FINAL REPORT

INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL (Charles River Laboratories)

EPA Contract Number 68-W-01-023 Work Assignment 5-15

May 3, 2006

Submitted to

Don Bergfelt, Ph.D. Work Assignment Manager U.S. Environmental Protection Agency Endocrine Disruptor Screening Program Washington, D.C.

> Battelle 505 King Avenue Columbus, Ohio 43201

FINAL REPORT

Study Title

Interlaboratory Validation of the 15-Day Adult Intact Male Rat Assay with Linuron and Phenobarbital

Author

Joseph W. Lech, B.S., LAT (Study Director)

Study Completed On

2 May 2006 (Final Report)

Performing Laboratory

Charles River Laboratories Preclinical Services, Pennsylvania 905 Sheehy Drive, Building A Horsham, Pennsylvania 19044-1241

Sponsor

Battelle 505 King Avenue Columbus, Ohio 43201-2693

Subcontracting Facilities

Charles River Laboratories Preclinical Services, Massachusetts 57 Union Street Worcester, Massachusetts 01608 RTI International 3040 Cornwallis Rd. PO Box 12194 Research Triangle Park, NC 27709-2194

Research Pathology Services, Inc. 438 E. Butler Avenue New Britain, Pennsylvania 18901

Laboratory Project ID

Charles River Laboratories Preclinical Services Protocol Number: RTP00004

Page 1 of 416

STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentially is made for any information contained in this study on the basis of its falling within the scope of FIFRA Section 10(d) (1)(A), (B), or (C).

This statement supersedes any other claims of confidentiality found in this report.

Battelle Company:

Company Agent: David P. Houchens, Ph.D.

Title: Program Manager

Date: <u>5/3/06</u> Signature: <u>Div P. Hombur</u>

GOOD LABORATORY PRACTICE STATEMENT

This study was conducted according to U.S. Environmental Protection Agency. Federal Insecticide, Fungicide and Rodenticide Act/Toxic Substances Control Act (FIFRA/TSCA); Good Laboratory Practice Standards; Final Rule, 40 CFR Part 160/Part 792; the Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF), Good laboratory practice (GLP) standards for agricultural chemicals. Agricultural Production Bureau Ref. No. 11-Nousan-No.6283, October 1, 1999; last revised June 30, 2003 Ref. No. 15-Seisan-2460 and the OECD Environmental Directorate, OECD Principles of good laboratory practices [C(97)186/Final] (1998); Environmental Health and Safety Division with the exception that stability of the Linuron provided by the Sponsor does not bracket the range of concentrations used for dosage administration. Any areas of noncompliance are documented in the study record. No deviations existed that affected the validity of the study.

Submitter:

Did P. Howhere

Sponsor's Representative:

when

David P. Houchens, Ph.D. Battelle

Study Director:

3012106

Voseph W. Lech, B.S., LAT Scientist and Study Director

Date

Date

FLAGGING STATEMENT

I have applied the criteria of 40 CFR 158.34 for flagging studies for potential adverse effects to the results of the attached study. This study neither meets nor exceeds any of the applicable criteria.

Company: Battelle

Company Agent: David P. Houchens, Ph.D.

Title: EDSP Program Manager

Date: _____

Signature: _____

TITLE: INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL

CHARLES RIVER LABORATORIES PRECLINICAL SERVICES PROTOCOL NUMBER: RTP00004

SPONSOR'S WORK ASSIGNMENT: WA 5-15

TABLE OF CONTENTS

SUBJEC	<u>CT</u> I	PAGE
GOOD I	LABORATORY PRACTICE STATEMENT	3
ABSTRA	ACT	7
1. OBJI	ECTIVES	10
2.1.	CRIPTION OF TEST PROCEDURES Conduct of Study	11
2.2. 2.3.	Test Substances Information	
2.4.	Test Substance Preparation and Storage Conditions	15
2.5. 2.6.	Test System	
2.7.	Methods	
3. RES	ULTS	23
3.1.	Mortality and Clinical Observations	23
3.2.	Body Weight Gains	24
3.3.	Terminal Body Weights and Organ Weights	24
3.4.	Food Consumption	
3.5.	Reproductive Hormone Analyses	26
3.6.	Gross Necropsy	
3.7.	Histopathology	30
4. DISC	CUSSION	30
4.1.	General Toxicity	30
4.2.	Endocrinological and Thyroid Modulation Effects	32
5. CON	ICLUSION	35
6. REF	ERENCES	36
7. PRO	TOCOL DEVIATIONS	38

<u>SUBJECT</u>	<u>PAGE</u>
SUPPORTING DATA	40
Appendices 1 and 2 - Individual Data	41
Appendix 1 - Clinical Observations - Individual Data	42
Appendix 2 - Necropsy Observations - Individual Data	59
Appendix 3 - Protocol	65
Appendix 4 - Analytical Reports - Bulk Test Substance	135
Appendix 5 - Analytical Report - Concentration and Homogeneity	188
Appendix 6 - Environmental and Husbandry Reports	250
Appendix 7 - Histopathology Report	271
Appendix 8 - Hormone Analyses Report	284
Appendix 9 - Statistical Report	311
Appendix 10 - Quality Assurance Statement	414
Last Page	416

TITLE: INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL

CHARLES RIVER LABORATORIES PRECLINICAL SERVICES PROTOCOL NUMBER: RTP00004

SPONSOR'S WORK ASSIGNMENT: WA 5-15

ABSTRACT

The 15-day intact male assay was developed by DuPont Haskell Laboratory as one component of a Tier I screening strategy for identifying endocrine-active compounds (EAC). The EAC test compounds for this assay were the weak antiandrogenic herbicide, Linuron, and the thyroid modulating barbiturate, Phenobarbital.

Intact adult male rats, 15 per group, were dosed between 0600 and 0900 hrs on test days 1 through 14 (TDs 1-14) and dosing began at approximately 0600 hrs on TD 15. Dosages of one of the test substances were administered for 15 consecutive days via oral gavage with aqueous 0.25% (w/v) methylcellulose (vehicle control), Linuron at 50, 100 and 150 mg/kg/day and Phenobarbital at 25, 50 and 100 mg/kg/day. Dosages were formulated using 0.25% (w/v) methylcellulose as the vehicle and administered at 5 mL/kg. Based on the results of the analyses of the prepared formulation and the lack of any dosing errors, all rats are believed to have been dosed properly at the correct concentration with homogeneous suspensions.

Rats were observed for viability at least twice each day of the study and for clinical observations and general appearance daily during the acclimation period. Observations for clinical signs and deaths were made daily before dosage administration and at approximately 6 hours after dosage administration, except on the day of sacrifice. Body weights were recorded three times during the acclimation period and daily during the dosage period. Feed consumption values were recorded once during the acclimation period and weekly during the dosage period. Necropsies were performed on TD 15 between 0800 and 1100 hrs (2 to 3 hours after the last dosage). Trunk blood was collected from anesthetized rats following decapitation, prior to necropsy, for testosterone, luteinizing hormone (LH), thyroid stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), follicle stimulating hormone (FSH), estradiol, prolactin and dihydrotestosterone (DHT) analyses. The results of all hormone assays were considered reliable based on the assay performance results. The liver, testes (left and right), epididymides (paired), prostate (whole), seminal vesicles (with fluid and coagulating gland) and thyroid were weighed. The left and right testes were then weighed together and the accessory sex glands (ASG, entire prostate and seminal vesicles with fluid and coagulating gland combined) were weighed together. The right and left testis, right and left epididymis and the thyroid were individually identified and examined histopathologically.

RTP00004

• Linuron

Treatment with Linuron as high as 150 mg/kg/day, for 15 consecutive days, caused no mortality. Clinical observations of decreased motor activity, ataxia, comatose, lost righting reflex, unresponsive to touch, lacrimation, chromorhinorrhea, chromodacryorrhea, limited use of limbs, cold to touch, dehydration, impaired righting reflex, ptosis, perinasal substance, hunched posture, low carriage, excess salivation, perioral substance, ungroomed coat, sparse hair coat, bradypnea and scant feces were observed. Dosages of 50, 100 and 150 mg/kg/day caused significant reductions in food consumption values, body weight gains and terminal body weights. Absolute liver weights and accessory sex gland weights were significantly decreased in all treated groups; absolute weights of the epididymides and prostate were significantly decreased in the 100 and 150 mg/kg/day dosage groups; and seminal vesicles with fluid and coagulating gland weights were significantly decreased in the 150 mg/kg/day dosage group. These decreases in absolute organ weights are subject to change with body weights and thus may not signify specific endocrine-mediated effects. When the absolute organ weights were adjusted for its final body weight, mean relative right testis (119.1%, 117.4% and 124.4% of control), left testis (118.4%, 116.8% and 124.3% of control). paired testes (118.7%, 117.2% and 124.3% of control) were significantly increased in the 50, 100 and 150 mg/kg/day dosage groups, when compared to the vehicle control group values. These increases in relative testis weights, however, were likely secondary to the decreases in terminal body weights ⁽¹¹⁾. The relative thyroid gland (129.7%, 122.5% and 113.4% of control) weights were significantly increased in the 50 mg/kg/day dosage groups, when compared to the vehicle control group value. In addition, relative liver weights were significantly increased in the 150 mg/kg/day dosage group. Testosterone, T4 T3, and prolactin blood concentrations were significantly less than the vehicle control group in all three treated groups. LH blood concentrations in the 50 and 100 mg/kg/day dosage groups were significantly less than the vehicle control group and DHT levels in the 150 mg/kg/day were also significantly less than the vehicle control group. Estradiol levels were significantly greater than the vehicle control group in all three Linuron treated groups. No test substance-related microscopic changes were observed in the testes, epididymides or thyroids of the rats given the test substance as high as 150 mg/kg/day. All microscopic changes observed in the testes, epididymides and thyroids of rats treated with Linuron were considered to have occurred spontaneously and were not treatment-related.

• Phenobarbital

Treatment with 100 mg/kg/day, for 15 consecutive days, caused one death on test day 9. Clinical observations of ptosis, chromodacryorrhea, chromorhinorrhea, misaligned incisors, ataxia, impaired righting reflex, decreased motor activity, low carriage, limited use of limbs, hyperpnea, bradypnea, lost righting reflex, unresponsive to touch, comatose, lacrimation, no use of limbs, bent tail, cold to touch, dehydration, substance on penis, ungroomed coat, urine-stained abdominal fur, sparse hair coat and excess salivation (slight) were observed. Dosages of 100 mg/kg/day caused significant reductions in body weight gains, terminal body weights and food consumption. Absolute liver weights and thyroid gland weights were significantly increased in the 25, 50 and 100 mg/kg/day dosage groups. Relative liver and relative thyroid gland weights were significantly increased in rats in the 25, 50 and 100 mg/kg/day dosage groups. In addition, relative right, left, and paired testes weights were significantly increased in the 100 mg/kg/day dosage group. LH, T4, T3 and prolactin blood concentrations were significantly less than the vehicle control group, in all three treated groups. Testosterone, FSH and DHT blood concentrations were significantly decreased in the 50 and 100 mg/kg/day Phenobarbital groups when compared to the vehicle control group values. Estradiol and TSH levels were significantly increased compared to the vehicle control group values in all three treated groups. An increased incidence and severity of hypertrophy and hyperplasia of the thyroid follicular epithelium occurred in the 100 mg/kg/day dosage group and was considered to be treatment-related. No test substance-related microscopic changes were observed in the testes or epididymides of the rats given the test substance as high as 100 mg/kg/day. All microscopic changes observed in the testes and epididymides of rats treated were considered to have occurred spontaneously and were not treatment-related.

In conclusion, Linuron did produce the expected decreased blood testosterone, dihydrotestosterone, and luteinizing hormone levels, and increased blood estradiol levels. Also consistent with other EACs, Linuron increased thyroid weights and decreased thyroid hormone levels. Phenobarbital increased relative liver and thyroid weights; decreased blood levels of testosterone, FSH, T3 and T4, with the concomitant increase in thyroid stimulating hormone; and altered reproductive hormone concentrations (decreased serum dihydrotestosterone, prolactin, and luteinizing hormone and increased levels of estradiol). Phenobarbital also increased the incidence and severity of hypertrophy and hyperplasia of the thyroid follicular epithelium in rats given 100 mg/kg/day.

1. **OBJECTIVES**

The purpose of this project was designed to evaluate the ability of this assay to detect endocrine active compounds by measuring body and organ weight changes, histology, and changes in circulating concentrations of hormones and to demonstrate that three contract laboratories can adopt this assay by analyzing the repeatability of the results for each endpoint across laboratories.

The EPA has selected two test chemicals for evaluation in the 15-day intact male assay, and has selected all of the target doses (in mg/kg/day) for each of them. The two test chemicals and their target/mechanism of action are as follows: (1) Linuron - an anti-androgen through competitive binding to androgen receptors and (2) phenobarbital which indirectly alters thyroid function via enhanced thyroid hormone excretion $^{(1)}$.

2. DESCRIPTION OF TEST PROCEDURES

2.1. Conduct of Study

2.1.1. Sponsor

Battelle, 505 King Avenue, Columbus, Ohio 43201-2693

2.1.2. Testing Facility

Charles River Laboratories Preclinical Services, Pennsylvania, 905 Sheehy Drive, Building A, Horsham, Pennsylvania 19044-1241

2.1.3. Study Number

RTP00004

2.1.4. Sponsor's Work Assignment

WA 5-15

2.1.5. Purpose of the Study

The purpose of this study was designed to evaluate the responses of the adult male rat assay to two chemicals that have known endocrine activity as detected by primarily measuring body and organ weight changes, histology and changes in circulating concentrations of hormones.

2.1.6. **Regulatory Compliance**

The study was conducted in compliance with Good Laboratory Practice (GLP) regulations of the EPA⁽²⁾, the Japanese MAFF⁽³⁾ and the OECD⁽⁴⁾. Quality Assurance Unit findings derived from the inspections during the conduct of this study are documented and have been provided to the Study Director and the Testing Facility Management.

2.1.7. Ownership of the Study

The U.S. Environmental Protection Agency owns the study. All raw data, analyses, reports and preserved tissues are the property of the U.S. Environmental Protection Agency.

2.1.8. Sponsor's Representative

David P. Houchens, Ph.D. Address as cited above for Sponsor.

2.1.9. Study Director

Joseph W. Lech, B.S., LAT (Scientist) Address as cited previously for Testing Facility.

2.1.10. Technical Performance

2.1.10.1. Charles River Laboratories Preclinical Services, Pennsylvania

John F. Barnett, Sr., B.S. (Director of Operations) Gerard M. Zimmerman, ALAT (Study Supervisor) Daniel E. Fisher, B.S. (Laboratory Technician) James Maier, III, B.S. (Necropsy Laboratory Technician) Kevin E. Cegielski (Formulation Laboratory Technician)

2.1.10.2. Charles River Laboratories Preclinical Services, Massachusetts

Dorothy Savage, B.S. (Principal Investigator) - Formulation Analysis

2.1.10.3. Battelle

Paul I. Feder Ph.D. (Principal Investigator) - Report Table Preparation and Statistical Analysis

2.1.10.4. Subcontractor Facilities

W. Ray Brown, D.V.M., Ph.D., Diplomate, ACVP (Principal Investigator, Research Pathology Services, Inc., New Britain, PA) - Histopathology
Carol D. Sloan M.S., TS, LATG (Principal Investigator, RTI International, Research Triangle Park, NC) - Hormone Analyses

2.1.11. Report Preparation

Joseph W. Lech, B.S., LAT (Scientist) Cheryl L. Karvounis, A.S. (Data Management Specialist) Tsai-Liang Chiang, B.S. (Senior Report Administrator)

2.1.12. Report Review

Alan M. Hoberman, Ph.D., DABT (Director of Research) Valerie A. Sharper, M.S. (Principal Research Scientist)

2.1.13. Date Protocol Signed

7 October 2005

2.1.14. Dates of Technical Performance

Rat Arrival	18 OCT 05
Dosage Period (TD ^a 1 through 15)	
Replicate 1	25 OCT 05 - 08 NOV 05
Replicate 2	26 OCT 05 - 09 NOV 05
Replicate 3	27 OCT 05 - 10 NOV 05
Scheduled Sacrifice and Necropsy (TD 15)	
Replicate 1	08 NOV05
Replicate 2	09 NOV 05
Replicate 3	10 NOV 05
Experimental Start Date	25 OCT 05
Experimental Completion Date	27 MAR 06

2.1.15. Records Maintained

The original report, raw data and reserve samples of the bulk test substances, the prepared control substance and all data and records (including the Final report) that is a result of the hormonal analyses performed at RTI are retained in the archives of the Testing Facility. Any preserved tissues are retained in the archives of the Testing Facility for one year after the mailing of the draft final report, after which time the Sponsor will decide their final disposition. All residual formulations were discarded at the Testing Facility. Backup samples will be discarded at the Testing Facility following issue of the final report. The remaining unused bulk test substances were returned to the Sponsor on 14 November 2005.

2.2. Test Substances Information

NOTE: The Sponsor provided the test substances. Except for chemistry formulation and analyses, all tests, analyses and measurements were conducted by individuals without knowledge of the identity of the test substances. A key code for the dosage levels and concentrations were provided to the formulation and Quality Assurance personnel for the purpose of formulation preparation and auditing of critical phases, respectively. The identities of the test substances, dosage levels and concentrations were added to the protocol by amendment following the completion of the in-life phases of the study.

a. TD is used as an abbreviation for Test Day.

Test Substance (CAS No.)	Description	Dates Received	Storage Conditions	Lot Number	Expiration Date
Linuron	White	13 SEP 05	Room Temperature	348-8A	AUG 2008
(330-55-2) Phenobarbital	Powder White	28 SEP 05 13 SEP 05	Room Temperature	104K2600	FEB 2010
(50-06-6)	Powder	28 SEP 05			

2.2.1. Descriptions, Dates Received, Storage Conditions, Lot Numbers and Expiration Dates

2.2.2. Special Handling Instructions

Standard safety precautions (use of protective clothing, gloves, Tyvek[®] sleeves, dustmist/HEPA-filtered mask, safety goggles or safety glasses with side shields) were taken during formulation preparation and dosage. The bulk test substances were handled in a chemical fume hood.

2.2.3. Analysis of Activity

The test substances are marketed products. Therefore, appropriate documentation of the method of synthesis, fabrication or derivation of each of the test substances is on file and is available to the appropriate regulatory agencies should it be requested. Information to document or certify the identity, composition, strength and activity of each test substance was generated on study EDSP.515-01 and provided by the Sponsor to the Testing Facility. The results from these analyses are available in APPENDIX 4. A Certificate of Analysis for each test substance is available in APPENDIX 4, APPENDIX A. The expiration date of the Linuron and Phenobarbital is August 2008 and February 2010, respectively.

2.3. Control Substance Information

2.3.1. Description

Aqueous 0.25% (w/v) methylcellulose

2.3.2. Lot Numbers

Sponsor/Manufacturer's bulk lot number for prepared control substance: 062K0144

2.3.3. Dates Received and Storage Conditions

The prepared control substance, a clear, colorless liquid, was received from Sigma-Aldrich Co., St. Louis, Missouri, on 13 September 2005 and 28 September 2005 and stored refrigerated (2°C to 8°C).

2.3.4. Special Handling Instructions

Standard safety precautions (use of protective clothing, gloves, Tyvek[®] sleeves, dustmist/HEPA-filtered mask, safety goggles or safety glasses with side shields) were taken when handling the prepared control substance.

2.3.5. Analysis of Purity

Neither the Sponsor nor the Study Director was aware of any potential contaminants likely to have been present in the prepared control substance that would have interfered with the results of this study.

2.4. Test Substance Preparation and Storage Conditions

Suspensions were prepared at the Testing Facility once for a prestudy preparation and twice for administration. Prepared suspensions were stored refrigerated.

All dose levels, including the prepared control substance, were brought to room temperature while being stirred for approximately one hour before dosing. Each dosage level was stirred continuously using a magnetic stir bar and stir plate during sample collection and dosage administration.

Prior to study start, the Testing Facility performed a pre-study preparation and analysis of the test substance formulations in order to validate the transfer of information provided by the Sponsor regarding preparation and analysis of the test substance formulations.

		Date	Storage	Shipped To/Shipping	Date
Sample Type	Size	Retained	Conditions	Conditions	Shipped
Concentration and	1 mL	07 OCT 05	Refrigerated	Charles River Laboratories,	07 OCT 05
Homogeneity ^a (all		18 OCT 05		Preclinical Services,	18 OCT 05
levels				Massachusetts ^b /On cold	
				packs	
Bulk Test Substance	1 g	11 NOV 05	Room	Testing Facility Archives	23 NOV 05
Reserves			temperature		
G (101)		11 31011.05			
Control Substance	5 mL	11 NOV 05	Room	Testing Facility Archives	23 NOV 05
Reserve			temperature		

2.4.1. Sample Information

a. Quadruplicate samples were taken for each test substance from the top, middle and bottom of each concentration on the day prepared from both the prestudy preparation and from the first preparation of the formulations used for dosage administration in order to: 1) validate the transfer of information provided by the Sponsor from the pre-study preparation and 2) verify the concentration of the test substances in the control substance from the dosing formulations. Two samples from each quadruplicate set were shipped for analysis; the remaining samples are retained at the Testing Facility as backup samples and will be discarded following the issue of the final report.

b. Charles River Laboratories, Preclinical Services, Worcester, Massachusetts.

2.4.2. Formulation Analyses

Prepared formulations (Linuron and Phenobarbital) used for dosage administration were analyzed for concentration and homogeneity. The results of these analyses found the samples to be within the acceptable limits of $\pm 15\%$ and $\leq 5\%$ RSD. The results of the concentration and homogeneity analyses for the pre-study preparation and the prepared formulations used on study are available in APPENDIX 5. Based on the results of these analyses and the lack of any dosing errors, all rats are believed to have been dosed properly at the correct concentration with homogeneous suspensions. Results of the homogeneity and concentration analyses from the first preparation of the test substances that were used for administration during the study were approved by the Study Director before administration. Information to document the stability of the prepared formulations bracketing the range of concentrations used in this study was provided by the Sponsor and is available in APPENDIX 4.

2.5. Test System

2.5.1. Species

Rat

2.5.2. Strain

Crl:CD(SD)

2.5.3. Supplier (Source)

Charles River Laboratories, Inc., Raleigh, NC

2.5.4. Sex

Male

2.5.5. Rationale for Test System

The Crl:CD(SD) rat was selected as the Test System because of known response to toxic effects on reproductive capacity and history of use as a rodent species in these evaluations⁽⁵⁻⁷⁾.

2.5.6. Test System Data

Number of Rats	115
Approximate Date of Birth	17 AUG 05
Approximate Age at Arrival	63 days
Weight (g) the Day after Arrival	220.9 - 301.0
Weight (g) at Study Assignment	285.8 - 351.2

2.5.7. Method of Randomization

Upon arrival, rats were assigned to individual housing on the basis of computer-generated random units.

After a minimum of one week of acclimation, in which the rats were monitored for general health daily, rats were selected for study on the basis of physical appearance and body weights recorded during acclimation. During the acclimation period all rats were examined by the laboratory veterinarian for release on study. The rats were assigned to dosage groups based on computer-generated (weight-ordered) randomization procedures.

In order to accommodate the necropsy schedule, rats were assigned to three replicates that began dosing and were sacrificed on consecutive days.

2.5.8. System of Identification

Rats were assigned temporary numbers at receipt and given unique permanent identification numbers when assigned to the study. Rats were permanently identified using Monel[®] self-piercing ear tags (No. MSPT 20101, Gey Band and Tag Co., Inc., Norristown, PA). Cage tags were marked with the study number, permanent rat number, sex, generation and group number.

2.6. Husbandry

2.6.1. Research Facility Registration

USDA Registration No. 14-R-0144 under the Animal Welfare Act, 7 U.S.C. 2131 et seq.

2.6.2. Study Room

The study room was maintained under conditions of positive airflow relative to a hallway and independently supplied with a minimum of ten changes per hour of 100% fresh air that had been passed through 99.97% HEPA filters. Room temperature and humidity were monitored constantly throughout the study. Room temperature was targeted at 64°F to 79°F (18°C to 26°C); relative humidity was targeted at 30% to 70%^a.

2.6.3. Housing

During the acclimation and study periods, the rats will be individually housed in stainless steel, wire-bottomed cages. All cage sizes and housing conditions were in compliance with the *Guide for the Care and Use of Laboratory Animals*⁽⁸⁾.

a. See APPENDIX 6 (ENVIRONMENTAL AND HUSBANDRY REPORTS).

2.6.4. Light

An automatically controlled 12-hour light:12-hour dark fluorescent light cycle was maintained. Each dark period began at 1800 hours. The lights were turned on 5 to 10 minutes early on the days of sacrifice in order to facilitate dosing, blood collection and/or the necropsy schedule.

2.6.5. Sanitization

Cage pan liners were changed at least three times weekly. Cages were changed approximately every other week.

2.6.6. Diet

Rats were given Harlan's Teklad 2018CM meal feed (a low phytoestrogen diet), available *ad libitum* from individual feeders.

2.6.7. Diet Analysis

Analyses were performed by NP Analytical Laboratories, St. Louis, MO. No contaminants at levels exceeding the maximum concentration limits for certified feed or deviations from expected nutritional requirements were detected by these analyses.

The concentrations of genistein equivalents (genistein plus 0.8 x daidzein) were $[115 + (0.8 \times 120) = 211 \text{ ppm}]$ which is $\leq 300 \text{ ppm}$ per lot. The diet was analyzed by separating the conjugated and unconjugated (aglycone forms) of genistein, daidzein, and glycitein in the diet using high-pressure liquid chromatography (HPLC). Each of those forms was then converted into aglycone equivalents⁽⁹⁾. Copies of the results of the feed analyses are available in the raw data and in APPENDIX 6.

Neither the Sponsor nor the Study Director was aware of any potential contaminants likely to have been present in the feed that would have interfered with the results of this study.

2.6.8. Water

Local water that had been processed by passage through a reverse osmosis membrane (R.O. water) was available to the rats *ad libitum* from an automatic watering access system and/or individual water bottles attached to the cages. The water bottles used for this study are composed Fortiflex[®] B53-35H-100, which is a high density polyethylene copolymer developed for injection blow molding. The stoppers used for the bottles were composed of either black rubber or neoprene and the sipper tubes were composed of stainless steel. Chlorine was added to the processed water as a bacteriostat.

2.6.9. Water Analysis

The processed water is analyzed twice annually for possible chemical contamination (Lancaster Laboratories, Lancaster, PA) and monthly for possible bacterial contamination (QC Laboratories, Southampton, PA). Copies of the results of the water analyses are available in the raw data and in APPENDIX 6.

Neither the Sponsor nor the Study Director was aware of any potential contaminants likely to have been present in the water that would have interfered with the results of this study.

2.7. Methods

Dosage Group	Number of Rats	Test Substance/() ^a	Dosage (mg/kg/day) ^b	Concentration (mg/mL)	Dosage Volume (mL/kg)	Assigned Rat Numbers
1	15	Aqueous 0.25% (w/v) Methylcellulose (A)	0 (Vehicle)	0	5	10301 - 10315
2	15	Linuron (B)	50	10	5	10316 - 10330
3	15	Linuron (C)	100	20	5	10331 - 10345
4	15	Linuron (D)	150	30	5	10346 - 10360
5	15	Phenobarbital (E)	25	5	5	10361 - 10375
6	15	Phenobarbital (F)	50	10	5	10376 - 10390
7	15	Phenobarbital (G)	100	20	5	10391 - 10405

2.7.1. Dosage Administration

a. Assigned Group Letter

b. The test substances were considered 100% active for the purpose of dosage calculations.

2.7.2. Rationale for Dosage Selection

Chemicals selected for this phase of validation were chosen to represent a couple of different modes of action. Each of the test chemicals has previously been run in the adult male assay with results documented in a review publication⁽¹⁰⁾. Based on the results of these studies, the high dosage level is not expected to exceed the maximum tolerated dose (MTD; body weight at necropsy within approximately 10% of controls). The lower dosage levels were selected to assess dose-response relationships.

2.7.3. Route and Rationale for Route of Administration

The oral (gavage) route was selected for use because: 1) in comparison with the dietary route, the exact dosage can be accurately administered; and 2) it is one possible route of human exposure.

2.7.4. Frequency of Administration

Male rats were administered one of the test substances and/or control substance once daily for 15 days. The first day of dosage for each replicate was designated Test Day 1

(TD 1) of the study. Rats were sacrificed on the day of the last dosage (TD 15), 2 to 3 hours after the last dosage.

Daily dosages were based on the daily body weight, except on TD 15, which used the previous day's body weight. On TDs 1 through 14, dosing of rats was between 0600 and 0900 hrs. On TD 15, dosing of the rats started at approximately 0600 hrs so that rats could have blood collected and be necropsied between 0800 and 1100 hrs.

2.7.5. Method of Study Performance

NOTE: Test substances provided by the Sponsor were identified by code. Except for chemistry formulation and prepared formulation analyses, all tests, analyses and measurements were conducted by individuals without knowledge of the identity of the test substances.

Rats were observed for viability at least twice each day of the study and for clinical observations and general appearance daily during the acclimation period. Observations for clinical signs and deaths were made daily before dosage administration and at approximately 6 hours after dosage administration, except on the day of sacrifice^a.

Body weights were recorded three times during the acclimation period and daily during the dosage period. Feed consumption values were recorded once during the acclimation period and weekly during the dosage period.

2.7.6. Gross Necropsy

Gross lesions were retained in neutral buffered 10% formalin. Unless specifically cited below, all other tissues were discarded. Representative photographs of gross lesions are available in the raw data.

All rats were moved from the study room to the necropsy area and held for at least one hour prior to necropsy to minimize potential stress-induced changes in hormone levels related to cage transport. On TD 15 rats were anesthetized by exposure to carbon dioxide for no more than one minute and sacrificed by decapitation^b. Rats were sacrificed between 0800 and 1100 hrs (2 to 3 hours after the last dosage).

Rats were sacrificed and examined for gross lesions. Gross necropsy included an initial physical examination of external surfaces and all orifices, as well as an internal examination of tissues and organs *in situ*. In addition, the cranial, thoracic and abdominal cavities were examined. Tissue trimming and histopathology were performed under the supervision of or by a Board-Certified Veterinary Pathologist.

a. See PROTOCOL DEVIATIONS, item 1.

b. See PROTOCOL DEVIATIONS, item 2.

The liver, testes (left and right), epididymides (paired), prostate (whole), seminal vesicles (with fluid and coagulating gland) and thyroid were weighed (to the nearest 0.0001 g). The left and right testes were then weighed together and the accessory sex glands (ASG, entire prostate and seminal vesicles with fluid and coagulating gland combined) were weighed together. The right and left testes were fixed in Bouin's solution for 24 hours before being rinsed and retained in 70% alcohol^a. The right and left epididymides, prostate and liver were retained in neutral buffered 10% formalin. The thyroid and the surrounding tissue were removed from the neutral buffered 10% formalin after at least 48 hours of fixation^b. The thyroid was then dissected under a dissecting microscope by one individual in order to reduce the variability of the dissection procedure and hence, reduce the variability of the thyroid weights^c.

The dose groups but not the compounds were known to the pathologist during evaluation. Histopathological examination was performed on all control and high dose rats of each test substance. The right testis and left testis, the right epididymis and left epididymis and the thyroid were individually identified and examined histopathologically and were routinely processed, embedded in paraffin, sectioned at 5 microns and stained with hematoxylin and eosin^d. Summaries of the histological findings are available in APPENDIX 7.

The rat that died was examined for cause of death on the day the observation was made. The rat was necropsied and examined to the extent possible as described above, but the tissues were histologically examined^e.

2.7.6.1. Hormone Analysis

Blood samples (approximately 9 mL) for evaluation of serum hormones were collected from trunk blood immediately following sacrifice. The time of sample collection was documented in the raw data. Blood was collected and immediately placed into serum separator tubes and allowed to clot at room temperature in order to yield approximately 4500 mcL of serum, to be aliquotted into nine vials of approximately 500 mcL each^f. The sequence in which the hormones were assayed was testosterone, luteinizing hormone (LH), thyroid stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), follicle stimulating hormone (FSH), estradiol, prolactin and dihydrotestosterone (DHT). Serum samples were immediately frozen on dry ice and maintained frozen (-68°C to -78°C) until analysis by RTI International, Research Triangle Park, North Carolina. Assay performance criteria and results of serum sample analyses are presented in APPENDIX 8.

a. See PROTOCOL DEVIATIONS, item 3.

b. See PROTOCOL DEVIATIONS, item 4.

c. See PROTOCOL DEVIATIONS, item 5.

d. See PROTOCOL DEVIATIONS, item 6.

e See PROTOCOL DEVIATIONS, item 7.

f. See PROTOCOL DEVIATIONS, item 8.

2.7.7. Data Collection and Statistical Analyses

Data generated during the course of this study were recorded either by hand or using the *Argus Automated Data Collection and Management System* and the *Vivarium Temperature and Relative Humidity Monitoring System*. All data were tabulated and summarized using the *Argus Automated Data Collection and Management System*, the *Vivarium Temperature and Relative Humidity Monitoring System, Microsoft*[®] *Excel* (part of Microsoft[®] Office 97/2000/XP), Quattro Pro 8 and/or *The SAS System* (version 6.12).

2.7.8. Statistics

Individual clinical observation and necropsy/mortality tables were generated by the Testing Facility. This information was not summarized or statistically analyzed.

The Sponsor prepared the report tables and performed the statistical analyses (daily body weight and body weight change, feed consumption, hormonal analysis and organ weights). For the results of these analyses see APPENDIX 9. The Sponsor's QAU was responsible for auditing the report tables and statistical analysis generated by Battelle and that all applicable GLP regulations were followed in the conduct.

3. **RESULTS**

3.1. Mortality and Clinical Observations (Individual Data - APPENDICES 1 and 2)

3.1.1. Mortality

One rat in the 100 mg/kg/day Phenobarbital group was found dead during morning examinations for viabilities on test day 9 (TD 9). Clinical observations observed for this rat included bradypnea, dehydration, limited use of hindlimbs, ptosis, lacrimation, ataxia, impaired righting reflex, lost righting reflex, decreased motor activity and low carriage. Dehydration and lacrimation were confirmed at necropsy. This death was considered treatment-related.

All other Linuron and Phenobarbital treated rats survived until terminal sacrifice.

3.1.2. Clinical Observations

3.1.2.1. Vehicle

There were no treatment-related clinical observations observed in the rats given the vehicle (0.25% methylcellulose). A missing/broken incisor, sparse hair coat and localized alopecia on the limbs occurred for two different rats.

3.1.2.2. Linuron

Sparse hair coat was observed in one rat in each of the 50, 100 and 150 mg/kg/day dosage groups. Ungroomed coat was observed in one rat in the 100 mg/kg/day dosage group. Decreased motor activity, ataxia, lost righting reflex, unresponsive to touch, lacrimation, chromorhinorrhea, chromodacryorrhea, limited use of limbs, cold to touch, and dehydration were observed in one or more than one rat in the 100 and/or 150 mg/kg/day dosage groups of rats treated with Linuron. In addition, impaired righting reflex, comatose, ptosis, perinasal substance, hunched posture, low carriage, excess salivation, perioral substance, bradypnea and scant feces were observed in one or more than one rat in the 150 mg/kg/day dosage group.

3.1.2.3. Phenobarbital

Ptosis was observed in one or more rats in the 25, 50 and 100 mg/kg/day dosage group rats treated with Phenobarbital. Chromodacryorrhea and chromorhinorrhea were observed in one or more rats in the 25 and 100 mg/kg/day dosage group rats treated with Phenobarbital. Incisor(s) misaligned was observed in one rat in the 25 mg/kg/day dosage group. Ataxia, impaired righting reflex, decreased motor activity, low carriage, limited use of limbs, and bradypnea were observed in one or more than one rat in the 50 and/or 100 mg/kg/day dosage groups treated with Phenobarbital. In addition, lost righting reflex, unresponsive to touch, comatose, lacrimation, no use of limbs, bent tail, cold to

touch, dehydration, substance on penis, hyperpnea, ungroomed coat, urine-stained abdominal fur and sparse hair coat were observed in one or more than one rat in the 100 mg/kg/day dosage group. Excess salivation (slight) was observed in two and one rats in the 25 and 50 mg/kg/day dosage groups, respectively.

3.2.Body Weight Gains
(APPENDIX 9 - Figures 1 through 5, Summaries - Tables 1 through 3)

3.2.1. Linuron

Body weight gains were significantly decreased $(p \le 0.05/8)^a$ at 50, 100 and 150 mg/kg/day in rats treated with Linuron over test days (TDs) 1 to 8, 8 to 15, and overall TDs 1 to 15.

3.2.2. Phenobarbital

Body weight gains were significantly decreased ($p \le 0.05/8^a$) at 100 mg/kg/day in rats treated with Phenobarbital over test days TDs 1 to 8, and overall TDs 1 to 15. Body weight gains in the 25 and 50 mg/kg/day dosage groups were not significantly different when compared to the vehicle control group values during any tabulated intervals.

3.3. Terminal Body Weights and Organ Weights (APPENDIX 9 - Figures 6 and 10 through 27, Summaries - Tables 2 through 5)

3.3.1. Linuron

Average final body weights were 403.4g, 353.1g, 344.5g and 321.2g for the vehicle control group and the 50, 100 and 150 mg/kg/day Linuron groups, respectively. Terminal body weights in the 50, 100 and 150 mg/kg/day dosage groups were 87.5%, 85.4% and 79.6%, respectively, of the vehicle control final body weights and were significantly decreased ($p \le 0.05/8^{a}$) in the 50, 100 and 150 mg/kg/day Linuron groups.

Absolute liver weights (85.0%, 87.8% and 87.1% of control) and accessory sex glands (88.4%, 85.3% and 72.2% of control) were significantly decreased ($p \le 0.05$ or $p \le 0.05/8^a$) in the 50, 100 and 150 mg/kg/day dosage groups, respectively; absolute weights of the paired epididymides (94.5%, 92.9% and 86.5% of control) and prostate (90.6%, 83.9% and 74.0% of control) were significantly decreased ($p \le 0.05$ or $p \le 0.05/8^a$) in the 100 and 150 mg/kg/day dosage groups, respectively; and seminal vesicles with fluid and coagulating gland (86.6%, 86.4% and 70.7% of control) were significantly decreased ($p \le 0.05/8^a$) in the 150 mg/kg/day dosage group of Linuron, when compared to the vehicle control group values. Absolute weights of the right testis (104.2%, 100.6% and 99.3% of control), left testis (103.5%, 100.0% and 99.2% of control), paired testes (103.8%, 100.3% and 99.2% of control) and thyroid gland (114.2%, 105.4% and 90.2% of control)

a. A Bonferroni adjusted *p*-level.

weights were not significantly different when compared to the vehicle control group values.

When the absolute organ weight of a rat was adjusted for its terminal body weights, mean relative right testis (119.1%, 117.4% and 124.4% of control), left testis (118.4%, 116.8% and 124.3% of control), paired testes (118.7%, 117.2% and 124.3% of control) were significantly increased ($p \le 0.05/8^a$) in the 50, 100 and 150 mg/kg/day dosage groups, when compared to the vehicle control group values. The relative thyroid gland (129.7%, 122.5% and 113.4% of control) weights were significantly increased ($p \le 0.05$) in the 50 mg/kg/day dosage groups, when compared to the vehicle control group values. In addition, relative liver weights (97.3%, 102.8% and 109.3% of control) were significantly increased ($p \le 0.05/8^a$) in the 150 mg/kg/day dosage group only when compared to the vehicle control group values. Relative weights of the paired epididymides (107.9%, 108.4% and 108.1% of control), prostate (102.7%, 96.8% and 91.1% of control), seminal vesicles with fluid and coagulating gland (98.1%, 100.0% and 88.0% of control) and accessory sex glands (100.2%, 98.5% and 89.4% of control) were not significantly different when compared to the vehicle control group values.

3.3.2. Phenobarbital

Average final body weights were 403.4g, 412.0g, 407.5g and 381.4g for the vehicle control group and the 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. Terminal body weights in the 25, 50 and 100 mg/kg/day dosage groups were 102.1%, 101.0% and 94.5%, respectively, of the vehicle control final body weights and were significantly decreased ($p \le 0.05$) in rats in the 100 mg/kg/day dosage group when compared to the vehicle control group value. There were no significant differences in terminal body weights between the 25 and 50 mg/kg/day Phenobarbital treated groups and the vehicle control group.

Absolute liver weights (129.4%, 134.5% and 145.4% of control) and thyroid gland weights (131.2%, 123.2% and 124.5% of control) were significantly increased ($p \le 0.05$ and/or $p \le 0.05/8^a$) in rats in the 25, 50 and 100 mg/kg/day dosage group. Absolute weights of the right testis (101.2%, 103.3% and 103.4% of control), left testis (101.6%, 100.6% and 103.2% of control), paired testes (101.4%, 101.9% and 103.3% of control), paired epididymides (97.3%, 101.0% and 102.6% of control), prostate (103.0%, 109.0% and 94.2% of control), seminal vesicles with fluid and coagulating gland (102.3%, 105.5% and 100.0% of control) and accessory sex glands (102.6%, 107.1% and 97.4% of control) were not significantly different when compared to the vehicle control group values.

When the absolute organ weight of a rat was adjusted for its terminal body weight, mean relative liver weights (126.7%, 133.2% and 153.7% of control) and relative thyroid gland weights (128.2%, 121.6% and 130.8% of control) were significantly increased ($p \le 0.05$ or $p \le 0.05/8^a$) in rats in the 25, 50 and 100 mg/kg/day dosage groups, respectively, when

a. A Bonferroni adjusted *p*-level.

compared to the vehicle control group values. In addition, relative right testis weights (99.1%, 102.1% and 109.1% of control), left testis weights (99.6%, 99.4% and 109.0% of control) and paired testes weights (99.3%, 100.7% and 109.0% of control) were significantly increased ($p \le 0.05$) in the 100 mg/kg/day dosage group only when compared to the vehicle control group values. Relative weights of the paired epididymides (95.4%, 99.9% and 108.4% of control), prostate (100.4%, 107.3% and 99.0% of control), seminal vesicles with fluid and coagulating gland (100.7%, 104.7% and 104.6% of control) and accessory sex glands (100.6%, 105.8% and 102.1% of control) were not significantly different when compared to the vehicle control group values.

3.4. Food Consumption (APPENDIX 9 - Figures 7 through 9, Summaries - Tables 1 through 3)

3.4.1. Linuron

Food consumption values were significantly decreased ($p \le 0.05$ or $p \le 0.05/8^a$) at 50, 100 and 150 mg/kg/day in rats treated with Linuron over test days (TDs) 1 to 8, 8 to 15, and overall TDs 1 to 15, when compared to the vehicle control group values.

3.4.2. Phenobarbital

Food consumption values were significantly decreased ($p \le 0.05$ or $p \le 0.05/8^a$) at 100 mg/kg/day in rats treated with Phenobarbital over test days TDs 1 to 8, and overall TDs 1 to 15 when compared to the vehicle control group values. Feed consumption values in the 25 and 50 mg/kg/day dosage groups were not significantly different when compared to the vehicle control group values during any tabulated intervals.

3.5. Reproductive Hormone Analyses (APPENDIX 9 - Figures 28 through 36, Summary - Tables 6 and 7)

3.5.1. Linuron

Mean testosterone blood concentrations were 9.93, 4.83, 3.98 and 3.28 ng/mL (48.6%, 40.1% and 33.0% of control) for the vehicle control, 50, 100 and 150 mg/kg/day Linuron groups, respectively. All three dosage groups treated with Linuron were significantly $(p \le 0.05 \text{ or } p \le 0.05/8^{a})$ decreased when compared to the vehicle control group value.

Mean luteinizing hormone (LH) blood concentrations were 2.18, 1.75, 1.78 and 1.86 ng/mL (80.5%, 81.8% and 85.6% of control) for the vehicle control and the 50, 100 and 150 mg/kg/day Linuron groups, respectively. Only the 50 and 100 mg/kg/day dosage groups treated with Linuron were significantly ($p \le 0.05$) decreased when compared to the vehicle control group value.

a. A Bonferroni adjusted *p*-level.

Mean thyroid stimulating hormone (TSH) blood concentrations were 13.10, 9.84, 12.21 and 10.46 ng/mL (75.2%, 93.2% and 79.9% of control) for the vehicle control and the 50, 100 and 150 mg/kg/day Linuron groups, respectively. There were no significant differences in the blood levels between the vehicle control and the 50, 100 and 150 mg/kg/day Linuron groups.

Mean thyroxine (T4) blood concentrations were 4.73, 3.10, 1.82 and 1.54 μ g/dL (65.5%, 38.5% and 32.5% of control) for the vehicle control and the 50, 100 and 150 mg/kg/day Linuron groups, respectively. All three dosage groups treated with Linuron were significantly ($p \le 0.05/8^{a}$) decreased when compared to the vehicle control group value.

Mean triiodothyronine (T3) blood concentrations were 81.65, 68.20, 65.62 and 64.47 ng/dL (83.5%, 80.4% and 79.0% of control) for the vehicle control and the 50, 100 and 150 mg/kg/day Linuron groups, respectively. All three dosage groups treated with Linuron were significantly ($p \le 0.05/8^{a}$) decreased when compared to the vehicle control group value.

Mean follicle stimulating hormone (FSH) blood concentrations were 14.81, 14.27, 15.62 and 15.91 ng/mL (96.4%, 105.5% and 107.4% of control) for the vehicle control and the 50, 100 and 150 mg/kg/day Linuron groups, respectively. There were no significant differences in the blood levels between the vehicle control and the 50, 100 and 150 mg/kg/day Linuron groups.

Mean estradiol blood concentrations were 25.40, 33.20, 40.95 and 37.74 pg/mL (130.7%, 161.2% and 148.6% of control) for the vehicle control, 50, 100 and 150 mg/kg/day Linuron groups, respectively. All three dosage groups treated with Linuron were significantly ($p \le 0.05/8^{a}$) increased when compared to the vehicle control group value.

Mean prolactin blood concentrations were 36.48, 4.74, 5.57 and 2.02 ng/mL (13.0%, 15.2% and 5.5% of control) for the vehicle control, 50, 100 and 150 mg/kg/day Linuron groups, respectively. All three dosage groups treated with Linuron were significantly $(p \le 0.05/8^{a})$ decreased when compared to the vehicle control group value.

Dihydrotestosterone (DHT) concentrations were 487.73, 345.97, 357.77 and 299.87 pg/mL for the vehicle control, 50, 100 and 150 mg/kg/day Linuron groups, respectively; DHT levels were decreased to 70.9%, 73.4% and 61.5% of control values in the 50, 100 and 150 mg/kg/day Linuron groups and were significantly ($p \le 0.05$) decreased in the 150 mg/kg/day Linuron group.

The results of all hormone assays (testosterone, LH, TSH, T4, T3, FSH, estradiol, prolactin and DHT) were considered reliable based on the assay performance results which are available in APPENDIX 8.

a. A Bonferroni adjusted *p*-level.

3.5.2. Phenobarbital

Mean testosterone blood concentrations were 9.93, 6.07, 3.50 and 2.19 ng/mL (61.2%, 35.2% and 22.1% of control) for the vehicle control, 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. The 50 and 100 mg/kg/day Phenobarbital dosage groups were significantly ($p \le 0.05/8^{a}$) decreased when compared to the vehicle control group value.

Mean luteinizing hormone (LH) blood concentrations were 2.18, 1.81, 1.44 and 1.56 ng/mL (83.1%, 65.9% and 71.4% of control) for the vehicle control and the 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. All three dosage groups treated with Phenobarbital were significantly ($p \le 0.05$ or $p \le 0.05/8^{a}$) decreased when compared to the vehicle control group value.

Mean thyroid stimulating hormone (TSH) blood concentrations were 13.10, 23.35, 25.74 and 29.73 ng/mL (178.3%, 196.6% and 227.0% of control) for the vehicle control and the 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. All three dosage groups treated with Phenobarbital were significantly ($p \le 0.05/8^{a}$) increased when compared to the vehicle control group value.

Mean thyroxine (T4) blood concentrations were 4.73, 3.75, 3.64 and 2.62 μ g/dL (79.3%, 77.0% and 55.4 % of control) for the vehicle control and the 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. All three dosage groups treated with Phenobarbital were significantly ($p \le 0.05/8^{a}$) decreased when compared to the vehicle control group value.

Mean triiodothyronine (T3) blood concentrations were 81.65, 64.85, 65.41 and 56.15 ng/dL (79.4%, 80.1% and 68.8% of control) for the vehicle control and the 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. All three dosage groups treated with Phenobarbital were significantly ($p \le 0.05/8^a$) decreased when compared to the vehicle control group value.

Mean follicle stimulating hormone (FSH) blood concentrations were 14.81, 13.84, 12.46 and 12.28 ng/mL (93.5%, 84.1% and 82.9% of control) for the vehicle control and the 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. The 50 and 100 mg/kg/day dosage groups treated with Phenobarbital were significantly ($p \le 0.05/8^a$) decreased when compared to the vehicle control group value

Mean estradiol blood concentrations were 25.40, 33.71, 36.52 and 38.52 pg/mL (132.7%, 143.8% and 151.6% of control) for the vehicle control, 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. All three dosage groups treated with Phenobarbital were significantly ($p \le 0.05/8^{a}$) increased when compared to the vehicle control group value.

a. A Bonferroni adjusted *p*-level.

Mean prolactin blood concentrations were 36.48, 14.05, 8.12 and 4.22 ng/mL (38.5%, 22.3% and 11.6% of control) for the vehicle control, 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively. All three dosage groups treated with Phenobarbital were significantly ($p \le 0.05$ or $p \le 0.05/8^{a}$) decreased when compared to the vehicle control group value.

Dihydrotestosterone (DHT) blood concentrations were 487.73, 389.62, 301.38 and 248.85 pg/mL (79.9%, 61.8% and 51.0% of control) for the vehicle control, 25, 50 and 100 mg/kg/day Phenobarbital groups, respectively; DHT blood levels were significantly ($p \le 0.05$ or $p \le 0.05/8^{a}$) decreased in the 50 and 100 mg/kg/day Phenobarbital groups when compared to the vehicle control group value.

The results of all hormone assays (testosterone, LH, TSH, T4, T3, FSH, estradiol, prolactin and DHT) were considered reliable based on the assay performance results which are available in APPENDIX 8.

3.6. Gross Necropsy (Individual Data - APPENDIX 2)

3.6.1. Vehicle

All tissues appeared normal at terminal necropsy in the vehicle control group rats.

3.6.2. Linuron

Small seminal vesicles occurred in one, three, and six rats in the 50, 100 and 150 mg/kg/day dosages of Linuron, respectively. The right lobe of the thymus appeared red once in each of the 100 and 150 mg/kg/day dosage group rats and the spleen appeared black in one 150 mg/kg/day group rat. In addition, the accessory sex glands and prostrate appeared small in one 150 mg/kg/day group rat. All other tissues appeared normal at terminal necropsy.

3.6.3. Phenobarbital

Small seminal vesicles occurred in two rats in the 100 mg/kg/day dosage of Phenobarbital. All other tissues appeared normal at terminal necropsy.

3.7. Histopathology (APPENDIX 7)

3.7.1. Vehicle

There were no treatment-related microscopic changes observed in the testes, epididymides or thyroids of the rats given the vehicle (0.25% methylcellulose). Two control rats had minimal or mild hypertrophy of the thyroid follicular epithelium, which does occasionally occur spontaneously in male rats.

3.7.2. Linuron

There were no treatment-related microscopic changes observed in the testes, epididymides or thyroids of the rats given 150 mg/kg/day of Linuron.

3.7.3. Phenobarbital

Microscopic examination of the thyroid of the rats given 100 mg/kg/day of Phenobarbital revealed an increased incidence and severity (minimal to moderate) of hypertrophy and hyperplasia of the thyroid follicular epithelium. Histomorphologically, the change in the thyroid was characterized by increased size of the follicular epithelium (hypertrophy) and an increase in the amount of follicles and cellularity of the follicles (hyperplasia). There were no treatment-related microscopic changes observed in the testes or epididymides of the rats given the 100 mg/kg/day of Phenobarbital.

4. **DISCUSSION**

The 15-day intact male assay was developed by DuPont Haskell Laboratory^(11, 12) as one component of a Tier I screening strategy for identifying endocrine-active compounds (EAC). In this report, two EACs (Linuron and Phenobarbital), each at three dose levels, were examined in order to evaluate their sensitivity in the assay. The EAC test compounds for this assay were the weak antiandrogenic herbicide, Linuron, and the thyroid modulating barbiturate, Phenobarbital, that works by enhancing thyroid hormone excretion. The endpoints evaluated included final body weight and organ weights (liver, thyroid gland, testes, epididymides, prostate, seminal vesicles with fluid, accessory sex gland), serum hormone concentrations (testosterone, estradiol, dihydrotestosterone, luteinizing hormone, follicle stimulating hormone, prolactin, T3, T4, TSH), and histopathology (testis, epididymis, and thyroid gland). For each compound, the results were compared to the expected pattern of responses based on the known mechanism of action.

4.1. General Toxicity

All dosages of Linuron used in these studies caused significant reductions in food consumption and body weight gains and terminal body weights, albeit treatment with Linuron as high as 150 mg/kg/day, for 15 consecutive days, caused no mortality. The

low dosage of Linuron (50 mg/kg/day) did not cause severe or significant adverse clinical observations. The decrease in absolute liver weight with Linuron treatment was likely secondary to body weight changes given that the relative liver weights were significantly increased at 150 mg/kg/day Linuron

Treatment with Phenobarbital at 100 mg/kg/day, for 15 consecutive days, caused one death, severe adverse clinical observations, significant reductions in body weight gains, terminal body weights and food consumption values. Altered clinical observations were seen at the middle dose level, 50 mg/kg/day, but there were no effects on body weight, body weight gains or food consumption values. Absolute liver weights and thyroid gland weights were significantly increased in rats in the 25, 50 and 100 mg/kg/day Phenobarbital dosage groups. Relative liver and relative thyroid gland weights were significantly increased in rats in the 25, 50 and 100 mg/kg/day Phenobarbital dosage groups. In addition, relative right, left, and paired testes weights were significantly increased in the 100 mg/kg/day Phenobarbital dosage group. Increases in relative weights of these organs were not surprising given that the weights of these organs are conserved with minor body weight changes.

Table A depicts the number/percentage of rats with a specific percent decrease in body weight of each rat compared to the control group mean body weights. The number of rats with larger decreases in body weight increased with dose for Linuron, demonstrating a dose response to decreases in body weight. All fifteen rats exposed to 150 mg/kg/day Linuron experienced greater than 11% reduction in total body weight, compared to the control group.

This decrease in body weight dose response does not occur for Phenobarbital. Approximately 73% of the 15 rats exposed to 100 mg/kg/day Phenobarbital experienced a total body weight loss of less than 10%.

Group Number	Treatment	Total Number in Group	≤10% Decrease in BW from Control Group n (%)	11-15% Decrease in BW from Control Group n (%)	16-20% Decrease in BW from Control Group n (%)	>20 Decrease in BW from Control Group n (%)
2	Linuron 50 MKD	15	5 (33.3%)	7 (46.7%)	1 (6.7%)	2 (13.3%)
3	Linuron 100 MKD	15	3 (20%)	4 (26.7%)	7 (46.7%)	1 (6.7%)
4	Linuron 150 MKD	15	0 (0%)	5 (33.3%)	3 (20%)	7 (46.7%)
5	Phenobarbital 25 MKD	15	13 (86.7%)	2 (13.3%)	0 (0%)	0 (0%)
6	Phenobarbital 50 MKD	15	14 (93.3%)	1 (6.7%)	0 (0%)	0 (0%)
7	Phenobarbital 100 MKD	14 ^a	11 (78.6%)	2 (14.3%)	0 (0%)	1 (7.1%)

Table A. Body Weight (BW) Decreases from the Control Group Mean at TD 15

a. Male rat 10396 was found dead on test day 9.

4.2. Endocrinological and Thyroid Modulation Effects

The two compounds selected were both endocrine-active compounds (EACs). Linuron is a weak antiandrogen and Phenobarbital enhances thyroid hormone excretion.

Table B depicts the organ weight averages normalized by the control group mean organ weights. As expected, the accessory sex gland absolute weights were significantly decreased in all Linuron treatment groups but the relative accessory sex gland weights were not statistically different from control values. When the relative accessory sex gland weights of the rats exposed to Linuron were normalized to control values, only values for the rats in the 150 mg/kg/day Linuron exposure group were reduced (89.4% of controls). Phenobarbital exposure had no effect on normalized relative accessory sex gland weights (all groups were 100-106% of controls).

 Table B. Organ Weight Averages - Percent (Absolute/Relative) of the Vehicle

 Control Group

Group	Treatment	Liver (Relative)	Paired Testes (Absolute)	Paired Epididymides (Absolute)	Prostate (Relative)	Seminal Vesicles with Fluid and Coagulating gland (Relative)	Accessory Sex Gland (Relative)	Thyroid (Relative)
2	Linuron 50 MKD	97.3	103.8	94.5	102.7	98.1	100.2	129.7
3	Linuron 100 MKD	102.8	100.3	92.9	96.8	100.0	98.5	122.5
4	Linuron 150 MKD	109.3	99.2	86.5	91.1	88.3	89.4	113.4
5	Pheno- barbital 25 MKD	126.7	101.4	97.3	100.4	100.7	100.6	128.2
6	Pheno- barbital 50 MKD	133.2	101.9	101.0	107.3	104.7	105. 8	121.6
7	Pheno- barbital 100 MKD	153.7	103.3	102.6	99.0	104.6	102.1	130.8

In general, Linuron exposure only slightly increased the absolute or relative thyroid gland weights (only the 50 mg/mg/day level was significant), whereas, Phenobarbital exposure, as expected, significantly increased both absolute and relative thyroid gland weights. When the relative thyroid gland weights of the rats exposed to Linuron and Phenobarbital were normalized to control values, the rats exposed to Linuron displayed a thyroid weight gain inversely related to dose and the rats exposed to Phenobarbital displayed a thyroid weight gain that was neither inversely related to dose or increased related to dose.

Phenobarbital did increase liver weight (127-154% of control values), an effect observed in a similar study $^{(11)}$.

As expected, no test substance-related microscopic changes were observed in the testes, epididymides or thyroids of the rats given the 150 mg/kg/day of Linuron, a weak antiandrogen. All microscopic changes observed in the testes, epididymides and thyroids of rats treated with Linuron were considered to have occurred spontaneously and were not treatment-related.

An increased incidence and severity of hypertrophy and hyperplasia of the thyroid follicular epithelium occurred in the rats given 100 mg/kg/day of Phenobarbital, an effect consistent with thyroid modulators. No test substance-related microscopic changes were observed in the testes or epididymides of the rats given 100 mg/kg/day of Phenobarbital. The testes and epididymides of rats in the 25 and 50 mg/kg/day levels were not examined microscopically. All microscopic changes observed in the testes and epididymides of rats treated with Phenobarbital were considered to have occurred spontaneously and were not treatment-related.

Table C depicts the selected hormone levels of each dosage group normalized by the control group mean hormone level. As expected, all doses of Linuron decreased testosterone (more than 50% below control levels); decreased dihydrotestosterone (more than 25% below control levels); decreased luteinizing hormone (15-20% below control levels); and increased estradiol (30-61% above control levels).

In addition, T4 (34-67% below control levels), T3 (16-21% below control levels), and prolactin (85-95% below control levels) blood concentrations were significantly less than the vehicle control group in all three Linuron treated groups, however, there was not a dose- dependent change in TSH level observed. The follicle stimulating hormone remained essentially unchanged.

As expected, Phenobarbital exposure increased thyroid hormone excretion. All doses decreased blood levels of T3 (20-31% below control levels) and T4 (23-45% below control levels); and increased thyroid stimulating hormone release (78-127% above control levels).

In addition, serum values for luteinizing hormone (17-34% below control levels) and prolactin (62-88% below control levels) concentrations were significantly less than the vehicle control group, in all three Phenobarbital treated groups. Testosterone (39-78% below control levels), follicle stimulating hormone (6-17% below control levels) and dihydrotestosterone (20-49% below control levels) blood concentrations were significantly decreased in the 50 and 100 mg/kg/day Phenobarbital groups when compared to the vehicle control group values. Estradiol (33-52% above control levels) was significantly increased compared to the vehicle control group values in all three Phenobarbital treated groups. These findings were also observed in a similar study ⁽¹¹⁾.

RTP00004

Group	Treatment	TEST	DHT	LH	Estra- diol	FSH	Pro- lactin	TSH	T4	- T 3
2	Linuron 50 mg/kg/day	48.6	70.9	80.5	130.7	96.4	13.0	75.2	65.5	83.5
3	Linuron 100 mg/kg/day	40.1	73.4	81.8	161.2	105.5	15.2	93.2	38.5	80.4
4	Linuron 150 mg/kg/day	33.0	61.5	85.6	148.6	107.4	5.5	79.9	32.5	79.0
5	Phenobarbital 25 mg/kg/day	61.2	79.9	83.1	132.7	93.5	38.5	178.3	79.3	79.4
6	Phenobarbital 50 mg/kg/day	35.2	61.8	65.9	143.9	84.1	22.3	196.6	77.0	80.1
7	Phenobarbital 100 mg/kg/day	22.1	51.0	71.4	151.6	82.9	11.6	227.0	55.4	68.8

Table C. Serum Hormone Averages - Percent of the Vehicle Control Group

a. TEST is used as an abbreviation for testosterone.

Page 34

5. CONCLUSION

In conclusion, the 15-day intact male assay was able to identify Linuron and Phenobarbital as EACs at the dosages tested.

Linuron caused adverse clinical observations, significant decreases in body weight gains, terminal body weights and feed consumption values at all levels tested. Consistent with the mode of action for a weak androgen receptor antagonist Linuron did produced the expected decreases in absolute epididymal weights and absolute accessory sex gland weights, but only at doses producing a greater than 15% change in terminal body weights. Consistent with these organ weight changes, decreased blood testosterone, dihydrotestosterone, and luteinizing hormone levels, and increased blood estradiol levels were observed. The effects on thyroid weights are more difficult to interpret given that relative thyroid weights were statistically increased only at 50 mg/kg/day and the effects did not follow a dose-response relationship.

Phenobarbital caused one death in the 100 mg/kg/day dosage group and adverse clinical observations of varying severity, at all levels tested. The effects seen at 25 mg/kg/day were minimal compared to one death and the accompanying observations seen at 100 mg/kg/day. Significant decreases in body weight gains, terminal body weights and feed consumption were also observed at 100 mg/kg/day. Consistent with the mode of action of a thyroid modulator that acts by increasing the excretion of thyroid hormones, Phenobarbital increased relative liver and thyroid weights; decreased blood levels of T3 and T4, with the concomitant increase in estradiol and thyroid stimulating hormone; and altered reproductive hormone concentrations (decreased serum dihydrotestosterone, FSH, luteinizing hormone, prolactin and testosterone). Phenobarbital also increased the incidence and severity of hypertrophy and hyperplasia of the thyroid follicular epithelium in rats given 100 mg/kg/day.

02MAY2006

Raymond G. York, Ph.D., DABT **Principal Scientist** Associate Director of Research

Date

slalob

Joseph W. Lech, B.S., LAT Scientist Study Director

Date

6. **REFERENCES**

- 1. U.S. Environmental Protection Agency. Endocrine Distruptor Screening Program QAPP inter-laboratory validation of the 15-day intact male assay. Version 1; September 2005; EPA contract No.: 68-W-01-023.
- 2. U.S. Environmental Protection Agency. Federal Insecticide, Fungicide and Rodenticide Act/Toxic Substances Control Act (FIFRA/TSCA); Good Laboratory Practice Standards; Final Rule. 40 CFR Part 160/Part 792.
- 3. Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF). Good laboratory practice (GLP) standards for agricultural chemicals. Agricultural Production Bureau Ref. No. 11-Nousan-No.6283. October 1, 1999; last revised June 30, 2003 Ref. No. 15-Seisan-2460.
- 4. OECD Environmental Directorate. OECD Principles of good laboratory practices [C(97)186/Final] (1998); Environmental Health and Safety Division.
- 5. Christian, M.S. and Voytek, P.E. (1982). *In Vivo Reproductive and Mutagenicity Tests*. Environmental Protection Agency, Washington, D.C. National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.
- 6. Christian, M.S. (1984). Reproductive toxicity and teratology evaluations of naltrexone. (Proceedings of Naltrexone Symposium, New York Academy of Sciences, November 7, 1983), J. Clin. Psychiat. 45(9):7-10.
- Lang, P.L. (1988). Embryo and Fetal Developmental Toxicity (Teratology) Control Data in the Charles River Crl:CD®BR Rat. Charles River Laboratories, Inc., Wilmington, MA 01887-0630. (Data base provided by Argus Research Laboratories, Inc.)
- 8. Institute of Laboratory Animal Resources (1996). *Guide for the Care and Use of Laboratory Animals*. National Academy Press, Washington, D.C.
- 9. Murphy PA, Song T, Buseman G, and Barua K. Isoflavones in soy-based infant formulas. J Agric Food Chem 1997; 45:4635-8.
- 10. O'Connor JC, Cook JC, Marty.M.S., Davis LG, Kaplan AM, and Carney EW. Evaluation of Tier I screening approaches for detecting endocrine-active compounds (EACs).
- 11. O'Connor JC, Frame SR, and Ladics GS. Evaluation of a 15-day screening assay using intact male rats for identifying steroid biosynthesis inhibitors and thyroid modulators. Toxicol Sci 2002; 69:79-91.

12. O'Connor JC, Frame SR, and Ladics GS. Evaluation of a 15-day screening assay using intact male rats for identifying antiandrogens. Toxicol Sci 2002; 69:92-108.

7. **PROTOCOL DEVIATIONS**

- 1. The 6 hour postdose clinical observations were performed 3 to 37 minutes outside (late) of the protocol specified range for all rats dosed on 27 October 2005. This deviation did not adversely affect the outcome or interpretation of the study because the postchecks were ultimately performed and all data was captured.
- 2. The end time of exposure to carbon dioxide was not recorded for rats 10327 and 10381 in the 50 mg/kg/day Linuron and phenobarbital dosage groups, respectively, on 09 and 10 October 2005, TD 15. This deviation did not adversely affect the outcome or interpretation of the study because the exposure to the carbon dioxide did not cause mortality and the blood sample collections were performed according to the protocol.
- 3. The transfer of testes was not documented for rat 10375, in the 25 mg/kg/day Phenobarbital dosage group. This deviation did not adversely affect the outcome or interpretation of the study because the testes were transferred from Bouins solution to alcohol.
- 4. The date that the thyroid was trimmed was not recorded for rat 13070, in the 25 mg/kg/day Phenobarbital dosage group. This deviation did not adversely affect the outcome or interpretation of the study because the thyroid was processed and trimmed accordingly.
- 5. The date that the thyroid was weighed was not recorded for rat 10396, in the 100 mg/kg/day Phenobarbital dosage group. This deviation did not adversely affect the outcome or interpretation of the study because the thyroid was fixed in 10% NBF for 48 hours, trimmed and a weight was recorded according to protocol.
- 6. The epididymides were not individually identified for histopathological evaluation. This deviation did not adversely affect the outcome or interpretation of the study because there were no treatment-related microscopic changes observed histopathologically.
- 7. The tissues from the rat which was found dead, 10396, in the 100 mg/kg/day Phenobarbital dosage group, were sent for histopathological evaluation. This deviation did not adversely affect the outcome or interpretation of the study because this did not result in any loss of data.

Animal Number	Test Substance	Dosage Level (mg/kg /day)	Animal Number	Test Substance	Dosage Level (mg/kg/day)
10301	Aqueous 0.25% (w/v) Methylcellulose	0	10347	Linuron	150
10302	Aqueous 0.25% (w/v) Methylcellulose	0	10348	Linuron	150
10303	Aqueous 0.25% (w/v) Methylcellulose	0	10361	Phenobarbital	25
_10304	Aqueous 0.25% (w/v) Methylcellulose	0	10362	Phenobarbital	25
10316	Linuron	50	10363	Phenobarbital	25
10317	Linuron	50	10376	Phenobarbital	50
10318	Linuron	50	10377	Phenobarbital	50
10331	Linuron	100	10378	Phenobarbital	50
10332	Linuron	100	10391	Phenobarbital	100
10333	Linuron	100	10392	Phenobarbital	100
10346	Linuron	150	10393	Phenobarbital	100

8. The blood samples from the following rats were placed on wet ice and allowed to clot prior to centrifugation.

This deviation did not adversely affect the outcome or interpretation of the study because the samples were collected and the serum was harvested.

All deviations are documented in the raw data.

stalow

Joseph W. Lech, B.S., LAT Scientist and Study Director

Date

SUPPORTING DATA

APPENDICES 1 AND 2 - INDIVIDUAL DATA

APPENDIX 1 (PAGE 1): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP 1	0.25% METHYLCELLULOSE	0 (VEHICLE) MG/KG/DAY	
10301	NO ADVERSE FINDINGS		
10302	NO ADVERSE FINDINGS		
10303	NO ADVERSE FINDINGS		
10304	NO ADVERSE FINDINGS		
10305	NO ADVERSE FINDINGS		
10306	NO ADVERSE FINDINGS		
10307	ADVERSE		
10308	NO ADVERSE FINDINGS		
10309	ADVERSE		
10310	NO ADVERSE FINDINGS		
10311			
10312 TD(5- 8)			
TD (9- 1	LOCALIZED ALOPECIA: LIMB(S)A		
•			
10314	NO ADVERSE FINDINGS		
10315 TD(14- 15)	INCISOR(S): MISSING/BROKEN a		
DOSAGE GROUP 2	LINURON	50 MG/KG/DAY	
10316	NO ADVERSE FINDINGS		
10317	NO ADVERSE FINDINGS		
10318 TD(6- 15)	SPARSE HAIR COAT a		
	NO ADVERSE FINDINGS		
10320	NO ADVERSE FINDINGS		
10321	NO ADVERSE FINDINGS		
10322	NO ADVERSE FINDINGS		
10323	NO ADVERSE FINDINGS		
10324	NO ADVERSE FINDINGS		
10325	NO ADVERSE FINDINGS		
10326	NO ADVERSE FINDINGS		
10327			
10328	NO ADVERSE FINDINGS		
10329	NO ADVERSE FINDINGS		
10330	NO ADVERSE FINDINGS		

APPENDIX 1 (PAGE 2): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GF	GROUP 3	LINURON	100 MG/KG/DAY
10331	TD(7-15) TD(9)	DEHYDRATION a CHROMODACRYORRHEA	
		CHROMORH INORRHEA	
10332	TD(4- 5)		
10333			
		DEHYDRATION	
10334		LACRIMATION	
		DECREASED MOTOR ACTIVITY	
	TD(3)	UNRESPONSIVE TO TOUCH	
	TD(3)	CHROMORHINORRHEA	
	TD(3)	DEHYDRATION	
	TD(3)	UNGROOMED COAT	
		CHROMODACRYORRHEA	
	, ⁴	COLD TO TORICH	
10335		NO ADVERSE FINDINCS	
10336	TD/ 2- 4)		
10000	۳ ۱	CHROMORHTNORRHEA	
		TTMTTED OSE OF	
	TD(9- /)		
10337	TD(3)	CHROMORHINORRHEA	
10338		NO ADVERSE FINDINGS	
10339	TD(2)	ATAXIA	
		ATAXIA	
	TD(6- 9)	SPARSE HAIR COAT	
	TD(10- 15)	LOCALIZED ALOPECIA: LIMB(S) a	
10340		ATAXIA	
10341	TD(3)	ATAXIA	
10342		ATAXIA	
	TD(3)	CHROMORHINORRHEA	
	TD(9- 10)	DEHYDRATION	
10343		NO ADVERSE FINDINGS	
10344	TD(2)	ATAXIA	
10345		NO ADVERSE FINDINGS	

APPENDIX 1 (PAGE 3): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP	GROUP 4		LINURON 150 MG/KG/DAY
<u></u> 10346		4)	CHROMORHINORRHEA
	TD(5	5)	IMPAIRED RIGHTING REFLEX
		6)	ATAXIA
		6)	DEHYDRATION
		1)	RED FERINASAL SUBSTANCE
		12)	EXCESS SALIVATION - EXTREME
		2)	RED PERIORAL SUBSTANCE
		14)	CHROMORHINORRHEA
		4)	DEHYDRATION
10347		3)	DECREASED MOTOR ACTIVITY
		8)	ATAXIA
		5)	LIMITED USE OF RIGHT HINDLIMB AND/OR BOTH HINDLIMBS
		5)	CHROMORHINORRHEA
	JD(5)	IMPAIRED RIGHTING REFLEX
		15)	DEHYDRATION a
		1)	CHROMORHINORRHEA
10348		5)	ATAXIA
		5)	CHROMORHINORRHEA
		5)	IMPAIRED RIGHTING REFLEX
		(7	DEHYDRATION
		6)	HUNCHED POSTURE
		15)	DEHYDRATION a
10349		2)	IMPAIRED RIGHTING REFLEX
		2)	LACRIMATION
		2-3)	DECREASED MOTOR ACTIVITY
		12)	DEHYDRATION
		2)	CHROMORH LINORRHEA
		4)	DEHYDRATION

APPENDIX 1 (PAGE 4): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

RAT #		DESCRIPTION
DOSAGE GI	GROUP 4	LINURON 150 MG/KG/DAY
10350		CHROMORHINORRHEA
		DECREASED MOTOR ACTIVITY
		IMPAIRED RIGHTING REFLEX
		ATAXIA
		LACRIMATION
		BRADYPNEA
		LOST RIGHTING REFLEX
		COLD TO TOUCH
		DEHYDRATION
		LIMITED USE OF BOTH HINDLIMBS AND FORELIMBS
		ATAXIA
		DECREASED MOTOR ACTIVITY
		IMPAIRED RIGHTING REFLEX
10351		IMPAIRED RIGHTING REFLEX
		DECREASED MOTOR ACTIVITY
		LOST RIGHTING REFLEX
		LACRIMATION
		PTOSIS
		ATAXIA
		DEHYDRATION
		DECREASED MOTOR ACTIVITY
		IMPAIRED RIGHTING REFLEX
		COLD TO TOUCH
		LOW CARRIAGE
		CHROMORHINORRHEA
		LIMITED USE OF BOTH HINDLIMBS
		DECREASED MOTOR ACTIVITY
10352		ATAXIA
	TD(4)	HUNCHED POSTURE
		DEHYDRATION

TD = TEST DAY

5): CLINICAL OBSERVATIONS - INDIVIDUAL DATA APPENDIX 1 (PAGE

DOSAGE	GROUP	4	LINURON	150 MG/KG/DAY
10353) dT	4)	ATAXIA	
	TD (4)	IMPAIRED RIGHTING REFLEX	
	TD (4)	LACRIMATION	
	TD (4- 14)	DEHYDRATION	
	TD(5)	CHROMODACRYORRHEA	
	TD (5- 6)	SCANT FECES	
	TD(6- 15)	LOCALIZED ALOPECIA: UNDERSIDE a	
	TD (6- 15)	LOCALIZED ALOPECIA: LIMB(S) a	
	TD((6	CHROMODACRYORRHEA	
	TD (12)	CHROMODACRYORRHEA	
10354	TD (2)	DECREASED MOTOR ACTIVITY	
	TD (2)	IMPAIRED RIGHTING REFLEX	
	TD (2-3)	COLD TO TOUCH	
	TD (3)	UNRESPONSIVE TO TOUCH	
	TD (3)	COMATOSE	
	TD (з)	LACRIMATION	
	TD (3)	PTOSIS	
	TD (3)	BRADYPNEA	
	TD (3- 4)	LOST RIGHTING REFLEX	
	TD (4)	DECREASED MOTOR ACTIVITY	
	TD (4)	ATAXIA	
	TD (4- 15)	DEHYDRATION a	
	TD (5- 10)	SCANT FECES	
	TD (6	IMPAIRED RIGHTING REFLEX	
	TD (9- 10)	DECREASED MOTOR ACTIVITY	
	TD (9- 10)	ATAXIA	
10355	TD (2- 15)	SPARSE HAIR COAT a	
	TD (3-5)	ATAXIA	
	TD (5)	LIMITED USE OF BOTH HINDLIMBS	
	TD (6- 13)	DEHYDRATION	

6): CLINICAL OBSERVATIONS - INDIVIDUAL DATA APPENDIX 1 (PAGE

DOSAGE GROUP		LINURON	150 MG/KG/DAY
10356	TD(2)	DECREASED MOTOR ACTIVITY	
	TD(2)	LOST RIGHTING REFLEX	
	TD(2)	BRADYPNEA	
	TD(3- 4)	IMPAIRED RIGHTING REFLEX	
	TD(4)	HUNCHED POSTURE	
	TD(4- 5)	DECREASED MOTOR ACTIVITY	
		LOST RIGHTING REFLEX	
	TD(5)	LIMITED USE OF BOTH HINDLIMBS AND FORELIMBS	FORELIMBS
		DEHYDRATION	
		BRADYPNEA	
		IMPAIRED RIGHTING REFLEX	
	TD(9-14)	DECREASED MOTOR ACTIVITY	
		DEHYDRATION a	
	TD(11- 14)	IMPAIRED RIGHTING REFLEX	
		CHROMORHINORRHEA	
10357	TD(3)	ATAXIA	
		IMPAIRED RIGHTING REFLEX	
	TD(4- 5)	DEHYDRATION	
		DECREASED MOTOR ACTIVITY	
		DEHYDRATION	
	TD(12)	DEHYDRATION	
10358		ATAXIA	
	4	DEHYDRATION a	
		ATAXIA	
10359		DECREASED MOTOR ACTIVITY	
	TD(2)	LOST RIGHTING REFLEX	
		LACRIMATION	
		COLD TO TOUCH	
	2	BRADYPNEA	
	- 3	PTOSIS	
		IMPAIRED RIGHTING REFLEX	
	TD(3- 5)	DEHYDRATION	
	ທ ບ	DECREASED MOTOR ACTIVITY	
	TD(5)	IMPAIRED RIGHTING REFLEX	
	_	LIMITED USE OF BOTH HINDLIMBS	
	2	BRADYPNEA	
	ر ۲	ATAXIA	
		IMPAIRED RIGHTING REFLEX	
	TD(12- 13)	DEHYDRATION	

APPENDIX 1 (PAGE 7): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

RAT #			DESCRIPTION	
DOSAGE	DOSAGE GROUP 4	DOSAGE GROUP 4	LINURON	LINURON 150 MG/KG/DAY
10360	TD (2-3)	атахи в страните и с	ATAXIA
	TD (2-4)	CHROMORHINORRHEA	
	TD (3- 6)	DECREASED MOTOR ACTIVITY	
	TD (3- 15)	DEHYDRATION a	
	TD (4-6)	IMPAIRED RIGHTING REFLEX	
	TD (5	BRADYPNEA	
	TD (5- 6)	ATAXIA	

TD = TEST DAY a. Observation confirmed at necropsy.

APPENDIX 1 (PAGE 8): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP 5 10361 10362 10363 10365
D(4)
TD(10 13) TD(10-13) TD(10-15)
TD(12) TD(9)

TD = TEST DAY a. Observation confirmed at necropsy.

APPENDIX 1 (PAGE 9): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

RAT #			DESCRIPTION	
DOSAGE G	GROUP 6	9	PHENOBARBITAL	50 MG/KG/DAY
10376		4)	ATAXIA	
10377		1-7)	ATAXIA	
		3- 4)	DECREASED MOTOR ACTIVITY	
		3- 5)	IMPAIRED RIGHTING REFLEX	
		4)	LOW CARRIAGE	
		6- 7)	PTOSIS	
10378		2-5)	ATAXIA	
		э Э	DECREASED MOTOR ACTIVITY	
		3- 4)	IMPAIRED RIGHTING REFLEX	
		()	ATAXIA	
10379		2- 7)	ATAXIA	
		4)	IMPAIRED RIGHTING REFLEX	
		11)	EXCESS SALIVATION - SLIGHT	
10380		2)	ATAXIA	
		2- 4)	IMPAIRED RIGHTING REFLEX	
10381	TD (2)	DECREASED MOTOR ACTIVITY	
		2- 3)	IMPAIRED RIGHTING REFLEX	
		2-5)	ATAXIA	
		4)	PTOSIS	
		7- 10)	ATAXIA	
		13)	ATAXIA	
10382		2)	ATAXIA	
		2)	DECREASED MOTOR ACTIVITY	
		2- 3)	IMPAIRED RIGHTING REFLEX	
		4)	ATAXIA	
		6)	BRADYPNEA	
		6- 7)	ATAXIA	
10383		2)	ATAXIA	
		2)	IMPAIRED RIGHTING REFLEX	
		2)	DECREASED MOTOR ACTIVITY	
		2)	LIMITED USE OF BOTH HINDLIMBS	
	TD (4-5)	ATAXIA	
10384			NO ADVERSE FINDINGS	

APPENDIX 1 (PAGE 10): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP 6	GROUP 6		PHENOBARBITAL	50 MG/KG/DAY
10385	TD (2)	DECREASED MOTOR ACTIVITY	
		2- 3)	IMPAIRED RIGHTING REFLEX	
		2-5)	ATAXIA	
		(6	ATAXIA	
		13)	ATAXIA	
10386		2-5)	PTOSIS	
		3-5)	ATAXIA	
10387		7- 8)	ATAXIA	
		7- 8)	PTOSIS	
10388			NO ADVERSE FINDINGS	
10389	JD (TD(4)	ATAXIA	
10390) dt	10)	ATAXIA	

RTP00004

APPENDIX 1 (PAGE 11): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP	ROUP 7		PHENOBARBITAL 100 MG/KG/DAY	'KG/DAY
10391	TD(1	- 14)	ATAXIA	
	TD(2	:- 4)	IMPAIRED RIGHTING REFLEX	
	TD (- i	DECREASED MOTOR ACTIVITY	
	TD(3	- 14)	PTOSIS	
	TD (4)	LACRIMATION	
10392		1- 2)	ATAXIA	
	TD(2	- 4)	LIMITED USE OF BOTH HINDLIMBS	
	TD(2	(9 -	LOST RIGHTING REFLEX	
		2- 6)	LACRIMATION	
		- 4)	DECREASED MOTOR ACTIVITY	
		3- 14)	PTOSIS	
		ى ك	UNRESPONSIVE TO TOUCH	
		(9 -	COMATOSE	
		(9 –	COLD TO TOUCH	
		() () () () () () () () () () () () () (BRADYPNEA	
		(2 -1	CHROMODACRYORRHEA	
		(URINE-STAINED ABDOMINAL FUR	
		(8)	DECREASED MOTOR ACTIVITY	
		(8 -	LIMITED USE OF BOTH HINDLIMBS AND/OR BOTH FORELIMBS	
	TD(7	7- 11)	IMPAIRED RIGHTING REFLEX	
		- 15)	DEHYDRATION a	
		1-14)	ATAXIA	
		11)	LIMITED USE OF BOTH HINDLIMBS	
		13- 14)	IMPAIRED RIGHTING REFLEX	
		(- 14)	LIMITED USE OF BOTH HINDLIMBS	
10393		- 3)	ATAXIA	
		- 14)	PTOSIS	
		- 4)	LOST RIGHTING REFLEX	
		, - 5)	LIMITED USE OF BOTH HINDLIMBS	
		2- 10)	DECREASED MOTOR ACTIVITY	
	TD (3)	IMPAIRED RIGHTING REFLEX	
		4-9)	BRADYPNEA	
	TD(5	(2	IMPAIRED RIGHTING REFLEX	
	TD(5	i- 14)	ATAXIA	
	TD (()	LOW CARRIAGE	
	TD(8	- 12)	DEHYDRATION	
	TD(9	- 13)	IMPAIRED RIGHTING REFLEX	

APPENDIX 1 (PAGE 12): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

RAT #		DESCRIPTION	
DOSAGE GROUP	ROUP 7	PHENOBARBITAL 10	100 MG/KG/DAY
10394	1	PTOSIS	
		ATAXIA	
		TAIL BENT a	
		LOST RIGHTING REFLEX	
		DECREASED MOTOR ACTIVITY	
		PTOSIS	
		LOW CARRIAGE	
		ATAXIA	
		IMPAIRED RIGHTING REFLEX	
		LOW CARRIAGE	
10395		ATAXIA	
		LACRIMATION	
		LOST RIGHTING REFLEX	
		DECREASED MOTOR ACTIVITY	
	TD(3)	LIMITED USE OF BOTH HINDLIMBS	
		HYPERPNEA	
		PTOSIS	
		NO USE OF BOTH HINDLIMBS AND FORELIMBS	
		BRADYFNEA	
		CHROMORHINORRHEA	
		CHROMODACRYORRHEA	
		IMPAIRED RIGHTING REFLEX	
		DEHYDRATION a	
		BRADYPNEA	
		ATAXIA	
		IMPAIRED RIGHTING REFLEX	
		PTOSIS	
		BRADYPNEA	
		SPARSE HAIR COAT	

TD = TEST DAY a. Observation confirmed at necropsy.

APPENDIX 1 (PAGE 13): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

			DESCRIPTION	
DOSAGE (GROUP 7		PHENOBARBITAL	100 MG/KG/DAY
10396		1- 2)	ATAXIA	
	_	2)	IMPAIRED RIGHTING REFLEX	
	TD (2- 8)	DECREASED MOTOR ACTIVITY	
	_	2- 8)	PTOSIS	
	_	с Э	LOST RIGHTING REFLEX	
	_	3)	LACRIMATION	
	_	3- 5)	LOW CARRIAGE	
	_	3- 5)	LIMITED USE OF BOTH HINDLIMBS	
	_	4- 5)	BRADYPNEA	
		5- 8)	DEHYDRATION a	
		9	IMPAIRED RIGHTING REFLEX	
		6- 8)	ATAXIA	
		7- 8)	LIMITED USP. OF BOTH HINDLIMBS	
		7-8)	I.OW CARRIAGE	
		7- 8)	BRADYPNEA	
		ς - α	LACRIMATION A	
		 	FOUND DEAD	
70201		0- EV	TOST PICHTING PERLEY	
1 CONT			DECREASED MANACE ACTIVITY	
		Z- 14)	UEURBASEU MUIUK AUIIVIII	
		(FT -7	PTOSTS	
	_	ري ب	ATAXIA	
	_	о м	LOW CARRIAGE	
	_	3- 8)	CHROMODACRYORRHEA	
	_	4-6)	NO USE OF BOTH HINDLIMBS AND FORELIMBS	
	_	5)	LACRIMATION	
	_	5- 6)	IMPAIRED RIGHTING REFLEX	
	_	5- 10)	BRADYPNEA	
	_	6- 15)	DEHYDRATION a	
	_	()	COMATOSE	
	_	7- 8)	LACRIMATION	
	_	(6 -8	NO USE OF BOTH HINDLIMBS	
	_	8- 10)	LOST RIGHTING REFLEX	
		8- 10)	LIMITED USE OF BOTH FORELIMBS	
	_	8- 14)	ATAXIA	
		9-14)	LOW CARRIAGE	
		10)	CHROMODACRYORRHEA	
		0- 14)	IMPAIRED RIGHTING REFLEX	
		14)	LACRIMATION	

RTP00004

TD = TEST DAY a. Observation confirmed at necropsy.

