JUNE 11, 2002

Submitted to:

National Toxicology Program National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709

FINAL REPORT

TWO-GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

Authors:

Gary W. Wolfe, Ph.D., D.A.B.T. Stefanie Pepperl, B.S. Jennifer Greenlaw, M.H.S.

Study Completion Date:

To be added at report finalization

Submitted by:

TherImmune Research Corporation 15 Firstfield Road Gaithersburg, Maryland 20878

Project Identification:

TRC Study No. 7244-601

Volume I of

TABLE OF CONTENTS

QUALITY ASSURANCE STATEMENT	10
COMPLIANCE STATEMENT	12
SIGNATURE PAGE	13
ACKNOWLEDGMENTS	14
ABSTRACT	
Summary of Results	15
INTRODUCTION	25
METHODS	25
General Study Design	25
Two-Generation Reproduction Toxicity Study Flow Diagram for Propylthiouracil	
Study Animals	
Animal Husbandry and Environmental Conditions	
Test Article	
Dosage Formulation and Administration	
F ₀ Cohabitation	
F ₁ PND 21 Necropsy and Terminal Procedures	
F ₀ Adult Necropsy and Terminal Procedures	
Allocation of F ₁ Weanlings	
F ₁ Cohabitation	
F ₂ PND 21 Necropsy and Terminal Procedures	
F ₁ Adult Necropsy and Terminal Procedures	
Statistical Analyses	
Specimen, Raw Data and Final Report Storage	40
RESULTS	
F ₀ Cohabitation	
F ₁ PND 21 Necropsy	44
F ₀ Thyroid Hormone Analysis	45
F ₀ Adult Necropsy	45
F ₁ Growing Phase	46
F ₁ Cohabitation	47
F ₂ PND 21 Necropsy	
F ₁ Thyroid Hormone Analysis	
F ₁ Adult Necropsy	49
DISCUSSION	

		TABLE OF CONTENTS (continued)	
REFEI	RENG	CES	54
<u>FIGU</u> F	RES		
1	-	Two-Generation Reproduction Toxicity Study Flow Diagram for Propylthiouracil	28
TABL	ES_		
0-1A	-	F ₀ : SUMMARY OF MALE BODY WEIGHTS (GRAMS)	56
0-1B	-	F ₀ : SUMMARY OF FEMALE BODY WEIGHTS (GRAMS)	57
0-2A	-	F ₀ : SUMMARY OF DAILY FEED CONSUMPTION (G/KG BODY WEIGHT/DAY)	58
0-2B	-	F ₀ : SUMMARY OF DAILY FEED CONSUMPTION (G/ANIMAL/DAY)	59
0-3A	-	F ₀ : SUMMARY OF DAILY WATER CONSUMPTION (G/KG BODY WEIGHT/DAY)	60
0-3B	-	F ₀ : SUMMARY OF DAILY WATER CONSUMPTION (G/ANIMAL/DAY)	61
0-4	-	F ₀ : SUMMARY OF ESTIMATED DOSAGE (MG/KG BODY WEIGHT/DAY)	62
0-5	-	F ₀ : SUMMARY OF REPRODUCTIVE PERFORMANCE OF COHABITED PAIRS	63
0-6	-	F ₀ : SUMMARY OF DAM WEIGHTS (GRAMS) DURING LACTATION OF THE F ₁ LITTER	64
0-7A	-	$\rm F_0$: SUMMARY OF DAM DAILY FEED CONSUMPTION (G/KG BODY WEIGHT/DAY) DURIN LACTATION OF THE $\rm F_1$ LITTER	₩ 65
0-7B	-	$\rm F_0$: SUMMARY OF DAM DAILY FEED CONSUMPTION (G/ANIMAL/DAY) DURING LACTATION OF THE $\rm F_1$ LITTER	66
0-8A	-	$\rm F_0$: SUMMARY OF DAM DAILY WATER CONSUMPTION (G/KG BODY WEIGHT/DAY) DURING LACTATION OF THE $\rm F_1$ LITTER	67
0-8B	-	$\rm F_0$: SUMMARY OF DAM DAILY WATER CONSUMPTION (G/ANIMAL/DAY) DURING LACTATION OF THE $\rm F_1$ LITTER	68
0-9	-	F_0 : SUMMARY OF ESTIMATED DOSAGE (G/KG BODY WEIGHT/DAY) DURING LACTATION OF THE F_1 LITTER	OF 69
0-10	-	F ₀ : SUMMARY OF ANOGENITAL DISTANCE AND PUP WEIGHT FOR THE F ₁ LITTER	70

0-11	-	F ₀ : SUMMARY OF AVERAGE PUP WEIGHTS FOR THE F ₁ LITTER	.71
0-12	-	F ₀ : SUMMARY OF PUP SURVIVAL FOR THE F ₁ LITTER	.72
0-13	-	F ₀ : SUMMARY OF NIPPLE RETENTION FOR THE F ₁ LITTER	.73
0-14	-	F ₀ : SUMMARY OF PINNA DETACHMENT AND EYE OPENING FOR THE F ₁ LITTER	.74
0-15	-	F ₀ : SUMMARY OF F ₁ SEXUAL DEVELOPMENT DATA	.75
0-16	-	F ₀ : SUMMARY OF F ₁ MALE PND 21 NECROPSY GROSS OBSERVATIONS	.76
0-17	-	$\rm F_0$: SUMMARY OF $\rm F_1$ MALE PND 21 ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BOD WEIGHT RATIOS	Y .78
0-18	-	F ₀ : SUMMARY OF F ₁ FEMALE PND 21 NECROPSY GROSS OBSERVATIONS	.79
0-19	-	$\rm F_0$: SUMMARY OF $\rm F_1$ FEMALE PND 21 ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	.81
0-20	-	F ₀ : SUMMARY OF STAGES AND LENGTH OF ESTROUS CYCLE	.82
0-21	-	F ₀ : SUMMARY OF THYROID HORMONES	.83
0-22	-	F ₀ : SUMMARY OF MALE GROSS OBSERVATIONS	.84
0-23	-	F_{0} : SUMMARY OF MALE ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS] .86
0-24A	-	F ₀ : SUMMARY OF SPERM ANALYSIS DATA	.87
0-24B	-	F ₀ : SUMMARY OF HAMILTON-THORNE SPERM ANALYSIS DATA	.88
0-25	-	F ₀ : SUMMARY OF FEMALE GROSS OBSERVATIONS	. 89
0-26	-	F ₀ : SUMMARY OF FEMALE ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	.91
0-27	-	F ₀ : SUMMARY OF MORTALITY DATA	.92
1A-1	-	F1: SUMMARY OF ADOLESCENT BODY WEIGHTS (GRAMS)	.93
1A-2	-	F1: SUMMARY OF ADOLESCENT MORTALITY DATA	.94

1-1A	-	F ₁ : SUMMARY OF MALE BODY WEIGHTS (GRAMS)	95
1-1B	-	F1: SUMMARY OF FEMALE BODY WEIGHTS (GRAMS)	96
1-2A	-	F1: SUMMARY OF DAILY FEED CONSUMPTION (G/KG BODY WEIGHT/DAY)	97
1-2B	-	F1: SUMMARY OF DAILY FEED CONSUMPTION (G/ANIMAL/DAY)	98
1-3A	-	F1: SUMMARY OF DAILY WATER CONSUMPTION (G/KG BODY WEIGHT/DAY)	99
1-3B	-	F1: SUMMARY OF DAILY WATER CONSUMPTION (G/ANIMAL/DAY)1	00
1-4	-	F1: SUMMARY OF ESTIMATED DOSAGE (MG/KG BODY WEIGHT/DAY)1	01
1-5	-	F ₁ : SUMMARY OF REPRODUCTIVE PERFORMANCE OF COHABITED PAIRS	02
1-6	-	F ₁ : SUMMARY OF DAM WEIGHTS (GRAMS) DURING LACTATION OF THE F ₂ LITTER 1	03
1-7A	-	F_1 : SUMMARY OF DAM DAILY FEED CONSUMPTION (G/KG BODY WEIGHT/DAY) DURING LACTATION OF THE F_2 LITTER	JG 04
1-7B	-	F ₁ : SUMMARY OF DAM DAILY FEED CONSUMPTION (G/ANIMAL/DAY) DURING LACTATION OF THE F ₂ LITTER	05
1-8A	-	F ₁ : SUMMARY OF DAM DAILY WATER CONSUMPTION (G/KG BODY WEIGHT/DAY) DURING LACTATION OF THE F ₂ LITTER	06
1-8B	-	F_1 : SUMMARY OF DAM DAILY WATER CONSUMPTION (G/ANIMAL/DAY) DURING LACTATION OF THE F_2 LITTER	07
1-9	-	F1: SUMMARY OF ESTIMATED DOSAGE (G/KG BODY WEIGHT/DAY) DURING LACTATION (THE F2 LITTER	OF 08
1-10	-	F ₁ : SUMMARY OF ANOGENITAL DISTANCE AND PUP WEIGHT FOR THE F ₂ LITTER 1	09
1-11	-	F ₁ : SUMMARY OF AVERAGE PUP WEIGHTS FOR THE F ₂ LITTER	10
1-12	-	F ₁ : SUMMARY OF PUP SURVIVAL FOR THE F ₂ LITTER1	11
1-13	-	F ₁ : SUMMARY OF NIPPLE RETENTION FOR THE F ₂ LITTER1	12
1-14	-	F ₁ : SUMMARY OF PINNA DETACHMENT AND EYE OPENING FOR THE F ₂ LITTER1	13
1-15	-	F ₁ : SUMMARY OF F ₂ MALE PND 21 NECROPSY GROSS OBSERVATIONS1	14

1-16	-	$\mathrm{F_{1}:}$ SUMMARY OF $\mathrm{F_{2}}$ MALE PND 21 ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BOE WEIGHT RATIOS	9Y 116
1-17	-	F ₁ : SUMMARY OF F ₂ FEMALE PND 21 NECROPSY GROSS OBSERVATIONS	117
1-18	-	$\rm F_1$: SUMMARY OF $\rm F_2$ FEMALE PND 21 ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	119
1-19	-	F ₁ : SUMMARY OF STAGES AND LENGTH OF ESTROUS CYCLE	120
1-20	-	F ₁ : SUMMARY OF THYROID HORMONES	121
1-21	-	F ₁ : SUMMARY OF MALE GROSS OBSERVATIONS	122
1-22	-	F ₁ : SUMMARY OF MALE ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	T 124
1-23A	-	F ₁ : SUMMARY OF SPERM ANALYSIS DATA	125
1-23B	-	F ₁ : SUMMARY OF HAMILTON-THORNE SPERM ANALYSIS DATA	126
1-24	-	F ₁ : SUMMARY OF FEMALE GROSS OBSERVATIONS	127
1-25	-	F ₁ : SUMMARY OF FEMALE ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	128
1-26	-	F ₁ : SUMMARY OF MORTALITY DATA	129

APPENDIX TABLES

A0-1	-	F ₀ : INDIVIDUAL BODY WEIGHTS (GRAMS)	. 130
A0-2	-	F ₀ : INDIVIDUAL FEED CONSUMPTION (GRAMS)	. 146
A0-3	-	F ₀ : INDIVIDUAL WATER CONSUMPTION (GRAMS)	.154
A0-4A	-	F ₀ : SUMMARY OF MALE CLINICAL OBSERVATIONS	. 162
A0-4B	-	F ₀ : SUMMARY OF FEMALE CLINICAL OBSERVATIONS	.164
A0-5	-	F ₀ : INDIVIDUAL REPRODUCTIVE PERFORMANCE DURING THE F ₁ LITTER	. 165

