferred to a syringe with a Gelman acrodisk CR, PFTE 0.2 um filter attached. The filtered solution was placed into a 2 mL auto sampler vial, and about 0.5 mL removed and placed into a 5 mL cuvette that works with the Beckman DU8 spectrophotometer. A total of 1.5 mL of the alkaline water solution was added to the sample, the cuvette was swirled to mix, and the sample was analyzed using the Beckman DU8 spectrophotometer at the 260 nm wavelength with a slit width of 0.5 and the average read time set to 3. The unknown absorption was compared to that of the calibration standards.

Calibration was done using dilutions prepared from standard PP-1188 until 11/12/02 when a new standard, PP-1197 was used. Initial and continuing calibration verification (ICV and CCV, respectively) were analyzed at the beginning and end of every run. At least a 4 –point calibration series was analyzed with each sample run. PP-1188 was a serial dilution of PP-1187 which was made by weighing 0.1011 grams of propylthiouracil into a 100 mL volumetric flask. This was then diluted to the 100 mL mark with alkaline water. The PP-1188 series (A through E) was made using the following amounts of PP-1187 which was then diluted to the 100 mL mark with the alkaline water: PP-1188A was 2 mL PP-1187; B was 1 mL PP-1187; PP-1188C was 0.5 mL PP-1187; PP-1188D was 0.1 mL PP-1187; and PP-1188E was 0.05 mL PP-1187. PP-1197 series was made in the same way except that 0.1000 grams of propylthiouracil was used.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fit to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim determined purity of the propylthiouracil using a gravimetric method. The purity was determined by dissolving an aliquot of the propylthiouracil and determining the insoluble fraction. This fraction (considered the impurity), was then used to determine the purity. This method yielded a purity of 99.9%. Chemical purity of propylthiouracil determined by the manufacturer was 99.6% (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 10/16/02. Chemical concentrations were determined 10 times between 10/16/02 and 01/07/03. The analytical and quality control (QC) results are presented in Appendix C. A single preparation blank was analyzed with every sample for QC purposes. Because Mazola corn oil in the solution contributed to the absorbance at the wavelength used, the blanks produced an apparent propylthiouracil value at concentrations ranging from 39.8 U to 159 μ g/mL . Stability sample concentrations were blank corrected. CCV results ranged from 94.4% to 111%. Internal standards were not analyzed. The MDL was 50.6 μ g/mL. The dilution factor of the formulation can be taken into account, and thus, the MDL of the diluted sample was 0.5 μ g/mL.

Mazola corn oil with expiration dates of 6/03 and 1/04 were purchased from local grocery stores and used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentrations were measured on 9/05/2002 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn oil was 1.77 meq/kg and 1.34 meq/kg for samples expiring on 6/03 and 1/04, respectively. This level of peroxide was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

3.3 Statistical Results of Stability Trial

A plot of propylthiouracil with a target concentration of $400~\mu g/mL$ against time showed a potential decay in concentration (Figure 2). Homogeneity of the chemical concentration within the testing container was evaluated at time 0. Because one sample from both the top and bottom sections was approximately the same concentration, no difference was detected. All but three stability samples were above 90% of the target value. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of propylthiouracil was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 8 weeks (Table 3). Because of the significant slope (p = 0.002), this stock solution was considered stable for only 8 of the required 12-week testing/holding period. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

In-life chemistry recoveries for all doses based on target concentrations ranged from 74% to 108%. Recoveries of post-test formulation samples returned to Battelle from RTI based on target concentrations ranged from 94% to 124%. The complete analysis is presented in Appendix E.

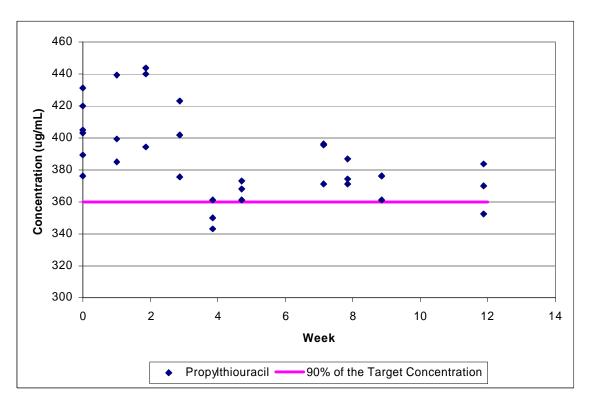


Figure 2. Observed Concentration of Propylthiouracil with a Target Concentration of 400 ng/mL Against Time

Table 3. Summary of Statistical Results for Propylthiouracil

WA-2-14-02-02 Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.	1823-1b-2 Propylthiouracil
Target Concentration (ug/mL)	400
Number of determinations	1
Number of weeks tested	12
Number of replicates per day	3
Number of outliers removed	0
Number of observations removed	0
Overall Mean Concentration	388
95% Upper CL	396
error degrees of freedom	32
1-sample t-test of Ho: μ >= Target	S ^a
estimated intercept of In(concentration) against time	6.0016
estimated slope of In(concentration) against time	-0.0093
standard error of slope	0.0027
error degrees of freedom	31
Significance test of lack-of-fit for final model	S
Significance test of Ho: $\beta = 0$ vs. H1: β ? 0	S
Lower 95% CL	-0.015
Upper 95% CL	-0.004
Maximum Percent Loss (using LCL)	11.2%
Mean Percent Loss (using bhat)	7.2%
LN(90% of Target)	5.8861
Number of weeks until at 90% of Target (using LCL)	8
Conclusion:	Stable for 8 wks

^aSignificant at a = 0.05

4.0 CONCLUSIONS

The stated chemical purity by the manufacturer was 99.6%. Battelle-Sequim laboratory analyses determined the purity to be 99.9%. Stability testing of propylthiouracil in Mazola corn oil concluded that the chemical was stable at the 0.4~mg/mL concentration for a period of 8 weeks. Thus, the propylthiouracil stock solution in Mazola corn oil was not considered stable at 0.4~mg/mL for the required testing/holding period of 12~weeks.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

In-life chemistry recoveries for all doses based on target concentrations ranged from 74% to 108%. Recoveries of post-test formulation samples returned to Battelle from RTI based on target concentrations ranged from 94% to 124%.

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

CERTIFICATE OF ANALYSIS

P0533 Lot# GB01 CAS# 51-52-5

6-N-PROPYL-2-THIOURACIL

Appearance:

White powder

Solubility(in 1N NaOH, 1/20):

Clear

Assay(tit.):

99.6%

9211N. Harborgate St. Portland, OR 97203 Phone: (503)283-1681 (800)423-8616 Fax: (503)283-1987

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Propylthiouracil

Chemical Name: Propylthiouracil (MSL CF 1823), CMS 173694

CAS Number: 51-52-5

Lot Number: GB01, stored at RT in MSL5, Rm 219

Expiration date: 10/2004

Manufacturer's Purity Information: 99.6%

Manufacturer's Stability Information: stable

MSL Purity Results:

Purity (%) To be determined at MSL by gravimetric analysis

MDL has not been determined.

Bioassay Information:

Study Director

Name: Dr. Julia George

Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: Propylthiouracil

CAS: 51-52-5

Carrier(s): suspended in Mazola corn oil

Concentrations/Dilution Series: 0.4 mg/mL

In vitro or in vivo tests? In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Testing/holding duration: 12 weeks

EDSP Purity Analysis and Stability Testing Plan for Propylthiouracil, Continued

Design of Stability Test: One concentration of Propylthiouracil, 0.4 mg/mL in Mazola corn oil, will be tested. The chemical will be sieved through an 80 mesh screen and material that passes will be suspended in Mazola corn oil with a magnetic stirrer. Samples of the suspension will be taken with a gavage needle, while the suspension is being vigorously stirred, at mid-depth in a 250 mL amber glass bottle, except for the first sampling, which will be sampled at 25% and 75% depth in triplicate to demonstrate homogeneity. The suspension will be stored in glass at 4 deg. C in the dark for 12 weeks, sampled at least 8 times in triplicate and analyzed monthly by UV-VIS.

Number of replicates: 3

Duration: 12 weeks, sampling at least 8 time points with triplicate samples taken each time

Other factors:

Temperature regime(s): 4 deg. C

Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other: None

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity

MSDS Records:

- date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-to-lot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- QC data reports;
- · data qualifying flags; and
- Dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C1. Propylthiouracil concentration in Mazola Corn Oil ($\mu g/mL$)

Target Concentration	Name	Date Analyzed	Propylthiouracil ^a	Average	RSD	Recovery
400 μg/mL	1823-1b-2-1 Top R-1	10/16/2002	389			97.3%
400 μg/mL	1823-1b-2-1 Top R-2	10/16/2002	405	390	3.71%	101%
400 μg/mL	1823-1b-2-1 Top R-3	10/16/2002	376			94.0%
400 μg/mL	1823-1b-2-1 Bottom R-1	10/16/2002	403			101%
400 μg/mL	1823-1b-2-1 Bottom R-2	10/16/2002	420	418	3.41%	105%
400 μg/mL	1823-1b-2-1 Bottom R-3	10/16/2002	431			108%
400 μg/mL	1823-1b-2-2 R-1	10/23/2002	399			99.8%
400 μg/mL	1823-1b-2-2 R-2	10/23/2002	439	408	6.95%	110%
400 μg/mL	1823-1b-2-2 R-3	10/23/2002	385			96.2%
400 μg/mL	1823-1b-2-3 R-1	10/29/2002	440			110%
400 μg/mL	1823-1b-2-3 R-2	10/29/2002	394	426	6.51%	98.5%
400 μg/mL	1823-1b-2-3 R-3	10/29/2002	444			111%
400 μg/mL	1823-1b-2-4 R-1	11/5/2002	423			106%
400 μg/mL	1823-1b-2-4 R-2	11/5/2002	402	400	5.94%	100%
400 μg/mL	1823-1b-2-4 R-3	11/5/2002	376			94.0%
400 μg/mL	1823-1b-2-5 R-1	11/12/2002	350			87.5%
400 μg/mL	1823-1b-2-5 R-2	11/12/2002	343	351	2.60%	85.8%
400 μg/mL	1823-1b-2-5 R-3	11/12/2002	361			90.3%
400 μg/mL	1823-1b-2-6 R-1	11/18/2002	368			92.0%
400 μg/mL	1823-1b-2-6 R-2	11/18/2002	361	367	1.67%	90.3%
400 μg/mL	1823-1b-2-6 R-3	11/18/2002	373			93.3%
400 μg/mL	1823-1b-2-7 R-1	12/5/2002	396			99.1%
400 μg/mL	1823-1b-2-7 R-2	12/5/2002	396	388	3.67%	99.0%
400 μg/mL	1823-1b-2-7 R-3	12/5/2002	371			92.9%
400 μg/mL	1823-1b-2-8 R-1	12/10/2002	387			96.7%
400 μg/mL	1823-1b-2-8 R-2	12/10/2002	374	377	2.22%	93.5%
400 μg/mL	1823-1b-2-8 R-3	12/10/2002	371			92.8%
400 μg/mL	1823-1b-2-9 R-1	12/17/2002	376			94.0%
400 μg/mL	1823-1b-2-9 R-2	12/17/2002	376	371	2.28%	94.0%
400 μg/mL	1823-1b-2-9 R-3	12/17/2002	361			90.3%
400 μg/mL	1823-1b-2-10 R-1	1/7/2003	384			95.9%
400 μg/mL	1823-1b-2-10 R-2	1/7/2003	370	369	4.27%	92.5%
400 μg/mL	1823-1b-2-10 R-3	1/7/2003	352			88.1%

^aPropylthiouracil values were blank corrected
^b Recovery is relative to the target concentration

Table C1. Continued

Sample Name	Date Analyzed	Propylthiouracil (µg/mL)
1823-1b-2-1 Blank	10/16/02	65.1
1823-1b-2-2 Blank	10/23/02	110
1823-1b-2-2 Blank	10/23/02	106
1823-1b-2-2 Blank	10/23/02	96.4
1823-1b-2-3 Blank	10/29/02	117
1823-1b-2-3 Blank	10/29/02	108
1823-1b-2-3 Blank	10/29/02	130
1823-1b-2-4 Blank R-1	11/5/02	108
1823-1b-2-4 Blank R-2	11/5/02	83.7
1823-1b-2-4 Blank R-3	11/5/02	87.1
1823-1b-2-5 Blank R-1	11/12/02	64.0
1823-1b-2-5 Blank R-2	11/12/02	59.2
1823-1b-2-5 Blank R-3	11/12/02	76.1
1823-1b-2-6 Blank R-2	11/18/02	47.3
1823-1b-2-6 Blank R-3	11/18/02	55.1
1823-1b-2-6 Blank R-1	11/21/02	89.9
1823-1b-2-6 Blank R-2	11/21/02	59.1
1823-1b-2-6 Blank R-3	11/21/02	50.6 U
1823-1b-2-7 Blank R-1	12/5/02	159
1823-1b-2-7 Blank R-2	12/5/02	154
1823-1b-2-8 Blank R-1	12/10/02	50.9
1823-1b-2-8 Blank R-2	12/10/02	54.3
1823-1b-2-9 Blank R-1	12/17/02	50.6 U
1823-1b-2-9 Blank R-2	12/17/02	50.6 U
1823-1b-2-10 Blank R-1	1/7/03	51.2
1823-1b-2-10 Blank R-2	1/7/03	50.6 U
Corn oil blank 1g 0.5 ml/1.5ml	1/22/03	54.1
Corn oil blank 5g 0.1 ml/1.9ml	1/22/03	50.6 U
Corn oil blank 5g 0.05ml/2.95ml	1/22/03	50.6 U

U = Not detected at a value greater than the MDL

Table C.2. ICV and CCV Data for Propylthiouracil Concentration in Mazola Corn Oil

		Propylthiouracil	
Sample Name	Date Analyzed	(μg/mL)	Recovery
ICV- 5.055 μg/mL	10/16/02	4.82	95.3%
CCV- 5.055 µg/mL	10/16/02	4.77	94.4%
ICV- 5.055 μg/mL	10/23/02	5.31	105%
CCV- 5.055 µg/mL	10/23/02	5.34	106%
ICV- 5.055 μg/mL	10/29/02	5.48	108%
CCV- 5.055 µg/mL	10/29/02	5.47	108%
CCV- 5.055 µg/mL	11/5/02	5.63	111%
CCV- 5.055 µg/mL	11/5/02	5.60	111%
ICV- 5.055 μg/mL	11/12/02	4.88	96.5%
CCV- 5.055 µg/mL	11/12/02	4.92	97.3%
ICV- 5.055 μg/mL	11/18/02	4.90	97.0%
CCV- 5.055 µg/mL	11/18/02	4.95	97.9%
ICV- 5.055 μg/mL	12/5/02	4.93	97.5%
CCV- 5.055 µg/mL	12/5/02	4.96	98.1%
ICV- 5.055 μg/mL	12/10/02	4.92	97.3%
CCV- 5.055 µg/mL	12/10/02	4.91	97.1%
ICV- 5.055 μg/mL	12/17/02	4.96	98.1%
CCV- 5.055 µg/mL	12/17/02	4.92	97.4%
ICV- 5.055 μg/mL	1/7/03	5.01	99.1%
CCV- 5.055 µg/mL	1/7/03	5.00	98.9%
	Tank	.:	
101/ 5 055/= 1		tion verification	07.50/
ICV- 5.055 µg/mL	11/21/02	4.93	97.5%
CCV- 5.055 µg/mL	11/21/02	4.91	97.1%

Table C.3. Internal Standards Data for Propylthiouracil in Mazola Corn Oil

		5A Androstane
Sample Name	Date	Recovery

Not applicable

Table C.4. Peroxide Concentration in Mazola Corn Oil (meq/kg)

Sample	Analysis Date	Volume of Sodium Thiosulfate (mL)	Normality	Weight of Oil (g)	Peroxide Number	Average Peroxide Number	RSD
Blank	09/05/02	0.5	0.005	5.00	0.50		
Mazola Corn Oil Expiration 6-03 R-1 Mazola Corn Oil	09/05/02	1.9	0.005	5.01	1.90		
Expiration 6-03 R-2 Mazola Corn Oil	09/05/02	1.8	0.005	5.36	1.68	1.77	6.41
Expiration 6-03 R-3	09/05/02	1.8	0.005	5.16	1.74		
Mazola Corn Oil Expiration 1-04 R-1 Mazola Corn Oil	09/05/02	1.2	0.005	4.92	1.22		
Expiration 1-04 R-2 Mazola Corn Oil	09/05/02	1.5	0.005	5.2	1.44	1.34	8.31
Expiration 1-04 R-3	09/05/02	1.4	0.005	5.13	1.36		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-02

Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

5/31/2003 9:29:56 AM —

Results for: Week 0

Two-Sample T-Test and CI: Propyl Thiouracil, section

Two-sample T for Propylthiouracil

1 = bottom 2 = top

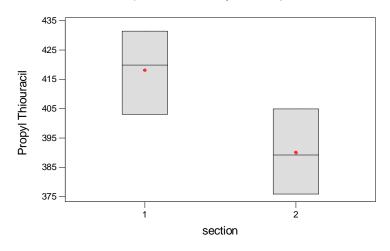
 section
 N
 Mean
 StDev
 SE Mean

 1
 3
 418.1
 14.3
 8.2

 2
 3
 390.0
 14.5
 8.4

Difference = mu (1) - mu (2) Estimate for difference: 28.1

95% CI for difference: (-9.2, 65.4)


T-Test of difference = 0 (vs not =): T-Value = 2.40 P-Value = 0.096 DF = 3

Poor power!

NS

Boxplots of Propyl T by section

(means are indicated by solid circles)

Kruskal-Wallis Test: Propylthiouracil versus section

Kruskal-Wallis Test on Propyl T

$$H = 2.33 DF = 1 P = 0.127 NS$$

^{*} NOTE * One or more small samples

Conclusion: For the week 0 data, the test between sections has poor power, note the width of the 95% CI of the difference (-9.2, 65.4). Because one sample from both the top and bottom sections was about the same concentration, no difference could be detected.

Results for: Stability Data

 Performs a one-sample t-test for mu less than TARGET & What is the target value for X 3 DATA> 400

One-Sample T: Propylthiouracil

Test of mu = 400 vs mu < 400

Variable N Mean StDev SE Mean Propylthiouracil 33 387.83 26.69 4.65

Variable 95.0% Upper Bound T P Propythiouracil 395.70 -2.62 0.007 **

Boxplot of Propyl Thiouracil

(with Ho and 95% t-confidence bound for the mean)

Outliers are < Median-3*IQD OR > Median+3*IQD

Boundary for outliers are values < 288.461 and > 478.870

No outliers

• Transforms data to natural log

Week Rep Ln(Concentration)

- 0 5.9642 1 0 2 6.0036 0 3 5.9295 0 5.9991 1 0 2 6.0399 0 3 6.0671 1 1 5.9893 1 2 6.0855 1 3 5.9526 2 1 6.0865 2 2 5.9765 2 3 6.0958 3 1 6.0481 3 2 5.9956 3 3 5.9291 4 1 5.8576 4 2 5.8384 4 3 5.8898 5 5.9078 1 5 5.8890 5 3 5.9223 7 1 5.9820 7 2 5.9811 7 3 5.9173 8 1 5.9583 8 2 5.9246 8 3 5.9167 9 1 5.9300 2 5.9294 9 5.8900 12 5.9498 1 12 2 5.9137 12 3 5.8644
- Conducts Simple Linear Regression

Regression Analysis: Propythiouracil versus Week

The regression equation is Propythiouracil = 6.00 - 0.00933 Week

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 6.00159
 0.01613
 372.12
 0.000

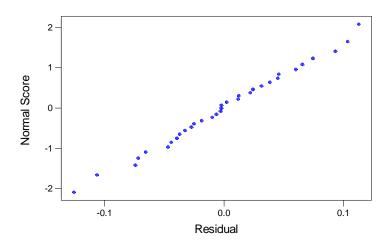
 Week
 -0.009333
 0.002698
 -3.46
 0.002

S = 0.05847 R-Sq = 27.8% R-Sq(adj) = 25.5%

**

Analysis of Variance

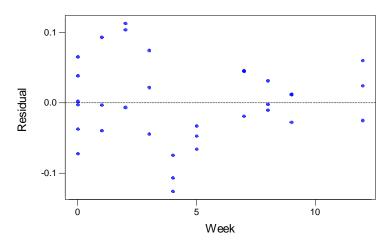
Source DF SS MS F Regression 11.97 0.002 1 0.040912 0.040912 Residual Error 31 0.105997 0.003419 Lack of Fit 8 0.057943 0.007243 3.47 0.009 Pure Error 23 0.048054 0.002089 Total 32 0.146909


Unusual Observations

Obs Week Propyl T Fit SE Fit Residual St Resid 17 4.0 5.8384 5.9643 0.0103 -0.1259 -2.19R

R denotes an observation with a large standardized residual

Normplot of Residuals for Propylthiouracil


Normal Probability Plot of the Residuals (response is Propyl T)

Residuals from Propyl T vs Week

Residuals Versus Week

(response is Propyl T)

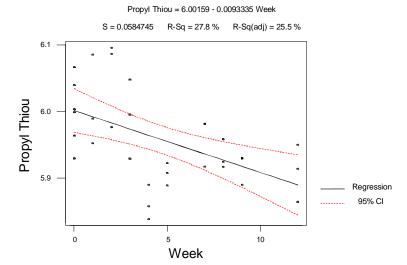
Do you want to remove any data points? (yes OR no)

Should a quadratic be fit? (yes OR no) n

• Power analysis for t-test of slope less than zero

Power and Sample Size

1-Sample t Test


Testing mean = null (versus < null) Calculating power for mean = null + difference Alpha = 0.05 Sigma = 0.0584745

Sample

Size Power Difference 31 0.9900 -0.0427

- That means we would detect a mean of 5.949 as significantly less than ln(400) = 5.991 or a change of 383.3 from 400 = 4.2% loss.
- Fit 95% confidence bands about the fitted simple linear model

Regression Plot

• Conclusion – only 9 data points were greater than the target concentration of 400 mg/mL, however, the average day 0 concentration was 404, thus stability was evaluated using the target concentration. The slope through time was significant and the concentration was expected to stay above 90% of the target concentration for only 8 weeks. Thus, the chemical is stable for only 8 weeks.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Propylthiouracil in-life test suspension samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Propylthiouracil in corn oil

TEST SOLUTION, SAMPLE CUSTODY, AND PROCESSING: Test suspension samples were prepared by the EDSP Chemical Repository, Sequim, WA, using Propylthiouracil (PTU) (CF 1823, TCI America lot # GB01, expiration date 10/04) suspended in Mazola corn oil (corn oil was from containers with the following expiration dates: 6/12/03, 1/1/04, and 4/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time.

Test suspensions of PTU (CAS 51-52-5) supporting EDSP WA 2-14 were made on 11/20/02 (females) and 01/22/03 (males) at two test concentrations (0.4 and 5.0 mg/mL) for female and male rat exposures. The 0.4 mg/mL concentration was prepared by weighing 0.080 g of PTU (CF 1823, TCI America, Lot # GB01, expiration date 10/04) into a 250 mL, wide-mouth, amber glass bottle after sieving through an 80-mesh screen and adding 186 g corn oil to obtain the desired concentration. The same approach was used for the second concentration: 1.0 g PTU was weighed after sieving and 185 g corn oil added to obtain the 5.0-mg/mL concentration. The samples were stirred and stored in a refrigerator prior to shipping. Samples were collected to verify test concentrations on 11/20/02, analyzed on 11/21/02 (Table 1), and also collected and analyzed on 01/23/03 (Table 2). For female exposures, Replicate 1 samples were shipped on 11/21/02 and Replicate 2 samples on 11/25/02. For male exposures, Replicate 1 samples were shipped on 01/23/03 and Replicate 2 samples on 01/23/03.

The test solution was sampled four times during the female test (11/27/02, 12/03/02, 12/10/02, and 12/17/02) and five times during the male test (1/26/03, 2/2/03, 2/9/03, 2/16/03, 2/23/03). Data are reported in Table 3 for males and Table 4 for females. Table 5 provides results of analysis of remaining formulation samples after dosing to assess changes in test solution concentrations from the beginning and end of the test.

Processing

<u>Test Solution Samples for Concentration Verification Prior to Shipping:</u>

Triplicate 1 mL samples from the top (about 0.25 inches below the surface) and bottom (about 1 inch from the bottom) of the container were sampled and placed in a tared, 30 mL, amber-glass bottle. At this time, the sample weight was determined gravimetrically. Then 25 mL sodium hydroxide (NaOH) in deionized (DI) water was added. The alkaline water was prepared from 6.0 mL of a 50% by weight NaOH in water diluted to 1 L. The container was agitated for about 3 min to mix. Then, 3 mL of solution was transferred

to a syringe with a Gelman acrodisk CR, PFTE 0.2-µm filter attached. The filtered solution was placed into a 2 mL auto sampler vial, and 0.5 mL removed and placed into a 5 mL cuvette that works with the Beckman DU8 spectrophotometer. 1.5 mL of the alkaline water solution was added to the sample, the cuvette was swirled to mix, and the sample was analyzed using the Beckman DU8 spectrophotometer with an ultraviolet/visible (UV/VIS) detector at the 260 nm wavelength with a slit-width of 0.5 and the average read time set to 3. The unknown absorption is compared with that of the calibration standards. Calibration with a five-point curve was conducted using dilutions prepared from calibration standard PP-1197, A-E, and a continuing calibration blank and a continuing calibration verification (CCV) sample analyzed at the beginning and end of every run.

In-life and Returned Container Samples:

Samples were returned from RTI at two different times: 12/18/02 for female rat assays (received at Battelle, Seguim, WA, on 12/20/02) and 03/04/03 for male rat assays (received at Battelle, Sequim, WA, on 03/05/03). The samples were removed from the refrigerator, allowed to warm to room temperature, stirred using a stir plate and stir bar, and 1 mL sampled and placed in a tared, 25 mL, amber-glass vial. The weight of the samples was determined gravimetrically. 25 mL of a 3-g/L NaOH:water solution (6.0 mL of a 50% by weight NaOH in water diluted to 1 L) was added and the solution agitated by hand for 3 min. Samples returned from RTI in 20 mL scintillation vials were not subsampled; the entire sample was used. The scintillation vial was weighed, the solution poured into a 25 mL, amber glass vial, and 10 mL of alkaline solution added. The vial was capped, agitated, and then poured into an amber glass vial. The process was repeated using 15 mL of alkaline solution, and the scintillation vial was cleaned with one rinse of methanol (MeOH, JT Baker, lot # 47E43) and one rinse of methylene chloride (MeCl, JT Baker, lot #X36E04), and then allowed to dry. The empty vial was reweighed to obtain the sample weight. Two corn-oil blanks were prepared using Mazola corn oil (Battelle CMS bar code 172653).

Two (2.0) mL of the solution was filtered using a syringe with a Gelman acrodisk CR, PFTE 0.2 μ m filter attached. The filtered solution was placed into a 2 mL auto sampler vial, and about 0.5 mL removed and placed into a 5 mL cuvette that works with the Beckman DU8 spectrophotometer. 1.5 mL of the alkaline water solution was added to the sample, the cuvette swirled to mix, and the sample analyzed using the Beckman DU8 spectrophotometer with a UV/VIS detector at the 260 nm wavelength, with a slit-width of 0.5, and the average read time set to 3. The unknown absorption was compared with that of the calibration standards. Calibration with a five-point curve was conducted using dilutions prepared from calibration standard PP-1197, A-E, and a blank and a CCV sample analyzed at the beginning and end of every run.

SAMPLE ANALYSIS:

The samples were analyzed by a modified SW 846 method, 9065, using a Beckman DU8 spectrophotometer with a UV/VIS detector at the 260nm wavelength, with a slit width of 0.5 and the average read time set to 3.

Data Quality Objectives	Control Limits
Procedural Blank	<5 X MDL
Continuing Standard Recovery	75% - 125%

QA/QC SUMMARY

METHODS: Modified SW 846 method, 9065, using a Beckman DU8 spectrophotometer

with a UV/VIS detector at the 260 nm wavelength, with a slit-width of 0.5 and

the average read time set to 3.

CALIBRATION: Calibration with a five-point curve was conducted using dilutions prepared

from calibration standard PP-1197, A-E, and a blank and a CCV sample

analyzed at the beginning and end of every run.

CONTINUING STANDARD **RECOVERY:**

Percent recovery results for three initial and five CCV samples analyzed with the in-life sample data set ranged from 97% to 108% with a mean recovery of 97%. There were no occurrences of recoveries exceeding the 75% to

125% acceptability range.

BLANK: PTU was not detected above five times the detection limit in the seven blanks

analyzed with the test solution and in-life samples.

DETECTION LIMIT: The PTU detection limit was 50.6 µg/mL as determined by an MDL study

using the low calibration standard (0.5055 µg/mL) reported with the data.

No data below this value were reported.

BLANK SPIKE **SAMPLES:**

Blank spike samples were not analyzed.

REPLICATE The percent relative standard deviations (% RSD) for the two test solutions ANALYSIS:

prepared on 11/20/02 were 4.7% for the 0.40-mg/mL replicates and 2.64%

for the 5.0-mg/mL replicates.

The % RSD for the two test solutions prepared on 01/22/03 were 6.4% for

the 0.40-mg/mL replicates and 4.9% for the 5.0-mg/mL replicates.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of PTU Test Solution Concentrations Prepared on 11/20/2002 and **Analyzed on 11/21/02**

Nominal Conc.	Sample ID Number	Dilution	Measured Conc. (mg/mL)	Blank- Corrected Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	% RSD
	1823-1b-2-6 Blank R-1	4	0.0899	NA		
	1823-1b-2-6 Blank R-2	4	0.0591	NA		
	1823-1b-2-6 Blank R-3	4	0.0441	NA		
0.4 mg/mL	WA 2-14-T-F Rep1 R-1	4	0.533	0.468		
0.4 mg/mL	WA 2-14-T-F Rep1 R-2	4	0.491	0.426	0.447	4.7%
0.4 mg/mL	WA 2-14-T-F Rep1 R-3	4	0.511	0.447	_	

	1823-1b-2-6 Blank R-2 100 μL	20	0.0579			
5.0 mg/mL	WA 2-14-V-F Rep1 R-1	20	4.56	4.51		
5.0 mg/mL	WA 2-14-V-F Rep1 R-2	20	4.80	4.74	4.65	2.64%
5.0 mg/mL	WA 2-14-V-F Rep1 R-3	20	4.76	4.70		

Table 2. Verification of PTU Test Solution Concentrations Sampled and Analyzed on 01/23/03

Nominal Conc.	Sample ID Number	Dilution	Measured Conc. (mg/mL)	Blank- Corrected Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	%RSD
	Corn oil blank 1g 0.5 mL/1.5mL	4	0.054	NA		
0.4 mg/mL	Sent to RTI 2-14 B-M Rep 1	4	0.518	0.464		
0.4 mg/mL	Sent to RTI 2-14 B-M Rep 2	4	0.473	0.419	0.432	6.4%
0.4 mg/mL	Sent to RTI 2-14 B-M Rep 3	4	0.467	0.413		
	Corn oil blank 1g 0.1 mL/1.9mL	4	0.029	NA		
5.0 mg/mL	Sent to RTI 2-14 C-M Rep 1	20	4.72	4.69	4.95	4.9%
5.0 mg/mL	Sent to RTI 2-14 C-M Rep 2	20	5.20	5.17		
5.0 mg/mL	Sent to RTI 2-14 C-M Rep 3	20	5.03	5.00		

Table 3. PTU In-life Sample Concentrations - Males

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Blank Corrected ^(a) Measured Conc. (mg/mL)	% of Nominal
01/26/03	03/05/03	05/23/03	0.4 mg/mL	1-26-03 PND 23 2-14-B-M	0.350	88%
02/02/03	03/05/03	05/23/03	0.4 mg/mL	2-2-03 PND 30 2-14-B-M	0.347	87%
02/09/03	03/05/03	05/23/03	0.4 mg/mL	2-9-03 PND 37 2-14-B-M	0.299	75%
02/16/03	03/05/03	05/23/03	0.4 mg/mL	2-16-03 PND 44 2-14-B-M	0.347	87%
02/23/03	03/05/03	05/23/03	0.4 mg/mL	2-23-03 PND 51 2-14-B-M	0.333	83%
01/26/03	03/05/03	05/23/03	5.0 mg/mL	1-26-03 PND 23 2-14-C-M	4.44	89%
02/02/03	03/05/03	05/23/03	5.0 mg/mL	2-2-03 PND 30 2-14-C-M	5.41	108%
02/09/03	03/05/03	05/23/03	5.0 mg/mL	2-9-03 PND 37 2-14-C-M	4.82	96%
02/16/03	03/05/03	05/23/03	5.0 mg/mL	2-16-03 PND 44 2-14-C-M	4.60	92%
02/23/03	03/05/03	05/23/03	5.0 mg/mL	2-23-03 PND 51 2-14-C-M	4.16	83%

⁽a) Associated blank data are reported in raw data files

Table 4. PTU In-life Sample Concentrations – Females

Date Sample Collected	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Blank Corrected ^(a) Measured Conc. (mg/mL)	% of Nominal
11/27/02	12/20/02	01/22/03	0.4 mg/mL	In-Life 11-27 2-14 T-F	0.344	86%
12/03/02	12/20/02	01/22/03	0.4 mg/mL	In-Life 12-03 2-14 T-F	0.359	90%
12/10/02	12/20/02	01/22/03	0.4 mg/mL	In-Life 12-10 2-14 T-F	0.388	97%
12/17/02	12/20/02	01/22/03	0.4 mg/mL	In-Life 12-17 2-14 T-F	0.351	88%
11/27/02	12/20/02	01/22/03	5.0 mg/mL	In-Life 11-27 2-14 V-F	4.95	99%
12/03/02	12/20/02	01/22/03	5.0 mg/mL	In-Life 12-03 2-14 V-F	4.19	84%
12/10/02	12/20/02	01/22/03	5.0 mg/mL	In-Life 12-10 2-14 V-F	4.90	98%
12/17/02	12/20/02	01/22/03	5.0 mg/mL	In-Life 12-17 2-14 V-F	3.69	74%

⁽a) Associated blank data are reported in raw data files

Table 5. PTU Post-Test Sample Concentrations for Formulations Returned to Battelle from RTI

Date Sample Prepared	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Blank- Corrected ^(a) Measured Conc. (mg/mL)	% of Nominal
11/20/02	12/20/02	01/22/03	0.4 mg/mL	From RTI, 2-14 T-F Remainder	0.393	98%
01/22/03	03/05/03	05/23/03	0.4 mg/mL	WA 2-14-B-M Rep 3 Remainder	0.494	124%
11/20/02	12/20/02	01/22/03	5.0 mg/mL	From RTI, 2-14 V-F Remainder	4.71	94%
01/22/03	03/05/03	05/23/03	5.0 mg/mL	WA 2-14-C-M Rep 3 Remainder	5.22	104%

⁽a) Associated blank data are reported in raw data files

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

STUDY NUMBER: WA 2-14				DATE: 10/30/03				
DEVIATION NUMBER: WA 2-14-D-003;					WAL/STUDY DIRECTOR: Michael Blanton/			
Atrazine, DDE, Methoxychlor,					Eric Cr			
phenobarbital, propylthiouracil,								
ketoconazole, Linuron, fenarimol								
NOTEBOOK NUMBER: NA								
TITLE OF STUDY: WA 2-14								
QAPP/PROTOCOL ID:								
DEVIATION RELATING TO	·							
[] QAPP	, Г	1	QMP			Г	1	Protocol
[] SOP	<u> </u>	-	Method			L]	
bd		1				[X		Miscellaneous Documentation
ORIGINAL DOCUMENT SE								
								lations was determined to be
adequate for the period of t	ıme tr	nat ai	nımals w	ould	be dose	ed.	•	
				d wit	thin the	sta	ibility	time determined during the
testing of the stability of the	form	ulatio	on.					
								be within the acceptable target
				edure	es and w	/er	e us	ed within the known stability
time periods determined for	each	i form	nulation.					
PROPOSED CORRECTIVE				CHE	DULE F	OF	S CC	MPLETION: No corrective
action is required beyond the	is do	cume	entation.					
		RREI	NCE: Up	per r	managei	me	ent w	vill review testing schedules for
return shipments and analysis.								
Approval:							,	
1 4: 1 151 /		., ·	11		7/4	4	_	1171
Michael Blanton,		Vics	bef <		Sulm	سر	>	Date 11/3/03
WAL			~					, , ,
).	\Box	0	٠			Date 11/3/03
Eric Crecelius,	<u></u>	n	here	e Li	us			Date
Study Director								
Chemical Repository								
		1						
Deborah Coffey,	6	1/.			11			1 ,
MSL QA Manager 1/200 Colley, Date 11/3/03								
3		1			7	1		1. 5,00
						,		
Richard Ecker,	/	7-m	E	0	•			Date ///3/03
MSL Laboratory Director	1	_///	Carl	u		-		Date
WOL Laboratory Director			1 - 1					
David Houshess):/	1-72	د . مد ا	<u> </u>			Date /0/3//03
Bate						Date		
EDSP Program Manageme	ΙŢ		. (
Tami Dalla di	$\bigcap V$, .	· 11/1	001) ~ (Date 10-31-03
Terri Pollock,	(1)	\mathcal{M}	-011		<u> </u>	_		Date 10-31-03

EDSP Battelle QAM

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

Chemistry Report for WA 2-14 Vinclozolin in Mazola Corn Oil

November 11, 2003

Prepared By:

Approved (One-over-one) By:

Chemical Repository Manager

Director, Marine Sciences Laboratory

Battelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382

Submitted to:

Dr. Julia George

Center for Life Sciences and Toxicology Research Triangle Institute

PO Box 12194

Research Triangle Park, NC 27709

Chemistry Report for WA 2-14 Vinclozolin in Mazola Corn Oil

Reviewed by:

Deborah Coffey, Quality Assurance Officer

Battelle Marine Sciences Laboratory

Date: 11-18-03

Chemistry Report for WA 2-14 Vinclozolin in Mazola Corn Oil

Parameter	Chemical			
Compound Name	Vinclozolin			
CAS#	50471-44-8			
Central File No.	CF-1828			
Initial Receipt Date	5/30/2002			
Expiration Date	4/2005			
Manufacturer	ChemService, Inc			
Lot Number	281-94A			
Battelle Study #	WA 2-14-02-01			
Method	SW 846, 8015B Modified			

Executive Summary

The chemical purity of vinclozolin determined by the manufacturer was 99%. The purity result from Battelle-Sequim by GC-FID was determined to be 99.7%. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of vinclozolin was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 22 weeks. Thus, stability testing of the vinclozolin stock solution in corn oil was considered stable at the 6 mg/mL concentration for the required testing period of 4.5 weeks. Stability information for vinclozolin at 20 mg/mL can be found in *Report on One-Generational Extension Study of Vinclozolin and Di-n-Butyl Phthalate Administered by Gavage on Gestational Day 6 to Postnatal Day 20 CD© (Sprague-Dawley) Rats* (EPA Contract Number 68-W-01-023, Work Assignment 2-10, May 7, 2002). Vincozolin in corn oil at 20 mg/mL was also considered stable for the required 4.5 week test duration.