APPENDIX 1 (PAGE 14): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

DOSAGE G	GROUP 7		PHENOBARBITAL	100 MG/KG/DAY
10398	i	2)	LOST RIGHTING REFLEX	
	TD(1-14)	14)	DECREASED MOTOR ACTIVITY	
		-	UNRESPONSIVE TO TOUCH	
		(LACRIMATION	
		-	LIMITED USE OF BOTH FORELIMBS	
		~	NO USE OF BOTH HINDLIMBS	
		3)	CHROMODACRYORRHEA	
		3)	COLD TO TOUCH	
		3)	UNGROOMED COAT	
	TD(2- 10)	10)	IMPAIRED RIGHTING REFLEX	
		13)	PTOSIS	
		14)	ATAXIA	
		-	LIMITED USE OF BOTH HINDLIMBS	
		13)	DEHYDRATION	
		14)	LOW CARRIAGE	
		6)	LIMITED USE OF BOTH HINDLIMBS	
	TD(10- 11)	11)	BRADYFNEA	
		<u> </u>	IMPAIRED RIGHTING REFLEX	
		<u> </u>	LIMITED USE OF BOTH HINDLIMBS	
10399		4)	ATAXIA	
		(LOST RIGHTING REFLEX	
		^	DECREASED MOTOR ACTIVITY	
		(PTOSIS	
		4)	LOW CARRIAGE	
		8)	IMPAIRED RIGHTING REFLEX	
	TD(4	-	PTOSIS	
	TD(5	^	LIMITED USE OF BOTH HINDLIMBS	
	9	6)	DECREASED MOTOR ACTIVITY	
	9	14)	ATAXIA	
	7–	8)	LOW CARRIAGE	
	9-	11)	PTOSIS	
	10-	15)	DEHYDRATION a	
	13-	14)	PTOSIS	

APPENDIX 1 (PAGE 15): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

RAT #			DESCRIPTION
DOSAGE GROUP		7	PHENOBARBITAL 100 MG/KG/DAY
10400	TD (1-5)	ATAXIA
	TD (2)	LOST RIGHTING REFLEX
	TD (2)	DECREASED MOTOR ACTIVITY
	TD (2- 6)	PTOSIS
	TD (3- 6)	IMPAIRED RIGHTING REFLEX
	TD (4- 15)	DEHYDRATION a
	TD (5- 9)	LIMITED USE OF BOTH HINDLIMBS
	TD (5- 10)	DECREASED MOTOR ACTIVITY
) UT	6)	LOW CARRIAGE
	TD (6)	BRADYPNEA
) dt	7- 14)	ATAXIA
	TD (11)	IMPAIRED RIGHTING REFLEX
) OI	13- 14)	PTOSIS
10401	TD (1)	ATAXIA
	TD (1)	IMPAIRED RIGHTING REFLEX
	TD (2)	LOST RIGHTING REFLEX
	TD (2)	DECREASED MOTOR ACTIVITY
	TD (2)	LIMITED USE OF BOTH HINDLIMBS AND FORELIMBS
	TD (2- 3)	BRADYPNEA
	TD (э) Э	LOW CARRIAGE
	TD (э Э	CHROMODACRYORRHEA
	TD (3- 9)	DEHYDRATION
	TD (3- 13)	SISOIQ
	TD (3- 14)	ATAXIA
	TD (4-5)	DECREASED MOTOR ACTIVITY
	TD (5)	LOW CARRIAGE
	TD (5- 9)	BRADYPNEA
	TD (5- 12)	IMPAIRED RIGHTING REFLEX
	TD (7- 9)	LIMITED USE OF BOTH HINDLIMBS
	TD (12)	DECREASED MOTOR ACTIVITY
	TD (14)	IMPAIRED RIGHTING REFLEX

Observation confirmed at necropsy. а.

APPENDIX 1 (PAGE 16): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

RAT #		DESCRIPTION	
DOSAGE	GROUP 7	PHENOBARBITAL	100 MG/KG/DAY
10402		DECREASED MOTOR ACTIVITY	
		ATAXIA	
		IMPAIRED RIGHTING REFLEX	
		LOW CARRIAGE	
		PTOSIS	
		LOW CARRIAGE	
		BRADYPNEA	
		LIMITED USE OF BOTH HINDLIMBS	
		TMPATRED RIGHTING REFIEX	
	TD(14)	IMPAIRED RIGHTING REFLEX	
		PTOSIS	
10403		LOST RIGHTING REFLEX	
		DECREASED MOTOR ACTIVITY	
		ATAXIA	
		CHROMODACRYORRHEA	
		PTOSIS	
		IMPAIRED RIGHTING REFLEX	
		LOW CARRIAGE	
		BRADYPNEA	
		LOW CARRIAGE	
		BRADYPNEA	
		PTOSIS	
		LIMITED USE OF BOTH HINDLIMBS	
		IMPAIRED RIGHTING REFLEX	
		DEHYDRATION	
		ATAXIA	
10404		IMPAIRED RIGHTING REFLEX	
		ATAXIA	
		IMPAIRED RIGHTING REFLEX	
		DECREASED MOTOR ACTIVITY	
		PTOSIS	
		PENIS: RED SUBSTANCE	
		IMPAIRED RIGHTING REFLEX	
		IMPAIRED RIGHTING REFLEX	
		LOW CARRIAGE	
		BRADYPNEA	
		ATAXIA	
		DECREASED MOTOR ACTIVITY	

TD = TEST DAY

APPENDIX 1 (PAGE 17): CLINICAL OBSERVATIONS - INDIVIDUAL DATA

RAT #		DESCRIPTION	
DOSAGE GROUP 7	ROUP 7	PHENOBARBITAL	
10405 TD(TD(1)		
	TD(1- 5)	IMPAIRED RIGHTING REFLEX	
	TD(1- 12)	PTOSIS	
	TD(1-14)	ATAXIA	
	TD(2)	LOW CARRIAGE	
	TD(2)	LACRIMATION	
	TD(4)	LACRIMATION	
		LOW CARRIAGE	
	TD(4- 9)	BRADYPNEA	
		IMPAIRED RIGHTING REFLEX	

TD = TEST DAY

RTP00004

APPENDIX 2 (PAGE 1): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP DESCRIPTOR DOSAGE (MG/KG/DAY)	RAT NUMBER	DAY OF NECROPSY	DOSES ADMINISTERED	OBSERVATIONS a	ТҮРЕ ОҒ DEATH
25% METHYLCELLULOSE	10301	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
0 (VEHICLE)	10302	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10303	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10304	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10305	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10306	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10307	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10308	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10309	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10310	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10311	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10312	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10313	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10314	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10315	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED

TD = TEST DAY a. Refer to the individual clinical observations table (Appendix 1) for external observations confirmed at necropsy.

APPENDIX 2 (PAGE 2): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP DESCRIPTOR DOSAGE (MG/KG/DAY)	RAT NUMBER	DAY OF NECROPSY	DOSES ADMINISTERED	OBSERVATIONS a	TYPE OF DEATH
2					
LINURON	10316	TD 15	15	TISSUES APPEARED	
50	10317	TD 15 77 15	0 r	ALL TISSUES APPEARED NORMAL. Alt tissues appeared normal.	SCHEDULED SACRIFICED SCHEDULED SACRIFICED
	10319	TD 15	15	TISSUES APPEARED	
	10320	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10321	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10322	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10323	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10324	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10325	TD 15	15	SEMINAL VESICLES WITH FLUID: SMALL.	
				ALL OTHER TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10326	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10327	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10328	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10329	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10330	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED

TD = TEST DAY a. Refer to the individual clinical observations table (Appendix 1) for external observations confirmed at necropsy.

APPENDIX 2 (PAGE 3): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

3 JLI TISSUES APPEARED NORMAL. 100 10331 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 100 10332 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 100 10332 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10334 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10335 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10336 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10337 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10337 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10339 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10330 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10330 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10340 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10341 TD 15 15 ALL TISSUES APPEARED NORMAL. 5 10341 TD 15 15 <t< th=""><th>DOSAGE GROUP DOSAGE (MG/KG/DAY)</th><th>RAT NUMBER</th><th>DAY OF NECROPSY</th><th>DOSES ADMINISTERED</th><th>OBSERVATIONS a</th><th>TYPE OF DEATH</th></t<>	DOSAGE GROUP DOSAGE (MG/KG/DAY)	RAT NUMBER	DAY OF NECROPSY	DOSES ADMINISTERED	OBSERVATIONS a	TYPE OF DEATH
10332TD15ALL TISSUES APPEARED NORMAL.10333TD1515ALL TISSUES APPEARED NORMAL.10334TD1515ALL TISSUES APPEARED NORMAL.10335TD1515ALL OTHER TISSUES APPEARED NORMAL.10336TD1515ALL TISSUES APPEARED NORMAL.10337TD1515ALL TISSUES APPEARED NORMAL.10338TD1515ALL TISSUES APPEARED NORMAL.10339TD1515ALL TISSUES APPEARED NORMAL.10339TD1515ALL TISSUES APPEARED NORMAL.10340TD1515ALL TISSUES APPEARED NORMAL.10341TD1515ALL TISSUES APPEARED NORMAL.10341TD1515ALL TISSUES APPEARED NORMAL.10342TD15ALL TISSUES APPEARED NORMAL.10343TD15ALL TISSUES APPEARED NORMAL.10341TD151510342TD1510343TD1510344TD1510344TD1510345TD1510344TD1510345TD1510344TD1510345TD1510344TD1510345TD1510345TD1510345TD1510345TD1510345TD1510345TD <td< td=""><td>and the second sec</td><td>10331</td><td></td><td>15</td><td>TISSUES</td><td>SCHEDULED SACRIFICED</td></td<>	and the second sec	10331		15	TISSUES	SCHEDULED SACRIFICED
10333TD 1515ALL TISSUES APPEARED NORMAL.10334TD 1515NAL TISSUES APPEARED NORMAL.10335TD 1515SEMINAL VESICLES WITH FLUID: SMALL.10336TD 1515ALL TISSUES APPEARED NORMAL.10337TD 1515ALL TISSUES APPEARED NORMAL.10337TD 1515ALL TISSUES APPEARED NORMAL.10338TD 1515ALL TISSUES APPEARED NORMAL.10339TD 1515ALL TISSUES APPEARED NORMAL.10334TD 1515ALL TISSUES APPEARED NORMAL.10341TD 1515ALL TISSUES APPEARED NORMAL.10341TD 1515ALL TISSUES APPEARED NORMAL.10342TD 1515ALL TISSUES APPEARED NORMAL.10343TD 1515ALL TISSUES APPEARED NORMAL.10344TD 1515ALL TISSUES APPEARED NORMAL.10342TD 1515ALL TISSUES APPEARED NORMAL.10343TD 1515ALL TISSUES APPEARED NORMAL.10344TD 1515ALL TISSUES APPEARED NORMAL.10345TD 1515ALL TISSUES APPEARED NORMAL.<	100	10332		15	TISSUES APPEARED	
TD 1515ALL TISSUES APPEARED NORMAL.TD 1515SEMINAL VESICLES WITH FLUID: SMALL.TD 1515SEMINAL VESICLES WITH FLUID: SMALL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL		10333		15	TISSUES APPEARED	
TD 1515SEMINAL VESICLES WITH FLUID: SMALL.TD 1515ALL OTHER TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.		10334		15	TISSUES	SCHEDULED SACRIFICED
TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL OTHER TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515SEMINAL VESICES APPEARED NORMAL.TD 1515SEMINAL VESICES MITH FLUID: SMALL.		10335		15	SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES AFFEARED NORMAL.	SCHEDULED SACRIFICED
TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 SEMINAL VESICLES WITH FLUID: SMALL. TD 15 15 SALL OTHER TISSUES APPEARED NORMAL. TD 15 15 ALL TISSUES APPEARED NORMAL.		10336		15		SCHEDULED SACRIFICED
TD1515ALL TISSUES APPEARED NORMAL.TD15153LL TISSUES APPEARED NORMAL.TD1515SEMINAL VESICLES WITH FLUID: SMALL.TD1515ALL OTHER TISSUES APPEARED NORMAL.TD1515ALL OTHER TISSUES APPEARED NORMAL.TD1515ALL TISSUES APPEARED NORMAL.TD1515ALL TISSUES APPEARED NORMAL.TD1515SEMINAL VESICLES WITH FLUID: SMALL.TD1515SEMINAL VESICLES WITH FLUID: SMALL.		10337		15	TISSUES	SCHEDULED SACRIFICED
TD 1515ALL TISSUES APPEARED NORMAL.TD 1515SEMINAL VESICLES WITH FLUID: SMALL.TD 1515ALL OTHER TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL OTHER TISSUES APPEARED NORMAL.TD 1515ALL OTHER TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515SEMINAL VESICLES WITH FLUID: SMALL.TD 1515SEMINAL VESICLES WITH FLUID: SMALL.		10338		15		
TD151515SEMINAL VESICLES WITH FLUID: SMALL.TD1515ALL OTHER TISSUES APPEARED NORMAL.TD1515ALL TISSUES APPEARED NORMAL.TD1515ALL TISSUES APPEARED NORMAL.TD1515ALL OTHER TISSUES APPEARED NORMAL.TD1515THYMUS: RIGHT LOBE, RED (1.8 CM X 0.7 CM)TD1515ALL OTHER TISSUES APPEARED NORMAL.TD1515ALL TISSUES APPEARED NORMAL.TD1515ALL TISSUES APPEARED NORMAL.TD1515SEMINAL VESICLES WITH FLUID: SMALL.TD1515SEMINAL VESICLES MITH FLUID: SMALL.		10339		15		SCHEDULED SACRIFICED
TD 15 15 ALL OTHER TISSUES APPEARED NORMAL. TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 THYMUS: RIGHT LOBE, RED (1.8 CM X 0.7 CM) ALL OTHER TISSUES APPEARED NORMAL. TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.		10340	TD 15	15		
TD 1515ALL TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515THYNUS: RIGHT LOBE, RED (1.8 CM X 0.7 CM)TD 1515ALL OTHER TISSUES APPEARED NORMAL.TD 1515ALL TISSUES APPEARED NORMAL.TD 1515SEMINAL VESICLES WITH FLUID: SMALL.TD 1515SEMINAL VESICLES WITH FLUID: SMALL.					ALL OTHER TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 THYMUS: RIGHT LOBE, RED (1.8 CM X 0.7 CM) ALL OTHER TISSUES APPEARED NORMAL. TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.		10341		15		
TD 15 15 THYMUS: RIGHT LOBE, RED (1.8 CM X 0.7 CM) ALL OTHER TISSUES APPEARED NORMAL. TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.		10342		15		SCHEDULED SACRIFICED
TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.		10343		15	THYMUS: RIGHT LOBE, RED (1.8 CM X 0.7 CI All OTHER TISSUES APPEARED NORMAL.	M) SCHEDULED SACRIFICED
TD 15 15 ALL TISSUES APPEARED NORMAL. TD 15 15 SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.						
TD 15 15 SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES AFFEARED NORMAL.		10344	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
		10345	TD 15	15	SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED

TD = TEST DAY a. Refer to the individual clinical observations table (Appendix 1) for external observations confirmed at necropsy.

APPENDIX 2 (PAGE 4): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

- (F GORT Z (FAGE	NOO TEJONOAN	- CNOT TWAT	UINT TROUTATIONI - CNOTTRANGED ICLOS		
DOSAGE GROUP DOSAGE (MG/KG/DAY)	RAT NUMBER	DAY OF NECROPSY	DOSES ADMINISTERED	OBSERVATIONS a	ТҮРЕ ОF DEATH
4 LINURON	10346	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
150	10347		15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10348	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10349	TD 15	15	SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES AFPEARED NORMAL.	SCHEDULED SACRIFICED
	10350	TD 15	15	SPLEEN: BLACK. SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10351 10352 10353	TD 15 TD 15 TD 15	15 15 15	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED SCHEDULED SACRIFICED SCHEDULED SACRIFICED
	10354	TD 15	15	ACCESSORY SEX GLAND (ASG): SMALL. SEMINAL VESICLES WITH FLUID: SMALL. PROSTATE: SMALL. ALL OTHER TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10355	TD 15	15	SEMINAL VESICLES WITH FLUID: RIGHT LOBE, ALL OTHER TISSUES APPEARED NORMAL.	, SMAIL. SCHEDULED SACRIFICED
	10356	TD 15	15	THYMUS: RIGHT LOBE, RED (0.5 CM X 0.6 C) SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.	CM). SCHEDULED SACRIFICED
	10357	TD 15	15	SEMINAL VESICLES WITH FLUID: SMALL. ALL OTHER TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10358 10359 10360	TD 15 TD 15 TD 15	15 15 15	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED SCHEDULED SACRIFICED SCHEDULED SACRIFICED
TD = TEST DAV					

TORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL	WORK ASSIGNMENT: WA 5-15)
INTERLABORA!	(SPONSOR'S WORK P
PROTOCOL RTP00004:	

APPENDIX 2 (PAGE 5): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GROUP DOSAGE (MG/KG/DAY)	RAT NUMBER	DAY OF NECROPSY	DOSES ADMINISTERED	OBSERVATIONS a	TYPE OF DEATH
່ 					
PHENOBARBITAL	10361	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
25	10362	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10363	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10364	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10365		15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10366	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10367	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10368	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10369	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10370		15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10371	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10372	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10373	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10374	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10375	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
و					
PHENOBARBITAL	10376	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
50	10377	Ч	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10378	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10379	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10380	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10381	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10382	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10383	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10384	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10385	Ч	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10386	Ч	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10387	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10388	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10389	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10390	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED

RTP00004

a. Refer to the individual clinical observations table (Appendix 1) for external observations confirmed at necropsy.

APPENDIX 2 (PAGE 6): NECROPSY OBSERVATIONS - INDIVIDUAL DATA

DOSAGE GRUUF DOSAGE (MG/KG/DAY)	RAT NUMBER	DAY OF NECROPSY	DOSES ADMINISTERED	OBSERVATIONS a	ТҮРЕ ОF DEATH
7					
PHENOBARBITAL	10391		15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
100	10392	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10393	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10394	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10395	TD 15	15	SEMINAL VESICLES WITH FLUID: RIGHT LOBE, ALL OTHER TISSUES APPEARED NORMAL.	E, SMALL. SCHEDULED SACRIFICED
	10396	TD 9	ω	FOUND DEAD ON TEST DAY 9. ALL TISSUES APPEARED NORMAL.	FOUND DEAD
	10397	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10398	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10399	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10400	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10401	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10402	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10403	TD 15	15	SEMINAL VESICLES WITH FLUID: LEFT LOBE,	, SMALL.
				ALL OTHER TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10404	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED
	10405	TD 15	15	ALL TISSUES APPEARED NORMAL.	SCHEDULED SACRIFICED

for external observations confirmed at necropsy. a. Refer to the individual clinical observations table (Appendix 1)

APPENDIX 3 - PROTOCOL

PROTOCOL NUMBER RTP00004

SPONSOR'S WORK ASSIGNMENT: WA 5-15

STUDY TITLE

PURPOSE

TESTING FACILITY

Interlaboratory Validation of the 15-Day Adult Intact Male Rat Assay with Linuron and Phenobarbital

The purpose of this study is to evaluate the responses of the adult male rat assay to two chemicals that have known endocrine activity as detected by primarily measuring body and organ weight changes, histology and changes in circulating concentrations of hormones.

Charles River Laboratories Preclinical Services, Pennsylvania 905 Sheehy Drive, Building A Horsham, Pennsylvania 19044-1241 USA Telephone: (215) 443-8710 Telefax: (215) 443-8587

STUDY DIRECTOR

Joseph W. Lech, B.S., LAT Scientist E-mail: joseph.lech@us.crl.com Address as cited above for Testing Facility.

PRINCIPAL SCIENTIST

Raymond G. York, Ph.D., DABT Associate Director of Research Address as cited above for Testing Facility. E-mail: raymond.york@us.crl.com.

<u>SPONSOR</u>

Battelle 505 King Avenue Columbus, Ohio 43201-2693 USA

SPONSOR'S REPRESENTATIVE

David P. Houchens, Ph.D. Address as cited previously for Sponsor. Telephone: (614) 424-3564 Telefax: (614) 458-3564 E-mail: houchensd@BATTELLE.ORG

REGULATORY CITATIONS

U.S. Environmental Protection Agency. Federal Insecticide, Fungicide and Rodenticide Act/Toxic Substances Control Act (FIFRA/TSCA); Good Laboratory Practice Standards; Final Rule. 40 CFR Part 160/Part 792.

Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF). Good laboratory practice (GLP) standards for agricultural chemicals. Agricultural Production Bureau Ref. No. 11-Nousan-No.6283. October 1, 1999; last revised June 30, 2003 Ref. No. 15-Seisan-2460.

OECD Environmental Directorate. OECD Principles of good laboratory practices [C(97)186/Final] (1998); Environmental Health and Safety Division.

REGULATORY COMPLIANCE

This study will be conducted in compliance with the Good Laboratory Practice (GLP) regulations cited above.

All changes or revisions of this protocol shall be documented, signed by the Study Director and the Sponsor, dated and maintained with the protocol.

The Testing Facility's Quality Assurance Unit (QAU) will audit the protocol, the raw data and the report, and will inspect critical phases of those portions of the study conducted at the Testing Facility in accordance with the Standard Operating Procedures of the Testing Facility.

The Sponsor will prepare the report tables and perform the statistical analyses (daily body weight and body weight change, feed consumption, hormonal analysis and organ weights). The Sponsor's QAU will be responsible for auditing the report tables and statistical analysis generated by Battelle and that all applicable GLP regulations were followed in the conduct.

The final report will include a compliance statement signed by the Study Director that the report accurately reflects the raw data obtained during the performance of the study and that all applicable GLP regulations were followed in the conduct of the study. Should significant deviations from GLP regulations occur, each will be described in detail, together with how the deviation might affect the quality or integrity of the study.

Should any portion of the study be conducted by a subcontractor identified in this protocol or by the Sponsor, the Study Director will ensure that a qualified Principal Investigator is identified by the facility conducting that portion of the study. The QAU for that facility will conduct critical phase inspections and audit respective results and reports for that study portion according to the SOPs of that facility. Such critical phase inspection reports and report audits will be submitted by the subcontractor facilities identified in this protocol to the Principal Investigator and the Study Director. The dates of the inspections and report submissions will be incorporated into a QAU Statement generated by that facility and provided to the Testing Facility for inclusion in the final report. In addition, the subcontractor facilities identified in this protocol will provide a statement of GLP compliance, as described above, signed by the Principal Investigator for inclusion in the final report.

SCHEMATIC OF STUDY DESIGN AND STUDY SCHEDULE

See ATTACHMENT 1 to the protocol.

TEST AND CONTROL SUBSTANCES

NOTE: The Sponsor will provide the test substances. Except for chemistry formulation and analyses, all tests, analyses and measurements will be conducted by individuals without knowledge of the identity of the test substances. A key code for the dosage levels and concentrations will be provided to the formulation and Quality Assurance personnel for the purpose of formulation preparation and auditing of critical phases, respectively. The identities of the test substances, dosage levels and concentrations will be added to the protocol by amendment following the completion of the in-life phases of the study.

Identification

Test Substances

Test Substance (CAS No.) Linuron (330-55-2)	Lot Number 348-8A	Manufacturer/Location ChemService, West Chester, Pennsylvania, USA	Purity Mfg.% 99.5	Prepared Formulations Storage Conditions Refrigerated (2°C to 8°C)	Formulation Type/Concentration (mg/ml) Suspension/ 10, 20 and 30
Phenobarbital (50-06-6)	104K2600	Sigma-Aldrich, St. Louis, Missouri, USA	99.1	Refrigerated (2°C to 8°C)	Suspension/ 5, 10 and 20

The Sponsor will provide documentation for the identity, composition, strength and activity/purity of the test substances and stability of the bulk test substances. This documentation will be included in the final report. The test substances are marketed products and therefore the method of synthesis information has been documented.

Control Substance

Control Substance (Bulk CAS No.)	Bulk Lot Number	Bulk Manufacturer/Location	Prepared Formulations Storage Conditions	Formulation Type
Aqueous 0.25% (w/v) methylcellulose (9004-67-5)	062K0144 ^a	Sigma-Aldrich, St. Louis, Missouri, USA	Refrigerated (2°C to 8°C)	Suspension

a. Manufacturer's lot number for bulk methylcellulose. The prepared control substance was assigned Lot Number 14601TC by the Sponsor prior to shipment.

Neither the Sponsor nor the Study Director is aware of any potential contaminants likely to be present in the control substance that would interfere with the results of this study. Therefore, no analyses other than those mentioned in this protocol will be conducted.

Safety Precautions

Gloves, dust-mist/HEPA-filtered mask, appropriate eye protection, uniform/lab coat and tyvek[®] sleeves to be worn during formulation preparation and dosage. Bulk test substances will be handled in a chemical fume hood. The Material Safety Data Sheet (MSDS) for each test substance is attached to the protocol (ATTACHMENT 2).

Storage

Bulk Test Substances:Room temperaturePrepared Control Substance:Refrigerated (2°C to 8°C)Prepared Formulations:Refrigerated (2°C to 8°C)

All test substance shipments should be addressed to the attention of Mark Coker, Manager of Formulation Laboratory, at the previously cited Testing Facility address and telephone number.

Shipments should include information concerning storage conditions and shipping cartons should be labeled appropriately. The recipient should be notified in advance of shipment.

FORMULATION

Frequency of Preparation

Formulations (suspensions) will be prepared at the Testing Facility once for a prestudy formulation analysis and once for the formulations that will be used during the dosage period.

Prior to use, all dose levels, including the control substance, will be brought to room temperature while being stirred for approximately one hour before dosing. Each dosage level will be stirred continuously using a magnetic stir bar and stir plate during sample collection and dosage administration.

Detailed preparation procedures are attached to this protocol (ATTACHMENT 3).

Adjustment for Activity/Purity

The test substances will be considered 100% active/pure for the purpose of dosage calculations.

Testing Facility Reserve Samples

The Testing Facility will reserve a sample of each lot of bulk test substance (approximately 1 g each) and prepared control substance (5 mL) used during the course of the study. Samples will be stored under the previously cited conditions.

<u>ANALYSES</u>

Results of required analyses will be provided to the Testing Facility for inclusion in the study report.

Samples additional to those described below may be taken if deemed necessary during the course of the study. Additional analyses, if required, will be documented by protocol amendment.

Prior to study start, the Testing Facility will perform a prestudy preparation and analysis of the test substance formulations in order to validate the transfer of information provided by the Sponsor regarding preparation and analysis of the test substance formulations.

Results of the homogeneity and concentration analyses of the test substances to be used during the study will be approved by the Study Director before administration.

Acceptance Criteria

Acceptance criteria for analytical results for each group are defined as follows: 1) concentration results will be considered acceptable if the difference between the actual mean value and the targeted concentration is $\leq 15\%$; and 2) homogeneity results for a group will be considered acceptable if the relative standard deviation (RSD) for the formulation, calculated as the RSD for the grand mean of the average values for top, middle and bottom locations, is $\leq 5\%$.

Analyses of Prepared Formulations

Concentration and Homogeneity

Concentration and homogeneity of the prepared formulations will be verified during the course of this study. Quadruplicate samples (1 mL each) will be taken from the top, middle and bottom of each concentration on the day prepared for both the prestudy and formulations used for dosage administration. Two samples from each quadruplicate set will be shipped for analysis; the remaining samples will be retained at the Testing Facility as backup samples. Quadruplicate samples (1 mL each) will be taken from each concentration of the formulations used for dosage administration on the last day of the dosage period. Two samples from each quadruplicate set will be shipped for analysis; the remaining samples. Backup samples will be stored under the previously cited conditions and discarded at the Testing Facility following issue of the final report.

Stability

Stability data of the bulk test substances and of the prepared formulations bracketing the range of concentrations in this study are on file with the Sponsor and will not be determined during the conduct of this study; this information will be provided to the Study Director and included in the final report.

Shipping Instructions

Samples to be analyzed will be shipped (on cold packs) to:

Principal Investigator: Kim Barnard Charles River Laboratories Preclinical Services, Massachusetts 57 Union Street Worcester, Massachusetts 01608 USA Telephone: (508) 890-0100 Telefax: (508) 753-1834 E-mail: kim.barnard@us.crl.com

The recipient will be notified in advance of sample shipment.

DISPOSITION

Residual formulations will be discarded at the Testing Facility. Backup samples will be discarded at the Testing Facility following issue of the final report. The remaining bulk test substances will be will be sent to (ambient conditions):

Michael E. Cobb Batelle Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, Washington 98382 USA Telephone: (360) 681-4580 Telefax: (360) 681-3699 E-mail: michael.cobb@pnl.gov

The recipient will be notified in advance of sample shipment.

<u>TEST SYSTEM</u>

Species/Strain and Reason for Selection

The Crl:CD(SD) rat was selected as the Test System because of known response to toxic effects on reproductive capacity and history of use as a rodent species in these evaluations⁽¹⁻³⁾.

Number

Initial population acclimated: Population selected for study:

115 male rats.105 male rats (15 per dosage group).

<u>Sex</u>

Male

Body Weight and Age

Male rats will be ordered to be approximately 63 days (9 weeks) of age at receipt and approximately 70 days (10 weeks) of age at the initiation of dosage. The rats will be expected to weigh from 225 g to 350 g each at randomization. Actual body weights will be recorded the day after receipt and will be documented in the raw data. The weight ranges will be included in the final report.

Source

Charles River Laboratories, Inc.

The rats will be shipped in filtered cartons by air freight and/or truck from Charles River Laboratories, Inc., to the Testing Facility.

Identification

Rats are permanently identified using Monel[®] self-piercing ear tags (Gey Band and Tag Co., Inc., No. MSPT 20101). Rats are assigned temporary numbers at receipt and given unique permanent identification numbers when assigned to the study before administration of the first dosage.

ANIMAL HUSBANDRY

All cage sizes and housing conditions are in compliance with the *Guide for the Care and* Use of Laboratory Animals⁽⁴⁾.

<u>Housing</u>

During the acclimation and study periods, the rats will be individually housed in stainless steel wire-bottomed cages.

Room Air, Temperature and Humidity

The animal room is independently supplied with at least ten changes per hour of 100% fresh air that has been passed through 99.97% HEPA filters. Room temperature will be maintained at 64°F to 79°F (18°C to 26°C) and monitored constantly. Room humidity will also be monitored constantly and maintained at 30% to 70%.

Light

An automatically controlled 12-hour light:12-hour dark fluorescent light cycle will be maintained. Each dark period will begin at 1800 hours. The light cycle may be adjusted by the Study Director or designee if deemed necessary to accommodate scheduled laboratory activities. Any such adjustment will be documented in the raw data.

<u>Diet</u>

Rats will be given Harlan's Teklad 2018c meal feed, available *ad libitum* from individual feeders.

The concentrations of genistein equivalents (aglycone) or daidzein will be \leq 300 ppm per lot. Approval by the Sponsor will be required in order to use a lot of Harlan's Teklad 2018c meal feed that has a genistein or daidzein equivalent content greater than 300 ppm per lot.

Water:

Water will be available *ad libitum* from individual bottles attached to the cages or from an automatic watering access system. All water will be from a local source and passed through a reverse osmosis membrane before use. Chlorine will be added to the processed water as a bacteriostat; processed water is expected to contain no more than 1.2 ppm chlorine at the time of analysis. Water is analyzed monthly for possible bacterial contamination and twice annually for possible chemical contamination.

<u>Contaminants</u>

Neither the Sponsor nor the Study Director is aware of any potential contaminants likely to be present in the certified diet or in the drinking water at levels that would interfere with the results of this study. Therefore, no analyses other than those routinely performed by the feed supplier or those mentioned in this protocol will be conducted.

RANDOMIZATION AND ACCLIMATION

Upon arrival, rats will be assigned to individual housing on the basis of computergenerated random units.

After a minimum of one week of acclimation, in which the rats were monitored for general health daily, rats will be selected for study on the basis of physical appearance and body weights recorded during acclimation. During the acclimation period all rats are to be examined by the laboratory veterinarian for release on study. The rats will be assigned to dosage groups based on computer-generated (weight-ordered) randomization procedures.

In order to accommodate the necropsy schedule, rats will be assigned to three replicates that will begin dosage and be sacrificed on consecutive days.

ADMINISTRATION

Route and Reason for Choice

The oral (gavage) route was selected for use because: 1) in comparison with the dietary route, the exact dosage can be accurately administered; and 2) it is one possible route of human exposure.

Method and Frequency

Each dosage level will be stirred continuously using a magnetic stir bar and stir plate during sample collection and dosage administration.

Male rats will be administered one of the test substances and/or control substance once daily for 15 days. The first day of dosage for each replicate will be Test Day 1 (TD 1) of the study. Rats will be sacrificed on the day of the last dosage (TD15), 2 to 3 hours after the last dosage.

Daily dosages will be based on the daily body weight, except on TD 15, which will use the previous day's body weight. On TDs 1 through 14, dosing of rats will be between 0600 and 0900 hrs. On TD 15, dosing of rats will start at approximately 0600 hrs so that rats can have blood collected and be necropsied between 0800 and 1100 hrs on TD 15.

Rationale for Dosage Selection

Chemicals selected for this phase of validation were chosen to represent a couple of different modes of action. Each of the test chemicals has previously been run in the adult male assay with results documented in a review publication⁽⁵⁾. Based on the results of these studies, the high dosage level is not expected to exceed the maximum tolerated dose (MTD; body weight at necropsy within 10% of controls). The lower dosage levels were selected to assess dose-response relationships.

Dosage Group	Number of Rats	Dosage (mg/kg/day) ^a	Concentration (mg/mL)	Dosage Volume (mL/kg)	Batch Number
1	15	TBA	TBA	5	B-RTP00004-A(Day.Month.Year)
2	15	TBA	TBA	5	B-RTP00004-B(Day.Month.Year)
3	. 15	TBA	TBA	5	B-RTP00004-C(Day.Month.Year)
4	15	TBA	TBA	5	B-RTP00004-D(Day.Month.Year)
5	15	TBA	TBA	5	B-RTP00004-E(Day.Month.Year)
6.	15	TBA	TBA	5	B-RTP00004-F(Day.Month.Year)
7	15	TBA	TBA	5	B-RTP00004-G(Day,Month Year)

Dosage Groups, Levels and Volumes

The test substances will be considered 100% active/pure for the purpose of dosage calculations. TBA - To be added to the protocol by amendment.

a. Test substances will be provided by the Sponsor. The Testing Facility will identify the test substances

by key code. All tests, analyses and measurements will be conducted by individuals without knowledge of the identity or dosage level of the test substances except for formulation preparation and analysis.

TESTS, ANALYSES AND MEASUREMENTS

Viability

All Periods:

At least twice daily.

<u>Clinical Observations and/or General Appearance</u>

Acclimation Period:

Daily.

Dosage Period:

Daily before dosage and approximately 6 hrs post dose.

Clinical observations may be recorded more frequently than cited above.

Body Weights

Acclimation Period:

Dosage Period:

Sacrifice:

Daily.

At least three times (not tabulated).

Terminal weight following dosage administration.

Feed Consumption Values

Acclimation Period:At least once (not tabulated).Dosage Period:Weekly (TD 1, 8 and 15)

Day of Sacrifice:

Feed left recorded.

Feed consumption values may be recorded more frequently if it is necessary to replenish the feed. These intervals will not be tabulated.

SACRIFICE

Method of Sacrifice

All rats that survive until scheduled sacrifice will be anesthetized by exposure to carbon dioxide for no more than 60 seconds and then sacrificed by decapitation. Rats sacrificed in moribund condition will be sacrificed by asphyxiation with carbon dioxide.

Scheduled Sacrifice

Male rats will be sacrificed on the day of the last administration of the test substance (TD 15) and necropsied as described below. All rats will be moved from the study room to the necropsy area and held for at least one hour prior to necropsy to minimize potential stress-induced changes in hormone levels related to cage transport.

GROSS NECROPSY, HORMONE ANALYSIS AND HISTOPATHOLOGY

On TD 15, rats will be necropsied and examined for gross lesions. Rats will be sacrificed between 0800 and 1100 hrs (2 to 3 hours after the last dosage).

Blood samples (at least 8 mL) for evaluation of serum hormones will be collected from trunk blood immediately following sacrifice. The time of sample collection will be documented in the raw data. Blood will be collected and immediately placed into serum separator tubes in wet ice until serum is prepared. Enough blood should be collected in order to yield approximately 3600 mcL of serum, to be aliquotted into nine vials (duplicate) of approximately 200 mcL each. The sequence in which the hormones should be assayed is testosterone, luteinizing hormone (LH), thyroid stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), follicle stimulating hormone (FSH), estradiol and prolactin. Only when relative liver weights are significantly increased should dihydrotestosterone (DHT) levels be measured. Serum samples will be immediately forzen on dry ice and maintained frozen (-68°C to -78°C) until analysis.

Hormone analysis will be conducted at CTBR Bio-Research Inc. utilizing radioimmunoassay (RIA) kits. Each sample will be run in duplicate and include the low and high quality control serum samples. Each assay will include all samples from the control group and each dose level for both chemicals. For the QC samples, the kitsupplied zero standard or the medium in which the standards are prepared can be spiked with respective hormones at concentrations that are expected to encompass 70% (+/-10%) B/B₀, for the low, and 30% (+/-10%) B/B₀, for the high. The results for the quality control samples will be used to assess within- and between-assay variability for each laboratory.

Gross necropsy will include an initial physical examination of external surfaces and all orifices, as well as an internal examination of tissues and organs *in situ*. In addition, the cranial, thoracic and abdominal cavities will be examined.

Rats will be sacrificed and examined for gross lesions. Gross lesions associated with the testes, epididymides and thyroid will be retained in neutral buffered 10% formalin and examined histologically, all other gross lesions will be retained for possible histological evaluation. Gross lesions associated with the liver (only if the relative weights are significantly increased) will be shipped for histological examination. Tissue trimming and histopathology will be performed under the supervision of or by a Board-Certified Veterinary Pathologist.

See ATTACHMENT 4 for tissues to be weighed and retained and histological evaluations to be conducted. All other tissues will be discarded.

Shipping Instructions

Serum samples for analysis will be shipped (frozen on dry ice) to:

Principal Investigator: Stephane Besner Laboratory Sciences CTBR Bio-Research Inc. 87 Senneville Road Senneville Quebec, Canada, H9X3R3 Telephone: 514-630-8200 ext 8970 E-mail: stephane.besner@ca.crl.com

The recipient will be notified in advance of sample shipment.

Rats Found Dead or Unscheduled Sacrifice

All rats accidentally killed during the acclimation period will be discarded without further evaluation. Rats that die or are unscheduled sacrificed because of condition during the acclimation period or the dosage period will be examined for the cause of death or condition on the day the observation is made. The rats will be necropsied and examined to the extent possible as described above, but the tissues will not be histologically examined. All rats unscheduled sacrificed because of condition will euthanized by asphyxiation with carbon dioxide (CO_2).

Data Presentation and Statistics

Individual clinical observation and necropsy/mortality tables will be generated by the Testing Facility. This information will not be summarized or statistically analyzed.

The four categories of data to be evaluated are as follows:

 Growth - body weights and food consumption - (7 endpoints) Daily body weight (TD1 - TD15) Body weight change (TD8 - TD1) Body weight change (TD15 - TD8) Body weight change (TD15 - TD1) Food consumption (TD8 - TD1) Food consumption (TD15 - TD8) Food consumption (TD15 - TD1)

TD15 weight will be the live weight before sacrifice.

Body weights will be reported in grams (g). Body weight changes will be reported in g/day. Body weight responses will be reported to the nearest 0.1g or 0.1 g/day. Food consumption will be reported in g/kg/day. Responses will be reported to the nearest 0.1 g/kg/day.

2. Hormonal analysis - (8 - 9 hormones) Testosterone (ng/ml) LH (ng/ml) TSH (ng/ml) T4 (µg/dl) T3 (ng/dl) FSH (ng/ml) Estradiol (pg/ml)

Prolactin (ng/ml) *DHT (pg/ml)

*Only if relative liver weights are significantly increased should DHT levels be measured.

3. Organ weights – (9 organs)

Liver

Right testis

Left testis

Testes paired (sum of left and right testis weights)

Epididymides (paired weight)

Entire prostate

Seminal vesicles with fluid and coagulating gland

Accessory sex gland (ASG) (sum of entire prostate and seminal vesicles with fluid and coagulating gland weights)

Thyroid

Organ weights will be reported in grams (g). Organ weights will be reported wet to the nearest 0.0001 g.

Organ weights will be analyzed in two ways:

Unadjusted

Organ to final body weight ratio (expressed as percent)

4. Histology – (5 - 6 organs) *Liver Right testis Left testis Right Epididymus Left Epididymus Thyroid

*Liver will be evaluated microscopically at the discretion of the pathologist, the study director and sponsor.

Microscopic evaluations will be performed on control and high dose rats for all compounds. The dose groups but not the compounds will be known to the pathologist during evaluation. After evaluation, the nature of the compounds will be known to the pathologist for report writing. Compounds which show effects in the high dose group will have the remaining groups evaluated and this will be added by amendment.

Histology data will not be analyzed statistically.

RTP00004

Protocol RTP00004 Page 17

The test method specifies that all rats will be sacrificed on TD 15.

If rats died prior to necropsy their body weights will be included in summaries and displays up to the time of death, but will not be imputed beyond date of death nor will they be included in the final body weight gain summaries (in either the initial or final weight average). The number of deaths per group prior to necropsy will be reported for each group.

All data values that are reported by a laboratory as being associated with a test or clerical error, and which the laboratory states should be excluded, will be omitted from all summaries, displays, and analyses. All data that enter into the statistical analyses will be *a priori* valid data.

Outlier Detection

Outlier screens will be carried out prior to analysis. Screens will be carried out separately for each endpoint, based on untransformed data. When both unadjusted and body weight adjusted values are called for in the statistical analysis plan (organ weights), the outlier screens will be carried out based on the unadjusted values.

For each endpoint a one way analysis of variance model will be fitted to the data. For the growth data the body weight change from TD1 to TD15 will be used. The data will include seven groups with n=15 rats per group, less any data omitted due to deaths or procedural errors. The model will assume separate standard deviations within each group. Studentized residuals will be determined based on the analysis of variance fit and ordered in absolute value. Assuming no data were omitted, there will be 105 values. A procedure which generalizes Grubbs⁽⁶⁾ procedure to accommodate heterogeneous variances will be used. The absolute studentized residuals will be compared to a cutoff value corresponding to a 2.5% significance level (for a two-sided test) of the maximum of seven component maximum studentized residuals, each component maximum studentized residual in excess of 2.84 in absolute value will be flagged. Just a single iteration of the outlier screening procedure will be carried out.

Normal probability plots of the studentized residuals will be prepared. If the flagged values appear to be outliers in the probability plots, in that they depart from the trend in the body of the residuals, they will be treated as potential outliers. If the trend observed in the tails of the normal probability plot is continuous but is heavily skewed or is considerably heavier tailed than normal, a data transformation (e.g. square root, (natural)

logarithm) might be attempted to improve agreement with normal distribution assumptions. The outlier screen would be repeated on the transformed data. However, if the tails of the normal probability plot depart just slightly to moderately from straight line behavior, the data will be analyzed without transformation.

Subsequent statistical analyses will be carried out both including and excluding the flagged values that are identified as potential outliers. The subsets of flagged values will be response specific.

Heterogeneity of Residual Variance Across Laboratories and Treatments

Tests for heterogeneity of variance will be carried out on the data excluding the values flagged by the outlier screen and identified as potential outliers. The transform of the variable (or none) used for the variance heterogeneity comparisons will be that decided upon in the outlier screen.

For each endpoint extent of heterogeneity of variability will be assessed across treatment groups. A one-way analysis of variance model will be fitted to the data, including the factor treatment (fixed). The factors in the analysis of variance will be:

Source	<u>df</u>
Treatment	<u>un</u> 6
Residual \equiv Replicate (Treatment)	14×7=98
	104

Three versions of the model will be fitted to test for heterogeneity of residual variance.

- 1. Separate variances for each treatment group (7 variances)
- 2. Separate variances for each chemical (or control) (3 variances)
- 3. Common variances across all groups

These models will be compared by likelihood ratio tests.

Data Summaries

Data summaries will consist of tables and figures. Summary tables will be prepared including all the data and excluding the values screened as possible outliers. There will be a set of eight tables for each case, for a total of 16 tables. Summary figures will only be prepared including all the data.

<u>Tables</u>

Tables 1 and 2 will display summary values for the seven body weight and food consumption endpoints. These will be TD15 body weight, 3 body weight change variables as shown in the data section, and 3 food consumption variables as shown in the data section. There will be one table per chemical.

For each endpoint and each dose group the following statistics will be reported:

□ Number of rats on which the statistic is based

 \Box Mean \pm standard error

□ Coefficient of variation

 $\square \qquad \text{Mean as a percent of control group mean} \pm \text{standard error}^1$

In addition the linear trend slope contrast will be estimated for each chemical based on the control group and the three graded dose groups, treating the control group and the three dose groups as equally spaced². The estimated treatment slope and its standard error will be reported

Tables 3 to 6 will display summary values for the nine organ weights endpoints specified in the test method Tables 3 and 4 will correspond to unadjusted organ weights and organ to body weight ratios respectively for Chemical #1. Tables 5 and 6 will correspond to unadjusted organ weights and organ weight to body weight ratios respectively for Chemical #2.

The tables will include the same summary statistics as specified for Tables 1 and 2.

Tables 7 and 8 will display summary values for the nine hormonal analysis endpoints specified in the test method. There will be one table per chemical. The tables will include the same summary statistics as specified for Tables 1 and 2.

1. If X, Y denote the control group least squares mean and the dose group least squares mean respectively, with variance-covariance matrix (S_X^2, S_Y^2, S_{XY}) , an approximate standard error for $R \equiv Y/X$ is

 $Se[R(X, Y)] \approx |1/X| [(Y/X)^2 S_X^2 + S_Y^2 - 2(Y/X) S_{XY}]^{\frac{1}{2}}$

2 If X_0, X_1, X_2, X_3 denote the least squares means for the control group "0" and (equally spaced) dose groups "1", "2", "3" then the linear contrast among these is defined to be

Linear Contrast = $[-3X_0 - X_1 + X_2 + 3X_3]/[20]^{\frac{1}{2}}$

Tables 1 - 8 will be based on all the data. Tables 9 - 16, to the extent needed, will be a repetition of Tables 1-8, but based on the data excluding the flagged potential outliers. Tables 9-16 need only include the subset of responses for which potential outliers were flagged.

Figures

The figures will include mean daily body weights and figures to compare the various endpoints across chemicals and dose groups. The figures will include all the data. For organ weights the figures will be based only on the unadjusted weights.

Figures 1-2 will display mean body weight ± 2 standard errors for each day from TD1 to TD15 for the control group and for each dose group. Each figure will correspond to a single chemical.

For the 7 body weight and food consumption measures, the 9 unadjusted organ weights, and the 8 - 9 hormone concentrations (25 endpoints) summarized in Tables 1-8 a figure will be prepared that displays the (least squares) means ± 2 standard errors for each of the seven dose groups (control group + three dose groups x 2 chemicals). Each figure will contain seven bars, corresponding to a control group or chemical and dose group. Each bar will be centered at the (least squares mean) with width 2 standard errors above and below the least squares mean.

Analysis of Variance

For each of the 34 endpoints summarized in Tables 1-8 analysis of variance models will be fitted to the data to estimate treatment effects. For the nine organ weight responses the unadjusted responses will be analyzed as well as the organ to final body weight ratio (percent) responses.

Analyses will be carried out based on all the data and after omitting responses flagged as potential outliers. The (possibly heterogeneous) residual variance structure assumed in these analyses will be that arrived at as discussed in the section - "Heterogeneity of Residual Variance Across Laboratories and Treatments". If a transformation was decided on during the outlier screening process, the analyses will be carried out on transformed variables. Otherwise analyses will be carried out on the untransformed data, using the simplest variance structure compatible with the data.

For each (possibly transformed) response the following one-way analysis of variance model will be fitted to the combined data across laboratories and chemicals. The factors in the analysis of variance model are as shown below.

Source	<u>df</u>
Treatment	<u>ur</u> 6
Residual = Replicate (Treatment)	14×7=98
1	<u>14×7-98</u> 104

Least squares means for individual treatment groups and for differences between dose groups and control group and associated standard errors and ± 2 standard error intervals will be calculated based on the above model. In addition linear trend contrasts among the control group and the three dose groups within a chemical will be calculated, treating the control group and the three dose groups as equally spaced (using the linear contrast shown in footnote 2). For each chemical separately, least squares means will be compared between the treatment groups and the control group by means of two-sample ttests. Linear trend statistics will be compared to 0 trend by means of one-sample t-tests.

Two-tailed unadjusted significance levels will be reported. If the unadjusted significance levels are less than 0.05, they will be indicated with a single asterisk, '*'. If they are less than 0.006 they will be indicated with two asterisks, '**'. A significance level of 0.006 ($\approx 0.05/8$) corresponds to Bonferroni's simultaneity adjusted significance level 0.05, adjusting for eight inferences (6 comparisons of dose groups with control and 2 linear trend statistics). The least squares means, standard errors, CVs, and ± 2 standard error intervals will be back transformed to the original scale, if necessary, for purposes of display.

The Principal Investigator assigned to preparing the report tables and performing the statistical analysis (daily body weight and body weight change, feed consumption, hormonal analysis and organ weights) is Paul Feder of Battelle.

DATA ACQUISITION, VERIFICATION AND STORAGE

Data generated during the course of this study will be recorded either by hand or using the Argus Automated Data Collection and Management System and the Vivarium Temperature and Relative Humidity Monitoring System. All data will be tabulated, summarized and/or statistically analyzed using the Argus Automated Data Collection and Management System, the Vivarium Temperature and Relative Humidity Monitoring System, Microsoft[®] Excel (part of Microsoft[®] Office 97/2000/XP), Quattro Pro 8 and/or The SAS System (version 6.12).

Records will be reviewed by the Study Director and/or appropriate management personnel within 21 days after generation. All original records will be stored in the archives at the Testing Facility. All raw data will be bound and indexed following finalization of the study report. The archived raw data will be scanned, paginated electronically and retained as an Adobe[®] Acrobat PDF file. A copy of all raw data will be supplied to the Sponsor upon request. Preserved tissues will be stored at the Testing Facility at no additional charge for one year after mailing of the draft final report, after which time the Sponsor will be contacted to determine the disposition of these materials.

RECORDS TO BE MAINTAINED

Protocol and Amendments.

Test Substance, Control Substance and/or Reagent Receipt, Preparation and Use. Animal Acquisition.

Randomization Schedules.

Treatment (if prescribed by Staff Veterinarian).

General Comments.

Clinical Observations and/or General Appearance.

Body Weights.

Feed Consumption Values.

Blood Sample Collection, Processing and Shipment.

Gross Necropsy Observations.

Organ Weights.

Tissue Sample Collection, Processing and Shipment.

Photographs (if required).

Study Maintenance (room and environmental records).

Feed and Water Analyses.

Packing and/or Shipment Lists.

KEY PERSONNEL

Director of Research: Alan M. Hoberman, Ph.D., DABT Scientist and Study Director: Joseph W. Lech, B.S., LAT Principal Scientist and Associate Director of Research: Raymond G. York, Ph.D., DABT Director of Operations: John F. Barnett, B.S. Senior Manager, Study Management: Jo Anne M. Vico, B.S. Senior Manager, Regulatory Compliance: Nancy A. Catricks, M.S. Attending Veterinarian: Dena C. Lebo, V.M.D., Division Veterinarian Chair, Institutional Animal Care and Use Committee: Douglas B. Learn, Ph.D. Consultant, Veterinary Pathology: W. Ray Brown, D.V.M., Ph.D., Diplomate, ACVP Consultant, Veterinary Pathology: Charles River Laboratories Preclinical Services Pathology Associates Division

FINAL DEDODT

FINAL REPORT

The Study Director will provide periodic updates of study progress to the Sponsor. Draft summary tables of unaudited computer-recorded data may accompany these updates. Statistical analyses will not be performed on these interim data.

A comprehensive draft final report will be prepared on completion of the study and will be finalized following consultation with the Sponsor. The report will include the following:

- Executive Summary (describing the number and strain of rats used in the study, the dose levels and chemicals tested, and the effects with levels of statistical significance for all endpoints).
- Experimental Design and Method.
- Evaluation of Test Results.
- Conclusion.
- Appendices: Figures, Summary and Individual Tables Summarizing the Above Data, Protocol and Associated Amendments and Deviations, Study Director's GLP Compliance Statement, Reports of Supporting Data (if appropriate) and QAU Statement.

The Sponsor will receive one copy of the draft report. A copy of the final report will be provided on CD-ROM in Adobe Acrobat PDF format. The PDF document will be created from native electronic files to the extent possible, including text and tables generated by the Testing Facility. Report components not available in native electronic files and/or original signature pages will be scanned and converted to PDF image files for incorporation. A hard copy printed from the electronic file will accompany the final report on CD-ROM. The hard copy of the report with original signatures retained at the Testing Facility will be considered the GLP-compliant original.

The Sponsor will also receive an electronic copy (SAS Transport files or SAS datasetcompatible *Microsoft[®] Excel* files) of clinical observations, body weights, feed consumption values and organ weights within one month of completion of in-life. Audited raw data for histopathological observations and hormone level analyses will be provided electronically within two months of completion of in-life.

Study reports should be finalized within six months of submission of the audited draft final report. Two Sponsor-requested revisions to the draft report will be addressed by the Testing Facility at no charge. Additional revisions to the draft report or amendments to the final report may incur additional costs. If the Sponsor has not provided comments to the report within six months of draft submission, the report will be finalized by the Testing Facility.

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE STATEMENT

The procedures described in this protocol have been reviewed by the Testing Facility's Institutional Animal Care and Use Committee. All procedures described in this protocol that involve study rats will be conducted in a manner to avoid or minimize discomfort, distress or pain to the rats.

The signature of the Sponsor's representative below is assurance that the study is not an unnecessary duplication of previous work. Documentation for the necessity of this study may be obtained from the Sponsor. No alternative procedures were available to meet the stated purposes of the study.

<u>REFERENCES</u>

- (1) Christian.MS., Voytek.PE. In Vivo reproductive and mutagenicity tests. A guide to general toxicology. Basel (CH): S. Karger; 1982. p. 295-325.
- (2) Christian.MS. Reproductive toxicity and teratology evaluations of naltrexone. J Clin Psych 1984; 45 (9 Sec 2):7-10.
- (3) Lang.PL.Embryo and fetal developmental toxicity (Teratology) control data in the Charles River Crl:CD[®]BR rat. (Database provided by Argus Research Laboratories, Inc.). Wilmington (MA): Charles River Laboratories, Inc. 1988.
- (4) Guide for the care and use of laboratory animals. Institute of Laboratory Animal Resources Commission on Life Sciences and the National Research Council. Washington (D.C.): National Academy Press; 1996.
- (5) O'Connor JC, Cook JC, Marty.M.S., Davis LG, Kaplan AM, and Carney EW. Evaluation of Tier I screening approaches for detecting endocrine-active compounds (EACs).
- (6) Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics 1969; 11(1):1-21.

RTP00004

Protocol RTP00004 Page 26

PROTOCOL APPROVAL

FOR THE TESTING FACILITY

Alan M. Hoberman, Ph.D., DABT Director of Research

Joseph W/Lech, B.S., LAT Scientist/ Study Director

Mathew B. Carlson, B.A. FOR

Member, Institutional Animal Care and

Use Committee

FOR THE SPONSOR

Sponsor approval received via _____ E-mail on

onher

David P. Houchens, Ph.D Program Manager Battelle

Uni & Polloch

Terri Pollock **Quality Assurance** Battelle

7-Oct-05

Date

07 oct2005

Date

OF OCT ZOOS

Date

06 OCT 05

Date

0/05

Date

10-10-05

Date

ATTACHMENT 1

SCHEMATIC OF STUDY DESIGN AND STUDY SCHEDULE

RTP00004

ATTACHMENT 1

Protocol RTP00004 Page 1 of 2

SCHEMATIC OF STUDY DESIGN

15-DAY INTACT ADULT MALE ASSAY IN RATS^a

Acclimation	Test Substance Administration				
One Week		15 Days			
• •		15 Days	•		

Dosage Period.

a. For additional details, see "Tests, Analyses and Measurements" section of the protocol.

b. All rats sacrificed.

RTP00004

ATTACHMENT 1

Protocol RTP00004 Page 2 of 2

STUDY SCHEDULE^a

Animal Receipt.

Proposed Experimental Start Date Dosage Administration (replicate1). Dosage Administration (replicate2). Dosage Administration (replicate3). Sacrifice and Necropsy (replicate 1). Sacrifice and Necropsy (replicate 2). Sacrifice and Necropsy (replicate 3). SAS Transport and EXCEL Files. Proposed Experimental Termination Date Draft Final Report.

a. The study initiation date is the date the Study Director signs the protocol.

ATTACHMENT 2

MATERIAL SAFETY DATA SHEETS

AND

CERTIFICATES OF ANALYSIS

. .

.

Chen Service, Inc. NATERIAL SAFETY DATA SHEET

PS-372

Invoice: CS264916 PD: 19293

inted: 08/11/2005 Last Revised: May 26, 2005

SECTION 1 - CHEMICAL PRODUCT and COMPANY IDENTIFICATION

Catalog Number: PS-372 Description: Linuron Other Name(s): 3-(3.4-Dichlorophenyl)-1-methoxy-1-methylurea

Supplied by CHEM SERVICE, Inc. PO BOX 599, WEST CHESTER, PA 19381 ENERGENCY PHONE: 1-410-692-3026 (610)~692-3026

SECTION 2 - COMPOSITION, INFORMATION ON INGREDIENTS

CAS No.: 330-55-2 Description: Linuron EINECS No. = 206-356-5 Hazard Symbols: Xn

SECTION 3 - HAZARDS IDENTIFICATION

Contact lenses should not be worn in the laboratory. All chemicals should be considered hazardous - Avoid direct physical contact! in cause eye irritation. Can cause skin irritation. ist and/or vapors can cause irritation to respiratory tract. Can be irritating to mucous membranes. May be harmful if absorbed through the skin.

May be maraful if inhaled. May be maraful if swallowed.

SECTION 4 - FIRST AID MEASURES

An antidote is a substance intended to counteract the effect of a poison. It should be administered only by a physician or trained emergency personnel. Medical advice can be obtained from a POISON CONTROL CENTER.

In rase of contacts Flush eyes continuously with water for 15-20 minutes. Flush skin with water for 15-20 minutes. If no burns have occurred use soap and water to cleanse skin. If inhaled recove patient to fresh air. Addinister oxygen if patient is having difficulty breathing. If patient has stopped breathing administer artificial respirations.

Continue life supporting measures until medical assistance has arrived.

Remove and wash contaminated clothing.

If patient is exhibiting signs of shock - Keep ware and quiet.

Contact Poison Control Center immediately if necessary. Induce vomiting if swallowed. Do not administer liquids or induce voaiting to an unconscious or convulsing person. If patient is vomiting-watch closely to make sure airway does not become obstructed by vomit. Get medical attention if necessary.

SECTION 5 - FIRE AND EXPLOSION DATA

ash Points Not Available

Cat No.: PS-372 Page: 2

SECTION 5 - FIRE AND EXPLOSION DATA CONTINUED

rtinguishing Media:

Carbon dioxide, dry chemical powder or spray. Upper Explosion Limit: Not Available Lower Explosion Limit: Not Available Autoignition Temperature: Not Available NFPA Hazard Rating: Not Available

SECTION & - ACCIDENTAL RELEASE MEASURES

Spills or leaks: Evacuate area. Wear appropriate OSHA regulated equipment. Ventilate area. Sweep up and place in an appropriate container. Hold for disposal. Wash contaminated surfaces to remove any residues. Remove contaminated clothing and wash before reuse.

SECTION 7 - HANDLING AND STORAGE

Handling:

This chemical should be handled only in a hood. Eye shields should be worn. Use appropriate OSHA/NSHA approved safety equipsent. Avoid contact with skin, eyes and clothing. Avoid ingestion and inhalation Wash thoroughly after handling.

Storage:

ture in a cool dry place. Store only with compatible chemicals. sep tightly closed.

SECTION & - EXPOSURE CONTROLS/PERSONAL PROTECTION

OSHA PEL (TWA)= Not Available ACGIM TLV (TWA): Not Available ACGIH TLV (STEL): Not Available

Personal Protective Equipment

Eyes: Wear Safety Glasses.

Skins Mear appropriate protective gloves to prevent skin exposure.

Chothang: Wear appropriate protective clothing to winimize contact with skin. Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 requirements must be followed whenever workplace conditions warrant a respirator's use.

SECTION 9 - PHYSICAL AND CHENICAL PROPERTIES

Cotors Phase: Melting Point: Bailing Point: Specific Gravity: Vapor Pressure: Vapor Density:

Colorless Crystalline solid 93-94 C Not Available Not Available 0.051@Pa@20 C Not Available

Cat No.: PS-372 Page: 3

 Solubility in Water:
 Very slightly soluble

 Ndor:
 Not Available

 Japoration Rate (Butyl acetate=1): Not Available

 Molecular Weight
 249.11

 Molecular Forgula
 C9H10C12N202

SECTION 10 - STABILITY AND REACTIVITY

Sensitive to light - dark color does not affect purity. Sensitive to heat. Decomposes under alkaline conditions. Decomposes under artiir conditions.

SECTION 11 - TOXICOLOGY INFORMATION

RTECS: YS9100000 Bral Rat or Mouse LD50: 4000ag/kg Dermal Rat or Mouse LD50: >2000 mg/kg Rat or Mouse LC50: >6.15 mg/l air(4h)

Carcinogenicity OSHA: No

IARC: No NTP: No ACGIH: No NIOSH: No Other: No

ECTION 12 - ECOLOGICAL INFORMATION

Ecotoxicity: Not Available Environmental Fate: Not Available

SECTION 13 - DISPOSAL CONSIDERATIONS

DISPOSAL: Burn in a chemicals incinerator equipped with an afterburner and scrubber.

SECTION 14 - TRANSPORTATION INFORMATION

Not regulated as a hazardous material.

SECTION 15 - REGULATORY INFORMATION

European Labeling in Accordance with EC Directives Hazard Symbols: Xn Risk Phrases

R40

Possible risk of irreversible effects.

Safety Phrases

\$36/37

Hear suitable protective clothing and gloves.

Cat No.: PS-372 Page: 4

SECTION 16 - OTHER INFORMATION

The above information is believed to be correct on the date it is published and must not be considered all inclusive. The information has been obtained only by a search of available literature and is only a guide for handling the chemicals. OSHA regulations require that if other hazards become evident, an upgraded MSDS must be made available to the employee within three months. RESPONSIBILITY for updates lies with the employer and not with

Persons not specifically and properly trained should not handle this chemical or its container. This MSDS is provided without any warranty expressed or implied, including merchantability or fitness for any particular purpose.

This product is fornished FOR LABORATORY USE ONLY! Our products may NOT BE USED as drugs, cosmetics, agricultural or pesticidal products, food additives or as household chemicals.

Copyright 2000 by Chem Service, Inc. - ALL RIGHTS RESERVED

660 Tower Lane + P.O. Box 599 + West Chester, PA 19381-0599 1-800-452-9994 + 1-610-682-3026 + Fax 1-6(0-692-8728) CERTIFICATE OF ANALYSIS

INVOICE #: CS264916 PO #: 19293

CATALOG #: PS-372

DESCRIPTION: Linuron

CAS #: 330-55-2

LOT #: 348-8A

PURITY: 99.5%

EXPIRATION DATE: 08/08

Chem Service, Inc. guarantees the purity of this chemical $\pm 0.5\%$ deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

0m

John Conrad CSM/TC

	MATERIAL	SAFETY DATA SHEET	· · · · · · · · · · · · · · · · · · ·
		Surv Super	
		-+++ opuate	d: 09/12/200 d: 07/25/200 Version 1.4
Section 1	- Product and Company		·
Product N		/ Information	
TIOUNCE N	ame	PHENOBARBITAL FREE ACID	······
Product N Brand	umber	SCHEDULE IV ITEM P1636 SIGMA	DEA
Company	• •	010HA	• • •
Street Ad	te Vin Court	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 US	× .
Emergency Fax:	Phone:	314 771 5765 414 273 3850 Ext. 5996	
		900 325 5055	
Section 2	- Composition/Informat		
	PHENYLBARBITURIC ACID	CAS # 50-06-6	SARA 313 No
ormula Synonyms	C12H12N2O3 Acido 5 forda a		
'ormula Synonyms	Acido 5-fenil-5- Adonal * Aephena Aphenylbarbit	etilbarbiturico (Italian) * 1 * Agrypnal * Amylofene * Aphenyletten * Austrominal	•
'ormula Ynonyms	Acido 5-fenil-5 Adonal * Aephena Aphenylbarbit * ; Barbenyl * Barbiy Barbivis * Barboy Blu-phen * Cardoy	Aphenyletten * Austrominal phenyl * Barbipil * Barbita nal * Barbophen * Bialminal	*
ormula Ynonyms	Acido 5-fenil-5 Adonal * Aephena Aphenylbarbit * i Barbenyl * Barbi Barbivis * Barbon Blu-phen * Carder Doscalun * Dunery 5-Ethyl-5-phenylt	Aphenyletten * Austrominal phenyl * Barbipil * Barbita nal * Barbophen * Bialminal nal * Cratecil * Dormiral * yl * Eskabarb *	* * *
ormula Ynonyms	Acido 5-fenil-5 Adonal * Aephena Aphenylbarbit * 1 Barbenyl * Barbin Barbivis * Barbon Blu-phen * Carder Doscalun * Dunery 5-Ethyl-5-phenyl- * Etilfen * Euner Gardenal * Carder	Aphenyletten * Austrominal phenyl * Barbipil * Barbita nal * Barbophen * Bialminal nal * Cratecil * Dormiral * /l * Eskabarb * -2,4,6-(1H,3H,5H)pyrimidinet yl * Fenemal * Fenobarbita	* * Tione
ormula Ynonyms	Acido 5-fenil-5 Adonal * Aephenal Aphenylbarbit * i Barbenyl * Barbin Barbivis * Barbon Blu-phen * Carder Doscalun * Dunery 5-Ethyl-5-phenyll * Etilfen * Euner Gardenal * Gardep Lepinal * Lepinal	Aphenyletten * Austrominal phenyl * Barbipil * Barbita nal * Barbophen * Bialminal nal * Cratecil * Dormiral * yl * Eskabarb * Darbituric acid * -2,4,6-(1H,3H,5H)pyrimidinet yl * Fenemal * Fenobarbital anyl * Helional * Hysteps * etten * Liquital * Lixopher	* * rione
ormula Ynonyms	Acido 5-fenil-5- Adonal * Aephena Aphenylbarbit * J Barbenyl * Barbin Barbivis * Barbon Blu-phen * Carder Doscalun * Dunery 5-Ethyl-5-phenyl * Etilfen * Euner Gardenal * Gardep Lepinal * Luprok Luphenil * Lurami Nirvonal * Uarti	Aphenyletten * Austrominal phenyl * Barbipil * Barbita nal * Barbophen * Bialminal nal * Cratecil * Dormiral * 24 * Eskabarb * Parbituric acid * -2,4,6-(1H,3H,5H)pyrimidinet Sanyl * Helional * Fenobarbital Danyl * Helional * Hysteps * etten * Liquital * Lixopher cal * Luminal * Lumofridette n * Molinal * Neurobarb *	* * * * * * * * * * * * * * * * * * *
ornula Ynonyms	Acido 5-fenil-5- Adonal * Aephena Aphenylbarbit * A Barbenyl * Barbiy Barbivis * Barboy Blu-phen * Carder Doscalun * Dunery 5-Ethyl-5-phenyl * Etilfen * Euner Gardenal * Gardep Lepinal * Lepinal Lubergal * Lubrok Luphenil * Lurami Nirvonal * Noptil * Pharmetten * Phenobal * Phenobal	Aphenyletten * Austrominal phenyl * Barbipil * Barbita nal * Barbophen * Bialminal nal * Cratecil * Dormiral * Vl * Eskabarb * Carbituric acid * -2,4,6-(1H, 3H, 5H)pyrimidinet yl * Fenemal * Fenobarbital anyl * Helional * Hysteps * etten * Liquital * Lixophen al * Luminal * Lumofridette n * Molinal * Neurobarb * * Nova-pheno * Nunol * Par enaemal * Phen-Bar * Phenem arbital * Phenobarbitone *	* * * * * * * * * * * * * * * * * *
ormula Ynonyms	Acido 5-fenil-5- Adonal * Aephena Aphenylbarbit * i Barbenyl * Barbin Barbivis * Barbon Blu-phen * Carder Doscalun * Dunery 5-Ethyl-5-phenyl * Etilfen * Euner Gardenal * Carden Lepinal * Lepinal Lubergal * Lubrok Luphenil * Lurami Nirvonal * Noptil * Pharmetten * Ph Phenobarbituric a Phenolurio * Pheny	Aphenyletten * Austrominal phenyl * Barbophen * Austrominal phenyl * Barbophen * Bialminal nal * Cratecil * Dormiral * /1 * Eskabarb * Darbituric acid * -2,4,6-(1H, 3H, 5H)pyrimidinet yl * Fenemal * Fenobarbital Danyl * Helional * Hysteps * etten * Liquital * Lixophen cal * Luminal * Lumofridetten * Mova-pheno * Nunol * Par enaemal * Phen-Bar * Phenema arbital * Phenobarbitone * cid * Phenobarbyl * Phenolu omet * Phenopyl * Phenolu	* * * * * * * * * * * * * * * * * * *
ormula Synonyms	Acido 5-fenil-5- Adonal * Aephena Aphenylbarbit * A Barbenyl * Barbiy Barbivis * Barboy Blu-phen * Carder Doscalun * Dunery 5-Ethyl-5-phenyl * Etilfen * Euner Gardenal * Gardep Lepinal * Lepinal Lubergal * Lubrok Luphenil * Lurami Nirvonal * Noptil * Pharmetten * Ph Phenobal * Phenob Phenoluric * Phenylethylbarbitu acid * 5-Phenyl-5-	Aphenyletten * Austrominal phenyl * Barbipil * Barbita nal * Barbophen * Bialminal nal * Cratecil * Dormiral * Vl * Eskabarb * Carbituric acid * -2,4,6-(1H, 3H, 5H)pyrimidinet yl * Fenemal * Fenobarbital anyl * Helional * Hysteps * etten * Liquital * Lixophen al * Luminal * Lumofridette n * Molinal * Neurobarb * * Nova-pheno * Nunol * Par enaemal * Phen-Bar * Phenem arbital * Phenobarbitone *	* * * * * * * * * * * * * * * * * * *

EMERGENCY OVERVIEW Toxic. May cause harm to the unborn child. Toxic if swallowed. Limited evidence of a carcinogenic effect. May cause sensitization by skin contact. Possible Carcinogen (US). Target organ(s): Heart. Liver. Calif.

Prop. 65 carcinogen.

HMIS	RATING	
. HI	SALTH: 3*	
FI	AMMABILITY:	0
	ACTIVITY: 0	-

NFPA RATING HEALTH: 3 FLAMMABILITY: 0 REACTIVITY: 0

*additional chronic hazards present.

For additional information on toxicity, please refer to Section 11,

Section 4 - First Aid Measures ORAL. EXPOSURE If swallowed, wash out mouth with water provided person is conscious. Call a physician immediately. INHALATION EXPOSURE If inhaled, remove to fresh air. If not breathing give artificial respiration. If breathing is difficult, give oxygen. DERMAL EXPOSURE In case of skin contact, flush with copious amounts of water for at least 15 minutes. Remove contaminated clothing and shoes. Call a physician, EYE EXPOSURE In case of contact with eyes, flush with copious amounts of water for at least 15 minutes. Assure adequate flushing by separating the eyelids with fingers. Call a physician. Section 5 - Fire Fighting Measures FLASH POINT N/A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment: Wear self-contained breathing apparatus and protective clothing to prevent contact with skin and eyes. Specific Hazard(s): Emits toxic fumes under fire conditions. Section 6 - Accidental Release Measures PROCEDURE TO BE FOLLOWED IN CASE OF LEAK OR SPILL Evacuate area.

PROCEDURE(S) OF PERSONAL PRECAUTION(S)

SIGMA ~ P1636

www.sigma-aldrich.com

Wear self-contained breathing apparatus, rubber boots, and heavy rubber gloves. METHODS FOR CLEANING UP Sweep up, place in a bag and hold for waste disposal. Avoid raising dust. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling and Storage HANDLING User Exposure: Do not breathe dust. Do not get in eyes, on skin, on clothing. Avoid prolonged or repeated exposure. STORAGE Suitable: Keep tightly closed. Section 8 - Exposure Controls / PPE ENGINEERING CONTROLS Use only in a chemical fume hood. Safety shower and eye bath. PERSONAL PROTECTIVE EQUIPMENT Hand: Compatible chemical-resistant gloves. Eye: Chemical safety goggles. GENERAL HYGIENE MEASURES Wash contaminated clothing before reuse. Wash thoroughly after Section 9 - Physical/Chemical Properties Appearance Physical State: Solid Color: White Property Value At Temperature or Pressure Molecular Weight 232.2 AMU pН N/A BP/BP Range N/A 174 MP/MP Range Freezing Point C N/A Vapor Pressure N/A Vapor Density Saturated Vapor Conc. N/A SG/Density Bulk Density Odor Threshold Volatile% N/A N/A N/A N/A N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate Viscosity Surface Tension Partition Coefficient N/A N/A N/A N/A Decomposition Temp. Flash Point N/A N/A Explosion Limits N/A Flammability N/A Autoignition Temp N/A

SIGMA - P1636

www.sigma-aldrich.com

Optical Rotation N/A Miscellaneous Data N/A	•	
Solubility N/A		
N/A = not available	. •	
Section 10 - Stability and Reactivity	<u> </u>	•
STABILITY		
Stable: Stable. Materials to Avoid: Strong oxidizing agents.		
HAZARDOUS DECOMPOSITION PRODUCTS Hazardous Decomposition Products: Nitrogen oxides Car Carbon dioxide.	bon monoxide,	
HAZARDOUS POLYMERIZATION Hazardous Polymerization: Will not occur		. •
Section 11 - Toxicological Information		
ROUTE OF EXPOSURE Skin Contact: May cause skin irritation. Skin Absorption: May be barmful if absorbed through the Eye Contact: May cause eye irritation. Inhalation: Material may be irritating to mucous membric upper respiratory tract. May be harmful if inhaled. Ingestion: Toxic if swallowed.		
SENSITIZATION Skin: May cause allergic skin reaction.	· ·	: · .
TARGET ORGAN(S) OR SYSTEM(S) Central nervous system. Kidneys. Liver. Heart.		
SIGNS AND SYMPTOMS OF EXPOSURE May cause respiratory depression, constipation, nauses anorexia, vomiting, headache, drowsiness, depression, effects. Exposure to and/or consumption of alcohol may toxic effects. Prolonged or repeated exposure can lead habituation or addiction. To the best of our knowledge chemical, physical, and toxicological properties have thoroughly investigated.	and skin increase to	•
OXICITY DATA	·.	·
Oral Woman 25.272 mg/kg LDLO Remarks: Nutritional and group with the		
Remarks: Nutritional and Gross Metabolic:Changes in:Bo temperature increase. Behavioral:Coma. Skin and Append After systemic exposure: Dermatitis, allergic.	dy ages:Skin:	
Oral Man 6.485 mg/kg LDLO		
Remarks: Nutritional and Gross Metabolic:Changes in:Bol temperature increase. Skin and Appendages:Skin: After exposure: Dermatitis, allergic.	dy systemic	•
	•	

Oral Rat 162 mg/kg LD50 Intraperitoneal Rat 110 MG/KG LD50 Subcutaneous Rat 200 MG/KG LD50 Intravenous Rat 209 MG/KG LD50 Rectal Rat 284 MG/KG LD50 Remarks: Behavioral:General anesthetic. Behavioral:Change in motor activity (specific assay). Nutritional and Gross Metabolic:Changes in:Body temperature decrease. Oral Mouse 137 mg/kg LD20 Intraperitoneal Mouse 88 MG/KG LD50 Subcutaneous Mouse 228 MG/KG LD50 Intravenous Mouse 218 MG/KG LD50 Remarks: Peripheral Nerve and Sensation:Local anesthetic. Intramuscular Mouse 175 MG/KG LD50 Oral Dog 150 mg/kg LD50 Remarks: Behavioral:Somnolence (general depressed activity). Oral SIGMA - P1636 www.sigma-aldrich.com

Page

5

Rabbit 185 mg/kg LD50 Intravenous Rabbit 187 MG/KG LD50 Remarks: Behavioral: Convulsions or effect on seizure threshold. Lungs, Thorax, or Respiration:Respiratory stimulation. Oral Guinea pig 130 mg/kg LD50 CHRONIC EXPOSURE - CARCINOGEN RESULT: This product is or contains a component that has been reported to be possibly carcinogenic based on its IARC, ACGIH, NTP, or EPA classification. Species: Rat Route of Application: Oral Dose: 7560 MG/KG Exposure Time: 36W Exposure Time: Jow Frequency: C Result: Tumorigenic:Cells (cultured) transformed. Liver:Tumors. Tumorigenic: Equivocal tumorigenic agent by RTECS criteria. Species: Mouse Route of Application: Oral Dose: 22 GM/KG Exposure Time: 1Y Frequency: C Result: Tumorigenic:Neoplastic by RTECS criteria. Liver:Tumors. Species: Mouse Route of Application: Oral Dose: 38 GM/KG Exposure Time: 90W Frequency: C Result: Tumorigenic:Neoplastic by RTECS criteria. Liver:Tumors. Lungs, Thorax, or Respiration:Tumors. Species: Rat Route of Application: Oral Dose: 4200 MG/KG Exposure Time: 20W Frequency: C Result: Tumorigenic:Equivocal tumorigenic agent by RTECS Criteria. Tumorigenic:Cells (cultured) transformed. Liver:Tumors. Species: Rat Route of Application: Oral Dose: 30 MG/KG Exposure Time: 78W Frequency: C Result: Tumorigenic: Equivocal tumorigenic agent by RTECS criteria. Endocrine: Thyroid tumors. Liver: Tumors. Species: Rat Route of Application: Oral

SIGMA - P1636

www.sigma-aldrich.com

Dose: 3990 MG/KG Exposure Time: 19W Frequency: C Result: Tumorigenic:Carcinogenic by RTECS criteria. Tumorigenic:Cells (cultured) transformed. Endocrine:Thyroid Species: Rat Route of Application: Oral Dose: 2520 MG/KG Exposure Time: 12W Frequency: C Result: Tumorigenic:Neoplastic by RTECS criteria. Tumorigenic:Cells (cultured) transformed. Endocrine:Thyroid Species: Rat Route of Application: Oral Dose: 2100 MG/KG Exposure Time: 12W Frequency: C Result: Tumorigenic:Carcinogenic by RTECS criteria. Endocrine:Thyroid tumors. Tumorigenic:Cells (cultured) Species: Mouse Route of Application: Oral Dose: 5200 MG/KG Exposure Time: 52W Frequency: C Result: Tumorigenic: Equivocal tumorigenic agent by RTECS criteria. Liver: Tumors. IARC CARCINOGEN LIST Rating: Group 2B CHRONIC EXPOSURE - TERATOGEN Result: May cause congenital malformation in the fetus. Species: Woman Dose: 151 MG/KG DOSE: 151 MG/AG Route of Application: Oral Exposure Time: (27-39W PREG) Result: Specific Developmental Abnormalities: Musculoskeletal system. Effects on Newborn: Drug dependence. Species: Woman Species: woman Dose: 3600 UG/KG Route of Application: Oral Exposure Time: (26W PREG) Result: Specific Developmental Abnormalities: Repatobiliary system Refects on Newborn: Biochemical and metabolic system. Effects on Newborn: Biochemical and metabolic. Species: Woman Species: Woman Dose: 491 MG/KG Route of Application: Unreported Exposure Time: (1-39W PREG) Result: Specific Developmental Abnormalities: Musculoskeletal system. Specific Developmental Abnormalities: Respiratory system. Specific Developmental Abnormalities: Body wall.

SIGMA - P1636

www.sigma-aldrich.com

Species: Woman Dose: 907 MG/KG Dose: 507 MB/AB Route of Application: Unreported Exposure Time: (1-36W PREG) Result: Specific Developmental Abnormalities: Central nervous system. Specific Developmental Abnormalities: Urogenital system. Effects on Newborn: Other postpatal measures or effects. Effects on Newborn: Other postnatal measures or effects. Species: Woman Dose: 529 MG/KG Dose: 529 MG/AG Route of Application: Unreported Exposure Time: (1-42W PREG) Result: Specific Developmental Abnormalities: Gastrointestinal Species: Woman Dose: 454 MG/KG Route of Application: Unreported Exposure Time: (1-36W PREG) Result: Specific Developmental Abnormalities: Central nervous Species: Rat Dose: 880 MG/KG Route of Application: Oral Exposure Time: (7-17D PREG) Result: Effects on Embryo or Fetus: Fetotoxicity (except death, e.g., stunted fetus). Specific Developmental Abnormalities: Blood and lymphatic system (including spleen and marrow). Species: Rat Dose: 440 MG/KG Route of Application: Oral Exposure Time: (7-17D PREG) Result: Specific Developmental Abnormalities: Musculoskeletal Species: Rat Dose: 800 MG/KG Route of Application: Oral Exposure Time: (6-13D PREG) Result: Effects on Embryo or Fetus: Fetal death. Species: Rat Dose: 1 GM/KG Route of Application: Intraperitoneal Exposure Time: (1-20D PREG) Result: Specific Developmental Abnormalities: Other developmental abnormalities. Effects on Embryo or Fetus: Fetal death. Effects on Embryo or Fetus: Extra embryonic structures (e.g., placenta, umbilical cord). Species: Rat Dose: 180 MG/KG Route of Application: Intraperitoneal Exposure Time: (19-21D PREG) Result: Effects on Embryo or Fetus: Other effects to embryo. Species: Rat Dose: 320 MG/KG Route of Application: Subcutaneous Exposure Time: (12-19D PREG)

SIGMA - P1636

www.sigma-aldrich.com

Result: Specific Developmental Abnormalities: Urogenital system. Effects on Newborn: Physical. Effects on Newborn: Delayed Species: Rat Dose: 200 MG/KG Dose: 200 MG/KG Route of Application: Intramuscular Exposure Time: (18-20D PREG/15D POST) Result: Specific Developmental Abnormalities: Central nervous system. Effects on Embryo or Fetus: Cytological changes (including somatic cell genetic material). Species: Mouse Species: mouse Dose: 400 MG/KG Route of Application: Oral Exposure Time: (6-15D PREG) Result: Specific Developmental Abnormalities: Craniofacial (including nose and tongue). Species: Mouse Dose: 1080 MG/KG Route of Application: Oral Exposure Time: (16-18D PREG) Result: Specific Developmental Abnormalities: Central nervous Species: Mouse Dose: 63 GM/KG Route of Application: Oral Exposure Time: (1-21D PREG) Result: Effects on Embryo or Fetus: Cytological changes (including somatic cell genetic material). Species: Mouse Dose: 30 GM/KG Route of Application: Oral Exposure Time: (9-18D PREG) Result: Specific Developmental Abnormalities: Central nervous Species: Mouse Dose: 150 MG/KG Route of Application: Intraperitoneal Exposure Time: (8-10D PREG) Result: Effects on Embryo or Fetus: Fetotoxicity (except death, e.g., stunted fetus). Species: Rabbit Dose: 450 MG/KG Route of Application: Oral Route of Application: Grainer State Strainer Strainer Time: (8-16D PREG) Result: Specific Developmental Abnormalities: Musculoskeletal system. Specific Developmental Abnormalities: Cardiovascular Species: Rabbit Dose: 536 MG/KG Route of Application: Oral Exposure Time: (3-31D PREG) Result: Effects on Embryo or Fetus: Cytological changes (including somatic cell genetic material). Effects on Newborn: Biochemical and metabolic.

SIGMA ~ P1636

www.sigma-aldrich.com

CHRONIC EXPOSURE - MUTAGEN Result: Laboratory experiments have shown mutagenic effects. Species: Human Dose: 400 MG/L Exposure Time: 90M Cell Type: leukocyte Mutation test: Cytogenetic analysis Species: Human Dose: 10 MG/L Cell Type: lymphocyte Mutation test: Cytogenetic analysis Species: Human Dose: 1 GM/L Cell Type: lymphocyte Mutation test: Mutation in mammalian somatic cells. Species: Rat Route: Oral Dose: 1260 MG/KG Exposure Time: 6W Mutation test: Morphological transformation. Species: Rat Dose: 1 MOL/L Cell Type: liver Mutation test: DNA damage Species: Rat Route: Oral Dose: 4410 MG/KG Exposure Time: 21W Mutation test: Unscheduled DNA synthesis Species: Rat Dose: 100 PMOL/L Cell Type: liver Mutation test: Unscheduled DNA synthesis Species: Rat Dose: 1500 UMOL/L Cell Type: liver Mutation test: DNA inhibition Species: Rat Route: Intraperitoneal Dose: 240 MG/KG Exposure Time: 3D Mutation test: Phage inhibition capacity Species: Mouse Dose: 2 GM/L (+S9) Cell Type: lymphocyte Mutation test: Mutation in microorganisms Species: Mouse Dose: 667 MG/L Cell Type: Embryo Mutation test: Morphological transformation.