A0-6	-	F ₀ : INDIVIDUAL DAM FEED CONSUMPTION (GRAMS/DAY) DURING LACTATION	.177
A0-7	-	F ₀ : INDIVIDUAL DAM WATER CONSUMPTION (GRAMS) DURING LACTATION	.181
A0-8	-	F_0 : INDIVIDUAL ANOGENITAL DISTANCE AND PUP WEIGHTS FOR THE F_1 LITTER	.185
A0-9	-	F ₀ : INDIVIDUAL NIPPLE RETENTION FOR THE F ₁ LITTER	.202
A0-10	-	F_0 : INDIVIDUAL PINNA DETACHMENT AND EYE OPENING FOR THE F_1 LITTER	.210
A0-11	-	F ₀ : INDIVIDUAL SEXUAL DEVELOPMENT DATA FOR THE F ₁ LITTER	.214
A0-12	-	F ₀ : INDIVIDUAL F ₁ MALE PND 21 GROSS OBSERVATIONS	.217
A0-13	-	F_0 INDIVIDUAL F_1 MALE PND 21 ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	.225
A0-14	-	F ₀ : INDIVIDUAL F ₁ FEMALE PND 21 GROSS OBSERVATIONS	.233
A0-15	-	F_0 INDIVIDUAL F_1 FEMALE PND 21 ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	.240
A0-16	-	F ₀ : INDIVIDUAL STAGES AND LENGTH OF ESTROUS CYCLE	.247
A0-17	-	F ₀ : INDIVIDUAL THYROID HORMONE DATA	.251
A0-18	-	F ₀ : INDIVIDUAL MALE GROSS OBSERVATIONS	.259
A0-19A		F ₀ : INDIVIDUAL MALE ORGAN WEIGHTS (GRAMS)	.264
A0-19B	-	F ₀ : INDIVIDUAL MALE ORGAN-TO-BODY-WEIGHT RATIOS	.268
A0-20A		F ₀ : INDIVIDUAL SPERM ANALYSIS DATA	.272
A0-20B	-	F ₀ : INDIVIDUAL HAMILTON-THORNE SPERM ANALYSIS DATA	.276
A0-21	-	F ₀ : INDIVIDUAL FEMALE GROSS OBSERVATIONS	.280
A0-22A		F ₀ : INDIVIDUAL FEMALE ORGAN WEIGHTS (GRAMS)	.284
A0-22B	-	F ₀ : INDIVIDUAL FEMALE ORGAN-TO-BODY-WEIGHT RATIOS	.288
A0-23	-	F ₀ : INDIVIDUAL MORTALITY DATA	.292
A1-1	-	F ₁ : INDIVIDUAL ADOLESCENT BODY WEIGHTS (GRAMS)	.296

A1-2A	-	F1: SUMMARY OF ADOLESCENT MALE CLINICAL OBSERVATIONS	.302
A1-2B	-	F1: SUMMARY OF ADOLESCENT FEMALE CLINICAL OBSERVATIONS	.303
A1-3	-	F1: INDIVIDUAL ADOLESCENT MORTALITY DATA	.304
A1-4	-	F1: INDIVIDUAL BODY WEIGHTS (GRAMS)	.308
A1-5	-	F1: INDIVIDUAL FEED CONSUMPTION (GRAMS)	.314
A1-6	-	F1: INDIVIDUAL WATER CONSUMPTION (GRAMS)	.320
A1-7A	-	F1: SUMMARY OF MALE CLINICAL OBSERVATIONS	.326
A1-7B	-	F1: SUMMARY OF FEMALE CLINICAL OBSERVATIONS	.327
A1-8	-	F ₁ : INDIVIDUAL REPRODUCTIVE PERFORMANCE DURING THE F ₂ LITTER	.328
A1-9	-	F1: INDIVIDUAL DAM FEED CONSUMPTION (GRAMS) DURING LACTATION	.337
A1-10	-	F1: INDIVIDUAL DAM WATER CONSUMPTION (GRAMS) DURING LACTATION	.340
A1-11	-	$F_1:$ INDIVIDUAL ANOGENITAL DISTANCE AND PUP WEIGHTS FOR THE F_2 LITTER	.343
A1-12	-	F ₁ : INDIVIDUAL NIPPLE RETENTION FOR THE F ₂ LITTER	.355
A1-13	-	F1: INDIVIDUAL PINNA DETACHMENT AND EYE OPENING FOR THE F2 LITTER	.361
A1-14	-	F1: INDIVIDUAL F2 MALE PND 21 GROSS OBSERVATIONS	.364
A1-15	-	F1: INDIVIDUAL F2 MALE PND 21 ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	.370
A1-16	-	F1: INDIVIDUAL F2 FEMALE PND 21 GROSS OBSERVATIONS	.376
A1-17	-	F1: INDIVIDUAL F2 FEMALE PND 21 ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS	Г .381
A1-18	-	F1: INDIVIDUAL STAGES AND LENGTH OF ESTROUS CYCLE	.387

A1-19 -	F1: INDIVIDUAL THYROID HORMONE DATA	. 390
A1-20 -	F1: INDIVIDUAL MALE GROSS OBSERVATIONS	. 396
A1-21A -	F1: INDIVIDUAL MALE ORGAN WEIGHTS (GRAMS)	. 399
A1-21B -	F1: INDIVIDUAL MALE ORGAN-TO-BODY WEIGHT RATIOS	.402
A1-22A -	F1: INDIVIDUAL SPERM ANALYSIS DATA	.405
A1-22B -	F1: INDIVIDUAL HAMILTON-THORNE SPERM ANALYSIS DATA	.408
A1-23 -	F1: INDIVIDUAL FEMALE GROSS OBSERVATIONS	.411
A1-24A -	F1: INDIVIDUAL FEMALE ORGAN WEIGHTS (GRAMS)	.414
A1-24B -	F1: INDIVIDUAL FEMALE ORGAN-TO-BODY WEIGHT RATIOS	.417
A1-25 -	F ₁ : INDIVIDUAL MORTALITY DATA	.420
A2-1 -	DEVIATIONS IN THE ANIMAL ROOM TEMPERATURE AND/OR HUMIDITY	.423
A2-2 -	VERIFICATION OF TEST ARTICLE CONCENTRATION	.425
A2-3 -	PURITY OF BULK TEST ARTICLE	.426
A2-4 -	SEROLOGY RESULTS	.427
Appendix 2	- Study Protocol and Amendments	.428
Appendix 3	- Milestone Schedule	.494
Appendix 4	- Analytical Chemistry Reports	. 496
Appendix 5	- Dose Formulation Procedure	. 549
Appendix 6	- Pathology Report (PAI)	.550
Appendix 7	- Thyroid Hormone Analysis Methods	637

Page 1 of 2

QUALITY ASSURANCE STATEMENT

(To be completed at the time of report finalization)

Page 2 of 2

QUALITY ASSURANCE STATEMENT

COMPLIANCE STATEMENT

This study was conducted in compliance with the Good Laboratory Practice Regulations as set forth in Title 21 of the U.S. Code of Federal Regulations Part 58, issued December 22, 1978 (effective June 20, 1979). Standard Operating Procedure and protocol deviations occurred during the study and are documented in the study data; however, none of these deviations affected the quality or integrity of the study. To the best of my knowledge, this final report accurately describes the study methods and procedures used, and the reported results accurately reflect the raw data.

Study Director:

Gary W. Wolfe, PhD., DABT/Date

SIGNATURE PAGE

Study Director:

Report Manager:

Gary W. Wolfe, Ph.D., D.A.B.T./Date

Stefanie Pepperl, B.S. /Date

Project Officer:

Reproductive Toxicologist:

Jack Bishop, Ph.D./Date

Yefan Wang, M.S. /Date

ACKNOWLEDGMENTS

The present study was conducted at TherImmune Research Corporation in Gaithersburg, Maryland, under contract to the National Toxicology Program and the National Institute for Environmental Health Sciences (NTP/NIEHS Contract No. NO1-ES-75409). The following personnel contributed to the completion of this investigation:

Study Director:	Gary W. Wolfe, PhD, DABT
Pathologists at Necropsy/Histopathologist:	Jerry L. Quance, DVM, DACVP
Project Coordinator:	Julie Delaney, BS, LATG (PAI)
Reproductive Toxicologist:	Yefan Wang, MS
Report Manager:	Stefanie Pepperl, BS
Technical Supervisors:	Roland Naawu, BS, LATG Meredith James, BS
Health and Safety Officer/ Facility Manager:	Robert K. Blackford, AA
Statistical Support:	Julie Scott, MS (ASI)
Veterinarian:	Edward Greenstein, DVM, ACLAM
Quality Assurance Officers:	Cecilia Matos-Rosa, BS David Wilson, BS
Directors of Quality Assurance:	James Carignan, BS Carol Hoffman (PAI)
Dose Preparation Supervisor:	Gary Holley, BS
Head Technician:	Larissa Nehrebeckyj, BS

ABSTRACT

Propylthiouracil was evaluated for potential reproductive toxicity using a Two-Generation study model. Beginning on Study Day (SD) 1, propylthiouracil was administered in the drinking water at dose levels of 0, 0.0001, 0.0004, and 0.0015 % (weight/volume) to adult male and female rats (N=20). The F_0 cohabitation period began on SD 71. Mating pairs were allowed to produce one litter. Dosing of the F_1 generation was initiated on post-natal day (PND) 21 (i.e., at weaning). On PND 99 ± 10, F_1 animals were assigned to mating pairs and allowed to produce one litter. Due to high mortality in the adolescent F_1 0.0015 % animals, this group was not available for the F_1 cohabitation. Endpoints evaluated included body weight, food and water consumption, clinical signs of toxicity, number and weight of pups, anogenital distance (AGD), sexual development endpoints, thyroid hormone levels, sperm parameters, vaginal cytology, organ weights, and gross and microscopic pathology.

In the F_0 Cohabitation there were significant decreases at the 0.0015% dose level in mean body weights (6-12%), mean food consumption (3-35%) expressed as g/kg body weight/day and g/animal/day, and water consumption (13-38%) expressed as g/animal/day. The pregnancy index was comparable in all groups, but the number of female and total pups was decreased by 43 and 30%, respectively, at 0.0015%. Pup weights were comparable among groups but by PND 14 there was a significant decrease (15-37%) in the 0.0015% male and female pup weights. Survival was also comparable until weaning on PND 21, after which an increase in mortality was observed at 0.0015%. By PND 25, the 0.0015% pups were smaller with domed heads and misshapen snouts. During necropsy on PND 21 a delay in eruption of teeth was noted. Microscopically the jaws had damage (depletion and vacuolation) to the odontoblasts and ameloblasts resulting in a delay in cellular maturation and subsequent tooth eruption.

In the F_1 offspring, eye opening was delayed by 1.9 days at 0.0015%. Prepuce separation was delayed by 2.0 days and vaginal opening by 1.4 days at 0.0004%. Because of the mortality observed in the F_1 animals at 0.0015%, only the 0, 0.0001, and 0.0004% groups continued to the F_1 cohabitation. In the F_1 cohabitation, no changes were noted in body weights, food consumption, water consumption, or reproductive endpoints, except there was a decrease in anogenital distance noted in the males at 0.0001 and 0.0004%.