Mazola corn oil (expiration dates 4-03 and 9-03) were purchased on 9-04-01 and 6-17-02 from local grocery stores, Mark and Pack and Quality Foods Center respectively, to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentration was measured on 6-17-02 in triplicate as an indicator of decomposition. The average peroxide number in the Mazola corn oil with an expiration date of 4-03 was 2.07 meq/kg (RSD = 5.9%). The average peroxide number in the Mazola corn oil with an expiration date of 9-03 was 1.38 meq/kg (RSD = 7.8%). This level of peroxide is consistent with the request that the oil have a peroxide number less than 3 meq/kg.

The in-life sample vials were returned empty. The concentrations of vinclozolin in post-test formulation samples ranged from 90% to 95% of the nominal concentration.

TABLE OF CONTENTS

	Page
1.0	INTRODUCTION
2.0	GENERAL METHODS
	2.1 CHEMICAL PROCUREMENT
	RESULTS5
	3.1 CHEMICAL PURITY
4.0	CONCLUSIONS
API API API	PENDIX A: MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY
	LIST OF TABLES
	Page
Tab	le 1. Chemical Procurement Information
Tab	le 2. Stock Matrix Composition for Stability Testing
Tab	le 3. Summary of Statistical Results for Vinclozolin
	LIST OF FIGURES
	Page
Figu	ure 1. EDSP Requisition Form for Vinclozolin
Figu	ure 2. Observed Concentration of Vinclozolin with a Target Concentration of 6,000 μg/mL Against Time

1.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory with requested chemicals of documented quality at required concentrations and in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository supplies the manufacturer's information regarding purity and stability, the material safety data sheet (MSDS) chemical information, and independent analysis of purity and stability in a matrix specified by the Purity and Stability Testing Plan made in collaboration with the requesting Principal Investigator. Additional analysis associated with the in-life studies are also provided when requested. This report is the product of such a request.

Under Work Assignment (WA) 2-14 and Battelle-Sequim Study Number WA 2-14-02-01, Dr. Julia George from Center for Life Sciences and Toxicology, Research Triangle Institute, requested purity and stability testing of vinclozolin (Figure 1). Electronic files submitted to the EDSP Data Coordination Center in support of this work assignment are CRF_WA-2-14_vinclozolin-cornoil.doc, PSTP_WA-2-14_vinclozolin-cornoil.doc, DSUM_WA2-10_2-14_2-23.xls, and DAF_WA2-10_2-14_2-23.doc.

2.0 GENERAL METHODS

Methods of standard operation of the Chemical Repository are addressed in the procedure, EDSP.C-001-01, The EDSP Chemical Repository. This procedure addresses chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage; stock solution preparation, documentation and archiving; test solution preparation, documentation and shipping; chemical disposal, and repository maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the Chemical Repository are addressed in procedure, MSL-A-012, Procurement. Each purchase requisition receives QA review to determine what is being ordered and which specific requirements apply.

2.1 Chemical Procurement

As requested by Dr. Julia George, vinclozolin, (CAS No. 50471-44-8) was purchased for purity and stability analysis and a pubertal study on rats (Figure 1). Vinclozolin was purchased from ChemService, Inc and lot number 281-94A was initially received on 5/30/2002 with an expiration date of 4/2005 (Table 1). The chemical was left in the original container, logged in to the Chemical Management System (CMS) and given a CMS barcode and unique log in number (CF-1828) as per the QA Project Plan (QAPP) for the EDSP Chemical Repository. The chemical was stored in a cool, dry location at room temperature, away from direct sunlight.

Corn oil (expiration dates 4-03 and 9-03) was purchased on 9-04-01 and 6-17-02 from local grocery stores, Mark and Pack and Quality Foods Center respectively, to be used as a carrier for the stability testing. The oil had no visual defects and was stored frozen. The peroxide concentration was measured on 6-17-02 in triplicate as an indicator of decomposition following the procedures in the Battelle, Columbus SOP #CCB_IV-001-04. It was requested that the oil have a peroxide number less than 3 meq/kg. Any bottles that did not meet this requirement were discarded.

EDSP Chemical Request Form

For EPA WA: 2-14-02-01

Study Director

Name: Dr. Julia George

Affiliation: Center for Life Sciences and Toxicology

Research Triangle Institute

Location: PO Box 12194

Research Triangle Park, NC 27709

Telephone number: 919-541-5862

Bioassay Information

Proposed Bioassay: Pubertal

Test Chemical: Vinclozolin (MSL CF 1828)

Carrier(s): corn oil (Mazola)

Concentrations/Dilution Series: 6 mg/mL and 20 mg/mL

*Consider if analysis method detection limit which may be determined in Purity analysis is above or below desired test concentrations?

In vitro or in vivo tests? In vivo

Organism to be tested: rat

Method of test solution administration: oral gavage

Planned/proposed test duration: 4.5 weeks

Chemical Information

Chemical Name: Vinclozolin

CAS: 50471-44-8

Any known purity information: may refer to attached Manufacturer's Purity Information:

documentation

Any known stability information: may refer to

attached documentation

Desired purity (%) for test? 95% or greater

99% pure

None available

Figure 1. EDSP Requisition Form for Vinclozolin

Table 1. Chemical Procurement Information

Parameter	Chemical		
Compound Name	Vinclozolin		
CAS#	50471-44-8		
Central File No.	CF-1828		
Initial Receipt Date	5/30/2002		
Expiration Date	4/2005		
Manufacturer	ChemService, Inc		
Lot Number	281-94A		
Manufacturer's Purity	99%		
Storage Conditions	Cool, dry place/room temp.		
Battelle Study #	WA 2-14-02-01		
Method	SW 846, 8015B Modified		

2.2 Chemical Purity

Chemical purity was verified by chromatographic analysis to determine areas under peaks other than the principal peak and then compared to the manufacturer's certificate of analysis/purity (Appendix A). No statistical analyses were performed for the verification of chemical purity. General methods are documented in the procedure, EDSP.D-012-01, Chemical Repository Summary Displays and Statistical Analyses for the EDSP Data Coordination Center (DCC).

Purity verification was conducted by making a solution in hexane of about 100 µg/mL. This matrix was then run on a gas chromatograph with a flame ionization detector (GC-FID). A hexane blank was also run on the GC-FID. The purity was determined by first identifying the peaks in the chromatogram of the Vinclozolin that are the same as the peaks in the analysis of the blank hexane sample. The areas associated with these common peaks were then eliminated by inhibiting integration and the remaining peaks were reported as a percentage of the total peak area. The percentage associated with the largest peak represented the purity of vinclozolin. The GC was set up with an auto sampler and a 30 m x 0.25 mm, DB-5 capillary column. The temperature program was set to start at 50°C, and ramped at 20°C/min to a final temperature of 320°C. The injection port temperature was set at 270°C and the detector temperature at 320°C. The auto sampler was set to inject 1 µL of the matrix dilution. One replicate was analyzed.

2.3 Preparation of Stock Matrices for Stability Analysis

A general study plan for stability testing based on the WA 2-14 request from Dr. Julia George was developed as the stability test protocol and is presented in Appendix B. A single stock solution was prepared to arrive at the chemical concentration requested for stability analysis (Table 2). Stability information for vincozolin at 20 mg/mL can be found in *Report on One-Generational Extension Study of Vinclozolin and Di-n-Butyl Phthalate Administered by Gavage on Gestational Day 6 to Postnatal Day 20 CD© (Sprague-Dawley) Rats* (EPA Contract Number 68-W-01-023, Work Assignment 2-10, May 7, 2002). All samples were analyzed in triplicate so that a mean concentration and relative standard deviation (RSD) could be determined. General methods are documented in EDSP.D-012-01.

The Vinclozolin stock matrix was prepared on 6-18-02 for testing as described in Table 2. Briefly, for the 6 mg/mL vinclozolin, 0.3018 g was weighed into a 50 mL Class A volumetric flask and corn oil was added to the 50 mL mark. The solution was agitated by hand shaking for approximately five minutes until all of the vinclozolin was dissolved. All solutions

Table 2. Stock Matrix Composition for Stability Testing

Study and Duration	Test Chemical	Target Concentration	Sample ID	Stock Matrix
WA 2-14-02-01 12 Weeks	Vinclozolin	6 mg/mL	1828-1b	0.3018 g in 50 mL Mazola corn oil

were transferred to ashed, amber glass bottles. Bottles were labeled and stored at $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for the duration of the test.

Density of the Mazola corn oil was measured as 0.92 g/mL for these samples. Using an Excel spreadsheet, the weight of corn oil was converted to a volume (i.e., g corn oil / density). Lower and upper 95% confidence bounds on the density of corn oil from a sample of two lots were estimated as 0.89 and 0.93 g/mL respectively.

2.4 Analytical Chemistry for Stability Testing

Chemical stability was evaluated under storage conditions and matrix specifications as requested by the participating laboratory. At initiation and at each time period throughout the duration of the test, the concentration was determined by chromatographic analysis. Triplicate aliquots of the stock solution were tested. The frequency of determinations and the duration of testing were determined by the requesting principal investigator and the chemists based on *a priori* knowledge about chemical stability. General methods are documented in EDSP.D-012-01.

Vinclozolin stock solution was sampled by weighing ~1 g of sample into a 30 mL amber, ashed vial and adding 25 mL of hexane using a volumetric pipette. For sample 1828-1b, analysis was then conducted by taking 0.1 mL of the hexane solution and 0.02 mL of internal standard REP7, 5a androstane and 0.88 mL of hexane to the GC auto sampler vial. A corn oil blank was prepared in the same way. This solution was then run on the GC-FID for quantification. The major peak determined during the purity analysis of vinclozolin was used for this analysis. Continuing calibration verification (CCV) samples were analyzed to demonstrate on-going calibration accuracy.

2.5 Statistical Analysis of Stability

Log linear degradation curves were fitted to the data to describe the chemical concentration vs. time trends and their dependence on storage conditions and solvent matrix. Lack of fit and residual plots were evaluated to determine the form of the regression. Power calculations based on the observed variability were used to determine the sensitivity of the test to detect degraded concentrations. General methods are documented in SOP EDSP.D-012-01.

2.6 Analytical Chemistry for In-Life Testing

Analytical methods associated with in-life testing were similar to those described in Section 2.4.

3.0 RESULTS

3.1 Chemical Purity

Battelle-Sequim ran a GC-FID purity scan on the vinclozolin. The chromatogram, after solvent blank correction, showed one large peak that had the appropriate retention time for vinclozolin and several very small peaks. The area of the vinclozolin peak was 99.7% of the total area of all peaks in the chromatogram. Chemical purity of vinclozolin determined by the manufacturer was 99% (Appendix A).

3.2 Analytical Chemistry for Stability Testing

Chemical stability testing was initiated on 6-18-02. Chemical concentration was determined 11 times over a period of 12 weeks. The analytical and quality control (QC) results are presented in Appendix C. A single preparation blank was analyzed with every batch for QC purposes. There were no detectable concentrations of vinclozolin in the blanks. CCV results ranged from 99.4% to 101%. Internal standards were analyzed with each sample and these results ranged from 101% to 111%. The MDL was 115 μ g/mL.

Both lots of Mazola corn oil had peroxide numbers less than 3 meq/kg as required for biological testing (Appendix C). The average peroxide number in the Mazola corn oil with an expiration date of 4-03 was 2.07 meq/kg (RSD = 5.9%). The average peroxide number in the Mazola corn oil with an expiration date of 9-03 was 1.38 meg/kg (RSD = 7.8%).

3.3 Statistical Results of Stability Trial

A plot of vinclozolin with a target concentration of $6,000 \,\mu\text{g/mL}$ against time suggests very little chemical decay (Figure 2). There were no data points below 90% of the target concentration. Based on the final regression model and the lower 95% confidence limit of the slope, the concentration of vinclozolin was expected to stay greater than or equal to 90% of the target concentration for up to an estimated 22 weeks (Table 3). Thus, this stock solution was considered stable for the required 4.5-week testing period. The complete statistical analysis is presented in Appendix D.

3.4 Chemistry Results for the Analysis of In-Life Samples

The in-life sample vials were returned empty. The concentrations of vinclozolin in post-test formulation samples ranged from 90% to 95% of the nominal concentration. The complete analysis is presented in Appendix E.

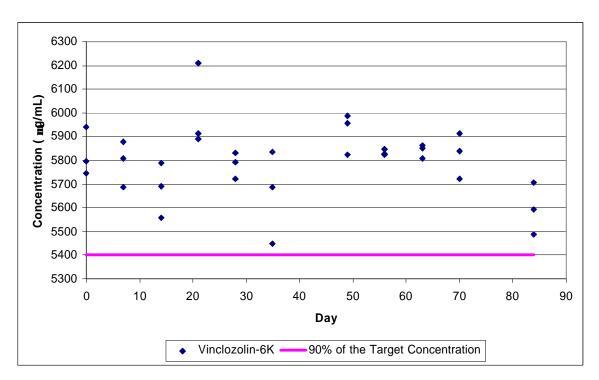


Figure 2. Observed Concentration of Vinclozolin with a Target Concentration of 6,000 ng/mL Against Time

Table 3. Summary of Statistical Results for Vinclozolin

WA 2-14-02-01 Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.	1828-1b Vinclozolin-6K
Target Concentration (μg/mL)	6000
Number of determinations	1
Number of days tested	84
Number of replicates per day	3
Number of outliers removed	0
Number of observations removed	0
Overall Mean Concentration	5796
95% Upper CL	5839
error degrees of freedom	32
1-sample t-test of Ho: μ >= Target	Sª
estimated intercept of In(concentration) against time	8.6702
estimated slope of In(concentration) against time	-0.0001
standard error of slope	0.0002
error degrees of freedom	31
Significance test of lack-of-fit for final model	S
Significance test of Ho: $\beta = 0$ vs. H1: $\beta = 0$	NS⁵
Lower 95% CL of β	-0.0005
Upper 95% CL of β	0.0002
Maximum Percent Loss (using LCL)	0.4%
Mean Percent Loss (using bhat)	0.1%
LN(90% of Target)	8.5942
Number of days until at 90% of Target (using LCL)	156
Conclusion using Target Concentration:	Stable for 4.5 wks

^a Significant at $\alpha = 0.05$

4.0 CONCLUSIONS

Stability testing of vinclozolin in corn oil concluded that the chemical was stable at 6 mg/mL for a period of 4.5 weeks. Chemical purity of vinclozolin determined by the manufacturer was 99%; purity determined by Battelle-Sequim was 99.7%. Stability information for vinclozolin at 20 mg/mL can be found in *Report on One-Generational Extension Study of Vinclozolin and Di-n-Butyl Phthalate Administered by Gavage on Gestational Day 6 to Postnatal Day 20 CD© (Sprague-Dawley) Rats* (EPA Contract Number 68-W-01-023, Work Assignment 2-10, May 7, 2002). Vinclozolin in corn oil at 20 mg/mL was also considered stable for the required 4.5 week test duration.

The level of peroxide measured in corn oil used for the stability trial was consistent with the request that the oil have a peroxide number less than 3 meq/kg.

The in-life sample vials were returned empty. The concentrations of vinclozolin in post-test formulation samples ranged from 90% to 95% of the nominal concentration.

b Not significant at $\alpha = 0.05$

APPENDIX A MANUFACTURER'S CERTIFICATE OF ANALYSIS/PURITY

650 Tower Lane + P.O. Box 599 + West Chester, PA 19381-0599 1-800-452-9994 + 1-510-692-3026 + Fax 1-610-692-8729 info@chemservice.com + www.chemservice.com

CERTIFICATE OF ANALYSIS

INVOICE #: CS228928 PO #: 11113499EAC

CATALOG #: PS-1049

CAS #: 50471-44-8

DESCRIPTION: Vinclozolin

LOT #: 281-94A

PURITY: 99%

EXPIRATION DATE: 04/05

Chem Service, Inc. guarantees the purity of this chemical $\pm 0.5\%$ deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

John Conrad CSM/TC

660 Tower Lane • Pro. Box 588 • West Cheeter, PA 19381-0689 1-800-452-9994 • 1-610-692-3026 • Pax 1-610-692-6729 into © chemisarvice com • www.chemisarvice.com

CERTIFICATE OF ANALYSIS

CAS#: 50471-44-8

CATALOG #: PS-1049

DESCRIPTION: Vinclozolin

LOT #: 270-71B

PURITY: 98%

EXPIRATION DATE: 08/04

Chem Service, Inc. guarantees the purity of this chemical \pm 0.5% deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

John Conrad CSM/TC

APPENDIX B PURITY AND STABILITY TESTING PLAN

EDSP Purity Analysis and Stability Testing Plan for Vinclozolin

Chemical Name: Vinclozolin (MSL CF Login 1828)

CAS Number: 50471-44-8

Lot Number: Lot 281-94A - two bottles, 10g and 3g, stored at RT in Bldg5 Rm 219

Expiration date: 4/05

Manufacturer's Purity Information: 99%

Manufacturer's Stability Information: none

MSL Purity Results:

Purity (%) To be determined at MSL by GC-FID

MDL has not been determined.

Bioassay Information:

Study Director

Name: Dr. Julia George

Affiliation: RTI Location: RTP, NC

Telephone number: 919-541-5862

Proposed Bioassay: WA 2-14

Test Chemical: Vinclozolin

CAS: 50471-44-8

Carrier(s): Corn oil

Concentrations/Dilution Series: 6 mg/mL and 20 mg/mL

Below MDL determined in Purity Analysis?

In vitro or in vivo tests? In vivo

Organism to be tested: Rat

Method of test solution administration: Oral gavage

Planned/Proposed test duration: 4.5 weeks

EDSP Purity Analysis and Stability Testing Plan for Vinclozolin, Continued

Design of Stability Test: 6 mg/mL in glass at 4 deg. C in the dark for 12 weeks, analyzed weekly in triplicate

Number of replicates: 3

Duration: 12 weeks, sampling each week

Other factors:

Temperature regime(s): 4 deg. C

Test container type: Glass

Light or dark: Dark except when container is removed for sampling or handling

Other

Statistical testing: Regression analysis of the slope for concentration versus time

Resulting records package:

Manufacturer's certificate of analysis or purity

MSDS Records:

- date sample received;
- date(s) sample analyzed;
- sample matrix;
- electronic file identification codes (when applicable to identify instrument data files);
- data summary reports;
 - Chemical repository confirmatory test results of chemical identity and purity;
 - Chemical repository test results of lot-to-lot variation in chemical purity;
 - Chemical repository periodic assessment results of changes in purity of stock solutions and dilutions and generation of degradation products
- QC data reports;
- · data qualifying flags; and
- dilution factor(s).

APPENDIX C ANALYTICAL RESULTS OF STABILITY TESTING

Table C.1. Vinclozolin concentration in Mazola Corn Oil ($\mu g/mL$)

Target Conc.	Sample ID	Date	Vinclozolin	Average	RSD	Recovery ¹
6000 ug/ml	1828-1b-1-1 R-1	6/18/2002	5796			
6000 ug/ml	1828-1b-1-1 R-2	6/18/2002	5745	5827	1.73%	97.1%
6000 ug/ml	1828-1b-1-1 R-3	6/18/2002	5939			
blank	Corn Oil (T=0)	6/19/2002	115 U			
6000 ug/ml	1828-1b-1-2 R-1	6/25/2002	5806			
6000 ug/ml	1828-1b-1-2 R-2	6/25/2002	5687	5791	1.68%	96.5%
6000 ug/ml	1828-1b-1-2 R-3	6/25/2002	5879			
blank	Corn Oil (week 1)	6/25/2002	115 U			
6000 ug/ml	1828-1b-1-3 R-1	7/2/2002	5689			
6000 ug/ml	1828-1b-1-3 R-2	7/2/2002	5789	5679	2.05%	94.6%
6000 ug/ml	1828-1b-1-3 R-3	7/2/2002	5558			
blank	Corn Oil (week 2)	7/2/2002	115 U			
6000 ug/ml	1828-1b-1-4 R-1	7/9/2002	5892			
6000 ug/ml	1828-1b-1-4 R-2	7/9/2002	5913	6004	2.95%	100%
6000 ug/ml	1828-1b-1-4 R-3	7/9/2002	6208			
blank	Corn Oil (week 3)	7/9/2002	115 U			
6000 ug/ml	1828-1b-1-5 R-1	7/16/2002	5722			
6000 ug/ml	1828-1b-1-5 R-2	7/16/2002	5791	5782	0.96%	96.4%
6000 ug/ml	1828-1b-1-5 R-3	7/16/2002	5833			
blank	Corn Oil (week 4)	7/16/2002	115 U			
6000 ug/ml	1828-1b-1-6 R-1	7/23/2002	5685			
6000 ug/ml	1828-1b-1-6 R-2	7/23/2002	5449	5656	3.44%	94.3%
6000 ug/ml	1828-1b-1-6 R-3	7/23/2002	5835			
blank	Corn Oil (week 5)	7/23/2002	115 U			
6000 ug/ml	1828-1b-1-7 R-1	8/6/2002	5825			
6000 ug/ml	1828-1b-1-7 R-2	8/6/2002	5986	5923	1.45%	98.7%
6000 ug/ml	1828-1b-1-7 R-3	8/6/2002	5958			
blank	Corn Oil (week 7)	8/6/2002	115 U			
6000 ug/ml	1828-1b-1-8 R-1	8/13/2002	5824			
6000 ug/ml	1828-1b-1-8 R-2	8/13/2002	5848	5833	0.24%	97.2%
6000 ug/ml	1828-1b-1-8 R-3	8/13/2002	5826			
blank	Corn Oil (week 8)	8/13/2002	115 U			
6000 ug/ml	1828-1b-1-9 R-1	8/20/2002	5807			
6000 ug/ml	1828-1b-1-9 R-2	8/20/2002	5861	5839	0.49%	97.3%
6000 ug/ml	1828-1b-1-9 R-3	8/20/2002	5850			
blank	Corn Oil (week 9)	8/20/2002	115 U			
6000 ug/ml	1828-1b-1-10 R-1	8/27/2002	5721			
6000 ug/ml	1828-1b-1-10 R-2	8/27/2002	5837	5825	1.67%	97.1%
6000 ug/ml	1828-1b-1-10 R-3	8/27/2002	5915			
blank	Corn Oil (week 10)	8/27/2002	115 U			
6000 ug/ml	1828-1b-1-12 R-1	9/10/2002	5708			
6000 ug/ml	1828-1b-1-12 R-2	9/10/2002	5488	5596	1.96%	93.3%
6000 ug/ml	1828-1b-1-12 R-3	9/10/2002	5592			
blank	Corn Oil (week 12)	9/10/2002	115 U			

Recovery is relative to the target concentration U = Not detected at a value greater than the MDL

Table C.2. CCV Data for Vinclozolin Concentration in Mazola Corn Oil

Time	Sample Name	Vinclozolin (ng/mL)	Recovery	PD
T=0	EDSP Mix1 5 ug/ml	4.97	99.4%	0.60%
	EDSP Mix1 5 ug/ml	4.99	99.8%	0.20%
	EDSP Mix1 5 ug/ml	5.01	100%	0.20%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
Week 1	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
Week 2	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.05	101%	1.00%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
Week 3	EDSP Mix1 5 ug/ml	5.05	101%	1.00%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.05	101%	1.00%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
Week 4	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.05	101%	1.00%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
Week 5	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.05	101%	1.00%
	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
Week 7	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
Week 8	EDSP Mix1 5 ug/ml	5.06	101%	1.20%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
Week 9	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
WOOK 0	EDSP Mix1 5 ug/ml	5.00	100%	0.00%
	EDSP Mix1 5 ug/ml	5.03	101%	0.60%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
Week 10	EDSP Mix1 5 ug/ml	5.04	101%	0.80%
WCCK 10	EDSP Mix1 5 ug/ml	5.06	101%	1.20%
	EDSP Mix1 5 ug/ml	5.02	100%	0.40%
	EDSP Mix1 5 ug/ml	5.01	100%	0.40%
Week 12	EDSP Mix1 5 ug/ml	5.04	100%	0.20%
VVCCN IZ	EDSP Mix1 5 ug/ml	5.02	101%	0.40%
	EDSP Mix1 5 ug/ml	4.98	99.6%	0.40%
	EDSP Mix1 5 ug/ml	4.99	99.8% 99.8%	0.40%

Calibration Standard EDSP Mix 1

Calibrations were performed using a five-point calibration curve labeled EDSP Mix 1 A thru E. This mix is used for Atrazine, Fenarimol, p,p'-DDE, Methoxychlor and Vinclozolin analyzed by GC-FID. These standards were made by serial dilutions of standards for each compound.

- Atrazine standard was made by weighing 0.0499 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with Methylene chloride and labeled 1826-1-1.
- Fenarimol standard was made by weighing 0.0506 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1829B-1.
- p,p'-DDE standard was made by weighing 0.0501 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1832-1a-1.
- Methoxychlor standard was made by weighing 0.0513 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1808-1-3.
- Vinclozolin standard was made by weighing 0.0512 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane and labeled 1779-78.

This analysis used an internal standard, in this case 5a androstane, which is made by weighing 0.0511 g of the neat material into a 50 mL volumetric flask. This was then diluted to the 50 mL mark with hexane, this is then labeled REP7.

The EDSP Mix 1 series (A through E) was made as follows.

- Solution A, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 0.02 ml REP7 added to a 10 ml volumetric flask and diluted to the mark with hexane.
- Solution B, 1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane.
- Solution C, 0.25 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 1 ml REP7 added to a 50 ml volumetric flask and diluted to the mark with hexane.
- Solution D, 0.1 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.
- Solution E, 0.05 ml of 1826-1-1, 1829B-1, 1832-1a-1, 1808-1-3, 1779-78 and 2 ml REP7 added to a 100 ml volumetric flask and diluted to the mark with hexane.

Table C.3. Internal Standards Data for Vinclozolin in Mazola Corn Oil

Sample Name	Date	5A Androstane Recovery
1828-1b-1-1 R-1	6/18/2002	107%
1828-1b-1-1 R-2	6/18/2002	105%
1828-1b-1-1 R-3	6/18/2002	104%
1828-1b-1-2 R-1	6/25/2002	102%
1828-1b-1-2 R-2	6/25/2002	103%
1828-1b-1-2 R-3	6/25/2002	103%
1828-1b-1-3 R-1	7/2/2002	104%
1828-1b-1-3 R-2	7/2/2002	105%
1828-1b-1-3 R-3	7/2/2002	108%
1828-1b-1-4 R-1	7/9/2002	102%
1828-1b-1-4 R-2	7/9/2002	102%
1828-1b-1-4 R-3	7/9/2002	104%
1828-1b-1-5 R-1	7/16/2002	106%
1828-1b-1-5 R-2	7/16/2002	107%
1828-1b-1-5 R-3	7/16/2002	104%
1828-1b-1-6 R-1	7/23/2002	107%
1828-1b-1-6 R-2	7/23/2002	111%
1828-1b-1-6 R-3	7/23/2002	106%
1828-1b-1-7 R-1	8/6/2002	103%
1828-1b-1-7 R-2	8/6/2002	102%
1828-1b-1-7 R-3	8/6/2002	102%
1828-1b-1-8 R-1	8/13/2002	105%
1828-1b-1-8 R-2	8/13/2002	105%
1828-1b-1-8 R-3	8/13/2002	106%
1828-1b-1-9 R-1	8/20/2002	104%
1828-1b-1-9 R-2	8/20/2002	105%
1828-1b-1-9 R-3	8/20/2002	105%
1828-1b-1-10 R-1	8/27/2002	107%
1828-1b-1-10 R-2	8/27/2002	108%
1828-1b-1-10 R-3	8/27/2002	108%
1828-1b-1-12 R-1	9/10/2002	101%
1828-1b-1-12 R-2	9/10/2002	105%
1828-1b-1-12 R-3	9/10/2002	105%

Table C.4. Peroxide Concentration in Mazola Corn Oil (meq/kg) measured on 6/17/02

	Volume of Sodium		Weight of Oil	Peroxide	Average Peroxide	
Sample	Thiosulfate (mL)	Normality	(g)	Number	Number	RSD
Blank	0.75	0.005	5.00	0.75		
Mazola Corn Oil						
Expiration 9-03 R-1	1.6	0.005	5.43	1.47		
Mazola Corn Oil						
Expiration 9-03 R-2	1.5	0.005	5.32	1.41	1.38	7.8%
Mazola Corn Oil						
Expiration 9-03 R-3	1.2	0.005	4.75	1.26		
Mazola Corn Oil						
Expiration 4-03 R-1	2.0	0.005	5.18	1.93		
Mazola Corn Oil						
Expiration 4-03 R-2	2.2	0.005	5.09	2.16	2.07	5.9%
Mazola Corn Oil						
Expiration 4-03 R-3	2.5	0.005	5.21	2.11		

APPENDIX D STATISTICAL REPORT

WA-2-14-02-01

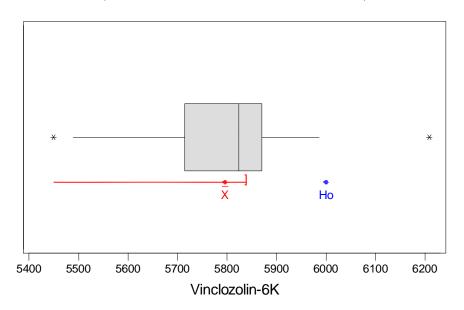
Statistical Analysis conducted by Valerie Cullinan Using Minitab Version 13.32, Minitab Inc., 1999.

- 11/25/2002 11:22:30 AM

Analysis of Vinclozolin-6k in corn oil

• Test to determine if the data are from a population with mean of 6000.

One-Sample T: Vinclozolin-6K


Test of mu = 6000 vs mu < 6000

Variable	N	Mean	StDev	SE Mean
Vinclozolin-	33	5795.9	146.2	25.5
Variable Vinclozolin-	95.0%	Upper Bound 5839.0	T -8.02	P 0.000

t Boxplot of Vinclozolin-6K

Boxplot of Vinclozolin-6K

(with Ho and 95% t-confidence bound for the mean)

Nonparametric Test for outlier.