SIGMA - P1636

www.sigma-aldrich.com

Species: Mouse Route: Oral Dose: 400 MG/KG Exposure Time: 4D Mutation test: Unscheduled DNA synthesis Species: Mouse Dose: 3 MMOL/L Cell Type: liver Mutation test: Other mutation test systems Species: Mouse Route: Oral Dose: 3332 UG/KG Mutation test: Cytogenetic analysis Species: Mouse Route: Oral Dose: 210 MG/KG Exposure Time: 5D Mutation test: Dominant lethal test Species: Mouse Dose: 500 MG/L Cell Type: lymphocyte Mutation test: Mutation in mammalian somatic cells. Species: Hamster Dose: 100 MG/L Cell Type: Embryo Mutation test: Morphological transformation. Species: Hamster Dose: 15 MMOL/L Cell Type: ovary Mutation test: Cytogenetic analysis Species: Hamster Dose: 2 GM/L Exposure Time: 48H Cell Type: lung Mutation test: Cytogenetic analysis Species: Hamster Dose: 100 MG/L Cell Type: liver Mutation test: Cytogenetic analysis Species: Hamster Dose: 15 MMOL/L Cell Type: ovary Mutation test: Sister chromatid exchange Species: Hamster Dose: 10 MG/L Cell Type: lung Mutation test: Sister chromatid exchange CHRONIC EXPOSURE - REPRODUCTIVE HAZARD

Species: Rat

SIGMA - P1636

÷

www.sigma-aldrich.com

Dose: 300 MG/KG Dose: 300 MG/NG Route of Application: Oral Exposure Time: (4-3D PREG) Result: Effects on Fertility: Abortion. Effects on Fertility: Post-implantation mortality (e.g., dead and/or resorbed implants per total number of implants). Species: Rat Dose: 320 MG/KG Route of Application: Oral Exposure Time: (7-10D PREG) Result: Effects on Newborn: Weaning or lactation index (e.g., alive at weaning per # alive at day 4). Effects on Newborn: Behavioral. Species: Rat Dose: 280 MG/KG Route of Application: Oral Exposure Time: (1-7D POST) Result: Effects on Newborn: Biochemical and metabolic. Species: Rat Dose: 60 MG/KG Route of Application: Oral Exposure Time: (7-18D PREG) Result: Effects on Newborn: Viability index (e.g., # alive at day 4 per # born alive). Species: Rat. Dose: 320 MG/KG_ Dose: 320 MG/KG Route of Application: Subcutaneous Exposure Time: (MULTIGENERATIONS) Result: Effects on Fertility: Male fertility index (e.g., # males impregnating females per # males exposed to fertile Species: Rat Dose: 750 MG/KG Route of Application: Subcutaneous Exposure Time: (1D PRE) Pervilte Pffoots on Fertility: Other Result: Effects on Fertility: Other measures of fertility Species: Rat Dose: 20 MG/KG Route of Application: Subcutaneous Exposure Time: (5-8D PREG) Result: Effects on Newborn: Behavioral. Species: Rat Dose: 160 MG/KG Route of Application: Subcutaneous Exposure Time: (17-20D PREG) Result: Effects on Newborn: Delayed effects. Effects on Newborn: Species: Rat Dose: 40 MG/KG Route of Application: Unreported Exposure Time: (17D PREG) Result: Effects on Newborn: Other postnatal measures or effects. Species: Rat

SIGMA - P1636

www.sigma-aldrich.com

Dose: 340 MG/KG Route of Application: Multiple Exposure Time: (20-22D PREG/7D POST) Result: Effects on Newborn: Other postnatal measures or effects. Species: Mouse Dose: 210 MG/KG Route of Application: Oral Exposure Time: (5D MALE) Result: Effects on Fertility: Post-implantation mortality (e.g., Result: Effects on Fertility: FOST-implantation moleculty (e dead and/or resorbed implants per total number of implants). Effects on Fertility: Pre-implantation mortality (e.g., reduction in number of implants per female; total number of Species: Mouse Dose: 33 MG/KG Route of Application: Oral Exposure Time: (9-19D PREG) Possilt: Effects on Newborn: Result: Effects on Newborn: Physical. Species: Mouse Species: Mouse Dose: 3600 MG/KG Route of Application: Oral Exposure Time: (9-18D PREG) Result: Effects on Newborn: Behavioral. Effects on Newborn: Growth statistics (e.g. reduced weight gain) Growth statistics (e.g., reduced weight gain). Species: Mouse Dose: 560 MG/KG. NOSE: 300,00/MG Route of Application: Intraperitoneal Exposure Time: (8-14D PREG) Result: Effects on Fertility: Post-implantation mortality (e.g., dead and/or resorbed implants per total number of implants). Species: Mouse Dose: 300 MG/KG Route of Application: Intraperitoneal Exposure Time: (17-19D PREG) Result: Effects on Newborn: Biochemical and metabolic. Species: Mouse Dose: 280 MG/KG Route of Application: Subcutaneous Exposure Time: (15-21D PREG) Result: Effects on Newborn: Behavioral. Species: Mouse Dose: 60 UG/KG Route of Application: Parenteral Exposure Time: (1D PRE) Result: Maternal Effects: Uterus, cervix, vagina. Species: Mouse Species: MOUSE Dose: 40 MG/KG Route of Application: Unreported Exposure Time: (1D PRE) Result: Effects on Fertility: Other measures of fertility Species: Rabbit Dose: 450 MG/KG Route of Application: Oral

SIGMA - P1636

www.sigma-aldrich.com

Exposure Time: (8-16D PREG) Result: Effects on Fertility: Litter size (e.g.; # fetuses per litter; measured before birth). Effects on Embryo or Fetus: Fetal death. Effects on Fertility: Post-implantation mortality (e.g., dead and/or resorbed implants per total number of implants). Species: Rabbit Dose: 175 GM/KG Route of Application: Intramuscular Exposure Time: (20-27D PREG) Result: Effects on Newborn: Biochemical and metabolic. Species: Hamster Dose: 140 MG/KG Route of Application: Intraperitoneal Exposure Time: (1D PRE) Result: Effects on Fertility: Other measures of fertility Section 12 - Ecological Information ACUTE ECOTOXICITY TESTS Test Type: LC50 Fish Species: Pimephales promelas (Fathead minnow) Time: 96 h Value: 484 mg/l Section 13 - Disposal Considerations APPROPRIATE METHOD OF DISPOSAL OF SUBSTANCE OR PREPARATION Contact a licensed professional or Substance on Internation of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. Observe all federal, state, and local Section 14 - Transport Information DOT Proper Shipping Name: Toxic solids, organic, n.o.s. UN#: 2811 Class: 6.1 Packing Group: Packing Group III Hazard Label: Toxic substances. PIH: Not PIH IATA Proper Shipping Name: Toxic solid, organic, n.o.s. IATA UN Number: 2811 Packing Group: III Section 15 - Regulatory Information EU ADDITIONAL CLASSIFICATION Symbol of Danger: T Indication of Danger: Toxic. R: 61-25-40-43 Risk Statements: May cause harm to the unborn child. Toxic if swallowed. Limited evidence of a carcinogenic effect. May cause sensitization by skin contact. SIGMA - P1636 www.sigma-aldrich.com Page 14

S: 53-36/37-45

Safety Statements: Avoid exposure - obtain special instructions before use. Wear suitable protective clothing and gloves. In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

US CLASSIFICATION AND LABEL TEXT

Indication of Danger: Toxic.

Risk Statements: May cause harm to the unborn child. Toxic if swallowed. Limited evidence of a carcinogenic effect. May cause sensitization by skin contact.

Sensitization by skin contact. Safety Statements: Avoid exposure - obtain special instructions before use. Wear suitable protective clothing and gloves. In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). US Statements: Possible Carcinogen (US). Target organ(s): Heart. Liver. Calif. Prop. 65 carcinogen.

UNITED STATES REGULATORY INFORMATION SARA LISTED: No

UNITED STATES - STATE REGULATORY INFORMATION

CALIFORNIA PROP - 65

California Prop - 65: This product is or contains chemical(s) known to the state of California to cause cancer.

CANADA REGULATORY INFORMATION

MIMIS Classification: This product has been classified in accordance with the hazard criteria of the CPR, and the MSDS Contains all the information required by the CPR.

NDSL: No

Section 16 - Other Information

DISCLAIMER

For R&D use only. Not for drug, household or other uses.

WARRANTY

The above information is believed to be correct but does not The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Inc., shall not be held liable for any damage resulting from handling or from contact with the above product. See reverse side of invoice from contact with the above product. See reverse side of invoice or packing slip for additional terms and conditions of sale. paper copies for internal use only.

SIGMA - P1636

www.sigma-aldrich.com

ź

Product Name Product Number Product Brand CAS Number Molecular Formula Molecular Weight

TEST

APPEARANCE

Solubility IR Spectrum

PURITY BY NAOH TITRATION PURITY BY THIN LAYER CHROMATOGRAPHY SHELF LIFE QC ACCEPTANCE DATE

Lori Schulz, Manager Analytical Services St Louis, Missouri USA Phenobarbital, P1636 Sigma 50-06-6 C12H12N2O3 232.24

SPECIFICATION

WHITE POWDER CLEAR COLORLESS SOLUTION AT 50MG/ML IN ETHANOL CONSISTENT WITH STRUCTURE NLT 99% NLT 99%

5 YEARS

LOT 104K2600 RESULTS WHITE POWDER

CertificateorAnalysis

CLEAR COLORLESS SOLUTION CONFORMS 99.1%

GREATER THAN 99%

FEBRUARY 2010 FEBRUARY 2005

Page 1 of 1

ExternalProductDisplay

SIGMA-DRICH

Product Name

Product Number Product Brand CAS Number Molecular Formula Molecular Weight

TEST APPEARANCE

SOLUBILITY

VISCOSITY OF A 2% AQUEOUS SOLUTION QC ACCEPTANCE DATE PRODUCT CROSS REFERENCE INFORMATION

Jui

Lori Schulz, Manager Analytical Services St Louis, Missouri USA Methyl cellulose, viscosity 4,000 cP (2% aqueous solution, 20 °C) (lit.) M0512 Sigma 9004-67-5

CertificateorAnalysis

SPECIFICATION OFF-WHITE POWDER CLEAR TO HAZY COLORLESS TO LIGHT YELLOW VISCOUS SOLUTION AT 20MG/ML IN WATER

3500 TO 5600 CPS (20DEGC)

LOT 062K0144 RESULTS CONFORMS VERY SLIGHTLY HAZY VERY FAINT YELLOW 4,202 CPS (SUPPLIER TEST RESULT) JULY 2002 REPLACEMENT FOR ALDRICH #274410

https://www.sigmaaldrich.com/cgi-bin/hsrun/Suite7/Suite/HAHTpage/Suite.HsExternalPro... 9/19/2005

ATTACHMENT 3

TEST SUBSTANCE PREPARATION PROCEDURES

Protocol RTP00004 Version: <u>RTP00004(23 SEP 05)</u> Page 1 of 3

TEST SUBSTANCE PREPARATION PROCEDURE

Test Substances:

Linuron and Phenobarbital

Vehicle:

Aqueous 0.25% (w/v) methylcellulose

Purpose:

A.

Β.

The purpose of this procedure is to provide a method for the preparation of dosage formulations of the test substances for oral (gavage) administration to rats on Protocol RTP00004.

- General Information:
 - 1. All formulation containers will be labeled and color-coded. Each label will specify the protocol number, coded identification as indicated by the formulation key, batch number, dosage group, preparation date, expiration date and storage conditions.

2. Formulations (suspensions) will be prepared at least once prior to the initiation of the study in order to validate the transfer of information provided by the Sponsor and once for the formulations that will be used during the dosage period. Formulations (suspensions) will be prepared at the Testing Facility.

3. Formulations will be administered at a final dosage volume of 5 mL/kg.

4. Safety:

- X Gloves, uniform/lab coat, goggles or safety glasses with side shields
- X_ Dust-Mist/HEPA-filtered Mask

____ Half-Face Respirator

Full-Face Respirator/Positive Pressure Hood

X Tyvek[®] Sleeves

____ Full Face Shield

X Bulk TA/S will be handled in a chemical fume hood

5.

The test substances will be considered 100% active/pure for the purpose of

C.

Protocol RTP00004 Version: <u>RTP00004(23 SEP 05)</u> Page 2 of 3

TEST SUBSTANCE PREPARATION PROCEDURE

dosage calculations.

6. Sampling requirements: Cited in protocol.

7. Storage: Cited in protocol.

- Dosage Formulation Preparation:
 - 1. Weigh the required amount of test substance* (see TA/S PREPARATION CALCULATIONS) onto a piece of weigh paper or into an appropriately sized and labeled, amber glass bottle. If weigh paper is used, quantitatively transfer the test substance into an appropriately sized and labeled amber glass bottle.

* - Prior to weighing, each test substance will be screened so that a uniform suspension can be prepared. A round (at least six inches in diameter) 180 micron screen is set up with a collection pan and cover. Each test substance is placed on a separate screen and the screen is shaken to push the test substance through the screen.

- 2. Measure the required amount of vehicle (see TA/S PREPARATION CALCULATIONS) in an appropriately sized graduated cylinder. Add the vehicle to the bottle containing the test substance.
- 3. Add an appropriately sized magnetic stir bar to the bottle. Place the bottle on a magnetic stir plate and mix thoroughly the suspension for at least 60 minutes prior to and during sampling and/or aliquotting. Visual inspection should show an evenly distributed suspension.
- 4. Aliquot the formulation into an appropriate number of appropriately sized and labeled amber glass bottles. The aliquots will be stored refrigerated until use.
- 5. On each day of dosage, the required number of aliquots will be removed from the refrigerator. A magnetic stir bar will be added to each aliquot. The aliquots will be placed on a magnetic stir plate and the suspension will

6.

Protocol RTP00004 Version: <u>RTP00004(23 SEP 05)</u> Page 3 of 3

TEST SUBSTANCE PREPARATION PROCEDURE

be stirred to suspend the test substance and warm the suspension. Stir the suspensions for at least 60 minutes prior to sampling and/or dosage administration. The suspensions should be stirred vigorously enough to show a slight vortex only in order to avoid introduction of excessive air into the suspension and the production of foam. Visual inspection should show an evenly distributed suspension.

Repeat steps C.1. through C.5. for each concentration of each test substance.

Written by:

Approved by: Date: Clarification: 🕅 No Yes (See attached clarification form.) Initials/Date: 606

ATTACHMENT 4

TISSUES TO BE WEIGHED AND RETAINED FOR POSSIBLE HISTOPATHOLOGICAL EVALUATION

Protocol RTP00004 Page 1 of 2

TISSUES TO BE WEIGHED AND RETAINED FOR POSSIBLE HISTOPATHOLOGICAL EVALUATION

Tissues to be Weighed

NOTE: All organ weights will be recorded to the nearest 0.0001 g.

The following organs will be weighed as soon as possible after excision to avoid drying:

Liver	Prostate (whole)
Right Testis	Seminal Vesicles (with fluid and coagulating gland)
Left Testis	Thyroid [*]
Epididymides (paired)	

The thyroid gland and the surrounding tissue will be removed from neutral buffered 10% formalin after at least 48 hours fixation prior to trimming and weighing. Following fixation, final dissection will be performed under a dissecting microscope by one individual in order to reduce the variability of the dissection procedure and hence, reduce the variability of the thyroid weights.

The following organ weights will be calculated.

Testes (paired, left and right testis weights combined	Accessory Sex Gland (ASG, entire prostate and seminal vesicles with fluid and coagulating gland	
	combined)	

Tissues to be Retained

The following tissues will be collected from all rats at necropsy and retained in neutral buffered 10% formalin.

Right Testis	Prostate
Left Testis	Liver
Right Epididymis	Thyroid
Left Epididymis	· · · · · · · · · · · · · · · · · · ·

Testes will be fixed in Bouin's solution for approximately 24 hours before being transferred to and retained in 70% alcohol.

Protocol RTP00004 Page 2 of 2

Histopathological Evaluation

The dose groups but not the compounds will be known to the pathologist during evaluation. After evaluation, the nature of the compounds will be known to the pathologist for report writing.

The right testis and left testis, the right epididymis and left epididymis and the thyroid will be individually identified and examined histopathologically and will be routinely processed, embedded in paraffin, sectioned at 5 microns and stained with hematoxylin and eosin. The liver will also be examined hisologically if the weights are significantly increased.

Only gross lesions associated with the testes, epididymides and thyroid will be examined histopathologically. Gross lesions associated with the liver (only if the relative weights are significantly increased) will be examined histologically.

Histopathological examination will be performed on all control and high dose rats of each test substance. If lesions attributed to the test substance are observed by the Study Director and/or Veterinary Pathologist in the rats exposed to the high test substance concentration, the same organs will be examined histopathologically in the rats exposed to the lower test substance concentrations by amendment. Should results from the control and high dosage groups warrant examination of the lower dosage groups and conduct of the quantitative evaluation, scheduled report dates will be adjusted accordingly. Additional costs will be incurred should these evaluations be required. Histopathological findings will be presented in a Contributing Scientist Report.

Shipping Instructions:

Retained tissues will be shipped (ambient conditions) to:

Principal Investigator: W. Ray Brown, D.V.M., Ph.D., Diplomate, ACVP
Veterinary Pathologist
Research Pathology Services, Inc.
438 E. Butler Avenue
New Britain, Pennsylvania 18901
USA
Telephone: (215) 345-7070
Telefax: (215) 345-4326
E-mail: WRBRPS@concentric.net

The recipient will be notified in advance of sample shipment

PROTOCOL RTP00004

INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL

SPONSOR'S WORK ASSIGNMENT: WA 5-15

Amendment 1 - 02 November 2005

1. Formulation - Frequency of Preparation (page 5 of the protocol):

[Effective Date: 11 October 2005] Phenobarbital (suspensions) to be used during the dosing period will be prepared twice rather than once.

Reason for Change:

It was determined that the Phenobarbital suspensions were not stable at 21 days. The maximum stability for the Phenobarbital is 14 days.

2. <u>Study Schedule</u> (page 2 of 2 ATTACHMENT 1 of the protocol):

[Effective Date: 11 October 2005] The study schedule will be revised as follows:

18 OCT 05	Animal Receipt.
25 OCT 05	Proposed Experimental Start Date
25 OCT 05 - 08 NOV 05	Dosage Administration (replicate1).
26 OCT 05 - 09 NOV 05	Dosage Administration (replicate2).
27 OCT 05 - 10 NOV 05	Dosage Administration (replicate3).

Any revisions to this finalized amendment must be made by subsequent amendment.

08 NOV 05	Sacrifice and Necropsy (replicate 1).
09 NOV 05	Sacrifice and Necropsy (replicate 2).
10 NOV 05	Sacrifice and Necropsy (replicate 3).

Reason for Change:

Animals to be received for study have been delayed one week.

3. <u>Analyses of Prepared Formulations - Shipping Instructions</u> (pages 6 and 7 of the protocol):

[Effective Date: 25 October 2005] The Principal Investigator assigned to the analysis of the prepared formulations has been changed to Dorothy Savage. Samples to be analyzed will be shipped to:

Principal Investigator: Dorothy Savage, B.S. Charles River Laboratories Preclinical Services Massachusetts 57 Union Street Worcester, MA 01608 USA Telephone: 508.890.0100 Telefax: 508.791.9713 E-mail: <u>dorothy.savage@us.crl.com</u>

Reason for Change:

The original Principal Investigator assigned to this project is no longer an employee of Charles River Laboratories.

4. <u>Formulation - Frequency of Preparation</u> (page 5 of the protocol):

[Effective Date: 25 October 2005] Linuron (suspensions) to be used during the dosing period will be prepared twice rather than once.

Reason for Change:

·*.

This change is being made in order to have the results of the concentration and homogeneity analyses prior to the start of administration.

Any revisions to this finalized amendment must be made by subsequent amendment.

5. <u>Analyses of Prepared Formulations (page 6 of the protocol):</u>

[Effective Date: 25 October 2005] Quadruplicate samples (1 mL each) will be taken from the top, middle and bottom of each concentration on the day prepared for both the prestudy and from the first preparation of each test substance used for dosage administration. Samples will not be taken from the second preparation of either test substance.

<u>Reason for Change:</u>

This change is being made in order to clarify the intentions of the protocol.

6. <u>Gross Necropsy, Hormone Analysis and Histopathology (page 13 and page 2 of 2 of ATTACHMENT 4 of the protocol):</u>

[Effective Date: 25 October 2005] The wording indicated below describing the criteria before assay of dihydrotestosterone (DHT) and the evaluation of the liver histologically will replace the original wording in the protocol.

Original wording

Only if relative liver weights are significantly increased should DHT levels be measured.

Revised wording

Determination of serum DHT concentrations or the evaluation of the livers histologically will be done on a group basis if there is a statistically significant mean decrease in one or more androgen-dependent organ weights (relative weight for ASG, seminal vesicles and prostate and absolute paired weights for the testes and epididymides) and no corresponding decrease in serum testosterone concentrations in the treated groups compared to the control group. If one or more of these conditions is seen, the Study Director will contact the Sponsor to verify the need to assay DHT.

Reason for Change:

This change is being made at the request of the Sponsor in order to clarify the criteria to be used in regards to evaluating DHT hormone levels and the livers histologically from all control and high dose rats of each test substance.

Any revisions to this finalized amendment must be made by subsequent amendment.

7. <u>Gross Necropsy, Hormone Analysis and Histopathology (page 13 of the protocol):</u>

[Effective Date: 25 October 2005] The volume of blood collected for evaluation of serum hormones should be approximately 9mL rather than at least 8 mL. Enough blood should be collected in order to yield approximately 4500 mcL of serum, to be aliquotted into nine vials of approximately 500 mcL each.

Reason for Change:

This change is being made in order to assure enough serum is harvested in order to perform all of the hormone assays.

8. <u>Gross Necropsy, Hormone Analysis and Histopathology and Shipping</u> <u>Instructions</u> (page 13 and 14 of the protocol):

[Effective Date: 25 October 2005] The Principal Investigator assigned to the analysis of the serum hormones has been changed to Carol D. Sloan at RTI International. Samples to be analyzed will be shipped to:

Principal Investigator: Carol D. Sloan RTI International 3040 Cornwallis Rd. PO Box 12194 Research Triangle Park, NC 27709-2194 USA Telephone: 919.541.6337 Telefax: 919.541.6499 E-mail: <u>css@rti.org</u>

Reason for Change:

This change is being made in order to have the hormone analyses performed in the timeframe requested by the Sponsor.

Any revisions to this finalized amendment must be made by subsequent amendment.

Date

Date

auching 1/ 3/05

9. <u>Gross Necropsy, Hormone Analysis and Histopathology (page 13 of the protocol):</u>

[Effective Date: 25 October 2005] Blood will be collected and immediately placed into serum separator tubes and allowed to clot at room temperature rather than being placed in wet ice prior to the serum being prepared.

Reason for Change:

This change is being made at the request of the Principal Investigator assigned to the pormone analysis in order to yield more serum for the hormone analyses.

Scientist Study Director

Battelle

-0

Alan M. Hoberman, Ph.D., DABT Date Director of Research

OD NOUS S

Mathew B. Carlson, B.A. Date Member, Institutional Animal Care and Use Committee

11-3-05

Terri Pollock Quality Assurance Battelle

Date

Joseph W. Lech, B.S., LAT

David P. Houchens, Ph.D.

Program Manager

Any revisions to this finalized amendment must be made by subsequent amendment.

PROTOCOL RTP00004

INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL

SPONSOR'S WORK ASSIGNMENT: WA 5-15

Amendment 2 - 18 November 2005

1. <u>Gross Necropsy, Hormone Analysis and Histopathology (page 13 of the protocol</u> and point 6 of Amendment 1):

[Effective Date: 15 November 2005] Determination of serum DHT concentrations will be performed for all dosage groups as a hormonal end point that will be assayed in sequence along with the other hormones after testosterone.

Scientist Study Director

Reason for Change:

This change is being made at the request of the Sponsor.

Alan M. Hoberman, Ph.D., DABT Date Director of Research

18 NUNUS

Mathew B. Carlson, B.A. Member, Institutional Animal Care and Use Committee

11-21-05

Terri Pollock Quality Assurance Battelle

Date

Date

Any revisions to this finalized amendment must be made by subsequent amendment.

905 Sheehy Drive, Bldg. A, Horsham, PA 19044 • 215.443.8710 • FAX 215.443.8587

1-1803

Date

21/05 udre

David P. Houchens, Ph.D. Program Manager Battelle

Joseph W. Lech, B.S., LAT

Date

PROTOCOL RTP00004

INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL

SPONSOR'S WORK ASSIGNMENT: WA 5-15

Amendment 3 - 28 December 2005

1. <u>Test and Control Substances and Dosage Groups, Levels and Volumes</u> (pages 3 and 11 of the protocol):

[Effective Date: 21 December 2005] The dosage levels and concentration for each test substance are as follows:

Test Substance	Dosage Group	Chemical Name	Dosage (mg/kg/day)	Concentration (mg/ml)
A	1	0.25% Methylcellulose	0 (Vehicle)	0
B	2	Linuron	50	10
C	3	Linuron	100	20
D	4	Linuron	150	30
E	5	Phenobarbital	25	5
F	6	Phenobarbital	50	10
G	7	Phenobarbital	100	20

Reason for Change:

This table is being added in order to identify dosage levels and concentrations for the test substances as per protocol.

28/6

Alan M. Hoberman, Ph.D., DABT Date Director of Research

Joseph W. Lech, B.S., LAT Scientist Study Director Date

Any revisions to this finalized amendment must be made by subsequent amendment.

Protocol RTP00004 Amendment 3 Page 2 Howhere 66 012 ふい ðEL

Mathew B. Carlson, B.A. *FOR* Date Member, Institutional Animal Care and Use Committee

David P. Houchens, Ph.D. Program Manager Battelle

Date

ellol 1-3-06

Terri Pollock Quality Assurance Battelle

1

Date

Finalization of this draft amendment will occur upon receipt of the Sponsor's approval.

PROTOCOL RTP00004

INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL

SPONSOR'S WORK ASSIGNMENT: WA 5-15

Amendment 4 - 07 February 2006

1. <u>Test and Control Substances - Identification</u> (pages 4 of the protocol):

[Effective Date: 27 January 2006] The lot number of the prepared control substance used for this study was 062K0144 rather than 14601TC.

Reason for Change:

The Sponsor supplied this information in order to clarify the protocol.

2. <u>Data Presentation and Statistics (pages 18 through 20 of the protocol)</u>:

[Effective Date: 27 January 2006] Clarification of the tables and figures supplied by Battelle are listed below. Summary tables 1 through 5 included all values, including the possible outlier values, based on judgment of the Study Director. Summary tables 6 and 7 included all values with the exception of possible outlier values, based on judgment of the Study Director.

In the statistical analysis carried out in December, 2005 – January, 2006:

•Table 1 displays the statistics underlying the decisions that were made concerning the degree of variance pooling (if any) in the subsequent analyses for each endpoint.

•Tables 2 and 3 contain the summary values for the seven body weight and food consumption endpoints, for Linuron (Table 2) and Phenobarbitol (Table 3) respectively.

•Tables 4 and 5 contain the summary values for the nine absolute organ weight endpoints and the nine organ to body weight ratio endpoints, for Linuron (Table 4) and Phenobarbitol (Table 5) respectively.

Any revisions to this finalized amendment must be made by subsequent amendment.

905 Sheehy Drive, Bldg. A, Horsham, PAG 1984 • 215.443.8710 • FAX 215.443.8587

Protocol RTP00004 Amendment 4 Page 2

•Tables 6 and 7 contain the summary values for the nine hormonal assay endpoints, for Linuron (Table 6) and Phenobarbitol (Table 7) respectively.

•Figures 1 and 2 display the mean body weights for each day from TD1 to TD15, for Linuron (Figure 1) and Phenobarbitol (Figure 2), respectively.

•Figures 3 to 9 display the means ± 2 standard errors for the seven body weight and food consumption endpoints, one figure per endpoint.

•Figures 10 to 18 display the means ± 2 standard errors for the nine absolute organ weight endpoints, one figure per endpoint.

•Figures 19 to 27 display the means \pm 2 standard errors for the nine organ to body weight ratio endpoints, one figure per endpoint.

•Figures 28 to 36 display the means ± 2 standard errors for the nine hormonal assay endpoints, one figure per endpoint.

Reason for Change:

The Sponsor supplied this information in order to clarify the protocol.

Alan M. Hoberman, Ph.D., DABT Date Director of Research

IFEB06

Mathew B. Carlson, B.A. Date Member, Institutional Animal Care and Use Committee

2-9-06

Terri Pollock Quality Assurance Battelle

Date

Joseph W. Lech, B.S., LAT Scientist Study Director

Date

AP- Hanher

David P. Houchens, Ph.D. Program Manager Battelle

Date

Any revisions to this finalized amendment must be made by subsequent amendment.

905 Sheehy Drive, Bldg. A, Horsham, PAS99944 • 215.443.8710 • FAX 215.443.8587

APPENDIX 4 - ANALYTICAL REPORT - BULK TEST SUBSTANCE

.

Chemical Repository Services for the EDSP EPA Contract No. 68-W-01-023

1.0 TITLE PAGE

Study Title: Analysis of Test Substances for Work Assignment 5-15

Authors: Tim Fortman, Michael Cobb

Study Initiation Date: 8/26/05

Study Completion Date: January 12, 2006

Performing Lab: EDSP Chemical Repository, Battelle Marine Sciences Laboratory, 1529 West Sequim Bay Road, Sequim, WA 98382

Study Number: EDSP.515-01

Data Requirement: 40 CFR Part 160.105, 160.113

Submitted To: Dr. David P. Houchens, EDSP Program Manager Battelle Columbus Operations, 505 King Avenue, Columbus, OH, 43201-2693

Total Number of Pages: 52

©2006 Battelle Marine Sciences Laboratory

EDSP Study Number: EDSP.515-01

Page 2

2.0 STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentially is made for any information contained in this study on the basis of its falling within the scope of the United States Environmental Protection Agency Federal Insecticide, Fungicide, and Rodenticide Act Section 10(d) (1)(A), (B), or (C).

Company: Battelle

Company Agent: David P. Houchens, Ph.D.

Title: EDSP Program Manager

Signature: Dil P. Houden

Date: 1/12/06

Page 3

3.0 STATEMENT OF COMPLIANCE

This study meets the requirements for 40 CFR Part 160, EPA FIFRA Good Laboratory Practices:

Note: Protocol, and any amendments and deviations are provided in Appendix B of this report. Method deviations are described in Appendix F of this report.

Study Director:

Michael Cobb Battelle – Marine Sciences Laboratory

Date

12/06

06

Sponsor's Representative:

whee David Houchens, Ph.D.

Hanhu

Battelle Columbus Operations

Submitter:

1/12/06

Date

Date

EDSP Study Number: EDSP.515-01

Page 4

4.0 QUALITY ASSURANCE

This study was examined for compliance with Good Laboratory Practice Standards as published by the U.S. Environmental Protection Agency, Office of Pesticide Programs in 40 CFR Part 160, 17 August 1989. The dates of all audits and inspections and the dates of any findings were reported to the Study Director and Test Facility Management as follows:

ACTIVITY	DATE	DATE REPORTED TO:		
	CONDUCTED	STUDY DIRECTOR	MANAGEMENT	
Technical Systems Audit, Analysis of Day 7 Phenobarbital Samples	September 22, 2005	September 22, 2005	September 22, 2005	
Audit of Data Quality, Stability/Purity Data and Draft Report	December 30, 2005 January 9, 2006	January 9, 2006	January 9, 2006	
Final Report	January 12, 2006	January 12, 2006	January 12, 2006	

Mary Ĕ. L∳nn Quality Assurance

1/12/06 Date

EDSP Study Number: EDSP.515-01

Page 5

5.0 APPROVALS PAGE

Study Title: Analysis of Test Substances for Work Assignment 5-15

Submitted by:

Battelle Marine Sciences Laboratory Address: 1529 West Sequim Bay Road Sequim, WA 98382

Prepared by: 1-12-06 Date ortman

Timothy Fortman Senior Chemistry Analyst Battelle - Marine Sciences Laboratory

Approved by: Michael 1 Cobh

12-06

Date

EDSP Chemical Repository Study Director Battelle - Marine Sciences Laboratory

Approved_by

1-12-06

Date

Eric Crecelius Manager, EDSP Chemical Repository Battelle - Marine Sciences Laboratory

Personnel participating in this study:

Analysts: Linda Bingler, Timothy Fortman

Chemical Repository Study Director: Michael Cobb

Experimental Start: September 14, 2005

Experimental Termination: October 6, 2005

Page 6

6.0 EXECUTIVE SUMMARY

Analysis of Test Substances for Work Assignment 5-15

Parameter	Idy Test and Reference Sul	Linuron
Compound Name	Linuron	
CAS #	330-55-2	
Central File No.	2463-1	
Initial Receipt Date	08/24/2005	
Expiration Date	August 2008	
Supplier	Chem Service	
Lot Number	348-8A	
Method	EDSP.H4-033	

Parameter	Test & Reference Substance	Phenobarbita
Compound Name	Phenobarbital	
CAS #	50-06-6	
Central File No.	2461-1	
Initial Receipt Date	08/16/2005	
Expiration Date	February 2010	
Manufacturer	Sigma	
Lot Number	104K2600	
Method	EDSP.H4-034	н

Parameter 🚿	Test Substance	Methylcellulose
Compound Name	Methylcellulose	0
CAS #	9004-67-5	ℝ´,}-o ¨`;(``,
Central File No.	2462-1	
Initial Receipt Date	08/24/05	R \} \O /
Expiration Date	August 2010	R-0 0-R ('n
Supplier	Sigma	Ò-R
Lot Number	14601TC	
Method	N/A*	$R = CH_3$ or H

*Not applicable

Executive Summary

Work Assignment (WA) 5-15 of the Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) describes an *Inter-laboratory Validation of the 15-Day Intact Adult Male Rat Assay.* The Chemical Repository (CR) has the responsibility for carrying out the purity, formulation preparation, method development, method validation, and formulation stability determinations of selected study test substances for EDSP studies. The chemistry formulation (in a methylcellulose carrier), purity determination, and stability studies for the test substance phenobarbital, and the formulation, homogeneity, and purity of the test substance linuron (also formulated in methylcellulose) are documented in the present report. The EPA limited the study for linuron to determination of homogeneity and purity (stability was done during WA 2-28). The test substance purities as determined by the supplier and confirmed by the CR are provided in Table 2.

Page 7

Table 2. Test and Reference Substance Furily						
TEST SUBSTANCE	REPORTED PURITY	LOT NUMBER	CR DETERMINED PURITY			
Linuron	99.5%	348-8A	97.69%			
Phenobarbital	99.1%	104K2600	99.98%			

Table 2. Test and Reference Substance Purity

The formulation preparation procedures developed for the test substance linuron produced a suspension with actual concentrations measured in the top 1/3 and the bottom 1/3 of the container that were within 10 percent of the target concentrations for linuron per specifications. Determinations for both levels were carried out in triplicate. The protocol specified that recoveries at the two levels would agree within 10%. The linuron values met this specification. The phenobarbital formulation yielded concentrations that were within the formulation accuracy specification but fell out of the 10% agreement (homogeneity) specification (for the 5 mg/mL day 1 determination and the 20 mg/mL day 7 determination). The formulation concentrations that were analyzed for both test substances are summarized in Tables 3 and 4.

Table 3. Formulation Homogeneity	-	Linuron
----------------------------------	---	---------

Test Substance	Resition of Measurement	Recovery		
Linuran	Top 1/3	90.58%	2.460/	
Linuron	Bottom 1/3	93.49%	3.16%	

Table 4. Formulation Homogeneity – Phenobarbital 5 mg/mL

Test 👘	Position of	Recovery	Adreement	Recovery	Agreement	Recovery	Agreement
Substance	Measurement	(day 4)	/dav/4	1/av 71	(day 7)	(day 1A)	7467 44
	anous an empire		COLORING COLORING		May May 1 J see		dikana wakata dika tana kasalik
Phenobarbital	Top 1/3	91.32%	40 470/	96.96%	0.0494	97.32%	0.500/
5 mg/mL	Bottom 1/3	104,19%	13.17%	99.75%	2.84%	96.75%	0.59%

Table 5. Formulation Homogeneity – Phenobarbital 20 mg/mL

20 mg/mL	Bottom 1/3	97.51%	0.03%	102.62%	10.95%	98.04%	0.93%
Phenobarbital	Top 1/3	96.90%	0.63%	91.97%		97.13%	
Test Substance	Position of Measurement	Recovery (day 0)	Agreement (day 0)	Recovery (day 7)	Agreement (day 7)	Recovery (day 14)	Agreement (day 14)

As determined in WA 2-28, linuron (at 5 mg/mL in 0.25% methylcellulose): demonstrated stability performance at \geq 90% of the target concentration for the testing period of 21 days. The stability evaluation for the phenobarbital formulations was specified as a 28 day study with sample analyses to be carried out on days 0, 7, 14, 21, and 28. Due to poor performance of the day zero 5 mg/mL phenobarbital result, the day zero determination was repeated the following day resulting in test intervals² for the 5 mg/mL suspension of 1, 7, 14, and 21. Results at day 14 (Table 4) indicated the 5 mg/mL suspension of phenobarbital was still within ±10% of the nominal concentration, but by day 21 had fallen to a 68% recovery. Recovery for the 20 mg/mL suspension of phenobarbital at day 14 (Table 5) was still within ±10% of the nominal concentration, but by day 21 had fallen to 71%. The study for the two suspensions was stopped after day 21.

¹Calculations for purity are: area of compound of interest divided by the total area where the total area is adjusted by subtracting a blank area.

²A protocol deviation (EDSP.515-01-D1) was generated to document this change in stability test intervals for the 5 mg/mL phenobarbital suspension (see Appendix B).

1

EDSP Study Number: EDSP.515-01

Page 8

Page

7.0 TABLE OF CONTENTS

1.0	TITLE	PAGE	1
2.0	STATI	EMENT OF NO DATA CONFIDENTIALITY CLAIMS	2
3.0	STAT	EMENT OF COMPLIANCE	3
4.0	QUAL	ITY ASSURANCE	4
5.0	APPR	OVALS PAGE	5
6.0	EXEC	UTIVE SUMMARY	6
7.0	TABLE	E OF CONTENTS	8
8.0	INTRO	DDUCTION	10
9.0	GENE	RAL METHODS	10
	9.1	TEST SUBSTANCE PROCUREMENT	10
	9.2	TEST SUBSTANCE PURITY	11
	9.3	STUDY VEHICLE	12
	9.4	FORMULATION PREPARATION AND STABILITY DETERMINATIONS	12
	9.5	ANALYTICAL METHODS	12
		9.5.1 Test Formulation Sampling	13
		9.5.2 Analysis of Test Substances with HPLC with UV/VIS Detection	13
		9.5.3 Calibration Performance and Quality Control for both Phenobarbit	al
		and Linuron	13
10.0	RESUL	.TS	14
	10.1	TEST SUBSTANCE PURITY	14
	10.2	FORMULATION ANALYSIS RESULTS	14
	10.3	FORMULATION STABILITY RESULTS	15
11.0	CONC	LUSIONS	16
	11.1	TEST SUBSTANCE PURITY	16
	11.2	FORMULATION ANALYSIS	16
	11.3	FORMULATION STABILITY	
	11.4	ARCHIVING	
APPEI	NDIX A:	SUPPLIER'S CERTIFICATES OF TEST SUBSTANCE	
		ANALYSIS/PURITY	19
APPEI		STUDY PROTOCOL, AMENDMENTS, AND DEVIATIONS	23
APPE		ANALYTICAL RESULTS OF STABILITY TESTING.	35
APPE	NDIX D:	NEAT CHEMICAL, VEHICLE, AND FORMULATION STORAGE RECOMMENDATIONS	38
APPE	NDIX E:	ANALYTICAL METHODS EMPLOYED BY THE CHEMICAL REPOSITOR	RY N
		FOR WA 5-15	30
APPE	NDIX F:	ANALYTICAL METHOD DEVIATIONS	53
LIST C	F TABL	ES	
Table 1	1. Stud	y Test and Reference Substances and Vehicle	6
Table 2	2. Test	and Reference Substance Purity	7
Table 3	3. Form	nulation Homogeneity – Linuron	. 7
Table 4	1. Form	nulation Homogeneity – Phenobarbital – 5 mg/mL	7
Table 5	5. Form	ulation Homogeneity – Phenobarbital – 20 mg/mL	.7
Table 6	Study	y Test and Reference Substances and Vehicle	. 10
Table 7	7. Form	ulations Prepared for Phenobarbital Stability Testing	.12
Table 8	3. Phen	nobarbital HPLC Conditions	13

.

Page 9

Table 9. Linuron HPLC Conditions	13
Table 10. Summary of Test Substance Purity	14
Table 11. Nominal & Measured (Day 0) Formulation Concentration Comparisons	14
Table 12. Formulation Homogeneity – Linuron	14
Table 13. Formulation Homogeneity – Phenobarbital – 5 mg/mL	15
Table 14. Formulation Homogeneity - Phenobarbital - 20 mg/mL	15
Table 15. Formulation Stability Results	15
Table 16. MDL and ICV/CCV Recovery Ranges	15
Table 17. Calibration Acceptance	15

LIST OF FIGURES

Figure 1. Recoveries of Phenobarbital Plotted Against Time	.16
Figure 2. Typical Chromatogram for WA 5-15 HPLC Analysis of Phenobarbital	17
Figure 3. Typical Chromatogram for WA 5-15 HPLC Analysis of Linuron	.18
· · ·	

Page 10

8.0 INTRODUCTION

The goal of the Battelle-Sequim, Marine Sciences Laboratory (MSL) Chemical Repository for the Endocrine Disruptor Screening Program (EDSP) is to provide the participating laboratory or laboratories with requested chemicals of documented quality and if required, at concentrations in a matrix appropriate for different toxicological tests. The EDSP Chemical Repository (CR) provides supplier information regarding purity, the material safety data sheet (MSDS) chemical information, and independent analysis of purity, formulation preparation, method development, method validation, and stability in a matrix specified by the Study Protocol: *Analysis of Test Substances for Work Assignment 5-15 [EDSP Study Number: EDSP.515-01]*, made in collaboration with the requesting Study Director. Under Work Assignment (WA) 5-15, the Environmental Protection Agency (EPA) contracted with the CR for purity characterization of the test substances (Table 6), linuron and phenobarbital. The CR was charged with carrying out method development and validation, formulation preparation (in a 0.25% methylcellulose carrier), homogeneity determination, and purity testing on both test substances. In addition, a 28 day stability study was scheduled for phenobarbital as formulated in the carrier at two concentrations.

9.0 GENERAL METHODS

Methods of standard operation of the CR are currently addressed in MSL SOPs numbered R-001 through R-017. These procedures address chemical procurement including procurement of controlled substances, when applicable, which have unique permitting, ordering, handling, inventory, and storage requirements; chemical receipt and chain of custody, chemical log-in and labeling, inventory, chemical storage, stock solution preparation, documentation and archiving, test solution preparation, documentation and shipping, chemical disposal, and CR maintenance over time. The quality assurance (QA) requirements for procurement of chemicals for use in the CR are addressed in the Quality Assurance Project Plan (QAPP) for EDSP CR.

9.1 TEST SUBSTANCE PROCUREMENT

As requested by EPA linuron, (CAS No. 330-55-2), phenobarbital (CAS No. 50-06-6), and the carrier methylcellulose (CAS No. 9004-67-5), formulated in water at 0.25%, were purchased from two suppliers as outlined in Table 6. The two test substances were used for purity, method development, method validation (phenobarbital only), formulation preparation, and stability analysis (phenobarbital only), as specified in section 8.0 above, and shipped to the participating laboratories for use in the *Inter-laboratory Validation of the 15-Day Intact Adult Male Rat Assay*. The chemicals were logged into the Chemical Management System (CMS) and each given a unique CMS barcode and log-in (central file) number as per the QAPP for the EDSP CR. The chemicals were stored in the CR at conditions specified in the material safety data sheets and documented in test substance specific Chemical Acquisition Task Notebooks.

Parameter	Test Substance	
Compound Name	Linuron	
CAS #	330-55-2	
Central File No.	2463-1	
Initial Receipt Date	08/24/2005	
Expiration Date	August 2008	
Supplier	Chem Service	
Lot Number	348-8A	7 /
Method	EDSP.H4-033	

Table 6. Study Test and Reference Substances and Vehicle	Table	6. Study	/ Test and	Reference	Substances	and Vehicle
--	-------	----------	------------	-----------	------------	-------------

Table 6. Study Test and Reference Substances (continued)					
Parameter	Test Substance	Phenobarbital			
Compound Name	Phenobarbital	<u>^</u>			
CAS #	50-06-6				
Central File No.	2461-1	ן <u>מ</u> וניון (
Initial Receipt Date	08/16/2005				
Expiration Date	February 2010	СН,СН,			
Manufacturer	Sigma				
Lot Number	104K2600	0, ^N , 10			
Method	EDSP.H4-034	н			

「abl	e 6	i. Sti	udy	Test and	Reference	Substances	(continued)
------	-----	--------	-----	----------	-----------	------------	-------------

Parameter	Test Substance	Methylcellulose*
Compound Name	Methylcellulose	0 R-0 0-R
CAS #	9004-67-5	
Central File No.	2462-1	<u> , o…(<)~o⊷()…o+</u> R
Initial Receipt Date	08/24/05	⊣ κ∖}< ⊱ο΄ /,
Expiration Date	August 2010	ן R∽O Ô∽R ֹ "
Supplier	Sigma	R
Lot Number	14601TC	7
Method	N/A	$R = CH_3 \text{ or } H$

* structure for sucrose shown, structure for a singe chain of methylcellulose will be similar

9.2 TEST SUBSTANCE PURITY

Test substance purity for linuron was determined using high performance liquid chromatography (HPLC) with ultraviolet/visible (UV/VIS) detection. Purity verification for this test substance was conducted by making a solution of about 5.0 µg/ml of the substance in 60% acetonitrile and 40% water. This matrix was then run on an HPLC with a UV/VIS diode array detector. A 60% acetonitrile and 40% water blank was also analyzed on the system. The purity was determined by comparing the area of the peak associated with the substance of interest with the total area of all the peaks in the chromatogram. The areas associated with peaks common to the blank were eliminated by subtraction. The percentage associated with the largest peak represented the purity of the test substance. This result was compared to the supplier's certificate of analysis/purity (Appendix A). The HPLC was optimized with a Phenomenex SYNERGI 4µ Hydro-RP 80A 250 X 4.6 mm 4µ HPLC column. Pressure limit on the column was 250 BAR. The system employs a UV/VIS diode array detector set to a collection wavelength of 250 nm. The run time was set to 12 minutes. A single replicate was analyzed for linuron.

Test substance purity for phenobarbital was determined using (HPLC) with UV/VIS detection. Purity verification for this test substance was conducted by making a solution of about 200 µg/mL of the substance in 50% acetonitrile and 50% water. This matrix was then run on an HPLC with a UV/VIS diode array detector. A 50% acetonitrile and 50% water blank was also analyzed on the system. The purity was determined by comparing the area of the peak associated with the substance of interest with the total area of all the peaks in the chromatogram. The areas associated with peaks common to the blank were eliminated by subtraction. The percentage associated with the largest peak represented the purity of the test substance. This result was compared to the supplier's certificate of analysis/purity (Appendix A). The HPLC was set up with a Phenomenex SYNERGI 4µ Hydro-RP 80A 250 X 4.6 mm 4µ HPLC column. Pressure limit on the column was 3000 PSI. The detector is a diode array detector set to a collection wavelength of 225 nm. The run time was set to 8 minutes. A single replicate was analyzed for phenobarbital.

Page 11

Page 12

9.3 STUDY VEHICLE

Methylcellulose was dissolved at 0.25% W/V in deionized water and used as the vehicle (carrier) for the test substance formulations.

9.4 FORMULATION PREPARATION AND STABILITY DETERMINATIONS

The study plan for formulation preparation and analysis development and validation, and stability testing, based on the *Technical Work Plan* for WA 5-15, was developed and documented in the Study Protocol: *Analysis of Test Substances for Work Assignment 5-15, EDSP Study Number: EDSP.515-01.* This protocol with amendments and deviations is presented in Appendix B.

The stability evaluation of linuron was not repeated for this study as it was previously evaluated in a 0.25% methylcellulose vehicle for WA 2-28. Stock and diluter formulation concentrations for phenobarbital were prepared in the 0.25% methylcellulose vehicle for determining stability (Table 7). Formulations were analyzed in triplicate for calculation of a mean concentration and relative standard deviation (RSD).

A 2.5 g/L (0.25%) methylcellulose solution was prepared by adding 700 mL of deionized water to a one liter flask. The flask was placed on a hot plate and stirred while adding 2.5 grams of methylcellulose. The solution was then carefully brought to a boil. The solution was allowed to cool and then allowed to stir for 2 hours. The solution was then transferred to a one liter volumetric flask and diluted to the mark with deionized water. The solution was stored at 2-8°C.

Formulations for phenobarbital were prepared on 9/15/2005 for testing. Briefly, for the stock solution, an amount of the test substance was passed through a six inch round 180 µm screen to insure a small particle size to maximize dissolution properties. Two phenobarbital suspensions were made up (phenobarbital is not soluble in 0.25% methylcellulose at 5 and 20 mg/mL). The 5 mg/mL suspension was made by weighing 1 gram of the sized phenobarbital into a 250 mL amber bottle with 200 mL of the methylcellulose solution (described above). A 20 mg/mL suspension of phenobarbital was prepared by weighing 4 grams of the sized phenobarbital into a 250 mL amber bottle and adding 200 mL of the 0.25% methylcellulose. The stability solutions were stored at 2-8°C.

For phenobarbital, sampling and analysis of the stability solutions was scheduled to be carried out on days 0, 7, 14, 21, and 28 of storage.

			Tobal bital blability resting
is detailed and the second		· 3. 你们的你们,你们们们们们们们们们们们们们的问题。" (1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	
	Nominal		
		Sample ID	Stock Matrix
	which a subscription of the solution of the below		
	Conc.	second and the former of the production of the second second second second second second second second second s	
C10493312221		· · · · · · · · · · · · · · · · · · ·	
00			
20 mg/ml	20.03 ma/ml	Phenobarb 20 mg/ml	0.25% methylcolluloco in Director
mgnn	20.00 mg/m	i nonovaro zo mgana	0.25% methylcellulose in DI water
5 ma/mi	5.01 ma/ml	Phenobarb 5 mg/ml	0.25% methylcellulose in DI water
e mgmm	i vivi my/m		

Table 7. Formulations Prepared for Phenobarbital Stability Testing

9.5 ANALYTICAL METHODS

Formulation stability, purity, homogeneity, and accuracy of phenobarbital were evaluated using the method described below (and provided in Appendix E). Purity, formulation accuracy, and homogeneity of linuron were evaluated using the method described below (and provided in Appendix E). The frequency of determinations and the duration of testing were selected by the Work Assignment Leader (WAL) and the chemists based on *a priori* knowledge of the stability of these chemicals in the vehicle (carrier) and usage schedule required for the dosing formulations to conduct the study.

Page 13

9.5.1 Test Formulation Sampling

Prior to sampling for analysis, the phenobarbital formulations were removed from the refrigerator and allowed to come to room temperature (approximately 1 hr). The formulations were placed on stir plates and stirred to maximize dispersion uniformity of the phenobarbital. Sampling was done at 2 vertical levels in the bottles. The 1st triplicate sampling was collected at a level about 1/3 below the top of the solution. The second triplicate sampling was collected at a level about 2/3 below the top of the solution. For each sampling, 1 mL was taken, using a 3 mL syringe fitted with a 3.5 inch needle. Each 1 mL aliquot was dispensed into an individually tared 25 mL volumetric flask, weighed and the weight recorded. Each flask was then filled to the mark with acetonitrile. The flasks were agitated and 0.1 mL was removed from each and placed into individual 1.8 mL autosampler vials with 0.9 mL of the mobile phase (50% water:50% acetonitrile). The vials were capped and mixed by agitation. All solutions were then run on the HPLC. The same process was followed with the linuron sample except the sample was placed into a 100 ml volumetric flask, and the final dilution utilized 0.01 mL of the diluted suspension and 0.99 mL of the mobile phase (40% water:60% acetonitrile) into a 1.8 mL autosampler vial.

9.5.2 Analysis of Test Substances with HPLC with UV/VIS Detection

All sample analysis employed HPLC with UV/VIS detection. Conditions employed are described in Tables 8 and 9.

HPLC System	Agilent 1100 HPLC (Palo Alto, CA)
Column	
	Diode array UV/Vis, set to collect at a wavelength, 225 nm
Column Pressure Limit	250 BAR
Run Time	8 minutes
Injection Volume	5 µl
Eluent; flow pattern	50% water:50% acetonitrile, Isocratic (eluent also called mobile phase)

Table 8. Phenobarbital HPLC Conditions

	Table 9. Linuron HPLC Conditions				
HPLC System	Agilent 1100 HPLC (Palo Alto, CA)				
Column					
Detector	Diode array UV/Vis, set to collect at a wavelength, 250 nm				
Column Pressure Limit	250 BAR				
Run Time	12 minutes				
Injection Volume	100 µl				
Eluent; flow pattern	40% water:60% acetonitrile, Isocratic (eluent also called mobile phase)				

Calibration of the HPLC was done individually using 5 calibration standards for each of the analytes. To start, a stock is made at a concentration of about 1000 μ g/mL for each analyte. Approximately 0.0500 grams of the analyte is weighed into a 50 mL volumetric flask and diluted to the mark with acetonitrile. The phenobarbital stock is serially diluted to make standards ranging from about 1 μ g/mL to 200 μ g/mL using a solution that will mimic the eluent, 50% acetonitrile:50% water. For the linuron, the stock is serially diluted to make standards ranging from about 0.05 μ g/mL to 5 μ g/mL using a solution that will mimic the eluent, 60% acetonitrile:40% water.

9.5.3 Calibration Performance and Quality Control for both Phenobarbital and Linuron Calibration linearity specifications for both test substances were an R² value of greater than or equal to 0.995. Initial and continuing calibration verification standards for both test substances (ICV and CCV) were run where each of the ICVs consisted of a solution made from an independent standard and diluted to be within the calibration range of the standards. The CCVs were mid-point calibration standards run every 10 samples to verify the analytical

Page 14

system remained calibrated for the entire run. Both ICV and CCV performance standards were specified to be within 10% of target concentrations for the test substances. The purpose of an ICV is to verify that the calibration standards were properly made.

Matrix spikes and blanks were run for method validation and with each sampling for phenobarbital. A matrix spike was prepared prior to the start of the tests and was made at concentrations similar to the low dose formulation concentrations. For linuron, since homogeneity and formulation verification were the only samples run, a matrix spike would have been the same as the actual sampling, therefore, matrix spikes were deemed unnecessary.

10.0 RESULTS

10.1 TEST SUBSTANCE PURITY

The purities of linuron and phenobarbital determined by the CR were 97.69% and 99.98% respectively (Table 10), both within the protocol set accuracy window of $\pm 3\%$ of the values provided on the suppliers' certificates of analysis.

Table 10.	Summary	of Test Substance Purit	V

TEST SUBSTANCE	SUPPLIER REPORTED PUR	RITY LOT NUMBER	CR DETERMINED PURITY
Linuron	99.5%	348-8A	97.69%
Phenobarbita	99.1%	104K2600	99.98%

10.2 FORMULATION ANALYSIS RESULTS

The formulation preparation procedures developed for the test substance linuron produced a suspension with a measured concentration within 10% of the nominal concentration per protocol specifications (Table 11). The actual concentrations measured in the top 1/3 and the bottom 1/3 of the container were also within the 10 percent homogeneity (agreement) specification (Table 12). Triplicate determinations were carried out for both levels.

The phenobarbital formulation yielded concentrations that met the formulation accuracy specification (Table 11). The phenobarbital homogeneity specification was met for 4 of the 6 determinations³ carried out (Tables 13 and 14). The chemist deduced that the issue for phenobarbital was in method precision, not suspension homogeneity.

Table 11. Nominal & Measured (Day 0) Formulation Concentration Comparisons

Test Substance			% Deviation = nominal versus measured
Linuron 30 mg/L	29940.0	27554.40	7.97%
Phenobarbital 5 mg/L	5010.5	4897.94	2.25%
Phenobarbital 20 mg/L	20025.5	19465.32	2.80%

Table 12. Formulation Homogeneity - Linuron

Linuron	Bottom 1/3	93.49%	3.16%
Linuron	Top 1/3	90.58%	0.40%
Test Substance	Position of	Recovery	Agreement

³A protocol deviation (EDSP.515-01-D1) was generated to document this sub-specification performance in homogeneity for the phenobarbital suspension (see Appendix B).

Page 15

EDSP Study Number: EDSP.515-01

Table 13. Formulation Homogeneity – Phenobarbital 5 mg/mL								
Test	Position of	Recovery	Agreement	Recovery	Agreement	Recovery	Agreement	
Substance	Measurement	(day 1)	(day 1)	(day 7)	(day 7)	(day 14)	(day 14)	
Phenobarbital	Top 1/3	91.32%	13.17%	96.96%		97.32%		
5 mg/mL	Bottom 1/3	104.19%	13.17%	99.75%	2.84%	96.75%	0.59%	

Table 13 Formulation Homogonality - Phonoberbitel 5

Table 14. Formulation Homogeneity - Phenobarbital 20 mg/ml

	10010 17.10						
Test	Docition of	Decomone		the second state of the	Service and an and the service of th		The reason of the second of
3 - Held Contract Contract of the second	rusidon ol	Vernaelà	Adieellielir	Recovery	Agreement	Recovery	Agreement
Substance	Measurement	(day 0)	/dav n	//av/7)	(day 7)	(day 14)	Iday 44
1. Desta and the second second second			, in the second s		luay I		
Phenobarbital	Top 1/3	96.90%		91.97%		97.13%	
00 / 1			0.63%		10.95%		0.93%
20 mg/mL	Bottom 1/3	97.51%		102.62%	10.0070	98.04%	0.0070

10.3 FORMULATION STABILITY RESULTS

Stability for linuron was determined in a previous study (WA 2-28 at 5 mg/mL in 0.25% methylcellulose). The results from this earlier evaluation demonstrated stability performance at \geq 90% of the linuron target concentration for the testing period of 21 days. Dosing formulation stability for phenobarbital as a percent of nominal values is tabulated in Table 15 and plotted in Figure 1. Typical chromatograms for phenobarbital and linuron are provided in Figures 2 and 3.

Table 15. Formulation Stability Results

HITTER CONTRACTOR OF A CONTRACT	a data a grant da a d		
	The second se	Calculated Nominal	Percent of
Test Substance		1. Structure of the second s second second s Second second secon second second sec	r that ship pro barries i an i a
the same stand and participate at all of the standards	Duration*		Nominal
and a second		A ALLAN A ALLAN A ALLAND AND AND A	
Phenobarbital 5 mg/ml	14 days	5010.5	91.32% to 104.2%
Thomobuloital o mg/m	14 uays		91.32/010104.270
Phenobarbital 20 mg/ml		0000F F	04.070/ 1- 400.00/
Frichobarbital Zu mg/mi	14 days	20025.5	91.97% to 102.6%
* Tank a data allo a sha shala shi ta su	1 00 1		

Test originally scheduled to run for 28 days, test fell below recovery spec at 21 days - test terminated.

Method detection limits (MDL) and ICV/CCV recovery ranges for the two test substances are provided in Table 16. The analytical and quality control (QC) results are presented in Appendix C.

Iable 16. MDL and ICV/CCV Recovery Ranges						
Test Substance Method Detection Limit ICV/CCV Recoveries						
Phenobarbital	77.76 ug/ml	99.3% to 103.6%				
Linuron	Not Done ⁴	97.7% to 109.3%				

-----.....

Calibration curves all met the R² criteria of 0.995, see table 17. Blanks and matrix spikes were analyzed with every batch for QC purposes. All blanks were less than 3 times the detection limit for all the compounds.

Calibration Curve Date	Test Substance	R ² Value
9/21/05	Linuron	0.99999
9/14/05	Phenobarbital	0.99998
9/15/05	Phenobarbital	0.99999
9/16/05	Phenobarbital	0.99999
9/22/05	Phenobarbital	0.99999
9/29/05	Phenobarbital	0.99999
10/6/05	Phenobarbital	0.99999

Table 17. Calibration Acceptance

⁴ The method validation, which includes MDL, was not done for linuron, a protocol deviation (EDSP.515-01-D1) was generated (see Appendix B).

Page 16

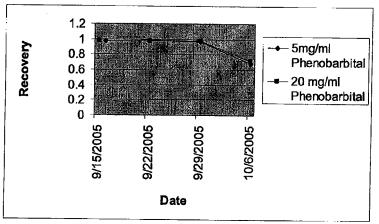


Figure 1. Recoveries of Phenobarbital Plotted Against Time

11.0 CONCLUSIONS

11.1 TEST SUBSTANCE PURITY

Purity determinations for phenobarbital and linuron, carried out by the CR, compared favorably (within 2%) to the supplier's reported results.

11.2 FORMULATION ANALYSIS

Linuron met the suspension homogeneity specification, while phenobarbital met the homogeneity specification for 4 of the 6 determinations carried out. Comparisons of the nominal and actual concentrations of the linuron formulation prepared revealed a 92.04% accuracy at 30 mg/ml. Phenobarbital formulation accuracy was 97.76% at 5 mg/mL and 97.21% at 20 mg/mL, using T=0 concentrations of the stability study. All formulations met the specification of \pm 10% of nominal value.

11.3 FORMULATION STABILITY

Stability of the phenobarbital suspensions remained within 90% of the nominal concentration for the first 14 days of the 28 day stability study for both the 5 and 20 mg/mL concentrations. The study was terminated at day 21 when the recovery dropped below the 90% specification for both the 5 and 20 mg/mL suspensions.

11.4 ARCHIVING

Archive samples of the test substance employed in this study will be maintained in the EDSP Chemical Repository for the shelf life indicated on the chemical label.

The protocol, any amendments, all records and the final report generated as a result of this study will be transported to and maintained for archival purposes at the following address:

PNNL Records Management 540 Fifth Street Richland, WA 99352 PH: 509,375.2340 Sample Name: phen20 T 1 R1

Data File D:\CHEM32\1\DATA\PHEN5\phen5000020.D

Page 17

Injection Date : 9/15/2005 4:21:32 PM Seq. Line : 20 Sample Name : phen20 T 1 R1 Acq. Operator : timothy cq. Instrument : Instrument 1 Location : Vial 20 Inj : 2 Inj Volume : 5 µl Jequence File : D:\CHEM32\1\SEQUENCE\PHENS.S Method : D:\CHEM32\1\METHODS\PHEN5.M Last changed : 9/15/2005 2:20:39 PM by timothy phenobarbital method DADI A, Sig=225,10 Ref=off (PHEN5PHEN5000020.D) mAU 80 60 40 20 48 ş ទ 8 à 0 External Standard Report Sorted By Calib. Data Modified Retention Time Thursday, September 15, 2005 2:20:39 PM Multiplier 236.0950 : Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=225,10 Ref=off Uncalibrated Peaks : compound compound name not specified RetTime Sig Type Area [mAU*s] Amt/Area Amount Grp Name [min] [ug/1] 1,411 1 BV 1 VB 4.13544e-1 0.00000 0.00000 2 1.533 7.24195e-1 0.00000 0.00000 2 2.263 3.897 1 BB 1.74869e-1 0.00000 0,00000 2 1 BV 1 VB 1 BB 507.10126 1.63494e-1 1.21614 0.00000 97400e4 1. ٠ Phenobarbital 4.231 1.21614 1.71290 0.00000 ? 6.152 0.00000 ? 0.00000 .otals : 1.97400e4 AL 122 ----Instrument 1 9/15/2005 5:24:57 PM timothy 40 of 54 Page

Figure 2. Typical Chromatogram for WA 5-15 HPLC Analysis of Phenobarbital

EDSP Study Number: EDSP.515-01

Page 18

Data File D:\CHEM32\1\DATA\LINURON2\1in2000013.D Sample Name: Lin 30 top R-1

						-	
Injection Date				Seq. Line		_	
Sample Name	: Lin 30 top	> R-1		Location	: Vial 13		
Acq. Operator Acq. Instrument		. 7	-	Inj			
Jequence File			TNUDOW2 C	nj Volume	: 100 µ1		
Method	: D:\CHEM32\	1\METHODS\LT	NURON2 M				
Last changed	: 9/21/2005	1:00:46 PM b	y timothy				
phenobarbital me		RON211N2000013.	A\				
mAU		101121LIN200013.	0)			-	·
1050						10000000000000000000000000000000000000	
						Ŧ	
100 -						5	
1						R	
80 -						11	
1						11	
						11	
60 -						11	
						11	
						11	
40-							
20-						11	
	. .					11	
	2.108		5.432	6.038 6.316 6.316 7.171			
` o _	<u>, wi , ol</u>		<u>, 10</u>	<u></u>	· · · · · · · · · · · · · · · · · · ·		
 	2	4		r · · · · ·	·····		<u></u>
1				6		1	0 ntri
알프웨덴 아파카네비퍼트프트리(********		
*	exceen:	al Standard H	(eport				
Sorted By	:	Retention Ti	106				
	~` · ·						
Calib. Data Modi: Multiplier	fied :	Wednesday, S	September :	21, 2005 1:	00:46 PM		
Multiplier	fied : 9.	25963	eptember :	21, 2005 1:	00:46 PM		
Multiplier Dilution	: 9.	259e3 1.0000		21, 2005 1:	00:46 PM		
Multiplier Dilution Do not use Multip	lier 4 Dilut	1.0000 ion Factor w		21, 2005 1:	00:46 PM		
Multiplier Dilution Do not use Multip Signal 1: DADI A,	plier 4 Dilut 5ig=250,10	259e3 1.0000 tion Factor w Ref=off	ith ISTOs				
Multiplier Dilution Do not use Multip Signal 1: DAD1 A, RetTime Sig Type	i plier 4 Dilut	1.0000 ion Factor w	ith ISTOs Amount	21, 2005 1: Grp Name			
Multiplier Dilution Do not use Multip Signal 1: DAD1 A, RetTime Sig Type [min] []	: 9. ; plier & Dilut , Sig=250,10 Area [mAU*s]	25983 1.0000 cion Factor w Ref=off Amt/Area	Amount [ug/ml]	Grp Name	t		
Multiplier Dilution Do not use Multip Signal 1: DAD1 A, RetTime Sig Type [min]	: 9. ; plier & Dilut , Sig=250,10 Area [mAU*s]	25963 1.0000 cion Factor w Ref=off Amt/Area	Amount [ug/ml]	Grp Name	h		
Multiplier Dilution Do not use Multip Signal 1: DAD1 A, RetTime Sig Type [min] 	: 9. ; plier & Dilut , Sig=250,10 Area [mAU*s]	25963 1.0000 ion Factor w Ref=off Amt/Area 2.10147e-3 2	Amount [ug/m1] .50128e4	Grp Name	h		
Multiplier Dilution Do not use Multip Signal 1: DAD1 A, RetTime Sig Type [min] []	: 9. ; plier & Dilut , Sig=250,10 Area [mAU*s]	25963 1.0000 ion Factor w Ref=off Amt/Area 2.10147e-3 2	Amount [ug/ml]	Grp Name	h		
Multiplier Dilution Do not use Multip Signal 1: DAD1 A, RetTime Sig Type [min] 	: 9. blier & Dilut 5 Sig=250,10 Area [mAU*s] -[] 1285.47363	25963 1.0000 ion Factor w Ref=off Amt/Area 2.10147e-3 2 2	Amount [ug/ml] .50128e4 .50128e4	Grp Name linuron	k 		

Instrument 1 9/21/2005 4:04:34 PM timothy

Page 26 of 40

ļ

:

:

Figure 3. Typical Chromatogram for WA 5-15 HPLC Analysis of Linuron

EDSP Study Number: EDSP.515-01

Page 19

APPENDIX A

SUPPLIER'S CERTIFICATES OF TEST SUBSTANCE ANALYSIS/PURITY

Page 20

INVOICE #: CS264916 PO #: 19293

CATALOG #: PS-372 DESCRIPTION: Linuron

CAS #: 330-55-2

LOT #: 348-8A

PURITY: 99.5%

EXPIRATION DATE: 08/08

Chem Service, Inc. guarantees the purity of this chemical $\pm 0.5\%$ deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

John Conned

John Conrad CSM/TC

.

EDSP Study Number: EDSP.515-01

Page 21

Product Name Product Number Product Brand CAS Number Molecular Formula Molecular Weight

test

APPEARANCE

SOLUBILITY

PURITY BY NAOH TITRATION PURITY BY THIN LAYER CHROMATOGRAPHY SHELF LIFE QC ACCEPTANCE DATE

Joi. C

Loni Schulz, Manager Analytical Services St. Louis, Missouri USA

Phenobarbitai, P1636 Sigma 50-06-6 C₄₂H₃₂N₂O₃ 232.24

SPECIFICATION

WHITE POWDER CLEAR COLORLESS SOLUTION AT 50MG/ML IN ETHANOL CONSISTENT WITH STRUCTURE NLT 99% NLT 99% S YEARS LOT 104K2600 RESULTS WHITE POWDER CLEAR COLORESS SOLUTION CONFORMS 99.1% GREATER THAN 99% PEBRUARY 2010 FEBRUARY 2010

CertificateorAnalysis

Received 8/16/05 mL CF 2461-1

Page 22

BATTELLE NORTHWEST

MARINE SCIENCES LAB 1529 W SEQUIM BAY RD SEQUIM WA 98382

11372928MEC

3050 Spruce Street Saint Louis, Missouri 63105 USA Telephone (800) 521-8956 * (314) 771-5765 Fax (800) 325-5052 * (314) 77-5737 Visit Us At www.sigma-aldrich.com

Certificate of Analysis

PO NBR: CC/Smith

PRODUCT NUMBER: 274429-100GLOT NUMBER: 14601TCPRODUCT NAME: METHYL CELLULOSE, AVERAGE MN CA. 41,000FORMULA: C99FORMULA WEIGHT: 0.00

APPEARANCE WHITE POWDER INFRARED SPECTRUM CONFORMS TO STRUCTURE. MISCELLANEOUS ASSAYS 29.8% METHOXYL * LOSS ON DRYING 1.9% LOSS * VISCOSITY APPARENT VISCOSITY: 504 CPS (2%, H2O) * * SUPPLIER DATA QUALITY CONTROL ACCEPTANCE DATE

> ALDRICH CHEMICAL COMPANY RONNIE MARTIN AUGUST 9, 2005

We are Committed to the success of our Customers, Employees and Shareholders through leadership in Life Science, High Technology and Service.

Page 23

APPENDIX B

STUDY PROTOCOL, AMENDMENTS, AND DEVIATIONS

EDSP Study Number: EDSP.515-01

Page 24

EDSP Study Protocol Work Assignment 5-15 EDSP Study Number: EDSP.515-01

Page 1 of 5

Study Protocol: Analysis of Test Substances for Work Assignment 5-15 EDSP Study Number: EDSP.515-01

Study Objective:

The following tasks will be carried out for the (2) two test Chemicals as specified in Table 2:

- Prepare and validate an analytical method as required for each of the test substances over the concentration range needed to measure the target stock concentration and the low exposure concentration (if sensitivity allows).
- Demonstrate a viable and accurate formulation for each of the test substances, at the Stock Solution Concentrations listed in Table 2, in the specified carrier (methylcellulose).
- Determine the homogeneity of any test substance that forms a suspension as described in the experimental design below.
- Determine the stability of phenobarbital dissolved in methylcellulose (at the concentrations specified in Table 2), over a 28 day period.
- 5. Provide a report documenting the results on the above tasks.
- Provide documented and validated methods, for procedures cited in 1, 2, and 3 above and identified by method number in Table 2 below, to the test laboratories specified by the EPA for the follow-on in-life studies for this work assignment.

This study is in support of EPA contract number 68-W-01-023, MSL Work Assignment Number 5-15, Inter-laboratory Validation of the 15-Day Intact Adult Male Rat Assay.

Address of Testing Facility:

Address of Sponsor's Representative

Battelle – Marine Research Operations 1529 West Sequim Bay Road Sequim, Washington 98382 Ph: (360) 681-4580 FAX (360) 681-3699 Emall: <u>michael.cobh@pnl.gov</u>

Battelle 550 King Ävenue Columbus, Ohio 43201-2693 Ph: (614) 424-3564 FAX (614) 458-3564 Emall: <u>houchensd@battelle.org</u>

Proposed experimental start and termination dates:

Start Date – August 25, 2005 Termination Date – November 15, 2005

Definitions:

Test Substances: The test substances are the 2 chemicals listed in Table 2. The test substances are the subject chemicals of the tasks described in this protocol.

Reference Substance: The reference substances are identical chemicals to the test substances and may be from the same manufacturer and lot, or purchased as different lots and/or possibly from separate manufacturers than the test substances. The source, purity, and lot number of reference substances will be documented in the data and reported. Regardless of the source, the reference substance solutions will be made up separately from the test substance solutions. The reference substances (Table 1) are used for the calibration standards

Page 25

EDSP Study Protocol Work Assignment 5-15 EDSP Study Number: EDSP.515-01 Page 2 of 5

in the analytical methods referenced in Table 2. A reference substance can also be a material used to facilitate the analysis of the test substance, such as an internal standard.

TABLE 1 Test Substance Abbreviations:

VIIGHING	ADDIGATION
Linuron	Lln
Phenobarbital	φBarb

Chemical Name	Assa Lin	øBarb
Manufacturer	Chem Service, Inc.	Sigma/Aldrich
CAS #	330-55-2	7601-89-0
Lot#	348-8A	104K2600
Supplier Purity requirement	≥ 97%	≥ 97%
Supplier Purity Cleim	99.5%	99.1%
Target Concentration Stock Solution/Suspension	30 mg/mL	20 mg/mL
Duration Stability Study	i	28 Days
Concentrations for Stability Study	1	5 and 20 mg/mL
Carrier (Yehicle)	0.25% Methylcellulose in H ₂ 0	0.25% Methylcellulose in H ₂ 0
Analytical Method	EDSP.H4-033	EDSP.H4-034

¹ Will use data from previous EDSP Chemical Repository study (WA 2-28) TBA = To Be Amended

Experimental Design:

- Analytical methods will be tested for each of the test substances.
- Purity of linuron and phenobarbital will be verified using High Performance Liquid Chromatography (HPLC). All purities determined should be within ±3% of the value provided on the Certificates of Analysis by the manufacturer. To use substances with values that fall outside this ±3% range or are less than 97% pure, written pre-approval must be secured from the designated EPA work assignment manager.
- Solubility of phenobarbital will be assessed visually in the carrier at the stock formulation concentration (see Table 2). Linuron has been demonstrated to be a suspension at 20 mg/mL of 0.25% methylcellulose. The specific method employed for preparation of the suspension of linuron will be the same as the method described on pages 3 and 4 of the Chemistry Report for WA 2-28 (Revised March 28, 2005).
- a Formulation accuracy and homogeneity of the linuron suspensions will be tested on samples collected at liquid levels approximately 1/3 and 2/3 down from the top of the liquid level in the container (with constant stirring during sampling) using the analytical methods referenced in Table 2. Sampling will be carried out in triplicate/level.
- The accuracy of attaining the target concentration for the formulations that form solutions will be verified in triplicate using the analytical methods referenced in Table 2.

Page 26

EDSP Study Protocol Work Assignment 5-15 EDSP Study Number: EDSP.515-01

Page 3 of 5

- Stability test solutions Stability testing of phenobarbital will be carried out at the stock concentration level and the low exposure concentration (as specified in Table 2), stored in the dark (i.e., same storage conditions of solutions employed in the in-life studies of WA 5-15) at room temperature. Nominal concentrations to be tested are delineated in Table 2 but the actual concentrations used for testing will be within ±10 percent of the target concentration.
- Storage and Labeling Requirements of Formulations Stock formulations will be stored at room temperature. Minimally, containers will be uniquely labeled with the name of the test substance, the date of preparation, the formulation concentration, and the study number.
- Testing Schedule Samples will be analyzed the day of collection from the test formulation.
- Replicates 3 aliquots per sample tested at each analysis time point.
- Sampling schedule. Samples will be collected for analysis at initiation of the stability study (on day of formulation preparation), then on days 7, 14, 21, and 28 of storage (if a test date fails on a holiday, testing scheduled for that date will be carried out on the closest work day).
- G For details of the analytical methods see the substance specific method cited in Table 2.

Data Analysis:

The stability data collected on days 0, 7, 14, 21 and 28 (average of triplicate determinations) for phenobarbital will be compared to the nominal test concentration prepared for the study. Percent variation from the nominal concentration will be used to determine instability for phenobarbital.

Accuracy of phenobarbital and linuron formulations will be based on the average of triplicate analyses compared to the nominal values.

Homogeneity of the linuron suspensions will be based on comparisons of the average of triplicate analyses at each of the two levels within the suspensions.

Acceptance Criteria:

Acceptable stability for phenobarbital will be defined as the concentration not varying more than 10 percent from the nominal concentration over the 28 day stability period. The Work Assignment Leader will be consulted for a recommended course of action for any data found outside the $\pm 10\%$ acceptance range. If needed, more frequent preparation of stock solutions will be recommended for in-life studies and in-life sampling and testing will be coordinated to insure testing is carried out within the viable sample stability window.

Acceptable accuracy of formulation preparations will be ±10 percent of the target concentration.

The mean linuron concentrations measured at the top 1/3 and bottom 1/3 of the suspensions must be within 5% of one another (homogeneity). The overall actual concentration must be within 10% of the target concentration for all test results of this study.

Page 27

EDSP Study Protocol Work Assignment 5-15 EDSP Study Number: EDSP.515-01

Page 4 of 5

Regulatory requirements:

This study will be conducted in compliance with EPA FIFRA Good Laboratory Practices (40 CFR, Part 160). An EDSP QA representative will inspect the study at least once while inprogress and will audit the data and final report.

Report:

I

A final report covering the following information for both chemicals (where applicable) will be issued to the Sponsor Representative (Dr. David Houchens, EDSP Program Manager), who will then forward the report to the testing laboratories:

Title Page **Executive Summary Table of Contents** Introduction **General Methods Chemical Procurement** Purity Formulation Preparation (Methods) Solubility and Homogeneity Stability Testing Plan Design and Detail Analytical Method Results Purity Formulation Analysis Solubility and Homogeneity Analytical Method Validation Formulation Stability Conclusions Appendices Manufacturer's Certificates of Analysis Document to the Testing Laboratories Title Page Table of Contents Introduction Neat Chemical/Vehicle Storage Recommendations **Dosing Formulation Preparation Procedure Dosing Formulation Storage Recommendations Dosing Formulation Analysis Procedure** Protocol **Protocol Amendments Protocol Deviations** Method Documents **Method Deviations**

Page 28

EDSP Study Protocol Work Assignment 5-15 EDSP Study Number: EDSP.515-01

Page 5 of 5

Records to be maintained:

All records, including the protocol, any amendments, and the data and final reports, generated as a result of analysis of the two test substances evaluated for this study, will be transported to and maintained for archival purposes at the following address:

PNNL Records Management 540 Fifth Street Richland, WA 99352 PH: 509.375.2340

Approval:	γ /	
Chemical Repository Study Dire	ectorMichael Cobb	8/24/05
	~ ^	Dațé /
Chemical Repository Manager	Enie hecelicis	2/26/05
	Eric Crecelius, Ph.D.	Date
Sponsor Representative	DirP. Handen	8/22/00

Sponsor Representative

<u>S/22/05</u> Date David Houchens, Ph. D.

Page 29

PROTOCOL AMENDMENT STUDY NUMBER: EDSP.515-01 AMENDMENT NUMBER: A-1

Page 1 of 3

ENDOCRINE DISRUPTOR SCREENING PROGRAM AMENDMENT REPORT

STUDY NUMBER: EDSP.51		DATE: Sept	amber 8, 2005	
AMENDMENT NUMBER: A	-1	WAL/STUDY DIRECTOR:		
NOTEBOOK NUMBER: N/A		Dave Houchens/Michael Cobb		
TITLE OF STUDY: Analysis of for Work Assignments 5-15	of Test Substances			
QAPP/PROTOCOL ID: Wor	k Assignment 5-15			
AMENDMENT RELATING	TO:			
	[] QMP	[x]	Protocol	
[] SOP	[] Method			

ORIGINAL DOCUMENT SPECIFICATIONS:

All protocol details that will be amended are indicated in bold, underlined, and in a Georgia font.

- 1. Experimental Design:
 - Solubility of phenobarbital will be assessed visually in the carrier at the stock formulation concentration (see Table 2). Linuron has been demonstrated to be a suspension at 20 mg/mL of 0.25% methyleellulose. The specific method employed for preparation of the suspension of linuron will be the same as the method described on pages 3 and 4 of the Chemistry Report for WA 2-28 (Revised March 28, 2005).
 - Formulation accuracy and homogeneity of the <u>linuron suspensions</u> will be tested on samples collected at liquid levels approximately 1/3 and 2/3 down from the top of the liquid level in the containers (with constant stirring during sampling) using the analytical methods referenced in Table 2. Sampling will be carried out in triplicate/level.
 - The accuracy of attaining the target concentration for the formulations that form solutions will be verified in triplicate using the analytical methods referenced in Table 2.
 - Stability test solutions Stability testing of phenobarbital will be carried out at the stock concentration level and the low exposure concentration (as specified in Table 2), stored in the dark (i.e., same storage conditions of solutions employed in the in-life studies of WA 5-15) at room temperature. Nominal concentrations to be tested are delineated in Table 2 but the actual concentrations used for testing will be within ±10 percent of the target concentration.
 - Storage and Labeling Requirements of Formulations Stock formulations will be stored at room temperature. Minimally, containers will be uniquely labeled with the name of the test substance, the date of preparation, the formulation concentration, and the study number.

2. Data Analysis

Homogeneity of the <u>linuron suspensions</u> will be based on comparisons of the average of triplicate analyses at each of the two levels within the suspensions.

3. Acceptance Criteria

The mean <u>linuron concentrations measured at the top 1/3 and bottom 1/3 of the</u> <u>suspensions must be within 5% of one another (homogeneity)</u>. The overall actual concentration must be within 10% of the target concentration for all test results of this study.

DATE: September 8, 2005

Page 30

Page 2 of 3

PROTOCOL AMENDMENT STUDY NUMBER: EDSP.515-01 AMENDMENT NUMBER: A-1

AMENDMENT:

Changes are underlined

1. In the Experimental Design Section.

Experimental Design:

- Both linuron and phenobarbital are suspensions at the study concentrations in 0.25% methylcellulose. The specific method employed for preparation of the suspension of linuron will be the same as the method described on pages 3 and 4 of the Chemistry Report for WA 2-28 (Revised March 28, 2005).
- Formulation accuracy and homogeneity of the linuron and phenobarbital suspensions will be tested on samples collected at liquid levels approximately 1/3 and 2/3 down from the top of the liquid level in the containers (with constant stirring during sampling) using the analytical methods referenced in Table 2. Sampling will be carried out in triplicate/level.
- Stability test solutions Stability testing of phenobarbital will be carried out at the stock concentration level and the low exposure concentration (as specified in Table 2), stored in the dark (i.e., same storage conditions of solutions employed in the in-life studies of WA 5-15) at 2 to 8 degrees C. Nominal concentrations to be tested are delineated in Table 2 but the actual concentrations used for testing will be within ±10 percent of the target concentration.
- Storage and Labeling Requirements of Formulations Stock formulations will be stored at <u>2 to</u> <u>8 degrees C</u>. Minimally, containers will be uniquely labeled with the name of the test substance, the date of preparation, the formulation concentration, and the study number.

2. Data Analysis

Homogeneity of the linuron and phenobarbital suspensions will be based on comparisons of the average of triplicate analyses at each of the two levels within the suspensions.

3. Acceptance Criteria

The mean linuron <u>and phenobarbital</u> concentrations measured at the top 1/3 and bottom 1/3 of the suspensions must be within <u>10%</u> of one another (homogeneity). The overall actual concentration must be within 10% of the target concentration for all test results of this study.

REASON FOR CHANGES:

1. During the workup of the materials for the studies, it was determined that phenobarbital was a suspension and not a solution at the study concentrations. The storage temperature of the stability solutions was incorrectly identified as room temperature and should have been specified as 2 to 8 degrees C.

2. With phenobarbital shown to be a suspension, the homogeneity of the suspension requires verification so this test was added to the data analysis section.

3. During method verification, the noise in the analytical method proved too high to allow for a 5% range of consistency across the suspensions. The value was increase to 10%.

DATE: September 8, 2005

·RTP00004

EDSP Study Number: EDSP.515-01

Page 31

Approvals:	
Work Assignment Leader Did P. Wouther	Date
Study Director	Date
EDSP QA Representative Mary E hyp	Date 9/19/05
MSL Laboratory Director	Date
EDSP Program Management_ Dir Handun	Date <u>9/8/05</u>
EDSP Battelle QAM <u>Chini Palloch</u>	Date 9-8-05

DATE: September 8, 2005

÷

Page 32

	PROTOCOL DEVIATION STUDY NUMBER: EDSP.515-01 DEVIATION NUMBER: D-1 DATE: January 10, 2006						
	Page 1 of 3 ENDOCRINE DISRUPTOR SCREENING PROGRAM DEVIATION FORM						
	AMENDMENT NUMBER: D.1 DATE: January 10, 2006						
	NOTEBOOK NUMBER: N/A David Houchens/Michael Cobb						
3	TITLE OF STUDY: Analysis of Test						
	Substances for work Assignment 5-15						
	AMENDMENT RELATING TO:						
	L QAPP [] QMP [x] Protocol						
	[] SOP [] Method						
	 (on day of formulation preparation), then on days 7, 14, 21, and 28 of storage (if a test date fails on a holiday, testing scheduled for that date will be carried out on the closest work day). 2. Table 2 of the protocol listed the CAS number for phenobarbital as: 7601-89-0, 						
	 Study Objective Prepare and validate an analytical method as required for each of the test substances over the concentration range needed to measure the target stock concentration and the low exposure concentration (if sensitivity allows). 						
	4. Acceptance Criteria: The mean linuron and phenobarbital concentrations measured at the top 1/3 and bottom 1/3 of the suspensions must be within 10% of one another (homogeneity). The overall actual concentration must be within 10% of the target concentration for all test results of this study.						
	DEVIATION:						
	1A. The phenobarbital stability study at the 20 mg/mL level was terminated after analysis of the day 21 sample.						
	1B. Analysis of the day zero, 5 mg/mL phenobarbital, stability study sample did not provide usable results. The day zero sample analysis was repeated on the following day with viable results. This altered the stability study monitoring intervals to 1, 7, 14, and 21 days for the 5 mg/mL sample. The analysis was terminated on day 21.						
	2. The correct CAS number for the phenobarbital Is: 50-06-6						
	The linuron method, developed for a previous study was not validated with an MDL and spikes prior to analysis of the formulation.						
	<text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text>						

Page 33

. .