In the necropsy of F₀ parents there were significant decreases at 0.0015% in absolute adrenal, brain, kidney, liver, and spleen weights and relative right testis and seminal vesicle weights. The absolute thyroid/parathyroid weights were increased 67-373% in the 0.0004 and 0.0015% males and females; relative thyroid/parathyroid weights were increased 34-443% in the 0.0004 and 0.0015% males and females and 18% in the 0.0001% females. In the necropsy of the F_1 parents there were significant increases in the absolute and relative thyroid weights in the 0.0004% males and females and also in relative thyroid weight at 0.0001% (males only). The findings in the F₀ parents correlated with enlarged thyroids/parathyroids observed at necropsy in the 0.0004% males and females (7/20 and 1/20, respectively) and 0.0015% males and females (20/20 and 18/20, respectively). There were no gross pathology findings in the F_1 parents. Upon microscopic examination of the thyroid, follicular cell hyperplasia was observed in 10/100.0015% F₀ males and females, 7/10 0.0004% F_0 males, and 1/10 0.0004% F_1 males. There was also degeneration of the germinal epithelium of the testes in 2/10, 3/10, and 3/100.0001%, 0.0004%, and 0.0015% F₀ males respectively, and 1/10 0.0001% and 0.0004% F₁ males. TSH levels were increased in the 0.0004% and 0.0015% F₀ males and females and 0.0004% F₁ males and females. T4 levels were decreased in the 0.0004% and 0.0015% F_0 males and females and the 0.0004% F_1 males and females.

Based on the findings of this two generation study with one litter per generation, Propylthiouracil would be considered to be a reproductive/developmental toxicant in females at dose levels greater than or equal to 0.0004% based on decreased total pups per litter, delayed vaginal opening, delayed eye opening, and changes in estrous cyclicity. PTU would be considered a male reproductive toxicant at dose levels greater than or equal to 0.0001% based on delayed eye opening, delayed preputial separation, degeneration of the germinal epithelium of the testes, and decreased anogenital distance. Propylthiouracil would also be considered a general toxicant at 0.0015 and 0.0004% based upon decreased body weight and food consumption (mostly at 0.0015%) and increased thyroid weights, changes in thyroid hormone levels, and /or thyroid follicular cell hyperplasia at 0.0004 and 0.0015%.

Treatment Group (%)				
Parameters	Low (0.0001)	Mid (0.0004)	High (0.0015)	
<u>General Toxicity - F₀ Cohabitation</u>				
Body Weight				
Male (Weeks 3 - 20)	-	-	\downarrow	
Female (Weeks 6, 7 and 9 - 20)	-	-	\downarrow	
Female (Week 16)	\downarrow	-	\downarrow	
Sire at Delivery	-	-	\downarrow	
Dam at Delivery	-	\downarrow	\downarrow	
Lactating Females (PND 4, 7 and 14)	-	-	\downarrow	
Feed Consumption (g/kg body weight/day)				
Male (Weeks 2 - 5, 8 and 10)	-	-	\downarrow	
Male (Week 13)	\downarrow	\downarrow	\downarrow	
Male (Weeks 6 - 7)	\downarrow	-	\downarrow	
Male (Week 17)	\downarrow	-	-	
Female (Weeks 2 - 10)	-	-	\downarrow	
Lactating Females (PND 4 - 7)	\downarrow	-	\downarrow	
Lactating Females (PND 11 - 14)	-	\uparrow	-	
Lactating Females (PND 18 - 21)	-	-	\downarrow	

KEY: M = MaleF = Female

- \uparrow = Significant increase in the parameter.
- \downarrow = Significant decrease in the parameter.

- = No observed effect.

SUMMARY OF RESULTS (CONTINUED)

TWO-GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

	Treatment Group (%)			
Parameters	Low (0.0001)	Mid (0.0004)	High (0.0015)	
Feed Consumption (g/animal/day)				
Male (Weeks 2 - 10 and 13 - 19)	-	-	\downarrow	
Male (Week 13)	-	\downarrow	\downarrow	
Female (Weeks 3 - 10 and 13 - 19)	-	-	\downarrow	
Female (Week 6)	-	\downarrow	\downarrow	
Lactating Females (PND 1 - 4)	\downarrow	-	\downarrow	
Lactating Females (PND 4 - 7)	\downarrow	\downarrow	\downarrow	
Lactating Females (PND 7 - 11 and 18 - 21)	-	-	\downarrow	
Lactating Females (PND 11 - 14)	-	\uparrow	-	
Water Consumption (g/kg body weight/day)				
Female (Week 18)	-	\downarrow	\downarrow	
Lactating Females (PND 4 - 7, 11 - 14 and 18 - 21)	-	-	\downarrow	
Water Consumption (g/animal/day)				
Male (Weeks 3 - 10, 13 - 15 and 18 - 19)	-	-	\downarrow	
Male (Week 17)	\downarrow	\downarrow	\downarrow	
Female (Weeks 4, 8, 10, 13 and 19)	-	-	\downarrow	
Female (Week 18)	-	\downarrow	\downarrow	
Lactating Females (PND 1 - 4, 4 - 7, 7 - 11 and 11 - 14)	-	-	\downarrow	
Lactating Females (PND 14 - 18 and 18 - 21)	\downarrow	-	\downarrow	
Estrous Cyclicity				
Number of Females with Regular Cycle	-	-	\downarrow	
Relative Amount of Time Spent in Estrous Stages	-	-	*	

KEY: M = Male

- 8 = Significant increase in the parameter.
- F = Female
- \downarrow = Significant decrease in the parameter.
- * = Significant change in the parameter
- = No observed effect.

National Institute of Environmental Health Sciences

	Treatment Group (%)										
Parameters	Low (0.0001)	Mid (0.0004)	High (0.0015)								
Male Necropsy											
Terminal Body Weight	-	-	\downarrow								
Absolute Thyroid/Parathyroid Weight	-	\uparrow	\uparrow								
Relative Brain Weight	-	-	\uparrow								
Relative Pituitary Weight	-	\uparrow	\uparrow								
Relative Right Testis Weight	-	-	\uparrow								
Relative Seminal Vesicle Weight	-	-	\uparrow								
Relative Thyroid/Parathyroid Weight	-	\uparrow	\uparrow								
Female Necropsy											
Terminal Body Weight	-	-	\downarrow								
Absolute Adrenal Weight	-	-	\downarrow								
Absolute Brain Weight	-	-	\downarrow								
Absolute Kidney Weight	-	-	\downarrow								
Absolute Liver Weight	-	-	\downarrow								

 $\begin{array}{rcl} \text{KEY:} & \text{M} &= & \text{Male} \\ & \text{F} &= & \text{Female} \end{array}$

- \uparrow = Significant increase in the parameter.
- \downarrow = Significant decrease in the parameter.
- = No observed effect.

National Institute of Environmental Health Sciences

	Treatment Group (%)										
Parameters	Low (0.0001)	Mid (0.0004)	High (0.0015)								
Female Necropsy											
Absolute Spleen Weight	-	-	\downarrow								
Absolute Thyroid/Parathyroid Weight	-	_	\uparrow								
Relative Thyroid/Parathyroid Weight	\uparrow	\uparrow	\uparrow								
Microscopic Findings											
Male Thyroid - Follicular Cell Hyperplasia	-	\uparrow	\uparrow								
Male Testes - Germinal Epithelium Degeneration	\uparrow	\uparrow	\uparrow								
Female Thyroid - Follicular Cell Hyperplasia	-	\uparrow	\uparrow								
Thyroid Hormones											
Male TSH	-	\uparrow	\uparrow								
Male T4	-	\downarrow	\downarrow								
Female TSH	-	\uparrow	\uparrow								
Female T4	-	\checkmark *	\downarrow *								
Sperm Data											
Morphology - % of Abnormal Sperm	\uparrow	-	-								
Mortality (Control) 0M,0F	1M,0F	0M,0F	0M,2F								

KEY: M = MaleF = Female \uparrow = Significant increase in the parameter.

 \downarrow = Significant decrease in the parameter.

* = These decreases were not statistically significant at p<0.05.

- = No observed effect.

THE DRINKING WATER

		Treatment Group (%)		
Parameters	Low (0.0001)	Mid (0.0004)	High (0.0015)	
<u>Reproductive and Developmental Parameters - F_0 Conabilation</u>				
Live Pups per Litter			1	
Female	-	-	\checkmark	
Male and Female	-	-	\downarrow	
Average Pup Weights				
Male (PND 14 and 21)	-	-	\downarrow	
Female (PND 14 and 21)	-	-	\downarrow	
Day of Pup Eye Opening	-	\uparrow	a	
Day of Pup Vaginal Opening	-	\uparrow	a	
Day of Pup Preputial Separation	-	\uparrow	a	
F ₁ Male PND 21 Necropsy				
Terminal Body Weight	-	-	\downarrow	
Absolute Brain Weight	-	-	\downarrow	
Relative Brain Weight	-	-	\uparrow	
Relative Spleen Weight	-	-	\downarrow	
Relative Thymus Weight	-	-	\downarrow	

KEY: M = MaleF = Female

- \uparrow = Significant increase in the parameter.
- \downarrow = Significant decrease in the parameter.
- = No observed effect.

a These parameters were not evaluated in the 0.0015% F_1 animals due to increased mortality.

	Treatment Group (%)											
Parameters	Low (0.0001)	Mid (0.0004)	High (0.0015) ^a									
F. Female PND 21 Necronsy												
Terminal Body Weight	_	_	\downarrow									
Absolute Brain Weight	-	_	Ļ									
Relative Brain Weight	-	_	\uparrow									
Relative Spleen Weight	-	_	\downarrow									
Relative Thymus Weight	-	-	\downarrow									
General Toxicity - F1 Cohabitation												
Feed Consumption (g/animal/day)												
Male (Week 3)	\downarrow	-										
Lactating Female (PND 4 - 7 and 7 - 11)	\downarrow	-										
Lactating Female (PND 18 - 21)	-	\downarrow										
Water Consumption (g/animal/day)												
Lactating Female (PND 4 - 7)	\downarrow	\downarrow										
Lactating Female (PND 1 - 4, 7 - 11 and 11 - 14)	\downarrow	-										
Male Necropsy												
Absolute Thyroid/Parathyroid Weight	-	\uparrow										
Relative Thyroid/Parathyroid Weight	\uparrow	\uparrow										

KEY: M = MaleF = Female \uparrow = Significant increase in the parameter.

 \downarrow = Significant decrease in the parameter.

- = No observed effect.

a This dose level was discontinued for the F_1 Cohabitation due to high mortality observed among F_1 adolescents.

	Treatment Group (%)	
Low (0.0001)	Mid (0.0004)	High (0.0015)
-	\uparrow	
-	\uparrow	
-	\uparrow	
\uparrow	\uparrow	
-	\uparrow	
-	\downarrow	
-	\uparrow	
-	\downarrow	
0M,0F	0M,0F	23M,20F
0M,0F	0M,0F	
tion		
1		
\checkmark	\downarrow	
-	\checkmark	
	Low (0.0001) - - - ↑ - - - 0M,0F 0M,0F 0M,0F tion ↓ -	Low (0.0001) Mid (0.0004) - ↑ - ↑ - ↑ - ↑ - ↑ - ↑ - ↑ - ↑ - ↑ - ↑ - ↑ - ↓ 0M,0F 0M,0F 0M,0F 0M,0F 0M,0F 0M,0F 0M,0F ↓ - ↓ - ↓

KEY: M = Male

F = Female $\downarrow = S$

 \uparrow = Significant increase in the parameter.

 \downarrow = Significant decrease in the parameter.

- = No observed effect.

National Institute of Environmental Health Sciences

Parameters	Low (0.0001)	Treatment Group (%) Mid (0.0004)	
 F₁ Male PND 21 Necropsy Relative Spleen Weight F₁ Female PND 21 Necropsy Absolute Thymus Weight Relative Thymus Weight 	↑ - -	- ↓ ↓	

The F_1 cohabitation started on PND 99 ± 10 .