Outliers are < Median-3*IQD OR > Median+3*IQD Boundary for outliers are values < 5356.81 and > 6290.83 No outliers Transform data to natural logarithm and conduct regression analysis.

```
Rep Ln(Concentration)
Week
   0
                   8.6649
   0
            2
                   8.6561
   0
           3
                   8.6893
   7
           1
                   8.6667
   7
           2
                   8.6459
   7
           3
                   8.6792
  14
           1
                   8.6463
           2
  14
                   8.6638
           3
  14
                   8.6229
  21
           1
                   8.6813
           2
  21
                   8.6849
  21
           3
                   8.7336
           1
  28
                   8.6521
  28
           2
                   8.6641
  28
           3
                   8.6712
  35
                   8.6456
           1
  35
           2
                   8.6032
  35
           3
                   8.6716
  49
                   8.6699
           1
  49
           2
                   8.6972
  49
           3
                   8.6925
  56
           1
                   8.6697
  56
           2
                   8.6739
  56
           3
                   8.6700
  63
           1
                   8.6668
           2
  63
                   8.6761
           3
  63
                   8.6742
  70
           1
                   8.6519
  70
           2
                   8.6720
  70
           3
                   8.6852
  84
           1
                   8.6497
  84
           2
                   8.6104
  84
                   8.6291
```

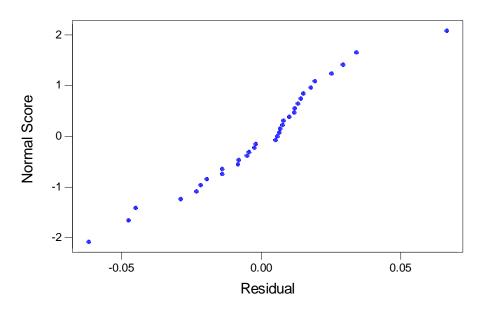
Conducts Simple Linear Regression

Regression Analysis: Vinclozolin-6K versus Day

The regression equation is Vinclozolin-6K = 8.67 -0.000144 Day

Predictor	Coef	SE Coef	Т	P
Constant	8.67019	0.00789	1098.93	0.000
Day	-0.0001444	0.0001684	-0.86	0.398
S = 0.02539	R-Sq =	2.3% R	R-Sq(adj) =	0.0%

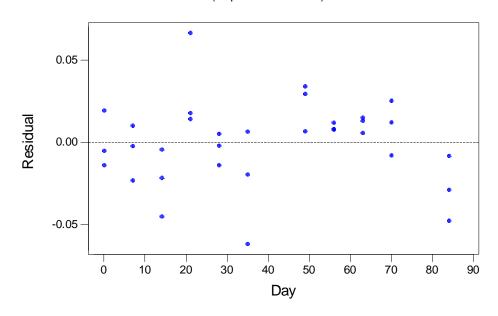
Analysis of Vari	lance				
Source	DF	SS	MS	F	P
Regression	1	0.0004741	0.0004741	0.74	0.398
Residual Error	31	0.0199853	0.0006447		
Lack of Fit	9	0.0118899	0.0013211	3.59	0.007
Pure Error	22	0.0080953	0.0003680		
Total	32	0.0204594			


Unusual Observations St Resid Obs Day Vinclozolin Fit SE Fit Residual 8.66716 12 21.0 8.73363 0.00534 0.06647 2.68R 17 35.0 8.60318 8.66514 0.00447 -0.06196 -2.48R 84.0 8.61040 8.65807 0.00880 -0.04767 -2.00R

R denotes an observation with a large standardized residual

Normplot of Residuals for Vinclozolin

Normal Probability Plot of the Residuals


(response is Vinclozo)

Residuals from Vinclozolin vs Day

Residuals Versus Day

(response is Vinclozo)

Power analysis for t-test of slope less than zero

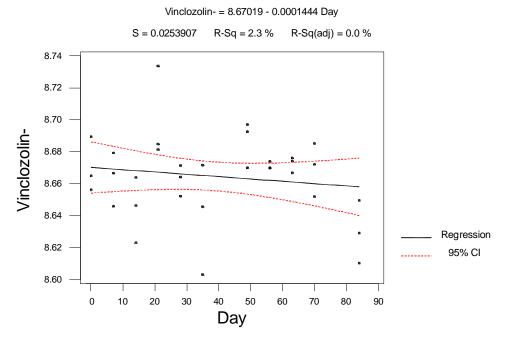
Power and Sample Size

```
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.0253907


Sample

Size Power Difference

31 0.9900 -0.0185
```

- That means we would detect a mean of 8.6810 as significantly less than ln(6000) = 8.6995 or a change of 5890 from 6000 = 1.8% loss.
- Fit 95% confidence bands about the fitted simple linear model

Fitted Line Plot: Vinclozolin- versus Day Regression Plot

Conclusion - stable for 4.5 weeks.

APPENDIX E

CHEMISTRY RESULTS FOR THE ANALYSIS OF IN-LIFE SAMPLES

Chemistry Results for Analysis of In-Life Samples

PROJECT: EDSP WA 2-14

PARAMETER: Vinclozolin in-life test solution samples in corn oil

LABORATORY: Battelle Marine Sciences Laboratory

1529 West Sequim Bay Rd.

Sequim, WA 98382

MATRIX: Vinclozolin in corn oil

TEST SOLUTION SAMPLE CUSTODY AND PROCESSING: Test solution samples were prepared by the EDSP Chemical Repository, Sequim, WA, using vinclozolin (CAS 50471-44-8, CF 1828, ChemService lot # 281-94A, expiration date 4/05, 99% purity and CF 1779, ChemService lot # 270-71B, expiration date 8/04, 98% purity) dissolved in Mazola corn oil (corn oil was from containers with the following expiration dates: 6/12/03, 1/1/04, and 4/24/04). A large volume of corn oil was used because many formulations for WA 2-14 were prepared at one time. Samples were prepared at two test concentrations, 6 mg/mL and 20 mg/mL, for all replicates in the male-only exposure. The 6 mg/mL concentration was prepared by dissolving 1.2 g of vinclozolin in 185 g of corn oil in a precleaned, amber glass container. The 20 mg/mL concentration was prepared by dissolving 4.0 g of vinclozolin in 182 g of corn oil.

Samples for male rat exposures were prepared at three different times: Replicate 1 – prepared on 09/9/02 and shipped on 09/26/02 Replicate 2- prepared on 10/2/02 and shipped on 10/3/02 Replicate 3- prepared 11/03/02, shipped 11/04/02.

Note: Only samples on 09/09/02 were analyzed to verify concentration of vinclozolin. These values are reported in Table 1.

The test solution was sampled four times during the male test (10/07/02, 10/14/02, 10/21/02, and 10/28/02). The in-life sample vials were empty when received, so no data are presented. Table 2 provides results of analysis of remaining formulation samples after dosing to assess changes in test solution concentration from the beginning and end of the test.

Processing

Test Solution Samples for Concentration Verification Prior to Shipping:

The container was placed on a magnetic stir plate and stirred. 1 mL triplicate samples were removed and each placed in a tared, 60 mL, amber glass bottle. The weight of the sample was determined gravimetrically. A 1 g subsample was removed, placed in a 30 mL amber ashed vial, and 25 mL of hexane (JT Baker lot number X40E12) was added and the bottle agitated to mix. Then, 0.1 mL sample and 0.02 mL internal standard, 5a androstane, and 0.88 mL hexane were transferred to an auto sampler vial.

In-life and Returned Container Samples:

In-life and returned containers were analyzed the same way. Some of the returned containers were returned empty, so only containers with sufficient material were analyzed.

The samples were removed from the refrigerator and allowed to warm to room temperature. About 1 mL was sampled and placed in a tared, 30 mL, amber glass bottle. The weight of the sample was determined gravimetrically. 25 mL of hexane was added and the bottle agitated to mix. Then 0.1 mL was transferred to a 1.8 mL vial with 0.02 mL of internal standard solution containing 5a androstane and 0.88 mL hexane.

SAMPLE ANALYSIS

The samples were analyzed by gas chromatograph (GC) with a flame ionization detector (FID). The GC was set up with an auto sampler and a 30-m x 0.25-mm, DB-5 capillary column. The temperature program was set to start at 50°C, and ramped at 20°C/min to a final temperature of 320°C. The injection port temperature was set at 270°C and the detector temperature at 320°C. The auto sampler was set to inject 1 μ L of the matrix dilution.

Data Quality Objectives:	Control Limits
Procedural Blank	<5 X MDL
Blank Spike Recovery	40% - 120%
Continuing Standard Recovery	75% - 125%

QA/QC SUMMARY

METHODS: GC-FID

CALIBRATION: Calibration using a five-point curve was done using standards EDSP Mix 1 (see

Appendix C) with a continuing calibration verification (CCV) sample analyzed

every 10 samples.

CONTINUING STANDARD RECOVERY: Percent recovery results for initial and CCV samples analyzed with the in-life sample data set ranged from 91% to 117% with a mean recovery of 100%. There were no occurrences of recoveries exceeding the 75% to 125%

acceptability range.

BLANK Vinclozolin was not detected above the detection limit in the corn oil blank

analyzed with the test solution and in-life samples.

DETECTION LIMIT: The vinclozolin method detection limit (MDL) in corn oil was 115 μg/mL as

determined by an MDL study. No data below this value were reported.

BLANK SPIKE SAMPLES

Blank spike samples were not analyzed. In this analysis, sampling was performed by taking the sample material from flask through to analysis. Analyzing a spiked sample would be no different from analyzing a CCV.

INTERNAL STANDARD 5a androstane was spiked into each sample and analyzed as the internal standard. Average percent recovery results ranged from 99% to 103%. There were no cases in which the percent recovery of the internal standard

exceeded the acceptance range of 40% to 120%.

REPLICATE ANALYSIS:

The percent relative standard deviations (% RSD) for the two test solutions

ranged from 0.904 to 1.23.

Replicate samples were not submitted for the in-life sample set.

Table 1. Verification of Vinclozolin Test Solution Concentrations for Male Exposures
Prepared on 09/09/02 and Analyzed on 09/12/02

Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	Replicate Mean (mg/mL)	% RSD
R-1; 09/09/02				
6 mg/mL	2-14 –J-M R-1, R-1	5.64		
6 mg/mL	2-14 –J-M R-1, R-2	5.54	5.60	0.904
6 mg/mL	2-14 –J-M R-1, R-3	5.62		
20 mg/mL	2-14 –K-M R-1, R-1	18.4		
20 mg/mL	2-14 –K-M R-1, R-2	18.9	18.7	1.23
20 mg/mL	2-14 –K-M R-1, R-3	18.8		

Table 2. Vinclozolin Post-Test Sample Concentrations for Formulations Returned to Battelle from RTI

Date Sample Prepared	Date Sample Received	Date Sample Analyzed	Nominal Conc.	Sample ID Number	Measured Conc. (mg/mL)	% of Nominal
Male						
Exposures						
11/03/02	11/13/02	11/22/02	6 mg/mL	WA 2-14-J-M Rep3Jar	5.72	95%
11/03/02	11/13/02	11/22/02	20 mg/mL	WA 2-14-K-M Rep3Jar	18.0	90%

Deviation Documentation Form

Project No. E	DSP WA 2-14/ vinclozolin		
Deviation No	. WA 2-14-D-001		
Project Manag	ger: Eric Crecelius		
	EDSP WA 2-14 and The EDS	P Chemica	al Repository
Entered by:	Lohna O'Rourke	Date: 	2/12/03
[x] a miscell	information is (check one) laneous documentation n from Protocol, Work Plan or QA Plan -	n (give title)	
[] a deviation (give number			
Description:	According to LRB 009 two lots of preparation of the formulations. for purity and were determined chemical inventory records boo quantity of chemical remaining	. Both lots v to be 98% ok is not in a	were analyzed by Battelle or greater. However, the agreement with the
Corrective Action:	No corrective action.	101 04011 101	•
Action to Prev Recurrence:	vent Staffs that work in the Chem additional training on mainta	•	-
Impact on Project:	No impact to the project. Bot purities of 98% or greater.	th lots were	analyzed and had
APPROVED E	true healths		2/12/03
	Eric Crecelius, Study Manager Chemical Repository		Date

File in project notebook or study archive Send a copy to the MSL QA Officer

ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM

I CTUDY MUMDED, MA 9.	1.4	DATE: 40/0	V/00
STUDY NUMBER: WA 2-		DATE: 10/30	
			DIRECTOR: Michael Blanton/
Atrazine, DDE, vinclozolin Fenarimol	, Methoxychior,	Eric Crecelius	5
NOTEBOOK NUMBER: N	Λ		
TITLE OF STUDY: WA 2-1	14		
QAPP/PROTOCOL ID:			
DEVIATION RELATING T			-
[] QAPP	[] QMP	[X]	Protocol
[] SOP	[] Method		Miscellaneous Documentation
		3 of protocol WA	2-14 states "an aliquot of each
level per formulation will be	e analyzed"		
DEVIATION: Each dose le	wel was tosted in the	first proporation t	or each chemical. However,
subsequent batches were	not always analyzed	ilist preparation i	or each chemical. However,
subsequent batches were	not always analyzed.		
DEACON/IMPACT. N. :		ı î	
REASON/IMPACT: No IM	pact. Subsequent bar	iches were prepa	red using the same methods
and procedures as the first			
	'E ACTION AND SCH	EDULE FOR CO	MPLETION: No corrective
action required.			
ACTIONS TO PREVENT F	RECURRENCE: Uppe	er management v	vill review the analyses
schedule prior to the start of	of the studies.	_	·
Approval:			
		+	
Michael Blanton,	Mestal 2	e potro	Date 11-3-03
Michael Blanton, WAL	Mechant 2	Phi	Date
•	Mechan?	Septe	
WAL	Mechant 2	Soften lin.	
WAL Eric Crecelius,	Mester ?	Softe lin	Date 11-3-03 Date 11-3-03
WAL Eric Crecelius, Study Director	Meshol ? En Prece	Pohn lin	
WAL Eric Crecelius,	Mestal 2 En Prece	Phr.	
WAL Eric Crecelius, Study Director Chemical Repository	Mestant ? En Prece	2 Shin	
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey,	Mestand 2 En Prece	Site Sin	Date
WAL Eric Crecelius, Study Director Chemical Repository	Mestand ? En Prece	Septer Server	
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey,	Mestal : En Prece	Lin Deply	Date
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey, MSL QA Manager	Market I	Pertur lin	Date
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey, MSL QA Manager Richard Ecker,	Mestal 2 En Prece Marodun C Rm En	Perha lin	Date
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey, MSL QA Manager	Mestal 2 En Prece Marodun (Rm En	Perha Perha	Date
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey, MSL QA Manager Richard Ecker, MSL Laboratory Director			Date 11/3/03 Date 11/3/03
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey, MSL QA Manager Richard Ecker, MSL Laboratory Director David Houchens,	Dail P. The		Date 11/3/03 Date 11/3/03
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey, MSL QA Manager Richard Ecker, MSL Laboratory Director	Dail P. The		Date 11/3/03 Date 11/3/03
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey, MSL QA Manager Richard Ecker, MSL Laboratory Director David Houchens,	Dail P. The		Date $\frac{1/-3-03}{03}$ Date $\frac{11/3/03}{03}$ Date $\frac{10/3//03}{03}$
WAL Eric Crecelius, Study Director Chemical Repository Deborah Coffey, MSL QA Manager Richard Ecker, MSL Laboratory Director David Houchens,	Dail P. The		Date 11/3/03 Date 11/3/03

EDSP Battelle QAM

Appendix IV Feed Analysis Reports

ISOFLAVONE PROFILE

PRODUCT: CERTIFIED RODENT DIET

Code: 5002

Lot Number: JUN 24 02 1B 1

Isoflavone Profile

Total Daidzein (Aglycone Units)	145	ppm
Total Genistein (Aglycone Units)	161	ppm
Total Glycitein (Aglycone Units)	35	ppm
Total All Forms (Aglycone Units)	341	ppm

For additional information concerning the report contact the Quality Department at Richmond, In. (Angela Crutcher) 765-962-9561 ext. 229

For additional information concerning the analytical results contact Dr. Dorrance Haught at 314-768-4362.

ISOFLAVONE PROFILE

PRODUCT: CERTIFIED RODENT DIET

Code: 5002

Lot Number: JUN 24 02 1B 2

Isoflavone Profile

Total Daidzein (Aglycone Units)	146	ppm
Total Genistein (Aglycone Units)	163	ppm
Total Glycitein (Aglycone Units)	37	ppm
Total All Forms (Aglycone Units)	346	ppm

For additional information concerning the report contact the Quality Department at Richmond, In. (Angela Crutcher) 765-962-9561 ext. 229

For additional information concerning the analytical results contact Dr. Dorrance Haught at 314-768-4362.

ISOFLAVONE PROFILE

PRODUCT: CERTIFIED RODENT DIET

Code: 5002

Lot Number: JUN 24 02 1B 3

Isoflavone Profile

Total Daidzein (Aglycone Units)	149	ppm
Total Genistein (Aglycone Units)	166	ppm
Total Glycitein (Aglycone Units)	38	ppm
Total All Forms (Aglycone Units)	353	ppm

For additional information concerning the report contact the Quality Department at Richmond, In. (Angela Crutcher) 765-962-9561 ext. 229

For additional information concerning the analytical results contact Dr. Dorrance Haught at 314-768-4362.

PRODUCT: CERTIFIED RODENT DIET

Code: 5002 Lot Number: DEC 02 02 2B

SAMPLE: #1

IFSP

Isoflavone	profile,	saponification
------------	----------	----------------

Isonavone prome, saponincation		
Daidzin	199	ppm
Daidzein	7.0	ppm
Total Daidzein Compounds	206	ppm
Genistin	219	ppm
Genistein	2.0	ppm
Total Genistein Compounds	221	ppm
Glycitin	52.0	ppm
Glycitein	2.0	ppm
Total Glycitein Compounds	54	ppm
Total Isoflavones	481	ppm
Daidzin (Aglycone Units)	122	ppm
Daidzein (Aglycone Units)	7.0	ppm
Total Daidzein (Aglycone Units)	129	ppm
Genistin (Aglycone Units)	137	ppm
Genistein (Aglycone Units)	2.0	ppm
Total Genistein (Aglycone Units)	139	ppm
Glycitin (Aglycone Units)	33.0	ppm
Glycitein (Aglycone Units)	2.0	ppm
Total Glycitein (Aglycone Units)	35.0	ppm
Total Isoflavones (Aglycone Units)	303	ppm

For additional information concerning the report contact the Quality Department at Richmond, In. (Virgil Strobel) 765-962-9561 ext. 225 (email - virgil_strobel@purina-mills.com)

For additional information concerning the analytical results contact Dr. Dorrance Haught at 314-768-4362. (email-dorrance_haught@purina-mills.com)

PRODUCT: CERTIFIED RODENT DIET

Lot Number: DEC 02 02 2B 5002 Code:

SAMPLE: # 2

ppm

IFSP

Isoflavone profile, saponification					
Daidzin					191

Daidzein	7.0	ppm
Total Daidzein Compounds	198	ppm
Genistin	212	ppm
Genistein	3.0	ppm
Total Genistein Compounds	215	ppm
Clycitin	50.0	ppm

Glycitin		50.0	ppm
Glycitein		2.0	ppm

Total Glycitein Compounds		52	ppm
Total Isoflavones		465	ppm

Daidzin (Aglycone Units)	117	ppm
, ,		

Daidzein (Aglycone Units)	<i>7</i> .0	ppm
Total Daidzein (Aglycone Units)	124	ppm

Genistin (Aglycone Units)		133	ppm

Genistein (Aglycone Units)	3.0	ppm
(0)		

Total Genistein (Aglycone Units)	136	ppm

Glycitin (Aglycone Units)		32.0	ppm

Glycitein (Aglycone Units)		2.0	ppm
Ciferent (1451) com			

Total Glycite	ein (Aglycone Un	nits)	34.0	ppm

Total Isoflavones (Aglycone Units)	294	ppm
1 Otal 130114 (01165 (1261) 00115		

For additional information concerning the report contact the Quality Department at Richmond, In. (Virgil Strobel) 765-962-9561 ext. 225 (email - virgil_strobel@purina-mills.com)

For additional information concerning the analytical results contact Dr. Dorrance Haught at 314-768-4362. (emaildorrance_haught@purina-mills.com)

PRODUCT: CERTIFIED RODENT DIET

Code: 5002 Lot Number: DEC 02 02 2B

SAMPLE: # 3

IFSP

Isoflavone profile, saponification

Daidzein (Aglycone Units)

Genistin (Aglycone Units)

Genistein (Aglycone Units)

Glycitin (Aglycone Units)

Glycitein (Aglycone Units)

Total Daidzein (Aglycone Units)

Total Genistein (Aglycone Units)

Total Glycitein (Aglycone Units)

Total Isoflavones (Aglycone Units)

Daidzin	179	ppm
Daidzein	6.0	ppm
Total Daidzein Compounds	185	ppm
Genistin	197	ppm
Genistein	2.0	ppm
Total Genistein Compounds	199	ppm
Glycitin	46.0	ppm
Glycitein	2.0	ppm
Total Glycitein Compounds	48	ppm
Total Isoflavones	432	ppm
Daidzin (Aglycone Units)	109	ppm

For additional information concerning the report contact the Quality Department at Richmond, In. (Virgil Strobel) 765-962-9561 ext. 225 (email - virgil_strobel@purina-mills.com)

6.0

115

123

2.0

125

29.0

2.0

31.0

271

ppm

ppm

ppm

ppm

ppm

ppm

ppm

ppm

ppm

For additional information concerning the analytical results contact Dr. Dorrance Haught at 314-768-4362. (email-dorrance_haught@purina-mills.com)

DESCRIPTION

Certified Rodent Diet is a Constant NutritionTM formulation that has yielded highly favorable results for the maintenance, growth and reproduction of rats and mice. It has been developed as a complete life-cycle diet that can also be used by breeders to assure animals do not develop undesirable tissue residues of contaminants. A sample of this product will have been assayed prior to shipment.

Features and Benefits

- Each package is assayed for environmental contaminants prior to shipment
- · Preanalysis monitoring assures maximum diet control
- Fulfills GLP requirements

Product Forms Available

- Oval pellet, 10 mm x 16 mm x 25 mm length (3/8"x5/8"x1")
- Meal (ground pellets)

GUARANTEED ANALYSIS

Crude protein not less than	
Crude fat not less than	.4.5%
Crude fiber not more than	.5.5%
Ash not more than	.7.0%
Added minerals not more than	.2.5%

INGREDIENTS

Ground corn, dehulled soybean meal, ground wheat, fish meal, wheat middlings, brewers dried yeast, cane molasses, wheat germ, dried beet pulp, dehydrated alfalfa meal, ground oats, dried whey, ground soybean hulls, soybean oil, calcium carbonate, casein, salt, dicalcium phosphate, choline chloride, DL-methionine, cholecalciferol, vitamin A acetate, pyridoxine hydrochloride, dl-alpha tocopheryl acetate, thiamin mononitrate, nicotinic acid, calcium pantothenate, riboflavin, cyanocobalamin, folic acid, manganous oxide, zinc oxide, ferrous carbonate, copper sulfate, zinc sulfate, calcium iodate, cobalt carbonate.

FEEDING DIRECTIONS

Feed ad libitum to rodents. Plenty of fresh, clean water should be available to the animals at all times. Refer to the "Animal Care and Biological Values" section of this manual for detailed feeding directions.

Rats- All rats will eat varying amounts of feed depending on their genetic origin. Larger strains will eat between 15-30 grams per day. Smaller strains will eat between 12-15 grams per day. Feeders in rat cages should be designed to hold two to three days supply of feed at one time.

Mice-Adult mice will eat 4 to 5 grams of pelleted ration daily. Some of the larger strains may eat as much as 8 grams per day per animal. Feed should be available on a free choice basis in wire feeders above the floor of the cage.

Hamsters-Adults will eat 10 to 14 grams per day.

CHEMICAL COMPOSITION

No.
Nutrients ²
Protein, %
Arginine, %
Cystine, %
Glycine, % 0.86
Histidine, %0.49
Isoleucine, %
Leucine, %
Lysine, %
Methionine, %
Phenylalanine, %
Tyrosine, %
Threonine, %
Tryptophan, %0.24
Valine, %
Serine, %
Aspartic Acid, %
Clusters in A = 1 8/
Glutamic Acid, %4.20
Alanine, %
Proline, %
Taurine, %
Fat (ether extract), %4.5
Fat (acid hydrolysis), % 5.1
Cholesterol, ppm
Linoleic Acid, %
Linolenic Acid, %0.16
Arachidonic Acid, %<0.01
Omega-3 Fatty Acids, %0.34
Total Saturated Fatty Acids, % .0.86
Total Monounsaturated
Fatty Acids, %
Fiber (Crude), %4.6
Neutral Detergent Fiber ³ , % 13.8
Acid Detergent Fiber, % 5.9
Nitrogen-Free Extract
(by difference), %
Starch, %
Glucose, %
Fructose, %
Sucrose 94
Sucrose, %
Lactose, %
Total Digestible Nutrients, % .77.0
Gross Energy, kcal/gm4.04
Physiological Fuel Value ⁵ ,
kcal/gm
Metabolizable Energy,
kcal/gm
Minerals
Ash. % 5 8

Ash, %5.8
Calcium, % 0.80
Phosphorus, %
Phosphorus (non-phytate), %0.34
Potassium, % 0.86
Magnesium, %0.21

C1C 0/
Sulfur, %
Sodium, %
Chlorine, %
Fluorine, ppm
Iron, ppm
Zinc, ppm
Manganese, ppm
Copper, ppm
Cobalt, ppm
Iodine, ppm0.77
Chromium, ppm
Selenium, ppm0.25

Selenium, ppm0.25
Vitamins
Carotene, ppm5.6
Vitamin K (as menadione),ppm .0.4
Thiamin Hydrochloride, ppm 16
Riboflavin, ppm8.0
Niacin, ppm95
Pantothenic Acid, ppm
Choline Chloride, ppm 1800
Folic Acid, ppm4.0
Pyridoxine, ppm6.0
Biotin, ppm0.13
B_{12} , mcg/kg 20
Vitamin A, IU/gm
Vitamin D ₃ (added), IU/gm 2.2
Vitamin E, IU/kg66

Calories provided by:

Protein, %
Fat (ether extract), %11.880
Carbohydrates, %64.535
4D 1 0 1

- *Product Code
- 1. Based on the latest ingredient analysis information. Since nutrient composition of natural ingredients varies, analysis will differ accordingly.
- 2. Nutrients expressed as percent of ration except where otherwise indicated. Moisture content is assumed to be 10.0% for the purpose of calculations.
- 3. NDF = approximately cellulose, hemi-cellulose and lignin.
- 4. ADF = approximately cellulose and lignin.
- 5. Physiological Fuel Value (kcal/gm) = Sum of decimal fractions of protein, fat and carbo- hydrate (use Nitrogen Free Extract) x 4,9,4 kcal/gm respectively.

Appendix V

Protocol and Two Amendments

PROTOCOL RTI-831
PROTOCOL P.O. Box 12194
Research Triangle Park, NC 27709 Page 1 of 27

EPA Contract No.:

68-W-01-023 (Battelle Prime Contractor)

RTI Contract No.:

65U-08055.001.015.001 (male)

RTI Study Code:

Rt02-ED03

RTI Master Protocol No.: RTI-831

5/20/02

TITLE:

Assessment of Pubertal Development and Thyroid Function in Juvenile

Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals

Administered by Gavage on Postnatal Days 23 Through 52/53

SPONSOR:

Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201-2693

TESTING FACILITY: RTI

Chemistry and Life Sciences

Center for Life Sciences and Toxicology

Post Office Box 12194

Research Triangle Park, NC 27709

PROPOSED STUDY IN-LIFE DATES: July 2002 - September 2002 (Component 1)

September 2002 - November 2002 (Component 2)

AMENDMENTS:

Number	Date	Section(s)	Page(s)
1	4/17/03	Approval Page 2.1 2.3	2, 7, 8
* 2	4/17/03	2.4.3, 2.44 2.5.1	9, 10
* 3	4/17/03	2.5.3, 3.1, Table I	11, 12, 13
+ A	4/17/03	3.2.3.2 3.4 3.6.2	15 16. 17
* 5/	4/17/03	3.6.3 7.0, 8.6	18, 19, 20

* Moserne 6/21/03

Amendment numbers 2 through 5 crossed out
to allow 5 pace to describe amendment 1
to allow 5 pace to describe amendment 1

PROTOCOL

RTI

P.O. Box 12194

Research Triangle Park, NC 27709

RTI-831

Page 2 of 27

APPROVED BY:

D	formely	W. B	5	121/02
Rod	helle W Ty	/ Ph D 个	DART	Date

Project Toxicologist

Center for Life Sciences and Toxicology

RTI

1

es 7. Karrige 5-24-02

James P. Kariya Work Assignment Manager

Endocrine Disruptor Screening Program

U.S. EPA

Did 8. Honder 922/02

Tharles P. Jawrie 3/22/02

David P. Houchens, Ph.D. Date Principal Investigator/Program Manager Endocrine Disruptor Screening Program Battelle Memorial Institute

Center for Life Sciences and Toxicology

Julia D. George, Ph.D.

Study Director

RTI

L. Greg Schweer

Date

Project Officer

Endocrine Disruptor Screening Program

U.S. EPA

REVIEWED BY:

Doris I Smith BS Date

Quality Assurance Manager

RTI

Charles Lawrie

Quality Assurance Manager Battelle Memorial Institute Date

PROTOCOL

RTI P.O. Box 12194 Research Triangle Park, NC 27709 RTI-831

Page 3 of 27

TABLE OF CONTENTS

1.0	Obj	jective and Background	:
2.0	Ma	terials and Methods	
	2.1	Test Substances	
		2.1.1 Atrazine	
		2.1.2 Propylthiouracil	
		2.1.3 Vinclozolin	
		2.1.4 Linuron	7
		2.1.5 p,p'DDE	7
		2.1.6 Ketoconazole	7
		2.1.7 Methoxychlor	7
		2.1.8 Finasteride	8
		2.1.9 Phenobarbital	
	2.2	Chemical Safety and Handling	8
	2.3	Dose Formulation and Analysis	8
	2.4	Animals	8
		2.4.1 Species and Supplier	8
		2.4.2 Live Animals and Species Justification	9
		2.4.3 Total Number, Age, and Weight	9
		2.4.4 Quality Control	9
		2.4.5 Sentinels	9
		2.4.6 Quarantine	. 10
	2.5	Animal Husbandry	. 10
		2.5.1 Housing, Feed, and Water	. 10
		2.5.2 Environmental Conditions	. 10
		2.5.3 Animal Identification	. 11
		2.5.4 Limitation of Discomfort	. 11
3.0	Ехр	erimental Design	. 11
	3.1	Study Design, Test Chemicals, and Dose Selection	. 11
		Table 1. Study Design, Test Chemicals, and Target Doses	. 13
		Figure 1. Study Design for Male Pubertal Assay	. 14
	3.2	F0 Dams and F1 Litters Prior to Weaning	15
		3.2.1 F0 Maternal Parturition and Lactation	15
		3.2.2 Final Disposition of F0 Females	15

PROTOCOL

RTI

P.O. Box 12194 Research Triangle Park, NC 27709

RTI-831

Page 4 of 27

TABLE OF CONTENTS (continued)

		3.2.3	F1	Progeny	 15
		3.2.3.		Mortality, Body Weights, and Clinical Observations	
		3.2.3.	2	Standardization of Litter Sizes	 15
	3.3	Selec	tion	of F1 Weanling Males	 15
	3.4	Treatr	mer	nt of F1 Weanling Males	 16
	3.5	Obser	rvat	tion of F1 Weanling Males	 16
		3.5.1	Cli	nical Observations	 16
		3.5.2	F1	Weanling Male Body Weights	 16
		3.5.3	F1	Weanling Male Feed Consumption	 17
				quisition of Preputial Separation	
	3.6	Necro	psy	of F1 Offspring Males	 17
				rminal Blood Collection	
				oss Necropsy and Organ Weights	
				stology and Pathology	
4.0	Stat	istical /	Ana	alyses	 18
5.0				Specimens and Records	
6.0				ol/Quality Assurance Procedures	
7.0	•	•			
8.0					
9.0				s to be Maintained	
10.0	Refe	erences	s		 22
					6 -
Attac	hme	nt: Ma	teri	al Safety Data Sheets (MSDSs)	 27

RTI P.O. Box 12194 **PROTOCOL** Research Triangle Park, NC 27709

RTI-831

Page 5 of 27

OBJECTIVE AND BACKGROUND 1.0

The objective of this study is to quantify the effects of environmental compounds on pubertal development and thyroid function in the intact juvenile/peripubertal male rat. This assay detects compounds that display antithyroid, estrogenic, androgenic, antiandrogenic [androgen receptor (AR) or steroid enzyme mediated] activity, or alter follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin, growth hormone (GH), or hypothalamic function.

The Food Quality Protection Act of 1996 required the EPA to develop and implement a screening program for determining the potential in humans for estrogenic (and anti-estrogenic) effects from pesticides. This program has been expanded on the advice of the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) to include androgenic (and anti-androgenic) effects and effects from thyroid-hormone (TH)-like (and anti-TH) substances.

The EDSTAC, assembled by the EPA in 1996, recommended the use of a female 20-day pubertal assay with thyroid to evaluate test materials for effects on the thyroid, hypothalamicpituitary-gonadal (HPG) axis, aromatase and estrogens (and/or other test materials) that are only effective orally, or after a dosing duration longer than that used in the uterotrophic assay (EDSTAC Report, 1998, Vol. 1, Chapter 5, p. 5-26). EDSTAC also recommended, as an alternate assay to be evaluated, the male 20-day thyroid/pubertal assay in rodents (EDSTAC, 1998, Vol. 1, Chapter 5, p. 5-30).

The EDSTAC discussion on the usefulness of the male pubertal assay and its endpoints included the following:

"This assay detects androgens and antiandrogens in vivo in a single stage apical test. "Puberty" is measured in male rats by determining age at PPS (preputial separation). Animals are dosed by gavage beginning one week before puberty (which occurs at about 40 days of age) and PPS is measured. Androgens will accelerate and antiandrogens and estrogens will delay PPS. The assay takes about 3 weeks, and allows for comprehensive assessment of the entire endocrine system in one study (10 per group, selected for uniform body weights to reduce variance). The animals are dosed daily, seven days a week, and examined daily for PPS. Dosing continues until 53 days of age; the males are then necropsied. The body, heart (thyroid), adrenal, testis, seminal vesicle plus coagulating glands (with fluid), ventral prostate, and levator ani plus bulbocavernosus muscles (as a unit) are weighed. The thyroid is retained for histopathology and serum is taken for T4, T3, and TSH. Testosterone, LH, prolactin, and dihydrotestosterone analyses are optional. These endpoints take several weeks to evaluate and are affected not only by estrogens but by environmental antiandrogens, drugs that affect the hypothalamic-pituitary axis (Hostetter and Piacsek, 1977; Ramaley and Phares, 1983), and by prenatal exposure to TCDD (Gray et al., 1995a; Bjerke and Peterson, 1994) or dioxin-like PCBs (Gray et al., 1995b). In contrast to these other mechanisms, only peripubertal estrogen administration accelerates this process in the female and delays it in the male. Preputial separation in the male rodent is easy to measure and this is not a terminal measure (Korenbrot et al., 1977).

Age and weight at puberty, reproductive organ weights, and serum hormone levels can also be measured. Delays in male puberty results form exposure to both estrogenic and antiandrogenic **PROTOCOL**

RTI P.O. Box 12194 Research Triangle Park, NC 27709 **RTI-831**

Page 6 of 27

chemicals including methoxychlor (Gray et al., 1989), vinclozolin (Anderson et al., 1995a), and p,p'DDE (Kelce et al., 1995). Exposing weanling male rats to the antiandrogenic pesticides p,p'DDE or vinclozolin delays pubertal development in weanling male rats as indicated by delayed preputial separation and increased body weight (because they are older and larger) at puberty. In contrast to the delays associated with exposure to estrogenic substances, antiandrogens do not inhibit food consumption or retard growth (Anderson et al., 1995b). Antiandrogens cause a delay in preputial separation and affect a number of endocrine and morphological parameters including reduced seminal vesicle, ventral prostate, and epididymal weights. It is apparent that PPS is more sensitive than are organ weights in this assay. In addition, responses of the HPG are variable. In studies of vinclozolin, increases in serum LH were a sensitive response to this antiandrogen, whereas serum LH is not increased in males exposed to p,p'DDE during puberty (Kelce et al., 1997). Furthermore, a systematic review of the literature indicates that the sex accessory glands of the immature intact male rat are consistently more affected than in the adult intact male rat.