. **PROTOCOL DEVIATION** STUDY NUMBER: EDSP.515-01 DEVIATION NUMBER: D-1 DATE: January 10, 2006 ۰. Page 2 of 3 2011/2014 AV **REASON/IMPACT:** 1A. The 20 mg/mL phenobarbital test solution remained within the acceptable stability recovery range at the 14 day sampling interval but fell below the acceptable stability range at 21 days. As a result of these findings, the Work Assignment Leader approved termination of the stability testing at 21 days. The 20 mg/mL phenobarbital sample in 0.25% methylcellulose was deemed stable for 14 days. 1B. Due to poor assay performance on day zero, the 5 mg/mL sample was rerun on the following day. The 5 mg/mL phenoharbital test solution remained within the acceptable stability recovery range at the 14 day sampling interval but fell below the acceptable stability range at 21 days. As a result of these findings, the Work Assignment Leader approved termination of the stability testing at 21 days. The 5 mg/mL phenobarbital sample in 0.25% methylcellulose was deemed ÷ stable for 14 days. 2. Used a previous protocol as a template for the 5-15 protocol and inadvertently left the CAS number from the previous study in place. No impact. 3. The linuron concentrations evaluated in the study were at a level where substantial dilutions were required prior to analysis. The system was not challenged from a sensitivity perspective so the MDL study was not carried out to reduce time expended on the project. The formulations were tested without a standard method validation with every expectation of good results and saving study hours. The formulation results demonstrated good recoveries so the shortcut in this case was justified. No impact. 4. Of the 6 homogeneity measurements carried out on the phenobarbital formulations, 4 of them * met the 10% agreement specification and two were out (13.2% for the 5 mg/mL solution on day zero and 11.5% for the 20 mg/mL suspension on day 7). The analytical method was somewhat noisy and though these 2 homogeneity results fell out of spec, all the recovery determinations met the 90% to 110% requirement. Based on routine performance of the analytical method, the specification was set too low and should have been set at +/-15% agreement. No impact on validity of data and conclusions. PROPOSED CORRECTIVE ACTION AND SCHEDULE FOR COMPLETION: None, beyond this documentation. ACTIONS TO PREVENT RECURRENCE; None, beyond this documentation. -4 .1 n e ne e a she s

Page 34

PROTOCOL DEVIATION STUDY NUMBER: EDSP.515-01 DEVIATION NUMBER: D-1 DATE: January 10, 2006 Page 3 of 3			
Approval: Work Assignment Leader Study Director EDSP QA Representative	Diel P. Frecher	Date <u>//11/06</u> Date <u>1/12/06</u> Date 1/12-106	
MSL Laboratory Director EDSP Program Manageme	Am Elen	Date <u>1/12/04</u> Date <u>1/12/04</u>	
EDSP Battelle QAM	Juni LPOORKL	Date 1-12-06	
cc: Send final approved co MSL QA Mar EDSP Battell	pies to: lager e QAM		

ł

Page 35

APPENDIX C

ANALYTICAL RESULTS OF STABILITY TESTING (Note: All calculations were conducted at full precision in a spreadsheet.)

Nominal Conc. (µg/ml)	enobarbital Stability	Date	Measured Phenobarbital (µg/mil)	Average (µg/mi)	Recovery	RSD
5010.5	Phen5 T 1 R-1	9/16/2005	4928.13	The product of the spinol in . 1 , at	e nost contesting a s	1 1
5010.5	Phen5 T 1 R-2	9/16/2005	4014.83	4575.35	91.32%	10.73%
5010.5	Phen5 T 1 R-3	9/16/2005	4783.11			
5010.5	Phen5 B 1 R-1	9/16/2005	6617.12			<u> </u>
5010.5	Phen5 B 1 R-2	9/16/2005	4641.06	5220.53	104.19%	23.28%
5010.5	Phen5 B 1 R-3	9/16/2005	4403.40	0110100	101.1070	20.20
5010.5	Phen5 T 2 R-1	9/22/2005	4407.82	_		
5010.5	Phen5 T 2 R-2	9/22/2005	5635.33	4858.00	96.96%	13.92%
5010.5	Phen5 T 2 R-3	9/22/2005	4530.84	1000.00	00.007.0	10.027
5010.5	Phen5 B 2 R-1	9/22/2005	4777.64			
5010.5	Phen5 B 2 R-2	9/22/2005	4974.10	4997.89	99.75% 4	4.66%
5010.5	Phen5 B 2 R-3	9/22/2005	5241.93			1.007
5010.5	Phen5 T 3 R-1	9/29/2005	4799.77		97.32% 3.	
5010.5	Phen5 T 3 R-2	9/29/2005	5084.23	4876.26		3.74%
5010.5	Phen5 T 3 R-3	9/29/2005	4744.80			
5010.5	Phen5 B 3 R-1	9/29/2005	5001.85			
5010.5	Phen5 B 3 R-2	9/29/2005	4880.99	4847.42	96.75%	3.58%
5010.5	Phen5 B 3 R-3	9/29/2005	4659.42			
5010.5	Phen5 T 4 R-1	10/6/2005	2914.95			
5010.5	Phen5 T 4 R-2	10/6/2005	4987.57	3801.39	75.87% 28	28.10%
5010.5	Phen5 T 4 R-3	10/6/2005	3501.65			
5010.5	Phen5 B 4 R-1	10/6/2005	3051.69			
5010.5	Phen5 B 4 R-2	10/6/2005	3612.76	3032.34	60.52%	19.47%
5010.5	Phen5 B 4 R-3	10/6/2005	2432.58			

Table C1b. Phenobarbital Stability Results in Methylcellulose Vehicle for 20 mg/ml Suspension

Nominal Conc. (µg/mi)	Sample ID	Date	Measured Phenobarbital (µg/mi)	Average (µg/ml)	Recovery	RSD
20025.5	Phen20 T 1 R-1	9/15/2005	19740.0			
20025.5	Phen20 T 1 R-2	9/15/2005	18811.8	19404.23	96.90%	2.65%
20025.5	Phen20 T 1 R-3	9/15/2005	19660.9			
20025.5	Phen20 B 1 R-1	9/15/2005	19399.3		··	· · · · ·
20025.5	Phen20 B 1 R-2	9/15/2005	19804.0	19526.40	97,51%	1.23%
20025.5	Phen20 B 1 R-3	9/15/2005	19375.9		ļ	
20025.5	Phen20 T 2 R-1	9/22/2005	19076.8			
20025.5	Phen20 T 2 R-2	9/22/2005	15395.7	18417.27	91.97%	14.94%
20025.5	Phen20 T 2 R-3	9/22/2005	20779.3			
20025.5	Phen20 B 2 R-1	9/22/2005	20305.6			· · · · · ·
20025.5	Phen20 B 2 R-2	9/22/2005	21329.3	20550.70	102.62%	3.36%
20025.5	Phen20 B 2 R-3	9/22/2005	20017.2			

Page 36

wietnyiceilulose vehicle for 20 mg/ml Suspension (continued)									
Nominal Conc. (µg/ml)	Sample ID	Date	Measured Phenobarbital (µg/ml)	Average (µg/ml)	Recovery	RSD			
20025.5	Phen20 T 3 R-1	9/29/2005	15888.2						
20025.5	Phen20 T 3 R-2	9/29/2005	21813.6	19450.33	97.13%	16.14%			
20025.5	Phen20 T 3 R-3	9/29/2005	20649.2						
20025.5	Phen20 B 3 R-1	9/29/2005	19974.0						
20025.5	Phen20 B 3 R-2	9/29/2005	19288.2	19634.00	98.04%	1.75%			
20025.5	Phen20 B 3 R-3	9/29/2005	19639.8						
20025.5	Phen20 T 4 R-1	10/6/2005	13205.2		·				
20025.5	Phen20 T 4 R-2	10/6/2005	13208.4	13853.43	69.18%	8.08%			
20025.5	Phen20 T 4 R-3	10/6/2005	15146.7			2.50 /			
20025.5	Phen20 B 4 R-1	10/6/2005	14613.7						
20025.5	Phen20 B 4 R-2	10/6/2005	15899.3	14806.70	73.94%	6.82%			
20025.5	Phen20 B 4 R-3	10/6/2005	13907.1						

Table C1b. Phenobarbital Stability Results in Methylcellulose Vehicle for 20 mg/ml Suspension (cor

Table C2. Homogeneity Results for Linuron in Methylcellulose Vehicle for 30 mg/ml Suspension

Nominal Conc. (µg/ml)	Sample ID:	Date	Measured Linuron (µg/ml)	Average (µg/ml)	Recovery	RSD
29940	Lin 30 top R-1	9/21/2005	25012.8			Marcanana a 20 - 10 - 10 - 10
29940	Lin 30 top R-2	9/21/2005	27852.2	27118.17	90.58%	6.83%
29940	Lin 30 top R-3	9/21/2005	28489.5			
29940	Lin 30 bttm R-1	9/21/2005	28272.8			
29940	Lin 30 bttm R-2	9/21/2005	28243.2	27990.63	93.49%	1.66%
29940	Lin 30 bttm R-3	9/21/2005	27455.9			

Table C3. MDL and ICV/CCV Recovery Ranges

The second state and state an		
Test Substance	Method Detection Limit	ICV/CCV/ Descurrentes
I VOI VANOIGINUG	MINIOR DOLOCITO IL FILIUL	ICV/CCV Recoveries
Phenobarbital	77 76 unimal	00.00/ 1- 400.00/
rienouaruna	77.76 ug/ml	99.3% to 103.6%
Linuron	and along a	07 70/ 1 400 00/
Linuron	not done	97.7% to 109.3%

Table C4. Summary of Test Substance Purity

TEST SUBSTANCE	LOT NUMBER	CR DETERMINED PURITY
Phenobarbital	104K2600	99.98%
Linuron	348-8A	97.69%

Table C5a. Calibration Verification Data for Phenobarbital

Sample Name	Date	Expected Phenobarbital (µg/mL)	Measured Phenobarbital (µg/mL)	Recovery
WA515-phen-4 ICV	9/14/2005	20.08	20.15	100.34%
WA515-phen-2C CC	9/14/2005	20.04	19.90	99.32%
WA515-phen-2C CC	9/14/2005	20.04	20.09	100.27%
WA515-phen-2C CC	9/14/2005	20.04	20.02	99.90%
WA515-phen-2C CC	9/15/2005	20.04	19.96	99,59%
WA515-phen-2C CC	9/15/2005	20.04	20.20	100.79%
WA515-phen-4 ICV	9/15/2005	20.08	20.49	102.03%

EDSP Study Number: EDSP.515-01

Page 37

Sample Name	Date	Expected Phenobarbital	Measured Phenobarbital	Recovery
		(µg/mL)	(µg/mL)	Anderson Martin - Anderson Anderson
WA515-phen-2C CC	9/15/2005	20.04	<u>2</u> 0.39	101.73%
WA515-phen-2C CC	9/15/2005	20.04	20.46	102.11%
WA515-phen-2C CC	9/15/2005	20.04	20.52	102.38%
WA515-phen-4 ICV	9/16/2005	20.08	20.42	101.69%
WA515-phen-2C CC	9/16/2005	20.04	20.43	101.97%
WA515-phen-2C CC	9/16/2005	20.04	20.52	102.38%
WA515-phen-4 ICV	9/22/2005	20.08	20.46	101.87%
WA515-phen-2C CC	9/22/2005	20.04	20.27	101.13%
WA515-phen-2C CC	9/22/2005	20.04	20.62	102.89%
WA515-phen-2C CC	9/22/2005	20.04	20.76	103.59%
WA515-phen-4 ICV	9/29/2005	20.08	20.14	100.30%
WA515-phen-2C CC	9/29/2005	20.04	20.49	102.24%
WA515-phen-2C CC	9/29/2005	20.04	20.58	102.70%
WA515-phen-2C CC	9/29/2005	20.04	20.69	103.22%
WA515-phen-4 ICV	10/6/2005	20.08	20.42	101.71%
WA515-phen-2C CC	10/6/2005	20.04	20.76	103.58%
WA515-phen-2C CC	10/6/2005	20.04	20.39	101.74%
WA515-phen-2C CC	10/6/2005	20.04	20.51	102.36%

Table C5a. Calibration Verification Data for Phenobarbital (continued)

Table C5b. Calibration Verification Data for Linuron

Sample Name	Date	Expected Linuron (µg/mL)	Measured Linuron. (µg/mL)	Recovery
WA515-lin IVC	9/21/2005	0.503	0.550	109.26%
WA515-lin-1C CC	9/21/2005	0.502	0.491	97.72%
WA515-lin-1C CC	9/21/2005	0.502	0.494	98.37%

Table C6. Spike Recovery Data for Phenobarbital Analyses

Compound	Nominal Conc. (µg/mL)	Sample ID	Date	Measured (µg/mL)	Recovery
Phenobarbital	5014	WA515phen5 spk1	9/14/2005	4829.57	96.32%
Phenobarbital	5014	WA515phen5 spk2	9/14/2005	4782.08	95.37%
Phenobarbital	5014	WA515phen5 spk3	9/14/2005	4907.14	97.87%
Phenobarbital	5014	WA515phen5 spk4	9/14/2005	4596.80	91.68%
Phenobarbital	5014	WA515phen5 spk5	9/14/2005	4921.34	98.15%
Phenobarbital	5014	Blank Spike-6	9/15/2005	4749.35	94.72%
Phenobarbital	5014	Blank Spike-7	9/15/2005	4570.97	91.16%
Phenobarbital	5014	Blank Spike-8	9/22/2005	4781.64	95.37%
Phenobarbital	5014	Blank Spike-9	9/22/2005	4604.21	91.83%
Phenobarbital	5014	Blank Spike-10	9/29/2005	4658.95	92.92%
Phenobarbital	5014	Blank Spike-11	9/29/2005	4399.57	87.75%
Phenobarbital	<u>5</u> 014	Blank Spike-12	10/6/2005	3109.98	62.03%
Phenobarbital	5014	Blank Spike-13	10/6/2005	2937.69	58.59%

Note: no spikes done with the linuron formulation verification analysis

EDSP Study Number: EDSP.515-01

Page 38

APPENDIX D

NEAT CHEMICAL, VEHICLE, AND FORMULATION STORAGE RECOMMENDATIONS

1. Neat Chemical Storage

A. Phenobarbital: Keep tightly closed, store at 2-8°C.

B. Linuron: Keep tightly closed, store in a cool, dry, well-ventilated area - room temperature.

2. Formulation Storage

A. All formulations are to be stored refrigerated (2-8°C).

EDSP Study Number: EDSP.515-01

Page 39

APPENDIX E

ANALYTICAL METHODS EMPLOYED BY THE CHEMICAL REPOSITORY FOR WA 5-15

EDSP Study Number: EDSP.515-01

Page 40

Battelle

The Business of Innovation

Marine Sciences Laboratory

EFFECTIVE DATE: 9-8-05

Method # EDSP.H4-033-00

Battelle Pacific Northwest National Laboratories Marine Sciences Laboratory

ANALYSIS OF LINURON IN METHYLCELLULOSE USING HPLC WITH UV/VIS DETECTION

Approvals:		
AUTHOR: Tim Foriman	Time 8 onto	9-8-05
	Signature	Date
TECHNICAL REVIEWER: Linda Bingler	Sinda J. Bingle	9-8-05
	Signature	Date
STUDY DIRECTOR: Michael Cobb	Mal	P-8-05
	Signature	Date

©2005 Battelle Marine Sciences Laboratory

EDSP.H4-033-00

Page 41

Page 2 of 6

ANALYSIS OF LINURON IN METHYLCELLULOSE USING HPLC WITH UV/VIS DETECTION 1.0 SCOPE AND APPLICATION

Study Protocol EDSP.515-01

This method describes the determination of linuron in 0.25% water solution of methylcellulose using HPLC/UV/Vis detection. The method was developed for use in the analysis of phenobarbital for the EDSP program. The eluent used is an acetonltrile/water solution.

2.0 DEFINITIONS

Initial Calibration Verification (ICV)	A standard made from a neat material prepared separately from the calibration standards. Used to verify the calibration solutions. The neat material employed for preparation of the ICV can be from the same source material used for calibration.
Continuing Calibration Verification (CCV)	A mid level calibration standard run every after every 10 samples to ensure the instrument remains in calibration.

Verification (CCV)

3.0 RESPONSIBLE STAFF

Researcher/Technician - sample preparation. Analyst - analysis, calculations QA Manager or Representative - data verification

4.0 ANALYSIS

4.1 Hardware and Reagents

- Balance capable of weighing to 0.0001 g High performance liquid chromatograph Agilent 1100 or equivalent Phenomenex SYNERGI 4µ Hydro-RP 80A 250 X 4.6 mm 4µ HPLC column or equivalent.
 - Acetonitrile, HPLC grade or better. Phenobarbital, 98% purity or better.
- 1.8 mL viais
 - 1 liter amber bottle with Teflon lined lid.
 - Variable positive displacement Pipetters, to pipette 0.1 mL and 0.010 mL. Volumetric flasks

.

4.2 HPLC Mobile Phase (Eluent)

4.2.1 The mobile phase is 60% acetontrile and 40% water. This can be made by mixing 600 ml of acetonitrile with 400 ml of water or can be mixed by the HPLC equipment.

Page 42

EDSP.H4-033-00

Study Protocol EDSP.515-01

Page 3 of 6

4.3 Calibration Solution

- 4.3.1 A 5 point curve is used to calibrate the HPLC over a range that will bracket the concentration in the stability tests. To start, a stock is made at a concentration of about 1000 µg/mL. Approximately 0.0500 grams is weighed into a 50 mL volumetric flask and diluted to the mark with acetontrile. Record exact information and give the solution a unique identifying label. Pour the solution into an appropriate size amber vial with a Teflon lined lid. Stability of the calibration solutions should be verified at the end of the test by the analysis of a new (freshly made) solutions prepared from the neat material and compared to the calibration solutions.
- 4.3.2 Serially dilute the solution made in 4.3.1 to make standards ranging from 0.05 µg/ mL to 5 µg/mL using a solution that will mimic the eluent, 60% acetonitrile, 40% water.

4.4 HPLC Setup

- 4.4.1 The HPLC pump is set up to pump at 1.0 mL/min. The mobile phase (eluent) is degassed using either helium sparging or a vacuum degasser. The pump run time should be set to printing.
 4.4.2 The autosampler is set up to inject 100 μL. A 500 μL loop is installed. See
- 4.4.2 The autosampler is set up to inject 100 μL. A 500 μL loop is installed. See instrument manual for setup details. The autosampler is then set to flush the contaminated surfaces with acetonitrile.
- 4.4.3 The column used is a Phenomenex SYNERGI 4μ Hydro-RP 80A 250 X 4.6 mm 4μ HPLC column or equivalent. Pressure limit on the column is 3000 PSI (~210 bar).
- 4.4.4 The detector (either a UV/VIs or a diode array detector) set to a wavelength of 260 nm.

4.5 Analysis

- 4.5.1 Prior to the analysis of any samples linearity must be demonstrated. A 5 point or curve is run (minimum of a 4 point curve is needed). An r² value of greater with than 0.995 is necessary before analysis can begin.
- 4.5.2 Once the calibration is done, if possible it must be verified with an initial calibration verification sample (ICV). An independent solution is made and diluted to the proper concentration so that it is within the calibration range. This sample is run and the value obtained should be within 10% of the expected value.
- 4.5.3 After the calibration is verified, a continuing calibration verification (CCV) sample is run. This sample is usually one of the mid-level calibrators. The value obtained should be within 10% of the expected value. A CCV should be run after every 10 samples.
- 4.5.4 A blank should be prepared with each sampling. The blank is the matrix diluted as the samples, for this study, ~1 ml of a 0.25% methylcellulose in water solution is placed in a 25 ml volumetric flask and diluted to the mark with acetonitrile. 0.01 ml of this is placed into a 1.8 ml autosampler vial and diluted with 0.99 ml of 60% acetonitrile, 40% water. The blank should be < 3X MDL (see 4.8:5). 4.5.5.</p>

Page 43

EDSP.H4-033-00

4.5.5 Method Detection Limit (MDL) is determined by preparing a sample at a low concentration, using similar techniques as used to analyze the low concentration stability sample. This is done 7 times and the MDL is the students T (3.143 for 7 replicates) times the standard deviation of the seven replicate runs. An MDL should be performed prior to the analysis of any sample for linuron. Samples with no peak or quantitating at a value less than the MDL will be reported as the MDL and flagged with a "U.

4.6 Purity

4.6.1 Purity is determined by running a sample of the material that is at or near the top of the demonstrated linearity of the system. All the peaks in the purity chromatogram are summed. The peak corresponding to the linuron is then compared to all the other peaks and the purity is the area of the linuron peak divided by the sum of the total area in the chromatogram (presented as a percentage). A blank is run prior to the purity run and the peaks in the purity run that correlate to peaks in the blank run are eliminated from the calculation. This purity should be 98% or greater and should compare favorably to the purity from the vendor. Note: the limitation of using a UV/Vis detector for purity is that one cannot be certain that the impurities will absorb at the same wavelength. This purity represents an estimation.

5.0 STABILITY

- 5.1 A 2.5 g/L (0.25%) methyl cellulose solution is prepared by adding 700 mL of deionized water to a 1 liter flask. This solution should be prepared a day in advance of use. The flask is placed on a hot plate and a stir bar added. While the solution is being stirred, add 2.5 grams of methyl cellulose and then heat the solution to boiling. This process should be closely monitored as the solution must be removed from the hot plate immediately when boiling is observed so the material doesn't boil over. Allow the hot plate to cool, then replace the methyl cellulose solution is then transferred to a 1 liter volumetric flask and diluted to the mark with deionized water. The solution may be slightly cloudy at this point but will become clear by the next day. Store the solution at 2 to 8 degrees C.
- 5.2 Prior to use, the linuron is screened so that a uniform suspension can be prepared. A six inch round 180 µm screen is set up with a collection pan and a cover. The linuron is placed on the screen and the screen shaken to push the linuron through the screen.
- 5.2 A 30 mg/mL suspension is made by weighing 6 grams of linuron into a 250 mL amber bottle with 200 mL of the methyl cellulose solution prepared in section 5.1 (use a graduated cylinder to add the methyl cellulose solution). The slurry is stored at 2 to 8 degrees C.
- 5.3 Linuron has limited solubility in the methyl cellulose solution and the result is the formation of a suspension. The 250 ml amber bottle is supplied with a stir bar. The suspension is removed from the refrigerator and placed on a stir plate and stirred to suspend the linuron and warm the sample. Stir suspension for about 60 minutes prior to sampling, stirring should be vigorous enough to show a slight vortex, it should not be stirred so vigorously that air is aspirated into the solution (this may cause foaming). Visual inspection should show an evenly distributed suspension. Sampling is done by taking triple 1 ml aliquots. A 3 ml syringe equipped with a 3.5 inch needle of a wide

EDSP Study Number: EDSP.515-01

Page 44

EDSP.H4-033-00

Page 5 of 6

bore (17 gauge or wider) is used to collect the sample. A 25 ml volumetric flask is tared and using the syringe about 1 ml of the stability suspension is placed into the volumetric flask and a weight determined (and recorded). Sampling is done at 2 levels in the suspension, the first triplicate is taken at a depth of about one third of the distance from the top of the suspension. A second triplicate sample is taken from about two thirds of the way down from the top of the suspension. The volumetric flask is then filled to the mark with acetontrile. The flask is agitated and 0.01 mL is removed and placed into a 1.8 mL autosampler vial with 0.99 mL of the mobile phase (see 4.2.1). Cap the vial and mix by agitating.

- 5.4 Slurries are stored in amber bottles at 2 to 8 degrees C.
- 5.5 Samples should be analyzed on the day of sampling, but if this is not possible, samples should be stored at 4° C. until analysis. If samples are not analyzed on the day of sampling, the actual analysis date and storage conditions shall be documented.

6.0 DATA ANALYSIS AND CALCULATIONS

- 6.1 Prior to analysis of any samples, the instrument is calibrated with a minimum of a 4 point curve. External standard calculations will be performed. All calculations are done using chromatography software supplied with the instrument. If the software allows the input of a multiplier, determine and enter a multiplier so that the output reflects the concentration In the stability sample. For the linuron suspension, about 1 mL of the stability sample is diluted with 25 mL of acetonitrile, then 0.01 mL of this solution is diluted to 1 mL with mobile phase. A density of 1 is assumed for the 0.25% methyl cellulose and the weight in grams is equal to the volume in milliliters. The multiplier is determined by dividing the dilution factor of 2500 (0.01 mi of a 25 mL solution taken to 1 mL) by the volume of the stability solution removed. Calibration curve fits can be set to either linear or non-linear (quadratic fit), past experience indicates that even though the calibration meets linearity criteria, the quantification is improved with a non-linear fit.
- 7.0 QUALITY CONTROL
- 3 (The for
- 7.1 A blank is prepared with each sampling, this blank is the methyl cellulose solution processed identically to the stability solution. If background levels are sufficiently high (i.e., greater than 6 x MDL), this value may be subtracted from the values obtained for samples analyzed with that batch. Processing of these samples is very straight forward, therefore spikes are optional.
- 7.2 An initial calibration verification (ICV) standard will be analyzed following the calibration curve. Continuing calibration verification standards (CCVs) will be analyzed after every 10 samples. All samples should be bracketed with a valid CCV. If a CCV fails, perform system maintenance, recalibrate and rerun the samples not bracketed with a valid CCV.

Page 45

EDSP.H4-033-00

Study Protocol EDSP.616-01

Page 6 of 6

8.0 SAFETY

All analysts following this procedure should be aware of routine laboratory safety concerns, including all safety protocols regarding use of chemicals, including the following:

 Gloves, protective clothing and safety glasses should be worn when handling samples and chemicals.

9.0 TRAINING REQUIREMENTS

10.1All staff performing this analysis should first read this procedure and conduct their first analysis under the supervision of a staff member who has had previous experience conducting this or a similar procedure. Staff should demonstrate proficiency in the process prior to performing the work.

10.2All staff should have received training in the handling of chemicals and the use of furne hoods.

Quality Control Sample Type	Data Quality Objective (DQO)	Corrective Action
Procedural Blank one/batch	Less than 3 x MDL	Re-extract and analyze sample batch. If batch can not be re-extracted and anelyzed, 'B' flag all samples that are in the batch. Investigate sources of blank contamination.
Calibration curve accaptability	r ² values greater than or equal to 0.995	If r ² value is outside of criterion, re- analyze calibration standards, if r ² is still out, perform instrument maintenance and/or remake calibration standards and rerun calibration samples.
Initial calibration ventication (ICV) standard; one/batch	+ / - 10 % of two value	Re-calibrate. Must meet DQO in order to continue processing samples.
Continuing calibration verification standards; one every 10 th sample analyzed	+/ - 10 % of true value	Re-run CCV, if still not acceptable, re- calibrate and reanalyze affected samples.
Replicate sample precision; triplicates will be analyzed for stability, duplicate for in- life	Precision: 30% as relative standard deviation (RSD) or relative percent deviation (RPD)	If RSD or RPD is not acceptable, resample and reanalyze. If reanalysis data are still not acceptable, then "flag the values.
Blank or Malrix Spike and spike duplicate, one set per batch (optional)	+/- 15% of true value	# recoveries are unacceptable, check the splice solution to ensure it has not degraded, also chack pipeties to ensure they are delivering accurate volumes.

Table 1. Summary of Data Quality Objectives and Corrective Actions

*DOO is based on limited sample enalysis as part of method development experience, and may require adjustment when more experience with the method is available.

Table 2. Data Qualifiers^a

reported as zero.
Samples associated with procedural blank contamination.
QC sample data that does not meet the DQO acceptability criterion.
The data are questionable.
Sample diluted for analysis. (note: this procedure outlines the dilution of the samples, data will not be D flagged unless diluted other than indicated in this SOP). not data qualifiers may be added as necessary.

į

EDSP Study Number: EDSP.515-01

Page 46

Battelle

The Business of Innovation

Marine Sciences Laboratory

EFFECTIVE DATE: 10-05-05

Method # EDSP.H4-034-01

Battelle Pacific Northwest National Laboratories Marine Sciences Laboratory

ANALYSIS OF PHENOBARBITAL IN METHYLCELLULOSE USING HPLC WITH UV/VIS DETECTION

Approvals:		
AUTHOR: Tim Fortman	Jen & orth	10-5-05
	, Signature	Date
TECHNICAL REVIEWER: Linda Bingler	Suila S. Drife	
	Signature /	Date
STUDY DIRECTOR: Michael Cobb	Ment	10/05/05
-	Signature	Date

©2005 Battelle Marine Sciences Laboratory

EDSP Study Number: EDSP.515-01

Page 47

EDSP.H4-034-01

Study Protocol EDSP.515-01

Page 2 of 6

ANALYSIS OF PHENOBARBITAL IN METHYLCELLULOSE USING HPLC WITH **UV/VIS DETECTION**

1.0 SCOPE AND APPLICATION

This method describes the determination of phenobarbital in 0.25% water solution of methylcellulose using HPLC/UV/Vis detection. The method was developed for use in the analysis of phenobarbital for the EDSP program. The eluent used is an acetonitrile/water solution.

2.0 DEFINITIONS

Initial Calibration Verification (ICV)	A standard made from a neat material prepared separately from the calibration standards. Used to verify the calibration solutions. The neat material employed for preparation of the ICV can be from the same source material used for calibration.
Continuing Calibration Verification (CCV)	A mid level calibration standard run every after every 10 samples to ensure the instrument remains in calibration.

3.0 RESPONSIBLE STAFF

Researcher/Technician - sample preparation. Analyst - analysis, calculations QA Manager or Representative - data verification

4.0 ANALYSIS

4.1 Hardware and Reagents

- Balance capable of weighing to 0.0001 g High performance liquid chromatograph Agilent 1100 or equivalent Phenomenex SYNERGI 4 μ Hydro-RP 80A 250 X 4.6 mm 4 μ HPLC
- column or equivalent.
- Acetonitrile, HPLC grade or better. Phenobarbital, 98% purity or better.
- 1.8 mL vials -
- 1 liter amber bottle with Teflon lined lid.
- Variable positive displacement Pipetters, to pipette 0.1 mL and 0.010 mL. -
- Volumetric flasks

4.2 HPLC Mobile Phase (Eluent)

4.2.1 The mobile phase is 50% acetontrile and 50% water. This can be made by mixing equal volumes of acetonitrile and water or can be mixed by the HPLC equipment.

Page 48

EDSP.H4-034-01

Study Protocol EDSP.515-01

Page 3 of 6

4.3 Calibration Solution

- 4.3.1 A 5 point curve is used to calibrate the HPLC over a range that will bracket the concentration in the stability tests. To start, a stock is made at a concentration of about 1000 µg/mL. Approximately 0.0500 grams is weighed into a 50 mL volumetric flask and diluted to the mark with acetontrile. Record exact information and give the solution a unique identifying label. Pour the solution into an appropriate size amber vial with a Teflon lined lid. Stability of the calibration solutions should be verified at the end of the test by the analysis of a new (freshly made) solution prepared from the neat material and compared to the calibration solutions.
- 4.3.2 Serially dilute the solution made in 4.3.1 to make standards ranging from 1 µg/ mL to 200 µg/mL using a solution that will mimic the eluent, 50% acetonitrile, 50% water.

4.4 HPLC Setup

- 4.4.1 The HPLC pump is set up to pump at 1.0 mL/min. The mobile phase (eluent) is degassed using either helium sparging or a vacuum degasser. The pump run time should be set to 8 minutes.
- 4.4.2 The autosampler is set up to Inject 5 µL. A 100 µL loop is installed. See instrument manual for setup details. The autosampler is then set to flush the contaminated surfaces with acetonitrile.
- 4.4.3 The column used is a Phenomenex SYNERGI 4µ Hydro-RP 80A 250 X 4.6 mm 4µ HPLC column or equivalent. Pressure limit on the column is 3000 PSt (~210 bar).
- 4.4.4 The detector (either a UV/Vis or a diode array detector) set to a wavelength of 225 nm.

4.5 Analysis

Prior to the analysis of any samples, linearity must be demonstrated. A 5 point curve is run (minimum of a 4 point curve is needed). An r² value of greater than 0.995 is necessary before analysis can begin.

- 4.5.2 Once the calibration is done, if possible it must be verified with an initial calibration verification sample (ICV). An independent solution is made and diluted to the proper concentration so that it is within the calibration range. This sample is run and the value obtained should be within 10% of the expected value.
- 4.5.3 After the calibration is verified, a continuing calibration verification (CCV) sample is run. This sample is usually one of the mid-level calibrators. The value obtained should be within 10% of the expected value. A CCV should be run after every 10 samples.
- 4.5.4 A blank should be prepared with each sampling. The blank is the matrix diluted as the samples, for this study, ~1 ml of a 0.25% methylcellulose in water solution is placed in a 25 ml volumetric flask and diluted to the mark with acetonitrile. 0.1 ml of this is placed into a 1.8 ml autosampler vial and diluted with 0.9 ml of 50% acetonitrile, 50% water. The blank should be < 3X MDL (see 4.5,8).5</p>

EDSP Study Number: EDSP.515-01

Page 49

EDSP.H4-034-01

Study Protocol EDSP.515-01

Page 4 of 6

4.5.5 Method Detection Limit (MDL) is determined by preparing a sample at a low concentration, using similar techniques as used to analyze the low concentration stability sample. This is done 7 times and the MDL is the students T (3.143 for 7 replicates) times the standard deviation of the seven replicate runs. An MDL should be performed prior to the analysis of any sample for phenobarbital. Samples with no peak or quantitating at a value less than the MDL will be reported as the MDL and flagged with a "U."

4.6 Purity

4.6.1 Purity is determined by running a sample of the material that is at or near the top of the demonstrated linearity of the system. All the peaks in the purity chromatogram are summed. The peak corresponding to the phenobarbital is then compared to all the other peaks and the purity is the area of the phenobarbital peak divided by the sum of the total area in the chromatogram (presented as a percentage). A blank is run prior to the purity run and the peaks in the purity run that correlate to peaks in the blank run are eliminated from the calculation. This purity should be 98% or greater and should compare favorably to the purity from the vendor. Note: the limitation of using a UV/Vis detector for purity is that one cannot be certain that the impurities will absorb at the same wavelength. This purity represents an estimation.

5.0 STABILITY

Charles What at least

- 5.1 A 2.5 g/L (0.25%) methyl cellulose solution is prepared by adding 700 mL of deionized water to a 1 liter flask. This solution should be prepared a day in advance to use. The flask is placed on a hot plate and a stir bar added. While the solution is being stirred, add 2.5 grams of methyl cellulose and then heat the solution to boiling. This process should be closely monitored as the solution must be removed from the hot plate immediately when boiling is observed so the material doesn't boil over. Allow the hot plate to cool, then replace the methyl cellulose solution is then transferred to a 1 liter volumetric flask and diluted to the mark with deionized water. The solution may be slightly cloudy at this point but will become clear by the next day. Store the solution at 2 to 8 degrees C.
- 5.2 Prior to use, the phenobarbital is screened so that a uniform suspension can be prepared. A six inch round 180 µm screen is set up with a collection pan and a cover. The phenobarbital is placed on the screen and the screen shaken to push the phenobarbital through the screen.
- 5.2 Stability for phenobarbital is to run for 28 days. Two stability suspensions are prepared. A 5 mg/mL suspension is made by weighing 1 gram of phenobarbital into a 250 mL amber bottle with 200 mL of the methyl cellulose solution prepared in section 5.1 (use a graduated cylinder to add the methyl cellulose solution). A 20 mg/mL suspension is prepared by weighing 4 grams of phenobarbital into a 250 mL amber bottle and adding 200 mL of the methyl cellulose solution (section 5.1). Stability solutions are stored at 2 to 8 degrees C.
- 5.3 Phenobarbital has limited solubility in the methyl cellulose solution and the result is the formation of a suspension. The 250 ml amber bottle is supplied with a stir bar. The suspension is removed from the refrigerator and placed on a stir plate and stirred to suspend the Phenobarbital and warm the sample. Stir suspension for about 60 minutes prior to sampling, stirring should be vigorous enough to show a slight vortex,

EDSP Study Number: EDSP.515-01

Page 50

EDSP.H4-034-01

Study Protocol EDSP.515-01

Page 5 of 6

it should not be stirred so vigorously that air is aspirated into the solution (this may cause foaming). Visual inspection should show an evenly distributed suspension. Sampling is done by taking triple 1 ml aliquots. A 3 ml syringe equipped with a 3.5 inch needle of a wide bore (17 gauge or wider) is used to collect the sample. A 25 ml volumetric flask is tared and using the syringe about 1 ml of the stability suspension is placed into the volumetric flask and a weight determined (and recorded). Sampling is done at 2 levels in the suspension; the first triplicate is taken at a depth of about one third of the distance from the top of the suspension. The volumetric flask is then filled to the mark with acetontrile. The flask is agitated and 0.1 ml is removed and placed into a 1.8 mL autosampler vial with 0.9 mL of the mobile phase (see 4.2.1). Cap the vial and mix by agitating.

- 5.4 Stability solutions are stored in amber bottles at 2 to 8 degrees C.
- 5.5 Samples should be analyzed on the day of sampling, but if this is not possible, samples should be stored at 4° C. until analysis. If samples are not analyzed on the day of sampling, the actual analysis date and storage conditions shall be documented.

6.0 DATA ANALYSIS AND CALCULATIONS

- 6.1 Prior to analysis of any samples, the instrument is calibrated with a minimum of a 4 point curve. External standard calculations will be performed. All calculations are done using chromatography software supplied with the instrument. If the software allows the input of a multiplier, determine and enter a multiplier so that the output reflects the concentration in the stability sample. For phenobarbital stability, about 1 mL of the stability sample is diluted with 25 mL of accontinite, then 0.1 ml of this solution is diluted to 1 ml with mobile phase. A density of 1 is assumed for the 0.25% methyl cellulose and the weight in grams is equal to the volume in milliliters. The multiplier is determined by dividing the dilution factor of 250 (0.1 ml of a 25 ml solution taken to 1 ml)by the volume of the stability solution. Calibration curve fits can be set to either linear or non-linear (quadratic fil), past experience indicates that even though the calibration meets linearity criteria, the quantification is improved with a non-linear fit.
- 7.0 QUALITY CONTROL

- 7.1 A blank is prepared with each sampling, this blank is the methyl cellulose solution processed identically to the stability solution. If background levels are sufficiently high (i.e., greater than a x MDL), this value may be subtracted from the values obtained for samples analyzed with that batch. Processing of these samples is very straight forward, therefore spikes are optional.
- 7.2 An initial calibration verification (ICV) standard will be analyzed following the calibration curve. Continuing calibration verification standards (CCVs) will be analyzed after every 10 samples. All samples should be bracketed with a valid CCV. If a CCV fails, perform system maintenance, recalibrate and rerun the samples not bracketed with a valid CCV.

Page 51

EDSP.H4-034-01

Study Protocol EDSP.515-01

Page 6 of 6

8.0 SAFETY

All analysts following this procedure should be aware of routine laboratory safety concerns, including all safety protocols regarding use of chemicals, including the following:

 Gloves, protective clothing and safety glasses should be worn when handling samples and chemicals.

9.0 TRAINING REQUIREMENTS

- 10.1All staff performing this analysis should first read this procedure and conduct their first analysis under the supervision of a staff member who has had previous experience conducting the procedure. Staff should demonstrate proficiency in the process prior to performing the work.
- 10.2All staff should have received training in the handling of chemicals and the use of fume hoods.

Quality Control Sample Type	Data Quality Objective (DQO)	Corrective Action
Procedural Blank one/batch	Less than 3 x MDL	Re-extract and analyze sample batch. If batch can not be re-extracted and analyzed, "B" flag all samples that are in the batch. Investigate sources of blank contamination.
Calibration curve acceptability	r" values greater than or equal to 0.995	If r ² value is outside of criterion, re- analyze calibration standards, if r ² is still out, perform instrument maintenance and/or remake calibration standards and rerun calibration samples.
Initial calibration verification (ICV) standard: one/batch	+ / - 10 % of true value	Re-calibrate. Must meet DQO in order to continue processing samples.
Continuing calibration verification standards; one every 10 th sample analyzed	+/ - 10 % of true value	Re-run CCV, if still not acceptable, re- calibrate and reanalyze affected samples.
Replicate sample precision; triplicates will be analyzed for stability, duplicate for in- life	Precision: 30% as relative standard deviation (RSD) or relative percent deviation (RPD)	If RSD or RPD is not acceptable, resample and reanalyze. If reanalysis data are still not acceptable, then *** flag the values.
Blank or Matrix Spike and spike duplicate, one set per batch (optional)	+/- 15% of the value	If recoveries are unacceptable, check the spike solution to ensure it has not degraded, also check pipettes to ensure they are delivering accurate volumes.

Table 1. Summary of Data Quality Objectives and Corrective Actions

*DQO is based on limited sample analysis as part of method development experience, and may require adjustment when more experience with the method is available.

Table 2	Data Q	lualifiers ^a
---------	--------	-------------------------

U	The analyle was detected below the MDL. Note: Samples with no peaks are reported as zero.
B	Samples associated with procedural blank contamination.
*	QC sample data that does not meet the DQO acceptability criterion.
0	The data are questionable.
D	Sample cliuted for analysis. (note: this procedure outlines the dilution of the samples, data will not be D flagged unless diluted other than indicated in this SOP).

Additional data qualifiers may be added as necessary.

Page 52

APPENDIX F

ANALYTICAL METHOD DEVIATIONS

The following method deviations were filed:

1. EDSP.H4-033-01 – Section 4.5.5 of the method outlines the procedure for carrying out an MDL. An MDL was not done for the Linuron method. The low calibration standard was used to determine that system sensitivity was sufficient for sample analysis. The signal levels were very high for the concentrations evaluated and the method had been used in a previous study with good results. As a result, to minimize hours expended on the project, the analyst decide to bypass the MDL determination.

APPENDIX 5 - ANALYTICAL REPORT CONCENTRATION AND HOMOGENEITY

and the second secon

FINAL REPORT

METHOD VALIDATION AND FORMULATION SAMPLE ANALYSIS FOR CHARLES RIVER LABORATORIES PRECLINICAL SERVICES

Submitted to:

Charles River Laboratories Preclinical Services 905 Sheehy Drive, Building A Horsham, Pennsylvania 19044-1241

Submitted by:

Charles River Laboratories Preclinical Services 57 Union Street Worcester, MA 01608

Report No. RTP00004AA-05-1104

Page <u>1</u> of <u>61</u>

Issue Date: March 31, 2006

Page 2 For Charles River Laboratories Preclinical Services

TABLE OF CONTENTS

Page No.

1.	List of Tables, Figures and Appendices
2.	Approval 5
3.	Compliance Statement
4.	Quality Assurance Statement
5.	Contributing Personnel 8
6. 6.1.	Analytical Reference Standard Characterization/Stability
7.	Archival Storage 10
	Method Validation and Formulation Sample Analysis for Linuron in 0.25% ulose
8.	Abstract
9. 9.1.	Introduction
10. 10.1. 10.2. 10.3. 10.4. 10.5.	Materials and Methods
 11. 11.1. 11.2. 11.2.1. 11.2.2. 11.2.3. 11.2.4. 11.2.5. 11.2.6. 	Results and Discussion13Method Development13Validation Results13Recovery13Linearity13Accuracy13Precision14Specificity14
11.2.7.	Summary

Project Nu	mber: RTP00004AA Page 3
Final Repor	
11.3. 11.3.1. 11.3.2.	Concentration and Homogeneity Results
	Method Validation and Formulation Sample Analysis for Phenobarbital in thylcellulose
12.	Abstract
13. 13.1.	Introduction
14. 14.1. 14.2. 14.3. 14.4. 14.5.	Materials and Methods.16Computer Software16Instrumentation16Preparation of Reagents and Standards16Analytical Formulations for the 0.8mg/mL Dilutions16Preparation of Dose Formulation Samples17
15.2.2. 15.2.3. 15.2.4. 15.2.5. 15.2.6. 15.2.7. 15.3.	Results and Discussion17Method Development.17Validation Results17Recovery17Linearity17Accuracy18Precision18Sensitivity18Specificity18Summary18Concentration and Homogeneity18
15.3.1. 15.3.2.	Concentration 19 Homogeneity 19

1. LIST OF TABLES, FIGURES AND APPENDICES

Page No.

Table 1.	Linuron Validation Results	21
Table 2.	Phenobarbital Validation Results	23
Figure 1.	Standard Curve for Linuron Validation Run	26
Figure 2.	Standard Curve for Phenobarbital Validation Run	27
Figure 3.	Linuron Example Chromatogram	28
Figure 4.	Phenobarbital Example Chromatogram	29
Appendix	A. Dose Formulation Analysis Reports	60
Appendix	B. Laboratory Methods	13

Project Number: RTP00004AA Final Report

Page 5 For Charles River Laboratories Preclinical Services

2. APPROVAL

The study was performed under my overall scientific guidance and management. The report provides a full and accurate record of the raw data generated.

Kothy Davag 3/31/06

Dorothy Savage, B.S./Date Principal Investigator Charles River Laboratories Preclinical Services

Project Number: RTP00004AA **Final Report**

3. COMPLIANCE STATEMENT

This project was conducted in compliance with the following regulations:

U.S Environmental Agency. Federal Insecticide, Fungicide and Rodenticide Act / Toxic Substances Control Act (FIFRA/TSCA); Good Laboratory Practice Standards; Final Rule. 40 CFR Part 160/Part 792.

Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF). Good Laboratory Practice (GLP) standards for agricultural chemicals. Agricultural Protection Bureau Ref. No. 11-Nousan-No.6283. October 1, 1999; last revised June 30, 2003 Ref. No. 15-Sesian-2460.

OECD Environmental Directorate. OECD Principles of Good laboratory practices [C(97)186/Final] (1998); Environmental Health and Safety Division.

Principal Investigator:

<u>Morothy Davage, 3/3/1</u>0% Dorothy Savage, B.S./Date

Project Number: RTP00004AA	Page 7
Final Report	For Charles River Laboratories Preclinical Services

4. QUALITY ASSURANCE STATEMENT

This study has been inspected by the Quality Assurance Unit to assure conformance with the Good Laboratory Practice (GLP) regulations promulgated by U.S. Environmental Protection Agency, the Japanese Ministry of Agriculture, Forestry and Fisheries, and the OECD Directorate. Reports were submitted in accordance with Standard Operating Procedures as follows:

QA INSPECTION DATES

Dates Findings Submitted to:

Dates of Inspection	Phase(s) Inspected	Principal Investigator	PI Management	Study Director	Study Director Management
10/11/2005	Laboratory Procedure	10/11/2005	10/12/2005	01/12/2006	01/12/2006
01/04-05/2005	Data	01/10/2006	01/11/2006	01/12/2006	01/12/2006
01/04-05/2005	Draft Final Report	01/10/2006	01/11/2006	01/12/2006	01/12/2006

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

3/31/05 Ma Theresa A Donegan M.S./Date

Project Number: RTP00004AA	Page 8
Final Report	For Charles River Laboratories Preclinical Services

5. CONTRIBUTING PERSONNEL

Current Principal Investigator	Dorothy Savage, B.S.
Former Principal Investigator	Kim Barnard, B.S.
Associate Director, Analytical Chemistry	Richard Norlin, M.S.
Senior Director, Analytical Chemistry	Stephen Guyan, M.Sc.
Report Coordinator	Brenda L. Brooks

Page 9 For Charles River Laboratories Preclinical Services

6. ANALYTICAL REFERENCE STANDARD CHARACTERIZATION/STABILITY

Compound Phenobarbital

Physical Description:	White Powder
Storage Conditions:	Ambient temperature
Lot Number:	104K2600
Date Received:	15-Sep-2005
Expiration/Retest Date:	28-Feb-2010
Amount Received:	1g
Received by:	Charles River Laboratories
	Preclinical Services, Pennsylvania
Manufacturer:	Sigma-Aldrich
Purity:	99.1%

Compound Linuron

Physical Description:	White Solid
Storage Conditions:	Ambient temperature
Lot Number:	348-8A
Date Received:	15-Sep-2005
Expiration/Retest Date:	31-Aug-2008
Amount Received:	1g -
Received by:	Charles River Laboratories
	Preclinical Services, Pennsylvania
Manufacturer:	ChemService, Inc.
Purity:	99.5%

6.1. Characterization and Stability

The characterization of the analytical reference standards are the responsibility of their respective supplier, as are the methods of synthesis, fabrication or derivation and stability determinations.

Project Number: RTP00004AA Final Report Page 10 For Charles River Laboratories Preclinical Services

7. ARCHIVAL STORAGE

The original final report and raw data will be maintained for a minimum period of one year following submission of the final report in the Charles River Laboratories Preclinical Services Archives department located in Horsham, PA. After one year, storage disposition will be negotiated with the Sponsor. The Sponsor will be notified prior to disposal of any original study data. Archival material will be indexed by Report No. RTP00004AA-05-1104.

PART A: METHOD VALIDATION AND FORMULATION SAMPLE ANALYSIS FOR LINURON IN 0.25% METHYLCELLULOSE

8. ABSTRACT

Procedures were developed and validated for the analysis of Linuron in 0.25% methylcellulose formulations. The procedures involve analysis of the compound by High Performance Liquid Chromatography (HPLC) with Ultraviolet (UV) detection.

The procedures are applicable for the analysis of dose formulations at concentrations from 0.58 to 43 mg/mL of Linuron in 0.25% methylcellulose. Validation of the formulation analysis was performed using one concentration range of matrix-matched standards spanning approximately 0.005 to 0.05 mg/mL of linuron in diluent. Linearity, accuracy and precision for the analysis were confirmed. Dose formulations were diluted into the calibration range with a 60:40, ACN:Water (v:v) (diluent).

The Lower Limit of Quantitation (LLOQ) of the method was 0.005 mg/mL linuron in diluent, the lowest calibration standard. The Limit of Detection (LOD) was estimated to be approximately 0.000014 mg/mL of linuron in diluent, calculated before any corrections for dilution factors. Analysis of replicate blank vehicle samples indicated no interference peaks.

Overall, results for this validation indicate that the assay procedures were sufficiently linear, reproducible and accurate to support dose formulation analyses.

Samples for this project were analyzed for concentration and homogeneity verification according to the method described in the Charles River Laboratories Preclinical Services, Massachusetts Laboratory Method (LM) for the "Analysis of Linuron in 0.25% Methylcellulose Dose Formulations by HPLC-UV" LM LINR00. A copy of the most recent LM revision is included in Appendix B. Results indicated that the formulations were prepared accurately.

9. INTRODUCTION

The objective of this project was to develop and validate analytical procedures for the determination of levels of linuron in 0.25% methylcellulose. This procedure was used to analyze formulation samples from Charles River Laboratories Preclinical Services, Pennsylvania study RTP00004.

9.1. Experimental Design

The procedures described here involve analysis of linuron by HPLC with UV detection. Calibration standards were prepared at known concentrations and analyzed to determine the accuracy, precision, specificity, linearity and limits of quantitation and detection for the method. Formulations received from Charles River Laboratories Preclinical Services, Pennsylvania were analyzed for concentration and homogeneity verification.

10. MATERIALS AND METHODS

10.1. Computer Software

The HPLC data were acquired utilizing PerkinElmer's TotalChrom Client/Server software Version 6.2.1. TotalChrom software was used to integrate the peak areas of the analyte. Following integration the data was exported to a verified Excel spreadsheet. The Excel spreadsheet was used to perform the regression, calculate the regression constants and calculate the concentration of the analyte in unknown samples using the peak areas of the analyte. System suitability was verified using TotalChrom software.

10.2. Instrumentation

Pump:	PerkinElmer Series 200
Autosampler:	PerkinElmer Series 200
Column:	Phenomenex Synersi, 4 µm, Hydro RP, 250 mm x 4.6 mm
Column Heater:	PerkinElmer Series 200
Detector:	PerkinElmer Series 200

10.3. Preparation of Reagents and Standards

Refer to the Laboratory Method in Appendix B for the preparation of reagents and standards. During the method validation, the lowest and highest calibration standards were prepared in quadruplicate and the blank was prepared in triplicate.

10.4. Analytical Formulations for the 0.3 mg/mL Dilutions

One stock solution of linuron was prepared at approximately 0.3 mg/mL by weighing approximately 30 mg of linuron with 1 mL of vehicle into a 100 mL volumetric flask and diluting to volume with diluent 1. Replicate dilution verification solutions were prepared by pipetting 1.0 mL aliquots of the stock into four individual 10 mL volumetric flasks.

The final solutions were brought to volume with diluent containing 1% vehicle and mixed.

Resultant concentrations were approximately 0.03 mg/mL of linuron in extract solution. Aliquots of each solution were transferred into individual autosampler vials.

10.5. Preparation of Dose Formulation Samples

Samples from Charles River Laboratories Preclinical Services, Pennsylvania study RTP00004 were received on October 8 and 19, 2005. The samples were received in individual vials, each containing approximately 1 mL, and all were in good condition. All samples were received on cold packs. Those samples which were not analyzed immediately were stored refrigerated until analysis. Refer to the Laboratory Method in Appendix B for the procedures concerning preparation of samples for analysis.

Refer to the Laboratory Method in Appendix B for chromatographic conditions and calculations.

11. RESULTS AND DISCUSSION

11.1. Method Development

The methods were developed using general methodology provided by the Sponsor.

11.2. Validation Results

Refer to Table 1 for tabulated results.

11.2.1. Recovery

Recovery was not evaluated since sample preparation did not utilize extraction or precipitation.

11.2.2. Linearity

The assay was linear within the range tested of approximately 0.005 to 0.05 mg/mL of linuron in mobile phase. Refer to the plot in Figure 1, which shows the unweighted linear regression graph with the actual calibration standard data points for the validation analysis run. Linearity was also demonstrated by the correlation coefficient obtained, which was greater than 0.999, and the lack of bias in the calculated percent error values for the calibration standards. These percent errors ranged from -1.0% to +1.0%.

11.2.3. Accuracy

Accuracy of the method was evaluated by the analysis of four replicates of the analytical formulations solutions. Mean concentrations found during the run were compared to theoretical concentrations and expressed as percent errors. A value of 0.7% was obtained. Accuracy of the method was also evaluated by the back-calculated results for

Project Number: RTP00004AA Final Report For Charles R

Page 14 For Charles River Laboratories Preclinical Services

the calibration standards using the linear regression standard curve. Concentrations were compared to theoretical concentrations and expressed as percent errors. These percent errors ranged from -1.0% to +1.0%. Mean accuracy values at the low and high end of the calibration range were -0.5% and 0.1%, respectively.

11.2.4. Precision

Within the run, precision was evaluated by the analysis of four replicates dilution verification solutions. The relative standard deviations (RSD) of the replicates were calculated. A value of 0.4% RSD was obtained for the dilution verification solutions. Precision was evaluated by the analysis of replicate low and high concentration calibration standards. The RSDs of the replicates were calculated. Values of 0.1% and 0.2% were obtained for the low and high calibration standards, respectively.

11.2.5. Sensitivity

The Lower Limit of Quantitation (LLOQ) for the analysis was defined as 0.005 mg/mL of linuron in diluent, the lowest calibration standard. The RSD obtained for quadruplicate calibration standards at this level was determined to be 0.1%. The LOD for undiluted samples was estimated to be 0.000014 mg/mL, calculated as three times the standard deviation of the back-calculated concentration of the low calibration standard.

11.2.6. Specificity

Specificity was demonstrated by the lack of any significant interfering chromatographic peaks found in three blank vehicle samples. Refer to Figure 3 for an example chromatogram.

11.2.7. Summary

Overall, results for the validation indicated that the procedure was sufficiently linear, reproducible, accurate and specific to support analyses of dose formulation samples.

11.3. Concentration and Homogeneity Results

Refer to the Dose Formulation Analysis Reports in Appendix A for details. Each report consists of results and conclusions from one analysis period. Preparation and analysis dates are listed for each result along with the Charles River Laboratories Preclinical Services sample identification.

11.3.1. Concentration

Test article samples prepared on October 7 and 18, 2005, were within acceptable limits of $\pm 15\%$.

11.3.2. Homogeneity

Homogeneity was determined for all dose formulation concentration levels. Mean concentration results from samples taken from the top, middle and bottom of the

Project Number: RTP00004AA	Page 15
Final Report	For Charles River Laboratories Preclinical Services

formulations were calculated. Homogeneity RSD was calculated by determining the percent relative standard deviation of the three mean values. All of the pre-study results were within the acceptable range of \leq 5% RSD except the 20 mg/mL formulation. The values obtained were 2.6%, 6.9% and 4.1% for the 10, 20 and 30 mg/mL formulations, respectively. All of the start of study results were within the acceptable range of \leq 5% RSD. The values obtained were 1.8%, 2.1% and 3.4% RSD for the 10, 20 and 30 mg/mL formulations, respectively.

PART B: METHOD VALIDATION AND FORMULATION SAMPLE ANALYSIS FOR PHENOBARBITAL IN 0.25% METHYLCELLULOSE

12. ABSTRACT

Procedures were developed and validated for the analysis of phenobarbital in 0.25% methylcellulose formulations. The procedures involve analysis of the compound by High Performance Liquid Chromatography (HPLC) with Ultraviolet (UV) detection.

The procedures are applicable for the analysis of dose formulations at concentrations from 0.29 to 43 mg/mL of phenobarbital in 0.25% methylcellulose. Validation of the phenobarbital formulation analysis was performed using one concentration range of matrix-matched standards spanning approximately 0.01 to 0.1 mg/mL of phenobarbital in 50:50, ACN: Water, (v:v) (diluent). Linearity, accuracy and precision for the analysis were confirmed. Dose formulations were diluted into the calibration range with diluent.

The Lower Limit of Quantitation (LLOQ) of the method was 0.01 mg/mL phenobarbital in diluent, the lowest calibration standard. The Limit of Detection (LOD) was estimated to be approximately 0.000099 mg/mL of phenobarbital in diluent, calculated before any corrections for dilution factors. Analysis of replicate blank vehicle samples indicated no interference peaks.

Overall, results for this validation indicate that the assay procedures were sufficiently linear, reproducible and accurate to support dose formulation analyses.

Samples for this project were analyzed for concentration and homogeneity verification according to the method described in the Charles River Laboratories Preclinical Services, Massachusetts Laboratory Method (LM) for the "Analysis of Phenobarbital in 0.25% Methylcellulose Dose Formulations by HPLC-UV", LM PHBT00. A copy of the most recent LM revision is included in Appendix B. Results indicated that the formulations were prepared accurately.

13. INTRODUCTION

The objective of this project was to develop and validate analytical procedures for the determination of levels of phenobarbital in 0.25% methylcellulose. This procedure was used to analyze formulation samples from Charles River Laboratories Preclinical Services, Pennsylvania study RTP00004.

13.1. Experimental Design

The procedures described here involve analysis of phenobarbital by HPLC with UV detection. Calibration standards were prepared at known concentrations and analyzed to determine the accuracy, precision, specificity, linearity and limits of quantitation and detection for the method. Formulations received from Charles River Laboratories Preclinical Services, Pennsylvania were analyzed for concentration and homogeneity verification.

14. MATERIALS AND METHODS

14.1. Computer Software

The HPLC data were acquired utilizing PerkinElmer's TotalChrom Client/Server software Version 6.2.1. TotalChrom software was used to integrate the peak areas of the analyte. Following integration the data was exported to a verified Excel spreadsheet. The Excel spreadsheet was used to perform the regression, calculate the regression constants and calculate the concentration of the analyte in unknown samples using the peak areas of the analyte. System suitability was verified using TotalChrom software.

14.2. Instrumentation

Pump:	PerkinElmer Series 200
Autosampler:	PerkinElmer Series 200
Column:	Phenomenex Synergi, C18, 4 µm, 250 mm x 4.6 mm
Column Heater:	PerkinElmer Series 200
Detector:	PerkinElmer Series 200

14.3. Preparation of Reagents and Standards

Refer to the Laboratory Method in Appendix B for the preparation of reagents and standards. During the method validation, the lowest and highest calibration standards were prepared in quadruplicate and the blank was prepared in triplicate.

14.4. Analytical Formulations for the 0.8mg/mL Dilutions

One stock solution of phenobarbital was prepared at approximately 0.8 mg/mL by weighing approximately 8 mg of phenobarbital with 0.4 mL of vehicle into a 10 mL volumetric flask and diluting to volume with diluent 1. Replicate dilution verification

Project Number: RTP00004AA	Page 17
Final Report	For Charles River Laboratories Preclinical Services

solutions were prepared by pipetting 1.0 mL aliquots of the stock into four individual 20 mL volumetric flasks. The final solutions were brought to volume with diluent containing 4% vehicle and mixed.

Resultant concentrations for the solutions were approximately 0.04 mg/mL of phenobarbital in extract solution. Aliquots of each solution were transferred into individual autosampler vials.

14.5. Preparation of Dose Formulation Samples

Samples from Charles River Laboratories Preclinical Services, Pennsylvania were received on October 8 and 19, 2005. The samples were received in individual vials, each containing approximately 1 mL, and all were in good condition. Those samples which were not analyzed immediately, were stored refrigerated until analysis. Refer to the Laboratory Method in Appendix B for the procedures concerning preparation of samples for analysis.

Refer to the Laboratory Method in Appendix B for chromatographic conditions and calculations.

15. RESULTS AND DISCUSSION

15.1. Method Development

The methods were developed using general methodology provided by the Sponsor.

15.2. Validation Results

Refer to Table 2 for tabulated results.

15.2.1. Recovery

Recovery was not evaluated since sample preparation did not utilize extraction or precipitation.

15.2.2. Linearity

The assay was linear within the range tested of approximately 0.01 to 0.1 mg/mL of phenobarbital in mobile phase. Refer to the plot in Figure 2, which shows the unweighted linear regression graph with the actual calibration standard data points for the validation analysis run. Linearity was also demonstrated by the correlation coefficient obtained, which was greater than 0.999, and the lack of bias in the calculated percent error values for the calibration standards. These percent errors ranged from -1.4% to +0.7%.

Page 18 For Charles River Laboratories Preclinical Services

15.2.3. Accuracy

Accuracy of the method was evaluated by the analysis of four replicates of the low concentration dilution verification solutions. Mean concentrations found during the run were compared to theoretical concentrations and expressed as percent errors. A value of +1.0% was obtained. Accuracy of the method was also evaluated by the back-calculated results for the calibration standards using the linear regression standard curve. Concentrations were compared to theoretical concentrations and expressed as percent errors. These percent errors ranged from -1.4% to +0.7%. Mean accuracy values at the low and high end of the calibration range were -0.9% and -0.1%, respectively.

15.2.4. Precision

Within the run, precision was evaluated by the analysis of four replicates of the low and high concentration dilution verification solutions. The relative standard deviations (RSD) of the replicates were calculated. A value of 0.5% RSD was obtained for the dilution verification solutions. Precision was evaluated by the analysis of replicate low and high concentration calibration standards. The RSDs of the replicates were calculated. Values of 0.3% and 0.5% were obtained for the low and high calibration standards, respectively.

15.2.5. Sensitivity

The Lower Limit of Quantitation (LLOQ) for the analysis was defined as 0.01007 mg/mL of phenobarbital in diluent, the lowest calibration standard. The RSD obtained for quadruplicate calibration standards at this level was determined to be 0.3%. The LOD for undiluted samples was estimated to be 0.000099 mg/mL, calculated as three times the standard deviation of the back-calculated concentration of the low calibration standard.

15.2.6. Specificity

Specificity was demonstrated by the lack of any significant interfering chromatographic peaks found in three blank vehicle samples. Refer to Figure 4 for an example chromatogram.

15.2.7. Summary

Overall, results for the validation indicated that the procedure was sufficiently linear, reproducible, accurate and specific to support analyses of dose formulation samples.

15.3. Concentration and Homogeneity

Refer to the Dose Formulation Analysis Reports in Appendix A for details. Each report consists of results and conclusions from one analysis period. Preparation and analysis dates are listed for each result along with Charles River Laboratories Preclinical Services sample identification.

15.3.1. Concentration

Test article samples prepared on October 7 and 18, 2005, which were used for dosing, were within acceptable limits of $\pm 15\%$ error.

15.3.2. Homogeneity

Homogeneity was determined for all dose formulation concentration levels. Mean concentration results from samples taken from the top, middle and bottom of the formulations were calculated. Homogeneity RSD was calculated by determining the percent relative standard deviation of the three mean values. All of the pre-study results were within the acceptable range of $\leq 5\%$ RSD. The values obtained were 2.9%, 4.2% and 2.0% for the 5, 10 and 20 mg/mL formulations, respectively. All of the start of study results were within the acceptable range of $\leq 5\%$ RSD. The values obtained were 3.3%, 0.7% and 0.1% RSD for the 5, 10 and 20 mg/mL formulations, respectively.

and the second secon

Project Number: RTP00004AA Final Report Page 20 For Charles River Laboratories Preclinical Services

TABLES

en de la construcción de la constru La construcción de la construcción d

Page 21 For Charles River Laboratories Preclinical Services

Table 1. Linuron Validation Results

2 . L

Analyzed on October 3, 2005

Concentration in mg/mL

Calibration Standard Results:

Standard	Theoretical	Response	Concentration	%			
Description	Concentration	<u>Area</u>	<u>Found</u>	<u>Error</u>			
Blank a	0	0	ND				
Blank b	0	0	ND				
Blank c	0	0	ND			Slope:	95881000
Cal Std A1a	0.005022	485570	0.004994	-0.6%		Y-Int:	6729.6
Cal Std A1b	0.005022	486538	0.005004	-0.4%		Corr:	0.99997
Cal Std A1c	0.005022	485686	0.004995	-0.5%		n:	12
Cal Std A1d	0.005022	486098	0.005000	-0.4%			
Cal Std B1	0.009970	972415	0.01007	+1.0%			
Cal Std A2	0.02009	1936093	0.02012	+0.1%			
Cal Std B2	0.02991	2889657	0.03007	+0.5%			
Cal Std A3	0.04018	3820435	0.03978	-1.0%			
Cal Std B3a	0.04985	4778002	0.04976	-0.2%		Response	Mean %
Cal Std B3b	0.04985	4795005	0.04994	+0.2%	<u>Std</u>	RSD	<u>Error</u>
Cal Std B3c	0.04985	4793879	0.04993	+0.2%	A1	0.1%	-0.5%
Cal Std B3d	0.04985	4798683	0.04998	+0.3%	B3	0.2%	0.1%

ND = None Detected

Project Number: RTP00004AA Final Report Page 22 For Charles River Laboratories Preclinical Services

Table 1. Linuron Validation Results (Concluded)

Analyzed on October 3, 2005

Concentration in mg/mL

Analytical Formulation / Dilution Verification Results:

Theoretical Concentration	Replicate	<u>Response</u>	Concentration
0.3081	Α	2974925	0.3096
	В	2970223	0.3091
	С	2987788	0.3109
	D	2994404	0.3116
		Mean:	0.3103
		RSD:	0.4%
		% Error:	0.7%

Table 2. Phenobarbital Validation Results

Analyzed on September 29, 2005

Concentration in mg/mL

Calibration Standard Results:

Standard	Theoretical	Response	Concentration	%			
Description	Concentration	<u>Area</u>	<u>Found</u>	<u>Error</u>			
Blank a	0	0	ND				
Blank b	0	0	ND				
Blank c	0	0	ND			Slope:	11187000
Cal Std A1a	0.01007	115747	0.009999	-0.7%		Y-Int:	3887.8
Cal Std A1b	0.01007	115589	0.009985	-0.8%		Corr:	0.99997
Cal Std A1c	0.01007	114938	0.009927	-1.4%		n:	12
Cal Std A1d	0.01007	115656	0.009991	-0.8%			
Cal Std B1	0.02016	230920	0.02029	+0.6%			
Cal Std A2	0.04027	456512	0.04046	+0.5%			
Cal Std B2	0.06048	680727	0.06050	+0.0%			
Cal Std A3	0.08054	911070	0.08109	+0.7%			
Cal Std B3a	0.1008	1129716	0.1006	-0.2%		Response	Mean %
Cal Std B3b	0.1008	1137627	0.1013	+0.5%	<u>Std</u>	RSD	Error
Cal Std B3c	0.1008	1125956	0.1003	-0.5%	A1	0.3%	-0.9%
Cal Std B3d	0.1008	1127075	0.1004	-0.4%	B3	0.5%	-0.1%

ND = None Detected

·

Project Number: RTP00004AA Final Report

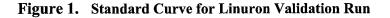
Page 24 For Charles River Laboratories Preclinical Services

Table 1. Phenobarbital Validation Results (Concluded)

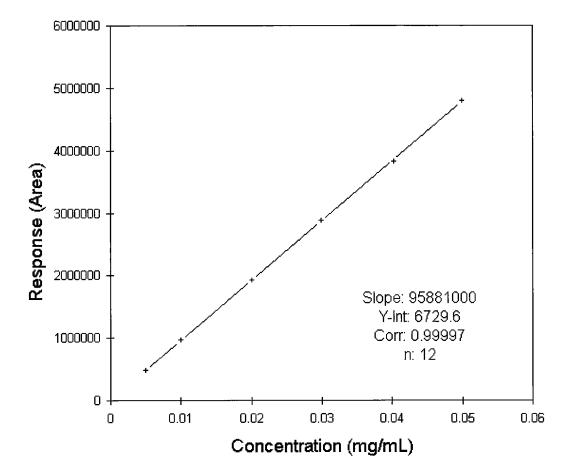
Analyzed on September 29, 2005

Concentration in mg/mL

Analytical Formulation / Dilution Verification Results:

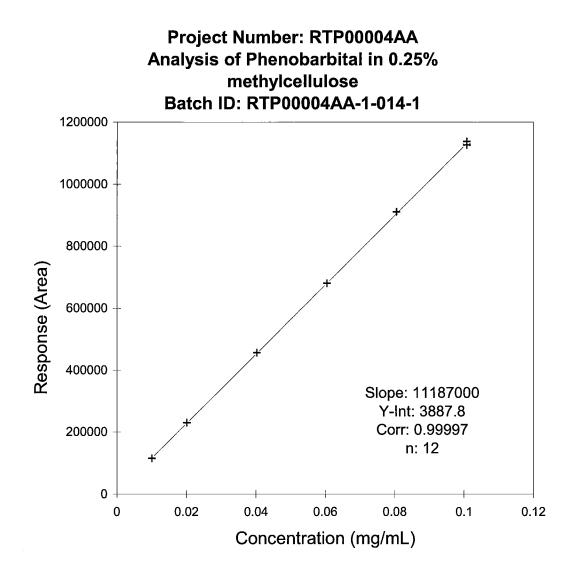

Replicate	<u>Response</u>	Concentration
Α	458577	0.8129
В	461305	0.8178
С	460146	0.8157
D	464330	0.8232
	Mean:	0.8174
	RSD:	0.5%
	% Error:	1.0%
	A B C	A 458577 B 461305 C 460146 D 464330 Mean: RSD:

Page 25 For Charles River Laboratories Preclinical Services


FIGURES

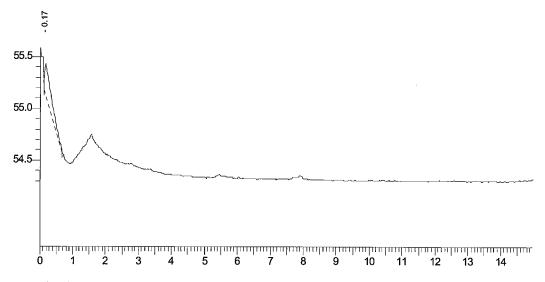
and the second secon

Page 26 For Charles River Laboratories Preclinical Services

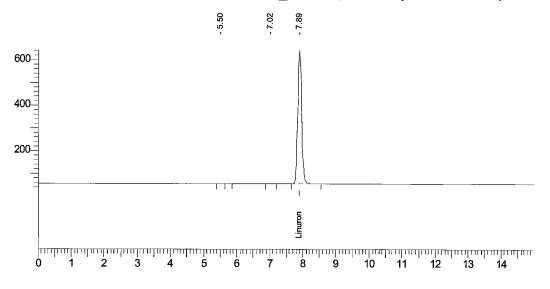


Project Number: RTP00004AA Analysis of Linuron in 0.25% methylcellulose Batch ID: RTP00004AA-1-022-1

Project Number: RTP00004AA Final Report Page 27 For Charles River Laboratories Preclinical Services


Project Number: RTP00004AA Final Report

Page 28 For Charles River Laboratories Preclinical Services

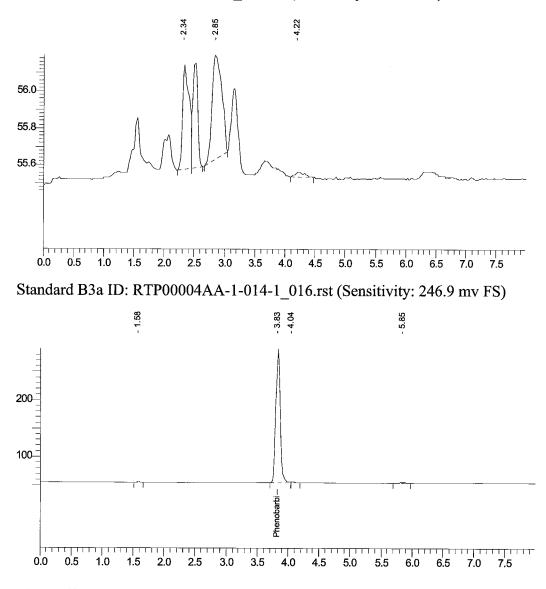

Figure 3. Linuron Example Chromatogram

Study #: RTP00004AA	Analysis Date: October 3, 2005					
Batch ID: RTP00004AA-1-022-1	Flow Rate: 1.0 mL/min					
Injection Volume: 20 μL	Guard Column: N/A					
Detection: UV @ 250 nm						
Column: Phenomenex, Synergi 4µ, Hydro-RP 250 x 4.6nnm 4µm						

Linuron Blank ID: RTP00004AA-1-022-1_054.rst (Sensitivity: 1.4 mv FS)

Standard B3a ID: RTP00004AA-1-022-1_050.rst (Sensitivity: 615.6 mv FS)

FS = Full Scale; mv = milli volts


Project Number: RTP00004AA Final Report

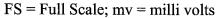

Page 29 For Charles River Laboratories Preclinical Services

Figure 4. Phenobarbital Example Chromatogram

Study #: RTP00004AA	Analysis Date: September 29, 2005					
Batch ID: RTP00004AA-1-014-1	Flow Rate: 1.0 mL/min					
Injection Volume.: 10 µL Guard Column: N/A						
Detection: UV @ 225 nm						
Column: Phenomenex, Synergi 4µ, Hydro-RP 250 x 4.6nnm 4µm						

Phenobarbital Blank ID: RTP00004AA-1-014-1_020.rst (Sensitivity: 0.7 mv FS)

Project Number: RTP00004AA Final Report Page 30 For Charles River Laboratories Preclinical Services

Appendix A. Dose Formulation Analysis Reports

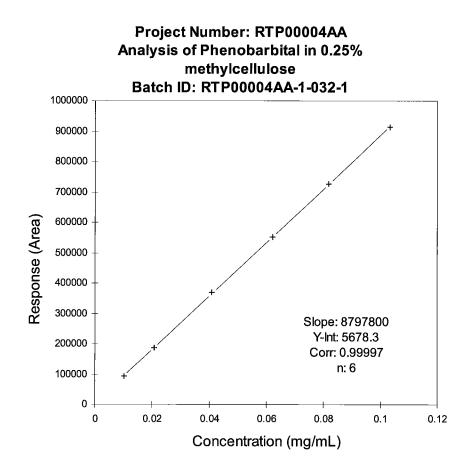
Page 31 For Charles River Laboratories Preclinical Services

DOSE FORMULATION ANALYSIS REPORT

Sponsor: Battelle Study Facility: Charles River Laboratories Preclinical Services, Pennsylvania Protocol Number: RTP00004 Analyte: Phenobarbital Analytical Facility: Charles River Laboratories Preclinical Services, Massachusetts Batch ID: RTP00004AA-1-032-1 Sampling Criteria: Pre-Study Homogeneity and Concentration Analysis Vehicle: 0.25% Methylcellulose Storage Conditions: 5±3°C Laboratory Method: LM # PHBT00 (Draft) Revision 00 Analysis Date: October 10, 2005

<u>**RESULTS</u>**: (Concentrations in mg/mL)</u>

CALIBRATION STANDARDS


Standard	Nominal	Response	Calculated	%	"X" =	Criteria	Standard
Description	Conc.	Area	Conc.	<u>Bias</u>	Exclude	<u>Limit</u>	Pass/Fail
Cal Std A1	0.01022	93958	0.01003	-1.9%		5%	PASS
Cal Std B1	0.02068	186171	0.02052	-0.8%		5%	PASS
Cal Std A2	0.04088	369385	0.04134	+1.1%		5%	PASS
Cal Std B2	0.06204	550864	0.06197	-0.1%		5%	PASS
Cal Std A3	0.08176	727063	0.08200	+0.3%		5%	PASS
Cal Std B3	0.1034	912965	0.1031	-0.3%		5%	PASS

CHECK STANDARDS

Standard	Nominal	Response	Dilution	Conc.	%	Criteria	Standard
Description	Conc.	<u>Area</u>	Factor	<u>Found</u>	<u>Bias</u>	<u>Limit</u>	<u>Pass/Fail</u>
Check Std A3	0.08176	723715	1	0.08162	-0.2%	5.0%	PASS
Check Std A3	0.08176	724725	1	0.08173	-0.0%	5.0%	PASS

Project Number: RTP00004AA Final Report

Page 32 For Charles River Laboratories Preclinical Services

Project Number: RTP00004AA Final Report

Page 33 For Charles River Laboratories Preclinical Services

<u>SAMPLES</u>								
		Nominal			Total	Density	Mean	
Sample	Prep	Sample		Response	Dilution	Corrected	mg/mL	%
Description	Date	Conc.	<u>Replicate</u>	Area	Factor	<u>mg/mL</u>	Found	Bias
Group 5 Top	10/07/05	5	Ā	367715	126.5	5.207	5.132	+2.6%
			В	360860	125.2	5.056		
Group 5 Mid	10/07/05	5	Α	358346	125.8	5.041	5.051	+1.0%
-			В	360236	125.6	5.06		
Group 5 Bot	10/07/05	5	Α	390238	123.2	5.385	5.339	+6.8%
-			В	402496	117.3	5.292		
Group 6 Top	10/07/05	10	Α	717387	125.4	10.14	10.72	+7.2%
			В	722456	138.5	11.29		
Group 6 Mid	10/07/05	10	Α	702684	124.1	9.832	9.867	-1.3%
-			В	698970	125.6	9.901		
Group 6 Bot	10/07/05	10	Α	764292	121.8	10.50	10.41	+4.1%
•			В	762411	120.0	10.32		
Group 7 Top	10/07/05	20	Α	711663	249.1	19.99	20.03	+0.2%
			В	719920	247.3	20.07		
Group 7 Mid	10/07/05	20	Α	722771	244.1	19.89	19.79	-1.1%
-			В	699614	249.6	19.69		
Group 7 Bot	10/07/05	20	Α	738019	243.6	20.28	20.59	+3.0%
*			В	737530	251.3	20.90		

HOMOGENEITY

	Nominal	Grand		
Sample	Sample	Mean		%
Description	Conc.	Conc.	<u>RSD</u>	<u>Error</u>
Group 5	5	5.174	2.9%	3.5%
Group 6	10	10.33	4.2%	3.3%
Group 7	20	20.14	2.0%	0.7%

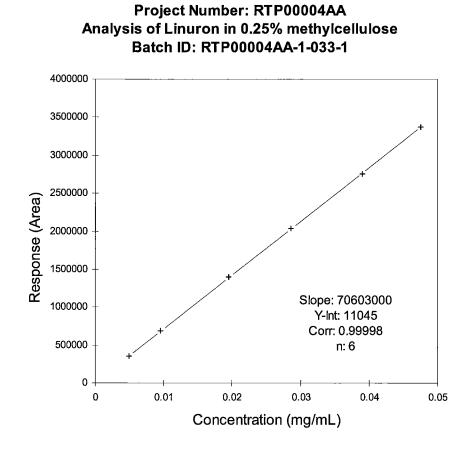
<u>CONCLUSIONS</u>: Results indicate that the formulations are within the acceptable limits of $\pm 15\%$ of theoretical concentrations. The formulations are also within the acceptable limits of $\leq 5\%$ RSD for homogeneity.

ACTIONS TAKEN: None

Page 34 For Charles River Laboratories Preclinical Services

DOSE FORMULATION ANALYSIS REPORT

Sponsor: Battelle Study Facility: Charles River Laboratories Preclinical Services, Pennsylvania Protocol Number: RTP00004 Analyte: Linuron Analytical Facility: Charles River Laboratories Preclinical Services, Massachusetts Batch ID: RTP00004AA-1-033-1 Sampling Criteria: Pre-Study Homogeneity and Concentration Analysis Vehicle: 0.25% Methylcellulose Storage Conditions: 5±3°C Laboratory Method: LM # LINR00 Revision 00 (draft LM) Analysis Date: October 10, 2005


<u>**RESULTS</u>**: (Concentrations in mg/mL, ND = None Detected)</u>

CALIBRATION STANDARDS

Standard	Nominal	Response	Calculated	%	"X" =	Criteria	Standard
Description	Conc.	Area	Conc.	<u>Bias</u>	Exclude	<u>Limit</u>	Pass/Fail
Cal Std A1	0.004880	351113	0.004817	-1.3%		5%	PASS
Cal Std B1	0.009516	684059	0.009532	+0.2%		5%	PASS
Cal Std A2	0.01952	1395700	0.01961	+0.5%		5%	PASS
Cal Std B2	0.02855	2030983	0.02861	+0.2%		5%	PASS
Cal Std A3	0.03904	2753978	0.03885	-0.5%		5%	PASS
Cal Std B3	0.04758	3376410	0.04767	+0.2%		5%	PASS

CHECK STANDARDS

Standard	Nominal	Response	Dilution	Conc.	%	Criteria	Standard
Description	Conc.	<u>Area</u>	Factor	<u>Found</u>	<u>Bias</u>	<u>Limit</u>	<u>Pass/Fail</u>
Check Std A3	0.03904	2757019	1	0.03889	-0.4%	5.0%	PASS
Check Std A3	0.03904	2764541	1	0.03900	-0.1%	5.0%	PASS
Check Std A3	0.03904	2775538	1	0.03916	+0.3%	5.0%	PASS
Check Std A3	0.03904	2790912	1	0.03937	+0.8%	5.0%	PASS
Check Std A3	0.03904	2788278	1	0.03934	+0.8%	5.0%	PASS

Project Number: RTP00004AA Final Report

Page 36 For Charles River Laboratories Preclinical Services

SAMPLES								
Comula	Dura	Nominal		D	Total	Density	Mean	07
Sample	Prep	Sample		Response	Dilution	Corrected	mg/mL	%
Description	Date	<u>Conc.</u>	Replicate	Area	<u>Factor</u>	<u>mg/mL</u>	Found	<u>Bias</u>
Group 1 Top	10/07/05	0	A	0	100.5	ND		
a			В	0	100.4	ND		
Group 1 Mid	10/07/05	0	A	0	100.9	ND		
		_	В	0	99.57	ND		
Group 1 Bot	10/07/05	0	Α	0	102.2	ND		
			В	0	100.8	ND		
Group 2 Top	10/07/05	10	Α	1464407	504.8	10.39	10.35	+3.5%
			В	1450680	505.8	10.31		
Group 2 Mid	10/07/05	10	А	3005485	257.8	10.93	10.87	+8.7%
			В	1508070	509.2	10.80		
Group 2 Bot	10/07/05	10	Α	1576840	507.3	11.25	10.75	+7.5%
			В	1531288	476.2	10.25		
Group 3 Top	10/07/05	20	Α	2860168	501.9	20.25	19.53	-2.4%
			В	2674758	498.2	18.80		
Group 3 Mid	10/07/05	20	Α	3241590	507.2	23.21	22.44	+12.2%
			В	3111265	493.2	21.66		
Group 3 Bot	10/07/05	20	Α	3136945	462.2	20.47	20.96	+4.8%
			В	3128501	485.7	21.45		
Group 4 Top	10/07/05	30	Α	2131269	1005	30.18	30.15	+0.5%
			В	2114646	1011	30.12		
Group 4 Mid	10/07/05	30	А	2340820	969.5	31.99	32.00	+6.7%
•			В	2347053	967.0	32.00	24.00	
Group 4 Bot	10/07/05	30	Ā	2233400	1036	32.62	32.65	+8.8%
			B	2510058	923.1	32.67		0.070

HOMOGENEITY

	Nominal	Grand		
Sample	Sample	Mean		%
Description	Conc.	Conc.	<u>RSD</u>	<u>Error</u>
Group 2	10	10.66	2.6%	6.6%
Group 3	20	20.98	6.9%	4.9%
Group 4	30	31.60	4.1%	5.3%

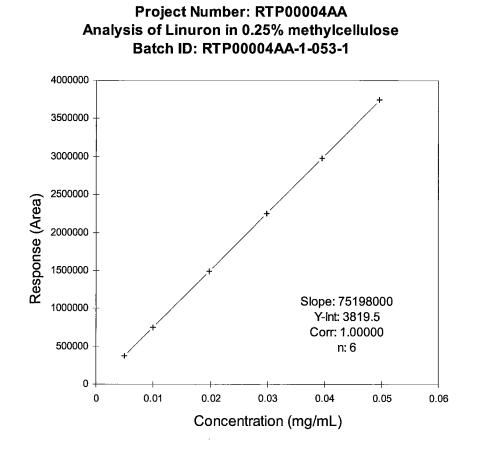
<u>CONCLUSIONS</u>: Results indicate that the formulations are within the acceptable limits of $\pm 15\%$ of theoretical concentrations. The formulations are also within the acceptable limits of $\leq 5\%$ RSD for homogeneity except for the 20 mg/mL samples which were out of specification (6.9% RSD).