KEY:	М	=	Male	↑	=	Significant increase in the parameter.
	F	=	Female	\downarrow	=	Significant decrease in the parameter.
				-	=	No observed effect.

REPRODUCTIVE TOXICANT:

Male - Yes Female - Yes

CLASSIFICATION:

		0.0001 %	0.0004 %	<u>0.0015 %</u>
Males	Reproductive Toxicity	+	+	+
	General Toxicity	-	+	+
Females	Reproductive/Developmental Toxicity	-	+	+
	General Toxicity	-	+	+

INTRODUCTION

Propylthiouracil (CAS No. 51-52-5) is a thyroid hormone-synthesis inhibitor and antithyroid agent for the treatment of hyperthyroidism. Propylthiouracil (PTU) has been shown to decrease T3 and T4 while increasing TSH. This study was designed to validate a Two-Generation Study Model proposed to identify potent and weak thyroid toxicants. The dose levels selected for the study were 0.0001, 0.0004, and 0.0015 % PTU (weight/volume). The high dose of 0.0015% was expected to result in increased TSH, decreased T3 and T4, thyroid pathology, and decreased growth. The remaining dose levels were expected to result in less toxicity with no effect at 0.0001% PTU.

METHODS

General Study Design

A schematic diagram of this study is presented in Figure 1. The F₀ Cohabitation consisted of a control group and three treated groups (20 pairs/group). F₀ males and females were administered propylthiouracil in the drinking water starting on SD 1 and continuing until necropsy. F₀ animals had body weights collected at randomization, weekly, and at littering and feed and water consumption measured weekly when housed individually. During the lactation period for the F_1 litter, F₀ females also had body weights measured on PND 1, 4, 7, 14, and 21 and feed and water consumption measured for PND 1-4, 4-7, 7-11, 11-14, 14-18 and 18-21. Physical examinations were performed at randomization, at initiation of dosing, and weekly thereafter. Prior to cohabitation, vaginal cytology was conducted for 14 days on the F_0 dams. Following ten weeks of premating exposure to propylthiouracil, the F_0 animals were housed as breeding pairs (1:1 ratio). Vaginal smears were examined daily for confirmation of mating. When sperm or plug positive or after 14 days of cohabitation, the females were separated from the males. The F_1 pups were reared by the dam until weaning on PND 21. On PND 1, 4, 7, 14, and 21 the pups were counted and weighed. All pups had their anogenital distance (AGD) and individual weight recorded on PND 1 and were examined for pinna detachment and eye opening beginning on PND 2. All male pups were examined for retained nipples on PND 12 and 13.

On PND 16, 1-2 males and 1-2 females from each litter were randomly selected for rearing for the F_1 mating trial. These animals were assigned a unique identification number which was tattooed on the tail. Observations of testicular descent (starting on PND 16), vaginal opening (starting on PND 25), and preputial separation (starting on PND 35) were conducted. On PND 21, animals selected for the F_1 cohabitation were separated from the dam and housed. Pups selected for the F_1 cohabitation period were administered propylthiouracil in the drinking water starting on PND 21 (dose levels of 0.0001, 0.0004, and 0.0015 % PTU). Body weights were collected weekly starting on PND 21.

Three additional males and three additional females from all F_1 litters (when available) were randomly selected on PND 16 for the PND 21 necropsy. On PND 21 these animals were necropsied, terminal body weights and organ weights were obtained, and tissues were saved for histopathologic evaluation. The remaining F_1 pups were euthanized and discarded without necropsy on PND 21.

After the lactation phase was completed, terminal body weights were obtained for all F_0 animals, then the animals were euthanized and necropsied, organ weights were obtained, sperm analyses were performed, and tissues were saved for possible histopathologic evaluation.

 F_1 weanlings selected for the F_1 cohabitation were reared in same sex groups until PND 99 ±10 days of age, when twenty animals of each sex in each dose group were randomly assigned to breeding pairs (avoiding sibling matings) and cohabited. Vaginal smears were examined daily for confirmation of mating. When sperm or plug positive or after 14 days of cohabitation, the females were separated from the males. Once cohabited, F_1 animals had body weights collected weekly and at littering. Feed and water consumption were measured weekly when the animals were housed individually (i.e., not during cohabitation). During the lactation period for the F_2 litter, F_1 females also had body weights measured on PND 1, 4, 7, 14, and 21 and feed and water consumption measured for PND 1-4, 4-7, 7-11, 11-14, 14-18 and 18-21. Physical examinations were performed weekly.

The F_2 pups were reared by the dam until PND 21. On PND 1, 4, 7, 14, and 21, the pups were counted and weighed. All pups had their AGD and individual weight recorded on PND 1 and were examined for pinna detachment and eye opening beginning on PND 2. All male pups were

examined for retained nipples on PND 12 and 13. Vaginal cytology was conducted on the F_1 dams for 14 days beginning at least 4 days after the last F_2 PND 21.

Three males and three females from all litters (where available) were randomly selected on PND 16 for the PND 21 necropsy. On PND 21 these animals were necropsied, terminal body weights and organ weights were obtained, and tissues were saved for histopathologic evaluation. The remaining F_2 pups were euthanized and discarded without necropsy on PND 21.

The F_1 animals were retained until completion of vaginal cytology. Terminal body weights were obtained for all F_1 animals, the animals were euthanized and necropsied, organ weights were obtained, sperm analyses were performed, and tissues were saved for possible histopathologic evaluation.

Figure 1

Two-Generation Reproduction Toxicity Study Flow Diagram for Propylthiouracil

	Study Week																																		
1	2 3	4 5	6 7	8	9 10	11 12	13	14 15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
F0:	Exposi	ure	* *		<u> </u>							F	0: Nec	rops	v																				
		1		1			1						1		- -																				
					F0:	FU:																													
					vag.	Conabi																											-		
					Cytol.	lation																													
						F0: Ge	statio	n																											
							1	F0: Lact	ation			F	1 · Exr		re											<u> </u>			F	1: N	lecro	psv		1	
												_								_				1		T T	_								
								F1: Pup	Obs									F	l: chobite	_ +							F1	I: Va	g						
								F1: AGE)										onabila n									/tol.							
																			11															1	
								F1: Pin	na										1: Ges	statio	n													1	
								detachi	ment													1.1.	ootot	tion											
								and eye	e													- I. Le	acia	lion											
								opening	g	-											F	2: Pu	up Ot	os											
								F	1: Re	et.														_											
								N	lipple	s												-2: A	GD												
										-																									
										: Tes		ar										F2: F	Pinna	а	_										
										scer	IT											deta	chm	ent	-										
										F	1: Va	agina	al	-								and	eye		_									 	
) peni	ng										oper	ning		_									 	
									F1:			F1·	Prenut	tial									F2	: Re	t.									 	
									PN	D 16	H	Sen	aratior	ז									Nip	oples	s -									 	
									Sel	ect.		000		·	- 1									= 2 · E										 	
										F1:		-											!	2. F 16 S										 	
										PN	21	_												10.5		• + +								 	
——				+			-			Sep		-																						 	
				-	\vdash		-			E1.														F	2: PN	1D							-+	 	
										ГТ. 21	PND	-												2	1 Ne	crop.								$ \longrightarrow $	
	$\left \right $	$\left \right $			$\left \right $						ron																						+	<u> </u>	
							1			nec	iop.																							.	

Study Animals

The Sprague-Dawley rat was selected as the test animal due to its established quality as a breeder and the availability of historical toxicologic data for reference. For the F_0 cohabitation, 170 (85 male and 85 female) Sprague-Dawley CrI:CD® BR rats were received from Charles River Laboratories (Raleigh, NC) on May 9, 2000, and assigned temporary animal numbers. Seven days after receipt, all of the animals were weighed and randomly assigned to one of four groups by a computer-generated randomization procedure that ensured equal weight distribution between the groups. All study animals were assigned unique animal numbers and individually identified with the animal number on their tail by tattooing. Dosing was initiated after a 14 day acclimation period. During this period, two males and two females were forwarded to Anmed Biosafe, Inc., Rockville, Maryland, for determination of viral antibody titers. All sera were negative for antibodies at that time (Appendix table A2-4). Extra animals were subsequently removed from the study room. The study animals were approximately 7-8 weeks of age at the initiation of dosing and the body weight range of the animals was 232.3 – 293.9 g for males and 160.1 – 215.3 g for females.

The F_1 and F_2 animals were born at TherImmune Research Corporation. During the F_1 and F_2 litters, pup selection occurred on PND 16. On PND 16 for the F_1 litter, at least two males and two females from each litter, when available, were randomly selected for the F_1 cohabitation and identified with tail tattoos. On PND 21, these animals were housed separately from the dam, and dosing of the selected F_1 animals was initiated. On PND 16 for the F_1 and F_2 animals, three males and three females from each litter, when available, were randomly selected for the PND 21 necropsy. F_1 and F_2 pups not selected for PND 21 necropsy were euthanized by carbon dioxide asphyxiation and discarded without necropsy. For the F_1 animals, approximately one week before PND 99 \pm 10 (initiation of F_1 cohabitation), one male was assigned to one female, avoiding sibling matings, to form twenty mating pairs per group for the F_1 cohabitation. Animals not selected for the F_1 cohabitation and discarded without necropsy one week after the initiation of the F_1 cohabitation.

Animal Husbandry and Environmental Conditions

Animals were housed two per cage by sex from receipt to randomization, two per cage (one male and one female) during the F_0 and F_1 cohabitations, two per cage (same sex) during the F_1 growth phase, and individually at all other times. All animals were housed in polycarbonate cages (19"L x 10.5"W x 8"H) suspended on stainless-steel racks. Racks were equipped with filter paper liners. Polycarbonate caging contained Sani Chip certified heat treated hardwood laboratory bedding. Pelleted Harlan TekladTM NIH-07 Small Animal Feed was available *ad libitum* in stainless-steel hanging feeders, and was used within five months of the milling date. The feed was analyzed for nutrients, aflatoxins, nitrosamines, heavy metals, chlorinated hydrocarbons, organophosphates, PCBs, nitrites, nitrates, BHA, BHT, total bacterial plates, coliforms, *E. coli*, and *Salmonella* by the vendor. Deionized water was provided in water bottles, which were changed at least weekly. The test article was given to the animals in the deionized water. The water is routinely analyzed for total dissolved solids, heavy metals, chlorinated hydrocarbons, organophosphates, nitrates, nitrites, microbiological content and total trihalomethanes at least semi-annually to conform with the Safe Drinking Water Act. None of the feed, water, or bedding contaminants was at levels believed sufficient to interfere with the study.

A 12-hour light/12-hour dark cycle was maintained throughout the study. During the study, the temperature range in the animal room was 68-74°F and the relative percent humidity was 30-70%, except as noted in Appendix Table A2-1.

Test Article

6-Propyl–2-thiouracil, lot no. 47H2500, was received from Battelle, Columbus, OH, on April 20, 2000 and June 16, 2000. It was described as a white powder with a purity of 99.8%. Prior to use, two 0.5 g samples of bulk test article were collected into glass bottles with Teflon® coated lids, sealed, and stored at approximately -20°C protected from light for possible future reanalysis. At the start of the F₁ cohabitation, and again after the end of the in-life portion of the study, five grams of bulk sample were sent to Battelle for analysis.

Each time a new mix or batch was prepared, two 50 mL archival samples of each dose level formulation were collected and stored at TherImmune in amber glass bottles with Teflon® coated

lids protected from light in the refrigerator. One sample of each dose level formulation from mixes 3, 4, 5, 11, 27, 51 was sent to Battelle for analysis. Archival samples which were not selected for analysis were discarded as hazardous waste at least 90 days after preparation.