In summary, preputial separation and sex accessory gland weights are sensitive endpoints. However, a delay in preputial separation is not pathognomonic for antiandrogens. Pubertal alterations result from chemicals that disrupt hypothalamic-pituitary function (Huhtaniemi et al., 1986) and, for this reason, additional *in vivo* and *in vitro* tests are needed to identify the mechanism of action responsible for the pubertal alterations. For example, alterations of prolactin, growth hormone, gonadotrophin (LH and FSH) secretion, or hypothalamic lesions alter the rate of pubertal maturation in weanling rats.

As indicated above, the determination of the age at "puberty" in the male rat are endpoints that already have gained acceptance in the toxicology community. Preputial separation in the male is a required endpoint in the new EPA two-generation reproductive toxicity test guideline. In this regard, this assay would be easy to implement because these endpoints have been standardized and validated and PPS data are currently being collected under GLP conditions in most toxicology laboratories. In addition, PPS data are reported in many recently published developmental and reproductive toxicity studies (i.e., see studies from R.E. Peterson's, J. Ashby's, R. Chapin's and L.E. Gray's laboratories on dioxins, PCBs, antiandrogens, and xenoestrogens).

Sex accessory gland weights in intact adult male rats also can be affected directly or indirectly by toxicant exposure. The HPG axis in an intact animal is able to compensate for the action of antiandrogens by increasing hormone production, which counteracts the effect of the antiandrogen on the tract (Raynaud et al., 1984; Edgren, 1984; Hershberger, 1953)." (EDSTAC, 1998, Vol. 1, Chapter 5, pp. 5-30 through 5-32).

Based on the EDSTAC's recommendations, one of the assays that the EPA has proposed to validate as a potential alternative for other assays in the Tier 1 battery in an endocrine disruptor screening program is a male pubertal assay (see FR Vol. 63, No. 248, pp. 71541-71568, December 28, 1998). This assay is the most comprehensive assay in the proposed Tier 1 battery of assays, as it is capable of detecting substances that alter thyroid function, that are aromatase inhibitors, androgens, anti-androgens, and that are agents which interfere with the hypothalamus-pituitary-gonadal axis. Results from other shorter assays and/or with the use of ip injection as the route of administration, have also been reported (O'Connor et al., 1996, 1999).

EPA has already tested the response of the pubertal assays to a variety of chemicals, but at only one dose per chemical (Rocca and Borst, 2000; Rocca and Pepperl, 2000a,b,c). EPA is in

PROTOCOL RTI-831
P.O. Box 12194
Research Triangle Park, NC 27709
Page 7 of 27

the process of testing the response of two chemicals (vinclozolin and methoxychlor) at multiple doses to determine the sensitivity of the assays to subtle effects of estrogens and antiandrogens.

Although the experiments that have been completed or are in progress are believed to be sufficient to demonstrate the usefulness of these pubertal assays for a wide variety of chemicals, EPA feels that additional multiple-dose studies across an array of chemicals will provide greater confidence in the reliability and relevance of the assays. Therefore, EPA has decided to test ten additional chemicals that have various modes of action. Some chemicals will be tested in only males, others will be tested only in females, and some will be tested in both sexes.

2.0 MATERIALS AND METHODS

2.1 TEST SUBSTANCES

2.1.1 Atrazine

CAS Number 1912-24-9

2.1.2 Propylthiouracil

CAS Number 51-52-5

2.1.3 Vinclozolin

CAS Number 50471-44-8

2.1.4 Linuron

CAS Number 330-55-2

2.1.5 p,p-DDE

CAS Number 72-55-9

2.1.6 Ketoconazole

CAS Number 65277-42-1

2.1.7 Methoxychlor

CAS Number 72-43-5

PROTOCOL RTI-831
P.O. Box 12194
Research Triangle Park, NC 27709
Page 8 of 27

2.1.8 Finasteride

CAS Number 98319-26-7

2.1.9 Phenobarbital

CAS Number 50-06-6

NOTE:

All additional information on the test chemicals (e.g., supplier, batch/lot number, purity, appearance, molecular formula, molecular weight, storage conditions of bulk chemical, and of dosing suspensions, etc.) will be added to the protocol by amendment.

2.2 CHEMICAL SAFETY AND HANDLING

See MSDSs of all chemicals in Attachment.

2.3 DOSE FORMULATION AND ANALYSIS

The dosing suspensions will be prepared at a frequency determined by stability tests performed prior to the start of the study. Suspensions will be prepared at Battelle Chemical Repository, Sequim, WA, and stored in wide-mouth, amber bottles. They will be shipped via 24-hour express delivery and logged into the Materials Handling Facility prior to transfer to the Reproductive and Developmental Toxicology Laboratory for dosing. The test materials will be suspended in stripped (α-tocopherol [Vitamin E] removed) Mazola® corn oil (CAS No. 8001-30-7), with the concentration determined by the following formula:

Concentration (mg / ml) =
$$\frac{\text{Dose per time} (\text{mg / kg})}{\text{Dosage volume per time (5.0 ml / kg)}}$$

An aliquot of each dose level per formulation will be analyzed by Battelle. The dosing bottles will be identified at RTI by a five-digit random number Rx code, and a color code. Personnel, other than the Laboratory Supervisor, Project Toxicologist, and Study Director, will not be informed of the test chemicals or formulation concentrations until all laboratory work is completed (i.e., the study technicians will be "blind" for chemical and dose). Aliquots from the dosing bottles will be collected on the first day of dosing (postnatal day [pnd] 23) and on the first pnd 30, 37, 44, and 51, and will be shipped to Battelle Chemical Repository, Sequim, WA, for analysis.

2.4 ANIMALS

2.4.1 Species and Supplier

The proposed test animals will be the Sprague Dawley Derived Outbred Albino Rat Crl:CD®(SD) IGS BR supplied by Charles River Laboratories, Inc., Raleigh, NC.

PROTOCOL RTI
P.O. Box 12194
Research Triangle Park, NC 27709 Page 9 of 27

2.4.2 Live Animals and Species Justification

The use of live animals has been requested by the Sponsor. Alternative test systems are not available for the assessment of effects of chemicals on reproduction and development in intact mammals for determining the potential risk for humans from endocrine-mediated effects of pesticides and other chemicals. The Charles River CD® rat has been the subject of choice on reproductive and developmental toxicology contracts at RTI since 1976, and has been used for other reproductive toxicology studies with this test material. Large historical data bases for reproductive performance and prevalence of spontaneous malformations in control rats are available from studies conducted at RTI (currently based on over 300 control litters) as well as from the supplier (Charles River, 1988). This study does not unnecessarily duplicate any previous study.

2.4.3 Total Number, Age, and Weight

For the nine-group component of this study (Component 1; see Table 1), 25 timed-pregnant female rats (designated the F0 generation) will be purchased for this study, at ten to 12 weeks of age upon arrival. They will arrive at RTI on gestational day (gd) 14 (based on the vendor's designation of the day of insemination as gd 1), which is gd 13 (based on the performing laboratory's designation of the day of insemination as gd 0). One hundred thirty-five (135) offspring male rats, designated the F1 generation, will be placed on study at weaning (pnd 21), weighing approximately 48-55 grams (i.e., nine groups of 15 F1 weanling males each), for Component 1. For the 11-group component of this study (Component 2; see Table 1), 32 timed-pregnant female rats will be purchased, as described above, and 165 offspring male rats (11 groups of 15 F1 weanling males each) will go on study for Component 2.

2.4.4 Quality Control

The shipment of pregnant F0 females will be quarantined on arrival, and quality control evaluation will be initiated within one day after receipt. Within one day after receipt, two female rats will be chosen from the shipment, sacrificed, and blood collected for assessment of viral antibody status. Heat-inactivated serum will be sent to BioReliance (Rockville, MD) for their Level 1 Rat Antibody Screen. The viral screen will consist of evaluation for the presence of antibodies against the following: Toolan H-1 virus (H-1), Sendai virus, Pneumonia virus of mice (PVM), rat coronavirus/sialodacryoadenitis (RCV/SDA), Parvo virus, Kilham rat virus (KRV), CAR Bacillus, and Mycoplasma pulmonis (M. Pul.). In addition, fecal samples from representative animals will be externally examined for intestinal parasites.

2.4.5 Sentinels

After the selection of F1 weanling study males, four unselected male rats (or, if necessary, one to four remaining females) will be randomly selected, eartagged, and designated as sentinels. They will be singly housed in the study room(s) with feed and water available *ad libitum* (as described below). They will be examined once daily by cageside observation for morbidity or mortality at the same time as the clinical observations or morbidity/mortality checks for the study animals. The clinical condition of sentinel animals will be recorded only in the event that an animal is moribund or found dead. If a sentinel animal is terminated moribund, blood will be collected at termination and serum samples frozen.

PROTOCOL P.O. Box 12194
Research Triangle Park, NC 27709 Page 10 of 27

During the F1 male necropsies, the surviving sentinel males (and/or females) will be terminated, blood samples collected, and serum samples prepared. All sentinel serum samples will be submitted to BioReliance (Rockville, MD) for serological evaluation (see above section on Quality Control).

2.4.6 Quarantine

The initial F0 timed-pregnant females will be quarantined for approximately one week (gd 13-20), with the prior concurrence of the RTI Animal Research Facility (ARF) veterinarian. They will be observed daily for general health status and ability to adapt to the ARF husbandry conditions. They will be released from quarantine, if suitable for use (based on QC results), by the attending ARF veterinarian or his designate.

2.5 ANIMAL HUSBANDRY

2.5.1 Housing, Feed, and Water

During the quarantine period, animals will be randomly assigned to cages. Pregnant and lactating F0 females will be singly housed, and and F1 male postweanlings will be multiply or singly housed, as necessary, in solid-bottom, polycarbonate cages (8"x19"x10.5") fitted with stainless steel wire lids (Laboratory Products, Rochelle Park, NJ). Sani-Chip® cage bedding (P.J. Murphy, Forest Products, Inc., Montville, NJ) will be used in all cages. Pelleted feed (No. 5002 Purina Certified Rodent Chow®) and deionized water, produced at RTI from tap water from the Durham, NC water system, in plastic bottles with stainless steel sipper tubes, will be available ad libitum for the F0 females during quarantine, gestation and lactation, and for the retained F1 males. The water for the study breeder male animals is provided by an automatic watering system (Edstrom Industries, Inc., Waterford, WI); the parental females will also be on the automatic watering system during cohabitation. The analysis of the rodent chow for chemical composition and possible chemical contamination, and analysis of Durham City water will be provided by the suppliers and maintained in the study records. It is anticipated that contaminant levels will be below certified levels for both feed and water and will not affect the design, conduct, or conclusions of this study. In addition, each lot number of Purina 5002 feed used will be analyzed by the supplier for concentrations of the phytoestrogens genistein, daidzein, and glycitein. An aliquot of each lot number will be retained frozen for possible future analytical chemistry. The "metabolizable energy content" of the feed (label value) will also be recorded and reported. Rat chow will be stored at approximately 60-70°F, and the period of use will not exceed six months from the milling date. At all times, animals will be housed, handled, and used according to the NRC Guide (NRC, 1996).

2.5.2 Environmental Conditions

Environmental conditions in the ARF will be continuously monitored, recorded, and controlled during the course of the study by an automated system (Siebe/Barber-Colman Network 8000 System with Version 4.4.1 Signal® software (Siebe Environmental Controls (SEC)/Barber-Colman Company, Loves Park, IL). Animal rooms used for this study will be maintained on a 14:10 hour light:dark cycle. Target conditions for temperature and relative humidity in the animal

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 11 of 27

rooms will be between 64-79°F (18-26°C) and 30-70%, respectively, with 10-15 air changes per hour (NRC, 1996). Temperature and/or relative humidity excursions will be documented in the study records and the final report.

2.5.3 Animal Identification

All F0 maternal rats will be individually identified by ear tag after arrival at RTI. All selected study weaning F1 males will also be uniquely identified by eartag at weaning, as well as receiving a female study number. All data generated during the course of this study will be tracked by these numbers.

2.5.4 Limitation of Discomfort

Some postweanling toxicity may be caused by exposure at the high doses of each test material. Discomfort or injury to animals will be limited, in that if any animal becomes severely debilitated or moribund, it will be humanely terminated by CO₂ inhalation. All necropsies will be performed after terminal CO₂ asphyxiation. F1 pnd 4 culled pups will be euthanized by decapitation and discarded.

3.0 EXPERIMENTAL DESIGN

3.1 STUDY DESIGN, TEST CHEMICALS, AND DOSE SELECTION

The study will be conducted in two components. Component 1 will consist of two dose groups per test material (and four test materials) and one vehicle control group. Component 2 will consist of two dose groups per test material (and five test materials) and one vehicle control group. Each group will be comprised of 15 weight-matched F1 male weanlings for each of the two components of this study. The F1 study males will be dosed by gavage once daily for 31-32 consecutive days (pnd 22 to pnd 52 or 53). Table 1 presents the study design and target doses of the test chemicals. A graphical representation of the study design is presented in Figure 1 below.

The U.S. EPA selected the nine test chemicals for evaluation and selected the low and high target doses (in mg/kg/day) for each of them (Table 1). The nine test chemicals and their target/mechanism of action are as follows: (1) atrazine (affects the hypothalamus-pituitary axis in female rats and ovulation); (2) propylthiouracil (affects the thyroid directly, causing hypothyroidism); (3) vinclozolin (metabolites M1 and M2 act as anti-androgen; competitive binding to androgen receptor; M1 also binds weakly to the rat progesterone receptor); (4) linuron (anti-androgen; competitive binding to androgen receptor); (5) p,p-DDE (stable metabolite of DDT; anti-androgen through competitive binding to the androgen receptor); (6) ketoconazole (inhibits steroidogenesis in both sexes); (7) methoxychlor (a xenoestrogen through α -estrogen receptor, anti-estrogen through β -estrogen receptor and an anti-androgen through androgen receptor mediated mechanism); (8) finasteride (a inhibitor of a β -reductase which catalyzes the conversion of testosterone to its potent metabolite, dihydrotestosterone [DHT]); and (9) phenobarbital (induces P450 isoforms predominantly in the liver, accelerates metabolism of endogenous hormones and exogenous xenobiotics).

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 12 of 27

Tentative Study Dates* (to be added to the protocol by amendment)

F0 timed-pregnant females arrive at RTI:

Parturition of F1 offspring (pnd 0):

Weaning of F1 offspring (pnd 21):

Sacrifice of F0 dams:

Dosing (pnd 23 - pnd 52/53):

Sacrifice of F1 males (on pnd 52 or 53):

Submission of nonaudited draft final report:

Submission of audited draft final report:

^a The end dates are tentative and will depend on the duration of gestation and lactation of the F0 dams with F1 offspring.

PROTOCOL

RTI P.O. Box 12194 Research Triangle Park, NC 27709 RTI-831

Page 13 of 27

Table 1. Study Design and Target Doses

Group No.	No. F1 Males	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)	Dose Volum (ml/kg)
		COL	MPONENT 1		
1	15	_a	0	0.0	5.0
2	15	Atrazine	75	15.0	5.0
3	15		150	30.0	5.0
4	15	Propylthiouracil	2	0.4	5.0
5	15		25	5.0	5.0
6	15	Vinclozolin	30	6.0	5.0
5	15		100	20.0	5.0
8	15	Linuron	50	10.0	5.0
9	15		100	20.0	5.0
		COI	MPONENT 2		
10	15	p,p'DDE	50	10.0	5.0
. 11	15		100	20.0	5.0
12	15	Ketoconazole	50	10.0	5.0
13	15		100	20.0	5.0
14	15	Methoxychlor	25	5.0	5.0
15	15		50	10.0	5.0
16	15	Finasteride	25	5.0	5.0
17	15	•	50	10.0	5.0
18	15	Phenobarbital	50	10.0	5.0
19	15		100	20.0	5.0
10	15	a	0	0.0	5.0

^a stripped corn oil, vehicle control

PROTOCOL P.O. Box 12194

Research Triangle Park, NC 27709

Page 14 of 27

RTI-831

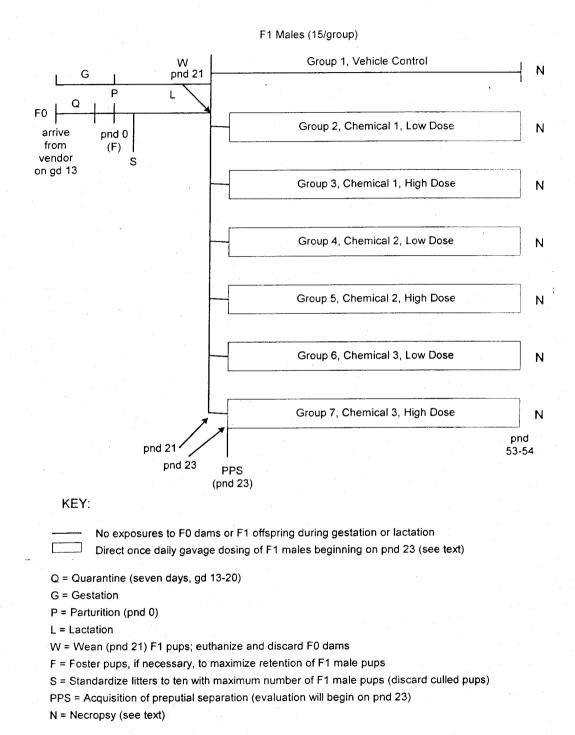


Figure 1. Study Design for Male Pubertal Assay

PROTOCOL RTI-831
PROTOCOL P.O. Box 12194
Research Triangle Park, NC 27709 Page 15 of 27

3.2 FO DAMS AND F1 LITTERS PRIOR TO WEANING

3.2.1 FO Maternal Parturition and Lactation

Beginning on gd 20, each female will be examined twice daily (a.m. and p.m.) for evidence of littering. Females who are littering at morning and afternoon checks will have this information recorded on the gestational sheet. Signs of dystocia or other signs of difficulty at parturition will be recorded. Dams that have not produced a litter by calculated gd 26 will be euthanized by CO₂ and discarded. Any dams whose whole litters are born dead or die prior to pnd 21 will be sacrificed, and the number of uterine implantation scars will be recorded.

3.2.2 Final Disposition of F0 Females

On pnd 21 of each F1 litter, each F0 dam will either be euthanized by CO₂ asphyxiation, and the carcass discarded, or will be transferred out of this study and used for training purposes in the RTI ARF. Final disposition of each animal will be clearly documented in the study records.

3.2.3 F1 Progeny

3.2.3.1 Mortality, Body Weights, and Clinical Observations

All pups will be counted, sexed, weighed, and examined as soon as possible on the day of birth (designated as pnd 0) to determine the number of viable and stillborn members of each litter. Thereafter, litters will be evaluated for survival, sex, gross observations, and body weights on pnd 4, 7, 14, and 21. Any pup which appears moribund or dies during lactation will be necropsied, when possible, to investigate the cause of death and discarded. No organs will be weighed or saved.

3.2.3.2 Standardization of Litter Sizes

On pnd 4, the size of each litter will be adjusted to ten pups, maximizing the number of male pups retained. Natural litters with ten or fewer pups will not be culled. If necessary, F1 male pups from litters with more than six males will be fostered to litters containing fewer than six males on pnd 4. All culled pups will be sacrificed by decapitation. The F0 dams will be allowed to rear their remaining F1 young to pnd 21. On pnd 21, each litter will be weaned.

3.3 SELECTION OF F1 WEANLING MALES

When each F1 litter has reached pnd 21, the F1 males for each pnd 21 (wean) date will be weight ranked across litters (outliers, i.e., heaviest and lightest pups, will be eliminated from selection). The selected males will then be eartagged and distributed across the seven groups by stratified randomization (e.g., one of the seven heaviest selected males will go into each of the seven treatment groups, etc.). Of the remaining F1 males, four will be eartagged and selected as sentinels. If not enough unselected males are available, then the remaining F1 females will be used as sentinels (to obtain a total of four); see Section 2.4.5.

PROTOCOL	RTI P.O. Box 12194	RTI-831
PROTOCOL	Research Triangle Park, NC 27709	Page 16 of 27

3.4 TREATMENT OF F1 WEANLING MALES

Beginning on pnd 23, each F1 male will be dosed with one of the test materials at one of the dose levels or the vehicle control (corn oil for all chemicals). Each animal will be weighed every other day prior to treatment and the body weight recorded. Treatments will be administered daily by oral gavage in 5.0 ml corn oil/kg body weight from pnd 23 and continuing through pnd 52/53. This duration of treatment is unnecessary to detect androgenic chemicals but is required for the detection of pubertal delay and antithyroid effects. Gavage dosing will use an 18-gauge gavage needle (1 inch length with 2.25 mm ball) and a 1 cc glass (disposable) tuberculin syringe for each treatment group. Xenobiotics will be administered in corn oil vehicle at a dosing volume of 5.0 ml/kg body weight at 0700-1000 hours daily. The treatments will be administered on a mg/kg body weight basis, adjusted based on the most recent body weight, and the volume of the dose administered will be recorded each day. It is important that any dosing solutions/suspensions be well mixed to keep the chemical in suspension prior to and throughout dosing.

3.5 OBSERVATION OF F1 WEANLING MALES

3.5.1 Clinical Observations

Clinical observations of F1 male study animals will be documented at least once daily on pnd 21 and 22 (prior to dosing period) and at least twice daily, at dosing and one to two hours postdosing, throughout the dosing period (pnd 23 through pnd 52 or 53). The examining technicians will be unaware of the test materials or of dosage levels. Observations will be made for (but not limited to):

- a. Any response with respect to body position, activity, coordination, or gait
- b. Any unusual behavior such as head flicking, compulsive biting or licking, circling, etc.
- c. The presence of:
 - 1. Convulsions, tremors, or fasciculations
 - 2. Increased salivation
 - 3. Increased lacrimation or red-colored tears (chromodacryorrhea)
 - 4. Increased or decreased urination or defecation (including diarrhea)
 - 5. Piloerection
 - 6. Mydriasis or miosis (enlarged or constricted pupils)
 - 7. Unusual respirations (fast, slow, labored, audible, gasping, or retching)
 - 8. Vocalization

3.5.2 F1 Weanling Male Body Weights

All F1 males will be weighed in the morning on pnd 21 and 22, and every day in the morning during the dosing period on pnd 23 through pnd 52/53, for adjustment of dosing volume based on the most recent body weight. Daily body weights will be reported and statistically analyzed. F1 male weight gains will be calculated and analyzed for pnd 21-23, 23-30, 30-37, 37-44, 44-51, 51-52/53, and 23-52/53 (treatment period). F1 male body weights will also be recorded on the day of acquisition of preputial separation (see Section 3.5.4).

PROTOCOL RTI-831
P.O. Box 12194
Research Triangle Park, NC 27709
Page 17 of 27

3.5.3 F1 Weanling Male Feed Consumption

Feed consumption for the individually-housed F1 weanling males will be recorded daily and reported as g/day and as g/kg body weight/day.

3.5.4 Acquisition of Preputial Separation

Beginning on pnd 23, each F1 study male will be examined daily for preputial separation. The appearance of partial and complete preputial separation or a persistent thread of tissue between the glans and prepuce should all be recorded if and when they occur. In addition, the body weight at complete preputial separation should be recorded. However, if a sufficient number of animals within any treatment group show persistent threads for greater than three days, a separate analysis should be conducted using the age at which the thread was first observed.

3.6 NECROPSY OF F1 OFFSPRING MALES

3.6.1 Terminal Blood Collection

At scheduled necropsy of the F1 males, after terminal anesthesia ($\rm CO_2$ asphyxiation), the males will be weighed and the maximum amount of blood will be taken by external cardiac puncture and placed in a labeled tube. The blood will be allowed to clot and centrifuged under refrigeration at approximately 1400 x g for approximately ten minutes. The resulting serum will be subdivided into two aliquots and frozen at approximately -20 $\,$ C:

- a. One milliliter from each animal for analysis of thyroxine (T4) and thyroid stimulating hormone (TSH) at RTI.
- b. Remaining serum from each animal shipped frozen, for possible subsequent analyses, to:

Ralph L. Cooper, Ph.D.
Chief, Endocrinology Branch, MD-72
RTD, NHEERL, US EPA
Research Triangle Park, NC 27711
Cooper.ralph@epa.gov
Phone: 919-541-4084
Fax: 919-541-5138

3.6.2 Gross Necropsy and Organ Weights

Each F1 male offspring, after blood is collected (see Section 3.7.1), will be subjected to a gross necropsy. The thoracic and abdominal organs and cavities will be examined and any abnormalities documented. The following organs will be dissected out and weighed: paired testes, paired epididymides, prostate (intact and separated into ventral and dorsolateral lobes), seminal vesicles with coagulating glands (and fluid), levator ani plus bulbcavernosus muscle complex, liver, paired kidneys, adrenal glands (paired), pituitary, and thyroid (taken with attached portion of trachea, weighed after fixation and removal of the tracheal portion).

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 18 of 27

All organs will be weighed to the nearest 0.1 mg. Adrenal and pituitary glands will be weighed immediately (to minimize drying out of tissues). The thyroid will be weighed after fixation and removal of the attached trachea.

During necropsy, care must be taken to remove mesenteric fat with small surgical iris scissors from these tissues such that the fluid in the sex accessory glands is retained. Small tissues such as the adrenals, as well as tissues that contain fluid, should be weighed immediately to prevent partial drying prior to weighing.

3.6.3 Histology and Pathology

One testis, one epididymis, and the thyroid with attached portion of trachea from each F1 male will be placed in Bouin's fixative for 24 hours (then the trachea removed from the thyroid), after which they will be rinsed and stored in 70% alcohol until embedded in paraffin. They will then be sectioned at 3-5 microns and stained with hematoxylin and eosin (H and E) for subsequent histological evaluations. Optional tissues for histopathology include the liver, paired kidneys, adrenal glands (paired), and pituitary, as indicated by altered organ weight (change of "significant magnitude"), which will be processed as above. Stained sections will be evaluated by a Board Certified veterinary pathologist for pathologic abnormalities and potential treatment-related effects. Thyroids should be evaluated for morphologic changes such as altered follicular epithelial height, the relative number and staining characteristics of colloid, the extent of thyroid vascular supply, and the density, size, and shape of the thyroid follicles. The one testis and epididymis per male will be evaluated for spermatogenesis, spermiogenesis, status of seminiferous tubules in the testis, and sperm in the epididymis, as well as the structural integrity of these organs.

4.0 STATISTICAL ANALYSES

All data for a single chemical (two doses) and concurrent vehicle control group (weaning body weight, body weights and weight gains, age and weight at preputial separation, body and organ weights at necropsy, and serum hormones) will be analyzed using either parametric ANOVA under the standard assumptions or robust regression methods (Zeger and Liang, 1986; Royall, 1986; Huber, 1967) which do not assume homogeneity of variance or normality. The homogeneity of variance assumption will be examined via Levene's test (Levene, 1960). If Levene's test indicates lack of homogeneity of variance (p<0.05), robust regression methods will be used to test all treatment effects. The robust regression methods use variance estimators that make no assumptions regarding homogeneity of variance or normality of the data. They will be used to test for linear trends across dose as well as overall treatment group differences (via Wald chi-square tests). Significant overall treatment effects will be followed by single degree-offreedom *t*-tests for exposed vs. control group comparisons, if the overall treatment effect is significant. If Levene's test does not reject the hypothesis of homogeneous variances, standard ANOVA techniques will be applied for comparing the treatment groups. The GLM procedure in SAS® Version 6 (SAS Institute, Inc., 1989a,b; 1990a,b,c; 1996; 1997) or 8 (SAS Institute, Inc.,

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 19 of 27

1999a,b,c,d,e; 2000) will be used to test for linear trend, evaluate the overall effect of treatment and, when a significant treatment effect is present, to compare each exposed group to control via Dunnett's Test (Dunnett, 1955, 1964). Standard ANOVA methods, as well as Levene's Test, are available in the GLM procedure of SAS®, and the robust regression methods are available in the REGRESS procedure of SUDAAN® Release 7.5.4 (Shah et al., 1997) or Release 8.0 (RTI, 2001). Organ weights will also be analyzed by Analysis of Covariance (ANCOVA) using the intital body weight (at assignment to treatment groups) and body weight at necropsy as the covariates. When statistically significant effects are observed, treatment means will be examined further using LSMeans.

The unit of comparison will be the weanling F1 male offspring on study.

A test for statistical outliers will be performed in the UNIVARIATE procedure of SAS[®] Version 6 (SAS Institute, Inc., 1989a,b; 1990a,b,c; 1996; 1997) or 8 (SAS Institute, Inc., 1999a,b,c,d,e; 2000) on F1 male body and organ weights. If examination of pertinent study data do not provide a plausible biologically sound reason for inclusion of the data flagged as "outlier," the data will be excluded from summarization and analysis and will be designated as outliers. For all statistical tests, $p \le 0.05$ (one- or two-tailed) will be used as the criterion for significance.

5.0 RETENTION OF SPECIMENS AND RECORDS

All specimens and records which remain the responsibility of RTI will be retained in the RTI archives for two years at the performing laboratory's expense. Beyond two years, continued retention will be at additional cost to the Sponsor.

6.0 QUALITY CONTROL/QUALITY ASSURANCE PROCEDURES

Quality control (QC) and quality assurance (QA) procedures will follow those outlined in the Quality Assurance Project Plan (QAPP) prepared for this study.

7.0 REPORTING

An executive summary will be prepared describing the number and strain of rats used in the study, the doses and chemicals tested, and the effects with levels of statistical significance for all endpoints. Electronic and hard copies of spreadsheets containing the raw data from all animals will be provided for each endpoint. In addition, the spreadsheet should include treatment means, standard deviation, standard error, coefficient of variation, and sample number below each endpoint. Data presented should include animal number and treatment, block and day of necropsy (if study conducted in blocks or animals killed on pnd 52 and 53), age and weight at preputial separation, body weights at weaning, organ and body weights at necropsy, body weight change from pnd 23 to necropsy, and serum T4 and TSH. A data summary table containing the

PROTOCOL

RTI P.O. Box 12194

Research Triangle Park, NC 27709

RTI-831

Page 20 of 27

mean, standard deviation, standard error, coefficient of variation, and sample size for each treatment group should be provided for all endpoints. Organ weights may be presented after covariance adjustment for necropsy body weight, but this should not replace presentation of the unadjusted data. Summaries of any histopathologic findings with photomicrographs of significant observations will also be provided.

8.0 PERSONNEL

Study Director:

Julia D. George, Ph.D.

Project Toxicologist:

Rochelle W. Tyl, Ph.D., DABT

ARF Veterinarian:

Donald B. Feldman, D.V.M., ACLAM

ARF Manager:

Frank N. Ali, M.B.A., RLATG, ILAM

Laboratory Supervisor:

Melissa C. Marr, B.A., RLATG

Data Analyst and Reproductive

Toxicity Supervisor:

Christina B. Myers, M.S.

Statistical Advisor:

Gayle S. Bieler, M.S.

Research Data Entry Assistant:

Timothy W. Wiley, B.S.

Research Biologist:

William R. Ross, B.A.

Biologists:

Vickie I. Wilson

Lawson B. Pelletier, RVMT, LAT

Biological Laboratory

Assistants:

Marian V. Rieth, RVMT Malcolm D. Crews, ALAT Robin T. Krebs, ALAS

Endocrinology:

Patricia A. Fail, Ph.D. Carol S. Sloan, M.S.

Kristi D. Vick, B.S.

Quality Assurance:

Doris J. Smith, B.S., Manager

Celia D. Keller, M.S.

Patricia D. Hall

Marcia D. Phillips, M.S.

PROTOCOL RTI
P.O. Box 12194
Research Triangle Park, NC 27709 Page 21 of 27

D. Denise Rowe, M.L.S. Tiffany M. Kennedy, B.S. Erica D. Shinauld, B.S.

Histology:

Tsai-Ying Chang, B.S. HT-ASCP

Pathology:

John C. Seely, D.V.M., ACVP (EPL, Inc.)

Additional study team members to be determined.

9.0 STUDY RECORDS TO BE MAINTAINED

Protocol and any Amendments

List of any Protocol Deviations

List of Standard Operating Procedures

Animal Requisition and Receipt Records

Ouarantine Records

Temperature and Humidity Records for the Animal Room(s)

Animal Research Facility Room Log(s)

Durham City Water Analysis (analyzed monthly, reported annually)

Feed Type, Source, Lot Number, Dates Used, Certification, Analytical Results

Dosage Code Records Containing Five-Digit Rx Code, Color Code, and Concentration

F0 Mating Records from Vendor

F0 Maternal Gestational and Lactational Records

F0 Disposition Records

Dose Formulation Receipt and Use Records

F1 Male Distribution into Groups

F1 Male Dosing Forms

F1 Male Postwean Dosing Period:

Body Weights

Clinical Signs

Acquisition of Preputial Separation

PROTOCOL RTI
PROTOCOL P.O. Box 12194
Research Triangle Park, NC 27709 Page 22 of 27

F1 Male Necropsy Records: Body weight, organ weights, gross observations, required

(and optional, if done) organ histopathology, TSH and T4

serum levels

Statistical Analysis Records

Histopathology Report

Serum Thyroid Hormone Analyses (T4, TSH)

Correspondence

10.0 REFERENCES

Anderson, S., S. Pearce, P. Fail, B. McTaggert, R. Tyl, and L.E. Gray, Jr. (1995a). Testicular and adrenal response in adult Long-Evans Hooded rats after antiandrogenic vinclozolin exposure. *J. Andrology* **16**, p. 43.

Anderson, S., S. Pearce, P. Fail, B. McTaggert, R. Tyl, and L.E. Gray, Jr. (1995b). Validation of the alternative reproductive test protocol (ART) to assess toxicity of methoxychlor in rats. *Toxicologist* **15**, p. 164.

Bjerke, D., and R. Peterson (1994). Reproductive toxicity of 2,3,7,8 tetrachlorodibenzo-p-dioxin in male rats: different effects of *in utero* versus lactation exposure. *Toxicol. Appl. Pharmacol.* **127,** 241-249.

Charles River (1988). Embryo and Fetal Developmental Toxicity (Teratology) Control Data in the Charles River Crl:CD® BR Rat. Charles River Laboratories, Inc., Wilmington, MA.

Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. *J. Am. Stat. Assoc.* **50**, 1096-1121.

Dunnett, C.W. (1964). New tables for multiple comparisons with a control. *Biometrics* **20**, 482-491.

Edgren, R. (1984). Issues in animal pharmacology. In: *Pharmacology of the Contraceptive Steroids* (J. Goldzieher, Editor), Raven Press, Ltd., NY.

Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) (1998) Final Report, Volume I.

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 23 of 27

Gray, L.E. Jr., J. Ostby, J. Ferrell, G. Rehnberg, R. Linder, R. Cooper, J. Goldman, V. Slott, and J. Laskey (1989). A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. *Fundam. Appl. Toxicol.* **12**, 92-108.