ACTIONS TAKEN: Notified Study Director of results.

Page 37 For Charles River Laboratories Preclinical Services

DOSE FORMULATION ANALYSIS REPORT

Sponsor: Battelle Study Facility: Charles River Laboratories Preclinical Services, Pennsylvania Protocol Number: RTP00004 Analyte: Linuron Analytical Facility: Charles River Laboratories Preclinical Services, Massachusetts Batch ID: RTP00004AA-1-053-1 Sampling Criteria: Start of Study Homogeneity and Concentration Analysis Vehicle: 0.25% Methylcellulose Storage Conditions: 5±3°C Laboratory Method: LM # LINR00 Revision 00 Analysis Date: October 19, 2005


<u>**RESULTS</u>**: (Concentrations in mg/mL, ND = None Detected)</u>

CALIBRATION STANDARDS

Standard	Nominal	Response	Calculated	%	"X" =	Criteria	Standard
Description	Conc.	Area	Conc.	<u>Bias</u>	Exclude	<u>Limit</u>	Pass/Fail
Cal Std A1	0.004950	375722	0.004946	-0.1%		5%	PASS
Cal Std B1	0.009940	753222	0.009966	+0.3%		5%	PASS
Cal Std A2	0.01980	1491205	0.01978	-0.1%		5%	PASS
Cal Std B2	0.02982	2245358	0.02981	-0.0%		5%	PASS
Cal Std A3	0.03960	2981651	0.03960	0.0%		5%	PASS
Cal Std B3	0.04970	3741897	0.04971	+0.0%		5%	PASS

CHECK STANDARDS

Standard	Nominal	Response	Dilution	Conc.	%	Criteria	Standard
Description	Conc.	<u>Area</u>	Factor	<u>Found</u>	<u>Bias</u>	<u>Limit</u>	<u>Pass/Fail</u>
Check Std A3	0.03960	2982515	1	0.03961	+0.0%	5.0%	PASS
Check Std A3	0.03960	2985346	1	0.03965	+0.1%	5.0%	PASS
Check Std A3	0.03960	2987738	1	0.03968	+0.2%	5.0%	PASS
Check Std A3	0.03960	2985694	1	0.03965	+0.1%	5.0%	PASS

Page 226

Project Number: RTP00004AA Final Report

Page 39 For Charles River Laboratories Preclinical Services

SAMPLES								
		Nominal			Total	Density	Mean	
Sample	Prep	Sample		Response	Dilution	Corrected	mg/mL	%
Description	Date	Conc.	Replicate	Area	Factor	<u>mg/mL</u>	Found	Bias
Group 1 Top	10/18/05	0	Α	0	104.0	ND		
			В	0	104.1	ND		
Group 1 Mid	10/18/05	0	Α	0	101.0	ND		
			В	0	100.7	ND		
Group 1 Bot	10/18/05	0	А	0	98.32	ND		
			В	0	98.27	ND		
Group 2 Top	10/18/05	10	Α	1595963	513.4	10.87	11.08	+10.8%
			В	1662866	511.1	11.28		
Group 2 Mid	10/18/05	10	Α	1606060	508.4	10.83	10.74	+7.4%
			В	1714476	467.8	10.64		
Group 2 Bot	10/18/05	10	Α	1614015	516.8	11.07	11.10	+11.0%
			В	1656195	506.3	11.13		
Group 3 Top	10/18/05	20	Α	3340484	487.2	21.62	21.78	+8.9%
			В	3318620	497.7	21.94		
Group 3 Mid	10/18/05	20	Α	3363732	476.8	21.30	21.58	+7.9%
			В	3270021	503.0	21.85		
Group 3 Bot	10/18/05	20	Α	3486227	483.9	22.41	22.44	+12.2%
			В	3363216	503.1	22.47		
Group 4 Top	10/18/05	30	Α	2768870	984.1	36.18	34.48	+14.9%
			В	2486173	993.0	32.78		
Group 4 Mid	10/18/05	30	Α	2547234	964.2	32.61	32.81	+9.4%
			В	2657129	935.4	33.00		
Group 4 Bot	10/18/05	30	Α	2285143	1044	31.67	32.31	+7.7%
			В	2527841	981.3	32.94		

HOMOGENEITY

	Nominal	Grand		
Sample	Sample	Mean		%
Description	Conc.	Conc.	<u>RSD</u>	<u>Error</u>
Group 2	10	10.97	1.8%	9.7%
Group 3	20	21.93	2.1%	9.7%
Group 4	30	33.20	3.4%	10.7%

<u>CONCLUSIONS</u>: Results indicate that the formulations are within the acceptable limits of $\pm 15\%$ of theoretical concentrations. The formulations are also within the acceptable limits of $\leq 5\%$ RSD for homogeneity.

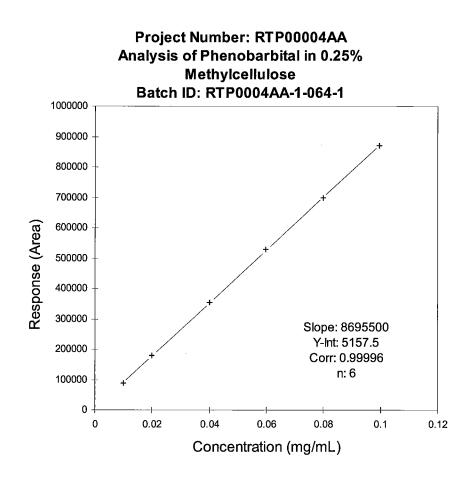
ACTIONS TAKEN: None.

Project Number: RTP00004AA Final Report Page 40 For Charles River Laboratories Preclinical Services

DOSE FORMULATION ANALYSIS REPORT

÷ . .

Sponsor: Battelle Study Facility: Charles River Laboratories Preclinical Services, Pennsylvania Protocol Number: RTP00004 Analyte: Phenobarbital Analytical Facility: Charles River Laboratories Preclinical Services, Massachusetts Batch ID: RTP00004AA-1-064-1 Sampling Criteria: Start of Study Concentration and Homogeneity Analysis Vehicle: 0.25% Methylcellulose Storage Conditions: 5±3°C Laboratory Method: LM #PHBT00 Revision 00 Analysis Date: October 19, 2005


<u>**RESULTS</u>**: (Concentrations in mg/mL, ND = none detected)</u>

CALIBRATION STANDARDS

Standard	Nominal	Response	Calculated	%	"X" =	Criteria	Standard
Description	Conc.	<u>Area</u>	Conc.	<u>Bias</u>	Exclude	<u>Limit</u>	Pass/Fail
Cal Std A1	0.009992	88977	0.009639	-3.5%		5%	PASS
Cal Std B1	0.01991	179311	0.02003	+0.6%		5%	PASS
Cal Std A2	0.03997	354095	0.04013	+0.4%		5%	PASS
Cal Std B2	0.05974	528424	0.06018	+0.7%		5%	PASS
Cal Std A3	0.07994	698204	0.07970	-0.3%		5%	PASS
Cal Std B3	0.09956	869811	0.09944	-0.1%		5%	PASS

CHECK STANDARDS

Standard	Nominal	Response	Dilution	Conc.	%	Criteria	Standard
Description	Conc.	<u>Area</u>	Factor	<u>Found</u>	<u>Bias</u>	<u>Limit</u>	Pass/Fail
Check Std A3	0.07994	698548	1	0.07974	-0.3%	5.0%	PASS
Check Std A3	0.07994	699379	1	0.07984	-0.1%	5.0%	PASS
Check Std A3	0.07994	709797	1	0.08103	+1.4%	5.0%	PASS
Check Std A3	0.07994	709735	1	0.08103	+1.4%	5.0%	PASS

Project Number: RTP00004AA Final Report

Page 42 For Charles River Laboratories Preclinical Services

			<u>SAM</u>	<u>PLES</u>				
		Nominal			Total	Density	Mean	
Sample	Prep	Sample		Response	Dilution	Corrected	mg/mL	%
Description	Date	Conc.	Replicate	Area	Factor	<u>mg/mL</u>	Found	Bias
Group 1Top	10/18/05	0	Α	0	104.0	ND		
			В	0	104.1	ND		
Group 1 Middle	10/18/05	0	Α	0	101.0	ND		
			В	0	100.7	ND		
Group 1 Bottom	10/18/05	0	Α	0	98.32	ND		
			В	0	98.27	ND		
Group 5 Top	10/18/05	5	Α	338605	130.7	5.012	5.221	+4.4%
			В	381449	125.5	5.429		
Group 5 Middle	10/18/05	5	А	326153	127.2	4.697	4.891	-2.2%
			В	346551	129.5	5.084		
Group 5 Bottom	10/18/05	5	А	359010	127.2	5.176	4.996	-0.1%
			В	340267	125.0	4.816		
Group 6 Top	10/18/05	10	Α	379977	245.5	10.58	10.73	+7.3%
			В	377524	254.1	10.88		
Group 6 Middle	10/18/05	10	Α	385993	249.4	10.92	10.85	+8.5%
			В	372683	255.1	10.78		
Group 6 Bottom	10/18/05	10	Α	349562	271.1	10.74	10.71	+7.1%
-			В	381724	246.6	10.68		
Group 7 Top	10/18/05	20	А	367092	499.9	20.81	21.03	+5.2%
			В	377068	496.5	21.24		
Group 7 Middle	10/18/05	20	А	365420	499.3	20.68	21.04	+5.2%
-			В	365320	516.7	21.40		
Group 7 Bottom	10/18/05	20	Α	367932	501.9	20.94	21.08	+5.4%
-			В	359641	520.3	21.21		

HOMOGENEITY

	Nominal	Grand		
Sample	Sample	Mean		%
Description	Conc.	Conc.	<u>RSD</u>	<u>Error</u>
Group 5	5	5.036	3.3%	0.7%
Group 6	10	10.76	0.7%	7.6%
Group 7	20	21.05	0.1%	5.3%

<u>CONCLUSIONS</u>: Results indicate that the formulations are within the acceptable limits of $\pm 15\%$ of theoretical concentrations. The formulations are also within the acceptable limits of $\leq 5\%$ RSD for homogeneity.

ACTIONS TAKEN: None.

na ang sa sa kanang sa kanang sa sa kanang sa

Project Number: RTP00004AA Final Report Page 43 For Charles River Laboratories Preclinical Services

Appendix B. Laboratory Methods

CHARLES RIVER
LABORATORIES
Preclinical Services

LM Number:	LINR00	Revision Number:		00	
Effective Date:	October 6, 2005	Page	1	Of	9

Laboratory Method for the Analysis of Linuron in 0.25% Methylcellulose Dose Formulations by HPLC-UV

Prepared By:

Sniak am David Brigham, B.S.

Senior Laboratory Associate

10 | 17 | OS Date

17/05

Date

10

Reviewed By:

m

Kim Barnard, B.S. **Associate Scientist**

Authorized By

<u>| 0|17|05</u> Date

Stephen A. Guyan, M.Sc. Senior Director, Analytical Chemistry Department

LM Number:	LINR00	Revision Number:		00	
Effective Date:	October 6, 2005	Page	2	Of	9

1 Purpose

The purpose of this laboratory method is to accurately determine the concentration of linuron in 0.25% methylcellulose dose formulations.

2 Scope

Analysis of linuron in dose formulation samples with limitations as stated below.

Vehicle:0.25% methylcellulose Sample Volume: 1 mL Volumetric Samples [] Gravimetric Samples [X] Both []

Concentrations Covered by Laboratory Method: NOTE: Concentrations have not been corrected for purity/salt factor.

Final Injected Concentration - mg/mL

LOD	0.000014
LLOQ to ULOQ	0.005 - 0.05

Corresponding Concentrations - mg/mL in Vehicle

	Standard Dilution (1 in 100)	Additional 1 in 5 Dilution	Additional 1 in 10 Dilution
LOD	0.0014	0.007	0.014
LLOQ to ULOQ	0.5 – 5.0	2.5 – 25	5.0-50
Valid Sample Range	0.58 – 4.3	2.9 - 22	5.8 - 43

3 Stability

Description	Concentration Range	Storage Conditions	Time Period
Process Stability	0.005 - 0.05 mg/mL	22 ± 5°C	24 hours

*Standards should be prepared fresh for each analysis until standard stability is established.

Note: all storage conditions are unprotected from light unless specified otherwise.

LM Number:	LINR00	Revision Number:		00	
Effective Date:	October 6, 2005	Page	3	Of	9

4 **Definitions/Abbreviations**

ND: None detected N/A: Not applicable MP: Mobile Phase A	HPLC:	High Performance Liquid Chromatography
	ND:	None detected
MP: Mobile Phase A	N/A:	Not applicable
	MP:	Mobile Phase A
LOD: Limit of Detection	LOD:	Limit of Detection
LLOQ: Lower Limit of Quantitation	LLOQ:	Lower Limit of Quantitation
ULOQ: Upper Limit of Quantitation	ULOQ:	Upper Limit of Quantitation
ACN Acetonitrile	ACN	Acetonitrile

5 Correction Factors

Purity Refer to protocol

6 Materials

6.1 Chemicals

Deionized Water, Millipore, Milli-Q water, or equivalent Acetonitrile, HPLC grade or equivalent Methylcellulose, viscosity 4,000 cp

6.2 Supplies

Volumetric flasks and pipets Autosampler Vials; Sun SRI Catalog # 200250 (screwtop); or equivalent Autosampler Vial Caps; Sun SRI Catalog # 500062 (PTFE/Silicone Septa Screwcaps); or equivalent

7 Procedure

7.1 **Preparation of Reagents**

Other volumes may be prepared using the same proportions. Store all reagents at room temperature and use within 14 days unless noted otherwise.

7.1.1 Mobile Phase, Mobile Phase, 60:40 ACN: Milli-Q water, v:v

Combine 600 mL ACN and 400 mL milli-Q water in a suitable container, mix thoroughly.

7.1.2 Needle Rinse, 60:40 ACN: Milli-Q water, v:v

LM Number:	LINR00	Revision Number:		00	
Effective Date:	October 6, 2005	Page	4	Of	9

Combine 600mL ACN and 400mL milli-Q water in a suitable container, mix thoroughly.

7.1.3 Diluent 1, 60:40 ACN: Milli-Q water, v:v

Combine 600 mL ACN and 400 mL milli-Q water in a suitable container, mix thoroughly.

7.1.4 Vehicle, 0.25% methylcellulose in milli-Q water

Into approximately 80 mL of milli-Q water add 250mg of methylcellulose. Stir until all methylcellulose is completely dissolved. After methylcellulose is completely dissolved quantitatively transfer to a 100mL volumetric flask and bring to volume with milli-Q water. Transfer to a suitable container.

7.1.5 Diluent 2, 1% Vehicle in Diluent 1

Into a 100mL volumetric flask add 1mL of vehicle and bring to volume with diluent 1. Stir well, transfer to a suitable container.

7.2 Preparation of Stocks, Standards and Blanks

Stocks, standards and blanks should be stored at 5±3°C.

7.2.1 Preparation of stocks	
-----------------------------	--

	Linuron weight (mg)*	Volumetric Flask (mL)	Diluent
Stock A	25 ± 1.3	50	Diluent 1
Stock B	50 ± 5	50	Diluent 1

* Record weights to the nearest 0.01 mg.

LM Number:	LINR00	Revision Number:		00	
Effective Date:	October 6, 2005	Page	5	Of	9

7.2.2 Preparation of standards

Calibration Standards	Aliquot from Stock A (mL)	Aliquot from Stock B (mL)	Vehicle (mL)	Volumetric Flask (mL)	Diluent
A1, A2 and A3	1, 4 and 8	N/A	1	100	Diluent 1
B1, B2 and B3	N/A	1, 3 and 5	1	100	Diluent 1

7.2.3 Preparation of Blank

	Vehicle (mL)	Volumetric Flask (mL)	Diluent	
Blank	1	100	Diluent 1] .

7.3 Sample Preparation

Store diluted samples at $5\pm3^{\circ}$ C.

7.3.1 Weigh sample vials using a balance capable of reading at least 0.001 g. Transfer each sample into individual volumetric flasks as indicated in the initial dilution table below. Triple rinse the sample vial contents with diluent 1 into the appropriate volumetric flask. Bring the volumetric flask to volume with diluent 1 and mix well. The initial dilutions may be diluted further as indicated in the tables below. Transfer an aliquot of each final dilution into individual autosampler vials. Allow sample vials to dry completely and reweigh the vials.

Initial Dilution						
Sample Concentration Ranges (mg/mL)	Sample Size (mL)	Initial Dilution Volumetric Flask Size (mL)	Diluent (Triple rinse sample vial)			
0, and 0.58 to 43	1	100	diluent 1			

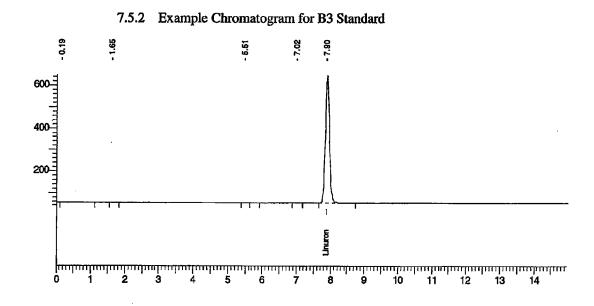
LM Number:	LINR00	Revision Number:	00		
Effective Date:	October 6, 2005	Page	6	Of	9
				-	

	Final Dilution					
Sample Concentration Ranges (mg/mL)	Aliquot from Initial Dilution (mL)	Final Dilution Volumetric Flask Size (mL)	Diluent			
From 2.9 to 22	1	5	diluent 2			
From 5.8 to 43	1	10	diluent 2			

7.4 Analytical Run Sequence and Composition

7.4.1 The typical run list should follow this order

2 system checks	test injections
5 replicate injections	system suitability (B3 standard)
1 injection each	six point calibration curve
1 injection	blank
\leq 10 injections	unknown samples
1 injection	check standard (A3)


7.4.2 Repeat last two lines as necessary if more then 10 samples are analyzed. A single replicate of the check standard is analyzed after the last unknown sample in the entire analysis batch.

7.5 Analytical Conditions

Use the HPLC system described below, adjusting the solvent ratio if necessary, to approximate the retention time listed below. Refer to the SOP for Chromatographic System Suitability.

LM Number:	er: LINROO		00			
Effective Date:	October 6, 2005	Page	7 Of		9	
7.5.1	Instrumental	·····				
	Pump:	PerkinElmer Series 200 or equivale	ent			
	Autosampler:	PerkinElmer Series 200 or equivale				
	Detector:	PerkinElmer Series 200 or equivale	ent			
	Column Heater:	Perkin Elmer, Peltier Column Over equivalent	n Ser	ies 20	0 or	
	Peltier Tray:	PerkinElmer Series 200 or equivale	ent			
	Degasser:	PerkinElmer Series 200 or equivale				
	Analytical Column:	Phenomenex Synergi 4µ, Hydro-R				
		250 x 4.6mm, 4µm				
	Column Temperature:	30°C				
	Autosampler Temp:	Ambient				
	Detection:	Ultraviolet @ 250nm				
	Sampling rate:	1 point/second				
	Injection Volume:	20 μL				
	Mobile Phase A.	60:40 Acetonitrile: Milli-O Woter				

Mobile Phase A:60:40 Acetonitrile: Milli-Q WaterNeedle Rinse:60:40 Acetonitrile: Milli-Q WaterFlow Rate:1.0 mL/minRun Time:15 minutesRetention Time for7.9 ± 1.0 minutesRun Type:Isocratic

50

LM Number:	LM Number: LINR00		Revision Number:		
Effective Date:	October 6, 2005	Page	8	Of	9

7.6 Calculations

- 7.6.1 Chromatograms will be automatically integrated and visually inspected for an acceptable integration. Manual baselines will be performed when necessary.
- 7.6.2 Calculate the relative standard deviation (%) of the peak areas, the relative standard deviation (%) of the retention time and the mean tailing factor for five system suitability injections.
- 7.6.3 Calculate the concentration of the six spiked standards from the actual stock concentration, in terms of milligram of linuron per milliliter.
- 7.6.4 Compute the unweighted linear regression relating the peak areas of the standards to their respective linuron concentrations, without blank correction.
- 7.6.5 Compute the correlation coefficient for the standard curve.
- 7.6.6 Using the peak area of the samples and the regression equation, determine the concentration in mg/ml of linuron. Correct for the dilution factor if necessary.
- 7.6.7 Concentrations found to be less than the LOD will be reported as <LOD. Concentrations found to be less than the LLOQ but greater than the LOD will be reported as <LLOQ. In cases, such as blank samples, where no peak is observed, the results will be reported as none detected (N.D.).</p>
- 7.6.8 Calculate mean concentrations for replicate samples. Calculate the percent error from theoretical as: (mean concentration found theoretical concentration) / theoretical concentration x 100.
- 7.7 Acceptance Criteria
 - 7.7.1 System Suitability

The linuron peaks in the five system suitability injections must meet the following acceptable limits: The mean tailing factor ≤ 2.0 , the relative standard deviation (%) of the peak areas $\leq 2.0\%$, and the relative standard deviation (%) of the retention time $\leq 2.0\%$. If the criteria are out of the acceptable limits, make corrections to the HPLC system and repeat the suitability injections.

LM Number:	LINR00	Revision Number:		00	
Effective Date:	October 6, 2005	Page	9	Of	9

7.7.2 Correlation Coefficient

The correlation coefficient for the standard curve must not be less than 0.995. If the value does not exceed 0.995, repeat the preparation of the standard curve.

7.7.3 Calibration Standards

The back-calculated concentrations for calibration standards must be within $\pm 5\%$ of their nominal theoretical concentrations. Standards not meeting criteria can be dropped as long as no more than 20% of standards are dropped. The LLOQ or ULOQ will be redefined to the remaining lowest or highest standards if necessary.

7.7.4 Check Standards

The back- calculated concentration for the A3 check standards must be within 5.0% of nominal theoretical concentration.

7.7.5 Replication of Results

Replicate concentrations found for suspension formulations must not vary by more than 15%. Acceptance is defined as: (low value / high value) \geq 0.85. Results that do not meet this criteria will be reviewed by the project scientist. Reason for acceptance will be documented in the raw data.

7.7.6 Samples

The mean of the back-calculated concentrations for replicate samples must be within $\pm 15.0\%$ of their nominal concentration.

Refer to the Standard Operating Procedure for "Resolution and Reporting of Out of Specification Dose Formulation Analysis Results" if the percent error is greater than $\pm 15.0\%$.

8 Revision History

8.1 Initial Laboratory Method: Method validation performed under project RTP00004AA.

LM Number:	PHBT00	Revision Number:		00	
Effective Date:	10/5/2005	Page	1	Of	9
		-		•	

Laboratory Method for the Analysis of Phenobarbital in 0.25% Methylcellulose Dose Formulations by HPLC-UV

Prepared By:

<u>ioli7los</u> Date ham David Brigham, B/S.

Senior Laboratory Associate

Reviewed By:

mard

Date

k

Kim Barnard, B.S. **Associate Scientist**

Authorized By

<u>(0/17/05-</u> Date

ţ

Stephen A. Guyan, M.Sc. Senior Director, Analytical Chemistry Department

LM Number:	PHBT00	Revision Number:	00	
Effective Date:	10/5/2005	Page	2_Of_	9

1 Purpose

The purpose of this laboratory method is to accurately determine the concentration of phenobarbital in 0.25% methylcellulose dose formulations.

2 Scope

Analysis of phenobarbital in dose formulation samples with limitations as stated below.

Vehicle: 0.25% methylcellulose

Sample Volume (or Amount): 1 mL

Volumetric Samples [] Gravimetric Samples [X] Both []

Concentrations Covered by Laboratory Method:

Final Injected Concentration - mg/mL

LOD	0.000099
LLOQ to ULOQ	. 0.01 – 0.1

Corresponding Concentrations - mg/mL in Vehicle

	Standard Dilution (1 in 25)	Additional 1 in 5 Dilution	Additional 1 in 10 Dilution	Additional 1 in 20 Dilution
LOD	0.0025	0.012	0.025	0.050
LLOQ to ULOQ	0.25 - 2.5	1.25 - 12.5	2.5 - 25	5.0 - 50
Valid Sample Range	0.29 - 2.1	1.4 - 10.6	2.9 - 21	5.8-43

3 Stability

Description	Concentration Range	Storage Conditions	Time Period	
Process Stability	0.01 - 0.1 mg/mL	22 ± 5°C	TBD	

*Standards should be prepared fresh for each analysis until standard stability is established.

Note: all storage conditions are unprotected from light unless specified otherwise.

LM Number:	РНВТОО	Revision Number:	-	00	
Effective Date:	10/5/2005	Page	3	Of	9

4 Definitions/Abbreviations

HPLC:	High Performance Liquid Chromatography
ND:	None detected
N/A:	Not applicable
MP:	Mobile Phase A
LOD:	Limit of Detection
LLOQ:	Lower Limit of Quantitation
ULOQ:	Upper Limit of Quantitation
ACN:	Acetonitrile

5 Correction Factors Purity/Salt Factor: Refer to protocol.

6 Materials

6.1 Chemicals

Deionized Water, Millipore, Milli-Q water, or equivalent Acetonitrile, HPLC grade or equivalent Methylcellulose, viscosity 4,000 cp

6.2 Supplies

Volumetric flasks and pipets Autosampler Vials; Sun SRI Catalog # 200250 (screwtop); or equivalent Autosampler Vial Caps; Sun SRI Catalog # 500062 (PTFE/Silicone Septa Screwcaps); or equivalent

7 Procedure

7.1 Preparation of Reagents

Other volumes may be prepared using the same proportions. Store all reagents at room temperature and use within 14 days unless noted otherwise.

7.1.1 Mobile Phase, 50:50 ACN: Milli-Q water v:v

Combine 1000 mL ACN and 1000 mL milli-Q water in a suitable container, mix thoroughly.

7.1.2 Needle Rinse, 50:50 ACN: Milli-Q water v:v

Combine 500 mL ACN and 500 mL milli-Q water in a suitable container, mix thoroughly.

LM Number:	PHBT00	Revision Number:		00	
Effective Date:	10/5/2005	Page	4	Of	9
1		_			

7.1.3 Diluent 1, 50:50 ACN: Milli-Q water v:v

Combine 1000mL ACN and 1000 mL milli-Q water in a suitable container, mix thoroughly.

7.1.4 Vehicle, 0.25% methylcellulose in milli-Q water

Into approximately 80 mL of milli-Q water add 250 mg of methylcellulose. Stir until all methylcellulose is completely dissolved. After methylcellulose is completely dissolved quantitatively transfer to a 100 mL volumetric flask and bring to volume with milli-Q water. Transfer to a suitable container.

7.1.5 Diluent 2, 4% Vehicle in Diluent 1

Into a 100mL volumetric flask add 4 mL of vehicle and bring to volume with diluent 1. Stir well, transfer to a suitable container.

7.2 Preparation of Stocks, Standards and Blanks

Stocks, standards and blanks should be stored at 5±3°C.

7.2.1 Preparation of stocks

	Phenobarbital weight (mg)*	Volumetric Flask (mL)	Diluent
Stock A	25 ± 1.3	100	Diluent 1
Stock B	25 ± 1.3	50	Diluent 1

* Record weights to the nearest 0.01 mg.

LM Number:	PHBT00	Revision Number:		00	
Effective Date:	10/5/2005	Page	5	Of	9

7.2.2 Preparation of standards

Calibration Standards	Aliquot from Stock A (mL)	Aliquot from Stock B (mL)	Vehicle (mL)	Volumetric Flask (mL)	Diluent
A1, A2 and A3	1, 4 and 8	N/A	1	25	Diluent 1
B1, B2 and B3	N/A	1, 3 and 5	1	25	Diluent 1

7.2.3 Preparation of Blank

	Vehicle (mL)	Volumetric Flask (mL)	Diluent
Blank 1		25	Diluent 1

7.3 Sample Preparation

Store diluted samples at $5\pm3^{\circ}$ C.

7.3.1 Weigh sample vials using a balance capable of reading at least 0.001 g. Transfer each sample into individual volumetric flasks as indicated in the initial dilution table below. Triple rinse the sample vial contents with diluent 1 into the appropriate volumetric flask. Bring the volumetric flask to volume with diluent 1 and mix well. The initial dilutions may be diluted further as indicated in the tables below. Transfer an aliquot of each final dilution into individual autosampler vials. Allow sample vials to dry completely and reweigh the vials.

LM Number:	PHBT00	Revision Number:	00	00		
Effective Date:	10/5/2005	Page	6	Of	9	

Initial Dilution							
Sample Concentration Ranges (mg/mL)	Sample Size (mL)	Initial Dilution Volumetric Flask Size (mL)	Diluent (Triple rinse sample vial)				
0, and 0.29 to 43	1	25	Diluent 1				

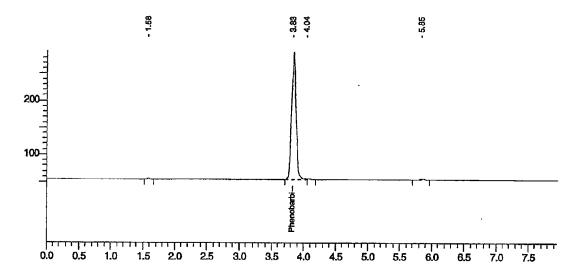
Final Dilution						
Sample Concentration Ranges (mg/mL)Aliquot from Initial Dilution (mL)Final Dilution Volumetric Flask Size (mL)Dilution Dilution						
From 1.4 to 11	1	5	Diluent 2			
From 2.9 to 21	1	10	Diluent 2			
From 5.8 to 43	1	20	Diluent 2			

7.4 Analytical Run Sequence and Composition

7.4.1 The typical run list should follow this order

)

- 7.4.2 Repeat last two lines as necessary if more then 10 samples are analyzed. A single replicate of the check standard is analyzed after the last unknown sample in the entire analysis batch.
- 7.5 Analytical Conditions


Use the HPLC system described below, adjusting the solvent ratio if necessary, to approximate the retention time listed below. Refer to the SOP for Chromatographic System Suitability.

LM Number:	PHBT00	Revision Number:		00	
Effective Date:	10/5/2005	Page	7	Of	9

7.5.1 Instrumental

-	
Pump:	PerkinElmer Series 200 or equivalent
Autosampler:	PerkinElmer Series 200 or equivalent
Detector:	PerkinElmer Series 200 or equivalent
Column Heater:	Perkin Elmer, Peltier Column Oven Series 200 or equivalent
Peltier Tray:	PerkinElmer Series 200 or equivalent
Degasser:	PerkinElmer Series 200 or equivalent
Analytical Column:	Phenomenex Synergi 4µ, Hydro-RP
	250 x 4.6mm, 4µm
Column Temperature:	30°C
Autosampler Temp:	Ambient
Detection:	Ultraviolet @ 225nm
Sampling rate:	1 point/second
Injection Volume:	10 μL
Mobile Phase A:	50:50 Acetonitrile: Milli-Q Water (v:v)
Needle Rinse:	50:50 Acetonitrile: Milli-Q Water (v:v)
Flow Rate:	1.0 mL/min
Run Time:	8 minutes
Retention Time for	
Phenobarbital:	3.8 ± 1.0 minutes
Run Type:	Isocratic

7.5.2 Example Chromatogram for B3 Standard.

LM Number:	РНВТОО	Revision Number:		00		
Effective Date:	10/5/2005	Page	8	Of	9	

7.6 Calculations

- 7.6.1 Chromatograms will be automatically integrated and visually inspected for an acceptable integration. Manual baselines will be performed when necessary.
- 7.6.2 Calculate the relative standard deviation (%) of the peak areas, the relative standard deviation (%) of the retention time and the mean tailing factor for five system suitability injections.
- 7.6.3 Calculate the concentration of the six spiked standards from the actual stock concentration, in terms of milligram of phenobarbital per milliliter.
- 7.6.4 Compute the unweighted linear regression relating the peak areas of the standards to their respective phenobarbital concentrations, without blank correction.
- 7.6.5 Compute the correlation coefficient for the standard curve.
- 7.6.6 Using the peak area of the samples and the regression equation, determine the concentration in mg/ml of phenobarbital. Correct for the dilution factor if necessary.
- 7.6.7 Concentrations found to be less than the LOD will be reported as <LOD.
 Concentrations found to be less than the LLOQ but greater than the LOD will be reported as <LLOQ. In cases, such as blank samples, where no peak is observed, the results will be reported as none detected (N.D.).
- 7.6.8 Calculate mean concentrations for replicate samples. Calculate the percent error from theoretical as: (mean concentration found theoretical concentration) / theoretical concentration x 100.
- 7.7 Acceptance Criteria
 - 7.7.1 System Suitability

The phenobarbital peaks in the five system suitability injections must meet the following acceptable limits: The mean tailing factor ≤ 2.0 , the relative standard deviation (%) of the peak areas $\leq 2.0\%$, and the relative standard deviation (%) of the retention time $\leq 2.0\%$. If the criteria are out of the acceptable limits, make corrections to the HPLC system and repeat the suitability injections.

LM Number;	PHBT00	Revision Number:	00		
Effective Date:	10/5/2005	Page	9	Of	9

7.7.2 Correlation Coefficient

The correlation coefficient for the standard curve must not be less than 0.995. If the value does not exceed 0.995, repeat the preparation of the standard curve.

7.7.3 Calibration Standards

The back-calculated concentrations for calibration standards must be within $\pm 5\%$ of their nominal theoretical concentrations. Standards not meeting criteria can be dropped as long as no more than 20% of standards are dropped. The LLOQ or ULOQ will be redefined to the remaining lowest or highest standards if necessary.

7.7.4 Check Standards

The back- calculated concentration for the A3 check standards must be within 5.0% of nominal theoretical concentration.

7.7.5 Replication of Results

Replicate concentrations found for suspension formulations must not vary by more than 15%. Acceptance is defined as: (low value / high value) \geq 0.85. Results that do not meet this criterion will be reviewed by the project scientist. Reason for acceptance will be documented in the raw data.

7.7.6 Samples

The mean of the back-calculated concentrations for replicate samples must be within $\pm 15.0\%$ of their nominal concentration.

Refer to the Standard Operating Procedure for "Resolution and Reporting of Out of Specification Dose Formulation Analysis Results" if the percent error is greater than $\pm 15.0\%$.

8 Revision History

8.1 Initial Laboratory Method: Method validation performed under project RTP00004AA.

and the second secon

APPENDIX 6 - ENVIRONMENTAL AND HUSBANDRY REPORTS

en en en en en el ser en en en en el ser en el ser en el ser en el ser el ser el ser el ser el ser el ser el s El ser el ser

TEMPERATURE AND RELATIVE HUMIDITY REPORTS

ARGUS

Temperature and Relative Humidity Report Location: Room 35-37

Protocol Number: RTP00004

Range of Dates: 18-Oct-2005 14:01 to 10-Nov-2005 07:59

		Relative Humidity 30% to 70%			
5		24 545.5 546			
73.7	(± 0.5)	46.5	(± 1.4)		
75.2 73.6 72.5	73.6		51.2 46.5 42.8		
546 0 0	(100.0) (0.0) (0.0)	546 0 0	(100.0) (0.0) (0.0)		
	64°F 5 73.7 75.2 73.6 72.5 546 0	545.5 546 73.7 (± 0.5) 75.2 73.6 72.5 546 (100.0) 0 (0.0)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Report Generated: 28-Nov-2005 at 14:14

COMMENTS:

······		
REVIEWED BY:	Gempi	DATE: 11-28-05

FEED ANALYSES

and the second secon

		PAL ALYTICAL		c			PerCare Company St. Louis. MO 63164
				ANAL	sis repo	RT	
				Results are prelimi	nary pending fi	nal approval.	
To: CHARLES BENION HARLAN TEKLAD 2826 LATHAM DRIVE MADISON, WI 53713			CC:	CODE		Page 1 of 1	
	Fax: (60	8)277-2066			L0527403		
Sam	ple No.:	L0527403-1	Receipt Date:	12/14/2005			
			Report Date:	12/15/2005			
2018	3CM-091	905MA					
Test	Code	Assay / Ar	alyte		Result	Units	Low Lmt Hi Lmt
IFS	2	Isoflavon	e profile, saponific Total Daio	Daidzin Daidzein Izein Compounds	192 3.00 195	ppm ppm ppm	
				Genistin Genistein	182 	ppm ppm	
				stein Compounds Glycitin Glycitein	183 38.0 1.00	ppm ppm ppm	
				itein Compounds Total Isoflavones	39.0 417	ppm ppm	
				(Aglycone Units)	117	ppm	
				(Aglycone Units) (Aglycone Units)	3.00 120	ppm ppm	
•				(Aglycone Units)	114	ppm	
			Genistein	(Aglycone Units)	1.00	ppm	
			Total Genistein	(Aglycone Units)	115	ppm	
			Glycinn	(Aglycone Units) (Aglycone Units)	24.0 1.00	ppm ppm	
			•	(Aglycone Units)	25.0	ppm	
			Total Isoflavones		260	ppm	
	The test not be re For addit The info error, pla	code located ne produced, exce lional information mation contained aase notify NPAL	pt in its entirety, wit n, contact Custome ir this document is b and destroy the docur	a method reference hout the written pe r Services at 800- ping transmitted in c nent.	ce code. Resul rmission of NP 423-6832 or 31 onfidence. If you	Analytical Labo 4-982-1310, have received this	s document in CH2005121509300001
symt	ool "<" or it ont greater ij	is words "less than o han the stated level of	loes not imply that traces Samples submitted to NP a statistical must be made to	n was measured at or an of life analyte wero prose analytical (laboratories to a NP Analytical (abaratories to a NP Analytical (abaratories to	ent. The symbol ">" or lesting are relaine wrise orign in or at th	of the term "greater t d for a minimum of th n time of sample subr	of the procedure under the conditions employed. The use of the han signifies that the analyte was determined to be present in . inty 300 days ofter the analysis report is issued when sample hission

TOTAL P.01

an an ann an Araban an Araban ann an Araban an Araban ann an Araban ann an Araban ann an Araban an Araban an Araban ann an Ar

WATER ANALYSES

Analytical Report

Regarding:

JOE SCHWINDT CHARLES RIVER LAB 905 SHEEHY DRIVE HORSHAM, PA 19044

JOE SCHWINDT CHARLES RIVER LAB 905 SHEEHY DRIVE HORSHAM, PA 19044

Account No: WC Project No: WC	5899, CHARLES RIVER LAB 5899, CHARLES RIVER LAB	P-0. No: Inv. No: 722468 PWSID No:
Sample Number L1757864-1	Sample Description DRINKING WATER - ANALYTICAL Received Temp: 36°F Iced (Y/N): Y	Samp. Date/Time/Temp Sampled by 10/07/05 10:45am NA°F Joan Cummings Nulty, QC Laborat
Parameter COLIFORM-MF CHLORINE RES	Method SM 9222B IDUAL SH 4500-CL-G	Result RLs Test Date, Time, Analyst <1 col/100ml
Sample Number 11757864-2	Sample Description DRINKING WATER - ROOM 17 Received Temp: 36°F Iced (Y/N): Y	Samp. Date/Time/Temp Sampled by 10/07/05 10:55am NA°F Joan Cummings Nulty, QC Laborat
Parameter COLIFORM-MF CHLORINE RES	Method SM 9222B IDUAL SM 4500-CL-G	Result RLs Test Date, Time, Analyst <1 col/100ml
Sample Number L1757864-3	Sample Description DRINKING WATER - FILL STATION Received Temp: 36°F Iced (Y/N): Y	Samp. Date/Time/Temp Sampled by 10/07/05 11:04am NA°F Joan Cummings Nulty, QC Laborat
Parameter COLIFORM-MF CHLORINE RES	Method SN 92228 IDUAL SN 4500-CL-G	Result RLs Test Date, Time, Analyst <1 col/100ml
Sample Number L1757864-4	Sample Description DRINKING WATER - G1	Samp, Date/Time/Temp Sampled by 10/07/05 11:09am NA°F Joan Cummings Nulty, QC Laborate

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLS. Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=Laboratory reporting limits; L/A=Laboratory accident; INTC=too numerous to count A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis. All analysis, except field tests are conducted in Southampton, PA unless otherwise identified. The test"pH lab"is analyzed upon receipt at the Laboratory, the result will not be suitable for regulatory purposes. Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.. CC's lab certification ID's are: Southampton (NELAP) PADEP 09-131,NJDEP PA166,Bioassay PA034.NON-NELAP labs: Wind Gap-NJ PA001, All samples are collected as "grab" samples unless otherwise identified. MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

Page 1 of 3

Serial Number: 613293

hu Burnett 11/8/05 1 Annes homos

omas J. Hines, President

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.qclaboratories.com

. -

Analytical Report

	5899, CHARLES RIVER LAB 5899, CHARLES RIVER LAB	P.O. Pwsid I		No: 722468
	Received Temp: 36°F Iced (Y/N): Y			
Parameter COLIFORM-MF CHLORINE RES	Method SM 92228 IDUAL SN 4500-CL-G	Result <1 col/100ml 0.40 mg/l	RLs Test Date, 1. col/100ml 10/07/05 0 0.10 mg/l 10/07/05 1	
Sample Number L1757864-5	Sample Description DRINKING WATER - FORMULATION Received Temp: 36°F [ced (Y/N): Y		te/Time/Temp Sampled by 11:16am NA°F Joan Cummings	Nulty, QC Laborato
Parameter COLIFORM-MF CHLORINE RES	Method SN 9222B IDUAL SN 4500-CL-G	Result <1 col/100mL ND mg/l	RLs Test Date, 1. col/100ml 10/07/05 0 0.10 mg/l 10/07/05 1	
Sample Number L1757864-6	Sample Description DRINKING WATER - H2 Received Temp: 36°F Iced (Y/N): Y		te/Time/Temp Sampled by 11:35am NA°F Joan Cummings	Nulty, QC Laborato
Parameter COLIFORM-MF CHLORINE_RES	Method SM 92228 IDUAL SM 4500-CL-G	Result <1 col/100ml 0.20 mg/l	RLs Test Date, 1. col/100ml 10/07/05 0 0.10 mg/l 10/07/05 1	

L1757864-1:

.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L1757864-2:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L1757864-3:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L1757864-4:

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs. Definitions: ND=pot detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident;

Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident; INTC=too numerous to count A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis. All analysis, except field tests are conducted in Southampton, PA unless otherwise identified. The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes. Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted. QC's lab certification ID's are: Southampton (NELAP) PADEP 09-131,NJDEP PA166,Bioassay PA034.NON-NELAP labs: Wind Gap-NJ PA001, All test-NJ 02015,Vineland-NJ 06005;PA 68-580. All samples are collected as "grab" samples unless otherwise identified. MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

11/8/05 homos

Page 2 of 3

Serial Number: 613293

nomas J. Hines, Presiden

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.gclaboratories.com

Analytical Report

Account No: W05899, CHARLES RIVER LAB Project No: W05899, CHARLES RIVER LAB

.

P.O. No: PHSID No:

Inv. No: 722468

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or GC for advice.

L1757864-5:

1. A water supply is considered bacteriologically "SAFE" If no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "WNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L1757864-6:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs. Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident;

Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident; TNTC=top numerous to count A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis. All analysis, except field tests are conducted in Southampton, PA unless otherwise identified. The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes. Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted. QC's lab certification ID's are: Southampton (NELAP) PADEP 09-131,NJDEP PA166,Bioassay PA034.NON-NELAP labs: Wind Gap-NJ PA001, All test-NJ 02015,Vineland-NJ 06005;PA 68-580. All samples are collected as "grab" samples unless otherwise identified. MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

Page 3 of 3

Serial Number: 613293

Shulbern 11/5/05 homos Thomas J. Hines, President

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.qclaboratories.com

0	QC Laborator	ries	Analyti	cal Report	,
	ן פריק בין ענתני	XACT COP	{		
CHAI 905	SCHWINDT RLES RIVER LAB SHEEHY DRIVE SHAM, PA 19044	Dt. A.	Regarding: JOE SCHWINDI CHARLES RIVER LAB 905 SHEEHY DRIVE HORSHAM, PA 19044	11711705 08:05pm	
Account No: W0 Project No: W0 Sample Number L1782812-1	Sample Description	······································	P.O. No: PWSID No: Samp. Date/Time/Temp	Inv. No: 729947	_
Parameter COLIFORM-MF CHLORINE RES	DRINKING WATER-AWALYTICAL Received Temp: 37°F Iced (Y/N): Y Method SM 9222B	Result <1 col/	11/04/05 11:04am NA [®] F RLs	Sampled by Customer Sampled Test Date, Time, Analyst	
Sample Number L1782812-2	DUAL SM 4500-CL-G Sample Description DRINKING WATER G-1 Received Temp: 37°F Iced (Y/N): Y	ND mg/1		100ml 11/04/05 05:00PM CSW 11/04/05 11:04AN CU Sampled by Customer Sampled	•
Parameter COLIFORM-MF CHLORINE RESI	0H 4500-CL-8	Result <1 col/ 0.50 mg/l		Test Date, Time, Analyst 100ml 11/04/05 05:00PM CSW 11/04/05 11:08AN CU	
2812-3	Sample Description DRINKING WATER-FORMULATION Received Temp: 37°F Iced (Y/N): Y		Samp. Date/Time/Temp 11/04/05 11:12am NA°F	Sampled by Customer Sampled	•
Parameter COLIFORM-MF CHLORINE RESI	Method SM 9222B DUAL SM 4500-CL-G	Result <1 col/ ND mg/l	RLS 100mi 1. col/1 0.10 mg/l	Test Date, Time, Analyst 00ml 11/04/05 05:00pM CSW 11/04/05 11:12AM CU	
Sample Number L1782812-4	Sample Description DRINKING WATER-ROOM 14		Samp. Date/Time/Temp 11/04/05 11:18am NA°F	Sampled by Customer Sempled	

Customer Sampled 11/04/05 11:18am NA°F

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs. Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident;

Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=Laboratory reporting limits; L/A=Laboratory accident; TNTC=too numerous to count A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis. All analysis, except field tests are conducted in Southampton, PA unless otherwise identified. The test"pH Lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes. Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required Actual times of therwise noted... QC certification ID's: Southampton (NELAP) PADEP 09-131,NJDEP PA166, FL E87954, Bioassay PA034.NON-NELAP tabs: Wind Gap-NJ PA001, All samples are collected as "grab" samples unless otherwise identified. NCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

Page 1 of 3

Serial Number: 622446

Thomas J. Hines, President MUuun 1/5/6

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.qclaboratories.com

ł

C Laboratories[•]

Analytical Report

ANACCOD.

		EXACT COPY DEF 1/17/266	11/11/05 08:05pm
Account No: WO	5899, CHARLES RIVER LAB	P.O.	
<u>Project No: WO</u>	5899, CHARLES RIVER LAB	PWSID	
	Received Temp: 37°F Iced (Y/N	D: Y	
Parameter	Method	Result	RLs Test Date, Time, Analyst
COLIFORM-MF	SM 92228	<1 col/100ml	1. col/100ml 11/04/05 05:00PM CSW
CHLORINE RES	1DUAL\$N 4500-CL-G	0.90 mg/l	0.10 mg/l 11/04/D5 11:18AM CU
Sample Number L1782812-5	Sample Description DRINKING WATER-FILLING STATION Received Temp: 37°F Iced (Y/N	11/04/0	Date/Time/Temp Sampled by 5 11:24am NA®F Customer Sampled
Parameter	Nethod	Result	RLs Test Date, Time, Analyst
COLIFORN-MF	SM 92228	<1 col/100ml	1. col/100ml 11/06/05 05:00PM CSW
CHLORINE RES	IDUAL SM 4500-CL-G	0.90 mg/l	0.10 mg/l 11/04/05 11:24AM CU
Sample Number L 17828 12-6	Sample Description DRINKING WATER H-1 Received Temp: 37°F Iced (Y/N	11/04/0	ate/Time/Temp Sampled by 5 11:42am NA°F Customer Sampled
Parameter	Method	Result	RLs Test Date, Time, Analyst
COLIFORM-NF	SM 92228	<1 col/100ml	1. col/100ml 11/04/05 05:00PM CSW
CHLORINE RESI	IDUAL SM 4500-CL-G	0.10 mg/l	0.10 mg/t 11/04/05 11:42AM CU

L1782812-1:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

-182812-2:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L1782812-3:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L1782812-4:

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs. Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident;

Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident; TNTC=too numerous to count A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis. All analysis, except field tests are conducted in Southampton, PA unless otherwise identified. The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes. Actual times of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required holding time unless otherwise noted.. GC certification ID's: Southampton (NELAP) PADEP 09-131,NJDEP PA166, FL E87954, Bioassay PA034.NON-NELAP labs: Wind Gap-NJ PA001, Alltest-NJ 02015,Vinetand-NJ 06005;PA 68-580. All samples are collected as "grab" samples unless otherwise identified. MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

· 2 of 3

Serial Number: 622446

Thomas J. Hines, President

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.gclabo

Analytical Report

Account No: W05899, CHARLES RIVER LAB Project No: W05899, CHARLES RIVER LAB

P.O. No: PWSID No:

Inv. No: 729947

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L1782812-5:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L1782812-6:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

ENACT COPY DEC 1/17/06

}

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLS. Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLS=laboratory reporting limits; L/A=laboratory accident; This is analysis of analysis for parameters reported <24 hrs are available upon request. All testing is completed within the required

Actual times of analysis for parameters reported that are available oper request int testing to complete a time intervention of a complete a time intervention in the required of a complete set of the set of th

.

MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

Page 3 of 3

~ --- -- . . .

Serial Number: 622446

Thomas / Annes Thomas J. Hines, President

MMm 1/5/6

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.gclaboratories.com

Analysis Report

۰.

Page 1 of 3

Lancaster Laboratories Sample No. WW 4552552

Sample #1 905 Analytical Lab Grab Water Sample Semi-Annual

Collected:06/27/2005 15:14 by EA

Account Number: 02423

Worcester MA 01608

Submitted: 06/28/2005 15:00 Reported: 07/18/2005 at 19:49 Discard: 07/26/2005 Charles River Laboratories 57 Union Street

905AN

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
00259		7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046		7440-39-3	< 0.0050	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0200	0.0200	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1
07072	Zinc	7440-66-6	< 0.0200	0.0200	mg/l	1
00224	Chloride	16887-00-6	< 2.0	2.0	mg/l	5
00226	Ortho-Phosphate as P	7723-14-0	< 0.030	0.030	mg/l	1
00228	Sulfate .	14808-79-8	< 5.0	5.0	mg/1	5
00368	Nitrate Nitrogen	14797-55-8	< 0,50	0.50	mg/1	5
01504	Fluoride	16984-48-8	< 0.50	0.50	mg/l	5
01505	Bromide	24959-67-9	< 2.5	2.5	mg/l	5
01506	Nitrite Nitrogen	14797-65-0	< 0.50	0.50	mg/l	5
00178	Pesticides/PCB's in Water					
00453	Gamma BHC - Lindane	58-89-9	< 0.0096	0.0096	ug/l	1
00454	Heptachlor	76-44-B	< 0.0096	0.0096	ug/l	1
00455	Aldrin	309-00-2	< 0.0096	0.0096	ug/l	1
00469	Dieldrin	60-57-1	< 0.019	0.019	ug/l	1
00477	Endrin	72-20-8	< 0.019	0.019	ug/l	1
00478	p,p-DDT	50-29-3	< 0.024	0.024	ug/l	1
00638	Endrin Aldehyde	7421-93-4	< 0.096	0.096	ug/l	1
01902	Alpha BHC	319-84-6	< 0.0096	0.0096	ug/1 ug/1	1
01903	Beta BHC	319-85-7	< 0.038	0.038	ug/1 ug/1	1
01904	Delta BHC	319-86-8	< 0.0096	0.0096	ug/l	1
01905	Heptachlor Epoxide	1024-57-3	< 0.0096	0.0096	ug/1 ug/1	1
01906	p,p-DDE	72-55-9	< 0.019	0.019	ug/l	1
01907	p,p-DDD	72-54-8	< 0.019	0.019	-	
01908	Chlordane	57-74-9	< 0.48	0.48	ug/1	1
01909	Toxaphene	8001-35-2	< 0.96	0.96	ug/l	1
01910	Endosulfan I	959-98-8	< 0.0096	0.0096	ug/l	1
01911	Endosulfan II	33213-65-9	< 0.040	0.040	ug/l	1
01912	Endosulfan Sulfate	1031-07-8	< 0.019		ug/1	1.
01913	PCB-1016	12674-11-2	< 0.48	0.019	ug/l	1
		12014-11-2	N.40	0.48	ug/l	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2900 Fax: 717-656-2681

D. LA- 7-21-05

EXACT COPY

2216 Rev. 3/10/03

Analysis Report

Page 2 of 3

Lancaster Laboratories Sample No. WW 4552552

Sample #1 905 Analytical Lab Grab Water Sample Semi-Annual

Collected:06/27/2005 15:14 by EA

Submitted: 06/28/2005 15:00 Reported: 07/18/2005 at 19:49 Discard: 07/26/2005

Account Number: 02423

Charles River Laboratories 57 Union Street Worcester MA 01608

905AN

JUJAN				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
01914	PCB-1221	11104-28-2	< 1.2	1.2	ug/l	1
01915	PCB-1232	11141-16-5	< 0.87	0.87	ug/l	1
01916	PCB-1242	53469-21-9	< 0.48	0.48	ug/1	1
01917	PCB-1249	12672-29-6	< 0.48	0.48	ug/l	1
01918	PCB-1254	11097-69-1	< 0.48	0.48	ug/l	1
01919	PCB-1260	11096-82-5	< 0.48	0.48	ug/l	1
01856	reextraction are within the reextraction so all result results were obtained in the Herbicides in Water	s are reported from				
01857	2,4-D	94-75-7	< 0.50	0.50	ug/1	l
01858	2,4,5-TP	93-72-1	< 0.050	0.050	ug/1	1
05286	2,4,5-T	93-76-5	< 0.050	0.050	ug/1	1
05287	Dalapon	75-99-0	< 1.2	1.2	ug/1	1
05288	Dinoseb	88-85-7	< 0.50	0.50	ug/l	1
05289	Dicamba	1918-00-9	< 0.30	0.30	ug/l	1
05290	MCPP	93-65-2	< 200.	200.	ug/1	1
05291	MCPA	94-74-6	< 990.	990.	ug/l	1

05293 2,4-DB 94-82-6 < 0.99 0.99 ug/l 08103 Pentachlorophenol 87-86-5 < 0.050 0.050 u**g/**1 The LCS recovery for MCPA is outside the QC limits. There is no more sample to

do a reextraction. The client was notified and approved reporting this data.

120-36-5

Commonwealth of Pennsylvania Lab Certification No. 36-037

Laboratory Chronicle

< 0.50

0.50

ug/l

ug/l

1

1

1

Cat				Analysis		Dilution
No.	Analysis Nama	Method	Trial #	Date and Time	Analyst	Factor
00259	Mercury	SW-846 7470A	1	07/06/2005 07:40	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	07/05/2005 15:18	Deborah A Krady	ī
07036	Selenium	SW-846 6010B	1	07/15/2005 16:24	Eric L Eby	ĩ
07046	Barium	SW-846 6010B	1	07/05/2005 15:18	Deborah A Krady	ī

05292 2,4-DP (Dichlorprop)

CAT

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

EXACT COPY

D. Llo 7-21-05

Analysis Report

Page 3 of 3

1

1 1

1 1

1

1

1

1

Lancaster Laboratories Sample No. WW 4552552

Sample #1 905 Analytical Lab Grab Water Sample Semi-Annual

Collected:06/27/2005 15:14 by EA Submitted: 06/28/2005 15:00 Reported: 07/18/2005 at 19:49

Discard: 07/26/2005

905AN 07049

Account Number: 02423 Charles River Laboratories 57 Union Street Worcester MA 01608 1 07/05/2005 15:18 Deborah A Krady

07049	Cadmium	SW-846 6010B	1	07/05/2005 15:18	Deberah & Vuedu	
07051	Chromium	SW-846 6010B	ĩ		Deborah A Krady	
07055	Lead			07/05/2005 15:18	Deborah A Krady	
07066	Silver	SW-846 6010B	1	07/05/2005 15:18	Deborah A Krady	
		SW-846 6010B	1	07/05/2005 15:18	Deborah A Krady	
07072	Zinc	SW-846 6010B	1	07/13/2005 13:41	Joanne M Gates	
00224	Chloride	EPA 300.0	1	06/29/2005 09:28	Shannon L Phillips	
00226	Ortho-Phosphate as P	EPA 365.3	1	06/28/2005 21:45	Daniel S Smith	
00228	Sulfate	EPA 300.0	1	06/29/2005 09:28		
00368	Nitrate Nitrogen	EPA 300.0	-		Shannon L Phillips	
01504	Fluoride		-	06/29/2005 09:28	Shannon L Phillips	
01505	······································	EPA 300.0	1	06/29/2005 09:28	Shannon L Phillips	
	Bromide	EPA 300.0	1	06/29/2005 09:28	Shannon L Phillips	
01506	Nitrite Nitrogen	EPA 300.0	1	06/29/2005 09:28	Shannon L Phillips	
00178	Pesticides/PCB's in Water	EPA 608	1	07/01/2005 16:27	Richard A Shober	
01856	Herbicides in Water	SW-846 8151A	1	06/30/2005 17:58	Michele D Hamilton	
00816	Water Sample Herbicide	SW-846 8151A	1	06/29/2005 20:30		
	Extract		-	00/29/2005 20:30	Karen L Beyer	
00817	Water Sample Pest.	EPA 608	T	06/30/2005 01:15	David V Hershey Jr	
	Extraction		-	00/00/2003 01.15	David V Hersney Jr	
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	07/04/2005 19:20	Tomo T. Manda	
	rec)		-	07/03/2003 13:20	James L Mertz	
05713	WW SW846 Hg Digest	SW-846 7470A	1	07/05/2005 20:30		
			*	01/00/2000 20:30	Nelli S Markaryan	

Lancaster Laboratories, inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

EXACT COPY Def "V" for

D. Labor 7-21-05

Analysis Report

Page 1 of 3

Lancaster Laboratories Sample No. WW 4552553

Sample #2 905 Formulation Lab Grab Water Sample Semi-Annual

Collected:06/27/2005 15:03 by EA

Submitted: 06/28/2005 15:00 Reported: 07/18/2005 at 19:49 Discard: 07/26/2005 Account Number: 02423

Charles River Laboratories 57 Union Street Worcester MA 01608

905FR

				As Received		
cat			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07045	Barium	7440-39-3	< 0.0050	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/1	1
07055	Lead	7439-92-1	< 0.0200	0.0200	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1
07072	Zinc	7440-66-6	< 0.0200	0.0200	mg/1	1
00224	Chloride	16887-00-6	< 2.0	2.0	mg/1	5
00226	Ortho-Phosphate as P	7723-14-0	< 0.030	0.030	mg/l	1
00228	Sulfate	14808-79-8	< 5.0	5.0	mg/l	5
00368	Nitrate Nitrogen	14797-55-8	< 0.50	0.50	mg/l	5
01504	Fluoride	16984-48-8	< 0.50	0.50	mg/l	5
01505	Bromide	24959-67-9	< 2.5	2.5	mg/l	5
01506	Nitrite Nitrogen	14797-65-0	< 0.50	0.50	mg/l	5
00178	Pesticides/PCB's in Water					
00453	Gamma BHC - Lindane	58-89-9	< 0.0095	0.0095	ug/1	1
00454	Heptachlor	76-44-8	< 0.0095	0.0095	ug/l	1
00455	Aldrin	309-00-2	< 0.0095	0.0095	ug/l	1
00469	Dieldrin	60-57-1	< 0.019	0.019	ug/1	1
00477	Endrin	72-20-8	< 0.019	0.019	ug/l	1
00478	p,p-DDT	50-29-3	< 0.024	0.024	ug/1	1
00638	Endrin Aldehyde	7421~93-4	< 0.095	0.095	ug/1	1
01902	Alpha BHC	319~84-6	< 0.0095	0.0095	ug/l	1
01903	Beta BHC	319-85-7	< 0.038	0.038	ug/l	1
01904	Delta BHC	319-86-8	< 0.0095	0.0095	ug/l	1
01905	Heptachlor Epoxide	1024-57-3	< 0.0095	0.0095	ug/1	1
01906	p,p-DDE	72-55-9	< 0.019	0.019	ug/l	1
01907	p,p-DDD	72-54-8	< 0.019	0.019	ug/1	1
01908	Chlordane	57-74-9	< 0.48	0.4B	ug/l	1
01909	Toxaphene	8001-35-2	< 0.95	0.95	ug/l	1
01910	Endosulfan I	959-98-8	< 0.0095	0.0095	ug/1	1
019 1 1	Endosulfan II	33213-65-9	< 0.040	0.040	ug/l	1
01912	Endosulfan Sulfate	1031-07-8	< 0.019	0.019	ug/1	1
01913	PCB-1016	12674-11-2	< 0.48	0.48	ug/l	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO 80x 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

EXACT COPY

D. Labor 7-21-05

Analysis Report

Page 2 of 3

Lancaster Laboratories Sample No. WW 4552553

Sample #2 905 Formulation Lab Grab Water Sample Semi~Annual

Collected:06/27/2005 15:03 by EA

Submitted: 06/28/2005 15:00 Reported: 07/18/2005 at 19:49 Discard: 07/26/2005

Account Number: 02423

0.30

Charles River Laboratories 57 Union Street Worcester MA 01608

905**F**R

05289

Dicamba

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
01914	FCB-1221	11104-28-2	< 1.1	1.1	u g/1	1
01915	PCB-1232	11141-16-5	< 0.86	0.86	ug/l	1
01916	PCB-1242	53469-21-9	< 0.48	0.48	ug/1	1
01917	PCB-1248	12672-29-6	< 0.48	0.48	ug/l	1
01918	PCB-1254	11097-69-1	< 0.48	0.48	ug/l	1
01919	PCB-1260	11096-82-5	< 0.48	0.48	ug/l	1
	reextraction are within t reextraction so all resul results were obtained in)	ts are reported from	-	-		
01856	Herbicides in Water					
01857	2,4-D	94-75-7	< 0.50	0,50	ug/1	1
01858	2,4,5-TP	93-72-1	< 0.050	0.050	ug/l	1
05286	2,4,5-T	93-76-5	< 0.050	0.050	ug/l	1
05287	Dalapon	75-99-0	< 1.2	1.2	ug/l	1
05288	Dinoseb	88-85-7	< 0.50	0.50	ug/l	1

< 0.30 ug/l 05290 MCPP 93-65-2 < 200. 200. ug/l 05291 MCPA 94-74-6 < 990. 990. ug/l 05292 2,4-DP (Dichlorprop) 120-36-5 < 0.50 0.50 ug/l 05293 2,4-DB 94-82-6 < 0.99 0.99 ug/1 08103 87-86-5 < 0.050 0.050 Pentachlorophenol ug/l The LCS recovery for MCPA is outside the QC limits. There is no more sample to

1918-00-9

do a reextraction. The client was notified and approved reporting this data.

Commonwealth of Pennsylvania Lab Certification No. 36-037

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00259	Mercury	SW-846 7470A	1	07/06/2005 07:42	Damary Valentin	1
07035.	Arsenic	SW-846 6010B	1	07/05/2005 15:23	Deborah A Krady	1
07036	Selenium	SW-846 6010B	1	07/15/2005 16:29	Eric L Eby	1
07046	Barium	SW-846 6010B	1	07/05/2005 15:23	Deborah A Krady	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

D. L. A. 7-21-05

1

1

1

1

1

1

EXACT COPY REF 11/11/45

Page 266

Analysis Report

.