Dosage Formulation and Administration

Formulations of 0, 0.0001, 0.0004, and 0.0015 % (w/v) were prepared at least weekly throughout the study. For Group 1 (control), a precalibrated carboy was filled with the required volume of deionized water. For all other groups, precalibrated carboys were initially filled to approximately 75% of the required volume with deionized water. The required quantity of 6-propyl-2-thiouracil was weighed into a weigh boat and poured into a volumetric flask (approximately half-filled with deionized water). The weigh boat was rinsed at least three times with deionized water and the rinse was added to the flask. The flasks were mixed until the propylthiouracil was completely dissolved. The solution was then poured into a carboy, the flask was rinsed at least three times with deionized water and the rinse was added to the carboy, deionized water was added to the carboy to achieve the required volume, and the solution was mixed with a variable speed stirrer to ensure complete dissolution.

The formulations were stored refrigerated and protected from light. Under these conditions, formulations are reported to be stable for 35 days. The formulations were dispensed into amber glass bottles with neoprene stoppers and stainless steel sipper tubes. Dispensed formulations are stable for seven days. The stability and storage of formulations conditions were based upon the Dose Formulation Developmental Study Report provided by Battelle.

F₀ Cohabitation

The F_0 cohabitation consisted of a control group and three treated groups (20 pairs/group). F_0 animals were administered propylthiouracil in their drinking water at doses of 0 (control), 0.0001, 0.0004, or 0.0015 % from SD 1 until necropsy. Prior to cohabitation, vaginal cytology was conducted for 14 days on the F_0 dams. Following ten weeks of premating exposure to propylthiouracil (i.e., on SD 71), the animals were housed as breeding pairs (1:1 ratio). Vaginal smears were examined daily for confirmation of mating. When sperm or plug positive or after 14 days of cohabitation, the females were separated from the males. The F₁ litter was reared by the dam until weaning on PND 21. The total number of pups, number of live and dead pups, the number of live male and female pups, and total body weight of live male and female pups were recorded on PND 1, 4, 7, 14, and 21. On PND 1, all pups had individual pup body weights and AGD measured, and the dam and sire weights were recorded. The dam was also weighed on PND 4, 7, 14 and 21, and feed and water consumption were measured for PND 1-4, 4-7, 7-11, 11-14, 14-18 and 18-21. All pups were examined for pinna detachment and eye opening beginning on PND 2. All male pups were examined for retained nipples on PND 12 and 13.

On PND 16, 1-2 males and 1-2 females from each litter were randomly selected for rearing for the F_1 mating trial. These animals were assigned a unique identification number and tail tattooed. Observations of testicular descent (starting on PND 16), vaginal opening (starting on PND 25), and preputial separation (starting on PND 35) were conducted. On PND 21, animals selected for the F_1 cohabitation were housed separately from the dam in same-sex pairs and drinking water dosing was initiated. Body weights were collected weekly starting on PND 21.

Three additional males and females from all litters (when available) were randomly selected on PND 16 for the PND 21 necropsy. On PND 21 these animals were necropsied, terminal body weights and organ weights were obtained, and tissues were saved for histopathologic evaluation. Pups not selected were euthanized by carbon dioxide asphyxiation and discarded without necropsy on PND 21.

Approximately one week before PND 99 \pm 10 (i.e., the initiation of F₁ cohabitation), one male was assigned to one female, avoiding sibling matings, to form twenty mating pairs per group for the F₁ cohabitation. Animals not selected for the F₁ cohabitation were euthanized by carbon dioxide asphyxiation and discarded without necropsy.

All animals were observed twice daily for mortality and signs of toxicity. In males and nonlactating females, body weights were collected weekly and at littering (males only), and feed and water consumption was measured weekly when animals were housed individually. Physical examinations were performed weekly.

F1 PND 21 Necropsy and Terminal Procedures

On PND 21, up to three surviving F_1 males and females per litter were weighed, sacrificed by carbon dioxide asphyxiation, and exsanguinated. A gross necropsy was performed on all animals. Necropsies were performed by trained personnel from Pathology Associates International (PAI, Frederick, MD) under the direct supervision of a Board-certified pathologist. Necropsies included examination of the external surface of the body, all orifices, and the cranial, thoracic, and abdominal cavities and their contents.

The following organs were weighed:

brain spleen thymus

The adrenals, kidneys, liver, pituitary, ventral prostate, dorsolateral prostate, seminal vesicles with coagulating glands, spleen, thyroid/parathyroids, vagina/cervix/uterus and gross lesions from all necropsied animals were preserved in 10% neutral-buffered formalin (NBF) for histopathological examination. The left testis and epididymis were fixed in a 2% para-formaldehyde/3% glutaraldehyde solution for 3-5 days and then transferred to phosphate buffered saline. The right testis was frozen at approximately -80°C to be used for spermatid head counts. (Spermatid head counts for PND 21 animals were discontinued because no sperm were found to be present in the testes of these animals.) The ovaries were preserved in Bouin's for 24-48 hours and then transferred to 70% ethanol. Histopathology was not required for these tissues.

F₀ Adult Necropsy and Terminal Procedures

After the end of lactation for all F_1 pups, terminal body weights were obtained from all surviving F_0 animals. Blood was collected from the orbital sinus under 70% $0_2/30\%$ CO₂ anesthesia. The blood was centrifuged and separated to obtain plasma. The plasma was frozen at approximately -80° and was forwarded to Anilytics, Inc. (Gaithersburg, MD) for determination of TSH, T3, and T4 levels. The methods used for the thyroid hormone analyses are presented in Appendix 7. Following blood collection, the animals were sacrificed by carbon dioxide asphyxiation and exsanguinated. A gross necropsy was performed on all animals. Necropsies were performed by trained personnel from PAI under the direct supervision of a Board-certified pathologist. Necropsies included examination of the external surface of the body, all orifices, and the cranial, thoracic, and abdominal cavities and their contents.

The following organs were weighed:

adrenals (paired)	brain
cauda epididymis (right)	epididymis (right)
kidneys (paired)	liver
ovaries (paired)	pituitary
prostate (ventral)	prostate (dorsolateral)
seminal vesicles with coagulating glands	spleen
testis (right)	thyroids/parathyroids
uterus/vagina/cervix	

The adrenals, brain, kidneys, liver, pituitary, ventral prostate, dorsolateral prostate, seminal vesicles with coagulating glands, spleen, thyroid/parathyroids, vagina/cervix/uterus, and gross lesions from all necropsied animals were preserved in 10% NBF for histopathological examination. The left testis and epididymis were fixed in a 2% para-formaldehyde/3% glutaraldehyde solution for 3-5 days and then transferred to phosphate buffered saline. The right testis was frozen at approximately -80°C and used for spermatid head counts. The ovaries were preserved in Bouin's for 24-48 hours and then transferred to 70% ethanol. The thyroid/parathyroids, ovaries, uterus, cervix, vagina, and gross lesions from the first ten surviving males and females per group were embedded in paraffin, sectioned, stained with hematoxylin and eosin, and examined microscopically by a pathologist. The left testis and epididymis from the first ten surviving males per group were

processed through glycol methacrylate (GMA), sectioned, stained with periodic acid-Schiff (PAS) and hematoxylin, and microscopically evaluated by a pathologist.

Computer-assisted sperm motion analysis using Hamilton-Thorne Research Version 10 IVOS Sperm Analysis System (Hamilton-Thorne Research, Beverly, Massachusetts), epididymal sperm density, sperm morphology, and testicular spermatid head count data were measured on all males surviving to termination. The right vas deferens was used for sperm motility analysis; the right cauda epididymis was used for sperm density and morphology; and the right testis was used for evaluation of spermatid head counts. After conducting the epididymal sperm density counts, approximately 5mL of each sperm suspension was saved, frozen, and sent to an NTP subcontractor.

Animals found dead or euthanized *in extremis* during the study (all generations) were subject to a gross necropsy. The following tissues were retained in NBF for possible histopathological examination:

adrenals	brain
kidneys	liver
left epididymis	left testis
ovaries (transferred to 70% ethanol	pituitary
within 24-48 hours)	prostate (ventral and dorso-lateral lobes)
seminal vesicles/coagulating glands	spleen
stomach	thyroid/parathyroids
vagina/uterus/cervix	gross lesions

The lower and upper jaws of ten F_1 0.0015% (Group 4) animals (one animal/sex/litter) were embedded in paraffin, step sectioned, and examined microscopically by the study pathologist.

Allocation of F₁ Weanlings

On PND 16, 1 - 2 males and 1 - 2 females per litter, when available, were randomly selected for the F_1 cohabitation. These animals were assigned a unique identification number and tail tattooed. Observations of testicular descent (starting on PND 16), vaginal opening (starting on PND 25), and preputial separation (starting on PND 35) were conducted until the endpoint was seen. On PND 21, animals selected for the F_1 cohabitation were housed separately from the dam, and administration of propylthiouracil in drinking water was initiated. On PND 21, pups not selected for
the F_1 cohabitation or PND 21 necropsy were euthanized and discarded without necropsy. All animals were observed twice daily for mortality and signs of toxicity. Following weaning of the final F_1 litter, all weekly body weights and physical examinations were adjusted to occur on the same day and began on PND 29 ± 10.

Due to a high level of mortality in the $0.0015 \ \% F_1$ animals following weaning, all surviving animals in this group were removed from the study and euthanized.

F₁ Cohabitation

The F_1 cohabitation consisted of a control group and two treated groups (20 pairs/group). F_1 weanlings selected for the F_1 cohabitation were reared in same sex groups until PND 99 ± 10 days of age when twenty animals of each sex in each dose group were randomly assigned to breeding pairs (avoiding sibling matings) and cohabited. Vaginal smears were examined daily for confirmation of mating. When sperm or plug positive or after 14 days of cohabitation, the females were separated from the males. The F_2 litter was reared by the dam until PND 21. The total number of pups, number of live and dead pups, the number of live male and female pups, and total body weight of live male and female pups were recorded on PND 1, 4, 7, 14, and 21. On PND 1, all pups had individual pup body weights and AGD measured, and the dam and sire weights were recorded. The dam was also weighed on PND 4, 7, 14 and 21, and feed and water consumption were measured for PND 1-4, 4-7, 7-11, 11-14, 14-18 and 18-21. All pups were examined for pinna detachment and eye opening beginning on PND 2. All male pups were examined for retained nipples on PND 12 and 13. Weekly physical examinations and body weights were continued. In males and non-lactating females, body weights were collected weekly and at littering (males only), and feed and water consumption was measured weekly, when animals were housed individually. Physical examinations were performed weekly. All F₁ adults were observed twice daily for mortality and signs of toxicity. All animals not selected for the F₁ cohabitation were euthanized and discarded without necropsy on PND 106 ± 10 .

Three males and three females from all litters (where available) were randomly selected on PND 16 for the PND 21 necropsy. On PND 21 for these animals, terminal body weights were

recorded, the animals euthanized and necropsied, organ weights were obtained, and tissues were saved for histopathologic evaluation.

Pups not selected were euthanized and discarded without necropsy on PND 21.

At least 4 days after the delivery of the last F_2 litters, vaginal cytology was conducted for 14 days on the F_1 dams.

F2 PND 21 Necropsy and Terminal Procedures

Up to three surviving F_1 males and females per litter were weighed, sacrificed by carbon dioxide asphyxiation, and exsanguinated. A gross necropsy was performed on all animals. Necropsies were performed by trained personnel from PAI under the direct supervision of a Board-certified pathologist. Necropsies included examination of the external surface of the body, all orifices, and the cranial, thoracic, and abdominal cavities and their contents.