Gray, L.E., Jr., W.R. Kelce, E. Monosson, J.S. Ostby, and L.S. Birnbaum (1995a). Exposure to TCDD during development permanently alters reproductive function in male LE rats and hamsters: reduced ejaculated and epididymal sperm numbers and sex accessory gland weights in offspring with normal androgenic status. *Toxicol. Appl. Pharmacol.* 131(1), 108-118.

Gray, L.E., Jr., J. Ostby, C. Wolf, D. Miller, W. Kelce, C. Gordon, and L. Birnbaum (1995b). Functional developmental toxicity of low doses of 2,3,7,8 tetrachlorodibenzo-p-dioxin and a dioxin-like PCB (169) in Long Evans rats and Syrian hamsters: reproductive, behavioral and thermoregulatory alterations. *Organohalogen Compounds* 25, 33-38.

Hershberger, L., E. Shipley, and R. Meyer (1953). Myotrophic activity of 19-nortestosterone and other steriods determined by modified levator ani muscle method. *Proc. Soc. Exp. Biol. Med.* **83**, pp. 175.

Hostetter, M., and B. Piacsek (1977). The effect of prolactin deficiency during sexual maturation in the male rat. *Biol. Reprod.* **17**, 574-577.

Huber, P.J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In: *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability* 1, 221-233.

Huhtaniemi, I., A. Amsterdam, and Z. Naor (1986). Effect of postnatal treatment with a gonadotropin-releasing hormone antagonist on sexual maturation of male rats. *Biol. Reprod.* 35, 501-507.

Kelce, W.R., C. Stone, S. Laws, L.E. Gray Jr., J. Kemppainen, and E. Wilson (1995). Persistent DDT metabolite p,p'DDE is a potent androgen receptor antagonist. *Nature* 375(15), 581-585.

Kelce, W.R., C. Lambright, L.E. Gray Jr., and K. Roberts (1997). Vinclozolin and pp'DDE alter androgen-dependent gene expression: *in vivo* confirmation of an androgen receptor mediated mechanism. *Toxicol. Appl. Pharmacol.* **142**, 192-200.

Korenbrot, C.C., I. Huhtaniemi, and R. Weiner (1977). Preputial separation as an external sign of pubertal development in the male rat. *Biol. Reprod.* **17**, 298-303.

Levene, H. (1960). Robust tests for the equality of variance. In: *Contributions to Probability and Statistics* (I. Olkin, S.G. Ghurye, W. Hoeffding, W.G. Madow, and H.B. Mann, Eds.), Palo Alto, CA, Stanford University Press, pp. 278-292.

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	5 04 607
	Research Triangle Park, NC 27709	Page 24 of 27

NRC (1996). Guide for the Care and Use of Laboratory Animals. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council. Revised 1996.

O'Connor, J.C., J.C. Cook, S.C. Craven, C.S. Van Pelt, and J.P. Obourn (1996). An *in vivo* battery for identifying endocrine modulators that are estrogenic or dopamine regulators. *Fundam. Appl. Toxicol.* **33**, 182-195.

O'Connor, J.C., S.R. Frame, L.G. Davis, and J.C. Cook (1999). Detection of thyroid toxicants in a tier I screening battery and alterations in thyroid endpoints over 28 days of exposure. *Toxicol. Sci.* **51(1)**, 54-70.

Radovsky, A.E., J.T. Yarrington, G.D. Cappon, K.S. Regan, and R.E. Wilson (2000). Brain morphology in a developmental neurotoxicity study of propylthiouracil. *Toxicologist* **54(1)**, 293.

Ramaley, J., and C. Phares (1983). Delay of puberty onset in males due to suppression of growth hormone. *Neuroendocrinology* **36**, 321-329.

Raynaud, J.P., C. Bonne, M. Moguilewsky, F.A. Lefebvre, A. Belanger, and F. Labrie (1984). The pure antiandrogen RU 23908 (Anandron), a candidate of choice for the antihormonal treatment of prostatic cancer: a review. *Prostate* 5(3), 299-311.

Rocca, M.S., and S.M. Borst (2000). Final report: "Assessment of Pubertal Development and Thyroid Function in Juvenile Female Rats," Study No. 1143-101 (test articles: ethynyl estradiol, tamoxifen, propylthiouracil, ketoconazole, pimozide, and methoxychlor). The TherImmune Research Corporation, Gaithersburg, MD, for the U.S. EPA (NHEERL, MD-71, RTP, NC). Study completion date: June 29, 2000.

Rocca, M.S., and S. Pepperl (2000a). Final report: "Assessment of Pubertal Development and Thyroid Function in Juvenile Male Rats," Study No. 1143-100 (test articles: flutamide, methyl testosterone, propylthiouracil, ketoconazole, pimozide, and dibutylphthalate). The TherImmune Research Corporation, Gaithersburg, MD, for the U.S. EPA (NHEERL, MD-71, RTP, NC). Study completion date: June 29, 2000.

Rocca, M.S., and S. Pepperl (2000b). Final report: "Assessment of Pubertal Development and Thyroid Function in Juvenile Male Rats," Study No. 1143-102 (test articles: flutamide, methyl testosterone, propylthiouracil, ketoconazole, pimozide, and dibutylphthalate). The TherImmune Research Corporation, Gaithersburg, MD, for the U.S. EPA (NHEERL, MD-71, RTP, NC). Study completion date: June 29, 2000.

Rocca, M.S., and S. Pepperl (2000c). Final report: "Assessment of Pubertal Development and Thyroid Function in Juvenile Female Rats," Study No. 1143-103 (test articles: ethynylestradiol, tamoxifen, propylthiouracil, ketoconazole, pimozide, and methoxychlor). The Therlmmune Research Corporation, Gaithersburg, MD, for the U.S. EPA (NHEERL, MD-71, RTP, NC). Study completion date: June 29, 2000.

PROTOCOL	RTI P.O. Box 12194	RTI-831
PROTOCOL	Research Triangle Park, NC 27709	Page 25 of 27

Royall, R.M. (1986). Model robust confidence intervals using maximum likelihood estimators. *International Statistical Review* **54**, 221-226.

RTI (2001). SUDAAN User's Manual, Release 8.0. Research Triangle Park, NC: Research Triangle Institute.

SAS Institute Inc. (1989a). SAS® Language and Procedures: Usage, Version 6, First Edition, Cary, NC: SAS Institute Inc. 638 pp.

SAS Institute Inc. (1989b). *SAS/STAT® Users' Guide*, Version 6, Fourth Edition, Volumes 1 and 2, Cary, NC: SAS Institute Inc. 1686 pp.

SAS Institute Inc. (1990a). SAS® Language: Reference, Version 6, First Edition, Cary, NC: SAS Institute Inc. 1042 pp.

SAS Institute Inc. (1990b). SAS® Language: Procedures Guide, Version 6, Third Edition, Cary, NC: SAS Institute Inc. 705 pp.

SAS Institute Inc. (1990c). SAS® Companion for the VMSTM Environment, Version 6, First Edition, Cary, NC: SAS Institute Inc. 457 pp.

SAS Institute Inc. (1996). SAS® Companion for the Microsoft Windows Environment, Cary, NC: SAS Institute Inc., 302 pp.

SAS Institute Inc. (1997). SAS/STAT® Software: Changes and Enhancements Through Release 6.12, Cary, NC: SAS Institute Inc., 1167 pp.

SAS Institute Inc. (1999a). SAS® Language Reference: Concepts, Version 8, Cary, NC: SAS Institute Inc. 554 pp.

SAS Institute Inc. (1999b). SAS/STAT® Users' Guide, Version 8, Cary, NC: SAS Institute Inc. 3884 pp.

SAS Institute Inc. (1999c). SAS® Language Reference: Dictionary, Version 8, Cary, NC: SAS Institute Inc. 1244 pp.

SAS Institute Inc. (1999d). SAS® Procedures Guide, Version 8, Cary, NC: SAS Institute Inc. 1643 pp.

SAS Institute Inc. (1999e). SAS® Companion for the Microsoft Windows Environment, Version 8, Cary, NC: SAS Institute Inc. 562 pp.

SAS Institute Inc. (2000). SAS/STAT® Software: Changes and Enhancements, Release 8.1, Cary, NC: SAS Institute Inc. 554 pp.

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	D 00 107
	Research Triangle Park, NC 27709	Page 26 of 27

Shah, B.V., Barnwell, B.G., and Bieler, G.S. (1997). SUDAAN® Software for the Statistical Analysis of Correlated Data. User's Manual. Release 7.5, Volume 1, Research Triangle Institute, Research Triangle Park, NC.

Zeger, S. and K. Liang (1986). Longitudinal data analysis for discrete and continuous outcomes. *Biometrics* **42**, 121-130.

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 27 of 27

ATTACHMENT

Material Safety Data Sheets (MSDSs)

Atrazine	CAS No. 1912-24-9
Propylthiouracil	CAS No. 51-52-5
Vinclozolin	CAS No. 50471-44-8
Linuron	CAS No. 330-55-2
p,p-DDE	CAS No. 72-55-9
Ketoconazole	CAS No. 65277-42-1
Methoxychlor	CAS No. 72-43-5
Finasteride	CAS No. 98319-26-7
Phenobarbital	CAS No. 50-06-6

```
CHEM SERVICE -- PS-380 ATRAZINE, 99.5% PURE - REFERENCE STANDARD
MATERIAL SAFETY DATA SHEET
NSN: 681000F018378
Manufacturer's CAGE: 8Y898
Part No. Indicator: A
Part Number/Trade Name: PS-380 ATRAZINE, 99.5% PURE
General Information
Item Name: REFERENCE STANDARD
Company's Name: CHEM SERVICE INC
Company's P. O. Box: 3108
Company's City: WEST CHESTER
Company's State: PA
Company's Zip Code: 19381
Company's Emerg Ph #: (215) 386-2100
Company's Info Ph #: (215) 692-3026
Record No. For Safety Entry: 001
Tot Safety Entries This Stk#: 001
Date MSDS Prepared: 10JUL90
Safety Data Review Date: 03SEP90
Preparer's Company: CHEM SERVICE INC
Preparer's City: WEST CHESTER
Preparer's State: PA
Preparer's Zip Code: 19381
MSDS Serial Number: BKXTW
Ingredients/Identity Information
Proprietary: NO
Ingredient: ATRAZINE
Ingredient Sequence Number: 01
Percent: 99.5%
NIOSH (RTECS) Number: XY5600000
CMS Mumber: 1912-24-9
OSHA PEL: 5 MG/M3
ACGIH TLV: 5 MG/M3; 9192
Physical/Chemical Characteristics
Appearance And Odor: COLORLESS, CRYSTALLINE SOLID
Melting Point: 347-350.6F
Vapor Pressure (MM Hg/70 F): 7
Vapor Density (Air=1): 1.187
Solubility In Water: INSOLUBLE
Fire and Explosion Hazard Data
```

```
Extinguishing Media: CO2, DRY CHEMICAL POWDER OR SPRAY.
Reactivity Data
Stability: YES
Cond To Avoid (Stability): SENSITIVE TO HEAT
Hazardous Decomp Products: DECOMPOSES UNDER ALKALINE & ACIDIC CONDITIONS.
Hazardous Poly Occur: NO
Health Hazard Data
LD50-LC50 Mixture: LD50 (RAT OR MOUSE): 1750 MG/KG.
Route Of Entry - Inhalation: YES
Route Of Entry - Skin: YES
Route Of Entry - Ingestion: YES
Health Haz Acute And Chronic: EYES: IRRITATION & SEVERE INFLAMMATION.
SKIN: IRRITATION & HARMFUL IF ABSORBED. INHALATION: MUCOUS MEMBRANE &
RESPIRATORY TRACT IRRITATION, HARMFUL & SWELLING OF ADJOINING EYE TISSUES.
INGESTION: HARMFUL.
Carcinogenicity - NTP: NO
Carcinogenicity - IARC: NO
Carcinogenicity - OSHA: NO
Explanation Carcinogenicity: NONE
IRRITATION & HARMFUL IF ABSORBED. INHALATION: MUCOUS MEMBRANE & RESPIRATORY
HARMFUL.
Emergency/First Aid Proc: EYES/SKIN: FLUSH W/WATER FOR 15-20 MINS. IF NO
BURNS HAVE OCCURED-USE SOAP & WATER TO CLEANSE SKIN. INHALATION: REMOVE TO
FRESH AIR. ADMINISTER OXYGEN IF BREATHING DIFFICULTY. ADMINISTER CPR IF
INDUCE VOMITING. DON'T ADMINISTER LIQUIDS/INDUCE VOMITING TO AN
UNCONSCIOUS/CONVULSING PERSON. OBTAIN MEDICAL ATTEN. (SEE SUPP.)
Precautions for Safe Handling and Use
Steps If Matl Released/Spill: EVACUATE AREA. WEAR APPROPRIATE EQUIPMENT.
VENTILATE AREA. SWEEP UP & PLACE IN AN APPROPRIATE CONTAINER. WASH
CONTAMINATED SURFACES TO REMOVE ANY RESIDUES.
Waste Disposal Method: BURN IN A CHEMICAL INCINERATOR EQUIPPED W/AN
AFTERBURNER & SCRUBBER. DISPOSE OF IN ACCORDANCE W/FEDERAL, STATE, & LOCAL
REGULATIONS.
Precautions-Handling/Storing: KEEP CLOSED IN A COOL DRY PLACE, STORE ONLY
```

Precautions-Handling/Storing: KEEP CLOSED IN A COOL DRY PLACE. STORE ONLY W/COMPATIBLE CHEMICALS. FOR LABORATORY USE ONLY. DON'T WEAR CONTACT LENSES. Other Precautions: DON'T USE AS DRUGS, COSMETICS, AGRICULTURAL OR PESTICIDAL PRODUCTS, FOOD ADDITIVES OR AS HOUSEHOLD CHEMICALS. AVOID DIRECT PHYSICAL CONTACT. AVOID CONTACT W/SKIN, EYES & CLOTHING.

Control Measures

Respiratory Protection: USE APPROPRIATE OSHA/MSHA APPROVED SAFETY

4

EQUIPMENT.

Ventilation: HANDLE ONLY IN A HOOD Protective Gloves: AS REQUIRED Eye Protection: EYE SHIELDS

Work Hygienic Practices: REMOVE/WASH CONTAMINATED CLOTHING BEFORE REUSE. ONLY TRAINED PERSONNEL SHOULD HANDLE THIS CHEMICAL OR ITS CONTAINER. Suppl. Safety & Health Data: FIRST AID: IF PATIENT IS VOMITING, WATCH CLOSELY TO MAKE SURE AIRWAY DOESN'T BECOME OBSTRUCTED BY VOMIT. OBTAIN MEDICAL ATTENTION IN ALL CASES.

Transportation Data

Disposal Data

Label Data

Label Required: YES Label Status: G

Common Name: PS-380 ATRAZINE, 99.5% PURE

IRRITATION & HARMFUL IF ABSORBED. INHALATION: MUCOUS MEMBRANE & RESPIRATORY HARMFUL. EYES: IRRITATION & SEVERE INFLAMMATION. SKIN: IRRITATION & HARMFUL IF ABSORBED. INHALATION: MUCOUS MEMBRANE & RESPIRATORY TRACT IRRITATION,

HARMFUL & SWELLING OF ADJOINING EYE TISSUES. INGESTION: HARMFUL.

Label Name: CHEM SERVICE INC

Label P.O. Box: 3108
Label City: WEST CHESTER

Label State: PA

Label Zip Code: 19381

Label Emergency Number: (215) 386-2100

___ __

```
NTP CHEMICAL REPOSITORY 6-N-PROPYL-2-THIOURACIL
```

-IDENTIFIERS

*CATALOG ID NUMBER: 001351

*CAS NUMBER: 51-52-5

*BASE CHEMICAL NAME: PROPYLTHIOURACIL, 6-N-, 2-

*PRIMARY NAME: 6-N-PROPYL-2-THIOURACIL

*CHEMICAL FORMULA: C7H10N2OS

*STRUCTURAL FORMULA: Not printable

*WLN: T6MYMVJ BUS F3

*SYNONYMS:

4-HYDROXY-2-MERCAPTO-6-PROPYLPYRIMIDINE

PROCASIL PROPACIL

PROPYCIL

6-PROPYL-2-THIO-2,4(1H,3H)PYRIMIDINEDIONE

PROPYLTHIOURACIL

6-PROPYL-2-THIOURACIL

6-PROPYLTHIOURACIL

PROTHYRAN

PTU

THYREOSTAT PROPYL-THYRACIL

PROTHIURONE PROTHYCIL PROTIURAL

PROPYL-THIORIST

PROPYLTHIORIT

THIURAGYL

PROTHIUCIL

PTU (THYREOSTATIC)

URACIL, 6-PROPYL-2-THIO-

2-MERCAPTO-6-PROPYLPYRIMID-4-ONE

2,3-DIHYDRO-6-PROPYL-2-THIOXO-4(1H)-PYRIMIDINONE

THYREOSTAT II

ጥ 72

4(1H)-PYRIMIDINONE, 2, 3-DIHYDRO-6-PROPYL-2-THIOXO-

```
-PHYSICAL CHEMICAL DATA
```

*PHYSICAL DESCRIPTION: LITERATURE: White crystalline powder of starch-like

appearance

REPOSITORY: White powder

*MOLECULAR WEIGHT: 170.23

*SPECIFIC GRAVITY: Not available

*DENSITY: Not available

*MP (DEG C): 219-221 C [031,042,315,395]

*BP (DEG C): Not available

*SOLUBILITIES:

WATER : <1 mg/mL @ 20 C (RAD)

DMSO : >=100 mg/mL @ 20 C (RAD)

95% ETHANOL : <1 mg/mL @ 20 C (RAD)

METHANOL : 10-50 mg/mL @ 19 C (RAD)

ACETONE : <1 mg/mL @ 20 C (RAD)

TOLUENE : <1 mg/mL @ 19 C (RAD)

OTHER SOLVENTS:

Boiling water: 1 part/100 parts [315,395]

Ether: Practically insoluble [031,042,315,395]

Ammonia (aqueous solutions): Freely soluble [051,062,315,395]

Alkali hydroxides (aqueous solutions): Freely soluble [031,051,062,205]

Chloroform: Practically insoluble [031,042,205,395] Benzene: Practically insoluble [031,042,315,395]

Alcohol: 1 part/60 parts [295]

*VOLATILITY:

Vapor pressure: Not available Vapor density : Not available

*FLAMMABILITY(FLASH POINT):

Flash point data for this chemical are not available; however it is probably combustible. Fires involving this material can be controlled with a dry

chemical, carbon dioxide or Halon extinguisher.

*UEL: Not available

LEL: Not available

*REACTIVITY:

This compound is incompatible with strong oxidizers, strong acids and strong bases [269]. It forms complexes with divalent metals [051,072,315,395]. It also reacts with sulphhydryl-oxidizing agents [051,072,395].

*STABILITY:

This chemical is sensitive to light [051,062,072,315]. It may be sensitive to prolonged exposure to air [455]. Solutions of this chemical in water, DMSO, 95% ethanol or acetone should be stable for 24 hours under normal lab conditions (RAD).

*OTHER PHYSICAL DATA:

Odorless; bitter taste

Saturated solution is neutral or slightly acid to litmus

Dissociation constant: pKa 8.3 @ 20 C

Maximum chloroform/water coefficient: 0.92 @ pH 6.0

-TOXICITY

======

*NIOSH REGISTRY NUMBER: YR1400000

*ጥብሄፕሮ ፒጥፕ • ((abbreviations)
" 11 / A L L L L L L L L L	

				4 -	
typ. dose	mode	specie	amount	units	other
LDLo	ipr	rat	400	mg/kg	
LD50	orl	rat	1980	mg/kg	
TDLO	orl	chd	165	mg/kg/2W-I	
TDLO	orl	man	116	mg/kg/11W-I	
TDLo	orl	wmn	900	mg/kg/21W-1	
LDLo	orl	wmn	84	mg/kg/2W-1	
LDLo	unr	mus	750	ug/kg	
LDLo	unr	rat	750	ug/kg	

^{*}AQTX/TLM96: Not available

*SAX TOXICITY EVALUATION:

THR: An experimental carcinogen, teratogen, equivocal tumorigenic agent and neoplastigen.

*CARCINOGENICITY:

Tumorigenic Data:

TDLo: orl-gpg 37 gm/kg/2Y-C TDLo: orl-ham 653 gm/kg/70W-C TDLo: orl-mus 600 gm/kg/73W-C Review: IARC Cancer Review: Animal Sufficient Evidence IARC Cancer Review: Human Inadequate Evidence IARC possible human carcinogen (Group 2B) [610]

Status: EPA Carcinogen Assessment Group [610] NTP anticipated human carcinogen [610]

NTP Fourth Annual Report on Carcinogens, 1984

*MUTATION DATA:

test	lowest dose	test	lowest dose
dni-hmn:lym	100 mg/L	mmo-smc	1 gm/L

*TERATOGENICITY:

Reproductive Effects Data:

TDLo: orl-gpg 1470 mg/kg (38-58D preg)

TDLo: orl-rat 4600 mg/kg (70D pre/1-22D preg)

TDLo: orl-rat 400 mg/kg (20-21D preg)

TDLo: orl-rat 1100 mg/kg (1-22D preg)

TDLo: orl-rat 500 mg/kg (18-22D preg/20D post)

TDLo: orl-rat 1050 mg/kg (21D post)

TDLo: orl-rbt 330 mg/kg (11-25D preg)

TDLo: orl-wmn 1818 mg/kg (33D pre/1-39W preg)

TDLo: orl-wmn 1620 mg/kg (1-39W preg) TDLo: par-mam 615 ug/kg (29-32D preg)

*STANDARDS, REGULATIONS & RECOMMENDATIONS:

Standards and Regulations: OSHA Standard-air: Not regulated

ACGIH: None

NIOSH Criteria Document: None

NFPA Hazard Rating: Health (H): None

Flammability (F): None Reactivity (R): None

*OTHER TOXICITY DATA:

Review: Toxicology Review-2

Status: EPA TSCA Chemical Inventory, 1986

EPA Genetox Program 1986, Positive: Carcinogenicity-mouse/rat

Meets criteria for proposed OSHA Medical Records Rule

-OTHER DATA (Regulatory)

*PROPER SHIPPING NAME (IATA): Not restricted

*UN/ID NUMBER:

*HAZARD CLASS:

SUBSIDIARY RISK:

PACKING GROUP:

*LABELS REQUIRED:

*PACKAGING: PASSENGER: PKG. INSTR.:

CARGO : PKG. INSTR.:

MAXIMUM QUANTITY:
MAXIMUM QUANTITY:

*SPECIAL PROVISIONS:

*USES:

Anti-thyroid agent for hyperthyroidism; in veterinary medicine for antithyroid activity and to promote fattening; may have a possible use in the treatment of alcoholic hepatitis.

*COMMENTS:

Small amounts of thiourea may be present as an impurity.

-HANDLING PROCEDURES

*ACUTE/CHRONIC HAZARDS:

There is sufficient evidence that this compound is carcinogenic in animals [015,395]. It is harmful if swallowed, inhaled or absorbed through the skin. It may cause irritation [269]. When heated to decomposition, this compound emits very toxic fumes of SOx and NOx [042,269]. It may also emit toxic fumes of CO and CO2 [269].

*MINIMUM PROTECTIVE CLOTHING: Not available

*RECOMMENDED GLOVE MATERIALS:

Recommended Glove Type For Use With Neat (Undiluted) Chemical:

Recommendations based on permeation test results are made for handling the neat (undiluted) chemical. If this chemical makes direct contact with your glove, or if a tear, puncture or hole develops, replace them at once.

Suggested Glove Type(s) (RAD): No information available

*RECOMMENDED RESPIRATOR:

Where the neat test chemical is weighed and diluted, wear a NIOSH-approved half face respirator equipped with a combination filter cartridge, i.e. organic vapor/acid gas/HEPA (specific for organic vapors, HCl, acid gas, SO2 and a high efficiency particulate filter).

*OTHER:

Since this chemical is a known or suspected carcinogen you should contact a physician for advice regarding the possible long term health effects and potential recommendation for medical monitoring. Recommendations from the physician will depend upon the specific compound, its chemical, physical and

toxicity properties, the exposure level, length of exposure, and the route of exposure.

*STORAGE PRECAUTIONS:

You should protect this chemical from exposure to light. Keep the container tightly closed under an inert atmosphere, and store under refrigerated temperatures.

*SPILLS AND LEAKAGE:

If you spill this chemical, dampen the solid spill material with 5% ammonium hydroxide, then transfer the dampened material to a suitable container. Use absorbent paper dampened with 5% ammonium hydroxide to pick up any remaining material. Your contaminated clothing and the absorbent paper should be sealed in a vapor-tight plastic bag for eventual disposal. Wash all contaminated surfaces with 5% ammonium hydroxide followed by washing with a soap and water solution. Do not reenter the contaminated area until the Safety Officer (or other responsible person) has verified that the area has been properly cleaned.

*DISPOSAL AND WASTE TREATMENT: Not available

-EMERGENCY PROCEDURES

*SKIN CONTACT:

IMMEDIATELY flood affected skin with water while removing and isolating all contaminated clothing. Gently wash all affected skin areas thoroughly with soap and water.

If symptoms such as redness or irritation develop, IMMEDIATELY call a physician and be prepared to transport the victim to a hospital for treatment.

*INHALATION:

IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. IMMEDIATELY call a physician and be prepared to transport the victim to a hospital even if no symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop.

Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Respirator Recommendation.

*EYE CONTACT:

First check the victim for contact lenses and remove if present. Flush victim's eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center.

Do not put any ointments, oils, or medication in the victim's eyes without specific instructions from a physician.

IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop.

*INGESTION:

DO NOT INDUCE VOMITING. If the victim is conscious and not convulsing, give 1 or 2 glasses of water to dilute the chemical and IMMEDIATELY call a hospital or poison control center. Be prepared to transport the victim to a hospital if advised by a physician.

If the victim is convulsing or unconscious, do not give anything by mouth, ensure that the victim's airway is open and lay the victim on his/her side with the head lower than the body. DO NOT INDUCE VOMITING. IMMEDIATELY transport the victim to a hospital.

*SYMPTOMS:

Symptoms of exposure to this compound include recurrent painful skin lesions, fatigue, migratory polyanthralgias of hands and knees, palpable spleen, splenomegaly, amenorrhea, low-grade fever, gingivostomatitis, weakness, weight loss, dark red-brown colored urine, necrotizing vasculitis, leukopenia, cutaneous vasculitis, nasal congestion, enlarged thyroid, necrotic ulcerations on the lower extremities, bloody nasal discharge and cough [051,072]. Other symptoms include fever, sore throat, rash and malaise [051,072,301]. The most serious reaction to this chemical may be agranulocytosis [295,301,406]. It may also cause pain and stiffness in the joints, paresthesias, headache, nausea and loss or depigmentation of hair. On rare occasions, exposure to this material may cause drug fever, hepatitis and nephritis [406]. Other symptoms include urticaria, anorexia, hypoprothrombinemia with purpura and hepatic injury [301]. Exposure may also cause a tendency to hemorrhage, lupus-like syndrome, hypothyroidism, galactorrhea, migratory polyarthritis, reversible tinnitus, hearing loss, hypocalcemia, jaundice, hepatic necrosis and liver disease similar to chronic active hepatitis. It may also cause goiter in infants born to women following exposure to this compound [295].

-SOURCES

*SOURCES:

- [015] Lewis, R.J., Sr. and R.L. Tatken, Eds. Registry of Toxic Effects of Chemical Substances. Microfiche Ed. National Institute for Occupational Safety and Health. Cincinnati, OH. Quarterly Updates. YR1400000.
- [017] Weast, R.C., M.J. Astle, and W.H. Beyer, Eds. CRC Handbook of Chemistry and Physics. 67th Ed. CRC Press, Inc. Boca Raton, FL. 1986. p. C-514, #13968.
- [031] Windholz, M., Ed. The Merck Index. 10th Ed. Merck and Co. Rahway, NJ. 1983. p. 1132, #7770.

- [042] Sax, N.I. Dangerous Properties of Industrial Materials. 6th Ed. Van Nostrand Reinhold. New York. 1984. p. 2315.
- [047] Weast, R.C. and M.J. Astle, Eds. CRC Handbook of Data on Organic Compounds. CRC Press, Inc. Boca Raton, FL. 1985. Vol. 2, p. 353, #T00608.
- [051] Sax, N. Irving, Ed. Dangerous Properties of Industrial Materials
 Report. Bi-monthly Updates. Van Nostrand Reinhold Company, Inc.
 New York. Nov/Dec 1986. Vol. 6, #6, pp. 52-75.
- [062] Sax, N.I. and R.J. Lewis Sr., Eds. Hawley's Condensed Chemical Dictionary. 11th Ed. Van Nostrand Reinhold. New York. 1987. p. 975.
- [072] Sax, N. Irving, Ed. Hazardous Chemicals Information Annual, No. 2. Van Nostrand Reinhold Information Services. New York. 1987. pp. 459-482.
- [082] U.S. Environmental Protection Agency, Office of Toxic Substances.

 Toxic Substances Control Act Chemical Substance Inventory: 1985
 Edition. 5 Vols. U.S. Environmental Protection Agency.

 Washington, D.C. January 1986. Listed.
- [099] Grant, W. Morton, M.D. Toxicology of the Eye. 3rd Ed. Charles C. Thomas, Publisher. Springfield, IL. 1986. p. 912.
- [107] Occupational Health Services, Inc. Hazardline. Occupational Health Services, Inc. New York. Listed.
- [110] Oak Ridge National Laboratory. Environmental Mutagen Information Center (EMIC), Bibliographic Data Base. Oak Ridge National Laboratory. Oak Ridge, TN. Listed.
- [120] Oak Ridge National Laboratory. Environmental Teratogen Information Center (ETIC), Bibliographic Data Base. Oak Ridge National Laboratory. Oak Ridge, TN. Listed.
- [159] Huff, B.B., Ed. Physicians' Desk Reference. 41st Ed. Medical Economics Co. Oradell, NJ. 1987. pp. 677, 1076, 2217.
- [205] Dean, John A., Ed. Lange's Handbook of Chemistry. 13th Ed. McGraw-Hill Book Company. New York. 1985. p. 7-448, #h273.
- [269] Lenga, Robert E. The Sigma-Aldrich Library of Chemical Safety Data. Edition 1. Sigma-Aldrich Corporation. Milwaukee, WI. 1985. p. 1063, #B.

- [275] Aldrich Chemical Company. Aldrich Catalog/Handbook of Fine Chemical. Aldrich Chemical Co., Inc. Milwaukee, WI. 1988. p. 844; #H3,420-3.
- [295] Reynolds, James E.F., Ed. Martindale The Extra Pharmacopoeia. 28th Ed. The Pharmaceutical Press. London. 1982. pp. 358-359.
- [301] Dreisbach, R.H. Handbook of Poisoning: Prevention, Diagnosis and Treatment. 11th Ed. Lange Medical Publications. Los Altos, CA. 1983. p. 478.
- [315] Florey, Klaus Ed. Analytical Profiles of Drug Substances. Vols. 1-13. Academic Press, Inc. Orlando, FL. 1984. Vol. 6, pp. 457-486.
- [395] International Agency for Research on Cancer, World Health Organization. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man. International Agency for Research on Cancer. Geneva. Volume 7, pp. 67-76; Supplement 4, p. 222.
- [406] Goodman, L.S., A. Gilman, F. Murad and T.W. Rall, Eds. The Pharmacological Basis of Therapeutics. 7th Ed. Macmillan Publishing Co. New York. 1985. pp. 1401-1404.
- [455] The Pharmaceutical Society of Great Britain. The Pharmaceutical Codex. 11th Edition. The Pharmaceutical Press. London. 1979. pp. 757-758.
- [610] Clansky, Kenneth B., Ed. Suspect Chemicals Sourcebook: A Guide to Industrial Chemicals Covered Under Major Federal Regulatory and Advisory Programs. Roytech Publications, Inc. Burlingame, CA. 1990. Update, p. xv.
- [620] United States National Toxicology Program. Chemical Status Report.

 NTP Chemicak System. Research Triangle Park, NC. November 6, 1990.

 Not listed.

Return to NTP Home Page

NTP welcomes your e-mail comments and suggestions. Please send them to: NTP Webmaster (ntpwm@niehs.nih.g Last revised: 25 July 2001

-=-

iem Service, Inc.

PS-1049

ITERIAL SAFETY DATA SHEET

:voice: CS214030 FO: P293087

inted: 01/22/2001

ist Revised: November 6, 1992

ICTION 1 - CHEMICAL PRODUCT and COMPANY IDENTIFICATION

talog Number: PS-1049 scription: Vinclozolin

her Name(s): 3-(3.5-Dichlorophenyl)-5-ethenyl-5-methyl-2.4-oxazolidinedio

opplied by CHEM SERVICE, Inc. PO BOX 599, WEST CHESTER, PA 19381 (610)~692-3026

ERGENCY PHONE: 1-610-692-3026

ECTION 2 - COMPOSITION, INFORMATION ON INGREDIENTS

'S No.: 50471-44-8 scription: Vinclozolin NECS No.: Not Available zard Symbols: Not Available

CTION 3 - HAZARDS IDENTIFICATION

ntact lenses should not be worn in the laboratory.

- l chemicals should be considered hazardous Avoid direct physical contact!
- n cause eye irritation. Can cause skin irritation.
- y be harmful if absorbed through the skin. Nay be harmful if inhaled.
- y be harmful if swallowed.

CTION 4 - FIRST AID MEASURES

antidote is a substance intended to counteract the effect of a poison. It should be iministered only by a physician or trained emergency personnel. Medical advice can be tained from a FOISON CONTROL CENTER.

case of contact: Flush eyes continuously with water for 15-20 minutes. Flush skin with water or 15-20 minutes. If no burns have occurred-use spap and water to cleanse skin. inhaled remove patient to fresh air. Administer oxygen if patient is having difficulty

eathing. If patient has stopped breathing administer artificial respirations. patient is in cardiac arrest administer CPR.

intinue life supporting measures until medical assistance has arrived.

ICTION 5 - FIRE AND EXPLOSION DATA

ash Point: Not Available .tinguishing Media:

Carbon dioxide, dry chemical powder or spray.

:per Explosion Limit: Not Available wer Explosion Limit: Not Available toignition Temperature: Not Available PA Hazard Rating: Not Available

at No.: PS-1049

ECTION 6 - ACCIDENTAL RELEASE MEASURES

pills or leaks: Evacuate area. Wear appropriate OSHA regulated equipment. Ventilate area. weep up and place in an appropriate container. Hold for disposal. ash contaminated surfaces to remove any residues.

Emove contaminated cloting and wash befire reuse.

ECTION 7 - HANDLING AND STORAGE

undling:

is chemical should be handled only in a hood. Eye shields should be worn, se appropriate OSHA/MSHA approved safety equipment. woid contact with skin, eyes and clothing. Avoid ingestion and inhalation ish thoroughly after handling.

orage:

tore in a cool dry place. Store only with compatible chemicals. rep tightly closed.