Page 3 of 3

•

Lancaster Laboratories Sample No. WW 4552553

Sample #2 905 Formulation Lab Grab Water Sample Semi-Annual

Colle	cted:06/27/2005 15:03	by EA	A	ccount Number: (02423	
Report	tted: 06/28/2005 15:00 ted: 07/18/2005 at 19:4 td: 07/26/2005	9	5	harles River Lak 7 Union Street		
Disca	u: 07/20/2005		W	orcester MA 016(78	
~~~						
905FR						
07049	Cadmium	SW-846 6010B	1	07/05/2005 15:23	Deborah A Krady	1
07051	Chromium	SW-846 6010B	1	07/05/2005 15:23	Deborah A Krady	1
07055	Lead	SW-846 6010B	1	07/05/2005 15:23	Deborah A Krady	1
07066	Silver	SW-846 6010B	1	07/05/2005 15:23	Deborah A Krady	1
07072	Zinc	SW-846 6010B	1	07/13/2005 13:44	Joanne M Gates	1
00224	Chloride	EPA 300.0	1	06/29/2005 09:41	Shannon L Phillips	5
00226	Ortho-Phosphate as P	EFA 365.3	1	06/28/2005 21:45	Daniel S Smith	1
00228	Sulfate	EPA 300.0	1	06/29/2005 09:41	Shannon L Phillips	
00368	Nitrate Nitrogen	EPA 300.0	1	06/29/2005 09:41	Shannon L Phillips	5 5
01504	Fluoride	EPA 300.0	1	06/29/2005 09:41	Shannon L Phillips	5
01505	Bromide	EPA 300.0	1	06/29/2005 09:41	Shannon L Phillips	5
01506	Nitrite Nitrogen	EPA 300.0	1	06/29/2005 09:41	Shannon L Phillips	5
00178	Pesticides/PCB's in Water	EPA 608	1	07/01/2005 16:46	Richard A Shober	1
01856	Herbicides in Water	SW-846 8151A	1	06/30/2005 18:26	Michele D Hamilton	ī
00816	Water Sample Herbicide	SW-846 8151A	1	06/29/2005 20:30	Karen L Beyer	ī
	Extract				makon b bejer	-
00817	Water Sample Pest.	EPA 608	1	06/30/2005 01:15	David V Hershey Jr	1
	Extraction				Savia V nersney or	•
01948	WW SW846 ICP Digest (tot	SW-846 3005A	1	07/04/2005 19:20	James L Mertz	1
	rec)		_			-
05713	WW SW846 Hg Digest	SW-846 7470A	1	07/05/2005 20:30	Nellí S Markaryan	1

ACIL

Lancaster Laboratories, inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

EXACT COPY

D. L. Dr 7-21-05

### Analysis Report



	Page 1 of 1
Lancaster Laboratories Sample No. WW 4562311	
Sample #1 905 Analytical Lab Grab Water Sample 🥖 Semi-Annual	$\supset$
Collected:07/12/2005 14:10 by EA	Account Number: 02423
Submitted: 07/13/2005 17:00 Reported: 07/21/2005 at 08:32 Discard: 07/29/2005	Charles River Laboratories 57 Union Street Worcester MA 01608

#### 1-905

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation	Units	Dilution Factor
01856	Herbicides in Water					
01857	2,4~D	94-75-7	< 0.50	0.50	ug/1	1
01858	2,4,5-TP	93-72-1	< 0.050	0.050	ug/1	1
05286	2,4,5-T	93-76-5	< 0.050	0.050	ug/1	1
05287	Dalapon	75-99-0	< 1.2	1.2	ug/1	1
05288	Dinoseb	88-85-7	< 0.50	0,50	ug/1	1
05289	Dicamba	1918-00-9	< 0.30	0.30	ug/1	1
05290	MCPP	93-65-2	< 200.	200.	ug/1	1
05291	MCPA	9474-6	< 990.	990.	ug/1 ug/1	,
05292	2,4-DP (Dichlorprop)	120-36-5	< 0.50	0.50	ug/1	1
05293	2,4-DB	94-82-6	< 0.99	0,99	ug/l	î
08103	Pentachlorophenol	87-86-5	< 0.050	0.050	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037

		Laboratory	, Chro	nicle		
CAT No. 01856 00816	<b>Analysis Name</b> Herbicides in Water Water Sample Herbicide Extract	- Method SW-846 8151A SW-846 8151A	Trial# 1 1	Analysis Date and Time 07/20/2005 02:57 07/18/2005 05:45	<b>Analyst</b> Michele D Hamilton Danette S Blystone	Dilution Factor 1 1

Darchabo 8-1-05

Repeat sample (first sampled June 2005) for harbicide analysis only based on Languster Laboratories' notification of possible issue with harbicide quality control Lancester Laboratories, Inc. 2425 New Holland Pike DO BOX 12425 Lancester, PA 17605-2425 Lancester, PA 17605-2425 Lancester, PA 17605-2425 177-656-2300 Fax: 717-556-2681

### Analysis Report

Account Number: 02423

57 Union Street

Worcester MA 01608

Charles River Laboratories



Page 1 of 1

Sample #2 905 Formulation Lab Grab Water Sample 🕖

Collected:07/12/2005 14:15 by EA

Lancaster Laboratories Sample No. WW

Submitted: 07/13/2005 17:00 Reported: 07/21/2005 at 08:32 Discard: 07/29/2005

### 2-905

CAT No.	Analysis Name		As Received	As Received Limit of		Dilution
	WHETTOTO NAME	CAS Number	Result	Quantitation	Units	Factor
01856	Herbicides in Water					
01857	2,4-D	94~75-7	< 0.49	0.49	ug/1	1
01858	2,4,5-TP	93-72-1	< 0.049	0.049	ug/1	1
05286	2,4,5-T	93-76-5	< 0.049	0.049	ug/1	1
05287	Dalapon	75-99-0	< 1.2	1.2	ug/1	1
05288	Dinoseb	88-85-7	< 0.49	0.49	ug/1	ĩ
05289	Dicamba	1918-00-9	< 0.29	0.29	ug/l	ĩ
05290	MCPP	93-65-2	< 200.	200.	ug/l	1
05291	MCPA	94-74-6	< 980.	980.	ug/1	1
05292	2,4-DP (Dichlorprop)	120-36-5	< 0.49	0.49	ug/1	1
05293	2,4-DB	94-82-6	< 0.98	0.98	ug/1	1
08103	Pentachlorophenol	87-86-5	< 0.049	0.049	ug/l	1

4562312

Commonwealth of Pennsylvania Lab Certification No. 36-037

		Laborator	y Chro	nicle		
CAT No. 01856 00816	<b>Analysis Name</b> H <b>erbicides in</b> Water Water Sample Herbicide Extract	Method SW-846 8151A SW-846 8151A	Trial# 1 1	Analysis Date and Time 07/20/2005 04:04 07/18/2005 05:45	<b>Analyst</b> Michele D Hamilton Danette S Blystone	Dilution Factor 1 1
() R=     SE	peat sample (firs ly based on Lan sue with herbicid	t sampled Ju caster Labor equality cont	ne 20 Atori rol su	os) for her as notificat ommary in J De	bicide analy ion of possib one 2005.248	sis le -1-05



;

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

EXACT COPY OFF "/"/or



## **Explanation of Symbols and Abbreviations**

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C meq g ug ug	none detected Too Numerous To Count International Units micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s) mitliliter(s)	BMQL MPN CP Units NTU F Ib. kg mg	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s)
mi	milliliter(s)	i	liter(s)
m3	cubic meter(s)	ul	microliter(s)

< less than - The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

> greater than

J estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

### U.S. EPA CLP Data Qualifiers:

### **Organic Qualifiers**

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- N Presumptive evidence of a compound (TICs only)
   P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

### Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA <0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No Aurchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

3768.02



and the second second

### **APPENDIX 7 - HISTOPATHOLOGY REPORT**

,

### RESEARCH PATHOLOGY SERVICES, INC.

438 East Butler Avenue, New Britain, PA 18901 Phone: 215-345-7070 • Fax: 215-345-4326

INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL PROTOCOL NUMBER RTP00004 SPONSOR'S WORK ASSIGNMENT: WA 5-15 HISTOPATHOLOGY REPORT Experimental Initiation Date: November 14, 2005 Experimental Completion Date: March 27, 2006

SUBMITTED TO:

Joseph W. Lech, B.S., LAT **Charles River Laboratories** Preclinical Services, Pennsylvania 905 Sheehy Drive, Building A Horsham, PA 19044-1241

SUBMITTED BY:

Ray Brown, D.V.M., Ph.D. W. Ra

Veterinary Pathologist

March 27, 2006

### TABLE OF CONTENTS

### <u>Page</u>

### <u>REPORT</u>

Method	1
Results	3
Summary	4
Quality Assurance Unit Statement	5
Good Laboratory Practice Compliance Statement	6

### <u>TABLES</u>

1.	Incidence and Degree of Severity of Histomorphologic Observations7
2.	Histomorphologic Observations8

### INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL PROTOCOL NUMBER RTP00004 SPONSOR'S WORK ASSIGNMENT: WA 5-15 HISTOPATHOLOGY REPORT

### METHOD:

Microscopic examination was made of sections of the specified tissues from 45 male CrI:CD(SD) rats used in a study to evaluate the responses of the adult male rat assay to two chemicals that have known endocrine activity. A brief outline of the study design is shown below.

Test Substance	Dosage Group	Number of Rats	Chemical Name	Dosageª (mg/kg/day)	Concentration (mg/mL)
А	1	15	0.25% Methylcellulose	0 (Vehicle)	0
В	2	15	Linuron	50	10
с	3	15	Linuron	100	20
D	4	15	Linuron	150	30
Е	5	15	Phenobarbital	25	5
F	6	15	Phenobarbital	50	10
G	7	15	Phenobarbital	100	20

The test substances were considered 100% active/pure for the purpose of dosage calculations.

The male rats were administered one of the test substances and/or the control substance once daily by gavage for 15 days. The first day of dosage for each replicate will be Test Day 1 (TD 1) of the study. Rats were sacrificed on the day of the last dosage (TD 15), two to three hours after the last dosage. Daily dosages were based on the daily body weight, except on TD 15, which used the previous day's body weight.

The in-life portion of the study, necropsies, and recording of the gross necropsy observations were performed by the staff of Charles River Laboratories, Preclinical Services, Pennsylvania. At necropsy, the specified tissues were collected and retained in 10% neutral buffered formalin with the exception of the testes which were fixed in Bouin's solution for approximately 24 hours before being transferred to and retained in 70% alcohol.. These preserved tissues were submitted to Research Pathology Services, Inc. for tissue processing, microscopic slide preparation and histopathologic evaluation. Samples of the left and right

-1

Research Pathology Services, Inc.

testis, epididymides and thyroid of the Groups 1, 4, and 7 male rats were routinely processed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin for microscopic evaluation.

Upon completion of the project, all raw data (remaining wet tissue, paraffin blocks, microscopic slides and histology records) will be returned to Charles River Laboratories, Preclinical Services, Pennsylvania for archiving.

Research Pathology Services, Inc.

### **RESULTS**:

The type, incidence and degree of severity of histomorphologic changes in the specified tissues of the male rats of Groups 1, 4 and 7 are presented in Table 1. The microscopic observations in each surviving or nonsurviving rat are listed in tabular form in Table 2. A key to the histomorphologic observations is included on Table 2.

There were no treatment-related microscopic changes observed in the testes, epididymides or thyroid of the rats given the vehicle (0.25% methylcellulose) or 150 mg/kg/day of Linuron (Group 4) or in the testes and epididymides of the rats given 100 mg/kg/day of Phenobarbital (Group 7).

Microscopic examination of the thyroid of the rats given Phenobarbital (Group 7) revealed an increased incidence and severity (minimal to moderate) of hypertrophy and hyperplasia of the thyroid follicular epithelium (Table 1). Histomorphologically, the change in the thyroid was characterized by increased size of the follicular epithelium (hypertrophy) and an increase in the amount of follicles and cellularity of the follicles (hyperplasia). Two control male rats had minimal or mild hypertrophy but this does occasionally occur spontaneously in male rats. The incidence and severity was clearly increased in the rats given Phenobarbital.

All other microscopic changes observed in the tissues specified for examination were considered to be spontaneous in origin and typical of incidental changes seen in male rats of this age and strain. These changes are listed in the attached histomorphology tables.

### SUMMARY:

Microscopic examination was made of the testes, epididymides and thyroid from 45 male CrI:CD(SD) rats used in a 15-day adult intact male rat assay with Linuron and Phenobarbital. The rats selected for histomorphologic evaluation were from 15 male rats given 150 mg/kg/day of Linuron and 15 male rats given 100 mg/kg/day of Phenobarbital. Fifteen male rats were given the vehicle (0.25% methylcellulose) alone and served as controls.

No test substance-related microscopic changes were observed in the testes, epididymides or thyroid of the rats given the vehicle alone or 150 mg/kg/day of Linuron or in the testes or epididymides of the rats given 100 mg/kg/day of Phenobarbital.

An increased incidence and severity of hypertrophy and hyperplasia of the thyroid follicular epithelium occurred in the rats given 100 mg/kg/day of Phenobarbital and was considered to be treatment-related.

All other microscopic changes observed in the testes, epididymides and thyroid were considered to have occurred spontaneously and were not treatment-related.

-4

### QUALITY ASSURANCE UNIT STATEMENT

All aspects of the tissue processing, microscopic slide preparation, histopathologic evaluation and report preparation for the study listed above have been performed according to the Standard Operating Procedures of Research Pathology Services, Inc. and were audited in accordance with the procedures established by the Quality Assurance Unit of Research Pathology Services, Inc. in compliance with the following Good Laboratory Practice regulations.

U.S. Environmental Protection Agency. Federal Insecticide, Fungicide and Rodenticide Act/Toxic Substances Control Art (FIFRA/TSCA); Good Laboratory Practice Standards; Final Rule. 40 CFR Part 160/Part 792.

Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF). Good laboratory practice (GLP) standards for agricultural chemicals. Agricultural Production Bureau Ref. No. 11-Nousan-No. 6283. October 1, 1991; last revised June 30, 2003 Ref. No. 15-Seisan-2460.

OECD Environmental Directorate. OECD Principles of good laboratory practices [C(97)186/Final] (1998); Environmental Health and Safety Division

Quality Assurance inspections were performed as shown below. There were no deviations from the protocol, Standard Operating Procedures and/or appropriate Good Laboratory Practice regulations noted during the conduct of the study that had any impact on study integrity.

Dates of Inspection	Study Phase	Date Reported to Management	Date Reported to Study Director and Study Director Management
11/16/05	Trimming	12/19/05	12/19/05
11/22/05	Embedding	12/19/05	12/19/05
11/30/05	Microtomy	12/19/05	12/19/05
12/02/05	Staining	12/19/05	12/19/05
12/05/05	Histopathology	12/19/05	12/19/05
12/05/05	Data Entry	12/19/05	12/19/05
12/06/05	Data Verification	12/19/05	12/19/05
12/06/05	Data Processing	12/19/05	12/19/05
12/08/05	Report Preparation	12/19/05	12/19/05
12/19/05	Pre-Submission Audit	12/19/05	12/19/05
12/19/05	Draft Report	12/19/05	12/19/05
03/27/06	Final Report	03/27/06	03/27/06
	_4	Karen in Sache.	B.S. 03-27-06
	K	aren W. Harkins, BS	
		uality Assurance Un	

Research Pathology Services, Inc.

### GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

All aspects of the above-referenced study performed by Research Pathology Services, Inc. were conducted according to the Good Laboratory Practice regulations listed below:

> U.S. Environmental Protection Agency. Federal Insecticide, Fungicide and Rodenticide Act/Toxic Substances Control Art (FIFRA/TSCA); Good Laboratory Practice Standards; Final Rule. 40 CFR Part 160/Part 792.

Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF). Good laboratory practice (GLP) standards for agricultural chemicals. Agricultural Production Bureau Ref. No. 11-Nousan-No. 6283. October 1, 1991; last revised June 30. 2003 Ref. No. 15-Seisan-2460.

OECD Environmental Directorate. OECD Principles of good laboratory practices [C(97)186/Final] (1998); Environmental Health and Safety Division

No deviations were noted that had any significant impact on the validity of the study.

W. Ray Brown, DVM, PhD, DACVP

Date Veterinary Pathologist

Research Pathology Services, Inc.

-6

!

-7

### INTERLABORATORY VALIDATION OF THE 15-DAY ADULT INTACT MALE RAT ASSAY WITH LINURON AND PHENOBARBITAL PROTOCOL NUMBER RTP00004 SPONSOR'S WORK ASSIGNMENT: WA 5-15 HISTOPATHOLOGY REPORT

· · · · · · · · · · · · · · · · · · ·			
Test Substance:	А	D	G
Dose Group:	1	4	7
Sex:	M	М	Μ
Number of Animals/Group:	15	15	15
TESTIS (LEFT):			
NO. EXAMINED	15	15	15
NO. NORMAL	14	15	15
-degeneration, seminiferous tubules, multifocal		10	10
minimal	1	0	0
Total Incidence, All Grades	1	0	0
rotal incidence, Air Grades	I	U	U
TESTIS (RIGHT):			
NO. EXAMINED	15	15	15
NO. NORMAL	14	15	14
-degeneration, seminiferous tubules, multifocal			
minimal	1	0	0
Total Incidence, All Grades	1	0	0
-infiltration, mononuclear-cell, tunica, focal			
minimal	0	0	1
Total Incidence, All Grades	õ	Ő	1
	•	0	•
EPIDIDYMIDES:			
NO. EXAMINED	15	15	15
NO. NORMAL	5	6	1
-infiltration, mononuclear-cell, focal/multifocal			
minimal	10	9	11
mild	0	0	3
Total Incidence, All Grades	10	9	14
THYROID:	45	40	4-
NO. EXAMINED NO. NORMAL	15	13	15
Advanced autolysis precludes evaluation	13 0	13 0	1 1
	v	v	I
-hypertrophy/hyperplasia, follicular epithelium minimal	1	0	2
mild	1	0	3 5
moderate	0	0	5
Total Incidence, All Grades	2	0	13
	£	Ū	13

Table 1
Incidence and Degree of Severity of Histomorphologic Observations

HISTOPATHOLOGY REPORT

Table 2 Histomorphologic Observations

Test Substance:							0.25%	Methylcell	lulose						
Dosage Group: Animal Number: Sex:	1 10301 M	1 10302 M	1 10303 M	1 10304 M	1 10305 M	1 10306 M	1 10307 M	1 10308 M	1 10309	10310 1	1 10311 M	1 10312 M	1 10313 M	1 10314 M	1 10315 M
<u>TESTIS (LEFT):</u> -degeneration, seminiferous tubules, multifocal	·	ı					I								
<u>TESTIS (RIGHT):</u> -degeneration, seminiferous tubules, multifocal	ı	,	,	,		1	,					<del>~</del>	,	,	
<u>EPIDIDYMIDES:</u> -infiltration, mononuclear-cell, focal/multifocal	-		ı	~	ı	<del></del>	<del></del>		ţ-	_	-		<del>.</del>	~	
<u>THYRQID:</u> -hypertrophy/hyperplasia, follicular epithelium	ı	,	,	<del>~-</del>	ı				•					7	ı

KEY: - = Not remarkable (within normal limits or indicated change not present) 1 = Minimal degree or amount of indicated change 2 = Mild degree or amount of indicated change

4 = Marked degree or amount of indicated change

•

· · · · · ·

* = Tissue not available (wet tissue submitted in vial is not thyroid) 3 = Moderate degree or amount of indicated change

ထု

Histomorphologic Observations Table 2 (Continued)

Test Substance:						Linu	on (150	inuron (150 ma/ka/dav)	2					
Dosage Group: Animal Number: Sex:	4 10346	4 10347 M	4 10348 M	4 4 103449 10350 M M	4 350 10351 M	7-2	2 10353 M	4 4 2 3 10354 1 M	4 10355 M	4 10356 M	4 10357 M	4 10358 M	4 10359 M	4 10360
<u>TESTIS (LEFT):</u>	ı	,	1	1	I				ļ,	E .	Ξ.	Ξ.	2	×.
<u>TESTIS (RIGHD:</u>	ı			1	t	ı	ì	1		,	,			
<u>EPIDIDYMIDES:</u> -infiltration, mononuclear-cell, focal/multifocal		<del>.</del>	<del>~</del>	÷.	<del>~</del>		<del>.</del>	۴-	ı	,		Ŧ	Ŧ	
THYROID:		,	1	•	ı	ı	ŗ	•	ı				- *	

KEY: - = Not remarkable (within normal limits or indicated change not present) 1 = Minimal degree or amount of indicated change 2 = Mild degree or amount of indicated change

4 = Marked degree or amount of indicated change

. . . .

. . . . . . .

ł

1

3 = Moderate degree or amount of indicated change

* = Tissue not available (wet tissue submitted in vial is not thyroid)

ဂု

PRUIDCOL NUMBER RTP00004 SPONSOR'S WORK ASSIGNMENT: WA 5-15 HISTOPATHOLOGY REPORT

Histomorphologic Observations Table 2 (Continued)

				-	- - 		?							
Test Substance:						Phenobarbital (	arbital (10	(100 mg/ka/dav	(dav)					
Dosage Group: Animal Number: Sex:	7 10391 M	7 1 10392 M	7 10393 M	7 10394 M	7 10395 M	7 10396 M	7 10397 11 M M	0398 1( M	7 0399 10	0400 7 0400 10	0401 7 0401 104	0402 10403	7 7 10404 M	7 10405
<u>TESTIS (LEFT):</u>	ı	·		ı	T			,				Ξ,	Ξ.	E,
<u>TESTIS (RIGHT):</u> -infiltration, mononuclear-cell, focal, tunica	•		<del></del>	ı	ı		•	•	,	,	,		• 1	
<u>EPIDIDYMIDES:</u> -infiltration, mononuclear-cell, focal/multifocal	<del>~~</del>		-	<del></del>	-		0	<del></del>	***	<del>.</del>	~	•	· •	ı <del>.</del>
<u>THYROID:</u> -hypertrophy/hyperplasia, follicular epithelium	Ю	2	ო	2	<del>~</del>	.,	-	с С	. 1	S N	1 n	- <del>-</del>	- n	- N

KEY: - = Not remarkable (within normal limits or indicated change not present) 1 = Minimal degree or amount of indicated change 2 = Mild degree or amount of indicated change

4 = Marked degree or amount of indicated change

* = Tissue not available (wet tissue submitted in vial is not thyroid) 3 = Moderate degree or amount of indicated change

<del>9</del>

### **APPENDIX 8 - HORMONE ANALYSES REPORT**

RTI Project No. RTI-959-AN

# Final Report: Hormone Concentration Determination in Rat Serum Samples for GLP Study (Inter-Laboratory Validation of the 15-Day Intact Male Rat Assay)

Center for Chemistry Services RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709

Prepared for: Joseph Lech, B.S., Scientist, Study Director Charles River Laboratories Preclinical Services 905 Sheehy Drive, Building A Horsham, PA 19044

Dates Samples Collected: 11-08-05 to 11-10-05

Dates Samples Assayed: 11-17-05 to 12-10-05





Study Title:	Hormone Concentration Determination in Rat Serum Samples for GLP Study (Inter-Laboratory Validation of the 15-Day Intact Adult Male Rat Assay)
Sponsor:	Charles River Laboratories
Study Code:	An05-959
Protocol Number:	RTI-959

This study was audited by the Sciences and Engineering – Quality Assurance Unit and the results of the inspections and audits were reported to the task leader/study director and management as identified below. To the best of our knowledge, the reported results accurately describe the study methods and procedures used, and the reported results accurately reflect the raw data.

Inspections and Audits	Inspection and Audit Date(s)	Date Inspection/Audit Report Sent to RTI Task Leader/ study director and Management *
Analytical Project Plan Audit	November 10, 2005	November 10, 2005
Analytical Project Plan Audit Follow-up	November 11, 2005	November 11, 2005
Sample Receipt - Process	November 15, 2005	November 15, 2005
Hormone Analysis – Process	November 28, 2005	November 30, 2005
Data Audit	November 28, 2005	November 28, 2005
Data Audit	November 29-30, 2005	November 30, 2005
Data Audit	December 9 & 12, 2005	December 12, 2005
Data Audit	December 12, 2005	December 12, 2005
Data Audit	December 13, 2005	December 13, 2005
Report Audit	December 19, 2005	December 20, 2005
Report Audit – Follow up	April 20, 2006	April 20, 2006

* The audits and inspection reports listed above were submitted to the external study director at Charles River Laboratories on January 12, 2006. The report audit issued on April 20, 2006 was also submitted to the external study director at Charles River Laboratories on April 20, 2006.

Prepared by:

) l.000.

Michelle Oh Quality Assurance Specialist

04/2-6/06 Date

Clin V.Do

Reviewed by:

Celia Keller Quality Assurance Assistant Manager Report Title: Hormone Concentration Determination in Rat Serum Samples for GLP Study (Inter-Laboratory Validation of the 15-Day Intact Male Rat Assay)

### **Report Prepared and Submitted by:**

Nand Store

<u>4-26-26</u> Date

Carol D. Sloan Principal Investigator Manager, Laboratory of Reproductive and Endocrine Toxicology

Approved by:

B.F. th

Brian F. Thomas, Ph.D. Director, Center for Chemistry Services

<u>4 -26 - 06</u> Date

# **Table of Contents**

			Page
1	INTRO	DDUCTION	4
2	METH	IODS	4
	2.1	Estradiol Radioimmunoassay Procedure	5
	2.2	Rat Follicle Stimulating Hormone Radioimmunoassay Procedure	6
	2.3	Rat Luteinizing Hormone Radioimmunoassay Procedure	8
	2.4	Rat Prolactin Radioimmunoassay Procedure	9
	2.5	Rat Thyroid Stimulating Hormone Radioimmunoassay Procedure	11
	2.6	Total Testosterone Radioimmunoassay Procedure	12
	2.7	Total Triiodothyronine Radioimmunoassay Procedure	14
	2.8	Total Thyroxine Radioimmunoassay Procedure	15
	2.9	Dihydrotestosterone Radioimmunoassay Procedure	16
3	RESU	LTS	18

# List of Text Tables

Table 1.	Parameters for Estradiol RIAs Used for Male Rat Hormone Determinations
Table 1A.	Estradiol Standard Curve Values; Assay Date 12-06-056
Table 2.	Parameters for FSH RIAs Used for Male Rat Hormone Determinations7
Table 2A.	Rat FSH Standard Curve Values; Assay Date 12-02-057
Table 3.	Parameters for LH RIAs Used for Male Rat Hormone Determinations9
Table 3A.	Rat LH Standard Curve Values; Assay Date 11-29-059
Table 4.	Parameters for Prolactin RIAs Used for Male Rat Hormone Determinations
Table 4A.	Rat Prolactin Standard Curve Values; Assay Date 12-07-0511
Table 5.	Parameters for TSH RIAs Used for Male Rat Hormone Determinations12
Table 5A.	Rat TSH Standard Curve Values; Assay Date 12-05-0512
Table 6.	Parameters for Testosterone RIAs Used for Male Rat Hormone Determinations
Table 6A.	Total Testosterone Standard Curve Values; Assay Date 11-17-05
Table 7.	Parameters for Triiodothyronine (T3) RIAs Used for Male Rat Hormone Determinations
Table 7A.	Total Triiodothyronine Standard Curve Values; Assay Date 11-28-0515

# List of Text Tables (cont'd)

Table 8.	Parameters for Thyroxine (T4) RIAs Used for Male Rat Hormone Determinations	16
Table 8A.	Total Thyroxine Standard Curve Values; Assay Date 11-18-05	16
Table 9.	Parameters for Dihydrotestosterone (DHT) RIAs Used for Male Rat Hormone Determinations	17
Table 9A.	Dihydrotestosterone Standard Curve Values; Assay Date 12-04-05	18

# List of Summary Tables

Table 1.	Summar	y of Individual Hormone Results	.20
----------	--------	---------------------------------	-----

## **1** INTRODUCTION

One hundred and four rat serum samples with nine aliquots each (when possible) were received in the Laboratory of Reproductive and Endocrine Toxicology on November 15, 2005. The samples were required to have nine hormones determined on each one when enough serum was available. The nine hormones to be determined were Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Testosterone, Dihydrotestosterone (DHT), Prolactin, Estradiol, Thyroxine, Triiodothyronine and Thyroid Stimulating Hormone (TSH). The RTI International Laboratory of Reproductive and Endocrine Toxicology (LORET) personnel thawed out one aliquot for each individual hormone determination, so that each determination would be made on a sample that had been frozen until the time of hormone measurement. Each sample was assayed in duplicate and the average result reported, unless otherwise stated. There were 7 groups of rats with 15 animals per group. Animals were sacrificed on Test Day 15.

## 2 METHODS

Blood was collected from the trunk of the animal at the time of sacrifice from all animals by Charles River Laboratories staff. Serum was shipped to RTI International and stored between -65°C and -85°C until it was analyzed. The serum samples were assayed by commercially available radioimmunoassay (RIA) kits for testosterone, luteinizing hormone, thyroid stimulating hormone, thyroxine, triiodothyronine, follicle simulating hormone, estradiol, prolactin and dihydrotestosterone. Each sample was run in duplicate and assays included high and low quality control (QC) serum samples. For additional QC samples, the kit-supplied zero standards were spiked with respective hormones at concentrations that were expected to encompass 70% ( $\pm$  10%) B/B₀, for the low and 30% ( $\pm$  10%) B/B₀ for the high. The results for all QC samples were used to assess within- and between-assay variability for each laboratory standard. Proteinaceous rat hormones were obtained from the National Hormone and Pituitary Program and the steroids were purchased from commercial suppliers. All assays were counted in a Packard Biosciences Cobra II Series Model 5002 gamma counter using RIASMART software, version 1.0. This work was conducted according to the following regulatory guidelines:

• U.S. Environmental Protection Agency. Federal Insecticide, Fungicide and Rodenticide Act/Toxic Substances Control Act (FIFRA/TSCA); Good Laboratory Practice Standards; Final Rule. 40 CFR Part 160/Part 792.

- Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF). Good laboratory practice (GLP) standards for agricultural chemicals. Agricultural Production Bureau Ref. No. 11-Nousan-No.6283. October 1, 1999; last revised June 30, 2003 Ref. No. 15-Seisan-2460.
- OECD Environmental Directorate. OECD Principles of good laboratory practices [C(97)186/Final] (1998); Environmental Health and Safety Division.

## 2.1 Estradiol Radioimmunoassay Procedure

The estradiol radioimmunoassay (RIA) used was a no-extraction, double antibody ¹²⁵I-RIA (Diagnostic Systems Laboratories [DSL], Webster, Texas) which utilized estradiol antibody, ¹²⁵I-estradiol, estradiol calibrators as the standard curve, and a precipitating solution consisting of goat anti-rabbit gamma globulin combined with dilute polyethylene glycol. Estradiol controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of estradiol to the appropriate matrix. Estradiol controls prepared in the kit supplied zero calibrator were also assayed. From the control values, the intra-assay coefficient of variation, and percent recovery for the assay was determined (see Table 1 below). All of the samples were analyzed in one assay. The sensitivity of the assay was 0.6 pg/mL as reported by DSL. All samples read within curve range of 1.5 to 150 pg/mL. For the RIA procedure, the sample (200  $\mu$ L) was pipetted into a glass culture tube and the estradiol antiserum (100 µL) was added. The tubes were vortexed and incubated at 4°C for 4 hours. The ¹²⁵I-estradiol (100  $\mu$ L) was added, and the tubes were vortexed and incubated at 4°C for approximately 23 hours. After overnight incubation, cold precipitating solution (1mL) was added and the tubes were vortexed. After a 20 minute incubation, the tubes were centrifuged, the supernatant was decanted and the tubes containing pellets were counted in a gamma counter. Results were reported as pg/mL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 1.

Parameter	Rat Serum Controls ^{e,f}	Zero Calibrator Controls
Units	(pg/mL)	(pg/mL)
Intra-assay Variation ^a		
Mass added	0/9.2% 7.5/4.3% 25/3.9%	5/7.5% (75.8-79.27%) ^d 33.3/7.1% (31.3-34.1%) ^d
Inter-assay Variation ^a		
No. of assays	1	1
Mass added	N/A	N/A
% recovery of added mass ^b	7.5/112.0% 25/115.3%	5/100.7% 33.3/100.4%
Index of parallelism ^c	N/A	N/A

#### Table 1. Parameters for Estradiol RIAs Used for Male Rat Hormone Determinations

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume + concentration of high volume x 100.

^d Range of % binding in assay.

 Male CD rat serum RTI Lot # 136 , Estradiol from kit calibrators N/A = Not applicable

Defined Dose (pg/mL)	Average Calculated Dose (pg/mL)	% Bound
1.5	1.52	92.51, 94.17, 98.76, 97.36
5.0	4.83	75.83, 76.03, 80.44, 79.32
15.0	15.73	47.86, 47.40, 51.13, 51.20
50.0	47.81	24.60, 25.48, 27.40, 27.95
150.0	152.65	13.83, 12.83, 14.59, 15.11

#### Table 1A. Estradiol Standard Curve Values; Assay Date 12-06-05

## 2.2 Rat Follicle Stimulating Hormone Radioimmunoassay Procedure

The rat follicle stimulating hormone (rFSH) RIA used was a no-extraction, double antibody ¹²⁵I RIA (Amersham Biosciences, Piscataway, NJ) which utilized rFSH antibody, ¹²⁵I-rFSH, rFSH calibrators as the standard curve, and a precipitating solution consisting of donkey anti-sheep serum coated onto magnetizable polymer particles. rFSH controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of rFSH to the appropriate matrix. rFSH controls in the kit supplied assay buffer were prepared using the reference preparation from the National Hormone and Pituitary Program (Torrance, CA). From the control values, the intra-assay coefficient of variation, and percent recovery for the assay was determined (see Table 2 below). All samples were analyzed in one assay. The sensitivity of the assay was 0.9 ng/mL as reported by Amersham Biosciences. All samples read within curve range of 1.6 to 100 ng/mL. For the RIA procedure, the sample

(100  $\mu$ L) was pipetted into a glass culture tube and the rFSH antiserum (100  $\mu$ L) was added. The tubes were vortexed and incubated at room temperature for 4 hours. The ¹²⁵I-rFSH (100  $\mu$ L) was added, and the tubes were vortexed and incubated at room temperature for approximately 22 hours. After overnight incubation, cold precipitating solution (400  $\mu$ L) was added and the tubes were vortexed. After a 10 minute incubation, the tubes were centrifuged, the supernatant was decanted and the tubes containing pellets were counted in a gamma counter. Results were reported as ng/mL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 2.

 Table 2. Parameters for FSH RIAs Used for Male Rat Hormone Determinations

Parameter	Rat Serum Controls'	Zero Calibrator Controls
Units	(ng/mL)	(ng/mL)
Intra-assay Variation ^a		
Mass added	0/10.1% 6.25/4.1% 25/2.6%	7.5/4.0% (63.4-66.5%) ^d 30/5.1% (26.2-28.6%) ^d
Inter-assay Variation ^a		
No. of assays	1	1
Mass added	N/A	N/A
% recovery of added mass ^b	6.25/71.3% 25/83.1%	7.5/187.3% 30/167.6%
Index of parallelism ^c	N/A	N/A

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume ÷ concentration of high volume x 100.

^d Range of % binding in assay.

^e Male CD rat serum RTI Lot # 136, FSH from kit standards

f NIDDK-rFSH-RP-2 from the National Hormone and Pituitary Program (Torrance, CA). N/A = Not applicable

Table 2A. Rat FSH Stand	ard Curve Values;	Assay Date 12-02-05
-------------------------	-------------------	---------------------

Defined Dose (ng/mL)	Average Calculated Dose (ng/mL)	% Bound
1.6	1.68	98.28, 97.19, 97.29, 101.4
3.1	3.00	93.17, 95.63, 96.40, 95.96
6.2	6.21	84.80, 86.47, 85.49, 87.46
12.5	12.30	67.96, 70.86, 66.85, 71.05
25.0	25.90	44.52, 46.93, 43.73, 44.21
50.0	49.06	28.12, 28.13, 27.48, 26.61
100.0	98.12	16.14, 16.63, 16.79, 18.23

## 2.3 Rat Luteinizing Hormone Radioimmunoassay Procedure

The rat luteinizing hormone (rLH) RIA used was a no-extraction, double antibody ¹²⁵I-RIA (Amersham Biosciences, Piscataway, NJ) which utilized rLH antibody, ¹²⁵I-rLH, rLH calibrators as the standard curve, and a precipitating solution consisting of donkey anti-rabbit serum coated onto magnetizable polymer particles. rLH controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of rLH to the appropriate matrix. rLH controls in the kit supplied assay buffer were prepared using the reference preparation from the National Hormone and Pituitary Program (Torrance, CA). From the control values, the intra-assay coefficient of variation, and percent recovery for the assay was determined (see Table 3 below). All samples were analyzed in one assay. The sensitivity of the assay was 0.9 ng/mL as reported by Amersham Biosciences. All samples read within curve range of 0.8 to 50 ng/mL. For the RIA procedure, the sample (100  $\mu$ L) was pipetted into a glass culture tube, the rLH antiserum (100  $\mu$ L) was added, followed by the ¹²⁵I-rLH (100  $\mu$ L), and the tubes were vortexed and incubated at room temperature for approximately 23 hours. After overnight incubation, cold precipitating solution (400  $\mu$ L) was added and the tubes were vortexed. After a ten minute incubation, the tubes were centrifuged, the supernatant was decanted and the tubes containing pellets were counted in a gamma counter. Results were reported as ng/mL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 3.

Parameter	Rat Serum Controls ^e	Zero Calibrator Controls
Units	(ng/mL)	(ng/mL)
Intra-assay Variation ^a		
Mass added	0/8.8% 3.1/5.5% 12.5/4.5%	3.75/4.1% (70.2-72.9%) ^d 15/4.1% (25.3-27.5%) ^d
Inter-assay Variation ^a		
No. of assays	1	1
Mass added	N/A	N/A
% recovery of added mass ^b	3.1/70.2% 12.5/91.8%	3.75/130.3% 15/128.6%
Index of parallelism ^c	N/A	N/A

#### Table 3. Parameters for LH RIAs Used for Male Rat Hormone Determinations

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume ÷ concentration of high volume x 100.

- ^d Range of % binding in assay.
- ^e Male CD Rat Serum RTI Lot # 136, LH from kit standards.

^f NIDDK-rLH-RP-3 from the National Hormone and Pituitary Program (Torrance, CA). N/A = Not applicable

Defined Dose (ng/mL)	Average Calculated Dose (ng/mL)	% Bound
0.8	0.79	98.30, 98.58, 98.41, 97.67
1.6	1.64	93.48, 93.84, 93.09, 93.13
3.1	3.04	83.55, 86.21, 82.87, 82.98
6.2	6.22	62.41, 64.98, 63.39, 64.96
12.5	12.59	38.62, 39.37, 38.56, 39.93
25.0	24.81	20.44, 21.80, 20.21, 20.34
50.0	49.88	10.11, 11.36, 10.19, 11.25

#### Table 3A. Rat LH Standard Curve Values; Assay Date 11-29-05

## 2.4 Rat Prolactin Radioimmunoassay Procedure

The rat prolactin (rPRL) RIA used was a no-extraction, double antibody ¹²⁵I RIA (Amersham Biosciences, Piscataway, NJ) which utilized rPRL antibody, ¹²⁵I-rPRL, rPRL calibrators as the standard curve, and a precipitating solution consisting of donkey anti-sheep serum coated onto magnetizable polymer particles. rPRL controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of rPRL to the appropriate matrix. rPRL controls in the kit supplied assay buffer were prepared using the reference preparation from the National Hormone and Pituitary Program (Torrance, CA). From the control values, the intra- and inter-assay coefficient of variation, percent recovery, and index

RTP00004

of parallelism for the assays was determined (see Table 4 below). All samples were analyzed in two assays. The sensitivity of the assay was 0.7 ng/mL as reported by Amersham Biosciences. All samples read within curve range of 0.8 to 50 ng/mL, once diluted 10-fold with assay buffer. For the RIA procedure, the sample (100  $\mu$ L) was pipetted into a glass culture tube, the rPRL antiserum (100 $\mu$ L) was added, followed by the ¹²⁵I-rPRL (100 $\mu$ L), and the tubes were vortexed and incubated at room temperature for 22-24 hours. After overnight incubation, cold precipitating solution (400 $\mu$ L) was added and the tubes vortexed. After a 10 minute incubation, the tubes were centrifuged, the supernatant was decanted and the tubes containing pellets were counted in a gamma counter. Results were reported as ng/mL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 4.

Parameter	Rat Serum Controls [®]	Zero Calibrator Controls
Units	(ng/mL)	(ng/mL)
Intra-assay Variation ^a		
Mass added	0/3.4% and 9.6% 3.1/4.9% and 6.5% 12.5/4.9% and 0.5%	2.5/13.1% and 9.1% (61.9-69.6%) ^d 10/7.6% and 5.7% (28.4-34.4%) ^d
Inter-assay Variation ^a		
No. of assays	2	2
Mass added	0/3.4% 3.1/0.5% 12.5/6.0%	2.5/0.7% 10/0.5%
% recovery of added mass ^b	3.1/112.4-132.9% 12.5/95.5-121.9%	2.5/209.4-211.4% 10/205.8-207.2%
Index of parallelism ^c	75.1%	N/A

 Table 4. Parameters for Prolactin RIAs Used for Male Rat Hormone Determinations

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume + concentration of high volume x 100.

^d Range of % binding in assay.

^e Male CD rat serum RTI Lot # 136, prolactin from kit standards

^f NIDDK-rPRL-RP-3 from the National Hormone and Pituitary Program (Torrance, CA). N/A = Not applicable

Defined Dose (ng/mL)	Average Calculated Dose (ng/mL)	% Bound
0.8	0.75	96.43, 97.86, 97.76, 95.97
1.6	1.71	87.60, 90.27, 87.54, 88.61
3.1	2.95	77.90, 82.85, 76.14, 79.99
6.2	6.25	58.11, 62.93, 62.44, 61.49
12.5	12.94	39.09, 42.64, 42.28, 41.67
25.0	24.57	25.55, 27.27, 24.31, 27.93
50.0	49.04	14.02, 16.14, 14.51, 14.55

Table 4A. Rat Prolactin Standard Curve Values; Assay Date 12-07-05

## 2.5 Rat Thyroid Stimulating Hormone Radioimmunoassay Procedure

The rat thyroid stimulating hormone (rTSH) RIA used was a no-extraction, double antibody ¹²⁵I RIA (Amersham Biosciences, Piscataway, NJ) which utilized rTSH antibody, ¹²⁵I-rTSH, rTSH calibrators as the standard curve, and a precipitating solution consisting of donkey anti-rabbit serum coated onto magnetizable polymer particles. rTSH controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of rTSH to the appropriate matrix. rTSH controls in the kit supplied assay buffer were prepared using the reference preparation from the National Hormone and Pituitary Program (Torrance, CA). From the control values, the intra-assay coefficient of variation, and percent recovery for the assay was determined (see Table 5 below). All samples were analyzed in one assay. The sensitivity of the assay was 0.5 ng/mL as reported by Amersham Biosciences. All samples read within curve range of 1 to 64 ng/mL. For the RIA procedure, the sample (100  $\mu$ L) was pipetted into a glass culture tube, the rTSH antiserum (100µL) was added, followed by the ¹²⁵I-rTSH (100µL), and the tubes were vortexed and incubated at room temperature for approximately 21 hours. After overnight incubation, cold precipitating solution ( $400\mu$ L) was added and the tubes were vortexed. After a ten minute incubation, the tubes were centrifuged. the supernatant was decanted, and the tubes containing pellets were counted in a gamma counter. Results were reported as ng/mL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 5.

Parameter	Rat Serum Controls ^e	Zero Calibrator Controls ^f
Units	(ng/mL)	(ng/mL)
Intra-assay Variation ^a		
Mass added	0/4.9% 4/4.9% 16/4.2%	2.5/3.8% (69.3-71.7%) ^d 10/8.8% (29.1-33.8%) ^d
Inter-assay Variation ^a		
No. of assays	1	1
Mass added	N/A	N/A
% recovery of added mass ^b	4/119.5% 16/126.4%	2.5/237.1% 10/207.3%
Index of parallelism ^c	N/A	N/A

## Table 5. Parameters for TSH RIAs Used for Male Rat Hormone Determinations

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume + concentration of high volume x 100.

- ^d Range of % binding in assay.
- ^e Male CD Rat Serum RTI Lot # 136, TSH from kit standards.

^f NIDDK-rTSH-RP-3 from the National Hormone and Pituitary Program (Torrance, CA).

N/A = Not applicable

Table 5A. Nat Torr Standard Surve Values, Assay Date 12-05-05		
Defined Dose (ng/mL)	Average Calculated Dose (ng/mL)	% Bound
1.0	1.03	96.22, 97.93, 98.75, 96.04
2.0	1.98	90.58, 92.23, 90.13, 94.07
4.0	3.91	79.95, 80.82, 78.65, 83.49
8.0	8.17	60.01, 62.29, 59.67, 62.54
16.0	15.98	38.43, 43.13, 37.45, 40.78
32.0	31.75	21.50, 24.44, 21.02, 21.20
64.0	64.07	11.39, 12.33, 9.29, 10.75

Table 5A. Rat TSH Standard Curve Values; Assay Date 12-05-05

### 2.6 Total Testosterone Radioimmunoassay Procedure

The total testosterone (T) RIA used was a no-extraction, solid-phase ¹²⁵I-RIA which utilized T-specific antibody-coated tubes; ¹²⁵I-T and T calibrators as the standard curve (Diagnostic Products Corporation [DPC], Los Angeles, CA). T controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of T to the appropriate matrix. From the control values, the intra- and inter-assay coefficient of variation, percent recovery, and index of parallelism for the assays was determined (see Table 6 below). All samples were analyzed in two assays. The sensitivity of the assay was 0.04 ng/mL as reported by DPC. Not all samples read within curve range of 0.2 to 16 ng/mL. For the RIA

procedure, the sample (50  $\mu$ L) was pipetted into the antibody-coated tube and the ¹²⁵I-T (1 mL) was added. The tubes were vortexed and incubated in a 37°C water bath for three hours. After incubation, the supernatant was decanted and the tubes were counted in a gamma counter. Results were reported as ng/mL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 6.

Table 6. Parameters for Testosterone RIAs Used for Male Rat Hormone Determinations

Parameter	Rat Serum Controls ^{e,f}	Zero Calibrator Controls
Units	(ng/mL)	(ng/mL)
Intra-assay Variation ^a		
Mass added	0.5/4.8% and 6.9% 4/7.7% and 3.4% 8/5.0% and 8.0%	0.5/12.3% and 12.0% (67.7-74.6%) ^d 4/4.2% and 0.8% (31.1-34.2%) ^d
Inter-assay Variation ^a		
No. of assays	2	2
Mass added	0.5/1.4% 4/2.4% 8/2.5%	0.5/6.3% 4/3.7%
% recovery of added mass ^b	0.5/97.4-101.0% 4/99.7-103.1% 8/94.1-97.4%	0.5/109.0-117.3% 4/102.5-107.9%
Index of parallelism ^c	117.3%	N/A

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume + concentration of high volume x 100.

- ^d Range of % binding in assay.
- ^e Male CD rat serum RTI Lot # 135 (pooled from 10 rats)
- ^f Testosterone from kit calibrators

N/A = Not applicable

Defined Dose (ng/mL)	Average Calculated Dose (ng/mL)	% Bound
0.2	0.19	88.43, 85.81, 88.33, 87.41
1.0	1.07	59.71, 60.74, 57.28, 59.97
4.0	4.07	32.50, 34.45, 33.07, 33.73
8.0	7.76	22.95, 22.74, 23.22, 23.06
16.0	15.58	14.04, 13.53, 15.03, 14.49

## 2.7 Total Triiodothyronine Radioimmunoassay Procedure

The total triiodothyronine (T3) RIA used was a no-extraction, solid-phase ¹²⁵I RIA which utilized T3-specific antibody-coated tubes, ¹²⁵I-T3, and T3 calibrators for the standard curve (DPC, Los Angeles, CA). T3 controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of T3 to the appropriate matrix. From the control values, the intra-assay coefficient of variation and percent recovery for the assay was determined (see Table 7 below). All samples were analyzed in one assay. The sensitivity of the assay was 7 ng/dL as reported by DPC. All samples read within curve range of 20 to 600 ng/dL. For the RIA procedure, the sample (100  $\mu$ L) was pipetted into the antibody-coated tube and the ¹²⁵I-T3 (1mL) was added. The tubes were vortexed and incubated in a 37°C water bath for two hours. After incubation, the supernatant was decanted and the tubes were counted in a gamma counter. Results were reported as ng/dL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 7.

Parameter	Rat Serum Controls ^e	Zero Calibrator Controls
Units	(ng/dL)	(ng/dL)
Intra-assay Variation ^a		
Mass added	0/7.1% 50/4.8% 300/1.5%	50/4.0% (70.6-72.4%) ^d 300/5.0% (26.6-28.6%) ^d
Inter-assay Variation ^a		
No. of assays	1	1
Mass added	N/A	N/A
% recovery of added mass ^b	50/108.8% 300/113.0%	50/99.3% 300/99.1%
Index of parallelism ^c	N/A	N/A

Table 7. Parameters for Triiodothyronine (T3) RIAs Used for Male Rat Hormone Determinations

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume ÷ concentration of high volume x 100.

^d Range of % binding in assay.

Male CD Rat Serum RTI Lot # 136, T3 from kit calibrators.
 N/A = Not applicable

Defined Dose (ng/dL)	Average Calculated Dose (ng/dL)	% Bound
20.0	19.56	85.34, 83.87, 84.77, 87.12
50.0	49.96	71.27, 71.06, 69.89, 73.00
100.0	100.54	52.28, 55.43, 54.42, 56.60
200.0	204.24	35.09, 35.68, 36.18, 37.63
600.0	580.73	16.12, 16.15, 16.44, 16.22

 Table 7A. Total Triiodothyronine Standard Curve Values; Assay Date 11-28-05

# 2.8 Total Thyroxine Radioimmunoassay Procedure

The total thyroxine (T4) RIA used was a no-extraction, solid-phase ¹²⁵I RIA which utilized T4-specific antibody-coated tubes, ¹²⁵I-T4, and T4 calibrators for the standard curve (DPC, Los Angeles, CA). T4 controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of T4 to the appropriate matrix. From the control values, the intra- and inter-assay coefficient of variation and percent recovery for the assays was determined (see Table 8 below). All samples were analyzed in two assays. The sensitivity of the assay was 0.25  $\mu$ g/dL as reported by DPC. Not all samples read within curve range of 1 to 24  $\mu$ g/dL. For the RIA procedure, the sample (25  $\mu$ L) was pipetted into the antibody-coated tube and the ¹²⁵I-T4 (1 mL) was added. The tubes were vortexed and incubated in a 37°C water bath for one hour. After incubation, the supernatant was decanted and the tubes were counted in a gamma counter. Results were reported as  $\mu$ g/dL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 8.

Parameter	Rat Serum Controls*	Zero Calibrator Controls
Units	(μg/dL)	(μg/dL)
Intra-assay Variation ^a		
Mass added	0/9.1% and 14.6% 5/10.2% and 11.4% 12/5.2% and 7.6%	2.67/8.6% and 8.1% (65.4-70.4%) ^d 16/3.4% and 4.5% (27.8-31.0%) ^d
Inter-assay Variation ^a		
No. of assays	2	2
Mass added	0/6.3% 5/0.9% 12/5.2%	2.67/1.4% 16/1.7%
% recovery of added mass ^b	5/96.0-103.6% 12/90.0-101.2%	2.67/112.4-114.5% 16/99.1-101.5%
Index of parallelism ^c	N/A	N/A

#### Table 8. Parameters for Thyroxine (T4) RIAs Used for Male Rat Hormone Determinations

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume ÷ concentration of high volume x 100.

^d Range of % binding in assay.

Male CD Rat Serum RTI Lot # 136, T4 from kit standards. N/A = Not applicable

N/A = Not applicable

#### Table 8A. Total Thyroxine Standard Curve Values; Assay Date 11-18-05

Defined Dose (µg/dL)	Average Calculated Dose (µg/dL)	% Bound
1.0	0.95	88.30, 90.54, 86.30, 88.90
4.0	4.13	59.71, 62.61, 60.41, 61.15
10.0	10.35	37.72, 40.71, 37.03, 39.89
16.0	15.87	28.72, 28.93, 27.74, 31.63
24.0	23.07	21.17, 23.38, 19.62, 23.24

## 2.9 Dihydrotestosterone Radioimmunoassay Procedure

The dihydrotestosterone (DHT) RIA used had a sample oxidation/extraction procedure followed by a solid-phase ¹²⁵I RIA which utilized DHT-specific antibody-coated tubes and ¹²⁵I-DHT (DSL, Webster, Texas). Also included in the kit were reagents for the oxidation/extraction procedure to remove most of the testosterone which will cross-react with the DHT antiserum. These reagents were an oxidation solution and DHT sample buffer. Also needed but not included in the kit were the organic solvents for extraction, n-hexane (95% minimum) purchased from EM Science, and absolute ethanol which was purchased from AAPER Alcohol and Chemical Company. The DHT (Sigma, St. Louis, MO) curve was prepared in the zero calibrator provided in the kit. DHT controls in serum were prepared in the same species/strain/sex as unknown samples by adding known concentrations of DHT to the

appropriate matrix. From the control values, the intra-assay coefficient of variation and percent recovery was determined (see Table 9 below). All samples were analyzed in two assays. The sensitivity of the assay was 4 pg/mL as reported by DSL. All samples read within curve range of 12.5 to 800 pg/mL, once diluted 4-fold with the zero calibrator. For the RIA procedure, the sample (400  $\mu$ L) was oxidized and extracted and reconstituted in 250  $\mu$ L of kit supplied zero calibrator. For the RIA procedure, the sample (400  $\mu$ L) was oxidized and extracted and reconstituted in 250  $\mu$ L of kit supplied zero calibrator. For the RIA procedure, the sample (100  $\mu$ L) was pipetted into the antibody-coated tube and the ¹²⁵I-DHT (500 $\mu$ L) was added. The tubes were vortexed and incubated at room temperature on a shaker (180 rpm) for two hours. After incubation, the supernatant was decanted and the tubes were counted in a gamma counter. Results were reported as pg/mL. The results of the assay are considered reliable based on the assay performance results, some of which are presented in Table 9.

Parameter	Rat Serum Controls ^e	Zero Calibrator Controls
Units	(pg/mL)	(pg/mL)
Intra-assay Variation ^a		
Mass added	0/7.8% and 4.0% 100/12.6% and 8.8% 400/2.9% and 11.1%	64/15.7% and 4.2% (64.6-72.9%) ^d 320/12.7% and 0.7% (24.8-31.3%) ^d
Inter-assay Variation ^a		
No. of assays	2	2
Mass added	0/31.4% 100/24.5% 400/26.7	64/6.4% 320/10.2%
% recovery of added mass ^b	100/110.1-134.4% 400/95.1-135.6%	64/99.1-108.4% 320/95.1-109.9%
Index of parallelism ^c	80.8%	N/A

 Table 9. Parameters for Dihydrotestosterone (DHT) RIAs Used for Male Rat

 Hormone Determinations

^a Numbers are mass added/percentage variation.

^b Numbers are mass added/percentage recovered (range of all assays).

^c Index of parallelism = concentration of low volume ÷ concentration of high volume x 100.

^d Range of % binding in assay.

^e Male CD Rat Serum RTI Lot # 136, DHT from Sigma Aldrich. N/A = Not applicable

Defined Dose (pg/mL)	Average Calculated Dose (pg/mL)	% Bound
12.5	13.19	90.71, 97.03, 89.65, 90.97
25.0	23.97	86.82, 88.00, 83.98, 88.11
50.0	48.96	73.13, 79.27, 75.03, 75.91
100.0	102.44	57.04, 61.81, 56.42, 60.39
200.0	202.52	42.48, 41.35, 38.44, 40.91
400.0	392.24	25.75, 25.79, 24.44, 25.01
800.0	799.64	13.91, 15.36, 12.93, 12.16

 Table 9A. Dihydrotestosterone Standard Curve Values; Assay Date 12-04-05

## 3 **RESULTS**

The assays for FSH, LH, Total Testosterone, Estradiol, Thyroxine, Triiodothyronine, Thyroid Stimulating Hormone, Prolactin and Dihydrotestosterone were performed in the Laboratory of Reproductive and Endocrine Toxicology (LORET) at RTI International on rat serum samples sent by Charles River Laboratory for analysis by radioimmunoassay.

The assay parameters are presented in Text Tables 1-9. The results for the assays performed are presented in the summary Table 1. Any sample value that was based on a single determination is identified.

All data and records will be sent to the client for archiving.