The following organs were weighed:

brain spleen thymus

The adrenals, kidneys, liver, pituitary, ventral prostate, dorsolateral prostate, seminal vesicles with coagulating glands, spleen, thyroid/parathyroids, vagina/cervix/uterus and gross lesions from all necropsied animals were preserved in 10% NBF for histopathological examination. The left testis and epididymis were fixed in a 2% para-formaldehyde/3% glutaraldehyde solution for 3-5 days and then transferred to phosphate buffered saline. The right testis was frozen at approximately -80°C to be used for spermatid head counts. (Spermatid head counts for PND 21 animals were discontinued because no sperm were found in the testes of these animals.) The ovaries were preserved in Bouin's for 24-48 hours and then transferred to 70% ethanol. Histopathology was not performed on these tissues.

F₁ Adult Necropsy and Terminal Procedures

After the conclusion of vaginal cytology for all F_1 females, terminal body weights were obtained from all surviving F_1 animals. Blood was collected from all animals from the orbital sinus under 70% $0_2/30\%$ CO₂ anesthesia. The blood was centrifuged and separated to obtain plasma. The plasma from each animal was then split into aliquots and frozen at approximately -80°. One aliquot was sent to Anilytics, Inc. (Gaithersburg, MD) for determination of TSH, T3, and T4 levels. The other aliquot was retained at TherImmune for possible future reanalysis. The methods used for the thyroid hormone analyses are presented in Appendix 7. Following blood collection, the animals were euthanized by carbon dioxide asphyxiation and exsanguinated. A gross necropsy was performed on all animals. Necropsies were performed by trained personnel from PAI under the direct supervision of a Board-certified pathologist. Necropsies included examination of the external surface of the body, all orifices, and the cranial, thoracic, and abdominal cavities and their contents.

The following organs were weighed:

adrenals (paired)	brain
cauda epididymis (right)	epididymis (right)
kidneys (paired)	liver
ovaries (paired)	pituitary
prostate (ventral)	prostate (dorsolateral)
seminal vesicles with coagulating glands	spleen
testis (right)	thyroids/parathyroids
uterus/vagina/cervix	

The adrenals, brain, kidneys, liver, pituitary, ventral prostate, dorsolateral prostate, seminal vesicles with coagulating glands, spleen, thyroid/parathyroids, vagina/cervix/uterus, and gross lesions from all necropsied animals were preserved in 10% neutral-buffered formalin for histopathological examination. The left testis and epididymis were fixed in a 2% paraformaldehyde/3% glutaraldehyde solution for 3-5 days and then transferred to phosphate buffered saline. The right testis was frozen at approximately -80°C and used for spermatid head counts. The ovaries were preserved in Bouin's for 24-48 hours and then transferred to 70% ethanol. The thyroid/parathyroids, ovaries, uterus, cervix, vagina, and gross lesions from the first ten surviving males and females per group were embedded in paraffin, sectioned, stained with hematoxylin and eosin, and examined microscopically by a pathologist. The left testis and epididymis from the first

ten surviving males per group were processed through glycol methacrylate (GMA), sectioned, stained with periodic acid-Schiff (PAS) and hematoxylin, and microscopically evaluated.

Computer-assisted sperm motion analysis using Hamilton-Thorne Research Version 10 IVOS Sperm Analysis System (Hamilton-Thorne Research, Beverly, Massachusetts), epididymal sperm density, sperm morphology, and testicular spermatid head count data were measured on all males surviving to termination. The right vas deferens was used for sperm motility analysis; the right cauda epididymis was used for sperm density and morphology; and the right testis was used for evaluation of spermatid head counts. After conducting the epididymal sperm density counts, approximately 5 mL of each sperm suspension was saved, frozen, and sent to an NTP subcontractor.

Statistical Analyses

Data were statistically analyzed by Analytical Sciences Inc. (Durham, NC). Most hypotheses (including but not limited to pup weights, body weights, feed and water consumption, organ weights, sperm parameters, and estrous cycle length) were tested using the nonparametric multiple comparisons procedure of Dunn (1964) or Shirley (1977), as modified by Williams (1986). Shirley's test was designed to detect treatment-related differences when the response to treatment consistently increased (or decreased) with increasing dose. Although the test employs a smoothing algorithm to adjust for dose-response inversions, Dunn's test was more appropriate if the departure from monotonicity was severe. Jonckheere's test (1954) was used to ascertain whether there was sufficient evidence of a dose-related response to apply Shirley's test. If the p-value from Jonckheere's test was less than 0.01, Shirley's test was used; otherwise, Dunn's test was applied. Reproductive and developmental data were analyzed nested by dam.

For data expressed as a proportion, such as number fertile/number cohabitated, the Cochran-Armitage test (Armitage, 1971) was used to test for a dose-related trend, and pairwise comparisons were performed using a chi-squared test (Conover, 1971).

The ratio of the number of pups born alive to the total number of pups carried to full term was computed for all fertile pairs. The sex ratio, expressed as the proportion of males, was computed for all fertile pairs with at least one live pup. Shirley's or Dunn's test was used to compare dosed groups to controls based on Jonckheere's test, as described above.

Since the number of pups in a litter may influence the average pup weight, a parametric analysis of covariance (Neter and Wasserman, 1974) was used to test overall equality in average pup weight, after adjustment for average litter size. The covariant used was average litter size, including live and dead pups. Least squares estimates of dose group means adjusted for litter size were computed and tested for overall equality using an F-test and pairwise equality using Dunnett's test (1955). Unadjusted weights were analyzed with Shirley's or Dunn's test.

Absolute organ weights were analyzed using body weight as a covariate. Adjusted mean dose effects were compared to the control with Dunnett's test.

Litter sizes and number of litters in dose groups were compared to controls using Dunn's or Shirley's test. To examine potential differences in treatment effects on males and females, number of male pups, number of female pups, and total number of pups in litters in treated groups were compared to controls.

Using either Shirley's or Dunn's test, feed and water consumption data were analyzed as g/animal/day and g/kg body weight/day. Sperm parameters were analyzed by Shirley's or Dunn's test.

The relative time spent in estrous cycle stages was analyzed using a multivariate analysis of variance (Wilks criterion) to test for the simultaneous equality of measurements across dose levels (Morrison, 1976). Before applying the test, an arcsine transformation was performed to bring the data into closer conformance with normality assumptions.

Thyroid hormone data were analyzed using Dunnett's one-tailed test followed by Jonckheere's trend test.

All findings described in this report as "increased" or "decreased" were statistically significant as compared to the control group at the 95% confidence level (p<0.05).

Specimen, Raw Data and Final Report Storage

Upon submission of the final report, all original study records, including all original data sheets; the original final report; all biological samples; tissues; sperm morphology slides; sperm data optical disks; computer printouts generated in the statistical analysis of the sperm data; and copies of the final report, will be forwarded to the contracting agency, the NIEHS, Research Triangle Park, NC. Copies of the final study report will also be filed with TherImmune Research Corporation.

RESULTS

F₀ Cohabitation

During Weeks 3-20 of the F_0 Cohabitation, mean body weights of the 0.0015% males were decreased by 6-21% (Table 0-1A). Mean body weights of the 0.0015% females were decreased by 8-17% during Weeks 6-7 and 9-20. Mean body weights for the 0.0001% females were decreased by 6% during Week 16 (Table 0-1B).

Feed consumption was decreased by 4-11% during Weeks 6-7, 13, and 17 in the 0.0001% males, by 11% during Week 13 in the 0.0004% males, by 6-18% during Weeks 2-8, 10, and 13 in the 0.0015% males, and by 3-17% during Weeks 2-10 in the 0.0015 % females, when examined as g/kg body weight/day (Table 0-2A). Feed consumption examined as g/animal/day was decreased by 12% during Week 13 in the 0.0004% males, by 12-35% during Weeks 2-10 and 13-19 in the 0.0015% males, by 9% during Week 6 in the 0.0004% females, and by 12-25% during Weeks 3-10, 13, and 18-19 in the 0.0015% females (Table 0-2B).

Water consumption was decreased in the 0.0004 and 0.0015% females by 15% and 31%, respectively, during Week 18 when examined as g/kg body weight/day (Table 0-3A). When examined as g/animal/day, water consumption was decreased by 16% during Week 17 in the 0.0001 and 0.0004% males, by 14-23% during Weeks 2-10, 13-15, and 17-19 in the 0.0015% males, by 18% during Week 18 in the 0.0004% females, and by 13-38% during Weeks 4, 8, 10, 13, and 18-19 in the 0.0015% females (Table 0-3B).

Clinical signs noted in the F_0 animals included abrasions, alopecia, anorexia, discharge from the eye, hunched posture, lacrimation, languid behavior, loss of appetite, rough haircoat, swelling, vaginal discharge, and thinness. The incidence of these observations was low (0-10%), with the exception of alopecia (10-45%), and was not considered to be treatment-related (Appendix Tables A0-4A and A0-4B).

The estimated dosage for the parental generation was 0.1 mg/kg/day for Group 2, 0.2 to 0.5 mg/kg/day for Group 3, and 0.9 to 1.8 mg/kg/day for Group 4 (Table 0-4). The estimated dosage levels for the F_1 offspring were 0.1 to 0.3 mg/kg/day for Group 2, 0.5 to 1.3 mg/kg/day for Group 3, and 1.9 to 3.4 mg/kg/day for Group 4 (Table 0-9).

The following changes were observed in the reproductive data for the F_0 cohabitation:

- # Live pups per litter were decreased by 43 and 30% for female and total pups, respectively, in the 0.0015% group (Table 0-5).
- # Average pup weights at PND 14 and 21 were decreased by 15-33% for males and 15-37% for females in the 0.0015% group (Table 0-11).
- # Sire weights at delivery for the 0.0015% males were decreased by 20% (Table 0-5).
- Body weights for lactating 0.0015% dams were decreased by 14-18% on PND 1, 4, 7, and 14. Body weights for lactating 0.0004% dams were decreased by 7% on PND 1 (Table 0-5 and Table 0-6).
- # Feed consumption in lactating dams was decreased by 26% on PND 4-7 for 0.0001% dams and by 32-42% on PND 4-7 and 18-21 for 0.0015% dams and was increased by 25% on PND 11-14 for 0.0004% dams when examined as g/kg body weight/day (Table 0-7A).
- Feed consumption in lactating dams was decreased by 32-36% on PND 1-4 and 4-7 for 0.0001% dams, by 16% on PND 4-7 for 0.0004% dams, and by 31-49% on PND 1-4, 4-7, 7-11, and 18-21 for 0.0015% dams and was increased by 22% on PND 11-14 for 0.0004% dams when examined as g/animal/day (Table 0-7B).
- # Water consumption in lactating dams was decreased by 28-40% on PND 4-7, 11-14, and 18-21 for 0.0015% dams when examined as g/kg body weight/day (Table 0-8A).
- # Water consumption in lactating dams was decreased by 11-16% on PND 14-18 and 18-21 for 0.0001 % dams and by 25-39% throughout lactation for 0.0015% dams when examined as g/animal/day (Table 0-8B).
- # The day of eye opening, day of vaginal opening and day of preputial separation were all delayed in the 0.0004% group (1.9 days, 1.4 days and 2.0 days, respectively) (Tables 0-14 and 0-15).
- # There was no change in an genital distance in the F_1 males or females.