ECTION 8 - EXPOSURE CONTROLS/PERSONAL PROTECTION

HA PEL (TWA): Not Available GIH TLV (TWA): Not Available GIH TLV (STEL): Not Available

rsonal Protective Equipment

Eyes: Wear Safety Glasses.

Skin: Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to minimize contact with skin.

spirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 requirements must be followed whenever workplace conditions warrant a respirator's use.

ECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

lor Colorless ase: Crystalline solid ·lting Point: 108 C Not Available iling Point: ecific Gravity: Not Available por Pressure: Not Available :por Density: Not Available slubility in Water: Very slightly soluble Not Available /aporation Rate (Butyl acetate=1): Not Available

lecular Weight 286.12 lecular Formula C12H9Cl2NO3

ECTION 10 - STABILITY AND REACTIVITY

eacts with Acid halides and anhydrides. Decomposes under alkaline conditions.

ECTION 11 - TOXICOLOGY INFORMATION

TECS: Not Available ral Rat or Mouse LD50: 10000mg/kg armal Rat or Mouse LD50: N/A it or Mouse LC50: Not Available

arcinogenicity

DSHA: No

IARC: No

NTP: No

ACGIH: No

NIOSH: No

Other: No.

ECTION 12 - ECOLOGICAL INFORMATION

cotoxicity: Not Available vironmental Fate: Not Available

ECTION 13 - DISPOSAL CONSIDERATIONS

(SPOSAL: Burn in a chemicals incinerator equipped with an afterburner and scrubber.

ICTION 14 - TRANSPORTATION INFORMATION

t regulated as a hazardous material.

ECTION 15 - REGULATORY INFORMATION

ropean Labeling in Accordance with EC Directives zard Symbols: Not Available sk Phrases Not Available ifety Phrases Not Available

ECTION 16 - OTHER INFORMATION

me above information is believed to be correct on the date it is published and must not be onsidered all inclusive. The information has been obtained only by a search of available terature and is only a guide for handling the chemicals. OSHA regulations require that other hazards become evident, an upgraded MSDS must be made availble to the employee thin three months. RESPONSIBILITY for updates lies with the employer and not with HEM SERVICE, Inc.

prsons not specifically and properly trained should not handle this chemical or s container. This MSDS is provided without any warranty expressed or implied, cluding merchantability or fitness for any particular purpose.

it No.: PS-1049 ige: 4

his product is furnished FOR LABORATORY USE ONLY! Our products may NOT BE USED as drugs, essetics, agricultural or pestocidal products, food additives or as household chemicals.

apyright 2000 by Chem Service, Inc. - ALL RIGHTS RESERVED

PS-372

lem Service, Inc. TERIAL SAFETY DATA SHEET

PO: 11067493ED5F voice: 05222794

·inted: 10/29/2001

at Revised: July 6, 2001

ECTION 1 - CHEMICAL PRODUCT and COMPANY IDENTIFICATION

talog Number: PS-372

-scription: Linuron her Name(s): 3-[3-4-Dichlorophe y1]-1-methoxy-1-methylurea

(610)-692-3026 pplied by CHEM SERVICE, Inc. PO BOX 599, WEST CHESTER, PA 19381 ERGENCY PHONE: 1-610-692-3026

ECTION 2 - COMPOSITION, INFORMATION ON INGREDIENTS

18 No.: 330-55-2 Acription: Linuron MECS No.: 206-356-5 card Symbols: Xn

CTION 3 - HAZARDS IDENTIFICATION

stact lenses should not be worn in the laboratory.

i chemicals should be considered hazardous - Avoid direct physical contact!

n cause eye irritation. Can cause skin irritation.

est and/or vapors can cause irritation to respiratory tract.

: be irritating to mucous membranes. May be harmful if absorbed through the skin.

y be harmful if inhaled. May be harmful if swallowed.

CTION 4 - FIRST AID MEASURES

antidote is a substance intended to counteract the effect of a poison. It should be ministered only by a physician or trained emergency personnel. Medical advice can be tained from a POISON CONTROL (ENTER.

case of contact: Flush eyes continuously with water for 15-20 minutes. Flush skin with water r 15-20 minutes. If no burns have occurred-use soap and water to cleanse skin. inhaled remove patient to frash air. Administer oxygen if patient is having difficulty

mathing. If patient has stopped breathing administer artificial respirations.

patient is in cardiac arrest administer CPR.

ntinue life supporting measures until medical assistance has arrived.

move and wash contaminated clothing.

patient is exhibiting signs of shock - Keep warm and quiet.

stact Poison Control Center immediately if necessary. Induce vomiting if swallowed.

not administer liquids or induce vomiting to an unconscious or convulsing person. patient is vomiting-watch closely to make sure airway does not become obstructed by vomit.

: medical attention if necessary.

TOTION 5 - FIRE AND EXPLOSION DATA

.ssh Point: Not Available

et No.: PS-372

· . -

ECTION 5 - FIRE AND EXPLOSION DATA CONTINUED

tinguishing Media:

Carbon dioxide, dry chemical powder or spray.

pper Explosion Limit: Not Available
puer Explosion Limit: Not Available
putoignition Temperature: Not Available
FFA Hazard Rating: Not Available

ECTION 6 - ACCIDENTAL RELEASE MEASURES

pills or leaks: Evacuate area. Whar appropriate OSHA regulated equipment. Ventilate area. The up and place in an appropriate container. Hold for disposal. The contaminated surfaces to remove any residues.

Analyse contaminated cloting and wash befire reuse.

ECTION 7 - HANDLING AND STORAGE

addling:
is chemical should be handled only in a hood. Eye shields should be worn,
as appropriate OSHA/MSHA approved safety equipment,
sold contact with skin, eyes and clothing. Avoid ingestion and inhalation
ash thoroughly after handling.

.orage:

are in a cool dry place. Store only with compatible chemicals. rep tightly closed.

ICTION 8 - EXPOSURE CONTROLS/PERSONAL PROTECTION

HA PEL (TWA): Not Available
GIH TLV (TWA): Not Available
GIH TLV (STEL): Not Available

rsonal Protective Equipment

Eyes: Wear Safety Glasses.

Skin: Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to minimize contact with skin.

espirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 requirements must be followed whenever workplace conditions warrant a respirator's use.

CTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

Colorless
Crystalline solid
Iting Point: 93-94 C
Iting Point: Not Available
Decific Gravity: Not Available
Open Pressure: Not Available
Open Density: Not Available

. (No.: PS-372 .qe: 3 Not Available Qubility in Water: Not Available suporation Rate (Butyl acetate=1): Not Available 249.11 nlecular Weight C9H10C12N202

ECTION 10 - STABILITY AND REACTIVITY

maitive to light - dark color does not affect purity. Sensitive to heat. . . composes under alkaline conditions. Decomposes under acidic conditions.

COTION 11 - TOXICOLOGY INFORMATION

ECS: YS9100000 al Rat or Mouse LD50: 4000mg/kg rmal Rat or Mouse LD50: >2500 t or Mouse LC50: Not Available

rcinogenicity OSHA: No IARC: No NTP: No ACGIH: No NIOSH: No Other: No

alecular Formula

CTION 12 - ECOLOGICAL INFORMATION

otoxicity: Not Available vironmental Fate: Not Available

CTION 13 - DISPOSAL CONSIDERATIONS

SPOSAL: Burn in a chemicals incinerator equipped with an afterburner and scrubber.

ECTION 14 - TRANSPORTATION INFORMATION

it regulated as a hazardous material.

CTION 15 - REGULATORY INFORMATION

ropean Labeling in Accordance with EC Directives gard Symbols: Xn ak Phrases Possible risk of irreversible effects.

ifety Phrases 936/37

Wear suitable protective clothing and gloves.

- . , -. it No.: PS-372 4ge: 4

ECTION 16 - OTHER INFORMATION

re above information is believed to be correct on the date it is published and must not be insidered all inclusive. The information has been obtained only by a search of available terature and is only a guide for handling the chemicals, OSHA regulations require that other hazards become evident, an upgraded MSDS must be made avalible to the employee thin three months. RESPONSIBILITY for updates lies with the employer and not with RM SERVICE, Inc.

ersons not specifically and properly trained should not handle this chemical or is container. This MSDS is provided without any warranty expressed or implied, cluding merchantability or fitness for any particular purpose.

is product is furnished FOR LABORATORY USE ONLY! Our products may NOT BE USED as drugs, ***metics, agricultural or pesticidal products, food additives or as household chemicals.

epyright 2000 by Chem Service, Inc. - ALL RIGHTS RESERVED

CombridgeSolt

ChemQuete.Com

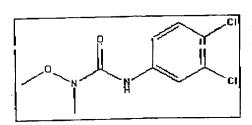
<u>GremFinder.Com</u> ChemACX.Com <u>Chun Store Com</u> Scistore Com ClumNews.Com

CheniClub.Com

Enter a chemical name, CAS Number, molecular formula, or molecular weight

New Search

Or choose: Substructure Query with Plug-In or Structure Query with Java



E-Lab Notebook Chemfinder for Word ChemDraw for Excel CombiChem

Linuron [330-55-2]

Synonyms: Lorox; N'-(3,4-Dichlorophenyl)-N-methoxy-N-methylurea; methoxydiuron; du Pont Herbicide 3: Linex; Alafon; Lorox Plus; Linex 4L; Lorox 4L; Lorox 50W; Lorox DF; Lorox L; Linorox; Sarclex; Aflon; I 1-Methoxy-1-methyl-3-(3,4-dichlorophenyl)urea; 3-(3,4-Dichlorophenyl)-1-methoxy(methyl)urea; Cephalon: Methoxy-1-methyl-3-(3,4-dichlorophenyl)urea; Premalin; Urea, $1-(3,4-dichlorophenyl)-3-methoxy-3-methyl-3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea; N-(3,4-Dichlorophenyl)-N'-methoxy-N'-methylurea; Linurc <math>C_9H_{10}Cl_2N_2O_2$

249.0962

View with ChemDraw Plugin Save in CDX format

BUY AT CHEMACK COM

TIEM CHIMAD MODEL

Add Compound

Add or Change Property

Add Link

Feedback 1 4 1

Eye Protection: EYE SHIELDS Work Hygienic Practices: REMOVE/LAUNDER CONTAMINATED CLOTHING BEFORE REUSE. CONTACT LENSES SHOULDN'T BE WORN IN THE LABORATORY. Suppl. Safety & Health Data: PERSONS NOT SPECIFICALLY/PROPERLY TRAINED SHOULDN'T HANDLE THIS CHEMICAL/ITS CONTAINER. ALL CHEMICALS SHOULD BE CONSIDERED HAZARDOUS-AVOID DIRECT PHYSICAL CONTACT. DATA INFORMATION IS FOR ACETONE. Transportation Data
Disposal Data
Label Data

. **તે**

```
Extinguishing Media: CO2, DRY CHEMICAL POWDER/SPRAY
Reactivity Data
Stability: YES
Materials To Avoid: STRONG OXIDIZING AGENTS
Hazardous Poly Occur: NO
Health Hazard Data
LD50-LC50 Mixture: ORAL LD50(RAT): 6000 MG/KG
Route Of Entry - Inhalation: YES
Route Of Entry - Skin: YES
Route Of Entry - Ingestion: YES
Health Haz Acute And Chronic: SKIN/EYES: CAN CAUSE IRRITATION. CAN BE
IRRITATING TO MUCOUS MEMBRANES. MAY BE HARMFUL IF ABSORBED THROUGH THE
SKIN, INHALED/IF SWALLOWED. EXPOSURE CAN CAUSE KIDNEY/LIVER DAMAGE.
Carcinogenicity - NTP: NO
Carcinogenicity - IARC: NO
Carcinogenicity - OSHA: NO
Explanation Carcinogenicity: NONE
Signs/Symptoms Of Overexp: IRRITATION
IF NO BURNS HAVE OCCURRED, CLEANSE W/SOAP & WATER. INHALATION: REMOVE TO
FRESH AIR, GIVE OXYGEN/CPR IF NEEDED. IF IN SHOCK, KEEP WARM/QUIET.
INGESTION: INDUCE VOMITING. DON'T GIVE LIQUIDS/INDUCE VOMITING IF
UNCONSCIOUS/CONVULSING. IF VOMITING, WATCH CLOSELY TO MAKE SURE AIRWAY
DOESN'T BECOME OBSTRUCTED BY VOMIT. OBTAIN MEDICAL ATTENTION IN ALL CASES.
Precautions for Safe Handling and Use
Steps If Matl Released/Spill: EVACUATE AREA, WEAR OSHA REGULATED
EQUIPMENT. VENTILATE AREA. SWEEP UP & PLACE IN AN APPROPRIATE CONTAINER.
HOLD FOR DISPOSAL, WASH CONTAMINATED SURFACES TO REMOVE ANY RESIDUES.
Waste Disposal Method: BURN IN A CHEMICALS INCINERATOR EQUIPPED W/AN
AFTERBURNER & SCRUBBER/DISPOSE OF IN ACCORDANCE W/LOCAL, STATE & FEDERAL
Precautions-Handling/Storing: KEEP TIGHTLY CLOSED. STORE IN A COOL, DRY
PLACE, STORE ONLY W/COMPATIBLE CHEMICALS. THIS PRODUCT IS FURNISHED FOR
LABORATORY USE ONLY.
Other Precautions: AVOID CONTACT W/SKIN, EYES & CLOTHING. DON'T BREATHE
VAPORS. PRODUCT MAY NOT BE USED AS DRUGS, COSMETICS, AGRICULTURAL/
PESTICIDAL PRODUCTS, FOOD ADDITIVES/AS HOUSEHOLD CHEMICALS.
Control Measures
```

Respiratory Protection: USE APPROPRIATE OSHA/MSHA APPROVED SAFETY EQUIPMENT.

Ventilation: THIS CHEMICAL SHOULD BE HANDLED ONLY IN A HOOD.

```
CHEM SERVICE -- F910 METHOXYCHLOR
MATERIAL SAFETY DATA SHEET
NSN: 655000F051063
Manufacturer's CAGE: 8Y898
Part No. Indicator: A
Part Number/Trade Name: F910 METHOXYCHLOR
General Information
Company's Name: CHEM SERVICE INC
Company's Street: 660 TOWER LN
Company's P. O. Box: 3108
Company's City: WEST CHESTER
Company's State: PA
Company's Country: US
Company's Zip Code: 19381-3108
Company's Emerg Ph #: 215-386-2100/215-692-3026
Company's Info Ph #: 215-692-3026/800-452-9994
Record No. For Safety Entry: 001
Tot Safety Entries This Stk#: 001
Status: SE
Date MSDS Prepared: 25JAN95
Safety Data Review Date: 19SEP96
Preparer's Company: CHEM SERVICE INC
Preparer's St Or P. O. Box: 660 TOWER LN
Preparer's City: WEST CHESTER
Preparer's State: PA
Preparer's Zip Code: 19381-3108
MSDS Serial Number: CCDMW
___________
             Ingredients/Identity Information
Proprietary: NO
Ingredient: METHOXYCHLOR (IARC CARCINOGEN - GROUP 3) *96-3*
Ingredient Sequence Number: 01
NIOSH (RTECS) Number: KJ3675000
CAS Number 72-43-5
OSHA PEL: 15 MG/CUM
ACGIH TLV: 10 MG/CUM
Physical/Chemical Characteristics
Appearance And Odor: COLORLESS CRYSTALLINE SOLID W/FRUITY/PLEASANT ODOR
Melting Point: 186.8-192F
Solubility In Water: INSOLUBLE
Fire and Explosion Hazard Data
```

BATTELLE SCIENCE LAB
Date; 11/16/2001 Time; 10:34:44 AM

Page **7 of** 7

Ketoconazo	le	Page Number: 6
Section 16, D	ther Information	
MSDS Code	K3096	
References	Not available.	
Other Special Considerations	Not available.	
Vulidated by C. A. E	linas on 2/17/2000.	Verified by G. A. Binas. Printed 11/16/2001.
CALL (310) 516-800	0	
=thods of hundling and	personul protection based on the uci	with coulion. This Muterial Safety Data Sheet (MSDS) applies only to the material as packaged. If this product is aminated, it may pase bazards not metationed in this MSDS. It shall be the user's responsibility to develop proper and complitions of use. While this MSDS is larged on technical data indicate to be retiable, Spectrum Quality Products, to the information contained herein.

BATTELLE SCIENCE LAB
Dato: 11/16/2001 Time: 10;34:44 AM

Page 6 of 7

Ketoconazole Page Number: 5 Section 15. Other Regulatory Information and Pictograms Federal and State No products were found, Regulations .2Mornis Proposition 65 Warnings Other Regulations OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200). Other Classifications WHMIS (Canada) Class D-1B: Material causing immediate and serious toxic effects (TOXIC). DSCL (REC) R25- Toxic if swallowed. R40- Possible risks of irreversible effects. 62- Possible risk of impaired fertility. HMIS (U.S.A.) **National Fire Protection** Flammalillity Association (U.S.A.) Reactivity 0 Personal Protection Specific hezord \mathbf{E} WHMIS (Canada) (Pictograms) DSCL (Europe) (Pictograms) TDG (Canada) (Pictograms) ADR (Europe) (Pictograms) Protective Equipment Gloves. Lab coat Dust respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Safety glasses.

Continued on Next Page

Page 5 of 7

Ketoconazole	Page Number, 4
Section 11. Toxicolo	ogical Information
Routes of Entry	Absorbed through skin. Eye contact. Ingestion.
Toxicity to Animals	Acute oral toxicity (LD50): 166 mg/kg [Rat].
Chronic Effects on Humans	DEVELOPMENTAL TOXICITY: Classified Reproductive system/toxin/female, Reproductive system/toxin/mak [POSSIBLE]. Classified Development toxin [NONE]. The substance is toxic to liver, endocrine.
Other Toxic Effects on Humans	Slightly hazardous in case of skin contact (irritant).
Special Remarks on Toxicity to Animals	Not available,
Special Remarks on Chronic Effects on Humans	Not available.
Special Remarks on other Toxic Effects on Humans	Not available,
Section 12. Ecologic	al Information
Ecotoxicity	Not available,
BOD5 and COD	Not available.
Products of Biodegradation	Possibly hazardous short term degradation products are not likely. However, long term degradation product may arise.
Toxicity of the Products of Blodegradation	The products of degradation are less toxic than the product itself,
Special Remarks on the Products of Biodegradation	Not available.
Section 13. Disposal	Considerations
Vaste Dixposul	
Section 14: Transport	Information
OT Classification	Class 6.1: Poisonous material.
dentification	Shipping name; Toxic Solld, Organic, n.o.s. (Ketoconazole) UNNA: UN2811 PG: III
pecial Provisions for ransport	Not available.

DOT (Pictograms)

BATTELLE SCIENCE LAB

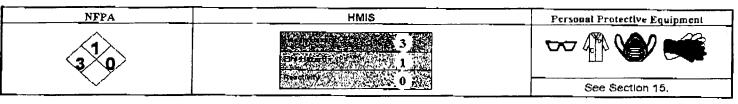
Date: 11/16/2001 Time: 10:34:44 AM

Ketoconazole			Page Number: 3
Section 8. Exposure	Controls/Personal Protection		
Engineering Controls	Use process enclosures, local exhaust ventilizer recommended exposure limits. If user operation of the exposure to airborne contaminants below the	erations gen	r engineering controls to keep airborne levels below erate dust, fume or mist, use ventilation to keep t
Fersonal Protection	Safety glasses. Lab coat. Dust respirator. Gloves,	Be sure to	use an approved/certifled respirator or equivalent.
Personal Protection in Case of a Large Spill	Splash goggles. Full suit. Dust respirator. I used to avoid inhalation of the product. S specialist BEFORE handling this product.	Boots, Glove uggested pro	es. A self contained breathing apparatus should be stective clothing might not be sufficient: consult a
Exposure Limits	Not available.		
Section 9. Physical a	nd Chemical Properties		
Physical state and opposrance	Solid.	Odor	Not available,
Molecular Weight	531.48 g/mole	Tastc	Not available.
		Color	White Crystal Powder
pH (1% soln/water)	Not available.	<u> </u>	
Boiling Point	Not available.		
Melting Point	Not available.		
Critical Temperature	Not available.		
Specific Gravity	Not available.		
Vupor Pressure	Not applicable.		
Vapor Density	Not available.		
Volstility	Not available.		
Odor Threshold	Not available.		
Water/Oll Dist. Coeff.	Not available.		
Ionicity (in Water)	Not available.		
Dispersion Properties	Not available.		
Solubility	Not available.		
Section 10. Stability a	nd Reactivity Data		
Stability	The product is stable.		
Instability Temperature	Not available.		
Conditions of Instability	Not available.		
Incompatibility with various substances	Not available.		
Corrosivity	Non-corrosive in presence of glass.		
Special Remarks on Reactivity	Not available.		
Special Remarks on Corrostvity	Not available.		
Polymerization	No.		

BATTELLE SCIENCE LAB

Date: 11/16/2001 Time: 10:34:44 AM

From: Sonia Owens To: Jenny


Page 3 of 7

Ketoconazole	Page Number: 2
Section 4. First Aid M	legsüre s
Eye Contact	NO known EFFECT on eye contact, rinse with water for a few minutes.
Skin Control	After contact with skin, wash immediately with plenty of water. Gently and thoroughly wash the contaminated skin with running water and non-abrasive soap. Be particularly careful to clean folds, crevices, creases and groin. Cover the irritated skin with an emollient. If Irritation persists, seek medical attention. Wash contaminated clothing before reusing.
Serious Skin Contact	Not available.
Inhalation	Allow the victim to rest in a well ventilated area. Seek immediate medical attention.
Serious Inhalation	Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek medical attention.
Ingestion	Do not induce vorniting. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.
Serious Ingestion	Not available.
Section 5. Fire and Ex	rplosion Data
Flammability of the Product	May be combustible at high temperature.
Auto-Ignition Temperature	Not available.
Flash Points	Not available.
Flummuble Limits	Not available.
Products of Combustion	These products are carbon oxides (CO, CO2), nitrogen oxides (NO, NO2).
Fire Hazards in Presence of Various Substances	Slightly flammable to flammable in presence of open flames and sparks.
Explosion Hatards in Presence of Various Substances	Risks of explosion of the product in presence of mechanical impact; Not available. Risks of explosion of the product in presence of static discharge: Not available.
Fire Fighting Media and Instructions	SMALL FIRE; Use DRY chemical powder. LARGE FIRE; Use water spray, fog or foam. Do not use water jet.
Special Remarks on Fire Hazards	Not available.
Special Remarks on Explosion Hazards	Not available.
Section 6, Accidental i	也是好 _{了。} "你是我,我想到了这种爱好的,我就要你是我,一样的,我没有一个,我们就要不是我的。""我们,一个一样的话,这个一样,我们就是这一个一个,我们就是这
Small Spill	Use appropriate tools to put the spilled solid in a convenient waste disposal container.
Lorge Spili	Use a shovel to put the material into a convenient waste disposal container.
Section 7: Handling a	nd Storage
Precoutions	Keep locked up. Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not lingest, Do not breathe dust. Wear suitable protective clothing. If ingested, seek medical advice immediately and show the container or the label.
Storage	Keep container dry. Keep in a cool place. Ground all equipment containing material. Keep container tightly closed. Keep in a cool, well-ventilated place. Highly toxic or infectious materials should be stored in a separate locked safety storage cabinet or room.

Material Safety Data Sheet

Section 1. Chemi	leal Product and Company Identification		Page Number: 1	
Common Name/ Trade Name	Ketoconazole	Catalog Number(\$).	1 0 1711-10	
		CAS#	65277-42-1	
Manufacturer	SPECTRUM QUALITY PRODUCTS, INC.	RTEC5	TK7912300	
	14422 S. SAN PEDRO STREET GARDENA, CA 90248	TSCA	TSCA inventory: No products were found,	
Commercial Name(s)	Not available.	CI#	Not available.	
Synonym	Plperazine, 1-acetyl-4-(4-((2-(2,4-dichlorophenyl)-2-(1H-Imidazol-1-yimeth	yl)-1,3- <u>IN CASE OF</u>	IN CASE OF EMERGENCY	
Chemical Numc	Ketoconazole	CHEMTREC	(24hr) 800-424-9300	
Chemical Family	Not available.	CALL (310) 5	16-8000	
Chemical Formula	C26-H28-CL2-N4-O4			
Supplier	SPECTRUM QUALITY PRODUCTS, INC. 14422 S. SAN PEDRO STREET GARDENA, CA 90248			

		'		Exposure Limits		
Name .		CAS#	TWA (mg/m³)	STEL (mg/m²)	CEIL (mg/m³)	% by Weight
1) Ketoconazole	·					100
Toxicologica) Data	Ketoconazole:					

Section 3. Hazards Identification

death.

Potential Acute Health Effects Slightly hazardous in case of skin contact (Irritant), of eye contact (Irritant). Severe over-exposure can result in

Potential Chronic Health

Effects

CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available.

TERATOGENIC EFFECTS; Not available.

DEVELOPMENTAL TOXICITY: Classified Reproductive system/toxin/female, Reproductive system/toxin/male [POSSIBLE]. Classified Development toxin [NONE].

The substance is toxic to liver, endocrine.

NAUSEA, CENTRAL NERVOUS SYSTEM DEPRESSION, LOW BLOOD PRESSURE & RESPIRATORY FAILURE. PROLONGED CONTACT MAY CAUSE DERMATITIS. CHRONIC: NONE LISTED BY MANUFACTURER.

Protect Eye: Y Protect Skin: Y

Protect Respiratory: Y

Label Name: ANALYTICAL PRODUCTS GROUP INC

Label Street: 2730 WASHINGTON BLVD

Label City: BELPRE Label State: OH Label Zip Code: 45714

Label Country: US

Label Emergency Number: 800-272-4442

LATER DISPOSAL. SAMPLE SOLUTIONS SHOULD BE ABSORBED W/CHARCOAL OR OTHER ORGANIC ABSORBANT & INCINERATED. FLUSH AREA W/WATER.

Neutralizing Agent: NONE SPECIFIED BY MANUFACTURER.

Waste Disposal Method: DISPOSE OF I/A/W ALL APPLICABLE FEDERAL, STATE & LOCAL REGULATIONS.

Precautions-Handling/Storing: KEEP CONTAINER TIGHTLY CLOSED. STORE IN A COOL, DRY, WELL-VENTILATED, FLAMMABLE LIQUID STORAGE AREA. ISOLATE FROM INCOMPATIBLE MATERIALS.

Other Precautions: DO NOT HEAT OR EVAPORATE ANALYTICAL STANDARDS TO DRYNESS. SHUT OFF IGNITION SOURCES; NO FLARES, SMOKING OR FLAMES IN AREA.

Control Measures

Respiratory Protection: RESP PROT REQD IF AIRBORNE CONC EXCEEDS PEL (750 PPM). AT CONCS UP TO 5000 PPM NIOSH/MSHA APPRVD CHEM CARTRIDGE RESP W/ORG VAP CARTRIDGE IS REC. ABOVE THIS LEVEL, NIOSH/MSHA APPRVD SCBA IS REC. (20, 000 PPM IS IMMED DANGEROUS TO LIFE/HLTH).

Ventilation: LOCAL EXHAUST.

Protective Gloves: BUTYL, NEOPRENE OR LATEX RUBBER GLOVES.

Eve Protection: ANSI APVD CHEMICAL SAFETY GOGGLES (FP N)

Other Protective Equipment: MAINT ANSI APVD EYE WASH FOUNTAIN & QUICK-DRENCH FACILS IN WORK AREA. GOOD CHEM HYGIENE PRACTICE REQS LAB COAT/APRON.

Work Hygienic Practices: NONE SPECIFIED BY MANUFACTURER.

Suppl. Safety & Health Data: EXPLO HAZ: MAY CAUSE FIRE. MATLS TO AVOID: & CHLORINE COMPOUNDS, STRONG ACIDS, ESP. SULFURIC, NITRIC, HYDROCHLORIC.

Transportation Data

Disposal Data

Label Data

Label Required: YES

Technical Review Date: 070CT93

Label Date: 28SEP93 Label Status: G

Common Name: PESTICIDES QC STANDARD

Chronic Hazard: NO Signal Word: DANGER!

Acute Health Hazard-Moderate: X

Contact Hazard-Slight: X Fire Hazard-Severe: X Reactivity Hazard-None: X

Special Hazard Precautions: EXTREMELY FLAMMABLE. ACUTE: FOR ACETONE: OSHA/ACGIH TWA IS 750 PPM, 20,000 PPM IS IMMEDIATELY DANGEROUS TO LIFE & HEALTH. IRRITATION OF SKIN, EYES, NOSE & THROAT. HEADACHE, DIZZINESS, VOMITING,

Q 017

(WATER MAY BE INEFT). USE EXTINGUISHER MEDIA APPROP FOR SURROUND FIRE. Special Fire Fighting Proc: USE NIOSH/MSHA APPROVED SCBA & FULL PROT EQUIP (FP N). MOVE CNTNRS FROM FIRE AREA IF IT CAN BE DONE W/OUT RISK. USE WATER TO KEEP FIRE-EXPOS CNTNRS COOL.

Unusual Fire And Expl Hazrds: VAP/AIR MIXTS ARE EXPLO. VAPS MAY FLOW ALONG SURFS TO DIST IGNIT SOURCES & FLASH BACK. CLSD CNTNRS EXPOS TO HEAT MAY EXPLODE. CONT W/STRONG OXIDIZERS (SUPDAT)

Reactivity Data

Stability: YES

Cond To Avoid (Stability): HEAT, FLAME, OTHER SOURCES OF IGNITION. Materials To Avoid: ING 1:STRONG OXIDIZING AGENTS, STRONG BASES, HALOGEN ACIDS & HALOGEN CMPDS, CAUSTICS, AMINES & AMMONIA, CHLORINE (SUPDAT) Hazardous Decomp Products: CARBON MONOXIDE, CARBON DIOXIDE, TOXIC FUMES OF CHLORINE.

Hazardous Poly Occur: NO

Conditions To Avoid (Poly): NOT RELEVANT

Health Hazard Data

LD50-LC50 Mixture: NONE SPECIFIED BY MANUFACTURER.

Route Of Entry - Inhalation: YES

Route Of Entry - Skin: YES

Route Of Entry - Ingestion: YES

Health Haz Acute And Chronic: FOR ACETONE: OSHA/ACGIH TWA IS 750 PPM, 20, 000 PPM IS IMMEDIATELY DANGEROUS TO LIFE & HEALTH. IRRITATION OF SKIN, EYES, NOSE & THROAT. HEADACHE, DIZZINESS, VOMITING, NAUSEA, CENTRAL NERVOUS SYSTEM DEPRESSION, LOW BLOOD PRESSURE & RESPIRATORY FAILURE. PROLONGED CONTACT MAY CAUSE DERMATITIS.

Carcinogenicity - NTP: NO Carcinogenicity - IARC: NO Carcinogenicity - OSHA: NO

Explanation Carcinogenicity: NOT RELEVANT

Signs/Symptoms of Overexp: SEE HEALTH HAZARDS.

Med Cond Aggravated By Exp: SKIN DISORDERS, EYE DISORDERS, CHRONIC RESPIRATORY DISEASE.

Emergency/First Aid Proc: SEE MBD ASSISTANCE FOR TREATMENT, OBSERVATION & SUPPORT IF NECESSARY. EYE: FLUSH W/WATER FOR AT LST 15 MINS, SEEK MED ATTN. SKIN: WASH W/SOAP & WATER, USE PROTECTIVE CREAMS. INHAL: REMOVE TO FRESH AIR, IF NOT BREATHING, GIVE ARTF RESP. IF BREATHING IS DIFFICULT, GIVE OXYGEN, OBTAIN MED ASSISTANCE. INGEST: OBTAIN MED ASSISTANCE IF SWALLOWED. IF CONSCIOUS, GIVE LG AMTS OF WATER & INDUCE VOMITING.