.

# SUMMARY TABLE

Animal	TSH	DHT	Estradiol	FSH	LH	Prolactin	Testosterone	Thyroxine	Triiodothyronine
Number	(ng/mL)	(pg/mL)	(pg/mL)	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)	(µg/dL)	(ng/dL)
10301	10.96	495.98	26.40	14.58	1.85	53.40	6.79	4.91	72.11
10302	7.86	312.15	19.01	12.59	1.57	40.43	3.97	4.64	89.01
10303	20.99	483.20	26.59	14.75	1.64	1.69*	10.27	4.31	82.80
10304	23.88	277.76	24.05	12.84	1.70	2.76	4.29	3.54	63.86
10305	11.56	569.30	26.46	16.78	2.12	25.14	13.57	4.77	60.36
10316	9.82	202.52	28.91	15.90	1.58	1.56	1.29	3.32	73.83
10317	11.39	448.63	40.04	14.33	1.82	2.63	5.72	2.66	59.73
10318	13.01	225.58	34.99	16.01	1.15	2.77	1.61	2.60	60.78
10319	10.08	524.08	29.57	15.02	2.17	15.82	7.78	3.29	73.96
10320	7.72	207.42	39.84	13.13	1.35	10.86	3.06	3.14	70.76
10331	5.18	191.52	38.07	22.66	1.48	7.09	2.05	2.50	76.39
10332	6.73	1010.60	53.24	15.30	1.76	3.75	22.73	2.43	74.62
10333	19.19	286.04	33.20	15.61	2.11	2.38	3.50	1.40	67.70
10334	7.81	257.54	38.39	17.16	1.52	9.02	2.55	2.23	55.31
10335	9.85	231.22	29.11	13.58	1.24	15.79	2.77	2.06	62.58
10346	8.40	127.77	42.72	17.41	2.20	28.61	0.82	1.27	53.44
10347	11.93	354.67	45.48	15.98	1.41*	1.41	5.13	1.29*	54.62
10348	8.35	229.87	41.48	13.68	1.77	1.01	3.87	1.11*	62.11
10349	14.59	194.13	35.27	17.84	1.23	1.26	1.54	2.49	69.79
10350	10.52	556.16	35.64	19.96	2.21	2.24	7.65	1.31	71.68
10361	19.57	205.30	30.33	14.50	1.60	2.63	1.89	3.09	53.38
10362	52.10	764.62	45.48	14.13	1.82	1.73	15.23	3.03	54.31
10363	28.04	613.09	33.44	14.59	1.82	1.86	11.45	4.34	83.72
10364	34.00	393.86	37.36	14.63	1.77	3.68	4.91	4.25	62.98
10365	13.77	320.81	39.33	15.14	1.40	11.36	3.16	4.89	81.01
10376	25.33	212.17	48.59	13.39	1.88	12.27	3.11	3.70	59.67
10377	29.03	787.39*	39.26	13.02	1.34	4.62	10.21	2.63	47.77
10378	34.79	219.04	30.87	14.26	1.40	1.96	2.38	3.72	55.51
10379	18.55	172.01	45.68	12.60	1.36	1.77	1.25	4.87	94.14
10380	25.16	146.38	44.10	11.50	1.28	13.91	1.34	3.61	70.98
10391	41.37	144.54	55.36	13.20	1.39	1.89	1.44	2.20	49.20
10392	23.45	165.85	36.94	12.14	1.00	1.89	1.27	2.15	58.29
10393	30.01	189.19	37.53	11.35	1.62	3.77	1.80	2.28	63.00

Table 1. Summary of Individual Hormone Results (page 1 of 4)

Animal TSH DHT Estradiol FSH LH Prolactin Testosterone Thyroxine Trilodothyroning						Talladath			
Number	(ng/mL)	(pg/mL)	(pg/mL)	(ng/mL)	(ng/mL)	Prolactin (ng/mL)	Testosterone (ng/mL)	Thyroxine (µg/dL)	Trilodothyronine (ng/dL)
10394	37.69	172.84	39.80	15.92	1.63	2.27	1.52	2.53	66.07
10395	36.00	77.90	43.01	12.47	1.53	1.28	BDL	4.11	77.61
10306	9.89	256.59	19.12	13.35	1.63	29.54	3.92	6.21	86.87
10307	8.93	218.29	31.35	16.23	2.52	19.20	3.89	4.40	97.13
10308	6.49	140.21	25.65	18.99	2.01	4.09	1.28	3.83	75.76
10309	9.56	1093.40	30.98	12.96	2.14	52.63	28.11	3.87	91.91
10310	9.55	689.34	29.54	16.27	2.82	101.52	21.05	4.90	99.32
10321	10.88	112.90	39.33	11.08	1.24	4.39	0.63	2.15	71.26
10322	8.14	344.55	36.40	13.60	1.41	2.54	4.17	3.07	71.85
10323	10.19	266.34	33.04	16.69	2.01	5.03	3.03	2.63	70.71
10324	33.14	1342.30	40.56	24.04	1.81	1.92	28.37*	3.04	72.18
10325	8.11	471.49	34.43	12.55	1.63	2.19	7.55	2.44	56.43
10336	6.00	109.97	30.39	10.24	1.42	1.45	0.23	1.08	40.94
10337	15.65	143.72	47.70	17.49	1.33	0.98	0.70	1.34	64.67
10338	11.51	854.43	53.15	13.35	2.99	6.17	14.86	1.58	60.40
10339	7.94	419.18	41.80	18.61	1.78	1.64	5.40	1.72	71.92
10340	9.08	124.29	39.96	17.42	1.56	1.50	0.50	1.51	69.37
10351	9.21	200.02	59.79	17.51	2.85	3.25	1.81	BDL	56.31
10352	12.96	146.12	43.09	15.79	1.38	1.63	0.82	1.56	56.42
10353	17.47	290.56	40.29	16.95	2.29	4.26	3.81	1.22	70.28
10354	5.54	670.40*	31.11	14.14	1.76	1.40*	15.16	1.57	59.46
10355	10.52	163.40	35.41	16.56	1.73	1.34	1.98	1.77	67.93
10366	22.08	213.24	32.66	10.33	1.58	36.20	2.25	3.40	65.38
10367	17.47	246.69	33.63	13.25	1.88	5.28	3.85	3.59	62.70
10368	26.34	762.86*	26.06	15.22	2.02	15.86	12.39	3.58	60.37
10369	27.03	201.19	34.97	14.93	1.96	4.58	2.15	4.10	65.16
10370	17.47	260.81	36.24	14.34	1.80	7.20	3.18	4.00	73.70
10381	17.68	122.92	35.43	11.10	1.23	20.11	1.13	3.61	67.40
10382	31.73	314.37	40.08	11.10	1.39	2.95	4.38	3.37	67.88
10383	17.78	166.50	33.45	10.96	1.28	10.97	1.36	3.93	65.64
10384	20.58	258.06	26.35	10.56	1.29	58.20	2.21	3.35	57.07

Table 1. Summary of Individual Hormone Results (page 2 of 4)

Animal NumberTSH (ng/mL)DHT (pg/mL)Estradiol (ng/mL)FSH (ng/mL)LH (ng/mL)Prolactin (ng/mL)Testosterone (ng/mL)Thyroxine (µg/dL)1038529.85219.1930.8610.591.3811.482.474.131039718.14306.0427.9910.981.371.09*3.512.701039836.20126.6236.609.431.491.360.712.441039928.77273.7446.8712.261.581.593.592.371040032.77285.1828.6810.711.533.082.943.26103119.05515.7923.8312.952.7644.37*8.876.36103128.32497.6727.0110.962.3166.619.135.281031311.24667.6223.7116.022.7342.9615.224.631031424.73370.5223.6817.403.0448.1311.925.111032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.89 <td< th=""><th>Trilodothyronine (ng/dL)           79.43           56.99           60.22           58.35           50.56           94.55           78.52           72.42           83.16           77.01</th></td<>	Trilodothyronine (ng/dL)           79.43           56.99           60.22           58.35           50.56           94.55           78.52           72.42           83.16           77.01
$10397$ $18.14$ $306.04$ $27.99$ $10.98$ $1.37$ $1.09^*$ $3.51$ $2.70$ $10398$ $36.20$ $126.62$ $36.60$ $9.43$ $1.49$ $1.36$ $0.71$ $2.44$ $10399$ $28.77$ $273.74$ $46.87$ $12.26$ $1.58$ $1.59$ $3.59$ $2.37$ $10400$ $32.77$ $285.18$ $28.68$ $10.71$ $1.53$ $3.08$ $2.94$ $3.26$ $10311$ $9.05$ $515.79$ $23.83$ $12.95$ $2.76$ $44.37^*$ $8.87$ $6.36$ $10312$ $8.32$ $497.67$ $27.01$ $10.96$ $2.31$ $66.61$ $9.13$ $5.28$ $10313$ $11.24$ $667.62$ $23.71$ $16.02$ $2.73$ $42.96$ $15.22$ $4.63$ $10314$ $24.73$ $370.52$ $23.67$ $15.43$ $1.83$ $14.67$ $6.63$ $4.18$ $10315$ $23.41$ $728.19$ $23.68$ $17.40$ $3.04$ $48.13$ $11.92$ $5.11$ $10326$ $10.36$ $555.45$ $26.64$ $12.88$ $2.23$ $5.81$ $14.36$ $4.48$ $10327$ $6.77$ $241.09$ $29.21$ $16.47$ $2.04$ $4.98$ $3.64$ $2.86$ $10328$ $14.78$ $528.05$ $24.65$ $15.21$ $2.35$ $54.31$ $7.65$ $3.08$ $10329$ $7.14$ $368.41$ $31.48$ $1.91$ $4.77$ $3.43$ $3.21$ $10330$ $9.42$ $347.10$ $28.89$ $12.51$ $1.60$ <	56.99 60.22 58.35 50.56 94.55 78.52 72.42 83.16
$10398$ $36.20$ $126.62$ $36.60$ $9.43$ $1.49$ $1.36$ $0.71$ $2.44$ $10399$ $28.77$ $273.74$ $46.87$ $12.26$ $1.58$ $1.59$ $3.59$ $2.37$ $10400$ $32.77$ $285.18$ $28.68$ $10.71$ $1.53$ $3.08$ $2.94$ $3.26$ $10311$ $9.05$ $515.79$ $23.83$ $12.95$ $2.76$ $44.37^*$ $8.87$ $6.36$ $10312$ $8.32$ $497.67$ $27.01$ $10.96$ $2.31$ $66.61$ $9.13$ $5.28$ $10313$ $11.24$ $667.62$ $23.71$ $16.02$ $2.73$ $42.96$ $15.22$ $4.63$ $10314$ $24.73$ $370.52$ $23.67$ $15.43$ $1.83$ $14.67$ $6.63$ $4.18$ $10315$ $23.41$ $728.19$ $23.68$ $17.40$ $3.04$ $48.13$ $11.92$ $5.11$ $10326$ $10.36$ $555.45$ $26.64$ $12.88$ $2.23$ $5.81$ $14.36$ $4.48$ $10327$ $6.77$ $241.09$ $29.21$ $16.47$ $2.04$ $4.98$ $3.64$ $2.86$ $10328$ $14.78$ $528.05$ $24.65$ $15.21$ $2.35$ $54.31$ $7.65$ $3.08$ $10329$ $7.14$ $368.41$ $31.48$ $1.91$ $4.77$ $3.43$ $3.21$ $10330$ $9.42$ $347.10$ $28.89$ $12.51$ $1.60$ $1.02$ $3.65$ $4.51$ $10341$ $21.69$ $339.21$ $35.60$ $13.34$ $2.18$ <td>60.22 58.35 50.56 94.55 78.52 72.42 83.16</td>	60.22 58.35 50.56 94.55 78.52 72.42 83.16
1039928.77273.7446.8712.261.581.593.592.371040032.77285.1828.6810.711.533.082.943.26103119.05515.7923.8312.952.7644.37*8.876.36103128.32497.6727.0110.962.3166.619.135.281031311.24667.6223.7116.022.7342.9615.224.631031424.73370.5223.6715.431.8314.676.634.181031523.41728.1923.6817.403.0448.1311.925.111032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.084	58.35 50.56 94.55 78.52 72.42 83.16
1040032.77285.1828.6810.711.533.082.943.26103119.05515.7923.8312.952.7644.37*8.876.36103128.32497.6727.0110.962.3166.619.135.281031311.24667.6223.7116.022.7342.9615.224.631031424.73370.5223.6715.431.8314.676.634.181031523.41728.1923.6817.403.0448.1311.925.111032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449	50.56 94.55 78.52 72.42 83.16
103119.05515.7923.8312.952.7644.37*8.876.36103128.32497.6727.0110.962.3166.619.135.281031311.24667.6223.7116.022.7342.9615.224.631031424.73370.5223.6715.431.8314.676.634.181031523.41728.1923.6817.403.0448.1311.925.111032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	94.55 78.52 72.42 83.16
103128.32497.6727.0110.962.3166.619.135.281031311.24667.6223.7116.022.7342.9615.224.631031424.73370.5223.6715.431.8314.676.634.181031523.41728.1923.6817.403.0448.1311.925.111032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	78.52 72.42 83.16
1031311.24667.6223.7116.022.7342.9615.224.631031424.73370.5223.6715.431.8314.676.634.181031523.41728.1923.6817.403.0448.1311.925.111032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	72.42 83.16
1031424.73370.5223.6715.431.8314.676.634.181031523.41728.1923.6817.403.0448.1311.925.111032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	83.16
1031523.41728.1923.6817.403.0448.1311.925.111032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	
1032610.36555.4526.6412.882.235.8114.364.48103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	77.01
103276.77241.0929.2116.472.044.983.642.861032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	77.01
1032814.78528.0524.6515.212.3554.317.653.08103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	67.21
103297.14368.4131.4814.381.914.773.433.21103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	60.80
103309.42347.1028.8912.511.601.023.654.511034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	66.13
1034121.69339.2135.6013.342.185.434.642.251034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	62.11
1034214.15276.7941.4316.752.7213.364.371.741034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	85.20
1034316.54407.4136.6911.391.133.354.801.641034423.42592.0846.2617.851.929.599.111.53103458.44122.5449.2013.581.591.990.252.28	84.34
10344       23.42       592.08       46.26       17.85       1.92       9.59       9.11       1.53         10345       8.44       122.54       49.20       13.58       1.59       1.99       0.25       2.28	64.13
10345         8.44         122.54         49.20         13.58         1.59         1.99         0.25         2.28	65.20
	65.38
	61.36
10356 11.80 131.37 38.73 12.73 1.29 1.48 BDL 1.22	60.65
10357         14.09         557.25         41.03         11.40         1.06         1.42         7.67         1.80	85.89
10358         6.36         313.86         33.80         17.51         3.67         1.72         4.80         1.18	60.93
10359         8.07         341.44         33.93         12.90         1.64         1.19         3.68         1.68	70.67
10360         7.14         220.97         30.38         18.27         1.48         4.66         2.09         2.59	66.85
10371         13.84         275.23         38.76         16.30         2.70         15.72         5.08         3.48	66.47
10372         13.43         277.14         29.15         10.35         1.12         45.56         3.39         3.51	63.06
10373         11.30         250.37         22.19         13.46         1.59         7.72         3.31         3.92	66.41
10374         16.45         329.03         30.75         11.09         1.69         47.41         4.58         4.04	68.69
10375         37.34         730.14         35.28         15.36         2.41         3.96         14.26         3.04	45.37
10386         16.82         178.94         33.53         14.08         1.74         1.54*         1.69         3.24	64.58
10387         39.10         523.95         35.72         14.26         1.72         2.47         7.36         3.42	47.82

 Table 1. Summary of Individual Hormone Results (page 3 of 4)

Table 1. Summary of Individual Hormone Results (page 4 of 4)									
Animal Number	TSH (ng/mL)	DHT (pg/mL)	Estradiol (pg/mL)	FSH (ng/mL)	LH (ng/mL)	Prolactin (ng/mL)	Testosterone (ng/mL)	Thyroxine (µg/dL)	Trilodothyronine (ng/dL)
10388	39.37	200.60	39.22	12.80	1.48	12.47	2.76	3.59	54.83
10389	19.22	688.08	30.06	12.69	1.60	9.58	8.03	3.37	76.08
10390	21.13	311.18	34.68	13.97	1.15	7.59	2.74	4.09	72.32
10401	24.88	357.88	34.82	10.79	1.54	1.49	5.01	2.94	49.71
10402	18.69	505.90	43.40	13.56	2.10	19.48	10.39	3.35	56.07
10403	17.38	247.72	34.63	11.14	1.56	44.86	1.36	1.86	45.12
10404	27.99	394.40	31.85	11.62	1.47	11.04	1.52	2.52	55.30
10405	42.84	236.08	41.84	16.32	1.96	4.57	3.62	2.01	39.56

Table 1 Summary of Individual Hormone Results (name 4 of 4)

*Value is based on a single determination

BDL = below detection limit, for testosterone = <0.2 ng/mL, for thyroxine = <1  $\mu$ g/dL

# **APPENDIX 9 - STATISTICAL REPORT**

## **Final Report**

## Interlaboratory Validation of the 15-Day Adult Intact Male Rat Assay Intra-Laboratory Statistical Analysis for Charles River Laboratories

## EPA CONTRACT NUMBER 68-W-01-023 WORK ASSIGNMENT 5-15

March 31, 2006

**Prepared for** 

# U.S. ENVIRONMENTAL PROTECTION AGENCY ENDOCRINE DISRUPTOR SCREENING PROGRAM WASHINGTON, D.C.

Prepared by

BATTELLE 505 King Avenue Columbus, Ohio 43201 Interlaboratory Validation of the 15-Day Adult Intact Male Rat Assay Intra-Laboratory Statistical Analysis for Charles River Laboratories

## EPA CONTRACT NUMBER 68-W-01-023 WORK ASSIGNMENT 5-15

Zhenxu J. Ma, Author

3/31/06

Date

Pan Jeste

Paul I. Feder, Reviewer

March 31, 2006

Date

# **Offsite Quality Assurance Statement**

Study Number: WA 5-15

This study was inspected by the Quality Assurance Unit and reports were submitted to the Study Director and Management as follows:

Phase Inspected	Inspection Date	Date Reported to Battelle Task Leader/Battelle Management	Date Reported to Offsite Study Director /Management
Audit statistics data	1/18/2006	1/18/2006	1/23/2006
Audit statistics report	1/18/2006	1/18/2006	1/23/2006

67 Peed 3-28-06 The Date **Quality Assurance Unit** 

Interlaboratory Validation of the 15-Day Adult Intact Male Rat Assay Intra-Laboratory Statistical Analysis for Charles River Laboratories

## EPA CONTRACT NUMBER 68-W-01-023 WORK ASSIGNMENT 5-15

## **GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT**

All aspects of the above-referenced study performed by Battelle were conducted according to Good Laboratory Practice regulations.

No deviations were noted that had any significant impact on the study.

Ede=

Paul I. Feder

March 31, 2006 Date

### INTRODUCTION

Charles River Laboratories, Preclinical Services (Charles River) conducted a 15day adult intact male rat assay according to the test method provided by the EPA.

Two substances Linuron and Phenobarbital were tested, each at three dose levels. In addition a vehicle control group was tested. The sample size was n=15 adult male rats per group, for a total of seven groups and 105 animals per laboratory. This statistical report specifies the summaries, displays, and statistical analyses that were used to summarize the results within Charles River Laboratories.

## STATISTICAL METHODS

#### Data

The test method specifies four categories of data:

1.	Growth - body weights and food consumption $-(7 \text{ endpoints})$
	Body weight change (TD8 – TD1)
	Body weight change (TD15 – TD8)
	Body weight change (TD15 – TD1)
	Final body weights (TD15)
	Food consumption (TD8 - TD1)
	Food consumption (TD15 - TD8)
	Food consumption (TD15 - TD1)

The TD15 body weight is the live weight before sacrifice. Body weights were reported in grams (g). Body weight changes for a given period were reported in g/day, which were calculated as the differences between the body weights at the start and the end of the given period divided by the length of the period (i.e., the daily average within the weekly or bi-weekly interval). Food consumption for each animal was reported in g/kg/day, which was calculated as follows. The average of two body weights for a period (Day 1 and Day 8 for period TD8-TD1 and Day 8 and Day 15 for period TD15-TD8) was calculated. The average body weight in grams was transformed to kilograms. The food consumption for the weekly period (in grams) was divided by the average body weight in kilograms. This ratio was divided by 7 days in the period TD15-TD1 was determined as the average of the two weekly average values if both were present. If one weekly value was missing the average for the period TD15-TD1 was reported as missing.

2. Hormonal analysis - (9 hormones) Testosterone (ng/ml) LH (ng/ml) TSH (ng/ml) T₄ (μg/dl) T₃ (ng/dl) FSH (ng/ml) Estradiol (pg/ml) Prolactin (ng/ml) DHT (pg/ml)

Organ weights – (9 organs) Liver Right testis Left testis Testes paired (sum of left and right testis weights) Epididymides (paired weight) Entire prostate Seminal vesicles with fluid and coagulating gland Accessory sex gland (ASG) (sum of entire prostate and seminal vesicles with fluid and coagulating gland weights) Thyroid

Organ weights were reported in grams (g). Organ weights were reported wet to the nearest 0.0001 g. Organ weights were analyzed in two ways: unadjusted and adjusted. Adjusted organ weights were calculated as organ weight to final body weight ratio (expressed as percent). Note that paired testes weights and ASG weights were derived values, based on the constituent weights of their derived organs.

4. Histology – (5 organs) Right testis

3.

Left testis Right Epididymus Left Epididymus Thyroid

Histology data were not analyzed statistically.

The test method specifies that all rats were to be sacrificed on Test Day (TD) 15. If animals died prior to necropsy their body weights were included in summaries and displays up to the time of death, but were not imputed beyond date of death nor they were included in the final body weight gain summaries (in either the initial or final weight average). One animal died prior to TD15. This was animal 10396 (Phenobarbitol 100) that died on TD9. This animal was not included in the data summaries except for those (change in body weight and food consumption) involving only TD1 to TD8.

All data that entered into the statistical analyses were *a priori* valid data. Appendix C contains a preliminary summary of these data.

## **Outlier Detection**

Outlier screens were carried out prior to analysis. Screens were carried out separately for each endpoint, based on untransformed data. When both unadjusted and body weight adjusted values are called for in the statistical analysis plan (organ weights), the outlier screens were only carried out based on the unadjusted values.

For each endpoint a one way analysis of variance model was fitted to the data. The data include seven groups with n=15 animals per group, less any data omitted due to deaths, missing values, or procedural errors. For purposes of outlier screening separate standard deviations were assumed within each group. Studentized residuals were determined based on the analysis of variance fit and ordered in absolute value. Assuming no data had been omitted, there would have been 105 values. A procedure which generalizes Grubbs (1969) procedure to accommodate heterogeneous variances was used. The absolute studentized residuals were compared to a cutoff value corresponding to a 2.5% significance level (for a two-sided 5% level test) of the maximum of seven component maximum studentized residuals, each component maximum studentized residual based on 15 observations. The cutoff value was based on a simulation study to determine the upper 97.5% point of the distribution of the maximum of seven independent maximum studentized residuals, each with 14 degrees of freedom, from standard normal distributions. This cutoff value is 2.84. Any studentized residual in excess of 2.84 in absolute value was flagged. Just a single iteration of the outlier screening procedure was carried out.

Normal probability plots of the studentized residuals were prepared (Appendix A). If the flagged values appeared to be outliers in the probability plots, in that they departed from the trend in the body of the residuals, they were treated as potential outliers. If the trend observed in the tails of the normal probability plot was continuous but heavily skewed or considerably heavier tailed than normal, a data transformation (e.g. square root, (natural) logarithm) might be attempted to improve agreement with normal distribution assumptions. The outlier screen would be repeated on the transformed data. However, if the tails of the normal probability plot depart just slightly or moderately from straight line behavior, the data would be analyzed without transformation. No transformations were attempted for this analysis due to the consideration of applying a uniform approach across laboratories, so the results could be more easily combined.

The flagged values were sent to the study director who determined whether these values were to be included in all the analyses, were to be treated as outliers (i.e. both included in analyses and excluded from analyses), or were to be excluded from all analyses. Subsequent statistical analyses were carried out both including and excluding the outliers that were specified by the study director to be treated as outliers. The disposition of each flagged value is summarized in Appendix B.

## Heterogeneity of Residual Variances among Treatment Groups

Tests for heterogeneity of variance were carried out on the data excluding the flagged potential outliers. For each endpoint extent of heterogeneity of variability was assessed across treatment groups. A one-way analysis of variance model was fitted to the data, including the factor treatment (fixed). Three versions of the model were fitted to test for heterogeneity of residual variance.

- 1. Separate variances for each treatment group (7 variances)
- 2. Separate variances for each substance (or control) (3 variances)
- 3. Common variances across all groups

For each endpoint, these models were compared by likelihood ratio tests and a "best" model was selected for further statistical analyses (Table 1).

#### **Data Summaries**

Data summaries include tables and figures. Summary tables were prepared including all the data and excluding the outliers. Summary figures were prepared only including all the data.

#### Tables

Summary values for the seven body weight and food consumption endpoints are displayed in Tables 2 and 3. There is one table per substance.

For each endpoint and each dose group the following statistics are reported:

- Number of animals on which the statistic is based
- Mean ± standard error
- Coefficient of variation
- Difference of mean from control group mean ± standard error
- Ratio of mean to control group mean ± standard error¹

In addition, the linear trend slope contrast was estimated for each substance based on the control group and the three graded dose groups, treating the control group and the

Se[R(X, Y)]  $\approx |1/X| [(Y/X)^2 S_X^2 + S_Y^2]^{\frac{1}{2}} \times 100\%$ 

¹ If X, Y denote the control group least squares mean and the dose group least squares mean respectively, with variance-covariance matrix  $(S_X^2, S_Y^2, S_{XY})$ , where  $S_{XY}$  is zero because X and Y are independent, an approximate standard error for  $R = (Y/X) \times 100\%$  is

three dose groups as equally spaced². The estimated slope and its standard error are reported.

For ease of presentation each table is broken into three pages, one page per dose level. The summary results for the vehicle control and the linear dose trend test results are presented on each page. For the same test substance they are same on all three pages of the table.

Tables 4 and 5 display summary values for the nine organ weight endpoints specified in the test method. These results include both unadjusted and body-weight adjusted organ weights. The tables include the same summary statistics as those discussed for Tables 2 and 3.

Tables 6 and 7 display summary values for the nine hormonal analysis endpoints specified in the test method. There is one table per substance. The tables include the same summary statistics as discussed for Tables 2 and 3.

#### **Figures**

The figures include mean daily body weights figures and figures to compare the various endpoints across substances and dose groups. The figures include all the data. For organ weights, figures were prepared based on both the unadjusted weights and the adjusted organ weights (i.e., organ to body weight ratios).

Figures 1-2 display mean body weight  $\pm 2$  standard errors for each day from TD1 to TD15 for the control group and for each dose group. Figure 1 corresponds to Linuron and Figure 2 corresponds to Phenobarbitol.

For the 7 body weight and food consumption measures, the 9 unadjusted organ weights, the 9 organ weight to body weight ratios, and the 9 hormone concentrations (34 endpoints) summarized in Tables 2-7, Figures 3 through 36 were prepared to display the least squares means  $\pm 2$  standard errors for each of the seven dose groups (control group + three dose groups × 2 substances). Each figure contains seven bars, corresponding to a control group or substance and dose group. Each bar is centered at the least squares mean and extends two standard errors above and below the least squares mean.

#### **Analysis of Variance**

For each of the 34 endpoints summarized in Tables 2-7 analysis of variance models were fitted to the data to estimate treatment effects. For the nine organ weight

Linear Contrast  $\equiv [-3X_0 - X_1 + X_2 + 3X_3]/[20]^{1/2}$ 

² If  $X_0$ ,  $X_1$ ,  $X_2$ ,  $X_3$  denote the least squares means for the control group "0" and (equally spaced) dose groups "1", "2", "3" then the linear contrast among these is defined to be

responses the unadjusted responses were analyzed as well as the organ to final body weight ratio (percent) responses.

Analyses were carried out based on all the data and after omitting outliers (enumerated in Appendix B). The (possibly heterogeneous) residual variance structure assumed in these analyses is as discussed in the section - "Heterogeneity of Variance across Treatment Groups." Analyses were carried out on the untransformed data, using the simplest variance structure compatible with the data.

For each response the following one-way analysis of variance model was fitted to the data. The treatment group in the analysis of variance model is the fixed effect. The factors in the analysis of variance model are as shown below.

Source	<u>df</u>
Treatment	6
Residual = Replicate (Treatment)	<u>14×7=98</u>
	104

Least squares (LS) means for individual treatment groups and for differences between dose groups and control group and associated standard errors and  $\pm 2$  standard error intervals were calculated based on the above model. (For these data the least squares mean coincides with the simple arithmetic mean.) In addition linear trend contrasts among the control group and the three dose groups within a substance were calculated, treating the control group and the three dose groups as equally spaced (using the linear contrast shown in footnote 2). For each substance separately, least squares means were compared between the treatment groups and the control group by means of two-sample t-tests. Linear trend statistics were compared to 0 trend by means of onesample t-tests.

Two-tailed unadjusted significance levels were reported. If the unadjusted significance levels were less than 0.05, they were indicated with a single asterisk, '*'. If they were less than 0.00625 for the comparisons of test substance dose to vehicle or for the linear trend test, they were indicated with two asterisks, '**'. The significance level 0.00625 provides overall family wise protection at the 0.05 significance level against making any false positive or Type 1 errors within a family of eight inferences, consisting of comparison of each of three dose levels to the control and comparison of a linear trend to 0, for both Linuron and Phenobarbitol (i.e. two substances × three doses per substance plus two linear trend comparisons, for a total of eight inferences). This is referred to as Bonferroni's simultaneity adjusted significance level of 0.05/8 (0.00625).

## **Round Off**

Derived numbers in the tables may differ from computer listings or hand calculations by one or several digits in the least significant figure due to round off in intermediate calculations.

### Archive

Upon completion of the project the report and supporting data were archived at Battelle.

Likelihoods for Various Heterogeneous Covariance Structures, Likelihood Ratio Goodness of Fit Statistics, and Selections of Covariance Structure^{1, 2}. Table 1. シャートアイン

hter most complex stri	se group) were starting from t	interaction (i.e., do nce structure were:	and dosage level nodel fits. lecting a covaria:	ed from the r steps for se	meter, in which te lliers were exclude re compared. The	atcry lor cach para () were used. Out ous covariance we	ou to ute uata separ dy weight ratios (% els and a homogen	A one-way ANA V A model was much to up up data separately for each parameter, in which test chemical and oosage level interaction (i.e., dose group) were fixed effects. For organ weight parameters, organ weight to final body weight ratios (%) were used. Outliers were excluded from the model fits. Two heterogeneous covariance models and a homogenous covariance were compared. The steps for selecting a covariance structure were: starting from the most complex structure in (T*D).
0.39273	1.8693	0.02388	11.2509	1310.4	1308.5	1297.2	C*T	DHT
0.0000	94.5140	0.0000	40.2788	755.8	661.3	621.0	T*D	Prolactin
0.05932	5.6495	0.33162	4.5934	632.9	627.2	622.6	All	Estradiol
0.06349	5.5139	0.16172	6.5492	439.5	434.0	427.5	All	FSH
0.26935	2.6235	0.65637	2.4347	741.7	739.1	736.6	All	£1
0.11016	4.4116	0.51162	3.2831	190.0	185.6	182.3	All	T4
0.00001	24.3109	0.00670	14.1926	667.5	643.2	629.0	T*D	TSH
0.00042	15.5560	0.03295	10.4888	138.2	122.6	112.1	T*D	LH
0.00006	19.3391	0.00072	19.2075	548.7	529.4	510.2	T*D	Testosterone
0.00129	13.3052	0.07841	8.3862	-865.4	-878.7	-887.1	Т	Thyroid Glands
0.99466	0.0107	0.88138	1.1800	-127.0	-127.0	-128.2	All	ASG
0.33329	2.1975	0.62844	2.5909	-200.4	-202.6	-205.2	All	SeminalVesicleCoagGlandFluid
0.20737	3.1465	0.85102	1.3605	-241.1	-244.3	-245.6	All	Entire Prostate
0.71766	0.6635	0.88463	1.1600	-352.3	-353.0	-354.1	All	Paired Epididymides
0.16324	3.6251	0.76349	1.8491	-205.2	-208.9	-210.7	٩IJ	Paired Testes
01661.0	3.2279	0.67370	2.3389	-340.6	-343.8	-346.1	All	Right Testis
0.16227	3.6369	0.70641	2.1597	-331.4	-335.1	-337.2	All	Left Testis
0.23461	2.8996	0.14044	6.9151	50.6	47.7	40.8	All	Liver
0.00047	15.3252	0.79828	1.6583	596.9	581.5	579.9	F	Food Consumption (TD15-TD1)
0.00186	12.5767	0.05899	9.0859	645.0	632.4	623.3	н	Food Consumption (TD15-TD8)
0.05178	5.9213	0.29139	4.9603	666.1	660.2	655.2	All	Food Consumption (TD8-TD1)
0.13518	4.0024	0.69971	2.1963	936.3	932.3	930.1	IIA	Final Body Weight
0.32533	2.2458	0.78811	1.7143	366.0	363.8	362.1	All	Body Weight Change (TD15-TD1)
0.46549	1.5293	0.09680	7.8611	382.5	381.0	373.1	All	Body Weight Change (TD15-TD8)
0.83757	0.3545	0.34459	4.4828	438.8	438.5	434.0	IIA	Body Weight Change (TD8-TD1)
<ul> <li>p_value)</li> <li>\$(Chisq:d=2)</li> </ul>	Estimate	(Ghisquest)	Estimate	AU (A)		Doselevel	Covariance Structure	Parameter
( <b>U</b> )-(A)	<u> </u>			CALL NO		and the second se		

Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Body Weight Changes (g/day), Final Body Weight (g), and Food Consumptions (g/kg/day) for Charles River Laboratories^{1,2} Table 2.

81.735 (3.358) -17.341 (1.685)**	81.735 (3.358)	-12.154 (2.340)**	13.3	54.386 (2.005)	13	7.0	66.540 (1.206)	15	Food Consumption (TD15-TD1)
-9.834 (1.828)**	89.016 (3.885)	-6.794 (2.471)*	14.9	55.057 (2.120)	15	8.0	61.851 (1.270)	15	Food Consumption (TD15-TD8)
75.992 (3.483) -23.876 (1.923)**	75.992 (3.483)	-17.101 (2.767)**	13.5	54.128 (2.025)	13	10.3	71.229 (1.885)	15	Food Consumption (TD8-TD1)
-57.050 (7.072)**	87.523 (2.330)	-50.333 (10.001)**	7.8	353.067 (7.072)	15	6.8	403.400 (7.072)	15	Final Body Weight (g)
-4.306 (0.374)**	26.504 (7.636)	-3.724 (0.529)**	107.9	1.343 (0.374)	15	28.6	5.067 (0.374)	15	Body Weight Change (TD15-TD1)
58.606 (10.796) -1.352 (0.407)**	58.606 (10.796)	-1.810 (0.576)**	61.6	2.562 (0.407)	15	36.1	4.371 (0.407)	15	Body Weight Change (TD15-TD8)
-7.260 (0.532)**	2.149 (9.239)	-5.638 (0.753)**	1665	0.124 (0.532)	15	35.8	5.762 (0.532)	15	Body Weight Change (TD8-TD1)
Linear Trend ⁵	Ratio to Vehicle (%) ⁴	Diff from Vehicle ³	CV (%)	LS Mean(SE)	N	CV (%)	LS Man (SF)	Z	Parameter
		Linuon (50 mg/kg/day)	inuron (50	E State			Vehicle		

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to all data for each parameter.

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level).

Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X| [(Y/X)^2 S_X^2 + S_Y^2]^4 \times 100\%$ Linear Contrast  $\equiv [-3X_0 - X_1 + X_2 + 3X_3]/[20]^{4/3}$  where  $X_0$  is vehicle,  $X_1$ ,  $X_2$ , and  $X_3$  are the low, mid, and high dosage levels of Linuron respectively. 

Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

Table 2(cont.).

Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Body Weight Changes (g/day), Final Body Weight (g), and Food Consumptions (g/kg/day) for Charles River Laboratories^{1,2}

		Vehicle			E. S. F.	-Linuron (100/mg/kg/day	mg/kg/day)		
Parameter	N	LS Mean (SE)	CV (%)	X	LS Mean(SE)	(%)	Diff from Vehicle	Ratio to Vehiclé (%)*	Linear Trend ⁵
Body Weight Change (TD8-TD1)	15	5.762 (0.532)	35.8	15	-1.086 (0.532)	-190	-6.848 (0.753)**	-18.843 (9.399)	-7.260 (0.532)**
Body Weight Change (TD15-TD8)	15	4.371 (0.407)	36.1	15	2.314 (0.407)	68.1	-2.057 (0.576)**	52.941 (10.539)	-1.352 (0.407)**
Body Weight Change (TD15-TD1)	15	5.067 (0.374)	28.6	15	0.614 (0.374)	235.8	-4.452 (0.529)**	12.124 (7.435)	-4.306 (0.374)**
Final Body Weight (g)	15	403.400 (7.072)	6.8	15	344.533 (7.072)	7.9	-58.867 (10.001)**	85.407 (2.305)	85.407 (2.305) -57.050 (7.072)**
Food Consumption (TD8-TD1)	15	71.229 (1.885)	10.3	15	48.448 (1.885)	15.1	-22.781 (2.666)**	68.017 (3.201)	68.017 (3.201) -23.876 (1.923)**
Food Consumption (TD15-TD8)	15	61.851 (1.270)	8.0	15	50.378 (2.120)	16.3	-11.473 (2.471)**	81.451 (3.814)	-9.834 (1.828)**
Food Consumption (TD15-TD1)	15	66.540 (1.206)	7.0	15	49.413 (1.867)	14.6	-17.127 (2.223)**	74.261 (3.112)	74.261 (3.112) -17.341 (1.685)**

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to all data for each parameter. 

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level).

Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X| [(Y/X)^2 S_X^2 + S_Y^2]^4 \times 100\%$ 

Linear Contrast =  $[-3X_0 - X_1 + X_2 + 3X_3]/[20]^{k_1}$  where  $X_0$  is vehicle,  $X_1$ ,  $X_2$ , and  $X_3$  are the low, mid, and high dosage levels of Linuron respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

Table 2(cont.).

Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Body Weight Changes (g/day), Final Body Weight (g), and Food Consumptions (g/kg/day) for Charles River Laboratories^{1,2}

N         LS Mean (SE)         CV         N         LS Mean (SE)         CV           (%)         (%)         (%)         (%)         (%)         (%)         (%)           1         15         5.762 (0.532)         35.8         15         -4.657 (0.532)         -44.3           1)         15         4.371 (0.407)         36.1         15         2.438 (0.407)         64.7           1)         15         4.371 (0.1072)         38.6         15         2.438 (0.407)         64.7           1)         15         5.067 (0.374)         28.6         15         -1.110 (0.374)         -131           1         15         4.03.400 (7.072)         6.8         15         321.200 (7.072)         8.5           15         61.851 (1.270)         8.0         14         37.530 (1.952)         19.5           15         61.851 (1.270)         8.0         14         48.751 (2.195)         16.8			Vehicle			L. L	muron (150	nuron (150 mg/kg/day)		
15       5.762 (0.532)       35.8       15 $-4.657 (0.532)$ $-44.3$ 15       4.371 (0.407)       36.1       15       2.438 (0.407)       64.7         15       4.371 (0.407)       36.1       15       2.438 (0.407)       64.7         15       5.067 (0.374)       28.6       15       2.110 (0.374)       -131         15       403.400 (7.072)       6.8       15       321.200 (7.072)       8.5         15       71.229 (1.885)       10.3       14       37.530 (1.952)       19.5         15       61.851 (1.270)       8.0       14       48.751 (2.195)       16.8	Parameter	N	LS Mean (SE)	CV (%)	Z	LS Mean(SE)	CV (%)	Pill from Vehicle ³	Ratio to Vehicle (%) ⁴	Linear Trend
15     4.371 (0.407)     36.1     15     2.438 (0.407)     64.7       15     5.067 (0.374)     28.6     15     -1.110 (0.374)     131       15     403.400 (7.072)     6.8     15     321.200 (7.072)     8.5       15     71.229 (1.885)     10.3     14     37.530 (1.952)     19.5       15     61.851 (1.270)     8.0     14     48.751 (2.195)     16.8	Body Weight Change (TD8-TD1)	15	5.762 (0.532)	35.8	15	-4.657 (0.532)	-44.3	-10.419 (0.753)**	-80.826 (11.877)	-80.826 (11.877) -7.260 (0.532)**
15     5.067 (0.374)     28.6     15     -1.110 (0.374)     -131       15     403.400 (7.072)     6.8     15     321.200 (7.072)     8.5       15     71.229 (1.885)     10.3     14     37.530 (1.952)     19.5       15     61.851 (1.270)     8.0     14     48.751 (2.195)     16.8	Body Weight Change (TD15-TD8)	15	4.371 (0.407)	36.1	15	2.438 (0.407)	64.7	-1.933 (0.576)**	55.773 (10.665)	55.773 (10.665) -1.352 (0.407)**
15         403.400 (7.072)         6.8         15         321.200 (7.072)         8.5           15         71.229 (1.885)         10.3         14         37.530 (1.952)         19.5           15         61.851 (1.270)         8.0         14         37.530 (1.952)         16.8           15         61.851 (1.270)         8.0         14         48.751 (2.195)         16.8	Body Weight Change (TD15-TD1)	15	5.067 (0.374)	28.6	15	-1.110 (0.374)	-131	-6.176 (0.529)**	-21.898 (7.556)	-21.898 (7.556) -4.306 (0.374)**
15         71.229 (1.885)         10.3         14         37.530 (1.952)         19.5           15         61.851 (1.270)         8.0         14         48.751 (2.195)         16.8           15         65.640 (1.962)         7.0         1.2         15.65         16.8	Final Body Weight (g)	15	403.400 (7.072)	6.8	15	321.200 (7.072)	8.5	-82.200 (10.001)**	79.623 (2.241)	79.623 (2.241) -57.050 (7.072)**
15         61.851 (1.270)         8.0         14         48.751 (2.195)         16.8           15         56.540 (1.262)         7.0         1.2         40.227 (2.002)         1.2	Food Consumption (TD8-TD1)	15	71.229 (1.885)	10.3	14	37.530 (1.952)	19.5	-33.699 (2.714)**	52.689 (3.074)	52.689 (3.074) -23.876 (1.923)**
	Food Consumption (TD15-TD8)	15	61.851 (1.270)	8.0	14	48.751 (2.195)	16.8	-13.100 (2.536)**	78.821 (3.900)	78.821 (3.900) -9.834 (1.828)**
1/1 (CUC) 42:34 (1 0.7 (CUC) C1 1/1	Food Consumption (TD15-TD1)	15	66.540 (1.206)	7.0	13	42.347 (2.005)	17.1	-24.193 (2.340)**	63.641 (3.227)	63.641 (3.227) -17.341 (1.685)**

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to all data for each parameter. 

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level)

Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X|$  [(Y/X)² S_X² + S_Y² ]⁴ × 100%

Linear Contrast  $\equiv [-3X_0 - X_1 + X_2 + 3\hat{X}_3]/[20]^{4_0}$ , where  $X_0$  is vehicle,  $X_1$ ,  $X_2$ , and  $X_3$  are the low, mid, and high dosage levels of Linuron respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Body Weight Changes (g/day), Final Body Weight (g), and Food Consumptions (g/kg/day) for Charles River Laboratories^{1,2} Table 3.

Parameter		LS Neurop		N. 5	TIS WeenSED	obarbitat eV	Same (g) (a)) Bitt from		
Body Weight Change (TD8-TD1)	15	5.762 (0.532)	35.8	15	5.971 (0.532)	34.5	0.010 /0.753)		Lunear Urend
Body Weight Change (TD15-TD8)	15	4.371 (0.407)	36.1	15	4.800 (0.407)	37.0	(60.0) 017-0	(202.61) 000.001	
Body Weight Change (TD15-TD1)	15	5.067 (0.374)	28.6	15	C 386 (0 374)	2 2 2	(0/ C/) 274-10	109.804 (13.834)	0.077 (0.414)
Final Body Weicht (a)	2	1010 L/ 007 CVF		:	(+) (-) 000-0	20.2	(622.0) 612.0	106.297 (10.772)	-1.238 (0.380)**
	2	(7/0./) 004.004	0.8	15	412.000 (7.072)	6.6	8.600 (10.001)	102.132 (2.506)	-15,800 (7,185)*
Food Consumption (TD8-TD1)	15	71.229 (1.885)	10.3	15	71.532 (1.885)	10.2	0 202 () 666)	100 406 (0 201)	
Food Consumption (TD15-TD8)	15	61.851 (1.270)	08	2	(000 D 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(000-7) -00-00	(10/.5) (24.001	-6.819 (1.885)**
Food Concumution / TD 15 TD 11				ţ	00.411 (1.504)	8.1	-1.440 (1.820)	97.672 (2.909)	1.164 (1.286)
	3	66.540 (1.206)	7.0	14	65.640 (1.036)	5.9	-0.900 (1.590)	98.647 (2.372)	-2.81371 1141*
									(1111) 212-

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to all data for each parameter.

CV was calculated as residual standard deviation/LS Mean. 

Significant differences from the vehicle were indicated by "** for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X| [(Y/X)^2 S_X^2 + S_Y^2]^4 \times 100\%$  Linear Contrast  $= [-3X_0 - X_1 + X_2 + 3X_3)/[20]^4$ , where X₀ is vehicle, X₁, X₂ and X₃ are the low, mid, and high dosage levels of Phenobarbital respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

; :

į

• ,

. . . . . . .

Table 3(cont.).

## Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Body Weight Changes (g/day), Final Body Weight (g), and Food Consumptions (g/kg/day) for Charles River Laboratories^{1,2}

Ranmetter	N	Valids LS Mean (str)	(v) (v)		LS Wear(SD)	obazbital CV (%)	so ng kyan) Diffon Vende	Velicies (%)	Thematics of the second se
Body Weight Change (TD8-TD1)	15	5.762 (0.532)	35.8	15	5.286 (0.532)	39.0	-0.476 (0.753)	91.736 (12.535)	٩
Body Weight Change (TD15-TD8)	15	4.371 (0.407)	36.1	15	4.790 (0.407)	32.9	0.419 (0.576)	109.586 (13.819)	
Body Weight Change (TD15-TD1)	15	5.067 (0.374)	28.6	15	5.038 (0.374)	28.7	-0.029 (0.529)	00 436 (10 409)	
Final Body Weight (g)	15	403.400 (7.072)	6.8	15	407 467 (7 072)	67		(cor.or) oct.cc	
Food Consumption (TD8-TD1)	15	71.229 (1.885)	103	2	71 274 (1 005)	1.0	100.01/00.4	101.000 (2.492)	*(c81./) 008.c1-
Food Consumption (TD) 6 TD8	15	(anon) (anon)		:   :	(0001) +1011	70.4	(000)7) C117	100.204 (3.747)	-6.819 (1.885)**
	2	(0/7.1) 109.10	8.0	5	62.464 (1.260)	7.8	0.612 (1.789)	100.990 (2.906)	1.164 (1.286)
Food Consumption (TDI5-TDI)	15	66.540 (1.206)	7.0	15	(1001) 616.99	5.8	0.379 (1.568)	100.569 (2.364)	-2.813 (1.114)*

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to all data for each parameter.

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level).

Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx 1/X$ ] [ $(Y/X)^2 S_X^2 + S_Y^2$ ]⁴ ×100% Linear Contrast  $= -3X_0 - X_1 + X_2 + 3X_3/1/20$ ]⁴ where  $X_0$  is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels of Phenobarbital respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

-

-----

Table 3(cont.).

Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Body Weight Changes (g/day), Final Body Weight (g), and Food Consumptions (g/kg/day) for Charles River Laboratories^{1,2}

Parameter	X	Addiel: LS Man (SR)	CV CV		IS Near(SB)	obarbital CV	00 ng kg (lay) Dirition	Ratio	
Body Weight Change (TD8-TD1)	15	5.762 (0.532)	35.8	15	2.124 (0.532)	97.1	-3 638 /0 7531**	26 °Chicle (%)	
Body Weight Change (TD15-TD8)	15	4.371 (0.407)	36.1	14	4 490 (0 421)	35.1	(ccr.v) ccv.c	(449.%) VOS 001	1
Body Weight Change (TD15-TD1)	15	5.067 (0 374)	28.6			1.00	(00C-0) 011-0	102./08 (13.285)	0.077 (0.414)
			2	<u>-</u>	(1000) 1000	4.0.4	-1./30 (0.538)**	65.857 (9.055)	-1.238 (0.380)**
rinal Body Weight (g)	15	403.400 (7.072)	6.8	14	381.357 (7.320)	7.2	-22.043 (10.178)*	94.536 (2.458)	-15 800 (7 185)*
Food Consumption (TD8-TD1)	15	71.229 (1.885)	10.3	15	61.116 (1.885)	6.11	-10.113 (2 666)**	84 803 (3 468)	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
Food Consumption (TD15-TD8)	15	61.851 (1.270)	8.0	14	62.902 (1.304)	7.8	1 051 (1 820)	101 600 (3 063)	(0001) (1000-
Food Consumption (TD15-TD1)	15	66.540 (1.206)	7.0	14	61.920 (1.036)	6.3	*(050.1) 100.1	03 057 (2 206)	1.104 (1.286)
								(0/3-3) 100.00	(+11.1) cla.2-

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to all data for each parameter.

- ~ ~ ~ ~

CV was calculated as residual standard deviation/LS Mean. Significant differences from the vehicle were indicated by "** for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X|$  [(Y/X)² S_X² + S_Y² ]⁴ × 100% Linear Contrast =[-3X₀ - X₁ + X₂ + 3X₃]/[20]⁴, where X₀ is vehicle, X₁, X₂ and X₃ are the low, mid, and high dosage levels of Phenobarbital respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

. . . . . . . . .

ł

Table 4.

-0.115 (0.029)** -0.263 (0.073)** Linear Trend⁵ -1.129 (0.458)* -0.209 (0.057)** -0.473 (0.101)** -0.022 (0.032) 0.260 (0.074)** 0.066 (0.010)** 0.067 (0.010)** -0.021 (0.033) -0.043 (0.063) 0.133 (0.020)** -0.003 (0.002) -0.020 (0.016) -0.025 (0.020) 0.001 (0.001) 0.017 (0.009) -0.046 (0.029) 114.156 (11.471) Ratio to Vehicle (%)⁵ 129.691 (13.612) 103.484 (2.730) 103.825 (2.743) 104.172 (2.892) 118.353 (3.803) 118.704 (3.676) 107.947 (4.449) 86.625 (7.230) 88.407 (5.511) 119.060 (3.693) 102.704 (8.436) 100.195 (6.820) 94.545 (3.269) 90.559 (6.933) 97.305 (2.950) 98.105 (8.474) 85.014 (4.279) -2.106 (0.648)** -0.283 (0.143)* 0.079 (0.014)** 0.155 (0.028)** 0.077 (0.015)** 0.002 (0.001)* 0.069 (0.047) 0.059 (0.045) 0.128 (0.090) -0.067 (0.041) -0.179 (0.103) 0.004 (0.003) -0.094 (0.104) -0.006 (0.029) -0.104 (0.080) 0.024 (0.013) 0.001 (0.042) 0.008 (0.023) Diff hom -Vehicle²-Least squares means and standard errors were estimated based on a one-way ANOVA model applied to all data for each parameter. CV was calculated as residual standard deviation/LS Mean. 14.9 24.4 33.5 8 22.0 32.5 10.8 18.6 7.4 18.1 22.2 7.1 7.1 9.7 23.9 No.-8.4 8.0 7.7 7.7 LS Mean(SE) 11.945 (0.458) 1.726 (0.033) 1.739 (0.032) 3.465 (0.063) 1.156 (0.029) 0.491 (0.010) 0.495 (0.010) 0.285 (0.016) 0.010 (0.001) 1.002 (0.057) 1.157 (0.073) 2.159 (0.101) 3.386 (0.074) 0.327 (0.020) 0.034 (0.003) 0.986 (0.020) 0.329 (0.009) 0.613 (0.029) Z 5 15 15 13 13 15 2 15 15 15 13 15 15 15 15 15 2 15 (%) (%) 12.6 19.9 16.0 21.4 7.8 22.8 7.3 7.4 9.2 21.2 11.7 18.7 23.1 8.2 52 9.2 23.4 9.5 -| 'IS Nem (SE) 14.051 (0.458) 3.337 (0.063) 1.657 (0.033) 1.680 (0.032) 1.223 (0.029) 1.106 (0.057) 0.029 (0.002) 3.480 (0.074) 1.336 (0.073) 2.442 (0.101) 0.412 (0.010) 0.418 (0.010) 0.831 (0.020) 0.278 (0.016) 0.333 (0.020) 0.611 (0.029) 0.007 (0.000) 0.305 (0.009) Vehicle ,N 2 15 2 ŝ 15 15 15 15 15 5 15 15 15 15 15 15 15 ŝ 2 Seminal Vesicles with fluid and Coagulating Adj Seminal Vesicles with fluid and ŝ, Adj Paired Epididymides Adj Accessory Sex Gland Paired Epididymides Accessory Sex Gland Adj Thyroid Glands Adj Entire Prostate Coagulating Gland Adj Paired Testes Adj Right Testis Thyroid Glands Adj Left Testis Entire Prostate Parameter Paired Testes Right Testis Left Testis Adj Liver Liver Gland

Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Unadjusted Organ Weights (g) and Adjusted Organ Weights for Charles River Laboratories^{1,2,6}

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bomferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X|$  [(Y/X)³ S_X² + S_Y² ]⁴ × 100% Linear Contrast  $\equiv [-3X_0 - X_1 + X_2 + 3X_3]/[20]^{46}$  where X₀ is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level. ю

Adjusted organ weights are defined as organ weight to final body weight ratios (expressed as %),

:

Table 4(cont.).

Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Unadjusted Organ Weights (g) and Adjusted Organ Weights for Charles River Laboratories^{1,2,6}

		Venice				inurou (100	Linutois (100 metherday)		
Parameter	N	LS Men (SB)	(%) (%)	N	LS Mean(SE)	ev V9	Difficur	Ration	
Liver	15	14.051 (0.458)	12.6	15	12.335 (0.458)	14.4	-1.717 (0.648)*	87 784 (4 338)	-1 170 // A5214
Right Testis	15	1.657 (0.033)	7.8	15	1.666 (0.033)	7.7	0.010 (0.047)	100.590 (2.840)	(00
Left Testis	15	1.680 (0.032)	7.3	15	1.680 (0.032)	7.3	-0.000 (0.045)	99.995 (2.683)	(2000) 1200
Paired Testes	15	3.337 (0.063)	7.4	15	3.347 (0.063)	7.3	0.010 (0.090)	100.290 (2.695)	(2000) 2000
Paired Epididymides	15	1.223 (0.029)	9.2	15	1.136 (0.029)	6.6	-0.087 (0.041)*	92,895 (3, 242)	(0000) 0100-
Entire Prostate	15	1.106 (0.057)	19.9	15	0.928 (0.057)	23.7	-0.178 (0.080)*	83-941 (6 709)	**(250'0) CI I'
Seminal Vesicles with fluid and Coagulating Gland	15	1.336 (0.073)	21.2	15	1.155 (0.073)	24.5	-0.181 (0.103)	86.441 (7.224)	-0.263 (0.073)**
Accessory Sex Gland	15	2.442 (0.101)	16.0	15	2.083 (0.101)	18.7	-0.359 (0.143)*	85 300 /5 428V	***/1010/2270
Thyroid Glands	15	0.029 (0.002)	21.4	15	0.031 (0.003)	35.2	0.002 (0.003)	(074°C) (00°C)	
Adj Liver	15	3.480 (0.074)	8.2	IS	3.578 (0.074)	8.0	0.099 (0.104)	(212:11) 22:201	(200.0) 500.0-
Adj Right Testis	15	0.412 (0.010)	9.2	15	0.484 (0.010)	7.8	**(7100) (000	(crove) 200201	0.000 (0.0/4)
Adj Left Testis	15	0.418 (0.010)	9.5	1	0.489.00.0100	2	(110:0) 710:0	(500.5) 0++./ 11	0.000 (0.010) **
Adi Paired Testes	15	0 811 (0 000)		: :	(010.0) 604.0	0.1	(cIN:N) 1/N:N	116.859 (3.775)	0.067 (0.010)**
Adi Doiood Enidia	2	(170.0) 100.0	7.6	2	0.973 (0.020)	7.8	0.142 (0.028)**	117.151 (3.648)	0.133 (0.020)**
Auj raired Epidioymides	<u>د</u>	0.305 (0.009)	11.7	15	0.330 (0.009)	10.8	0.026 (0.013)	108.374 (4.458)	0.017 (0.009)
Adj Entire Prostate	15	0.278 (0.016)	22.8	15	0.269 (0.016)	23.5	-0.009 (0.023)	96.795 (8.191)	-0.020 (0.016)
Adj Seminal Vesicles with fluid and Coagulating Gland	15	0.333 (0.020)	23.4	15	0.333 (0.020)	23.4	-0.000 (0.029)	99.975 (8.553)	-0.025 (0.020)
Adj Accessory Sex Gland	15	0.611 (0.029)	18.7	15	0.602 (0.029)	18.9	-0.009 (0.042)	98.530 (6.764)	10 CD (1) 20 C-
Adj Thyroid Glands	15	0.007 (0.000)	23.1	15	(100.0) 600.0	35.5	0.002 (0.001)	122.470 (13.373)	0.001/0.001
1. Least squares means and standard errors were estimated based on a one-way ANOVA model applied to all data for each parameter.	TOIS WERE E	stimated based on a c	one-way AN	OVA mode	applied to all data	for each par	ameter.	(212)	(100:0) 100:0

ふうよう

CV was calculated as residual standard deviation/LS Mean. Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |I/X|[(Y/X)^2 S_X^2 + S_Y^2]^{th} \times 100\%$ Linear Contrast  $\equiv |-3X_0 - X_1 + X_2 + 3X_3)/(20)]^{th}$  where X₀ is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05 level and "**" for that organ weights are defined as organ weight to final body weight ratios (expressed as %). <del>ن</del>

1

----

-

. .

Table 4(cont.).

## Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Unadjusted Organ Weights (g) and Adjusted Organ Weights for Charles River Laboratories^{1,2,6}

		Yeliele			J	naron (150	Y muron (1S0, mg/1g/dat))		
	N.	LS Mean (SE)-	K. CV		L'SMen(SB)	いたい	Difference	0.00	
						(v)	Vehicle	→ Vehicle (%) ⁴	Linear Trend ⁵
Liver	15	14.051 (0.458)	12.6	15	12.239 (0.458)	14.5	-1.812 (0.648)**	87.101 (4.323)	-1.129 (0.458)*
Right Testis	15	1.657 (0.033)	7.8	15	1.645 (0.033)	7.8	-0.011 (0.047)	99.310 (2.822)	-0.021 (0.033)
Left Testis	15	1.680 (0.032)	7.3	15	1.667 (0.032)	7.4	-0.014 (0.045)	99.183 (2.672)	-0.022 (0.032)
Paired Testes	15	3.337 (0.063)	7.4	15	3.312 (0.063)	7.4	-0.025 (0.090)	99.246 (2.681)	-0.043 (0.063)
Paired Epididymides	15	1.223 (0.029)	9.2	15	1.058 (0.029)	10.6	-0.165 (0.041)**	86.479 (3.140)	-0.115 (0.029)**
Entire Prostate	15	1.106 (0.057)	0.01	15	0.818 (0.057)	26.9	-0.288 (0.080)**	73.991 (6.393)	-0.209 (0.057)**
Seminal Vesicles with fluid and Coagulating Gland	15	1.336 (0.073)	21.2	15	0.944 (0.073)	29.9	-0.392 (0.103)**	70.685 (6.692)	-0.263 (0.073)**