Vaginal cytology was performed on F_0 dams for 14 days prior to cohabitation. The percentage of females with regular cycles was decreased from 95% in the controls to 70% in the 0.0015 % females, and these animals also differed from the controls in the relative amount of time spent in estrous stages. No changes were seen in cycle length, number of cycles, or number of cycling females across the dose groups as compared to the control females (Table 0-20).

Mortality was observed in one F_0 males and two F_0 females. One 0.0001 % male was sacrificed as moribund on SD 113 after observations of anorexia, thinness, rough haircoat, languid behavior, and hunched posture. Two 0.0015 % females were found dead on SD 98 and 110. These females appeared normal prior to death (Table 0-27).

F₁ PND 21 Necropsy

In the 0.0015% males, terminal body weights decreased by 23%. Absolute brain weights were decreased by 6%, and relative spleen and thymus weights were decreased by 15 and 41%, respectively. Relative brain weights were increased by 16% (Table 0-16). All absolute and relative organ weights in the 0.0001 and 0.0004% males were comparable to controls. Incidental gross findings at necropsy consisted of dilated kidneys, a discoloration on a mammary gland, and masses and a nodule on the thymus (Table 0-17).

In the 0.0015% females, terminal body weights decreased by 26%. Absolute brain weights were decreased by 7%, and relative spleen and thymus weights were decreased by 17 and 42%, respectively. Relative brain weights were increased by 17% (Table 0-18). All weights in the 0.0001 and 0.0004% females were comparable to controls. Incidental gross findings at necropsy consisted of dilated kidneys and a small spleen (Table 0-19).

Histopathologic examination was not performed on these tissues.

F₀ Thyroid Hormone Analysis

TSH levels in the 0.0004% and 0.0015% males increased by 126% and 510%, respectively. T4 levels decreased by 46% in the 0.0004% males and by 78% in the 0.0015% males. TSH levels in the 0.0004% and 0.0015% females increased by 91% and 476%, respectively. T4 levels decreased

by 52% in the 0.0004% females and by 49% in the 0.0015% females (non-significant). T3 levels for all treated groups were comparable to controls (Table 0-21).

F₀ Adult Necropsy

In the $F_0 0.0004$ and 0.0015% males, the absolute thyroid/parathyroid weight was increased by 67% and 301%, respectively. In the 0.0015% males, terminal body weight was decreased by 19%, while relative brain (15%), right testis (23%) and seminal vesicle (16%) weights were all increased. In the F_0 females, the absolute thyroid/parathyroid weight was increased in the 0.0015% group by 373%, while relative thyroid/parathyroid weights were increased in the 0.0001, 0.0004, and 0.0015% animals (18, 34, and 443% respectively). In the 0.0015% females, terminal body weights (13%) and absolute adrenal (22%), brain (6%), kidney (12%), liver (10%), and spleen (15%) weights were all decreased. All other weights (absolute and relative) for both males and females were comparable to the controls (Tables 0-23 and 0-26).

The percentage of abnormal sperm increased from 0.3% in the controls to 1.0% in the 0.0001% males. The sperm per mg of cauda, total sperm per cauda, spermatids per mg of testis, and total spermatids per testis for all treated groups were comparable to controls (Table 0-24A). Computer-assisted sperm motion analysis using Hamilton Thorne Integrated Visual Optic System revealed no changes in mean path velocity, progressive velocity, track speed, lateral amplitude, beat frequency, straightness, linearity, or motile percentage of the treated groups as compared to the controls (Table 0-24B).

Enlarged thyroids/parathyroids were seen in 0.0004% males (7 of 20), 0.0015% males (20 of 20), 0.0004% females (1 of 20), and 0.0015% females (18 of 20). Incidental gross findings in the males at necropsy included a discoloration on adipose tissue, a kidney cyst, and a discoloration on a mammary gland. Incidental findings in the females at necropsy included an enlarged kidney, a discoloration on a mammary gland, enlarged mammary glands, an enlarged pituitary, an enlarged urinary bladder, and distended, enlarged or fluid-filled vagina/cervix/uterus. All findings except the enlarged thyroids/parathyroids were spread throughout the dose groups and the incidence and severity were not related to dose (Tables 0-22 and 0-25).

Microscopic findings are described in the Pathology Report (Appendix 6). Thyroid follicular cell hyperplasia was seen in 0.0015% males (10 of 10) and females (10 of 10) and in 0.0004% males (7 of 10) and females (1 of 10). In addition, a follicular cell adenoma was seen in one of the 0.0015% females with follicular cell hyperplasia. Degeneration of the germinal epithelium of the testes was seen in 0.0015% males (2 of 10), 0.0004% males (3 of 10), and 0.0001% males (3 of 10). Multinucleated giant cells were only seen in 1 of the 0.0015% males exhibiting degeneration of the germinal epithelium.

F₁ Growing Phase

Increased mortality among the F_1 offspring was observed during the growing phase (i.e., after weaning): 23/29 males and 20/26 females in the 0.0015% group were either found dead or sacrificed as moribund.

By PND 25, the 0.0015% pups appeared to be smaller than pups in other groups, with domed heads and misshapen snouts. Six male and eight female pups had been found dead and 17 males and 12 females had been sacrificed as moribund (Table 1A-2). During necropsy of these unscheduled deaths, a delay in eruption of teeth was noted. The upper and lower jaws were evaluated microscopically. Changes were seen which seemed to represent damage (depletion and vacuolation) to the odontoblasts and ameloblasts, resulting in a delay in cellular maturation and subsequent tooth eruption. Tissues as examined, although not normal, seemed to be progressing toward normal, in spite of the delayed tooth eruption.

Because of the high level of mortality, the remainder of the 0.0015% pups were removed from the study and euthanized, and the growing phase and F_1 cohabitation were conducted with only three groups: control, 0.0001%, and 0.0004%.

There were no changes in male or female body weights during the F₁ growing phase (Table 1A-1).

Clinical signs noted during the growing phase included abrasions and alopecia. The incidence of these observations was low (0-17%), and was not considered to be treatment-related (Appendix Tables A1-2A and A1-2B). With the exception of the high-dose animals discussed above, there was no mortality seen during the growing phase (Table 1A-2).

Propylthiouracil

F₁ Cohabitation

Mean body weights for all treated males and females were comparable to controls (Tables 1-1A and 1-1B).

All feed consumption values were comparable to controls when examined as g/kg body weight/day (Table 1-2A). When examined as g/animal/day, the feed consumption for 0.0001 % males decreased 8% during Week 4 (Table 1-2B). With the exception of lactating females, all water consumption values were comparable to controls when examined as either g/kg body weight/day or g/animal/day (Tables 1-3A or 1-3B).

Clinical signs noted during this portion of the study included abrasions, alopecia, swelling, a small stationary tissue mass, and an ulceration. The incidence of these observations was low to moderate (0-30%), and was not considered to be treatment-related (Appendix Tables A1-7A and A1-7B).

The following changes were observed in the reproductive data for the F₁ Cohabitation:

#	Male anogenital distance (AGD) in the 0.0001 and 0.0004% pups was decreased by 8% and 7% respectively. Male AGD/Pup Weight Ratio in the 0.0004% pups was decreased by 8% (Table 1-10).
#	Feed consumption in lactating dams was decreased by 11-12% on PND 4-11 for 0.0001% dams and by 9% on PND 18-21 for 0.0004% dams when examined as g/animal/day (Table 1-7B).
#	Water consumption in lactating dams was decreased by 10-16% on PND 1-14 for 0.0001% dams and by 12% on PND 4-7 for 0.0004% dams when examined as g/animal/day (Table 1-8B).

Vaginal cytology was performed on F_1 dams for 14 days after the last F_2 litters. No changes were revealed in the number of females with regular cycles, cycle length, number of cycles, or number of cycling females across the dose groups as compared to the control females. Treated females did not differ from the control females in the relative amount of time spent in estrous stages (Table 1-19).

Mortality was observed in one F_1 animal. One control male was found dead on SD 67 of the F_1 cohabitation. The animal appeared normal prior to death (Table 1-26).

F₂ PND 21 Necropsy

In the 0.0001% males, the absolute spleen weight was increased by 14%, and the relative spleen weight was increased by 12%. All weights in the 0.0004% males were comparable to controls (Table 1-16). The only gross finding at necropsy was an enlarged liver in one control male (Table 1-15).

In the 0.0004% females, absolute and relative thymus weights were decreased by 9%. All weights in the 0.0001% females were comparable to controls (Table 1-18). There were no gross findings at necropsy (Table 1-17).

Histopathologic examination was not performed on these tissues.

<u>F₁ Thyroid Hormone Analysis</u>

TSH levels in the 0.0004% males increased by 172%. T4 levels in the 0.0004% males decreased by 61%. TSH levels in the 0.0004% females increased by 144%. T4 levels in the 0.0004% females decreased by 59%. T3 levels for all treated groups were comparable to controls (Table 1-20).

F₁ Adult Necropsy

Absolute thyroid/parathyroid weights increased by 80% in the 0.0004% males. Relative thyroid/parathyroid weights in the 0.0001 and 0.0004% males increased by 26 and 84%, respectively. Absolute and relative thyroid/parathyroid weights increased by 72 and 74%, respectively, in the 0.0004% females. All other weights (absolute and relative) for both males and females were comparable to the controls (Tables 1-22 and 1-25).

Computer-assisted sperm motion analysis using Hamilton Thorne Integrated Visual Optic System revealed no changes in mean path velocity, progressive velocity, track speed, lateral amplitude, beat frequency, straightness, linearity, or motile percentage of the treated groups as compared to the control (Table 1-23B). The total sperm per cauda, sperm per mg of cauda, spermatids per mg of testis, total spermatids per testis, and percent of abnormal sperm were also all comparable to controls (Table 1-23A).

The only gross finding seen in a male at necropsy was a distended, red urinary bladder in one 0.0001% animal (Table 1-21). There were no gross findings in the females at necropsy (Table 1-24).

Microscopic findings are described in the Pathology Report (Appendix 6). Thyroid follicular cell hyperplasia was seen in one 0.0004 % male. Degeneration of the germinal epithelium of the testes was seen in one 0.0001 % male and one 0.0004 % male. There were no treatment-related microscopic changes in any of the F_1 females evaluated (Appendix 6).

DISCUSSION

In this two-generation study, propylthiouracil (PTU) was administered to male and female Sprague-Dawley rats in the drinking water at dose levels of 0.0001, 0.0004, or 0.0015 % (w/v). The corresponding dose levels were 0.1, 0.2 to 0.5, and 0.9 to 1.8 mg/kg/day, respectively. The F_0 generation was exposed to PTU only through their drinking water; the F_1 generation was exposed during gestation and lactation and subsequently through the drinking water; and the F_2 pups were exposed during gestation and lactation. Each generation was evaluated for general and reproductive/developmental toxicity endpoints.

In the F_0 males and females, body weights were decreased at 0.0015% but were comparable to controls at 0.0001 and 0.0004%. This decrease in body weight was previously observed by O'Connor *et al.* (1999) in males following 15 doses of PTU at 10 mg/kg. A similar effect was not seen in females following five doses. The body weight loss noted in the 0.0015% males and females was accompanied by decreased food and water consumption. Comparable decreases in body weight and food and water consumption were seen in lactating F_0 dams at 0.0015% and, to a much lesser extent, at 0.0001%. In general, less remarkable changes in body weight, food consumption, and water consumption were noted in the 0.0004% and, sporadically, the 0.0001% groups at some time points, indicating mild to moderate general toxicity at these doses.