Precautions for Safe Handling and Use

_____ Steps If Matl Released/Spill: DILUTED STANDARD CAN BE ABSORBED W/SAND OR

OTHER NON-COMBUSTIBLE ABSORBENT MATERIAL & PLACED INTO A CONTAINER FOR

```
05/20/2002 15:44 FAX 360 881 3699
```

```
Proprietary: NO
Ingredient: CYCLOHEXANE, 1, 2, 3, 4, 5, 6-HEXACHLORO-, ALPHA-ISOMER; (ALPHA-BHC)
(BENZENE HEXACHLORIDE-ALPHA) (SARA III)
Ingredient Sequence Number: 18
Percent: <0.1
NIOSH (RTECS) Number: GV3500000
CAS Number: 319-84-6
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
Proprietary: NO
Ingredient: CYCLOHEXANE, 1, 2, 3, 4, 5, 6-HEXACHLORO-, BETA-ISOMER; (BETA-BHC)
(BENZENE HEXACHLORIDE-BETA) (SARA III)
Ingredient Sequence Number: 19
Percent: <0.1
NIOSH (RTECS) Number: GV4375000
CAS Number: 319-85-7
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
Proprietary: NO
Ingredient: CYCLOHEXANE, 1, 2, 3, 4, 5, 6-HEXACHLORO-, DELTA-ISOMER; (DELTA-BHC)
(BENZENE HEXACHLORIDE-DELTA) (SARA III)
Ingredient Sequence Number: 20
Percent: <0.1
NIOSH (RTECS) Number: GV4550000
CAS Number: 319-86-8
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
Physical/Chemical Characteristics
Appearance And Odor: ING 1: CLEAR, COLORLESS LIQUID; SWEET ODOR.
Boiling Point: SEE ING 1
Melting Point: SEE ING 1
Vapor Pressure (MM Hg/70 F): SEE ING 1
Vapor Density (Air=1): SEE ING 1
Specific Gravity: SEE ING 1
Evaporation Rate And Ref: ING 1: 14.4 (BU AC=1)
Solubility In Water: ING 1: COMPLETE 100%
Fire and Explosion Hazard Data
Flash Point: 0F,-17C
```

Flash Point Method: CC Lower Explosive Limit: 2.5% Upper Explosive Limit: 13%

Extinguishing Media: USE ALCOHOL FOAM, DRY CHEMICAL OR CARBON DIOXIDE

Ingredient Sequence Number: 13

NIOSH (RTECS) Number: RB9275100

Percent: <0.1

SULFITE, ENDO-; (ALPHA - ENDOSULFAN) (SARA III)

Ø 015

```
CAS Number: 959-98-8
OSHA PEL: 0.1 MG/M3, S
ACGIH TLV: 0.1 MG/M3, S
______
Proprietary: NO
Ingredient: 5-NORBORNENE-2,3-DIMETHANOL,1,4,5,6,7,7-HEXACHLORO-, CYCLIC
SULFITE, EXO-; (BETA - ENDOSULFAN) (SARA III)
Ingredient Sequence Number: 14
Percent: <0.1
NIOSH (RTECS) Number: RB9875200
CAS Number: 33213-65-9
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
_____
Proprietary: NO
Ingredient: 5-NORBORNENE-2,3-DIMETHANOL,1,4,5,6,7,7-HEXACHLORO-, CYCLIC
SULFATE; (ENDOSULFAN SULFATE) (SARA III)
Ingredient Sequence Number: 15
Percent: <0.1
NIOSH (RTECS) Number: RB9150000
CAS Number: 1031-07-8
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
Proprietary: NO
Ingredient: 4,7-METHANOINDANE,1,2,4,5,6,7,8,8- OCTACHLORO-3A,4,7,7A-
TETRAHYDRO-; (CHLORDANE) (SARA III)
Ingredient Sequence Number: 16
Percent: <0.1
NIOSH (RTECS) Number: PB9800000
CAS Number: 57-74-9
OSHA PEL: 0.5 MG/M3, S
ACGIH TLV: 0.5 MG/M3, S
_____
Proprietary: NO
Ingredient: ENDRIN ALDEHYDE (SARA III)
Ingredient Sequence Number: 17
Percent: <0.1
NIOSH (RTECS) Number: 1007497EA
CAS Number: 7421-93-4
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
```

Ingredient: 5-NORBORNENE-2,3-DIMETHANOL,1,4,5,6,7,7,-HEXACHLORO-, CYCLIC

Proprietary: NO

Proprietary: NO

```
05/20/2002 15:44 FAX 360 681 3699
```

```
Ingredient: ING 7:(ENDRIN) (SARA III)
Ingredient Sequence Number: 08
NIOSH (RTECS) Number: 99999992Z
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
Proprietary: NO
Ingredient: 4,7-METHANOINDANE, 1,4,5,6,7,8,8-HEPTACHLORO-3A, 4,7,7A-
TETRAHYDRO-; (HEPTACHLOR) (SARA III)
Ingredient Sequence Number: 09
Percent: <0.1
NIOSH (RTECS) Number: PC0700000
CAS Number: 76-44-8
OSHA PEL: 0.5 PPM, S
ACGIH TLV: 0.5 PPM, S
_______
Proprietary: NO
Ingredient: 4,7-METHANOINDANE, 1,4,5,6,7,8,8-HEPTACHLORO-2, 3-EPOXY-3A,4,
7,7A-TETRAHYDRO-; (HEPTACHLOR EPOXIDE) (SARA III)
Ingredient Sequence Number: 10
Percent: <0.1
NIOSH (RTECS) Number: PB9450000
CAS Number: 1024-57-3
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
Proprietary: NO
Ingredient: CYCLOHEXANE, 1, 2, 3, 4, 5, 6-HEXACHLORO-, GAMMA-ISOMER; (LINDANE)
'(SARA III)
Ingredient Sequence Number: 11
Percent: <0.1
NIOSH (RTECS) Number: GV4900000
CAS Number: 58-89-9
OSHA PEL: 0.5 MG/M3, S
ACGIH TLV: 0.5 MG/M3, S
_____
Proprietary: NO
Ingredient: 1,4:5,8-DIMETHANONAPHTHALENE,1,2,3,4,10,10- HEXACHLORO-1,4,4A,
5,8,8A-HEXAHYDRO-, ENDO, EXO-; (ALDRIN) (SARA III)
Ingredient Sequence Number: 12
Percent: <0.1
NIOSH (RTECS) Number: 102100000
CAS Number: 309-00-2
OSHA PEL: 0.025 MG/M3, S
ACGIH TLV: D.025 MG/M3, S
```

```
05/20/2002 15:43 FAX 360 881 3899
```

```
Proprietary: NO
Ingredient: ETHANE, 1,1-DICHLORO-2, 2-BIS(P-CHLOROPHENYL)-; (DDD) (SARA
III)
Ingredient Sequence Number: 03
Percent: <0.1
NIOSH (RTECS) Number: KI0700000
CAS Number: 72-54-8
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
_____
Proprietary: NO
Ingredient: ETHANE,1,1,1-TRICHLORO-2,2-BIS(P-CHLOROPHENYL)-; (DDT)
(DICHLORODIPHENYLTRICHLOROETHANE) (SARA III).
Ingredient Sequence Number: 04
Percent: <0.1
NIOSH (RTECS) Number: KJ3325000
CAS Number: 50-29-3
OSHA PEL: 1 MG/M3, S
ACGIH TLV: 1 MG/M3
______
Proprietary: NO
Ingredient: 1,4:5,8-DIMETHANONAPHTHALENE, 1,2,3,4,10,10- HEXACHLORO-6, 7-
EPOXY-1,4,4A,5,6,7,8,8A- OCTAHYDRO, ENDO, EXO-; (ING 6)
Ingredient Sequence Number: 05
Percent: <0.1
NIOSH (RTECS) Number: IO1750000
CAS Number: 60-57-1
OSHA PEL: 0.25 MG/M3, S
ACGIH TLV: 0.25 MG/M3, S
Proprietary: NO
Ingredient: ING 5: (DIELDRIN) (SARA III)
Ingredient Sequence Number: 06.
NIOSH (RTECS) Number: 99999992Z
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)
_____
Proprietary: NO
Ingredient: 1,4:5,8-DIMETHANONAPHTHALENE, 1,2,3,4,10,10- HEXACHLORO-6, 7-
EPOXY-1,4,4A,5,6,7,8,8A- OCTAHYDRO-,ENDO,ENDO-; (ING 8)
Ingredient Sequence Number: 07
Percent: <0.1
NIOSH (RTECS) Number: 101575000
CAS Number: 72-20-8
OSHA PEL: 0.1 MG/M3, S
```

ACGIH TLV: 0.1 MG/M3, S

EXtension TOXicology NETwork

Information about this particular compound

FDA Pestrak files

Data Base of the Occurrence and Distribution of Pesticides in Chesapeake Bay

Information about this particular compound

Pesticide Leachability

Herbicide Mode-of-Action Summary

The ARS Pesticide Properties Database

Information about this particular compound

USEPA / OPP's Chemical Ingredients Database

Information about this particular compound

US EPA Status of Pesticides in Registration (in PDF format)

Florida Agricultural Information Retrieval System

Information about this particular compound

Applied Agricultural Chemicals

Characteristics of pesticides

Physical Properties

Environmental Science Center database with Experimental Log P coefficients etc.

Information about this particular compound

NIST Chemistry WebBook

Information about this particular compound

Pollution Prevention Progress Measurement Method (3P2M) Hazard Ranking

Spectrum Laboratories, Inc.

Information about this particular compound

Regulations

NASA Department of Environmental Services List Of Lists of Regulated Chemicals

Information about this particular compound

ACX Number	X1003134-4	CAS RN	330-55-2
Molting Point (°C)	93 - 94	Density	
Seiling Point (°C)	180 - 190	Vapor Density	
Rofractive Index		Vopor Pressure	
Evaporation Rate		Water Solubility	0.0075 g/100 i
Flash Paint (°C)		EPA Code	
DOT Number		RTECS	YS9100000
C			

More information about the chemical is available in these categories:

Biochemistry

<u>Health</u>

Misc

Pesticides/Herbicides

Physical Properties

<u>Regulations</u>

Structures

Biochemistry

Chemicals Inspection and Testing Service, Japan: Biodegradation and Bioaccumulation Data of Existing Che Information about this particular compound

Health

RAIS Nonradionuclides Toxicity Values

International Toxicity Estimates for Risk

Information about this particular compound

8(e) TRIAGE Chemical Studies Database

UMCP Partial list of mutagens

Australian Hazardous Substances Database

Information about this particular compound

Misc

USGS National Water Quality Laboratory (NWQL) schedules

Protocol Analytical Supplies, Inc. Single-component standards

Pesticides/Herbicides

Company's City: BELPRE Company's State: OH Company's Country: US Company's Zip Code: 45714

Company's Emerg Ph #: 800-272-4442 Company's Info Ph #: 614-423-4200 Record No. For Safety Entry: 001 Tot Safety Entries This Stk#: 001

Status: SMJ

Date MSDS Prepared: 010CT91 Safety Data Review Date: 27NOV95 MSDS Preparer's Name: T.V.C. Preparer's Company: SAME MSDS Serial Number: BTLQQ Hazard Characteristic Code: F5

Ingredients/Identity Information

Proprietary: NO

Ingredient: ACETONE (SARA III). BP:132F,56C. SP GR:0.79 (H*20=1). VP:181 @

20C. MP:-139F,-95C. VAP DENS:2. Ingredient Sequence Number: 01

Percent: >99

NIOSH (RTECS) Number: AL3150000

CAS Number: 67-64-1

OSHA PEL: 750PPM;1000 PPM STEL ACGIH TLV: 750PPM;1000 PPM STEL

Proprietary: NO

Ingredient: ETHYLENE, 1,1-DICHLORO-2, 2-BIS(P-CHLOROPHENYL)-; (DDE) (SARA

III)

Ingredient Sequence Number: 02

Percent: <0.1

NIOSH (RTECS) Number: KV9450000

CAS Number: 72-55-9
OSHA PEL: N/K (FP N)
ACGIH TLV: N/K (FP N)

٠,

Chemicals Being Added to the EPCRA Section 313 List

California EPA List of Lists

Substances in IRIS (Integrated Risk Information System) (main EPA site)

Information about this particular compound

Title III List of Lists

Current List of Toxics Release Inventory Chemicals

OSHA Chemical Sampling and Methods

Information about this particular compound

Guide to EPA Air Sampling Standards

Information about this particular compound

Information about this particular compound

Guide to NIOSH/OSHA Air Sampling Methods

Information about this particular compound

Information about this particular compound

Structures

GIF images of some pesticides

Information about this particular compound

Enter a chemical no			Ne	tht w Search	
	<u>ChenGuote.Com</u> CambridgeSoft	<u>ChemACX.Соли</u> С павЕ пфэт.Соли	<u>Scilitore Com</u> Chem Store Com	Lobf q wis.Com ChemNews.Com	Chem Soll Com
Message Alert					

MSDS for Finasteride and Phenobarbital will be added when received.

RTI-831 RTI P.O. Box 12194 **PROTOCOL** Page 1 of 33 Research Triangle Park, NC 27709

EPA Contract No. 68-W-01-023 (Battelle Prime Contractor)

RTI Contract No.: 65U-08055.001.015.001

RTI Master Protocol No.: RTI-831

RTI Study Code: Rt02-ED03

Amendment 1

4/17/03

TITLE:

Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals

Administered by Gavage on Postnatal Days 23 Through 52/53

SPONSOR:

Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201-2693

TESTING FACILITY: RTI International

Chemistry and Life Sciences

Center for Life Sciences and Toxicology

Post Office Box 12194

Research Triangle Park, NC 27709

PROTOCOL	RTI P.O. Box 12194	RTI-831
	Research Triangle Park, NC 27709	Page 2 of 33

Study Protocol RTI-831, is hereby amended as indicated below (changes are **bolded** for clarity).

Item 1

Approval page, page 2:

The designation of David P. Houchens, Ph.D. is hereby changed from Principal Investigator/Program Manager to **Program Manager**.

Justification: Correction of an error in the project role designation of David P. Houchens.

Item 2

Section 2.1, Test Substances, page 7, which reads:

"2.1 TEST SUBSTANCES

2.1.1 Atrazine

CAS Number 1912-24-9

2.1.2 Propylthiouracil

CAS Number 51-52-5

2.1.3 Vinclozolin

CAS Number 50471-44-8

2.1.4 Linuron

CAS Number 330-55-2

2.1.5 p,p-DDE

CAS Number 72-55-9

2.1.6 Ketoconazole

CAS Number 65277-42-1

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 3 of 33

2.1.7 Methoxychlor

CAS Number 72-43-5

2.1.8 Finasteride

CAS Number 98319-26-7

2.1.9 Phenobarbital

CAS Number 50-06-6

is hereby amended to read:

"2.0 MATERIALS AND METHODS

2.1 TEST SUBSTANCES

2.1.1 Atrazine

CAS Number:

1912-24-9

Synonyms: Weedex; Cyazine; Candex; 2-Chloro-4-(isopropylamino)-6-ethylamino-s-triazine; 1-Chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine; Azinotox 500; Radazine; Fenatrol; Atrazine; Atrex; Atratol; Primatol A; 6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine; A 361; aatrex; hungazin; aktinit a; 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine; g 30027; gesaprim; Atranex; Vectal SC; Crisamina; Scotts Bonus Type S; Crisazina; Vectral SC; Attrex;-Ortho St. Augustine Weed and Feed; Griffex 4L; Atrazine 4L; Atrazine 80W; AAtrex 80W; AAtrex 4L; ATZ; 2-Chloro-4-(2-propylamino)-6-ethylamino-s-triazine; Atrazines; Laddock; Extrazine II; Fogard; Griffex; Mebazine; Vectal; weedex a; zeaphos; aktikon pk; aktinit pk; Wonuk; oleogesaprim; chromozin; pitezin; actinite pk; gesaprim 50; akticon; atrataf; zeapos; oleogesaprim 200; gesaprim 500; maizina; aatrex nine-o; atazinax; atrasine; atratol a; Atred; cekuzina-t; 2-chloro-4-ethylamino-6-isopropylamino-s-triazine; crisatrina; crisazine; farmco atrazine; fenamine; geigy 30,027; gesoprim; inakor; primatol; primaze; radizine; strazine; hungazin pk; triazine a 1294;zeazin;argezin;aktikon;

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 4 of 33

Structure:

Supplier:

Chem Services.

Lot. No.

285-63B

Purity:

98%

Appearance:

Crystalline solid

Molecular Formula:

C8H14CIN5

Molecular Weight:

215.72

Storage, Bulk Chemical:

Room Temperature

Storage, Test Solution:

4 deg C

2.1.2 p,p-DDE

CAS Number:

72-55-9

Synonyms: p,p'-DDE; DDE; 4,4'-DDE; Dichlorodiphenyldichloroethylene; 2,2-bis(p-chlorophenyl)-1,1-dichloroethene; ddt dehydrochloride; p,p'-dichlorodiphenyl dichloroethylene; 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene; 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene; p,p'-Dichlorodiphenyldichloroethylene (DDE); p,p-DDE; P,P'-DICHLORODIPHENYLDICHLOROETHYLENE (DDE); p,p[-DDE;

Structure:

RTI-831 RTI P.O. Box 12194 **PROTOCOL** Research Triangle Park, NC 27709 Page 5 of 33

Supplier:

Sigma

Lot. No.:

09020KU

Purity:

98.6%

Appearance:

White crystals

Molecular Formula:

C14H8Cl4

Molecular Weight:

318.03

Storage, Bulk Chemical:

Room Temperature

Storage, Test Solution.:

4 deg C

Vinclozolin 2.1.3

CAS Number:

50471-44-8

Synonyms: Vorlan; 3-(3,5-Dichlorophenyl)-5-methyl-5-vinyl-2,4-oxazolidinedione; Ornalin; Oxazolidinedione, 3-(3,5-dichlorophenyl)-5-ethenyl-5-methyl-; Vinclozolin; Ronilan;

vinclozalin; 3-(3,5-Dichlorophenyl)-5-ethenyl-5-methyl-2,4-oxazolidinedione;

VINCLOZOLIN [RONILAN]; Vinclozolin; 3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-1,3-

oxazolidine-2,4-dione;

Structure:

Supplier:

Chem Services.

Lot No:

281-54A

Purity:

99.0%

Appearance:

Crystalline solid

Molecular Formula:

C12H9Cl2NO3

Molecular Weight:

286.12

Storage, Bulk Chemical:

Room Temperature

Storage, Test Solution:

4 deg C

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 6 of 33

2.1.4 Methoxychlor

CAS Number:

72-43-5

Synonyms: 1,1'-(2,2,2-Trichloroethylidene)-bis[4-methoxybenzene]; 1,1,1-trichloro-2,2-bis(p-methoxyphenyl)ethane; Methoxychlor; 2,2-bis(p-methoxyphenyl)-1,1,1-trichloroethane; Marlate; Metox; Chemform; DMDT; Methoxy DDT; Maxie; Maralate; 2,2-bis(p-anisyl)-1,1,1-trichloroethane; 1,1-bis(p-methoxyphenyl)-2,2,2-trichloroethane; dianisyltrichloroethane; p,p'-dimethoxydiphenyltrichloroethane; di(p-methoxyphenyl) trichloromethyl methane; 2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethane; dimethoxy-ddt; methoxcide; methoxo; dimethoxy-dt; p,p'-dmdt; flo pro mcseed protectant; p,p'-methoxychlor; Moxie; oms 466; 4,4-(2,2,2-trichloroethylidene)dianisole; double-m ec; methoxychlor 2 ec; mezox k; 1,1,1-Trichloro-2,2-bis(p-anisyl)ethane; Bis(p-anisyl)-1,1,1-trichloroethane; Bis(p-anisyl)-1,1,1-trichloroethane; Chemform methoxychlor;

Structure:

Supplier:
Lot Number:

Sigma 49H1328 95.2%

Purity:
Appearance:

Light orange powder

Molecular Formula:

C16H15Cl3O2

Molecular Weight:

345.7

Storage, Bulk Chemical:

Room Temperature

Storage, Test Solution:

4 deg C

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
PROTOCOL	Research Triangle Park, NC 27709	Page 7 of 33

2.1.5 Propylthiouracil

CAS Number"

51-52-5

Synonyms: 4-hydroxy-2-mercapto-6-propylpyrimidine; 6-n-propyl-2-thiouracil; procasil; propacil; propycil; 6-propyl-2-thiopyrimidine-2,4(1H,3H)-dione; 6-propylthiouracil; prothyran; thyreostat propyl-thyracil; prothiurone; prothycil; protiural; propyl-thiorist; propylthiorit; thiuragyl; prothiucil; ptu(thyreostatic); 2-mercapto-6-propylpyrimid-4-one; thyreostat ii; T 72; 2,3-dihydro-6-propyl-2-thioxo-4(1H)-Pyrimidinone; 6-Propyl-2-thiouracil;

Structure:

Supplier: Lot Number: TCI GF01

Purity:

99.0%

Appearance:

White Powder

Molecular Formula:

C7H10N2OS 170.23

Molecular Weight: Storage, Bulk Chemical:

Room Temperature

Storage, Test Solution:

4 deg C

2.1.6 Ketoconazole

CAS Number:

65277-42-1

Synonyms: Fungarest; Fungarol; Ketoderm; Ketoisdin; Orifungal M; Panfungol; Fungoral; Ketoconazole; Nizoral; cis-1-acetyl-4-(4-((2-(2,4-dichlorophenyl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-4-yl)methoxy)phenyl)piperazine;

RTI	RTI-831
P.O. Box 12194 Research Triangle Park. NC 27709	Page 8 of 33

Structure:

$$H_3C$$

Supplier:

Spectrum Quality Products

Lot Number:

K1149

Purity:

99.83%

Appearance:

solid

Molecular Formula:

C26H28Cl2N4O4

Molecular Weight:

531.48

Storage, Bulk Chemical:

Room Temperature

Storage, Test Solution:

4 deg C

2.1.7 Linuron

CAS Number:

330-55-2

Synonyms: Linuron; N-(3,4-Dichlorophenyl)-N'-methoxy-N'-methylurea; Linuron; Lorox; Afalon; Linurex; N'-(3,4-Dichlorophenyl)-N-methoxy-N-methylurea; methoxydiuron; du Pont Herbicide 326; Hoe 2810; Linorox; Sarclex; Aflon; Linex 4L; Lorox 4L; Lorox 50W; Lorox DF; Lorox L; Lorox Plus; Alafon; Linex; Lorax; 1-Methoxy-1-methyl-3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea; Urea, 1-(3,4-dichlorophenyl)-3-methoxy-3-methyl-; Garnitan; Methoxy-1-methyl-3-(3,4-dichlorophenyl)urea; Premalin; Cephalon; 3-(3,4-Dichlorophenyl)-1-methoxy(methyl)urea;

Structure:

PROTOCOL RTI
PROTOCOL P.O. Box 12194
Research Triangle Park, NC 27709 Page 9 of 33

Supplier:

Chem Services

Lot Number:

273-81B 99%

Purity: Appearance:

Crystalline solid

Molecular Formula:

C9H10Cl2N2O2

Molecular Weight:

249

Storage, Bulk Chemical:

Room Temperature

Storage, Test Solution:

4 deg C

2.1.8 Phenobarbital

CAS Number:

50-06-6

Synonyms: Tedral; Donnazyme; Donphen; Antrocol; Arco-Lase Plus; Gustase-Plus; Pamine PB; SK-Phenobarbital; Phazyme-PB; Valprin 50-PB; barbita; Solfoton; Phenobarbitone; Phenylethylbarbituric acid; 5-Ethyl-5-phenylbarbituric acid; Adonal; Luminal; Nunol; Phenobarbital; 5-ethyl-5-phenyl-2,4,6-(1H,3H,5H)pyrimidinetrione; phenobarbituric acid; 5-phenyl-5-ethylbarbituric acid; phenylethylmalonylurea; phenylethylbarbiturate; aephenal; agrypnal; amylofene; aphenylbarbit; aphenyletten; austrominal; barbapil; barbellen; barbellon; barbenyl; barbilehae; barbinal; barbiphen; barbiphenyl; barbipil; barbivis; barbonal; barbophen; bardorm; bartol; bialminal; blu-phen; cabronal; calmetten; calminal; cardenal; codibarbita; coronaletta; cratecil; damoral; dezibarbitur; dormina; dormiral; doscalun; duneryl; ensobarb; ensodorm; epanal; epidorm; epilol; episedal; epsylone; eskabarb; etilfen; euneryl; fenbital; fenemal; fenobarbital; fenosed; fenylettae; gardenal; gardepanyl; glysoletten; haplopan; haplos; helional; hennoletten; hypnaletten; hypnogen; hypnolone; hypnoltol; hypno-tablinetten; hysteps; lefebar; leonal; lephebar; lepinal; lepinaletten; linasen; liquital; lixophen; lubergal; lubrokal; Lumen; lumesettes; lumesyn; lumofridetten; luphenil; luramin; molinal; neurobarb; nirvonal; noptil; nova-pheno; parkotal; pharmetten; phen-bar; phenemal; phenemalum; phenobal; phenobarb; phenobarbitalum; phenobarbyl; phenoluric; phenomet; phenonyl; phenyletten; phenylral; PHOB; polcominal; promptonal; sedabar; seda-tablinen; sedicat; sedizorin; Sedlyn; sedofen; sedonal; sedonettes; sedophen; sevenal; sombutol; somnolens; somnoletten; somnosan; somonal; spasepilin; starifen; starilettae; stental; stental extentabs; talpheno; teolaxin; teoloxin; theoloxin; theominal; triabarb; tridezibarbitur; triphenatol; versomnal; zadoletten; zadonal; Phenobarbitol; Barbipenyl;

Structure:

RTI RTI-831
PROTOCOL P.O. Box 12194

Research Triangle Park, NC 27709 Page 10 of 33

Supplier: Sigma
Lot Number: 81K2620

Purity: 98% Appearance: Powder

Molecular Formula: C12H12N2O3

Molecular Weight:232.2Storage, Bulk Chemical:4 deg CStorage, Test Solution:4 deg C

2.1.9 Finasteride

CAS Number: 98319-26-7

Synonyms: Finasteride; Proscar;

Structure:

Supplier:MerckLot Number:TBDPurity:TBDAppearance:TBD

Molecular Formula: C23H36N202

Molecular Weight:372.55Storage, Bulk Chemical:TBDStorage, Test Solution:TBD

Note: Aquisition of finasteride by the sponsor from the supplier has been delayed. Testing of finasteride using the study design described in this protocol, if scheduled, will take place at a later time.

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 11 of 33

Justification: Addition of chemical information that was not included and/or not available when the protocol was written.

Item 3

Section 2.3, DOSE FORMULATION AND ANALYSIS, page 8, which reads:

"The dosing suspensions will be prepared at a frequency determined by stability tests performed prior to the start of the study. Suspensions will be prepared at Battelle Chemical Repository, Sequim, WA, and stored in wide-mouth, amber bottles. They will be shipped via 24-hour express delivery and logged into the RTI Materials Handling Facility prior to transfer to the Reproductive and Developmental Toxicology Laboratory for dosing. The test materials will be suspended in stripped (α-tocopherol [Vitamin E] removed) Mazola® corn oil (CAS No. 8001-30-7), with the concentration determined by the following formula:

Concentration (mg / ml) =
$$\frac{\text{Dose per time}(\text{mg / kg})}{\text{Dosage volume per time (5.0 ml / kg)}}$$

An aliquot of each dose level per formulation will be analyzed by Battelle. The dosing bottles will be identified at RTI by a five-digit random number Rx code, and a color code. Personnel, other than the Laboratory Supervisor, Project Toxicologist, and Study Director, will not be informed of the test chemicals or formulation concentrations until all laboratory work is completed (i.e., the study technicians will be "blind" for chemical and dose). Aliquots from the dosing bottles will be collected on the first day of dosing (postnatal day [pnd] 23) and on the first pnd 30, 37, 44, and 51 and will be shipped to Battelle Chemical Repository, Sequim, WA, for analysis."

is hereby amended to read:

2.3 DOSE FORMULATION AND ANALYSIS

"The dosing suspensions/solutions will be prepared at a frequency determined by stability tests initiated prior to the start of the study. Suspensions/solutions will be prepared at the Battelle Chemical Repository, Sequim, WA, and stored in wide-mouth, 200 ml amber bottles. They will be shipped on ice or with frozen cold packs via 24-hour express delivery and logged into the RTI Materials Handling Facility. Prior to transfer to the Reproductive and

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 12 of 33

Developmental Toxicology Laboratory for dosing the concentration of the dose formulations will be verified by the Battelle Chemical Respository. The test materials will be suspended/dissolved in Mazola® corn oil (CAS No. 8001-30-7), with the concentration determined by the following formula:

Concentration (mg / ml) =
$$\frac{\text{Dose per time}(\text{mg / kg})}{\text{Dosage volume per time (5 ml / kg)}}$$

An aliquot of each dose level per formulation will be analyzed by Battelle. The dosing bottles will be identified at RTI by a five-digit random number Rx code, and a color code. Personnel, other than the Laboratory Supervisor, Project Toxicologist, and Study Director, will not be informed of the test chemicals or formulation concentrations until all laboratory work is completed (i.e., the study technicians will be "blind" for chemical and dose). The dosing formulations will be stored at refrigerated temperatures. Prior to dosing each day, the formulations will be removed from the refrigerator. Solutions will be shaken and warmed to room temperature. Suspensions will be placed on a stir plate, and stirred and warmed to room temperature. Aliquots (at least 5 milliliters) from the dosing bottles will be collected on the first day of dosing (the first postnatal day [pnd] 23) and on the first pnd 30, 37, 44, and 51. These samples will be held in refrigerated storage until the end of the dosing period, when they will be shipped overnight on frozen cold packs to Battelle Chemical Repository, Sequim, WA, for analysis."

<u>Justification</u>: To add information describing the procedures for sample volume, storage, and shipping conditions for the dose formulations that was not available at the time of protocol approval. Evaluation of chemical/corn oil mixtures indicated that some were solutions and some were suspensions (e-mail from D. Houchens, 06/07/02, and J. Johnson, 06/12/02). Storage conditions and mixing procedures for the dose formulations were discussed in a conference call with J. Johnson (Battelle, Columbus) and E. Crecelius (Battelle, Sequim) on 09/03/02. Dose administration procedures followed SOP TERA 106.7. In addition, effective 6/13/02, the vehicle was changed to plain corn oil. The precision of the dose volume was corrected.

Item 4

Section 2.4.3, Total Number, Age, and Weight, page 9, which reads:

"For the nine-group component of this study (Component 1; see Table 1), 25 timed-pregnant female rats (designated the F0 generation) will be purchased for this study, at ten to 12 weeks of age upon

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 13 of 33

arrival. They will arrive at RTI on gestational day (gd) 14 (based on the vendor's designation of the day of insemination as gd 1), which is gd 13 (based on the performing laboratory's designation of the day of insemination as gd 0). One hundred thirty-five (135) offspring male rats, designated the F1 generation, will be placed on study at weaning (pnd 21), weighing approximately 48-55 grams (i.e., nine groups of 15 F1 weanling males each), for Component 1. For the 11-group component of this study (Component 2; see Table 1), 32 timed-pregnant female rats will be purchased, as described above, and 165 offspring male rats (11 groups of 15 F1 weanling males each) will go on study for Component 2."

is hereby amended to include the following sentence at the end of the section:

"For each nine-group components of this study (see Table 1), 25 timed-pregnant female rats (designated the F0 generation) will be purchased for this study, at ten to 12 weeks of age upon arrival. They will arrive at RTI on gestational day (gd) 14 (based on the vendor's designation of the day of insemination as gd 1), which is gd 13 (based on the performing laboratory's designation of the day of insemination as gd 0). One hundred thirty-five (135) offspring male rats, designated the F1 generation, will be placed on study at weaning (pnd 21), weighing approximately 48-55 grams (i.e., nine groups of 15 F1 weanling males each), for each component. In addition, two non-pregnant female rats, 10-12 weeks of age will be ordered for each component, from the same animal room at the supplier as the pregnant animals, to be assigned as quality control animals."

<u>Justification:</u> The number of treatment groups changed in Component 2, and the animals to be used for quality control were not specified in this section of the protocol.

Item 5

Section 2.4.4, Quality Control, page 9, which reads:

"The shipment of pregnant females will be quarantined on arrival, and quality control evaluation will be initiated within one day after receipt. Within one day after receipt, two female rats will be chosen from the shipment, sacrificed, and blood collected for assessment of viral antibody status. Heat-inactivated serum will be sent to BioReliance (Rockville, MD) for their Level 1 Rat Antibody Screen. The viral screen will consist of evaluation for the presence of antibodies against the following: Toolan H-1 virus (H-1), Sendai virus, Pneumonia virus of mice (PVM), rat coronavirus/sialodacryoadenitis (RCV/SDA), Parvo virus, Kilham rat virus (KRV), CAR Bacillus, and Mycoplasma pulmonis (M. Pul.). In

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 14 of 33

addition, fecal samples from representative animals will be externally examined for intestinal parasites."

is hereby amended as follows:

"The shipment of pregnant and two non-pregnant females will be quarantined on arrival, and quality control evaluation will be initiated within one day after receipt. Within one day after receipt, the two non-pregnant female rats will be sacrificed, and blood collected for assessment of viral antibody status. Heat-inactivated serum will be sent to BioReliance (Rockville, MD) for their Level 1 Rat Antibody Screen. The viral screen will consist of evaluation for the presence of antibodies against the following: Toolan H-1 virus (H-1), Sendai virus, Pneumonia virus of mice (PVM), rat coronavirus/sialodacryoadenitis (RCV/SDA), Parvo virus, Kilham rat virus (KRV), CAR Bacillus, and Mycoplasma pulmonis (M. Pul.). In addition, fecal samples from representative animals will be externally examined for intestinal parasites.

<u>Justification</u>: Selection of the non-pregnant animals for quality control was not clearly specified.

Item 6

Section 2.5.1, Housing, Feed, and Water, page 10, which reads:

"During the quarantine period, animals will be randomly assigned to cages. Pregnant and lactating females will be singly housed, and F1 male postweanlings will be multiply, or singly housed, as necessary, in solid-bottom, polycarbonate cages (8"x19"x10.5") fitted with stainless steel wire lids (Laboratory Products, Rochelle Park, NJ). Sani-Chip® cage bedding (P.J. Murphy, Forest Products, Inc., Montville, NJ) will be used in all cages. Pelleted feed (No. 5002 Purina Certified Rodent Chow®) and deionized water, produced at RTI from tap water from the Durham, NC, water system, in plastic bottles with stainless-steel sipper tubes, will be available ad libitum for the F0 females during quarantine, gestation and lactation, and for the retained F1 mmales. The water for the study breeder male animals is provided by an automatic watering system (Edstrom Industries, Inc., Waterford, WI); the parental females will also be on the automatic watering system during cohabitation. The analysis of the rodent chow for chemical composition and possible chemical contamination, and analysis of Durham City water will be provided by the suppliers and maintained in the study records. It

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 15 of 33

is anticipated that contaminant levels will be below certified levels for both feed and water and will not affect the design, conduct, or conclusions of this study. In addition, each lot number of Purina 5002 feed used will be analyzed by the supplier for concentrations of the phytoestrogens genistein, daidzein, and glycitein. An aliquot of each lot number will be retained frozen for possible future analytical chemistry. The "metabolizable energy content" of the feed (label value) will also be recorded and reported. Rat chow will be stored at approximately 60-70°F, and the period of use will not exceed six months from the milling date. At all times, animals will be housed, handled, and used according to the NRC Guide (NRC, 1996)."

is hereby amended as follows:

"During the quarantine period, animals will be randomly assigned to cages. Pregnant and lactating F0 females will be singly housed, and F1 male postweanlings will be singly housed in solid-bottom, polycarbonate cages (8"x19"x10.5") fitted with stainless steel wire lids (Laboratory Products, Rochelle Park, NJ). Sani-Chip® cage bedding (P.J. Murphy, Forest Products, Inc., Montville, NJ) will be used in all cages. Pelleted feed (No. 5002 Purina Certified Rodent Chow®) and deionized water, produced at RTI from tap water from the Durham, NC, water system, in plastic bottles with stainless-steel sipper tubes, will be available ad libitum for the F0 females during quarantine, for the F0 females during gestation and lactation, and for the retained F1 males. The analysis of the rodent chow for chemical composition and possible chemical contamination, and analysis of Durham City water will be provided by the suppliers and maintained in the study records. It is anticipated that contaminant levels will be below certified levels for both feed and water and will not affect the design, conduct, or conclusions of this study. In addition, each lot number of Purina 5002 feed used will be analyzed by the supplier for concentrations of the phytoestrogens genistein, daidzein, and glycitein. An aliquot of each lot number will be retained frozen for possible future analytical chemistry. The "metabolizable energy content" of the feed (label value) will also be recorded and reported. Rat chow will be stored at approximately 60-70°F, and the period of use will not exceed six months from the milling date. At all times, animals will be housed, handled, and used according to the NRC Guide (NRC, 1996)."

<u>Justification</u>: The paragraph was edited to indicate that the weanling males will be singly housed, which is necessary if feed consumption is to be collected. The reference to the water supply for breeder males and cohabited females was removed, since vendor-bred pregnant animals were ordered for this study.

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 16 of 33

Item 7

Section 2.5.3, Animal Identification, page 11, which reads:

"All F0 maternal rats will be individually identified by ear tag after arrival at RTI. All selected study weaning F1 males will also be uniquely identified by eartag at weaning, as well as receiving a female study number. All data generated during the course of this study will be tracked by these numbers."

is hereby amended to read:

All F0 maternal rats will be individually identified by ear tag after arrival at RTI, as well as receiving a female study number. All selected study weanling F1 males will also be uniquely identified by eartag at weaning, as well as receiving an F1 male study number. All data generated during the course of this study will be tracked by these numbers.

Justification: Identification procedures for animals on study were clarified.