Accessory Sex Gland	15	2.442 (0.101)	16.0	15	1.762 (0.101)	22.2	-0.679 (0.143)**	72.183 (5.093)	-0.473 (0.101)**
Thyroid Glands	15	0.029 (0.002)	21.4	15	0.027 (0.003)	41.1	-0.003 (0.003)	90.170 (10.796)	-0.003 (0.002)
Adj Liver	15	3.480 (0.074)	8.2	15	3.802 (0.074)	7.5	0.323 (0.104)**	109.276 (3.132)	0.260 (0.074)**
Adj Right Testis	15	0.412 (0.010)	9.2	15	0.513 (0.010)	7.4	0.101 (0.014)**	124.393 (3.790)	0.066 (0.010)**
Adj Left Testis	15	0.418 (0.010)	9.5	15	0.520 (0.010)	7.6	0.102 (0.015)**	124.278 (3.915)	0.000 (0.010) **
Adj Paired Testes	15	0.831 (0.020)	9.2	15	1.033 (0.020)	7.4	0.202 (0.028)**	124.335 (3.779)	0.133 (0.020)**
Adj Paired Epididymides	15	0.305 (0.009)	11.7	15	0.330 (0.009)	10.8	0.025 (0.013)	108.077 (4.452)	0.017 (0.009)
Adj Entire Prostate	15	0.278 (0.016)	22.8	15	0.253 (0.016)	25.0	-0.025 (0.023)	91.078 (7.960)	-0.020 (0.016)
Adj Seminal Vesicles with fluid and Coagulating Gland	15	0.333 (0.020)	23.4	15	0.294 (0.020)	26.6	-0.040 (0.029)	88.013 (8.058)	-0.025 (0.020)
Adj Accessory Sex Gland	15	0.611 (0.029)	18.7	15	0.547 (0.029)	20.9	-0.065 (0.042)	89.406 (6.463)	-0.046 (0.029)
Adj Thyroid Glands	15	0.007 (0.000)	23.1	15	0.008 (0.001)	38.3	0.001 (0.001)	113.372 (13.085)	0.001 (0.001)
1. Least squares means and standard errors were	rrors were es	timated based on a	one-way AN	IOVA mode	estimated based on a one-way ANOVA model applied to all data for each parameter	for each par	ameter.		(10010) 10010

ふうよう

CV was calculated as residual standard deviation/LS Mean. Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx 1/X[[(Y)X)^2 S_X^2 + S_Y^2]^{18} \times 100\%$ Linear Contrast =[-3X₀ - X₁ + X₂ + 3X₃]/[20]⁴⁴, where X₀ is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level. Adjusted organ weights are defined as organ weight to final body weight ratios (expressed as %).

ം

.

.

....

Table 5.

Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Unadjusted Organ Weights (g) and Adjusted Organ Weights for Charles River Laboratories^{1,2,6}

		Vehicle			Pie	100a10fra	Phenopathinal (25 mg/g/day)		
	2	LS Mean (SE)	در) (%)	Ň	LS Mean(SE)	CV (%)	Diff from Vehicle	Ratio to	T (near Tread
Liver	15	14.051 (0.458)	12.6	15	18.182 (0.458)	9.8	4.130 (0.648)**	129 306 (5 331)	4 441 (D 465)**
Right Testis	15	1.657 (0.033)	7.8	15	1.677 (0.033)	1.7	0.020 (0.047)	101.227 (2.849)	(COT-O) (TT-T-
Left Testis	15	1.680 (0.032)	7.3	15	1.708 (0.032)	7.2	0.028 (0.045)	101.637 (2.705)	(2000) 0100
Paired Testes	15	3.337 (0.063)	7.4	15	3.385 (0.063)	7.3	0.048 (0.090)	101.434 (2.710)	0.077 (0.065)
Paired Epididymides	15	1.223 (0.029)	9.2	15	1.190 (0.029)	9.5	-0.033 (0.041)	97.303 (3.314)	0.031 00 00
Entire Prostate	15	1.106 (0.057)	19.9	15	1.139 (0.057)	19.3	0.033 (0.080)	102.961 (7.376)	(050.0) 100.0
Seminal Vesicles with fluid and Coagulating Gland	15	1.336 (0.073)	21.2	15	1.366 (0.073)	20.7	0.030 (0.103)	102.275 (7.817)	0.009 (0.074)
Accessory Sex Gland	15	2.442 (0.101)	16.0	15	2.505 (0.101)	15.6	0.063 (0.143)	102 586 (5 016)	0.016 /0 1001
Thyroid Glands	15	0.029 (0.002)	21.4	15	0.039 (0.002)	20.8	0.009 (0.003)**	131 212 (10 120)	0.001 20 0001
Adj Liver	15	3.480 (0.074)	8.2	15	4.408 (0.074)	65	**\PU1 0/ 6000	(+71.01) 212.101	1.004 (0.002)
Adi Right Testis	15	0412 (0.010)	00	16	0 400 /0 010/		(101:0) (20:0	(614.6) +00.071	(c/n/n) +nc-1
	2	(010.0) 711.0	7.6	<u>a</u>	0.409 (0.010)	9.3	-0.004 (0.014)	99.131 (3.344)	0.028 (0.010)*
Adj Lett Testis	15	0.418 (0.010)	9.5	15	0.417 (0.010)	9.5	-0.002 (0.015)	99.552 (3.463)	0.025 (0.010)*
Adj Paired Testes	15	0.831 (0.020)	9.2	15	0.825 (0.020)	9.2	-0.005 (0.028)	99.343 (3.339)	0.053 (0.020)*
Adj Paired Epididymides	15	0.305 (0.009)	11.7	15	0.291 (0.009)	12.3	-0.014 (0.013)	95.362 (4.178)	0.020 (0.009)*
Adj Entire Prostate	15	0.278 (0.016)	22.8	15	0.279 (0.016)	22.7	0.001 (0.023)	100.376 (8.338)	0.002 (0.017)
Adj Seminal Vesicles with fluid and Coagulating Gland	15	0.333 (0.020)	23.4	15	0.336 (0.020)	23.3	0.002 (0.029)	100.722 (8.585)	0.013 (0.020)
Adj Accessory Sex Gland	15	0.611 (0.029)	18.7	15	0.615 (0.029)	18.6	0.003 (0.042)	100.565 /6 833)	0.016 (0.030)
Adj Thyroid Glands	15	0.007 (0.000)	23.1	15	0.009 (0.001)	20.8	0.002 (0.001)**	128.195 (10.286)	(0000) 01000 (0000) 000 00
1. Least squares means and standard errors were estimated	OIS WERE ES	timated based on a o	me-way AN	OVA mode	estimated based on a one-way ANOVA model applied to all data for each parameter.	for each par	ameter,		(000-00) 10010

N ... 4 ...

CV was calculated as residual standard deviation/LS Mean. Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx$ 1/X| [(Y/X)² S_X² + S_Y² ]^x × 100% Linear Contrast =[-3X₀ - X₁ + X₂ + 3X₃]/[20]^{4/4} where X₀ is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

:

. . . . . . . . . .

÷

Adjusted organ weights are defined as organ weight to final body weight ratios (expressed as %). Ś.

Table 5(cont.).

# Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Unadjusted Organ Weights (g) and Adjusted Organ Weights for Charles River Laboratories^{1,2,6}

		in the second				<b>ionarbinal</b>			
Parameter	N	LS Mein (SB)	CV (%)	Z	N LS Nen(SE)	ŝ.	Dinfrom	Ratio to	
Liver	15	14.051 (0.458)	12.6	15	18.906 (0.458)	9.4	4.854 (0.648)**	134 548 (5 465)	A 441 (0 460)***
Right Testis	15	1.657 (0.033)	7.8	15	1.711 (0.033)	7.5	0.054 (0.047)	(604-6) 04-61-61	(0010) 1000
Left Testis	15	1.680 (0.032)	7.3	15	1.690 (0.032)	7.3	0.010 (0.045)	100.582 (2.691)	(+50.0) 540.0
Paired Testes	15	3.337 (0.063)	7.4	15	3.401 (0.063)	7.2	0.064 (0.090)	101 920 (2 717)	(320.0) 200.0
Paired Epididymides	15	1.223 (0.029)	9.2	15	1.235 (0.029)	9.1	0.012 (0.041)	101 001 (3 376)	(000.0) (100.0
Entire Prostate	15	1.106 (0.057)	19.9	15	1.206 (0.057)	18.3	0.100 (0.080)	(6/ C/) 100:101	(0000) 1000
Seminal Vesicles with fluid and Coagulating Gland	15	1.336 (0.073)	21.2	15	1.409 (0.073)	20.1	0.073 (0.103)	105.491 (7.944)	(900) (0.074) 0.009 (0.074)
Accessory Sex Gland	15	2.442 (0.101)	16.0	15	2.615 (0.101)	14,9	0.173 (0.143)	107 101 76 0501	0.018 (0.101)
Thyroid Glands	15	0.029 (0.002)	21.4	15	0.036 (0.002)	22.2	0 007 /0 003/*	(0000) 101.001	0.004 00 0001
Adj Liver	15	3.480 (0.074)	8.2	15	4.634 (0.074)	6.1	1154 /0 104)**	(123 154 12 2010)	U.004 (0.002)*
Adj Right Testis	15	0.412 (0.010)	9.2	5	0.471 (0.010)	00		(1705) +01.001	**(c/0.0) #UE.I
Adi Left Testis	51	0.418.00.00	40			2.2	(+10.0) 200.0	102.064 (3.393)	0.028 (0.010)*
Adi Paired Testes	2	(010-0) 01-0		2	0.410 (0.010)	9.0	-0.002 (0.015)	99.417 (3.461)	0.025 (0.010)*
	2	(070.0) 100.0	7.6	2	0.837 (0.020)	9.1	0.006 (0.028)	100.731 (3.362)	0.053 (0.020)*
Auj rairea Epiaidymiaes	13	0.305 (0.009)	11.7	15	0.305 (0.009)	11.7	-0.000 (0.013)	99.892 (4.273)	0.020 (0.009)*
Adj Entire Prostate	15	0.278 (0.016)	22.8	15	0.298 (0.016)	21.2	0.020 (0.023)	107.269 (8.631)	0.002 (0.017)
Adj Seminal Vesicles with fluid and Coagulating Gland	5	0.333 (0.020)	23.4	15	0.349 (0.020)	22.4	0.016 (0.029)	104.673 (8.756)	0.013 (0.020)
Adj Accessory Sex Gland	15	0.611 (0.029)	18.7	15	0.647 (0.029)	17.6	0.036 (0.042)	105 853 /7 0165	0.016 (0.020)
Adj Thyroid Glands	15	0.007 (0.000)	23.1	15	0.009 (0.001)	22.0	0.002 (0.001)*	121 560 (0 906)	
1. Least squarcs means and standard errors were	TOIS WERE C	estimated based on a one-way ANOVA model applied to all data for each parameter	me-way AN	OVA model	applied to all data	for each par	ameter	(022:2) 000:121	(000.0) 100.0

ふうよう

CV was calculated as residual standard deviation.LS mean we were not not not all out all out calculated. Significant differences from the vehicle were indicated by ⁴⁴⁵ for the 0.05 level and ⁴⁴⁴⁴ for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the natio was Se[R(X, Y)]  $\approx 1.1X|[(Y/X)^3 S_x^2 + S_y^2]^4 \times 100\%$ Linear Contrast  $= -3X_0 - X_1 + X_2 + 3X_3]/[20]^4$ , where X₀ is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels. Significant dose trend was indicated by ⁴⁴⁷ for the 0.05/8 level. Adjusted organ weights are defined as organ weight to final body weight ratios (expressed as %). 6

.

Table 5(cont.).

Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Unadjusted Organ Weights (g) and Adjusted Organ Weights for Charles River Laboratories^{1,2,6}

		Vende			Pier	obarbital (	Phenobarbinal (100 mgRg/day)		
Parantees	ĸ	LS Mean (SB)	رون ک	X.	LS Mean(SE)	ČV (%)	Dift from	Ratio to	
Liver	15	14.051 (0.458)	12.6	14	20.430 (0.474)	107	2 370 /0 / CON++		T-INCALC I LEUG
Right Testis	15	1.657 (0.033)	7.8	14	1712/02/02/02	1.0	**(400n) 4/ c.n	145.395 (5.818)	4.441 (0.465)**
Left Testis	15	1 680 (0 032)			(400.0) 01/1	ç I	0.056 (0.048)	103.396 (2.930)	0.045 (0.034)
Paired Testes	1	(#CDV0)	j i	<u>+</u>	1-734 (0.033)	1.7	0.054 (0.046)	103.204 (2.773)	0.032 (0.032)
Doired C. d. J.	2	(500.0) / 55.5	/.4	7	3.447 (0.066)	7.1	0.110 (0.091)	103.299 (2.782)	0.077 (0.065)
r aired Epicidymices	15	1.223 (0.029)	9.2	14	1.255 (0.030)	9.0	0.032 (0.042)	102 501 (3 462)	0001 000
Entire Prostate	15	1.106 (0.057)	19.9	14	1.042 (0.059)	21.1	-0.064 (0.082)		(0000) 1000
Scrninal Vesicles with fluid and Coagulating Gland	15	1.336 (0.073)	21.2	14	1.335 (0.076)	21.2	-0.000 (0.105)	(261.1) 222.70	0.009 (0.074)
Accessory Sex Gland	15	2.442 (0.101)	160	2	1001 00 222 0	;			
Thurnid Gleads				:	(+01.0)//07	16.4	-0.064 (0.145)	97.365 (5.868)	-0.018 (0.102)
	2	0.029 (0.002)	21.4	14	0.037 (0.002)	21.9	0.007 (0.003)*	124.519 (10.039)	0.004 r0.0021*
Adj Liver	15	3.480 (0.074)	8.2	14	5.349 (0.076)	5.3	1.869 (0.106)**	153 712 /3 010/	
Adj Right Testis	15	0.412 (0.010)	92	14	0.450.70.0101		(0010)	(416.0) 711.001	**(C/U.U) +UE-1
Adi Left Testis	2	0.410 /0.010		: ;	(010:0) 000	ŧ.	0.037 (0.014)*	109.061 (3.571)	0.028 (0.010)*
Adi Patrad Tatta	2	(110.0) 014.0	<u>.</u>	4	0.456 (0.011)	8.7	0.038 (0.015)*	109.040 (3.690)	0.025 (0.010)*
	2	0.831 (0.020)	9.2	14	0.906 (0.020)	8.4	0.075 (0.028)*	109.050 (3.561)	0.053 (0.020)*
Ad raired Epididymides	15	0.305 (0.009)	11.7	14	0.330 (0.010)	10.8	0.025 (0.013)	108 355 (1 530)	
Adj Entire Prostate	15	0.278 (0.016)	22.8	4	0.275 (0.017)	23.0		(ncc+) cccont	-(GOO.O) 020.0
Adj Seminal Vesicles with fluid and Coseulatine filand	15	0.333 (0.020)	23.4	4	0.349 (0.021)	22.4	(+20.0) c00.0- 0.015 (0.029)	98.998 (8.429) 104 63 5 78 002)	0.002 (0.017)
									(070.0) CIO.0
Any Accessory Sex Cland	5	0.611 (0.029)	18.7	14	0.624 (0.030)	18.3	0.013 (0.042)	102 073 77 0041	0.016.00.0201
Adj Thyroid Glands	15	0.007 (0.000)	23.1	4	0.010 (0.001)	20.4	++	(han-1)	(10010) 010-0
<ol> <li>Least squares means and standard errors were</li> </ol>	rors were est	estimated based on a one-way ANOVA model control to an indicate and a control of the analysis of the state of	ne-wav AN	OVA mode		+	++(100.0) z00.0	130.770 (10.562)	0.001 (0.000)**
<ol> <li>CV was calculated as residual standard deviation</li> </ol>	rd deviation	/I C Man			apprice to all usize	tor each para	meter.		

CV was calculated as restored the verte indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx 1/X$  [(Y/X)³ S_X² + S_Y² ]⁴ × 100% Linear Contrast =  $-3X_0 - X_1 + X_2 + 3X_3$ ]/[20]⁴, where X₀ is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

ġ

ł

;

Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Hormonal Parameters for Charles River Laboratories^{1,2} Table 6.

	Linear Trend ⁵	-4.651 (1.366)**	-0.204 (0.152)	-1.236 (1.320)	-2.427 (0.151)**	-12.103 (2.593)**	1.042 (0.560)	10.008 (1.554)**	-22.928 (4.714)**	-123.388 (54.655)*
	Ratio to Vehicle (%) ⁴	48.618 (13.330)	80.502 (6.420)	75.172 (10.686)	65.520 (3.816)	83.520 (4.138)	96.366 (5.338)	130.686 (9.911)	12.981 (3.874)	70.935 (12.045)
mg/kg/day)	DIff from Vehicle ²	-5.101 (2.105)*	-0.425 (0.159)*	-3.251 (1.785)	-1.631 (0.213)**	-13.457 (3.667)**	-0.538 (0.804)	7.795 (2.164)**	-31.741 (7.083)**	-141.762 (73.758)
bimron (50 mg/g/day)	(%) (%)	74.4	21.1	22.8	18.9	14.7	15.2	17.8	85.5	41.0
La construction de la constructi	Les Meau(SE)	4.826 (0.960)	1.753 (0.095)	9.844 (0.601)	3.099 (0.151)	68.196 (2.593)	14.269 (0.579)	33.199 (1.530)	4.735 (1.082)	345.972 (37.905)
		14	15	14	15	15	14	15	14	14
	58	73.1	22.6	49.7	12.4	12.3	14.6	23.3	74.3	50.2
Vehicle I s Moor SED		9.927 (1.873)	2.178 (0.127)	13.095 (1.681)	4.729 (0.151)	81.653 (2.593)	14.807 (0.559)	25.403 (1.530)	36.476 (6.999)	487.734 (63.273)
N		15	15	15	15	15	15	15	15	15
	Parameter	Testosterone (ng/ml)	LH (ng/ml)	TSH (ng/ml)	T4 (μg/dl)	T3 (ng/dl)	FSH (ng/ml)	Estradiol (pg/ml)	Prolactin (ng/ml)	DHT (pg/ml)

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to the data for each parameter, after excluding some extreme observations. 

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was  $Se[R(X, Y)] \approx 1/X | [(Y/X)^2 S_X^2 + S_Y^2]^4 \times 100\%$ v. 4. v.

Linear Contrast  $\equiv [-3X_0 - X_1 + X_2 + 3\hat{X}_3]/[20]^{4_n}$  where  $X_0$  is vehicle,  $X_1$ ,  $X_2$ , and  $X_3$  are the low, mid, and high dosage levels of Linuron respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Hormonal Parameters for Table 6 (cont.).

		12
	1.50	
-		
2		
0		
5		
i i		6
	14.20	1938
1	22.22	<u></u>
2		Ratio to
-	\$1.5	132
3	Se 64.	l e
	65	
Í		R.
		2
2		28
4		
1		1997
4		36
5		$\mathcal{L}_{\mathcal{L}}$
1	2.54	S E
		), G
	Ð,	
		Pe
	5	
i i		1.5
5	e.	10.84
ţ	2	3.4
i	5	CV DIM
		фР. Ц
		S Mean(SE)
i		1
		. O
1		が月
		1
	<b>教教</b>	N
		Ś
	國家	
		1950
		1989) 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -
1		a and
8		Z
		$\mathcal{F}_{\mathcal{F}}$
	144 X	21.1 1
		10
Ories ^{1,2}		SV SV
, uř	部設	<b>U</b>
S_		
e.	<b>着热的</b>	A 19
ories		100
ŭ ŭ		
E E		<b>B</b>
5	5	-
<u> </u>		
्य	رد د	le
	3 Q (	34
5		്പ
<b>N</b>	1	
. <b>2</b> –		9
		stu:
e		
L		Z
3		
Charles River Laborat		<u> </u>
0		×?
		. N
	· · · · ·	
		33
	<u>Gen</u>	

		Vehicle				ouron (100	Enuron (100 mg/kg/day)		
Parameter	X	LS Mean (SE)	CV (%)	N	LS Mean(SE)	(%) CV	Diff from Véhicle	Ratio to Vehicle (%) ⁴	Linear Trends
Testosterone (ng/ml)	15	9.927 (1.873)	73.1	14	3.981 (1.065)	100.1	-5.947 (2.154)*	40.099 (13.124)	-4.651 (1.366)**
LH (ng/ml)	15	2.178 (0.127)	22.6	15	1.782 (0.137)	29.7	-0.396 (0.187)*	81.818 (7.882)	-0.204 (0.152)
TSH (ng/ml)	15	13.095 (1.681)	49.7	15	12.212 (1.519)	48.2	-0.883 (2.266)	93.259 (16.670)	-1.236 (1.320)
T4 (μg/dl)	15	4.729 (0.151)	12.4	15	1.819 (0.151)	32.1	-2.910 (0.213)**	38.469 (3.420)	-2.427 (0.151)**
T3 (ng/dl)	15	81.653 (2.593)	12.3	15	65.621 (2.593)	15.3	-16.032 (3.667)**	80.366 (4.074)	-12.103 (2.593)**
FSH (ng/ml)	15	14.807 (0.559)	14.6	15	15.622 (0.559)	13.9	0.815 (0.790)	105.507 (5.487)	1.042 (0.560)
Estradiol (pg/ml)	15	25.403 (1.530)	23.3	15	40.946 (1.530)	14.5	15.543 (2.164)**	161.184 (11.424)	10.008 (1.554)**
Prolactin (ng/ml)	15	36.476 (6.999)	74.3	15	5.566 (1.190)	82.8	-30.910 (7.100)**	15.259 (4.383)	-22.928 (4.714)**
DHT (pg/ml)	15	487.734 (63.273)	50.2	15	357.769 (69.584)	75.3	-129.965 (94.050)	73.353 (17.149)	-123.388 (54.655)*

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to the data for each parameter, after excluding some extreme observations. 

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level).

Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X| [(Y/X)^2 S_X^2 + S_Y^2]^4 \times 100\%$ <u>v. 4. v.</u>

Linear Contrast =  $[-3X_0 - X_1 + X_2 + 3X_3]/[20]^{4/3}$  where  $X_0$  is vehicle,  $X_1$ ,  $X_2$ , and  $X_3$  are the low, mid, and high dosage levels of Linuron respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

Summary Statistics between Vehicle and Linuron in Adult Intact Male Assay for Hormonal Parameters for Charles River Laboratories^{1,2} Table 6 (cont.).

		Venicle				nuron (150	Linuron (150 ng/kg/day)		
Parameter	Z	LS Mean (SE)	ev (%)	N	LS Mean(SE)	СV СV	Diffrom Vehicle	Ratio to Vehicle (%) ⁴	Liuear Trend ⁵
Testosterone (ng/ml)	15	9.927 (1.873)	73.1	14	3.276 (0.641)	73.2	-6.651 (1.980)**	33.004 (8.970)	-4.651 (1.366)**
LH (ng/ml)	15	2.178 (0.127)	22.6	15	1.865 (0.179)	37.1	-0.313 (0.219)	85.614 (9.600)	-0.204 (0.152)
TSH (ng/ml)	15	13.095 (1.681)	49.7	15	10.463 (0.866)	32.1	-2.631 (1.891)	79.905 (12.208)	-1.236 (1.320)
T4 (μg/dl)	15	4.729 (0.151)	12.4	15	1.537 (0.151)	38.0	-3.192 (0.213)**	32.506 (3.356)	-2.427 (0.151)**
T3 (ng/dl)	15	81.653 (2.593)	12.3	15	64.469 (2.593)	15.6	-17.184 (3.667)**	78.955 (4.046)	-12.103 (2.593)**
FSH (ng/ml)	15	14.807 (0.559)	14.6	15	15.909 (0.559)	13.6	1.102 (0.790)	107.443 (5.540)	1.042 (0.560)
Estradiol (pg/ml)	15	25.403 (1.530)	23.3	14	37.740 (1.584)	15.7	12.337 (2.202)**	148.563 (10.905)	10.008 (1.554)**
Prolactin (ng/ml)	15	36.476 (6.999)	74.3	14	2.019 (0.314)	58.2	-34.457 (7.006)**	5.536 (1.367)	-22.928 (4.714)**
DHT (pg/ml)	15	487.734 (63.273)	50.2	15	299.866 (44.012)	56.8	-187.868 (77.075)*	61.481 (12.043)	-123.388 (54.655)*

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to the data for each parameter, after excluding some extreme observations. ...

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx$ |1/X| [(Y/X)² S_X² + S_Y² ]⁴ ×100% <u>, , 4 v</u>

Linear Contrast  $\equiv [-3X_0 - X_1 + X_2 + 3\tilde{X}_3]/[20]^4$ , where  $X_0$  is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels of Linuron respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

Page 338

Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Hormonal Parameters for Charles River Laboratories^{1,2} Table 7.

	Linear Treuds	8) -5.766 (1.321)**	.) -0.502 (0.100)**			+	-		<b>_</b>	
	Ratio to Vehicle (%) ⁴	61.164 (16.798)	83.134 (6.621)	178.307 (31.733)	79.306 (4.073)	79.419 (4.055)	93.480 (5.167)	132.694 (10.007)	38.518 (13.417)	79.885 (15.327)
Phenobarbital (25 mg/kg/day)	Diff from Vehicle ³	-3.855 (2.231)	-0.367 (0.161)*	10.254 (3.333)**	-0.979 (0.213)**	-16.805 (3.667)**	-0.965 (0.790)	8.305 (2.164)**	-22.426 (8.104)*	-98.109 (83.886)
tobarbital	<u>ک</u>	77.3	21.0	47.7	15.6	15.5	15.6	17.6	112.6	54.7
Phen	LS Mean(SE)	6.072 (1.212)	1.811 (0.098)	23.349 (2.877)	3.751 (0.151)	64.847 (2.593)	13.841 (0.559)	33.709 (1.530)	14.050 (4.084)	389.625 (55.075)
	N	15	15	15	15	15	15	15	15	15
	CV (%)	73.1	22.6	49.7	12.4	12.3	14.6	23.3	74.3	50.2
Vehicle	LS Mean (SE)	9.927 (1.873)	2.178 (0.127)	13.095 (1.681)	4.729 (0.151)	81.653 (2.593)	14.807 (0.559)	25.403 (1.530)	36.476 (6.999)	487.734 (63.273)
	Z	15	15	15	15	15	15	15	15	15
	Parameter	Testosterone (ng/ml)	LH (ng/ml)	TSH (ng/ml)	T4 (μg/dl)	T3 (ng/d!)	FSH (ng/ml)	Estradiol (pg/ml)	Prolactin (ng/ml)	DHT (pg/ml)

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to the data for each parameter, after excluding some extreme observations. 

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X| [(Y/X)^2 S_X^2 + S_Y^2]^4 \times 100\%$ Linear Contrast  $\equiv [-3X_0 - X_1 + X_2 + 3X_3]/[20]^{N_1}$ , where  $X_0$  is vehicle,  $X_1$ ,  $X_2$ , and  $X_3$  are the low, mid, and high dosage levels of phenobarbital respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level. 

Page 339

Table 7 (cont.).

Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Hormonal Parameters for Charles River Laboratories^{1,2}

NLS Near (ST)CVNLS Near (ST)CVNLiteration159.927 (1.873)73.115 $3.495 (0.723)$ $80.1$ $6.433 (2.008) **$ $35.202 (9.854)$ $5.766 (1.321) **$ 159.927 (1.873)73.115 $3.495 (0.723)$ $80.1$ $6.433 (2.008) **$ $35.202 (9.854)$ $5.766 (1.321) **$ 152.178 (0.127)22.615 $1.435 (0.054)$ $14.6$ $0.743 (0.138) **$ $65.871 (4.572)$ $0.502 (0.100) **$ 1513.005 (1.681)49.715 $2.5741 (2.024)$ $30.5$ $12.647 (2.631) **$ $196.579 (29.597)$ $11.692 (2.051) **$ 1513.005 (1.681)12.415 $3.642 (0.151)$ $16.1$ $-1.087 (0.213) **$ $77.009 (4.028)$ $-1437 (0.153) **$ 15 $4.729 (0.151)$ 12.315 $65.408 (2.593)$ $17.4$ $-2.348 (0.790) **$ $84.142 (4.933)$ $-2.006 (0.568) **$ 15 $81.653 (2.593)$ $17.4$ $-2.348 (0.790) **$ $84.142 (4.933)$ $-2.006 (0.568) **$ 15 $25.403 (1.530)$ $15.4$ $-16.245 (3.667) **$ $84.142 (4.933)$ $-2.006 (0.568) **$ 15 $25.403 (1.530)$ $15.4$ $-16.245 (3.667) **$ $84.142 (4.933)$ $-2.006 (0.568) **$ 15 $25.403 (1.530)$ $23.3$ $1530.525 (1.530)16.211.122 (2.164) **84.142 (4.933)-2.006 (0.568) **1536.476 (6.999)74.316.211.122 (2.164) **84.142 (4.933)-2.096 (0.568) **1536.4$		Vehicle			Phe	nobarbital	Phenobarbital (50 mg/kg/day))		
73.1         15         3.495 (0.723)         80.1         -6.433 (2.008)**         35.202 (9.854)           22.6         15         1.435 (0.054)         14.6         -0.743 (0.138)**         65.871 (4.572)           49.7         15         25.741 (2.024)         30.5         12.647 (2.631)**         196.579 (29.597)           49.7         15         25.741 (2.024)         30.5         12.647 (2.631)**         77.009 (4.028)           12.4         15         3.642 (0.151)         16.1         -1.087 (0.213)**         77.009 (4.028)           12.4         15         3.642 (0.559)         15.4         -16.245 (3.667)**         80.105 (4.069)           12.3         15         65.408 (2.593)         15.4         -16.245 (3.667)**         84.142 (4.933)           14.6         15         12.459 (0.559)         17.4         -2.348 (0.790)**         84.142 (4.933)           14.6         15         12.459 (0.559)         17.4         -2.348 (0.790)**         84.142 (4.933)           74.3         14         8.1121 (1.533)         70.6         -28.355 (7.164)**         143.782 (10.548)           74.3         14         8.1121 (1.533)         70.6         -28.355 (7.165)**         22.063 (5.993)           50.2         15 <th> Z</th> <th>LS Mean (SE)</th> <th>°CV (%)</th> <th>N</th> <th>LS Mean(SF)</th> <th>CV (%)</th> <th>Diff from Yehicle³</th> <th>Ratio to Vehicle (%)⁴</th> <th>Linear Trend⁵</th>	 Z	LS Mean (SE)	°CV (%)	N	LS Mean(SF)	CV (%)	Diff from Yehicle ³	Ratio to Vehicle (%) ⁴	Linear Trend ⁵
22.6       15       1.435 (0.054)       14.6       -0.743 (0.138)**       65.871 (4.572)         49.7       15       25.741 (2.024)       30.5       12.647 (2.631)**       196.579 (29.597)         12.4       15       3.642 (0.151)       16.1       -1.087 (0.213)**       77.009 (4.028)         12.4       15       3.642 (0.151)       16.1       -1.087 (0.213)**       77.009 (4.028)         12.3       15       65.408 (2.593)       15.4       -16.245 (3.667)**       80.105 (4.069)         14.6       15       12.459 (0.559)       17.4       -2.348 (0.790)**       84.142 (4.933)         23.3       15       36.525 (1.530)       16.2       11.122 (2.164)**       143.782 (10.548)         74.3       14       8.121 (1.533)       70.6       -28.355 (7.165)**       22.263 (5.993)         50.2       15       301.385 (52.321)       67.2       -186.349 (82.103)*       61.793 (13.392)	 15	9.927 (1.873)	73.1	15	3.495 (0.723)	80.1	-6.433 (2.008)**	35.202 (9.854)	-5.766 (1.321)**
49.7       15       25.741 (2.024)       30.5       12.647 (2.631)**       196.579 (29.597)         12.4       15       3.642 (0.151)       16.1       -1.087 (0.213)**       77.009 (4.028)         12.3       15       65.408 (2.593)       15.4       -16.245 (3.667)**       80.105 (4.069)         14.6       15       12.459 (0.559)       17.4       -2.348 (0.790)**       84.142 (4.933)         23.3       15       36.525 (1.530)       16.2       11.122 (2.164)**       143.782 (10.548)         74.3       14       8.121 (1.533)       70.6       -28.355 (7.165)**       22.263 (5.933)         50.2       15       301.385 (52.321)       67.2       -186.349 (82.103)*       61.793 (13.392)	 15	2.178 (0.127)	22.6	15	1.435 (0.054)	14.6	-0.743 (0.138)**	65.871 (4.572)	-0.502 (0.100)**
12.4         15         3.642 (0.151)         16.1         -1.087 (0.213)**         77.009 (4.028)           12.3         15         65.408 (2.593)         15.4         -16.245 (3.667)**         80.105 (4.069)           12.3         15         15.4         -16.245 (3.667)**         80.105 (4.069)           14.6         15         12.459 (0.559)         17.4         -2.348 (0.790)**         84.142 (4.933)           23.3         15         36.525 (1.530)         16.2         11.122 (2.164)**         143.782 (10.548)           74.3         14         8.121 (1.533)         70.6         -28.355 (7.165)**         22.263 (5.993)           50.2         15         301.385 (52.321)         67.2         -186.349 (82.103)*         61.793 (13.392)	 15	13.095 (1.681)	49.7	15	25.741 (2.024)	30.5	12.647 (2.631)**	196.579 (29.597)	11.692 (2.051)**
12.3         15         65.408 (2.593)         15.4         -16.245 (3.667)**         80.105 (4.069)           14.6         15         12.459 (0.559)         17.4         -2.348 (0.790)**         84.142 (4.933)           23.3         15         36.525 (1.530)         16.2         11.122 (2.164)**         143.782 (10.548)           74.3         14         8.121 (1.533)         70.6         -28.355 (7.165)**         22.263 (5.993)           50.2         15         301.385 (52.321)         67.2         -186.349 (82.103)*         61.793 (13.392)	 15	4.729 (0.151)	12.4	15	3.642 (0.151)	16.1	-1.087 (0.213)**	77.009 (4.028)	-1.437 (0.153)**
14.6         15         12.459 (0.559)         17.4         -2.348 (0.790)**         84.142 (4.933)           23.3         15         36.525 (1.530)         16.2         11.122 (2.164)**         143.782 (10.548)           74.3         14         8.121 (1.533)         70.6         -28.355 (7.165)**         22.263 (5.993)           50.2         15         301.385 (52.321)         67.2         -186.349 (82.103)*         61.793 (13.392)	 15	81.653 (2.593)	12.3	15	65.408 (2.593)	15.4	-16.245 (3.667)**	80.105 (4.069)	-16.985 (2.634)**
23.3         15         36.525 (1.530)         16.2         11.122 (2.164)**         143.782 (10.548)           74.3         14         8.121 (1.533)         70.6         -28.355 (7.165)**         22.263 (5.993)           50.2         15         301.385 (52.321)         67.2         -186.349 (82.103)*         61.793 (13.392)	 15	14.807 (0.559)	14.6	15	12.459 (0.559)	17.4	-2.348 (0.790)**	84.142 (4.933)	-2.006 (0.568)**
74.3         14         8.121 (1.533)         70.6         -28.355 (7.165)**         22.263 (5.993)           50.2         15         301.385 (52.321)         67.2         -186.349 (82.103)*         61.793 (13.392)	 15	25.403 (1.530)	23.3	15	36.525 (1.530)	16.2	11.122 (2.164)**	143.782 (10.548)	9.431 (1.554)**
50.2         15         301.385 (52.321)         67.2         -186.349 (82.103)*         61.793 (13.392)	 15	36.476 (6.999)	74.3	14	8.121 (1.533)	70.6	-28.355 (7.165)**	22.263 (5.993)	-22.967 (4.896)**
	15	487.734 (63.273)	50.2	15	301.385 (52.321)	67.2	-186.349 (82.103)*	61.793 (13.392)	-179.980 (50.247)**

Least squares means and standard errors were estimated based on a one-way ANOVA model applied to the data for each parameter, after excluding some extreme observations. <del>..</del>.

CV was calculated as residual standard deviation/LS Mean.

Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level). Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was  $Se[R(X, Y)] \approx 1/X | [(Y/X)^2 S_X^2 + S_Y^2]^4 \times 100\%$ 

Linear Contrast =  $[-3X_0 - X_1 + X_2 + 3\hat{X}_3]/[20]^{4_1}$ , where  $X_0$  is vehicle,  $X_1$ ,  $X_2$ , and  $X_3$  are the low, mid, and high dosage levels of phenobarbital respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.

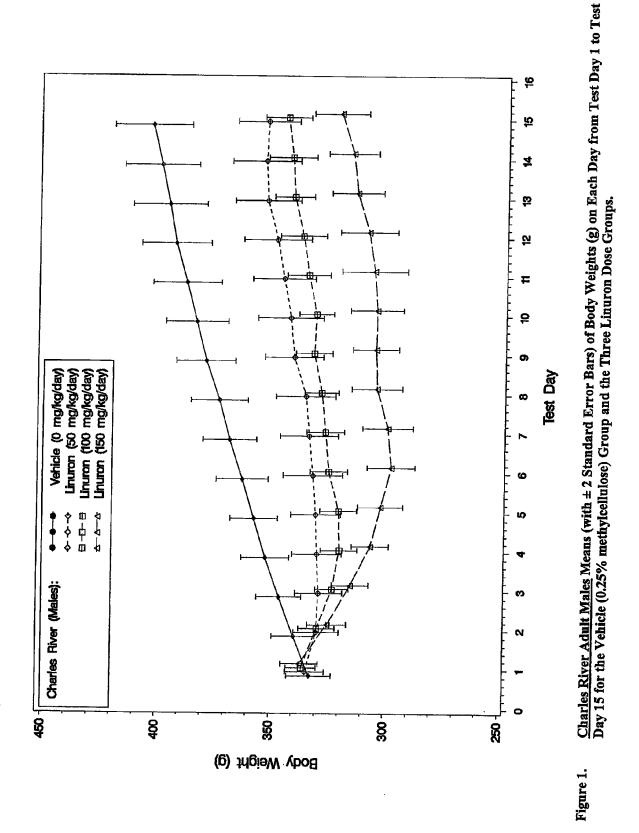
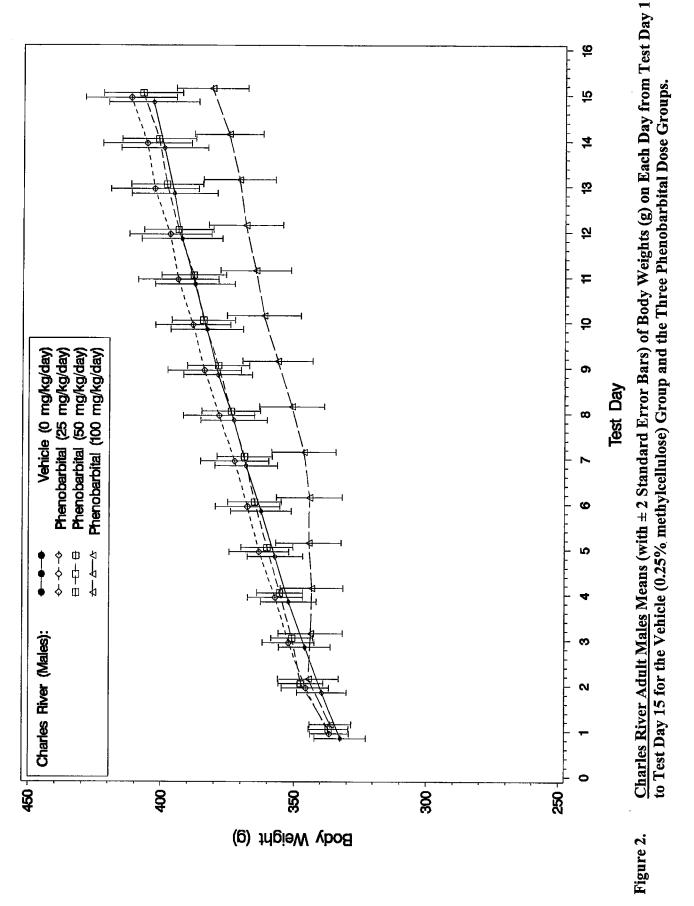
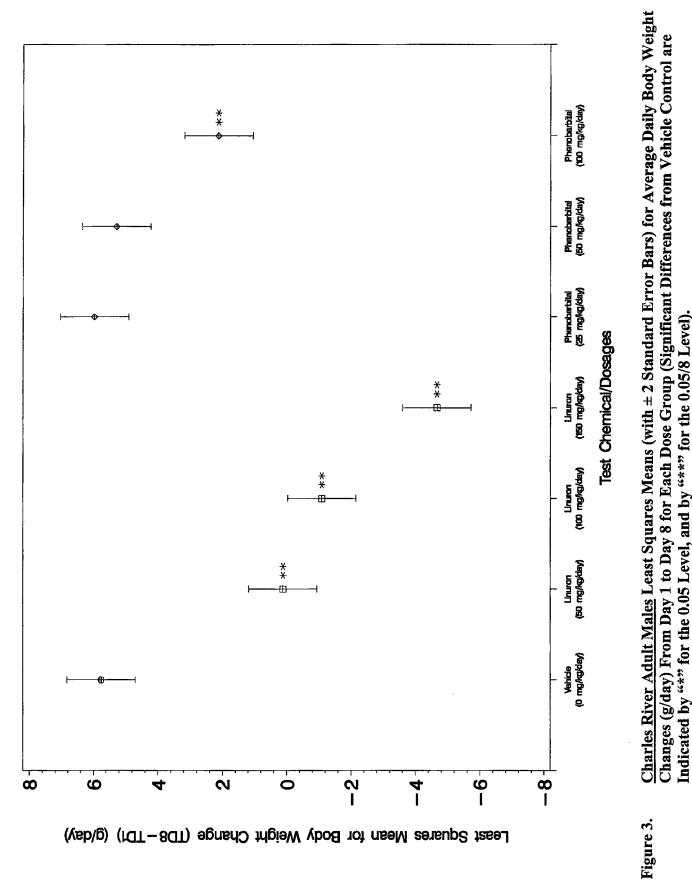

Page 340

Table 7 (cont.).

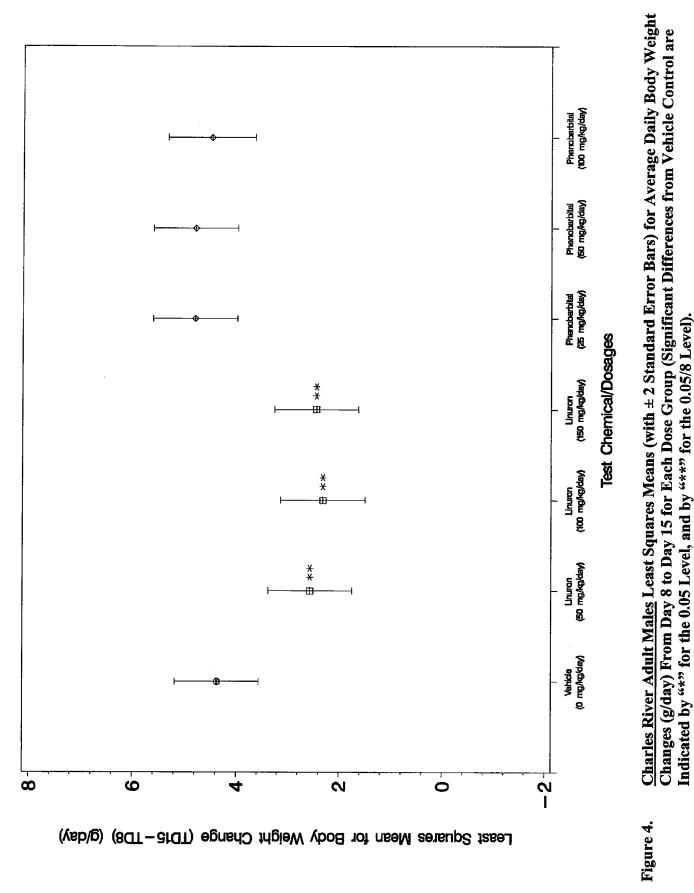
Summary Statistics between Vehicle and Phenobarbital in Adult Intact Male Assay for Hormonal Parameters for Charles River Laboratories^{1,2}


	Linear Treud ⁵	-5.766 (1.321)**	-0.502 (0.100)**	11.692 (2.051)**	-1.437 (0.153)**	-16.985 (2.634)**	-2.006 (0.568)**	9.431 (1.554)**	-22.967 (4.896)**	-179.980 (50.247)**
	Ratio to Vehicle (%) ⁴	22.076 (5.716)	71.396 (5.215)	227.017 (33.909)	55.459 (3.748)	68.763 (3.946)	82.921 (5.006)	151.645 (11.058)	11.557 (4.598)	51.021 (9.188)
Phenobarbital (100 mg/kg/day)	Diff from Vehicle	-7.736 (1.913)**	-0.623 (0.144)**	16.632 (2.824)**	-2.106 (0.217)**	-25.506 (3.732)**	-2.529 (0.804)**	13.120 (2.202)**	-32.261 (7.152)**	-238.885 (70.494)**
obarbital (	CV (%)	63.9	16.5	28.6	22.3	17.9	17.6	15.4	125.7	46.7
Phen	LS Mean(SE)	2.192 (0.389)	1.555 (0.068)	29.727 (2.269)	2.623 (0.156)	56.146 (2.684)	12.278 (0.579)	38.523 (1.584)	4.215 (1.469)	248.849 (31.079)
	N	13	14	14	14	14	14	14	13	14
	CV (%)	73.1	22.6	49.7	12.4	12.3	14.6	23.3	74.3	50.2
Vehicle	LS Mean (SE)	9.927 (1.873)	2.178 (0.127)	13.095 (1.681)	4.729 (0.151)	81.653 (2.593)	14.807 (0.559)	25.403 (1.530)	36.476 (6.999)	487.734 (63.273)
	N	15	15	15	15	15	15	15	15	15
	Parameter	Testosterone (ng/ml)	LH (ng/ml)	TSH (ng/ml)	T4 (μg/dl)	T3 (ng/dl)	FSH (ng/ml)	Estradiol (pg/ml)	Prolactin (ng/ml)	DHT (pg/ml)

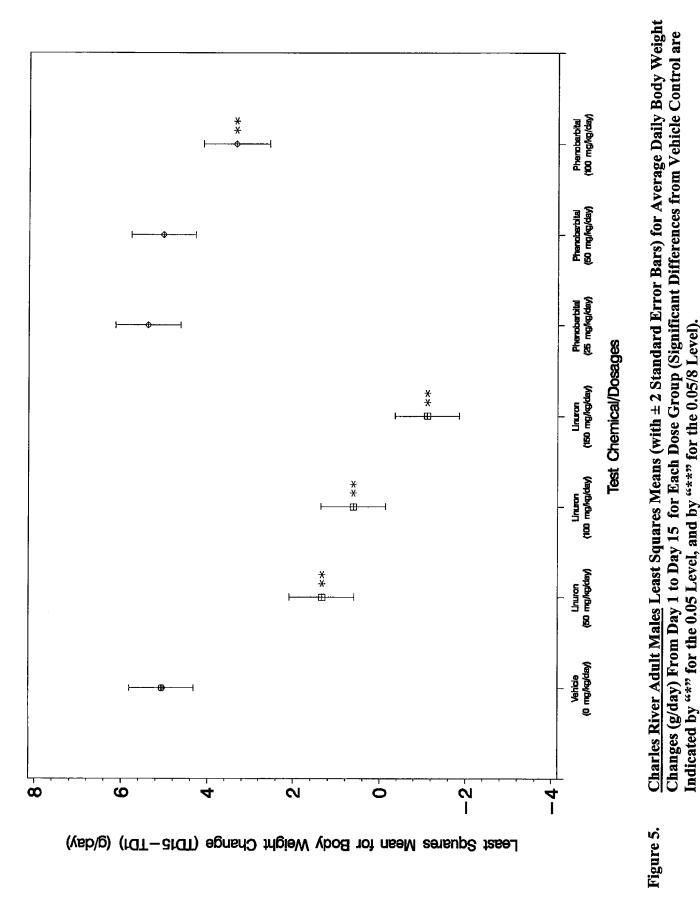
- Least squares means and standard errors were estimated based on a one-way ANOVA model applied to the data for each parameter, after excluding some extreme observations.
  - CV was calculated as residual standard deviation/LS Mean.
- Significant differences from the vehicle were indicated by "*" for the 0.05 level and "**" for the 0.05/8 level (a Bonferroni adjusted p-level).
- Ratio to the vehicle was calculated as percent of vehicle group mean. The standard error for the ratio was Se[R(X, Y)]  $\approx |1/X| [(Y/X)^2 S_X^2 + S_Y^2]^4 \times 100\%$ v. 4. v.
  - Linear Contrast  $\equiv [-3X_0 X_1 + X_2 + 3X_3]/[20]^{4}$ , where  $X_0$  is vehicle, X₁, X₂, and X₃ are the low, mid, and high dosage levels of phenobarbital respectively. Significant dose trend was indicated by "*" for the 0.05 level and "**" for the 0.05/8 level.



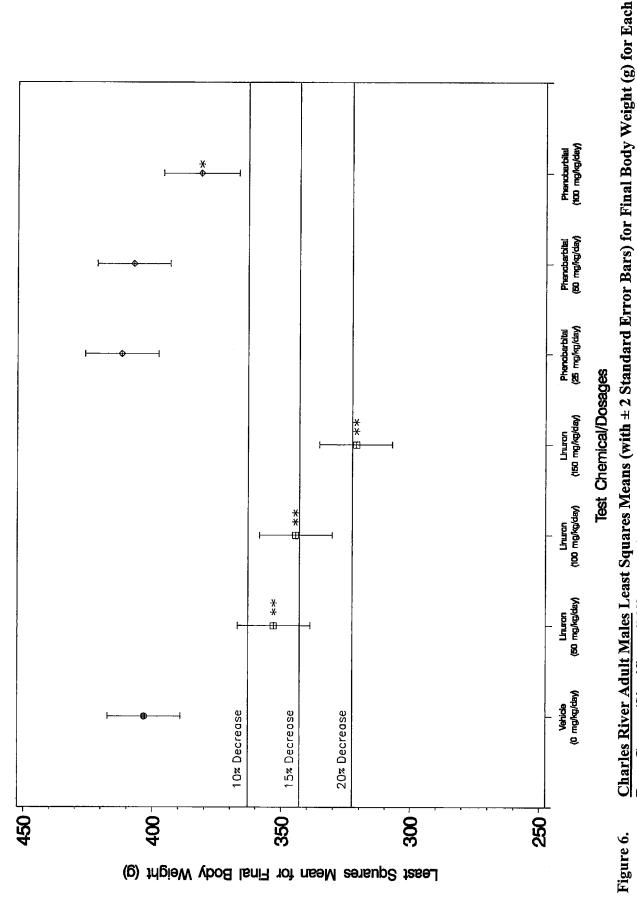

1


Page 342




Page 343

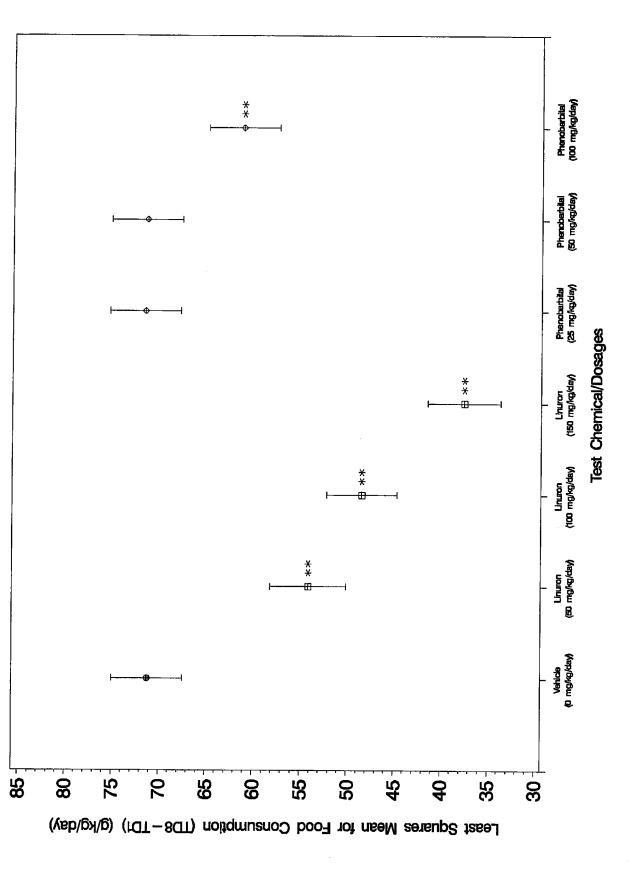



Page 344



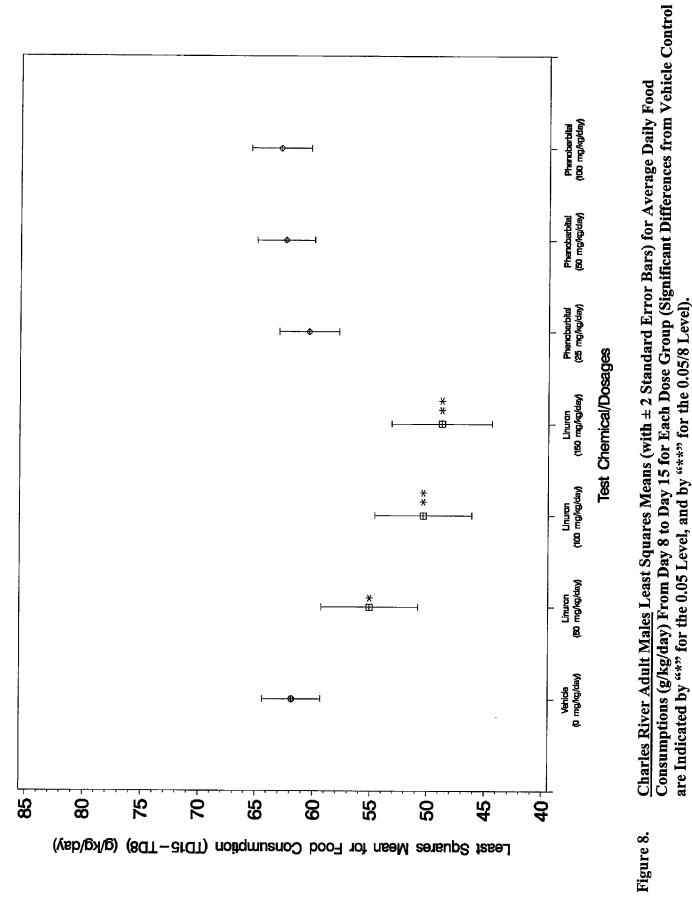
Page 345



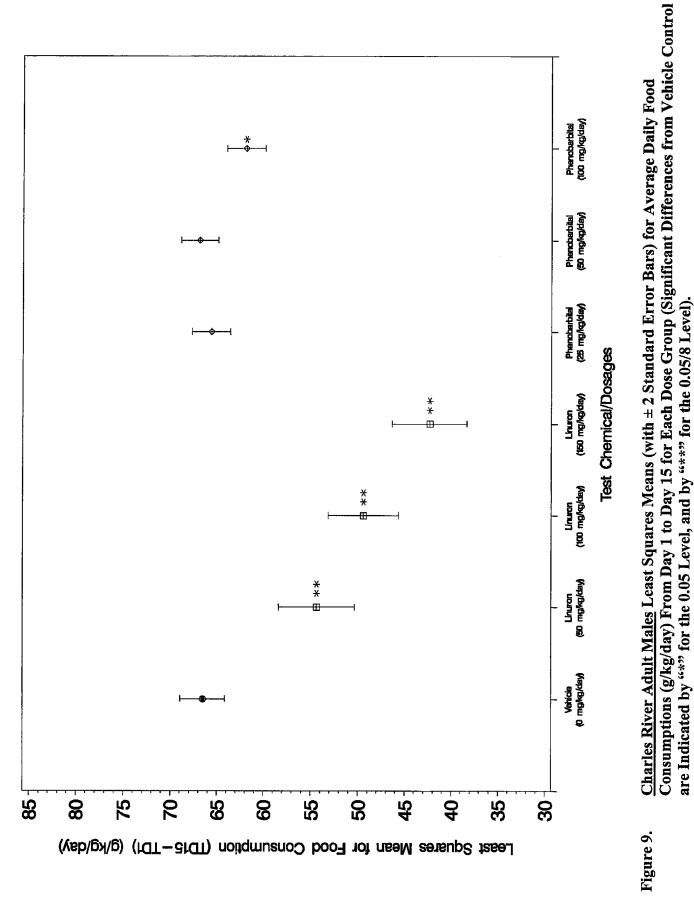

Page 346



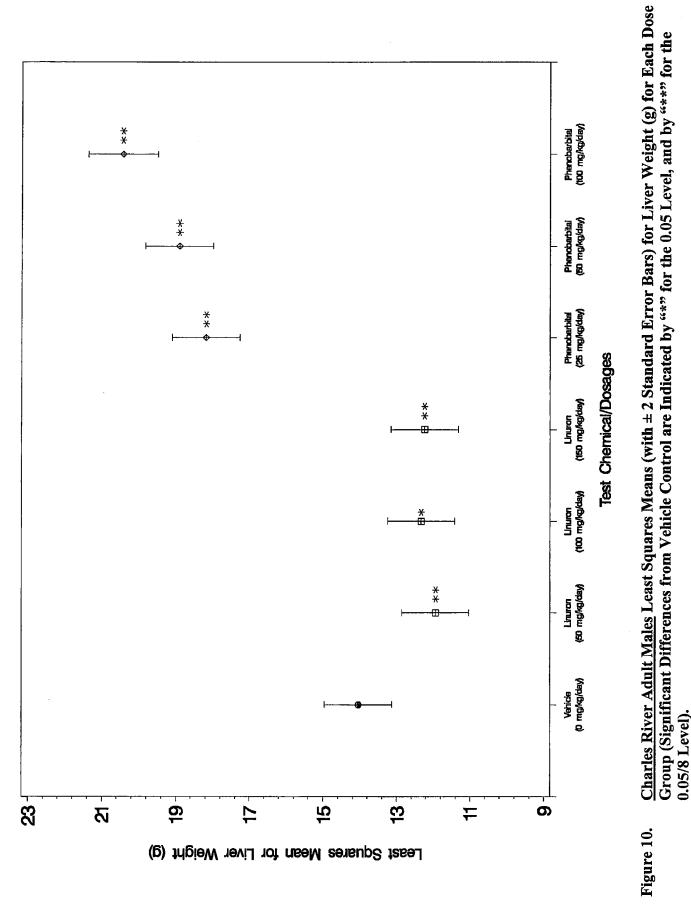
Dose Group (Significant Differences from Vehicle Control are Indicated by "*" for the 0.05 Level, and by "**" for the 0.05/8 Level). The Horizontal Reference Lines Represent 10%, 15% and 20% Decrease in Final Body Weight


**Relative to Vehicle.** 

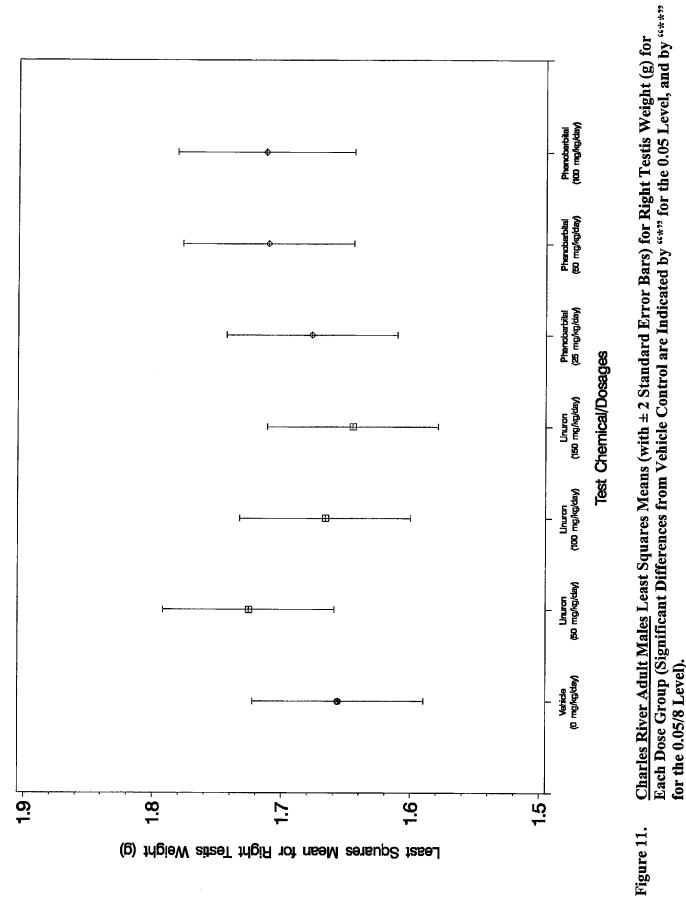
Page 347



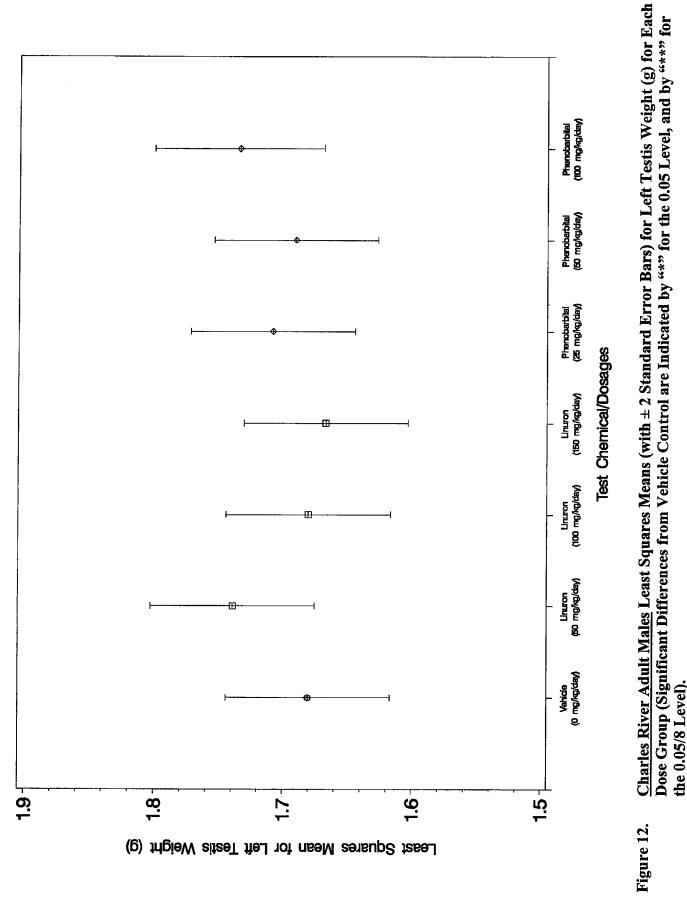




Page 348

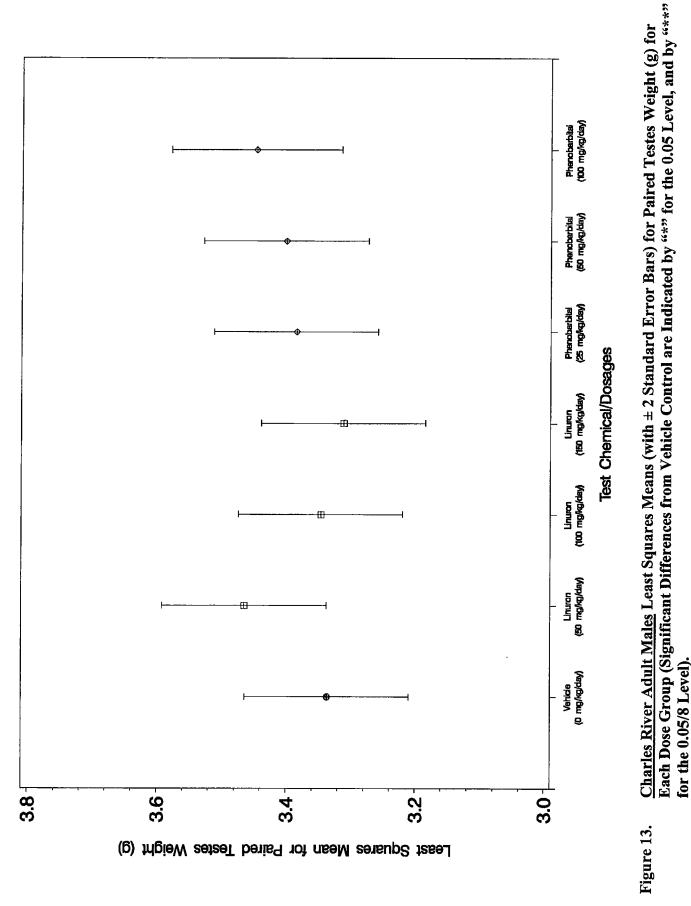



Page 349

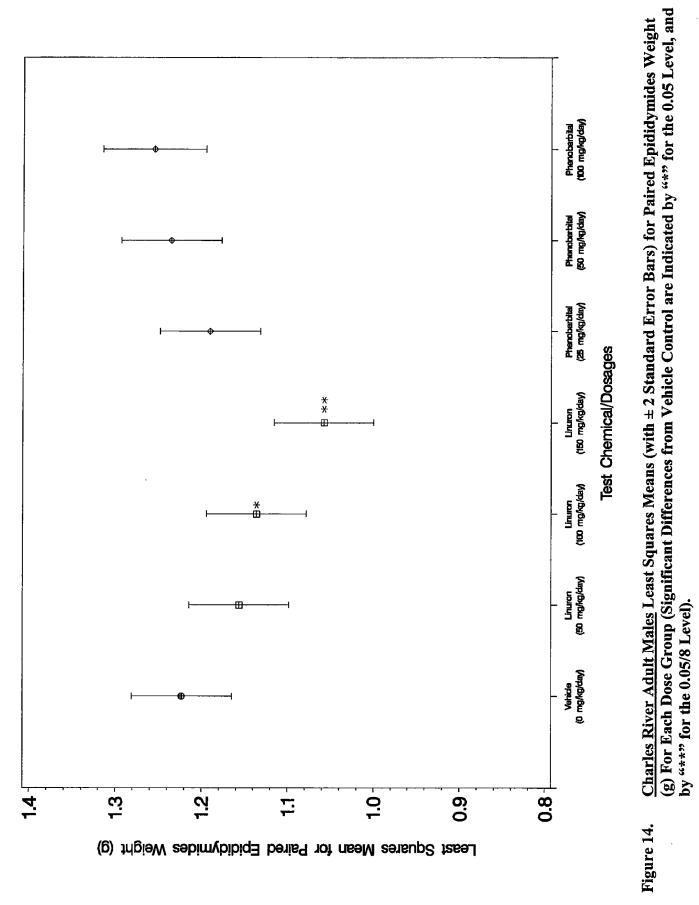



Page 350

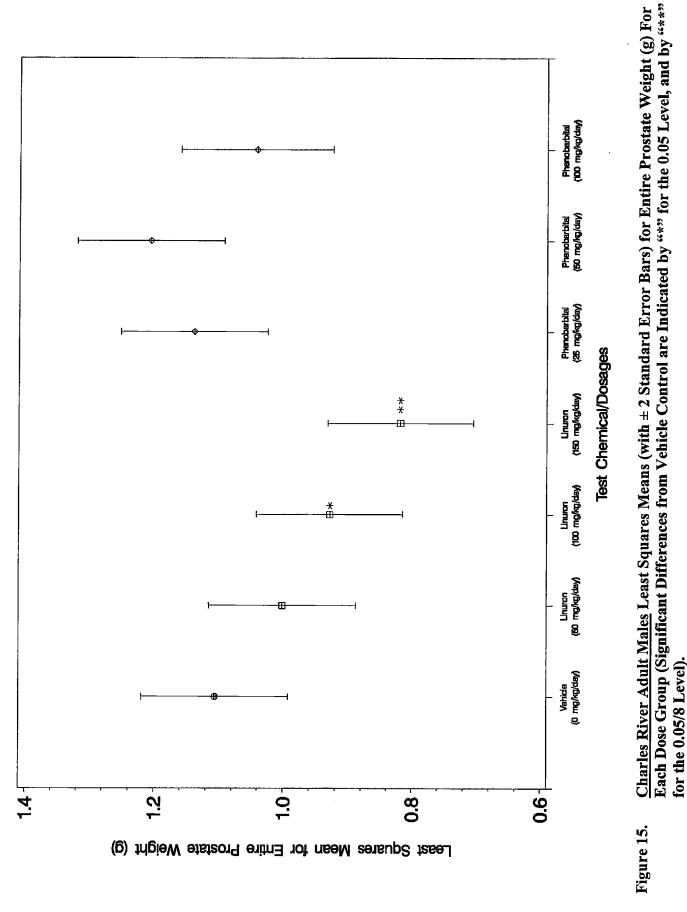



Page 351

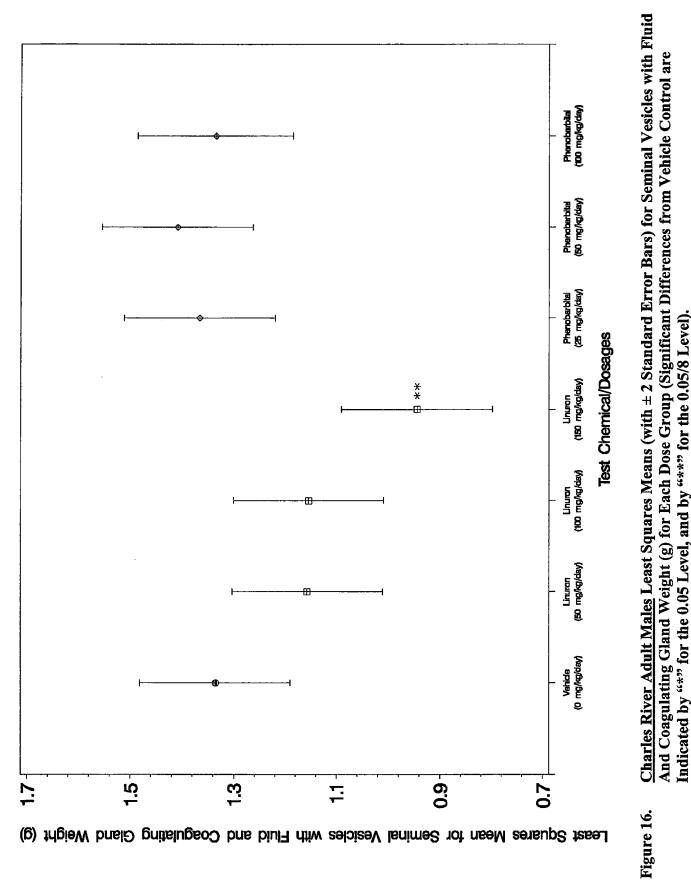


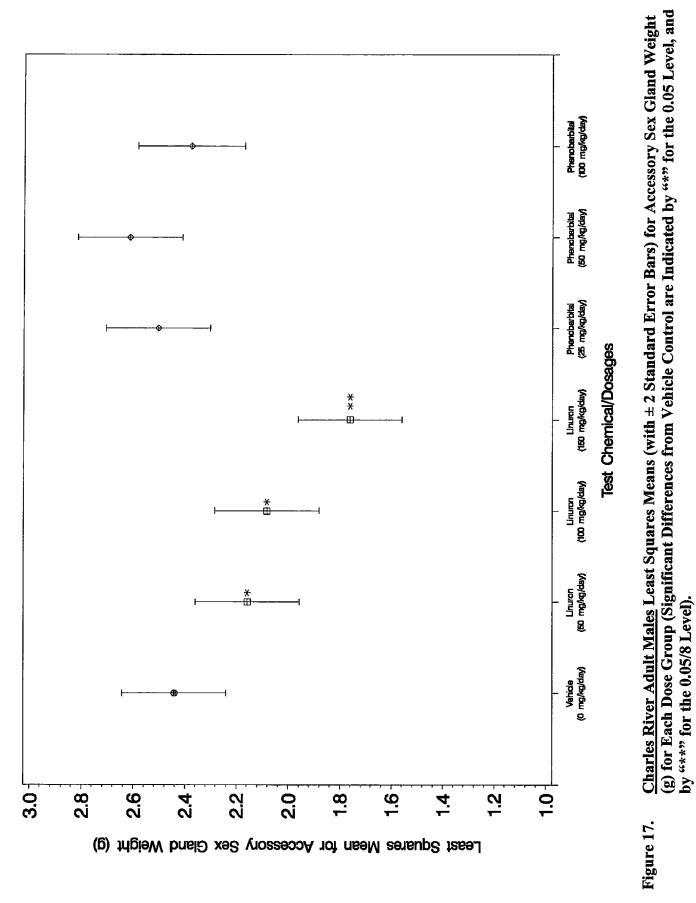

Page 352



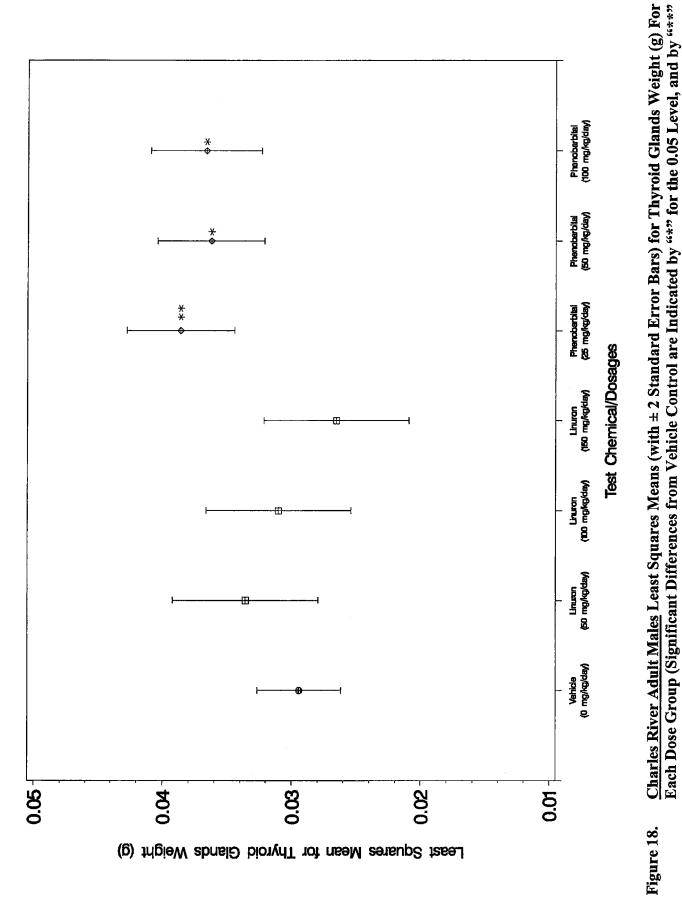

Page 353




Page 354

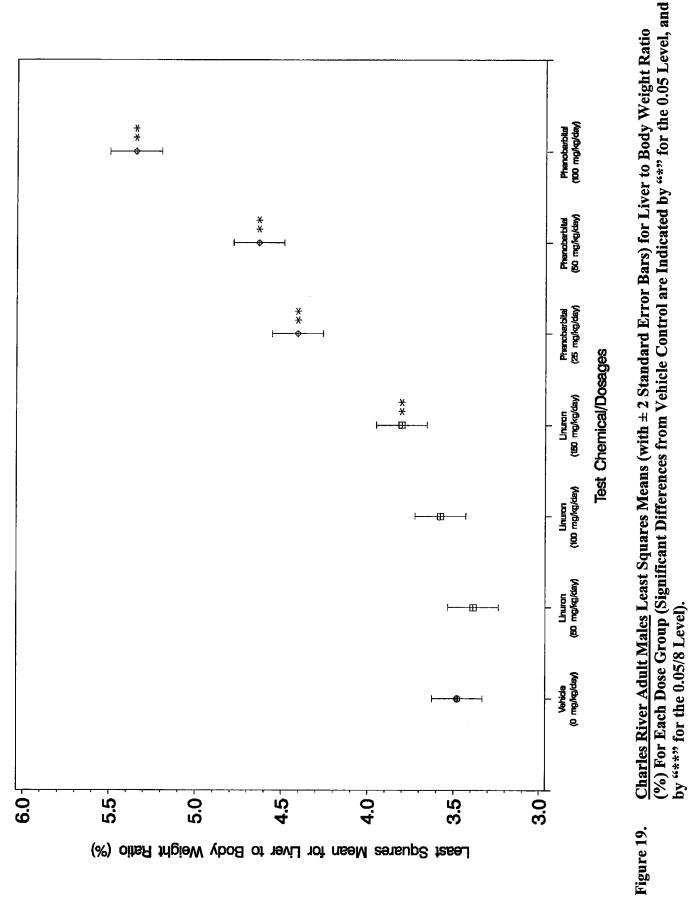



Page 355

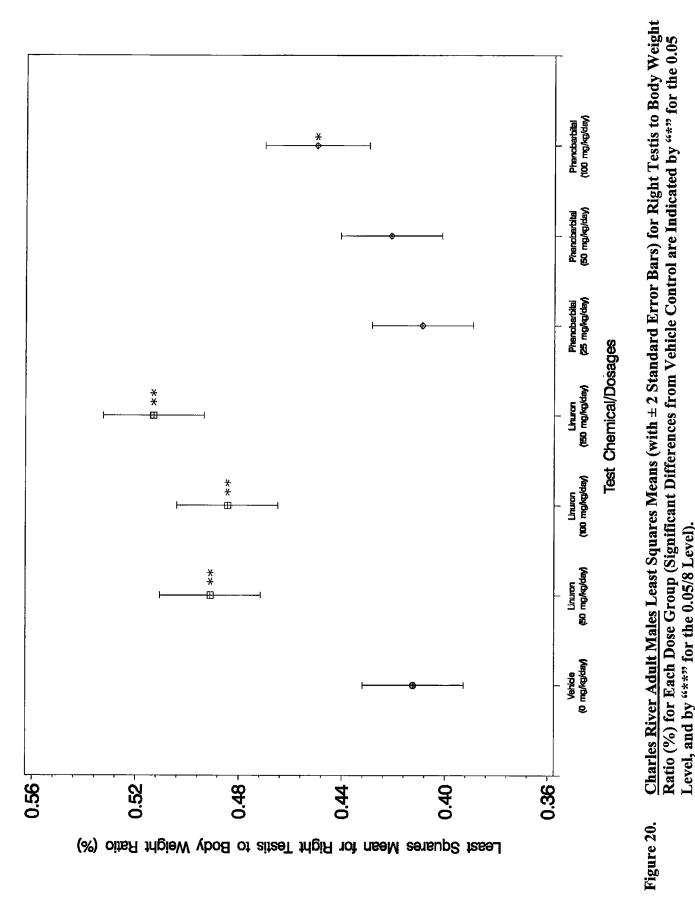



Page 356

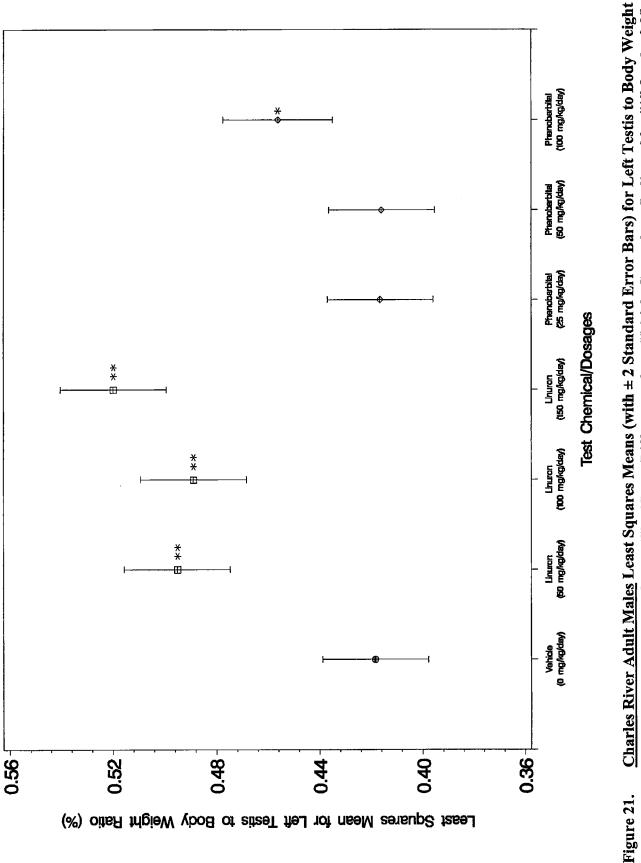


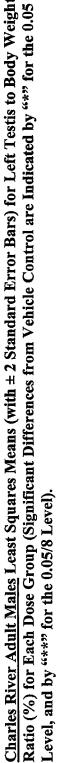



Page 358

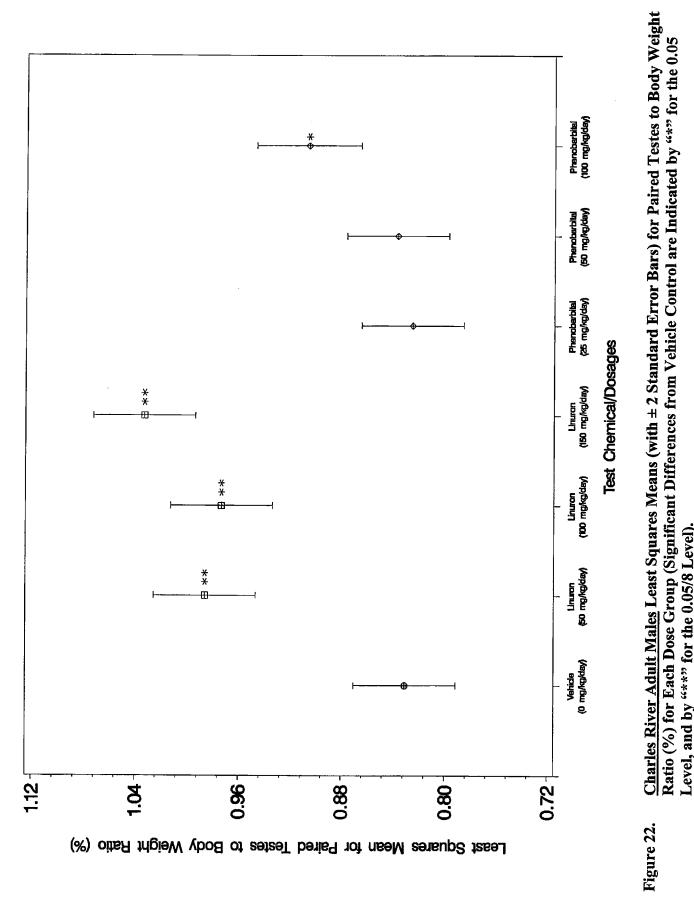



for the 0.05/8 Level).

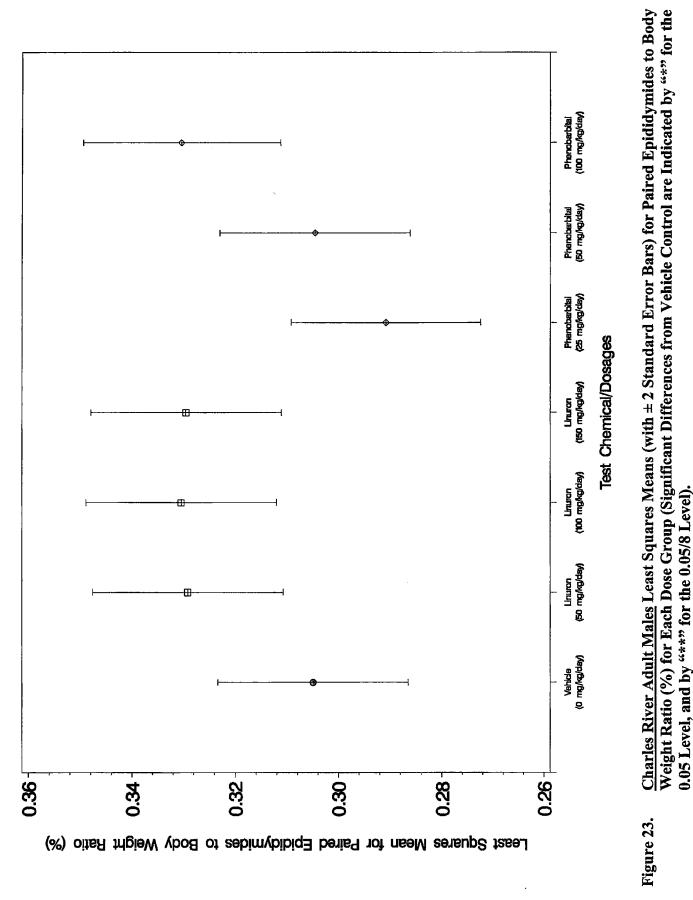

Page 359



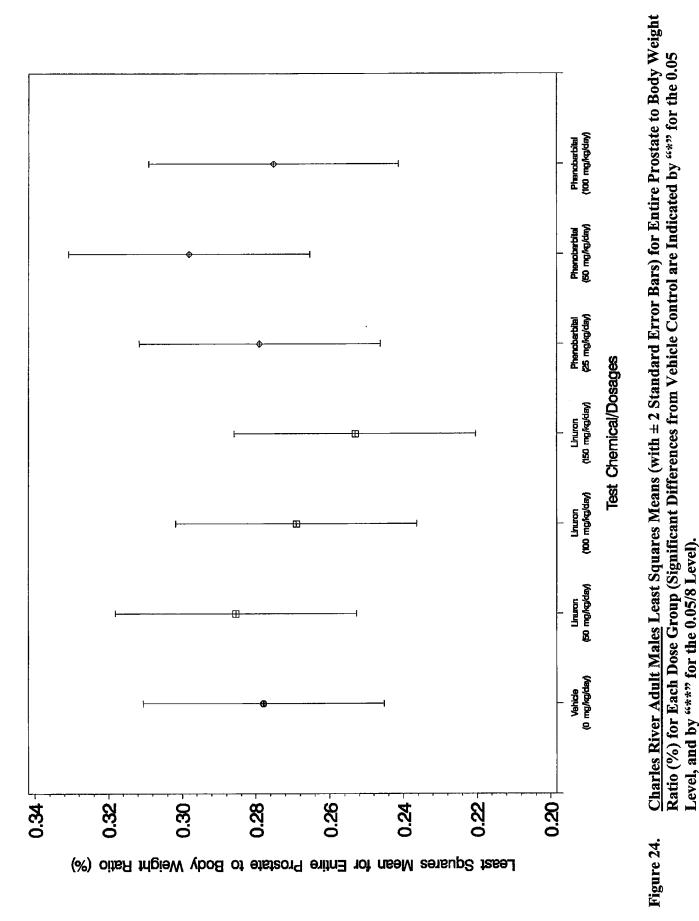

Page 360



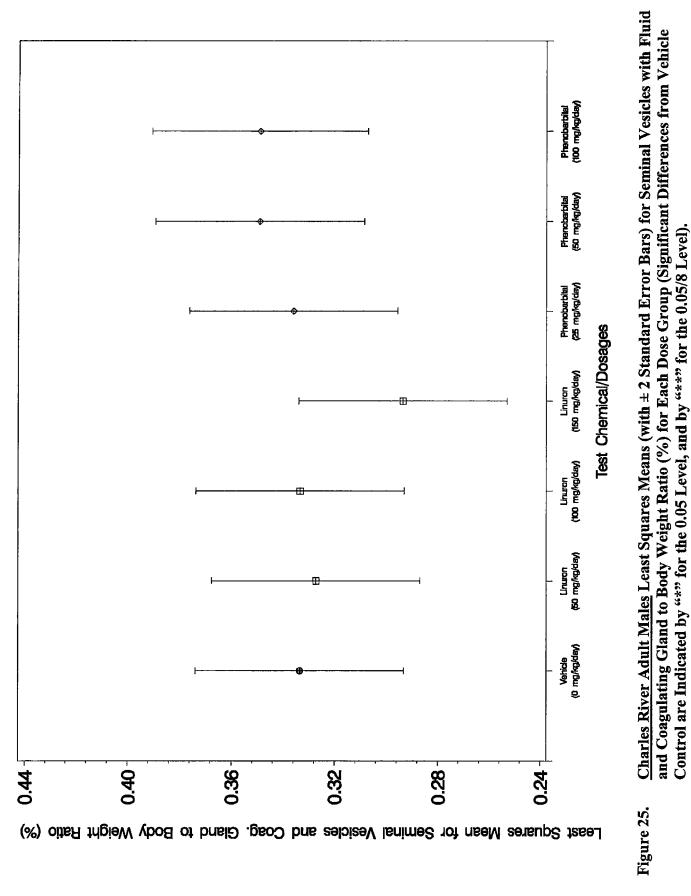

Page 361

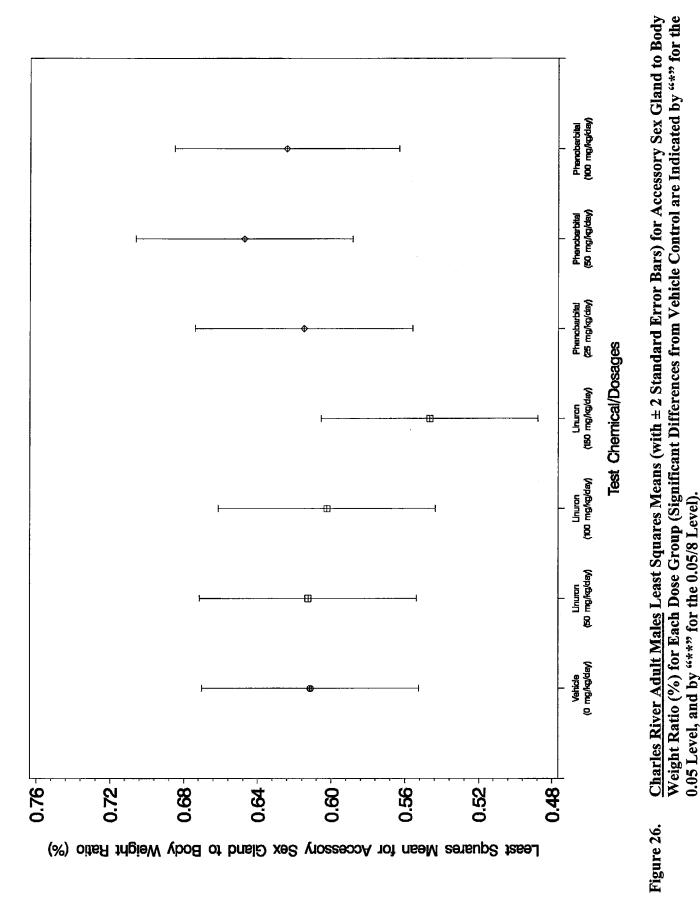




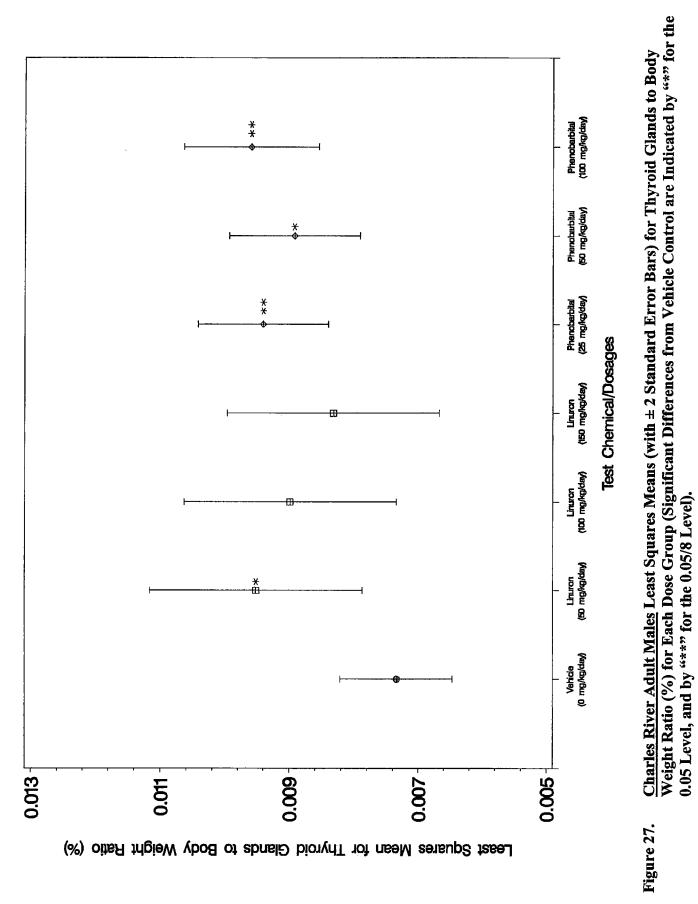


RTP00004



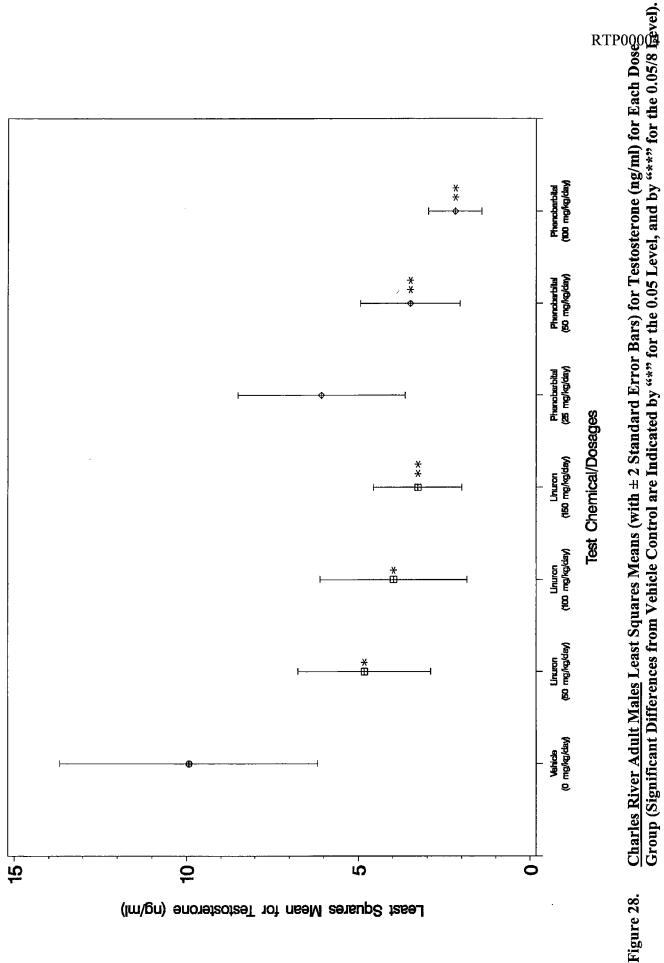

Page 363

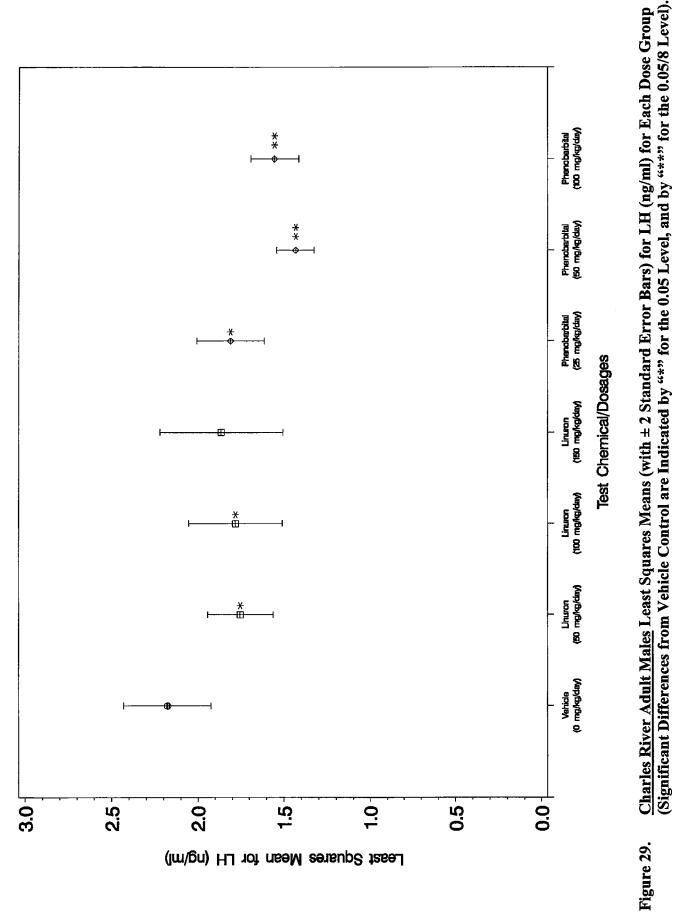



Page 364

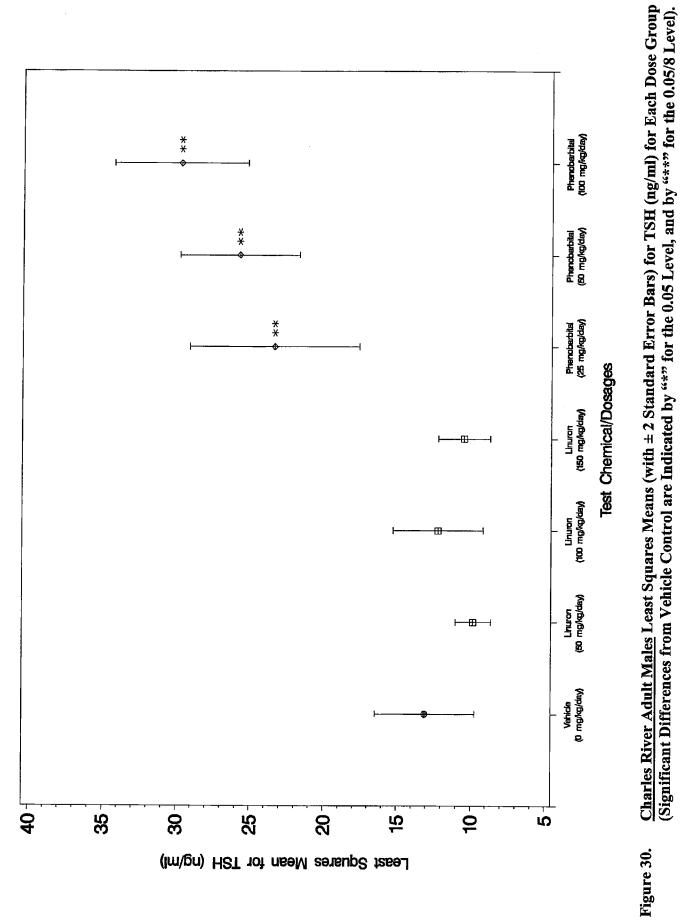



Page 365



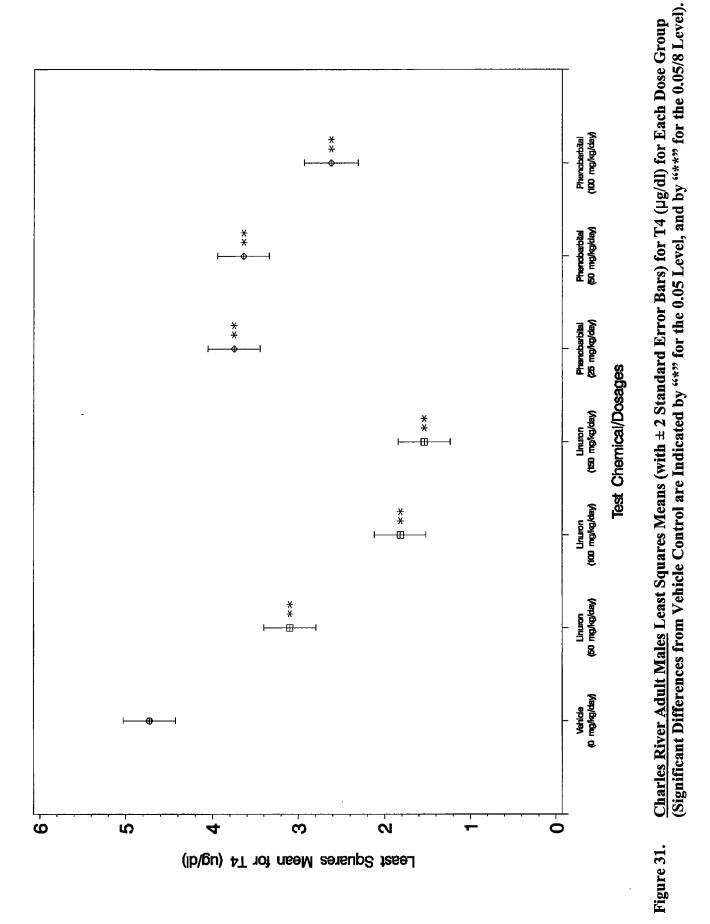




Page 367

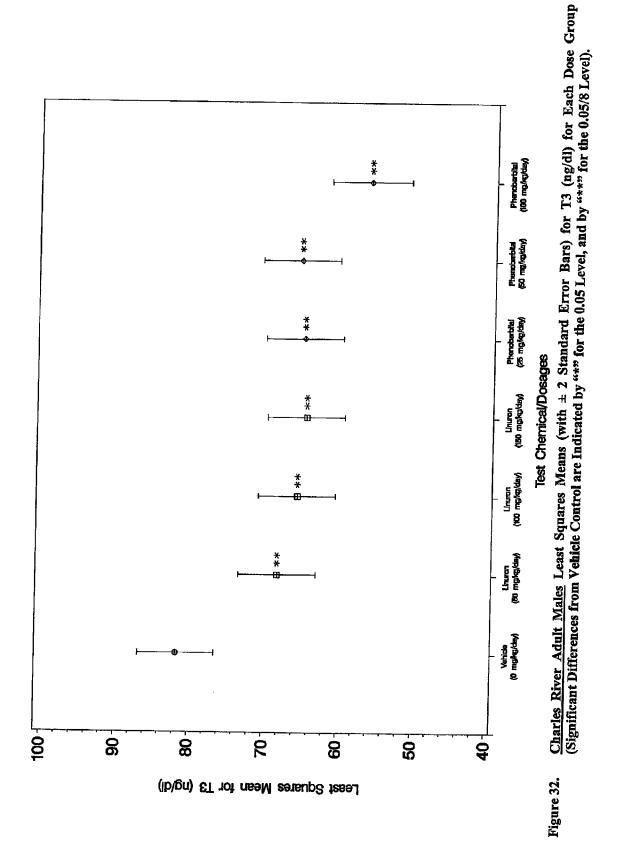



Page 368

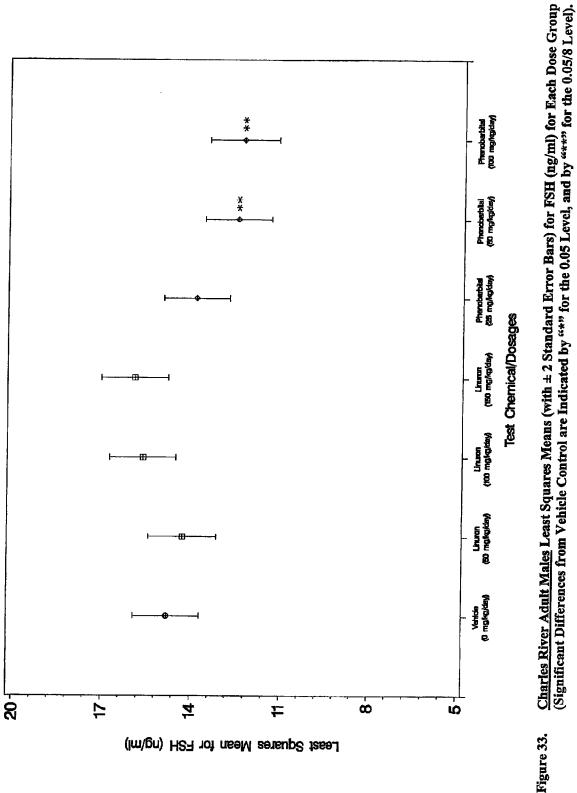




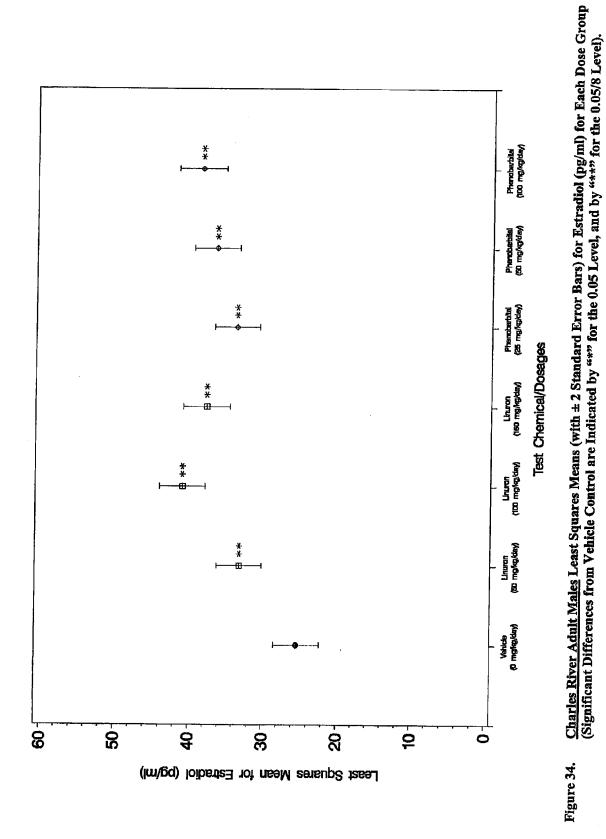

Page 370



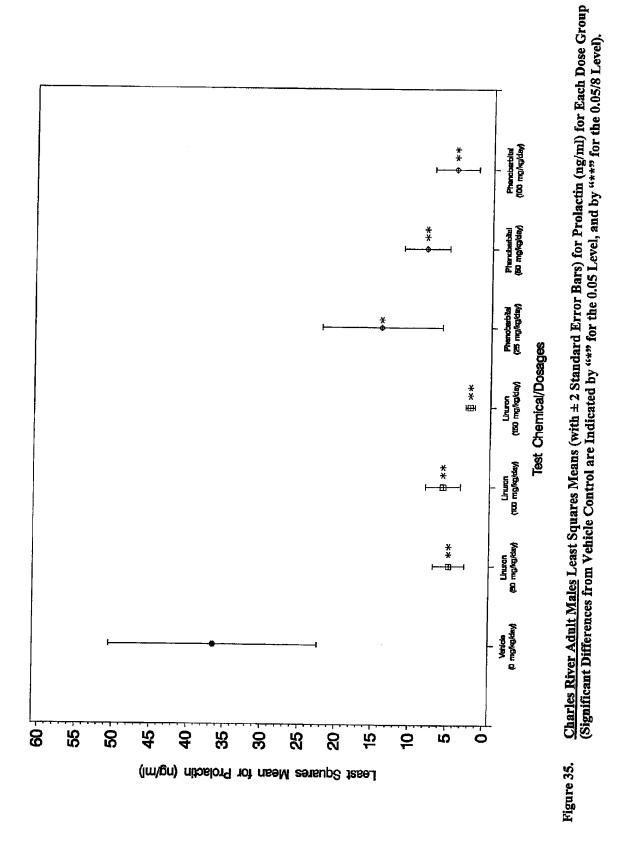

RTP00004


Page 371



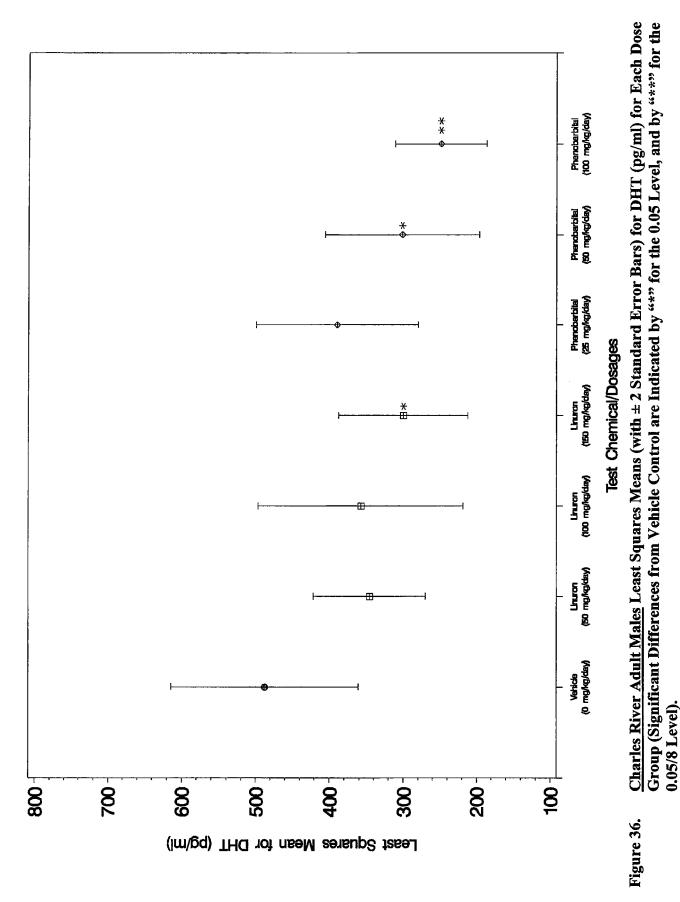

Page 372




Page 373







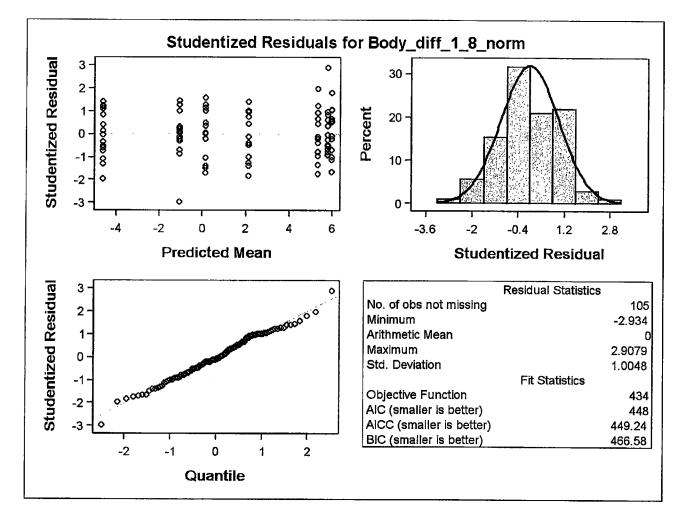

# RTP00004



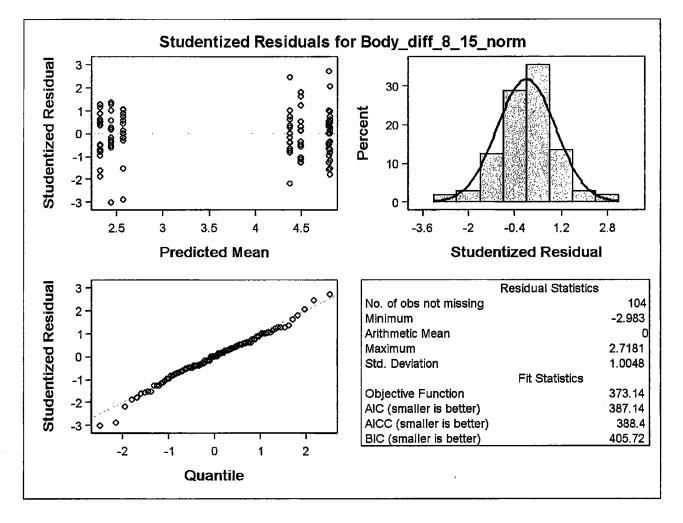
:.

Page 376

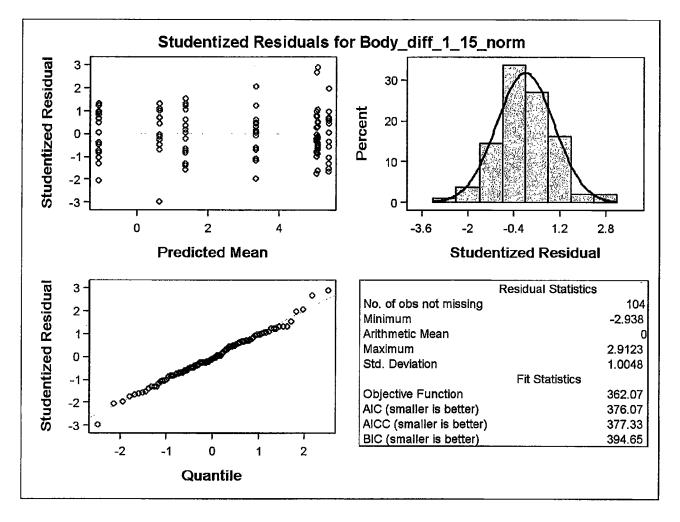



Page 377

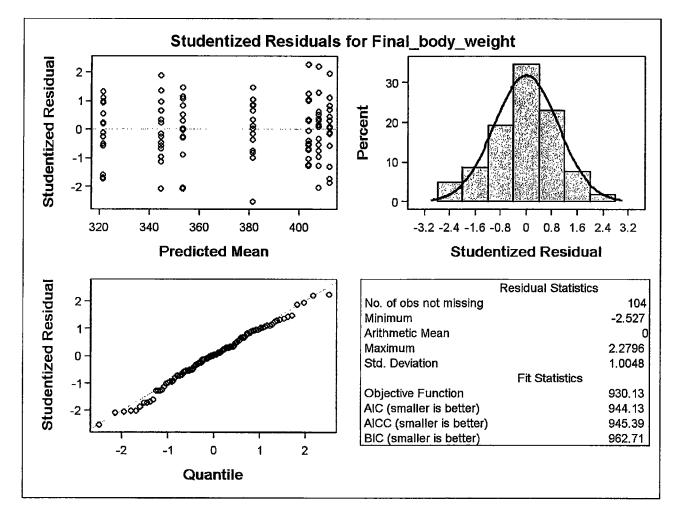
## Appendix A


Normal Probability Plots for Growth, Food Consumptions, Organ Weights, Organ Weight to Body Ratios, and Hormonal Analysis Endpoints.

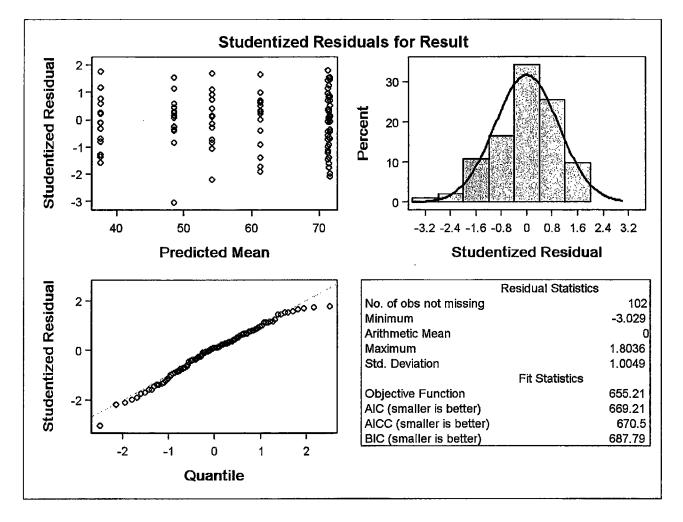
.


# Charles River: Adult Males Outlier Screens Body Weight Change TD8-TD1 (g/day)

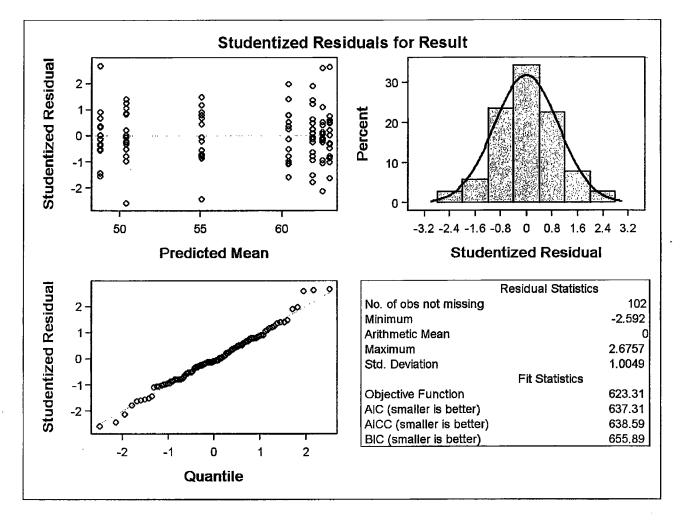



# Charles River: Adult Males Outlier Screens Body Weight Change TD15-TD8 (g/day)

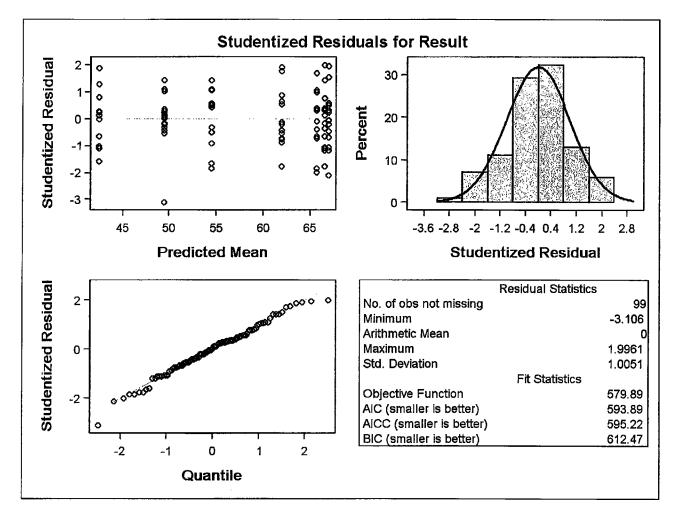



# Charles River: Adult Males Outlier Screens Body Weight Change TD15-TD1 (g/day)

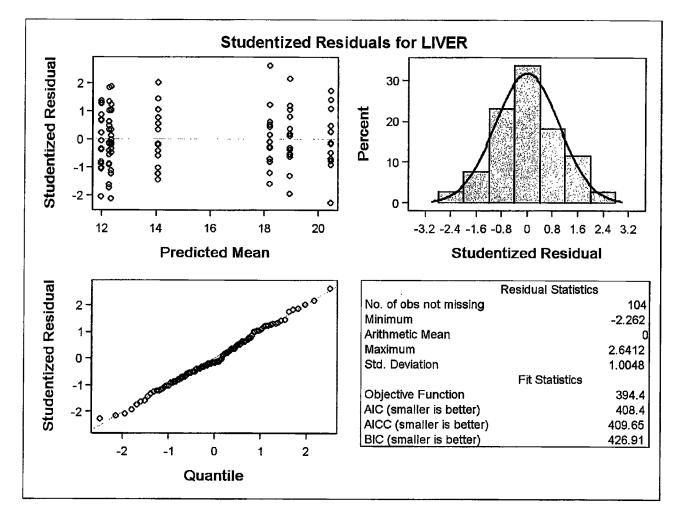



# Charles River: Adult Males Outlier Screens Final Body Weight (g)

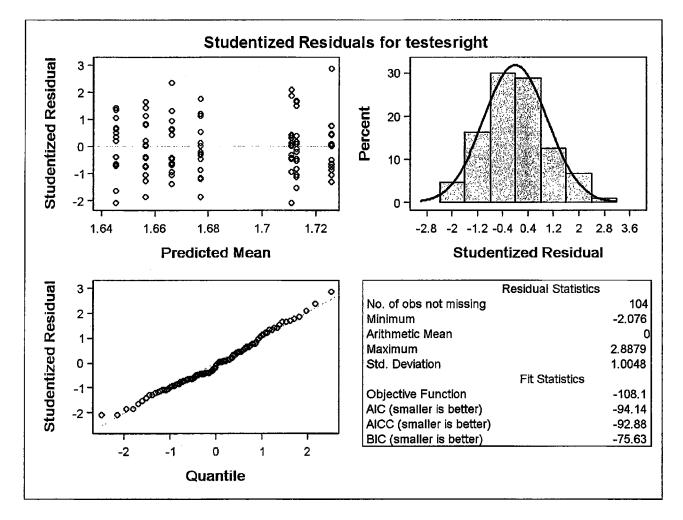



## Charles River: Adult Males Outlier Screens Food Consumption TD8-TD1 (g/kg/day)




# Charles River: Adult Males Outlier Screens Food Consumption TD15-TD8 (g/kg/day)

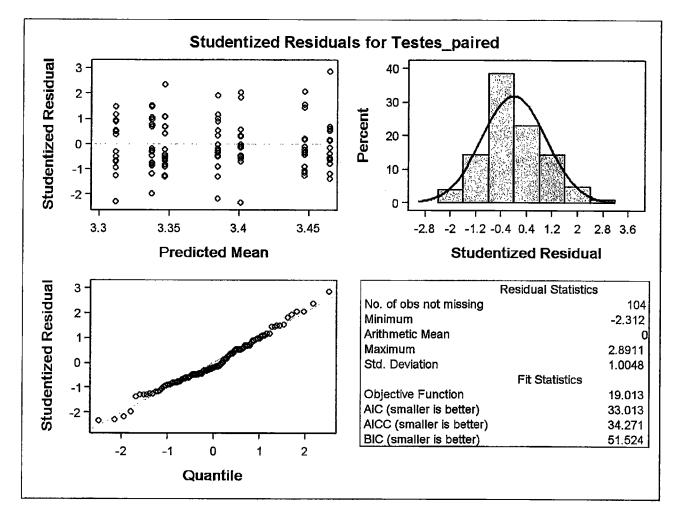



# Charles River: Adult Males Outlier Screens Food Consumption TD15-TD1 (g/kg/day)

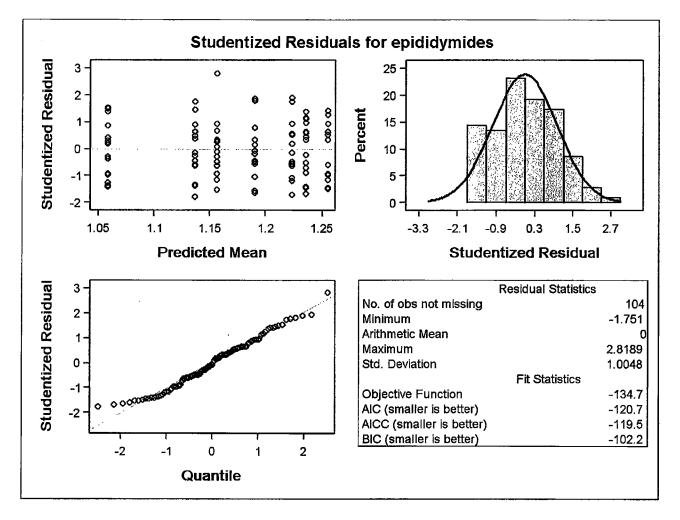


# Charles River: Adult Males Outlier Screens Liver Weight (g)

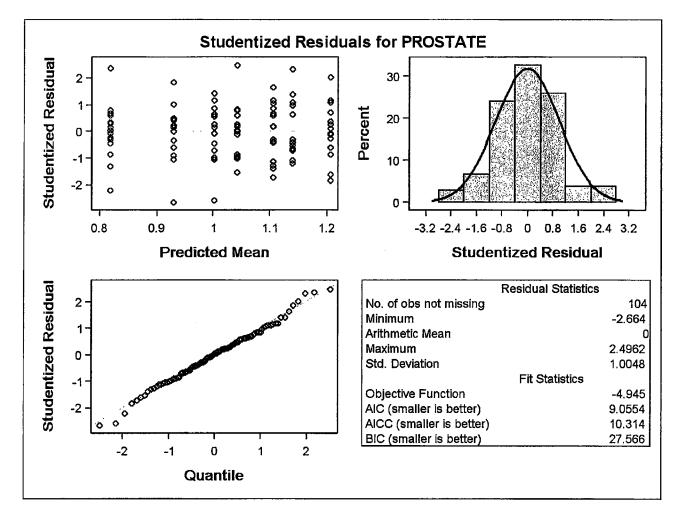



# Charles River: Adult Males Outlier Screens Right Testis Weight (g)



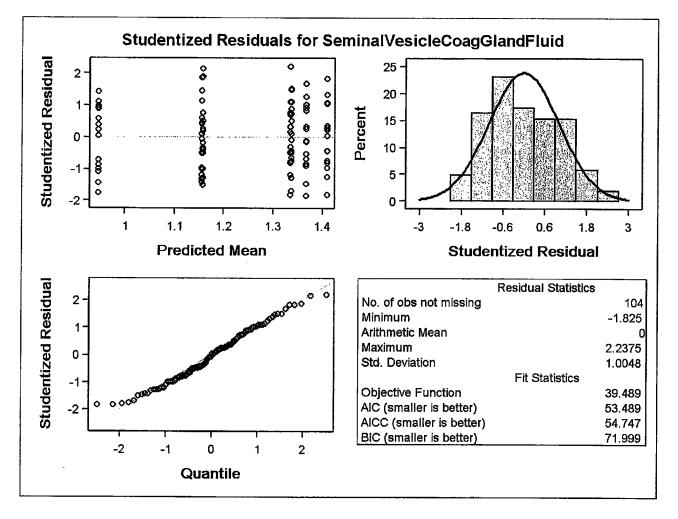

# Charles River: Adult Males Outlier Screens Left Testis Weight (g)



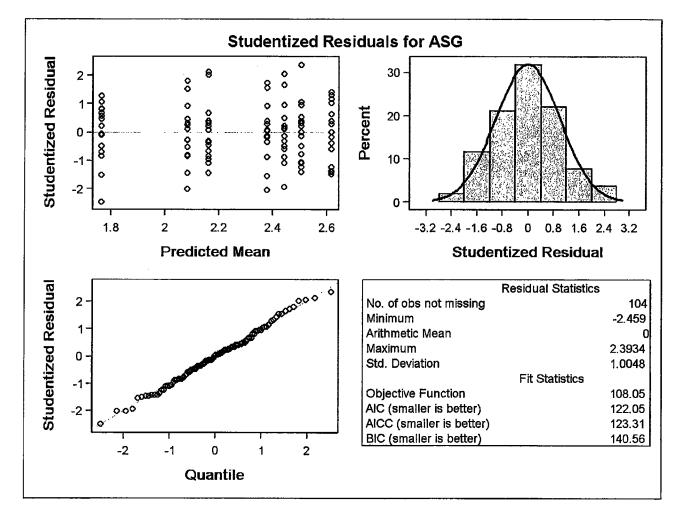

# Charles River: Adult Males Outlier Screens Testes Paired Weight (g)



# Charles River: Adult Males Outlier Screens EpididymidesWeight (g)



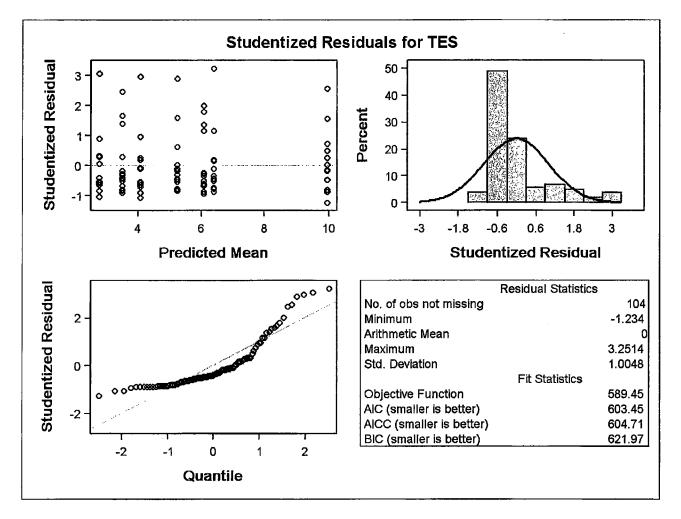

## Charles River: Adult Males Outlier Screens Entire Prostate Weight (g)



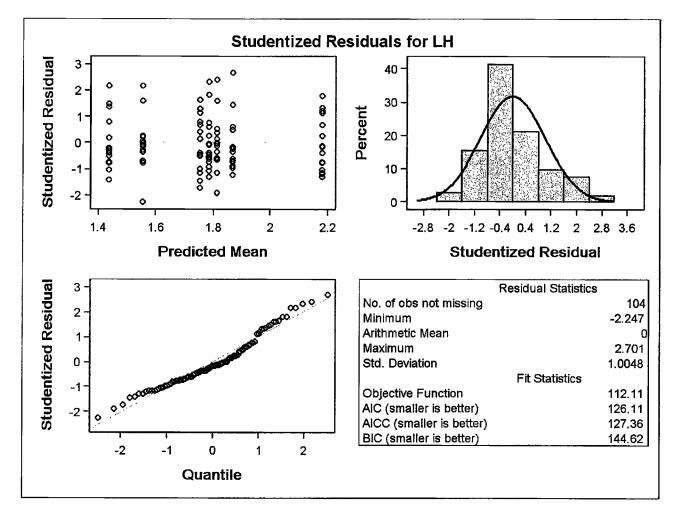

# Charles River: Adult Males Outlier Screens Seminal Vesicles with Fluid and Coagulating Gland Weight (g)



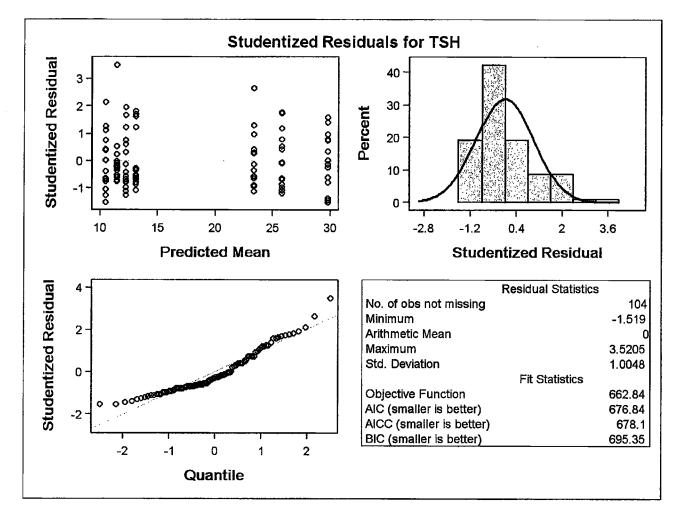




# Charles River: Adult Males Outlier Screens Accessory Sex Gland Weight (g)

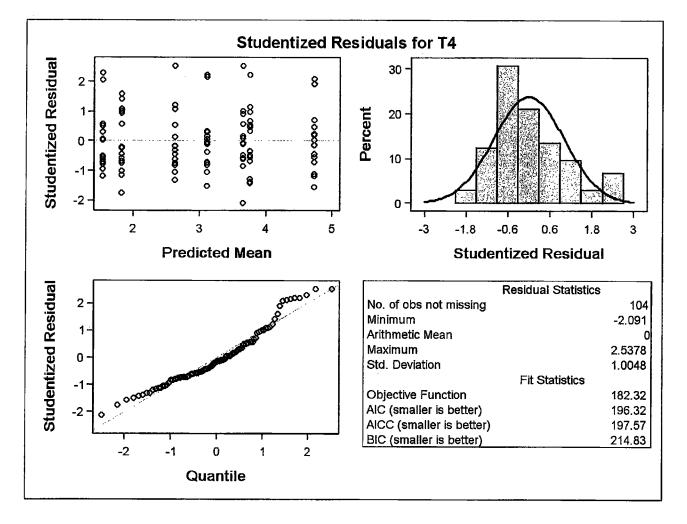



### Charles River: Adult Males Outlier Screens Thyroid Weight (g)

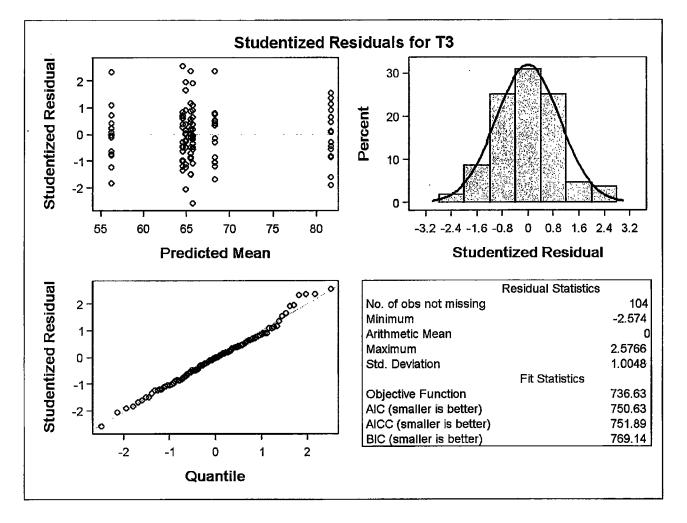



### Charles River: Adult Males Outlier Screens Testosterone (ng/ml)

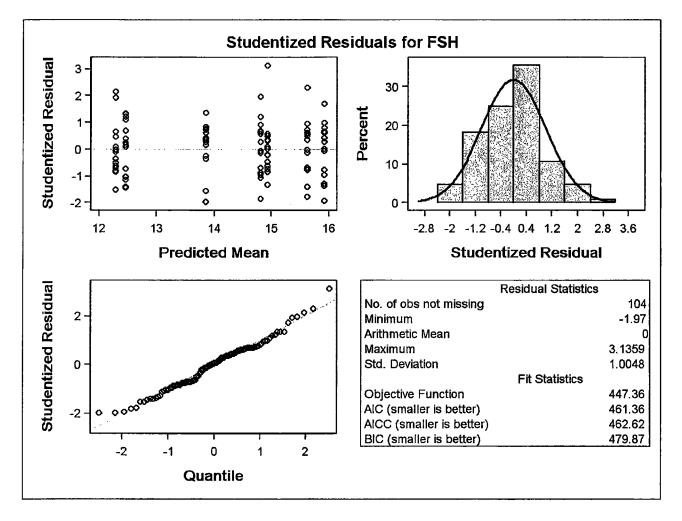



### Charles River: Adult Males Outlier Screens LH (ng/ml)

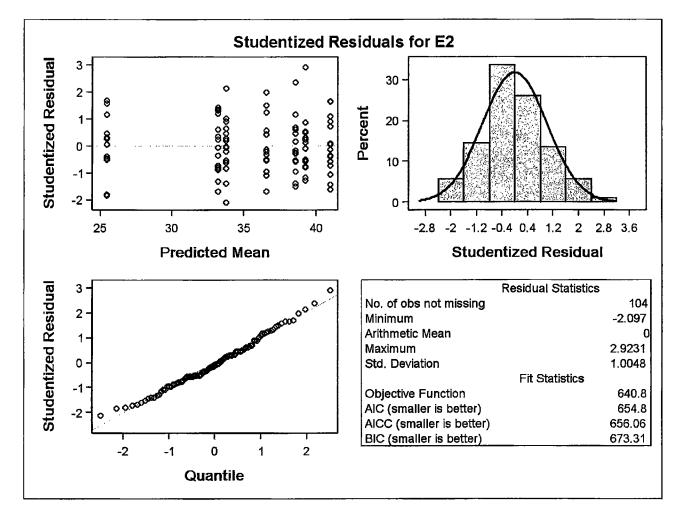



### Charles River: Adult Males Outlier Screens TSH (ng/ml)

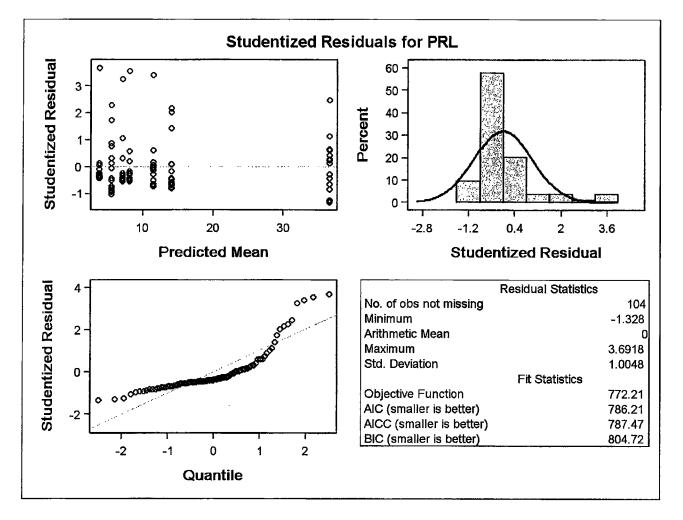



### Charles River: Adult Males Outlier Screens T4 (ug/dl)



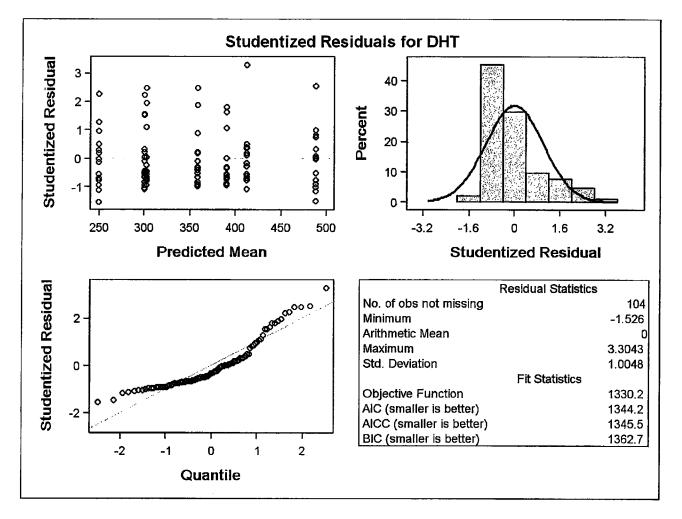

### Charles River: Adult Males Outlier Screens T3 (ng/dl)




### Charles River: Adult Males Outlier Screens FSH (ng/ml)



### Charles River: Adult Males Outlier Screens Estradiol (pg/ml)




### Charles River: Adult Males Outlier Screens Prolactin (ng/ml)



### Charles River: Adult Males Outlier Screens DHT (pg/ml)

#### The Mixed Procedure



.

#### Appendix B

#### Potential Outliers Flagged by the Outlier Detection Procedure. Flag Value if Absolute Studentized Residual ≥2.84. Disposition of Flagged Values in Analysis.

Rarameter	See Steat			Diserve	Predicted	Residual	Studen
	e Chanlinn Vilu		issumues definizione				
Body AVeight Change	Vehicle	0	10302	11.8571	5.7619	6.0952	2.9079
	Linuron	100	10336	-5.8571	-1.0857	-4.7714	-
BoorgWeight Changel	Linuron	50	10325	-0.1429	2.56190	-2.7048	-2.8697
ACTOIN THE MENTAN	Linuron	150	10356	-3.4286	2.43810	-5.8667	-2.9830
Body Weight Change	Vehicle	0	10302	10.2143	5.0667	5.1476	2.9123
e (DDIS-ROI) (gdav) je Rojek	Linuron	100	10336	-3.3571	0.6143	-3.9714	-2.9376
Hud Consumption ID8- TD1 (P/C/lay)	Linuron	100	10336	27.4973	48.4479	-20.951	-3.0294
head Consumption (1915- CUDI (1916/day)	Linuron	100	10336	29.0746	49.4132	-20.339	-3.1060
Right a letter Worghure)	Linuron	50	10324	2.05240	1.72564	0.3268	2.8879
e al ch a sris Weight (c) et	Linuron	50	10324	2.11440	1.73902	0.3754	2.8615
a alred the stes avenue (e)	Linuron	50	10324	4.16680	3.46466	0.7021	2.8911
	a value	Complet	ely Ercino	ied 42			
e. elestosterone (ne/mh)	Linuron	50	10324	28.3700	6.39600	21.9740	3.2514
	Linuron	100	10332	22.7300	5.23067	17.4993	2.9319
	Linuron	150	10354	15.1600	4.06867	11.0913	2.9887
	Phenobarbital	100	10402	10.3900	2.77714	7.6129	3.0720
and a set (ng/mi) a set	Linuron	50	10324	33.1400	11.3967	21.743	3.5205
LSH (ng m) at a st	Linuron	50	10324	24.0400	14.9200	9.1200	3.1359
Suradiol (pg mb)	Linuron	150	10351	59.7900	39.2100	20.580	2.9231
Profactin (ng/mi)	Linuron	50	10328	54.310	8.0400	46.270	3.5790
	Linuron	150	10346	28.610	3.7920	24.818	3.6918
	Phenobarbital	50	10384	58.200	11.4593	46.741	3.4405
	Phenobarbital	100	10403	44.860	7.1186	37.741	3.2650
DHT (pg/ml)	Linuron	50	10324	1342.30	412.394	929.91	3.3043

¹ Potential outliers judged to be valid data and included in analyses. ² Potential outliers judged to be invalid data and excluded from analyses.

### Appendix C

Preliminary Summary Results for Growth and Body Weight, Food Consumption, Organ Weights, Organ Weight to Body Ratios (Adj. Organ Weights), and Hormonal Analysis Endpoints.

.

0

parent	al DosageLeycl	N	Mean	Stá	s i čv	Min	Max
Body Weight Change RDS-RDI (g/day), at Linuron	50	15	0.124	2.037	1645.64	-3.143	3.29
Linuron	100	15	-1.086	1.683	-155.03	-5.857	1.29
Linuron	150	15	-4.657	2.554	-54.85	-9.429	-1.14
Phenobarbital	25	15	5.971	1.971	33.00	2.857	9.43
Phenobarbital	50	15	5.286	1.553	29.38	2.714	8.29
Phenobarbital	100	15	2.124	2.287	107.68	-1.857	5.29
Vehicle	0	15	5.762	2.170	37.66	3.857	11.86
Body Weight Change TD15-TD8 (g/day) Linuron	50	15	2.562	0.976	38.08	-0.143	3.57
Linuron	100	15	2.314	1.780	76.93	-0.857	4.57
Linuron	150	15	2.438	2.036	83.50	-3.429	5.14
en and the second s	25	15	4.800	1.235	25.72	2.714	7.29
Phenobarbital	50	15	4.790	1.494	31.19	2.571	8.71
Phenobarbital	100	14	4.490	1.501	33.43	2.714	7.14
Vehicle	0	15	4.371	1.765	40.38	0.714	8.57
Body Weight Change HD15-HD1 (g/day) Linuron	50	15	1.343	1.188	88.46	-0.429	3.14
Linuron	100	15	0.614	1.399	227.81	-3.357	2.43
Linuron	150	15	-1.110	1.513	-136.37	-4.071	0.86
eren and the second	25	15	5.386	1.554	28.86	2.929	8.36
Phenobarbital	50	15	5.038	1.324	26.29	2.857	8.50
Phenobarbital	100	14	3.337	1.210	36.25	1.071	5.79
Vehicle	0	15	5.067	1.830	36.11	2.286	10.21
Linuron	50	15	353.067	25.753	7.29	302.000	390.00
Linuron	100	15	344.533	19.276	5.59	306.000	380.00
Linuron	150	15	321.200	23.072	7.18	283.000	351.00
Phenobarbital	25	15	412.000	33.295	8.08	352.000	475.00
Phenobarbital	50	15	407.467	29.081	7.14	351.000	470.00
n Phenobarbital	100	14	381.357	25.200	6.61	320.000	417.00
Vehicle	0	15	403.400	32.965	8.17	363.000	476.00
Food Consumption TD8-TD1 (g/kg/day) Linuron	50	13	54.128	8.032	14.84	37.326	67.27
Linuron	100	15	48.448	7.159	14.78	27.497	59.26
Linuron	150	14	37.530	10.325	27.51	22.168	55.05
Phenobarbital	25	15	71.532	6.159	8.61	59.222	80.82
Phenobarbital	50	15	71.374	5.119	7.17	62.759	79.14
Phenobarbital	100	15	61.116	8.108	13.27	46.231	74.15

rm Storesser	TestChemical	DosageLevel	N	Mean	. Sid	<b>CV</b>	s Min	Max
	Vehicle	0	15	71.229	5.139	7.21	64.032	80.18
od Consumption TD15-TD8 (g/kg/day)	Linuron	50	15	55.057	7.057	12.82	38.438	65.28
	Linuron	100	15	50.378	7.879	15.64	30.652	61.04
	Linuron	150	14	48.751	9.601	19.69	34.431	73.51
	Phenobarbital	25	14	60.411	3.935	6.51	54.466	67.88
	Phenobarbital	50	15	62.464	3.333	5.34	55.632	70.82
	Phenobarbital	100	14	62.902	6.766	10.76	52.271	80.16
	Vehicle	0	15	61.851	4.918	7.95	53.344	70.92
od Consumption ID15-ID1(g/kg/day)	Linuron	50	13	54.386	6.893	12.67	42.203	63.90
	Linuron	100	15	49.413	6.778	13.72	29.075	58.92
	Linuron	150	13	42.347	8.027	18.95	30.128	56.86
	Phenobarbital	25	14	65.640	4.457	6.79	57.162	72.98
	Phenobarbital	50	15	66.919	3.810	5.69	59.196	74.20
	Phenobarbital	100	14	61.920	3.282	5.30	56.344	68.03
	Vehicle	0	15	66.540	4.672	7.02	58.688	75.55
/er/Weight.(g)	Linuron	50	15	11.946	1.131	9.46	9.707	13.45
	Linuron	100	15	12.335	1.402	11.36	9.466	14.88
	Linuron	150	15	12.239	1.495	12.22	9.754	14.90
	Phenobarbital	25	15	18.182	1.980	10.89	15.192	23.23
	Phenobarbital	50	15	18.906	2.150	11.37	14.919	23.43
	Phenobarbital	100	14	20.430	2.378	11.64	15.245	24.47
	Vehicle	0	15	14.051	1.590	11.32	11.873	17.17
ht Testis Weighti(g)	Linuron	50	15	1.726	0.117	6.79	1.581	2.05
	Linuron	100	15	1.666	0.125	7.52	1.501	1.95
	Linuron	150	15	1.645	0.156	9.49	1.332	1.86
	Phenobarbital	25	15	1.677	0.131	7.82	1.444	1.90
	Phenobarbital	50	15	1.711	0.132	7.70	1.447	1.98
	Phenobarbital	100	14	1.713	0.138	8.04	1.514	1.94
	Vehicle	0	15	1.657	0.092	5.53	1.494	1.80
t Lestis Weight (g)	Linuron	50	15	1.739	0.136	7.81	1.555	2.11
A DECEMBER OF	Linuron	100	15	1.680	0.110	6.54	1.522	1.92
	Linuron	150	15	1.667	0.143	8.58	1.339	1.87
	Phenobarbital	25	15	1.708	0.118	6.93	1.438	1.94
n seren an	Phenobarbital	50	15	1.690	0.123	7.25	1.401	1.92

10

of parms and	(PestChomical	Dissigntavi	Ň	NI T	કેલા	I A CV	it Nifin	Max
	Phenobarbital	100	14	1.734	0.131	7.53	1.568	2.03
	Vehicle	C	15	1.680	0.099	5.87	1.496	1.83
Sul Aestes Raired Weight (g)	Linuron	50	15	3.465	0.251	7.26	3.136	4.17
	Linuron	100	15	3.347	0.231	6.90	3.061	3.88
	Linuron	150	15	3.312	0.293	8.84	2.671	3.73
	Phenobarbital	25	15	3.385	0.241	7.12	2.883	3.84
	Phenobarbital	50	15	3.401	0.248	7.28	2.848	3.90
	Phenobarbital	100	14	3.447	0.260	7.54	3.134	3.97
	Vehicle	0	15	3.337	0.186	5.57	2.989	3.61
III PEpilddynudes Weight (g)	Linuron	50	15	1.156	0.104	8.99	1.004	1.44
	Linuron	100	15	1.136	0.105	9.28	0.958	1.32
	Linuron	150	15	1.058	0.134	12.64	0.880	1.26
	Phenobarbital	25	15	1.190	0.089	7.44	1.054	1.35
	Phenobarbital	50	15	1.235	0.117	9.51	1.049	1.40
	Phenobarbital	100	14	1.255	0.139	11.10	1.056	1.45
	Vehicle	0	15	1.223	0.091	7.46	1.075	1.39
BEEntine Prostate Weight (g) (2) (2)	Linuron	50	15	1.002	0.155	15.52	0.612	1.22
	Linuron	100	15	0.928	0.192	20.66	0.435	1.27
	Linuron	150	15	0.818	0.231	28.23	0.323	1.35
	Phenobarbital	25	15	1.139	0.200	17.56	0.911	1.59
	Phenobarbital		15	1.206	0.227	18.85	0.804	1.65
	Phenobarbital	100	14	1.042	0.239	22.93	0.691	1.62
	Vehicle	0	15	1.106	0.277	25.04	0.647	1.55
14 Seminal Assicles with Fluid and -se Colgulating Gland-Weight (c) *	Linuron	50	15	1.157	0.301	26.04	0.727	1.79
	Linuron	100	15	1.155	0.370	32.06	0.655	1.82
	Linuron	150	15	0.944	0.257	27.20	0.515	1.30
	Phenobarbital	25	15	1.366	0.265	19.37	0.900	1.80
	Phenobarbital	50	15	1.409	0.191	13.54	1.079	1.75
	Phenobarbital	100	14	1.335	0.344	25.78	0.739	2.08
	Vehicle	0	15	1.336	0.209	15.63	1.000	1.65
T5 Accessory Sex Gland Weight (g)	Linuron	50	15	2.159	0.374	17.32	1.644	2.93
	Linuron	100	15	2.083	0.499	23.96	1.122	2.96
A STATISTICS CONTRACTOR	Linuron	150	15	1.762	0.389	22.07	0.839	2.25
	Phenobarbital	25	15	2.505	0.336	13.43	2.052	3.28

od parmie		Dasigation	ÎL L		Sile Sile	i cov	Min	Mi
	Phenobarbital	5	0 1:	5 2.615	0.352	13.46	2.122	3.1
	Phenobarbital	10	0 14	1 2.377	0.424	17.83	1.556	3.1
	Vehicle		0 15	5 2.442	0.335	13.73	1.817	3.1
do dunioid weight (g)	Linuron	50	0 15	6 0.034	0.014	42.78	0.016	0.0
	Linuron	100	0 15	0.031	0.007	21.66	0.021	0.0
	Linuron	150	) 15	0.027	0.010	38.68	0.011	0.0
	Phenobarbital	25	5 15	0.039	0.008	20.21	0.026	0.0
	Phenobarbital	50	) 15	0.036	0.008	22.21	0.020	0.0
	Phenobarbital	100	) 14	0.037	0.008	22.55	0.024	0.0
	Vehicle	0	15	0.029	0.006	21.44	0.020	0.0
17 Diver Weight to Body Weight Ratio ((%))	Linuron	50	15	3.386	0.243	7.16	2.966	3.7
	Linuron	100	15	3.578	0.334	9.35	3.089	4.22
	Linuron	150	15	3.802	0.286	7.52	3.338	4.3
	Phenobarbital	25	15	4.408	0.198	4.50	4.139	4.9
	Phenobarbital	50	15	4.634	0.307	6.62	3.934	5.15
	Phenobarbital	100	14	5.349	0.382	7.14	4.761	5.98
	Vehicle	0	15	3.480	0.204	5.85	3.113	3.94
13 Right Testis Weight to Body Weight s 12 Autol(20)	Linuron	50	15	0.491	0.047	9.50	0.420	0.57
	Linuron	100	15	0.484	0.036	7.47	0.431	0.57
	Linuron	150	15	0.513	0.045	8.85	0.429	0.60
Contraction of the second	Phenobarbital	25	15	0.409	0.040	9.67	0.353	0.49
	Phenobarbital	50	15	0.421	0.034	8.03	0.381	0.52
	Phenobarbital	100	14	0.450	0.029	6.42	0.409	0.50
	Vehicle	0	15	0.412	0.031	7.45	0.365	0.48
d 2 Teital esus Weight to Body Weight Ratio	Linuron	50	15	0.495	0.054	10.85	0.413	0.59
	Linuron	100	15	0.489	0.038	7.80	0.426	0.57
	Linuron	150	15	0.520	0.043	8.25	0.431	0.61
	Phenobarbital	25	15	0.417	0.038	9.03	0.351	0.48
	Phenobarbital	50	15	0.416	0.032	7.76	0.372	0.51
	Phenobarbital	100	14	0.456	0.038	8.25	0.393	0.53
	Vehicle	0	15	0.418	0.032	7.59	0.369	0.49
20 Testes Paired Weight to Body Weight Ratio (%)	Linuron	50	15	0.986	0.100	10.16	0.833	1.16

mrage and the second	Testchemoal	Distriction	Î	Mean	Sta	A CV	Min	e Siya t
	Linuron	10		**************************************	0.073	7.50	0.857	1.14
	Linuron	150	0 15	1.033	0.086	8.31	0.860	1.21
	Phenobarbital	2:	5 15	0.825	0.075	9.13	0.704	0.97
	Phenobarbital	50	0 15	0.837	0.064	7.71	0.762	1.03
	Phenobarbital	100	) 14	0.906	0.064	7.11	0.803	1.03
	Vehicle	(	) 15	0.831	0.062	7.42	0.735	0.97
leEnddaymides Weight to Body Weight a fRatio (70)	Linuron	50	) 15	0.329	0.038	11.41	0.274	0.40
<u></u>	Linuron	100	15	0.330	0.033	9.96	0.280	0.40
	Linuron	150	15	0.330	0.037	11.14	0.255	0.40
	Phenobarbital	25	15	0.291	0.033	11.38	0.242	0.36
	Phenobarbital		15	0.305	0.036	11.71	0.248	0.37
	Phenobarbital		14	0.330	0.042	12.83	0.272	0.42
	Vehicle	······	15	0.305	0.031	10.13	0.238	0.36
EntiteRrostate Weight to Body Weights Ratio(20)	Linuron	50	15	0.285	0.050	17.45	0.157	0.39
	Linuron	100	15	0.269	0.051	18.95	0.131	0.34
	Linuron	150	15	0.253	0.064	25.44	0.114	0.39
	Phenobarbital	25	15	0.279	0.062	<b>22.0</b> 5	0.223	0.45
	Phenobarbital	50	15	0.298	0.063	21.30	0.195	0.40
	Phenobarbital	100	14	0.275	0.069	24.99	0.172	0.45
	Vehicle	0	15	0.278	0.080	28.72	0.146	0.41
Seminal Vesicles with Fluid and Congutating Gland Weighthou Body :	Linuron	50	15	0.327	0.077	23.48	0.194	0.50
1	Linuron	100	15	0.333	0.101	30.17	0.202	0.55
	Linuron	150	15	0.294	0.076	26.01	0.173	0.39
I and the second se	Phenobarbital	25	15	0.336	0.081	24.11	0.211	0.48
	Phenobarbital	50	15	0.349	0.063	18.02	0.252	0.46
I I I I I I I I I I I I I I I I I I I	Phenobarbital	100	14	0.349	0.081	23.35	0.226	0.52
	/ehicle	0	15	0.333	0.061	18.39	0.248	0.45
Accessory Sex Gland Weight (of Body 4 1 Weight Ratio (%)	inuron	50	15	0.613	0.101	16.52	0.473	0.80
	inuron	100	15	0.602	0.131	21.81	0.338	0.85
	inuron	150	15	0.547	0.110	20.19	0.296	0.69
P	henobarbital	25	15	0.615	0.120	19.52	0.472	0.93

	Messelicimeell	DosageDevel	N	Mean	2 ASIA	ns ÇV	. Min	Mix
	Phenobarbital	50	15	0.647	0.112	17.37	0.468	0.85
	Phenobarbital	100	14	0.624	0.107	17.22	0.420	0.83
	Vehicle	0	15	0.611	0.113	18.46	0.452	0.82
2.5 Jih roid Weight to Body Weight Ratio ((g)	Linuron	50	15	0.010	0.004	42.02	0.004	0.02
	Linuron	100	15	0.009	0.002	19.87	0.006	0.01
	Linuron	150	15	0.008	0.003	40.35	0.003	0.02
	Phenobarbital	25	15	0.009	0.002	20.54	0. <b>0</b> 07	0.01
	Phenobarbital	50	15	0.009	0.002	22.20	0.005	0.01
	Phenobarbital	100	14	0.010	0.002	20.50	0.006	0.01
	Vehicle	0	15	0.007	0.002	23.06	0.005	0.01
26 Restosterone (ng/ml)	Linuron	50	15	6.396	6.996	1 <b>09</b> .37	0.630	28.37
	Linuron	100	15	5.231	6.178	118.11	0.230	22.73
	Linuron	150	15	4.069	3.841	94.41	0.200	15.16
	Phenobarbital	25	15	6.072	4.693	77.30	1.890	15.23
	Phenobarbital	50	15	3.495	2.799	80.09	1.130	10.21
	Phenobarbital	100	14	2.777	2.572	92.60	0.200	10.39
A CARLES AND A CARLES AND A CARLES	Vehicle	0	15	<b>9.92</b> 7	7.254	73.07	1.280	28.11
277312721(ng/ml)).	Linuron	50	15	1.753	0.370	21.09	1.150	2.35
	Linuron	100	15	1.782	0.529	29.71	1.130	2.99
	Linuron	150	15	1.865	0.692	37.10	1.060	3.67
	Phenobarbital	25	15	1.811	0.381	21.03	1.120	2.70
	Phenobarbital	50	15	1.435	0.210	14.61	1.150	1.88
	Phenobarbital	100	14	1.555	0.256	16.48	1.000	2.10
	Vehicle	0	15	2.178	0.492	22.57	1.570	3.04
28n(ISH)(0g/ml)	Linuron	50	15	11.397	6.393	56.10	6.770	33.14
	Linuron	100	15	12.212	5.881	48.16	5.180	23.42
	Linuron	150	15	10.463	3.355	32.07	5.540	17.47
	Phenobarbital	. 25	15	23.349	11.144	47.73	11.300	52.10
	Phenobarbital	50	15	25.741	7.839	30.45	16.820	39.37
	Phenobarbital	100	14	29.727	8.489	28.56	17.380	42.84
	Vehicle	0	15	13.095	6.512	49.73	6.490	24.73
229 T4(ug/dl)	Linuron	50	15	3.099	0.658	21.22	2.150	4.51
	Linuron	100	15	1.819	0.439	24.13	1.080	2.50
	Linuron	150	15	1.537	0.474	30.83	1.000	2.59

## RTP00004

Phenobarbital 2	5 15		P. Mar. Stand in Person Person	THE PARTY OF THE PARTY OF THE		. Max
		3.751	0.532	14.18	3.030	4.89
Phenobarbital 5	) 15	3.642	0.501	13.75	2.630	4.87
Phenobarbital 10	) 14	2.623	0.611	23.28	1.860	4.11
Vehicle	) 15	4.729	0.799	16.89	3.540	6.36
30 T3'(ng/dl)	) 15	68.196	7.405	10.86	56.430	85.20
Linuron 10	) 15	65.621	9.924	15.12	40.940	84.34
Linuron 15	) 15	64.469	8.606	13.35	53.440	85.89
Phenobarbital 2	5 15	64.847	9.890	15.25	45.370	83.72
Phenobarbital 5	) 15	65.408	12.417	18.98	47.770	94.14
Phenobarbital 10	) 14	56.146	9.410	16.76	39.560	77.61
Vehicle	) 15	81.653	11.712	14.34	60.360	99.32
31 FSH (ng/ml) 5	) 15	14.920	3.010	20.18	11.080	24.04
Linuron 10	) 15	15.622	3.156	20.20	10.240	22.66
Linuron 15	) 15	15.909	2.423	15.23	11.400	19.96
Phenobarbital 2	15	13.841	1.845	13.33	10.330	16.30
Phenobarbital 5	) 15	12.459	1.382	11.09	10.560	14.26
Phenobarbital 10	14	12.278	1.946	15.85	9.430	16.32
Vehicle	15	14.807	2.184	14.75	10.960	18.99
32/ Estradiol (pg/ml) 5	15	33.199	5.229	15.75	24.650	40.56
Linuron 10	15	40.946	7.639	18.66	29.110	53.24
Linuron 15	15	39.210	7.288	18.59	30.380	59.79
Phenobarbital 2.	15	33.709	5.687	16.87	22.190	45.48
Phenobarbital 5	15	36.525	6.252	17.12	26.350	48.59
Phenobarbital 10	14	38.523	7.328	19.02	27.990	55.36
Vehicle	15	25.403	3.618	14.24	19.010	31.35
33 Prolactin (ng/ml)	15	8.040	13.382	166.44	1.020	54.31
Linuron 10	15	5.566	4.607	82.77	0.980	15.79
Linuron 15	15	3.792	6.958	183.50	1.010	28.61
Phenobarbital 2:	15	14.050	15.819	112.59	1.730	47.41
Phenobarbital 50			14.062	122.71	1.540	58.20
Phenobarbital 10	14	7.119	11.996	168.51	1.090	44.86
Vehicle	15	36.476	27.109	74.32	1.690	101.52
34 DHT (pg/ml) Linuron 50	15	412.394	291.300	70.64	112.900	1342.30
Linuron 100 Page 412	15	357.769	269.498	75.33	109. <b>9</b> 70	1010.60

#### RTP00004

od/parm	TestChemical	DosageDevel	Ň	Mean	Stil	CV	- Min	. Max
	Linuron	150	15	299.866	170.458	56.84	127.770	670.40
T State State State State	Phenobarbital	25	15	389.625	213.305	54.75	201.190	764.62
	Phenobarbital	50	15	301.385	202.637	67.24	122.920	787.39
	Phenobarbital	100	14	248.849	116.286	46.73	77.900	505.90
	Vehicle	0	15	487.734	245.057	50.24	140.210	1093.40

# **APPENDIX 10 - QUALITY ASSURANCE STATEMENT**



#### **QUALITY ASSURANCE STATEMENT**

Protocol: RTP00004

This study has been inspected by the Quality Assurance Unit to assure conformance with the Good Laboratory Practice (GLP) regulations promulgated by the EPA (FIFRA/TSCA); the Organisation for Economic Co-operation and Development; and the Japanese Ministry of Agriculture, Forestry and Fisheries. Reports were submitted in accordance with Standard Operating Procedures as follows:

		Dates Findings S	Submitted to:
Dates of Inspection	Phase(s) Inspected	Study Director	Study Director
	-		Management
05 OCT 05	Protocol	05 OCT 05	05 OCT 05
06 OCT 05		06 OCT 05	06 OCT 05
07 OCT 05		07 OCT 05	07 OCT 05
18 OCT 05	Test Substance	18 OCT 05	18 OCT 05
	Preparation		
25 OCT 05	Test Substance	31 OCT 05	31 OCT 05
	Administration		
08 NOV 05	Blood Collection	14 NOV 05	14 NOV 05
08 NOV 05	Sacrifice	14 NOV 05	14 NOV 05
17-20 NOV 05	In-Life Data	21 NOV 05	21 NOV 05
20 NOV 05	Necropsy Data	21 NOV 05	21 NOV 05
01 DEC 05	Formulation Data	01 DEC 05	01 DEC 05
07-08 DEC 05	Report Tables	08 DEC 05	08 DEC 05
09-10 &12 JAN 06	Methods	12 JAN 06	12 JAN 06
16 JAN 06		16 JAN 06	16 JAN 06
13 & 16 JAN 06	Results	16 JAN 06	16 JAN 06
30 JAN 06		30 JAN 06	30 JAN 06
31 JAN 06	Summary	31 JAN 06	31 JAN 06
07 MAR 06	Revised Report	07 MAR 06	07 MAR 06
21& 24 APR 06		24 APR 06	24 APR 06
01 MAY 06		01 MAY 06	01 MAY 06

#### QA INSPECTION DATES

.....

The final report has been reviewed to assure that it accurately describes the materials and methods, and the reported results accurately reflect the raw data.

Date

5-2-06 NII I

Lisa A. Zaborowski, B.S. Senior Quality Assurance Auditor Principal Auditor

.