Item 8

Section 3.1, Study Design, Test Chemicals, and Dose Selection, page 11, paragraph 2, which reads:

"The U.S. EPA selected the nine test chemicals for evaluation and selected the low and high target doses (in mg/kg/day) for each of them (Table 1). The nine test chemicals and their target/mechanism of action are as follows: (1) atrazine (affects the hypothalamus-pituitary axis in female rats and ovulation); (2) propylthiouracil (affects the thyroid directly, causing hypothyroidism); (3) vinclozolin (metabolites M1 and M2 act as anti-androgen; competitive binding to androgen receptor; M1 also binds weakly to the rat progesterone receptor); (4) linuron (anti-androgen; competitive binding to androgen receptor); (5) p,p-DDE (stable metabolite of DDT; anti-androgen through competitive binding to the androgen receptor); (6) ketoconazole (inhibits steroidogenesis in both sexes); (7) methoxychlor (a xeno-estrogen through α -estrogen receptor, anti-estrogen through β -estrogen receptor and an anti-androgen through androgen receptor mediated mechanism); (8) finasteride (a inhibitor of a 5α -reductase which catalyzes the conversion of testosterone to its potent metabolite, dihydrotestosterone [DHT]); and (9) phenobarbital (induces P450 isoforms

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
	Research Triangle Park, NC 27709	Page 17 of 33

predominantly in the liver, accelerates metabolism of endogenous hormones and exogenous xenobiotics)."

is hereby amended to read:

"The U.S. EPA selected the nine test chemicals for evaluation and selected the low and high target doses (in mg/kg/day) for each of them (Table 1). The nine test chemicals and their target/mechanism of action are as follows: (1) atrazine (affects the hypothalamus-pituitary axis in female rats and ovulation); (2) p,p-DDE (stable metabolite of DDT; anti-androgen through competitive binding to the androgen receptor); (3) vinclozolin (metabolites M1 and M2 act as anti-androgen; competitive binding to androgen receptor; M1 also binds weakly to the rat progesterone receptor); (4) methoxychlor (a xeno-estrogen through α -estrogen receptor, anti-estrogen through β -estrogen receptor and an anti-androgen through androgen receptor mediated mechanism); (5) propylthiouracil (affects the thyroid directly, causing hypothyroidism); (6) ketoconazole (inhibits steroidogenesis in both sexes); (7) linuron (anti-androgen; competitive binding to androgen receptor); (8) phenobarbital (induces P450 isoforms predominantly in the liver, accelerates metabolism of endogenous hormones and exogenous xenobiotics); and (9) finasteride (a inhibitor of a 5αreductase which catalyzes the conversion of testosterone to its potent metabolite, dihydrotestosterone [DHT])." The availability of finasteride is still uncertain. Therefore, if tested, it could be done in a separate study with its own control group. The study design, test chemicals, and target doses are presented in Table 1."

Justification: One of the test chemicals was not available in time to be included in the established study schedule for Component 2 (e-mail communication from D. Houchens, 05/10/02, 10/10/02).

PROTOCOL	RTI	RTI-831
	P.O. Box 12194 Research Triangle Park, NC 27709	Page 18 of 33

<u>Item 9</u>

Table 1, page 13, which reads:

Table 1. Study Design and Target Doses

					Dose
	No. F1		Dose	Concentration (mg/ml)	Volume (ml/kg)
Group No.	Males	Chemical	(mg/kg/day)	(mg/m)	(111/kg)
· .		COM	IPONENT 1		
1	15	_ e	0	0.0	5.0
2	15	Atrazine	75	15.0	5.0
3	15		150	30.0	5.0
. 4	15	Propylthiouracil	2	0.4	5.0
5	15		25	5.0	5.0
6	15	Vinclozolin	30	6.0	5.0
5	15		100	20.0	5.0
8	15	Linuron	50	10.0	5.0
9	15		100	20.0	5.0
-		COM	IPONENT 2		
10	15	p,p'DDE	50	10.0	5.0
11	15		100	20.0	5.0
12	15	Ketoconazole	50	10.0	5.0
13	15		100	20.0	5.0
14	15	Methoxychlor	25	5.0	5.0
15	15		50	10.0	5.0
16	15	Finasteride	25	5.0	5.0
17	15		50	10.0	5.0
18	15	Phenobarbital	50	10.0	5.0
19	15		100	20.0	5.0
10	15	_a	0	0.0	5.0

^a stripped corn oil, vehicle control

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 19 of 33

is hereby amended to read:

Table 1. Study Design, Test Chemicals and Target Doses

	No.		Dose	Concentration	Dose Volume
Group No.	F1Males	Chemical	(mg/kg/day)	(mg/ml)	(ml/kg)
		COM	1PONENT 1		
1	15	a	0	0.0	5
2	15	Atrazine	75	15.0	. 5
3	15		150	30.0	5
4	15	p,p'DDE	50	10.0	5
5	15		100	20.0	5
6	15	Vinclozolin	30	6.0	5
. 7	15		100	20:0	5
8	15	Methoxychior	25	5.0	5
9	15		50	10.0	5
		COM	IPONENT 2		
10	15	Propylthiouracil	2	0.4	5
11	15		25	5.0	5
12	15	Ketoconazole	50	10.0	5
13	15		100	20.0	5
14	15	Linuron	50	10.0	5
15	15		100	20.0	5
16	15	Phenobarbital	50	10.0	5
17	15		100	20.0	5
18	15	Finasteride ^b	25	5.0	5
19	15		50	10.0	5
20	15	_a	0	0.0	5

a corn oil, vehicle control

^b Finasteride is still on the list of chemicals, but its availability is uncertain. If tested, it may be done in a separate study with its own control group.

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 20 of 33

Justification: Propylthiouracil and linuron were moved from Component 1 to Component 2 to allow more time for dose formulation analysis studies (see summary of conference call, 09/03/02). p,p'-DDE and methoxychlor were moved from Component 2 to Component 1 (see summary of conference call, 09/03/02). The testing status of finasteride was clarified (e-mail, 10/10/02). In addition, the correct vehicle was indicated, and the dosing volume was corrected for accuracy.

Item 10

Section 3.1, Study Design, Test Chemicals, and Dose Selection, Tentative Study Dates, page 12, which reads:

"Tentative Study Dates" (to be added to the protocol by amendment)

F0 timed-pregnant females arrive at RTI:

Parturition of F1 offspring (pnd 0):

Weaning of F1 offspring (pnd 21):

Sacrifice of F0 dams:

Dosing (pnd 23 - pnd 52/53):

Sacrifice of F1 females (on pnd 52 or 53)::

Submission of nonaudited draft final report:

Submission of audited draft final report:

is hereby amended to read: Tentative Study Dates^a

Component 1
Atrazine, p,p'-DDE, Vinclozolin, Methoxychlor

Receive 25 females at gd 13 Quarantine (gd 13-20) September 5, 2002 September 5 – 12, 2002

The end dates are tentative and will depend on the duration of gestation and lactation of the F0 dams with F1 offspring."

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 21 of 33

PND 0 PND 21 Dosing Begins (PND 23) PND 52 September 14, 15, 16, 2002 October 5, 6, 7, 2002 October 7, 8, 9, 2002 November 5, 6,7, 2002

Component 2 Propylthiouracil, Ketoconazole, Linuron, Phenobarbital, (Finasteride^b)

Receive 25 females at gd 13	Dec. 26, 2002
Quarantine (gd 13-20)	Dec. 26, 2002 to Jan. 2, 2003
1 st PND 0	Jan 4, 2003
1 st PND 21	Jan. 25, 2003
Receive Dose Formulations	Week of Jan 20, 2003
Dosing Begins (PND 23)	Jan. 28, 2003
1 st PND 52	Feb. 26, 2003
Repro Organs/Thyroid Histopathology complete	April 11, 2003
Hormone Assays Complete	May 20, 2003
Notebooks to QA	June 3, 2003
Data Tables to Study Director/Data to QA	June 3, 2003
Internal draft report to QA	TBD
First draft QA'd report to Battelle	July 1, 2003

Justification

The actual study had not been scheduled when the protocol was signed. The current study schedule, insofar as it is known, is hereby entered into the protocol.

^a The end dates for the in-life portion of Component 2 are tentative and will depend on the duration of gestation and lactation of the F0 dams with F1 offspring.

^bFinasteride is still on the list of chemicals, but its availability is uncertain. If tested, it may be done in a separate study with its own control group."

PROTOCOL RTI
P.O. Box 12194
Research Triangle Park, NC 27709 Page 22 of 33

Item 11

Section 3.2.3.2, Standardization of Litter Sizes, page 15, which reads:

"On pnd 4, the size of each litter will be adjusted to ten pups, maximizing the number of male pups retained. Natural litters with ten or fewer pups will not be culled. If necessary, F1 male pups from litters with more than six males will be fostered to litters containing fewer than six males on pnd 4. All culled pups will be sacrificed by decapitation. The F0 dams will be allowed to rear their remaining F1 young to pnd 21. On pnd 21, each litter will be weaned."

is hereby amended to remove the sentence describing fostering F1 males, i.e., If necessary, F1 male pups from litters with more than six males will be fostered to litters containing fewer than six males on pnd 4.

<u>Justification:</u> Fostering of animals on pnd 4 would prevent valid use of pup weights collected on pnd 0 and 4 in conjunction with data after fostering on pnd 4.

<u>Item 12</u>

Section 3.4, Treatment of F1 Weanling Males, page 16, which reads:

"Beginning on pnd 23, each F1 male will be dosed with one of the test materials at one of the dose levels or the vehicle control (corn oil for all chemicals). Each animal will be weighed every other day prior to treatment and the body weight recorded. Treatments will be administered daily by oral gavage in 5.0 ml corn oil/kg body weight from pnd 23 and continuing through pnd 52/53. This duration of treatment is unnecessary to detect androgenic chemicals but is required for the detection of pubertal delay and antithyroid effects. Gavage dosing will use an 18-gauge gavage needle (1 inch length with 2.25 mm ball) and a 1 cc glass (disposable) tuberculin syringe for each treatment group. Xenobiotics will be administered in corn oil vehicle at a dosing volume of 5.0 ml/kg body weight at 0700-1000 hours daily. The treatments will be administered on a mg/kg body weight basis, adjusted based on the most recent body weight, and the volume of the dose administered will be recorded each day. It is important that any dosing solutions/suspensions be well mixed to keep the chemical in suspension prior to and throughout dosing.

is hereby amended to read:

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	
, KOTOGO	Research Triangle Park, NC 27709	Page 23 of 33

"Beginning on pnd 23, each F1 male will be dosed with one of the test materials at one of the dose levels or the vehicle control (corn oil for all chemicals). Each animal will be weighed every other day prior to treatment and the body weight recorded. Treatments will be administered daily by oral gavage in 5 ml corn oil/kg body weight from pnd 23 and continuing through pnd 52/53. This duration of treatment is unnecessary to detect androgenic chemicals but is required for the detection of pubertal delay and antithyroid effects. Gavage dosing will use an 18-gauge gavage needle (1 inch length with 2.25 mm ball) and a 1 cc glass or plastic (disposable) tuberculin syringe for each treatment group. Xenobiotics will be administered beginning no earlier than 0700 hours daily, and continuing until all animals are dosed. The treatments will be administered on a mg/kg body weight basis, adjusted based on the most recent body weight, and the volume of the dose administered will be recorded each day. It is important that any dosing solutions/suspensions be well mixed to keep the chemical in suspension prior to and throughout dosing.

Justification: The dose volume was changed to the correct accuracy. The use of either glass or plastic disposable tuberculin syringes as acceptable was designated. The period of time during which dosing is to occur was changed to allow a bigger window of time, since the previously allotted time was not sufficient.

Item 13

Section 3.6.2, Gross Necropsy and Organ Weights, page 17, first sentence, which reads:

"Each F1 male offspring, after blood is collected (see Section 3.7.1), will be subjected to a gross necropsy."

is hereby amended to read:

"Each F1 male offspring, after blood is collected (see Section 3.6.1), will be subjected to a gross necropsy."

Justification: Correction of a typographical error.

Item 14

Section 3.6.3, Histology and Pathology, page 18, which reads:

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	Dans 24 of 22
	Research Triangle Park, NC 27709	Page 24 of 33

"One testis, one epididymis, and the thyroid with attached portion of trachea from each F1 male will be placed in Bouin's fixative for 24 hours (then the trachea removed from the thyroid), after which they will be rinsed and stored in 70% alcohol until embedded in paraffin. They will then be sectioned at 3-5 microns and stained with hematoxylin and eosin (H and E) for subsequent histological evaluations. Optional tissues for histopathology include the liver, paired kidneys, adrenal glands (paired), and pituitary, as indicated by altered organ weight (change of "significant magnitude"), which will be processed as above. Stained sections will be evaluated by a Board Certified veterinary pathologist for pathologic abnormalities and potential treatment-related effects. Thyroids should be evaluated for morphologic changes such as altered follicular epithelial height, the relative number and staining characteristics of colloid, the extent of thyroid vascular supply, and the density, size, and shape of the thyroid follicles. The one testis and epididymis per male will be evaluated for spermatogenesis, spermiogenesis, status of seminiferous tubules in the testis, and sperm in the epididymis, as well as the structural integrity of these organs."

is hereby amended to read:

"Tissues taken at necropsy will be placed in fixative and then transferred to Experimental Pathology Laboratories (EPL) for processing. The testes and epididymides from each F1 male will be placed in Bouin's fixative for 24 hours, after which they will be rinsed and stored in 70% alcohol until embedded in paraffin. The thyroid with attached portion of trachea will be fixed in 10% neutral buffered formalin. The thyroid (with attached trachea) will be transferred to EPL with the testes and epididymides and will be weighed at EPL, after removal of the trachea, and embedded in paraffin. The tissues will then be sectioned at 3-5 microns and stained with hematoxylin and eosin (H and E) for subsequent histological evaluations. Optional tissues for histopathology include the liver, paired kidneys, adrenal glands (paired) and pituitary (if warranted-by organ weight change of "significant magnitude"), which will be placed in 10% neutral buffered formalin, and processed as above. Stained sections will be evaluated by a Board Certified veterinary pathologist (EPL) for pathologic abnormalities and potential treatment-related effects. Thyroids should be evaluated for morphologic changes such as altered follicular epithelial height, the relative number and staining characteristics of colloid, the extent of thyroid vascular supply, and the density, size, and shape of the thyroid follicles. The one testis and epididymis per male will be evaluated for spermatogenesis, spermiogenesis, status of seminiferous tubules in the testis, and sperm in the epididymis, as well as the structural integrity of these organs."

<u>Justification</u>: Clarification of changes in histology and pathology procedures resulting from designating EPL as the histology laboratory (closing of RTI Histology Laboratory

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 25 of 33

effective 07/01/02; procedures for thyroid clarified through e-mail and telecon, J. George and J. Seely, 09/24/02; J. Kariya to D. Houchens, 11/01/02). Addition of the fixation medium for optional tissues, which was inadvertantly left out of the protocol.

Item 15

Section 7.0, Reporting, page 19, which reads:

"An executive summary will be prepared describing the number and strain of rats used in the study, the doses and chemicals tested, and the effects with levels of statistical significance for all endpoints. Electronic and hard copies of spreadsheets containing the raw data from all animals will be provided for each endpoint. In addition, the spreadsheet should include treatment means, standard deviation, standard error, coefficient of variation, and sample number below each endpoint. Data presented should include animal number and treatment, block and day of necropsy (if study conducted in blocks or animals killed on pnd 52 and 53), age and weight at preputial separation, body weights at weaning, organ and body weights at necropsy, body weight change from pnd 23 to necropsy, and serum T4 and TSH. A data summary table containing the mean, standard deviation, standard error, coefficient of variation, and sample size for each treatment group should be provided for all endpoints. Organ weights may be presented after covariance adjustment for necropsy body weight, but this should not replace presentation of the unadjusted data. Summaries of any histopathologic findings with photomicrographs of significant observations will also be provided."

is hereby amended to read:

7.0 Reporting

7.1 Status Reports

Status reports will be provided to the EDSP Program Manager.

7.2 <u>Draft and Final Reports</u>

A draft report will be submitted to the Sponsor's Representative within four months of the last necropsy date. The final report will include, but will not be limited to:

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 26 of 33

- Abstract
- Materials and Methods
- · Results
- Discussion
- Conclusions
- References
- Summary in-life and necropsy data with statistical analyses
- Individual animal data: in-life and necropsy
- · Protocol, any amendments, or any deviations from the protocol

Electronic and hard copies of ASCII files containing the raw data from all animals will be provided for each endpoint after final approval of the study report. A key will be provided identifying the type of data in each column of the ASCII file. In the report, summary data for F0 endpoints will be presented as combined data containing mean, standard deviation, and sample size. For F1 data, a data summary table containing the mean, standard deviation, standard error, coefficient of variation, and sample size for each treatment group should be provided for all endpoints. Organ weights may be presented after covariance adjustment for necropsy body weight, but this should not replace presentation of the unadjusted data. Summaries of any histopathologic findings with photomicrographs of significant observations will also be provided.

Summary of F0 Maternal Data

- a. Survival indices
- b. Gestational length
- c. Mean litter size
- d. Mean number of live and dead offspring
- e. Number and percent of mothers showing treatment-related behavioral abnormalities in nesting and nursing (i.e., distocia, neglecting offspring, no milk visible in pups' stomach).

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 27 of 33

f. Gestational index (%) = $\frac{\text{No. pregnant females with live litters}}{\text{No. pregnant females}} \times 100$

Individual F0 Maternal Data

- a. Identification number
- b. Age at beginning of study
- c. Age at death and manner of death
- d. Gestational length in days
- e. Total number of offspring per litter
- f. Number and percent of live and dead offspring
- g. General condition of offspring and mother through weaning

Summary of F1 Litter Lactational Data

- a. Total litter size
- b. Number and percent of stillborn
- c. Number and percent of live births
- d. Periodic viability counts
- e. Periodic body weights by sex per litter from birth to weaning (taken on pnd 0, 4, 7, 14, and 21 by individual pup)

	RTI	RTI-831
PROTOCOL	P.O. Box 12194	Page 28 of 33
	Research Triangle Park, NC 27709	Page 20 01 33

f. Sex ratio (% males per litter)

g. Indices:

Live birth index: = $\frac{No.live\ pups\ at\ birth}{Total\ no.\ pups\ born}x100$ 4-day survival index = $\frac{No.\ pups\ surviving\ 4\ days\ (precull)}{Total\ no.live\ pups\ at\ birth}x100$ 7-day survival index = $\frac{No.\ pups\ surviving\ 7\ days}{Total\ no.live\ pups\ at\ 4\ days\ (postcull)}x100$ 14-day survival index = $\frac{No.\ pups\ surviving\ 14\ days}{Total\ no.live\ pups\ at\ 7\ days}x100$ 21-day survival index = $\frac{No.\ pups\ surviving\ 21\ days}{Total\ no.live\ pups\ at\ 14\ days}x100$ Lactation index = $\frac{No.\ pups\ surviving\ 21\ days}{Total\ no.live\ pups\ at\ 4\ days\ (postcull)}x100$

Individual Data From Retained F1 Male Offspring

- a. Identification number
- b. Age at death and manner of death
- c. Daily body and food weights from pnd 23 through pnd 52/53
- d. Age and body weight at acquisition of preputial separation
- e. Organ weights

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 29 of 33

- f. Reproductive system external and/or gross abnormalities
- g. Histopathological observations

Summary of Data From Retained Male F1 Offspring

- a. Mean periodic body weights and weight gains
- b. Mean periodic feed consumption
- c. Age and body weight at acquisition of preputial separation
- d. Organ weights
- e. Reproductive system external and/or gross abnormalities
- f. Histopathological observations

Justification: Clarification of reporting procedures.

Item 16

Section 8.0, Personnel, page 20, which reads:

Study Director: Julia D. George, Ph.D.

Project Toxicologist: Rochelle W. Tyl, Ph.D., DABT

ARF Veterinarian: Donald B. Feldman, D.V.M., ACLAM

ARF Manager: Frank N. Ali, M.B.A., RLATG, ILAM

Laboratory Supervisor: Melissa C. Marr, B.A., RLATG

Data Analyst and Reproductive

Toxicity Supervisor: Christina B. Myers, M.S. Statistical Advisor: Gayle. S. Bieler, M.S.

PROTOCOL

RTI P.O. Box 12194

Research Triangle Park, NC 27709

RTI-831

Page 30 of 33

Research Data Entry Assistant:

Timothy W. Wiley, B.S.

Research Biologist:

William R. Ross, B.A.

Biologists:

Vickie I. Wilson

Lawson B. Pelletier, RVMT, LAT

Biological Laboratory Assistants:

Marian V. Rieth, RVMT

Malcolm D. Crews, ALAT

Robin T. Krebs, ALAS

Endocrinology:

Patricia A. Fail, Ph.D.

Carol S. Sloan, M.S.

Kristi D. Vick, B.S.

Quality Assurance:

Doris J. Smith, B.S., Manager

Celia D. Keller, M.S.

Patricia D. Hall

Marcia D. Phillips, M.S.

D. Denise Rowe, M.L.S.

Tiffany M. Kennedy, B.S.

Erica D. Shinauld, B.S.

Histology:

Tsai-Ying Chang, B.S. HT-ASCP

Pathology:

John C. Seely, D.V.M., ACVP (EPL, Inc.)

Additional study team members to be determined.

is hereby amended to read:

Study Director:

Julia D. George, Ph.D.

Project Toxicologist:

Rochelle W. Tyl, Ph.D., DABT

ARF Veterinarian:

Donald B. Feldman, D.V.M., ACLAM

ARF Manager:

Frank N. Ali, M.B.A., RLATG, ILAM

Laboratory Supervisor:

Melissa C. Marr, B.A., RLATG

PROTOCOL RTI-831
P.O. Box 12194
Research Triangle Park, NC 27709
Page 31 of 33

Data Analyst and Reproductive

Toxicity Supervisor:

Statistical Advisor:

Research Data Entry Assistant:

Research Biologist:

Biologists:

Biological Laboratory Assistants:

Endocrinology:

Ouality Assurance:

Christina B. Myers, M.S.

Gayle. S. Bieler, M.S.

Timothy W. Wiley, B.S.

William P. Ross, B.A.

Vickie I. Wilson

Lawson B. Pelletier, RVMT, LAT

Malcolm D. Crews, ALAT

Robin T. Krebs, ALAT

Patricia A. Fail, Ph.D.

Carol S. Sloan, M.S.

Kristie D. Vick, B.S.

Angela Parham, B.S.

Doris J. Smith, B.S., Manager

Celia D. Keller, M.S.

Marcia D. Phillips, M.S.

D. Denise Rowe, M.L.S.

Tiffany M. Kenney, B.S.

Erica D. Shinuald, B.S.

Jennifer E. Jones, B.S.

Jacques Hargett, B.S.

EPL, Incorporated

Histology: Pathology:

John C. Seely, D.V.M., ACVP (EPL, Inc.)

Additional study team members to be determined.

<u>Justification:</u> Correction of typographical errors, inclusion of new study team members, deletion of personnel no longer working at RTI, designation of EPL as the histopathology laboratory.

	RTI	RTI-831
PROTOCOL	P.O. Box 12194 Research Triangle Park, NC 27709	Page 32 of 33
	Nesearch mangle raik, No 27705	1 age 32 01 33

Item 17

Note to the record:

Effective 6/10/02, Terri L. Pollock, B.A. was named Battelle Quality Assurance Manager for this project.

Marcia D. Phillips, M.S., the RTI International Quality Assurance Officer assigned to this contract will sign for the RTI QAU.

<u>Justification:</u> Designation of change in signatory Quality Assurance personnel.

PROTOCOL

RTI P.O. Box 12194 Research Triangle Park, NC 27709 RTI-831

Page 33 of 33

APPROVED BY:

7	oinilli elle W. Tyl,	W.S	2)	Ġ¥ Į	17/	13
Roct	elle W. Tyl,	Ph.D.	DABT	Date		

Project Toxicologist

Center for Life Sciences and

Toxicology

Research Triangle Institute

4-21-03 Date

Work Assignment Manager

Endocrine Disruptor Screening

Program U.S. EPA

L. Gree Schweer

Project Officer

Endocrine Disruptor Screening

Program U.S. EPA

Julia D. George, Ph.D

Study Director

Center for Life Sciences and

Toxicology

Research Triangle Institute

David P. Houchens, Ph.D.

Program Manager

Endocrine Disruptor Screening

Program

Battelle Memorial Institute

REVIEWED BY:

Marcia D. Phillips, M.S.

Quality Assurance Specialist

RTI International

Quality Assurance Manager

Battelle Memorial Institute

PROTOCOL AMENDMENT 2 P.O. Box 12194 Research Triangle Park, NC 27709 **RTI-831**

Page 1 of 9

EPA Contract No. 68-W-01-023 (Battelle Prime Contractor)

RTI Contract No.: 65U-08055.001.015.001

RTI Master Protocol No.: RTI-831 RTI Study Code: Rt02-ED03

Amendment 2

1/8/04

TITLE:

Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals Administered by Gavage on Postnatal Days 23 To 52/53

SPONSOR:

Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201-2693

TESTING FACILITY: RTI International

Chemistry and Life Sciences

Center for Life Sciences and Toxicology

Post Office Box 12194

Research Triangle Park, NC 27709

PROTOCOL P.O. Box 12194
AMENDMENT 2 Research Triangle Park, NC 27709 Page 2 of 9

Study Protocol RTI-831, is hereby amended as indicated below (changes are **bolded** for clarity).

Item 1

Title page, page 1, protocol title, which reads:

"Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals Administered by Gavage on Postnatal Days 23 Through 52/53"

is hereby amended to read:

"Assessment of Pubertal Development and Thyroid Function in Juvenile Male CD® (Sprague-Dawley) Rats After Exposure to Selected Chemicals Administered by Gavage on Postnatal Days 23 **To** 52/53."

Justification: The animals were not to be dosed on the day of necropsy, i.e., pnd 52 or 53. Therefore, the correct terminology is "Postnatal Days 23 to 52/53 (effective 5/20/02)."

Item 2

Applicable sections of the protocol:

It is hereby noted that finasteride, one of the proposed test chemicals, was not, in fact, tested in the present study (E-mail communication from J. Kariya, EPA WAM, 10/10/02).

Section 3.4, Treatment of F1 Weanling Males, page 16, second sentence, which reads:

"Each animal will be weighed every other day prior to treatment and the body weight recorded."

Is hereby amended to read:

"Each animal will be weighed every day prior to treatment and the body weight recorded."

Justification: Correction of an error in the text. The animals were weighed daily.

Item 3

Section 3.4, Treatment of F1 Weanling Males, page 16, third sentence, which reads:

"Treatments will be administered daily by oral gavage in 5 ml corn oil/kg body weight from pnd 23 and continuing through pnd 52/53."

and

Section 3.5.1, Clinical Observations, page 16, first sentence, which reads:

"Clinical observations of F1 male study animals will be documented at least once daily on pnd 21 and 22 (prior to dosing period) and at least twice daily, at dosing and one to two hours postdosing, throughout the dosing period (pnd 23 through pnd 52 or 53)."

PROTOCOL P.O. Box 12194
AMENDMENT 2 Research Triangle Park, NC 27709 Page 3 of 9

and

Section 3.5.2, F1 Weanling Male Body Weights, page 17, first sentence, which reads:

"All F1 males will be weighed in the morning on pnd 21 and 22, and every day in the morning during the dosing period on pnd 23 through pnd 52/53, for adjustment of dosing volume based on the most recent body weight."

Are hereby changed to indicate that the dosing period was pnd 23 to pnd 52/53.

Justification: The animals were not to be dosed on the day of necropsy, i.e., pnd 52 or 53. Therefore, the dosing period should be denoted as pnd 23 to pnd 52/53 (effective 5/20/03).

Item 4

Section 4.0, STATISTICAL ANALYSES, page 18, first paragraph, which begins:

"All data for a single chemical (two doses) and concurrent vehicle control group (weaning body weight, body weights and weight gains, age and weight at preputial separation, body and organ weights at necropsy, and serum hormones) will be analyzed using either parametric ANOVA under the standard assumptions or robust regression methods (Zeger and Liang, 1986; Royall, 1986; Huber, 1967) which do not assume homogeneity of variance or normality."

is hereby amended by inserting the following sentences directly after:

"Frequency data will be analyzed by Chi-Square Test for Independence for differences among treatment groups (Snedecor and Cochran, 1967) and by the Cochran-Armitage Test for Linear Trend on Proportions (Cochran, 1954; Armitage, 1955; Agresti et al., 1990). When Chi-Square reveals a significant (p<0.05) difference among groups, then a Fisher's Exact Probability Test, with appropriate adjustments for multiple comparisons, will be used for pairwise comparisons between each treatment group and the control group."

<u>Justification</u>: A description of the statistical analysis to be used for homogeneous frequency data was inadvertently omitted from the protocol (effective 5/20/02).

<u>Item 6</u>

Section 10.0, References, page 22 to 26, add the following citations:

Agresti, A., C.R. Mehta, and N.R. Patel (1990). Exact inference for contingency tables with ordered categories. *J. Amer. Statist. Assoc.* **85**, 453-458.

Armitage, P. (1955). Test for linear trends in proportions and frequencies. Biometrics 11, 375-386.

Cochran, W. (1954). Some methods for strengthening the common X2 tests. *Biometrics* 10, 417-451.

Snedecor, G.W., and W.G. Cochran (1967). Statistical Methods. Sixth Edition, Iowa State University Press, Ames, IA.

PROTOCOL	RTI D.O. Boy 12104	RTI-831
PROTOCOL AMENDMENT 2	P.O. Box 12194 Research Triangle Park, NC 27709	Page 4 of 9

<u>Justification:</u> References accompanying the description of the statistical analysis to be used for homogeneous frequency data was inadvertently omitted from the protocol (effective 5/20/02).

Item 7 To the record

During the course of this study, more than one set of designating numbers was used to denote the individual treatment groups in the two components. This memo serves to correlate the treatment group designations used in the different records of the report.

Study Protocol, RTI-831, Amendment 1

Group No.	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)
		OMPONENT 1	
1	Corn oil (vehicle	0	0.0
2	Atrazine	75	15.0
3		150	30.0
4	p,p'DDE	50	10.0
5		100	20.0
6	Vinclozolin	30	6.0
7		100	20.0
8	Methoxychlor	25	5.0
9 .		50	10.0
	C	OMPONENT 2	
10	Propylthiouracil	2	0.4
11		25	5.0
12	Ketoconazole	50	10.0
13·		100	20.0
14	Linuron	50	10.0
15		100	20.0
16	Phenobarbital	50	10.0
17		100	20.0
18	Finasteride ^b	25	5.0
19		50	10.0
20	Corn oil (vehicle	0	0.0

^a Finasteride was unavailable, and was not tested in this study.

PROTOCOL AMENDMENT 2 RTI P.O. Box 12194 Research Triangle Park, NC 27709 RTI-831
Page 5 of 9

Dose Code Form/Study Data Sheets

Group No.	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)	5 digit Rx Code	Color Code
		COM	PONENT 1		
1	Corn oil (vehicle control)	0	0.0	78967	Orange
2	Methoxychlor	25	5.0	96509	Blue
3		50	10.0	68843	Red
4	Atrazine	75	15.0	84156	Purple
5		150	30.0	39239	Brown
6	4,4' DDE	50	10.0	29505	Pink
7		100	20.0	48266	Yellow
8	Vinclozolin	30	6.0	15492	Green
9		100	20.0	07983	Black
		COM	PONENT 2		
1	Corn oil (vehicle control)	0	0.0	82703	Purple
2	Propylthiouracil	2	0.4	04691	Pink
3		25	5.0	65437	Black
4	Linuron	50	10.0	46916	Green
5		100	20.0	59969	Yellow
6	Ketoconazole	50	10.0	27489	Red
7	<u>.</u>	100	20.0	16317	Blue
8	Phenobarbital	50	10.0	34563	Orange
9		100	20.0	95962	Brown

PROTOCOL AMENDMENT 2 RTI P.O. Box 12194 Research Triangle Park, NC 27709

RTI-831
Page 6 of 9

Battelle, Sequim Formulation ID Number

Chemical	Concentration (mg/ml)	Formulation ID Number
	COMPONENT 1	
Corn oil (vehicle control)	0	2-14-H-M
Vinclozolin	6	2-14-J-M
	20	2-14-K-M
Methoxyclor	5	2-14-L-M
	10	2-14-M-M
4,4' DDE	10	2-14-N-M
	20	2-14-P-M
Atrazine	15	2-14-Q-M
	30	2-14-R-M
	COMPONENT 2	
Corn oil (vehicle control)	0	2-14-A-M
Propylthiouracil	0.4	2-14-B-M
	5	2-14-C-M
Linuron	10	2-14-D-M
	20	2-14-E-M
Ketoconazole	10	2-14-F-M
· ·	20	2-14-G-M
Phenobarbital	10	2-14-H-M
	20	2-14-I-M

	RTI	RTI-831
PROTOCOL AMENDMENT 2	P.O. Box 12194 Research Triangle Park, NC 27709	Page 7 of 9

Histopathology report (EPL, Inc.)

Group No.	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)
		COMPONENT 1	
1	Corn oil (vehicle control)	. 0	0.0
2	Methoxychlor	25	5.0
3		50	10.0
4	Atrazine	75	15.0
5		150	30.0
6	p,p'DDE	50	10.0
7		100	20.0
8	Vinclozolin	30	6.0
9		100	20.0
		COMPONENT 2	
1	Corn oil (vehicle control)	0	0.0
2	Propylthiouracil	2	0.4
3		25	5.0
4	Linuron	50	10.0
5		100	20.0
6	Ketoconazole	50	10.0
7		100	20.0
8	Phenobarbital	50	10.0
9		100	20.0

PROTOCOL AMENDMENT 2 RTI P.O. Box 12194 Research Triangle Park, NC 27709 RTI-831
Page 8 of 9

Appendix I – Individual Animal Data Tables

Group No.	Chemical	Dose (mg/kg/day)	Concentration (mg/ml)
-		COMPONENT 1	
1	Corn oil (vehicle control)	0	0.0
2	Atrazine	75	15.0
3.		150	30.0
4	p,p'DDE	50	10.0
5		100	20.0
6	Vinclozolin	30	6.0
7		100	20.0
8	Methoxychlor	25	5.0
9		50	10.0
<u> </u>		COMPONENT 2	
10	Corn oil (vehicle control)	0	0.0
11	Propylthiouracil	2	0.4
. 12		25	5.0
13	Ketoconazole	50	10.0
14		100	20.0
15	Linuron	50	10.0
16	en en en en en en en en en en en en en e	100	20.0
17	Phenobarbital	50	10.0
18		100	20.0

PROTOCOL AMENDMENT 2

Research Triangle Institute

RTI P.O. Box 12194 Research Triangle Park, NC 27709 **RTI-831**

Page 9 of 9

APPROVED BY:

\sim	
Holmell W. R1	40/05/10
Rochelle W. Tyl, Ph.D., DABT	Date
Project Toxicologist	
Center for Life Sciences and T	oxicoloav

10/	
Hlauja	1-21-04
James P∠Ka r iya	Date
Work Assignment Manager	
Endocrine Disruptor Screeni	ing Program

U.S. EPA	
J. Grey Schwer	1-21-04
y my produced	1-21:07

Johny Schwer	1-21-04
L. Greg-Schweer	Date
Project Officer	

Endocrine Disruptor Screening Program U.S. EPA

REVIEWED BY:

1-20-04 Margia D. Phillips, M.S. Quality Assurance Specialist

RTI International

Terri L. Pollock. Quality Assurance Manager

Mila D. George, Ph.D.

Study Director

enter for Life Sciences and Toxicology
Research Triangle Institute

Program Manager Endocrine Disruptor Screening Program

Battelle Memorial Institute

Battelle Memorial Institute