Changes in estrous cyclicity were observed in the F_0 females at 0.0015% but not at the lower dose levels. These changes consisted of a decrease in the number of females with a regular cycle and changes in the amount of time spent in the various estrous stages. These changes did not affect female fertility, as no decrease in pregnancy index was noted among these animals.

Even though fertility was unaffected in the F_0 parents, there was a decrease in the number of female and total F_1 pups at 0.0015%. F_1 pup survival at this dose level was comparable through PND 21, although a marked decrease in male and female pup body weights was observed on PND 14 and became severe by PND 21. A high level of mortality was observed in these animals after weaning. By PND 25 the 0.0015% pups were noticeably smaller with domed heads and misshapen snouts. During the PND 21 necropsy a delay in eruption of the teeth was noted and the jaws, when evaluated microscopically, revealed depletion and vacuolization of the odontoblasts and ameloblasts, resulting in a delay in cellular maturation and subsequent tooth eruption. Tissues examined at PND

21, although not normal, seemed to be progressing toward normal, in spite of the delayed tooth eruption. Also noted at PND 21 were decreases in relative spleen, thymus, and brain weights and absolute brain weights in the 0.0015% males and females. These data reflect the overall diminished growth that was observed in these animals.

Due to the increased mortality observed among the F_1 juveniles at 0.0015%, surviving animals in this group were removed from study, and the remainder of the study was conducted using only 0, 0.0001, and 0.0004% dose levels.

In the F_1 offspring there were delays in eye opening (0.0015 %), preputial separation (0.0004 %), and vaginal opening (0.0004 %). No animals could be evaluated at 0.0015% for preputial separation and vaginal opening due to mortality. Preputial separation was delayed 2.0 days from 42.7 days in controls to 44.7 days at 0.0004%, and vaginal opening was delayed 1.4 days from 32.4 days in controls to 33.8 days at 0.0004 %. Marty *et al.* (2001) confirmed a delay in preputial separation in males dosed at 240 mg/kg/day from 44.4 days in controls to greater than 50 days in treated animals. Marty *et al.* (1999) confirmed that vaginal opening was delayed in females dosed at 240/mg/kg/day to 34.2 days from 32.3 or 33.5 days in controls. Wilen *et al.* (1981) also noted a delay in vaginal opening at 0.1% in immature rats fed PTU from weaning through the day of vaginal opening.

Delayed vaginal opening indicates delayed pubertal onset in juvenile female rats (Marty, 1999) and may occur with compounds that cause endocrine disruption or other reproductive toxicity. However, decreases in body weight may also delay vaginal opening, thereby making it more difficult to attribute delayed vaginal opening to reproductive/developmental toxicity or endocrine disruption (Marty, 1999). For compounds that have not been as thoroughly evaluated as PTU, for example, it is important to evaluate the significance of delayed vaginal opening in context with other observations of toxicity.

The observed delays in preputial separation and vaginal opening did not affect the subsequent fertility of the F_1 animals; no decreases in pregnancy index were noted among these animals during the F_1 Cohabitation. In contrast to the F_0 Cohabitation, no decreases in number of pups or pup weights were observed in the F_1 Cohabitation. However, decreased anogenital distance was noted in the 0.0004% and 0.0001% F_2 male pups, which was not observed in the F_1 male pups.

The AGD/pup weight ratio was also decreased in the 0.0004% pups. These observations are a definitive indicator of male reproductive toxicity at 0.0004% and possibly 0.0001%. Moreover, the decrease in AGD that was only seen in the F₂ pups supports a two-generation study design.

As expected, TSH levels were increased and T4 levels were decreased in the PTU-treated F_0 and F_1 animals. The TSH and T4 levels were correlated with the thyroid weights, discussed below, by being most affected at 0.0015%, less in the females, and more in the F_1 males and females. T3 levels were not affected by PTU administration. Analysis of T3 levels may be useful when evaluating other compounds, although it was not essential here.

In the PTU-treated F_0 and F_1 animals there were dose-related increases in absolute and relative thyroid weights. At 0.0015% the thyroid weight increases were 3 to 4 times the control weight, while at 0.0004% the increases were much less remarkable. The observed changes in thyroid weight were less severe in females than males and more severe in both sexes in the F_1 than the F_0 adults. At 0.0001% there was an increase in relative thyroid weight in the F_1 males and F_0 females. O'Connor *et al.* (1999) concluded that relative thyroid weight was a more sensitive indicator of thyroid toxicity than absolute thyroid weight: Relative thyroid weight removes the potentially confounding effect of body weight are observed. Also of interest is the observation of increased relative pituitary weights in the 0.0015% and 0.0004% F_0 males. The significance of this particular observation is unclear at this time, but may reflect increased demand on the pituitary for TRH.

At the F_0 gross necropsy, enlarged thyroids/parathyroids were seen in most 0.0015% animals and in 7/20 and 1/20 0.0004% males and females, respectively. No changes were noted in the F_1 gross necropsy findings.

Histopathology findings in the thyroid and testes were generally consistent between the F_0 and F_1 animals. Thyroid follicular cell hyperplasia was seen in all 0.0015% F_0 animals and in 7/10 0.0004% F_0 males, but in no F_1 females. In the 0.0004% animals, only 1/10 F_1 males was noted with thyroid follicular cell hyperplasia. The paucity of microscopic findings in the F_1 animals was surprising in light of the changes seen in thyroid weight and thyroid hormones and the microscopic findings are in the F_0 animals. The pathology, thyroid hormone, and thyroid weight findings are in

general agreement with those of O'Connor *et al.* (1999), Marty *et al.* (1999), and Marty *et al.* (2001). O'Connor *et al.* (1999) observed these effects in females at 10 mg/kg/day when treated for five days and in males at 0.25 mg/kg/day when treated for 15 days. Marty *et al.* (1999) and Marty *et al.* (2001) treated females for 20 days at 240 mg/kg/day and males for 30 days at 240 mg/kg/day and observed similar findings. However, the belief that histopathology of the thyroid is the most sensitive indicator of thyroid toxicity (O'Connor, 1999) is not supported by the data presented here.

Degeneration of the germinal epithelium of the testes was also noted in all available treated male groups in the F_0 and F_1 generations. Degeneration was noted in 2/10, 3/10, and 3/10 F_0 males at 0.0015, 0.0004 and 0.0001%, respectively. In the F_1 males, degeneration was noted in 1/10 males at 0.0004 and 0.0001%.

Stoker *et al.* (2000) concluded that the induction of hypothyroidism by administration of PTU in polychlorinated biphenyls from birth to weaning increased testis size, number of Sertoli cells and Leydig cells, and daily sperm production in the adult. Other reports cited by Stoker *et al.* (2000) show that the critical period for this effect is the first two weeks after birth with no effects observed if PTU treatment was started during late lactation. Whether these results are attributable to the PTU or the PCBs is unknown. Regardless, the results in our study are in general agreement with these authors: There was no difference noted in the sperm parameters in either the F_0 males of the F_1 males.

Based on the findings of this two generation study with one litter per generation, propylthiouracil is considered to be a reproductive/developmental toxicant in females at dose levels greater than or equal to 0.0004% based on decreased total pups per litter, delayed vaginal opening, delayed eye opening, and changes in estrous cyclicity. PTU is considered a male reproductive toxicant at dose levels greater than or equal to 0.0001% based on delayed eye opening, delayed preputial separation, degeneration of the germinal epithelium of the testes, and decreased anogenital distance. Propylthiouracil is also considered a general toxicant at 0.0015 and 0.0004% based upon decreased body weight and food consumption (mostly at 0.0015%) and increased thyroid weights, changes in thyroid hormone levels, and/or thyroid follicular cell hyperplasia at 0.0004 and 0.0015%.

REFERENCES

Armitage, P. (1971). Statistical Methods in Medical Research. John Wiley & Sons, New York.

Conover, W.J. (1971). Practical Nonparametric Statistics. John Wiley & Sons, New York.

Dunn, O.J. (1964). Multiple Comparisons Using Rank Sums. Technometrics 6 241-252.

Dunnett, W. (1955). A Multiple Comparison Procedure for Comparing Several Treatments with a Control. *JASA*, 50:1096-1211.

Health Effects Test Guidelines, OPPTS 870.3800, Reproduction and Fertility Effects, EPA 712-C-98-208.

Jonckheere, A.R. (1954). A distribution-free K-sample Test Against Ordered Alternatives. *Biometrika*, 41:133-145.

Kruskal, W.H. and Wallis, W.A. (1952). Use of Ranks in one-criterion Variance Analysis. *JASA*, 47:583-621.

Marty, M.S., Crissman J.W. and Carney, E.W. (2001). Evaluation of the Male Pubertal Assay's Ability to Detect Thyroid Inhibitors and Dopaminergic Agents. *Toxicol Sci*, 60(1):63-76.

Marty, M.S., Crissman J.W. and Carney, E.W. (1999). Evaluation of the EDSTAC female pubertal assay in CD rats using 17β -estradiol, steroid biosynthesis inhibitors, and a thyroid inhibitor. *Toxicol Sci*, 52(2):269-77.

Morrison, D.F. (1976). Multivariate Statistical Methods. McGraw Hill, New York.

Neter, J. and Wasserman, W. (1974). Applied Linear Statistical Models. Richard Irwin, Inc., Homewood, IL.

O'Connor, J.C., Frame, S.R., Davis, L.G. and Cook, J.C. (1999). Detection of thyroid toxicants in a tier I screening battery and alterations in thyroid endpoints over 28 days of exposure. *Toxicol Sci*, 51(1):54-70.

Shirley, E. (1977). A non-parametric equivalent of William's test for contrasting increasing dose levels of a treatment. *Biometrics*, 33:386-389.

Stoker, T.E, Parks, L.G., Gray, L.E. and Cooper, R.L. (2000). Endocrine-Disrupting Chemicals: Prepubertal Exposures and Effects on Sexual Maturation and Thyroid Function in the Male Rat. A Focus on the EDSTAC Recommendations. *Critical Reviews in Toxicology*, 30(2):197-252.

Wilen, R., Bastomsky, C.H. and Naftolin, F. (1981). Control of Puberty in Female Rats: the Effects of PTU-Induced Hypothyroidism and Systemic Undernutrition. *Pediatr Res*, 15:169-171.

Williams, D.A. (1986). A Note on Shirley's Nonparametric Test for Comparing Several Dose Levels with a Zero-Dose Control. *Biometrics*, 42:183-186.

	DOSE GROUPS ^a									
WEEK OF STUDY	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND (b)					
1	260.5 ± 2.55 (20)	261.3 ± 2.70 (20)	262.3 ± 3.21 (20)	259.1 ± 3.45 (20)	P=0.833					
2	312.7 ± 3.57 (20)	315.1 ± 3.87 (20)	314.8 ± 4.44 (20)	312.2 ± 4.47 (20)	P=0.767					
3	355.5 ± 5.02 (20)	357.9 ± 5.34 (20)	356.0 ± 5.71 (20)	*335.1 ± 5.17 (20)	P=0.003					
4	391.9 ± 6.23 (20)	391.5 ± 6.01 (20)	388.3 ± 6.57 (20)	*342.2 ± 5.93 (20)	P<0.001					
5	419.9 ± 7.11 (20)	424.2 ± 6.90 (20)	415.8 ± 7.58 (20)	*351.2 ± 6.25 (20)	P<0.001					
6	439.8 ± 8.03 (20)	448.1 ± 7.90 (20)	437.0 ± 8.74 (20)	*352.7 ± 6.76 (20)	P<0.001					
7	469.2 ± 9.23 (20)	470.8 ± 8.88 (20)	459.1 ± 8.81 (20)	*368.9 ± 7.43 (20)	P<0.001					
8	489.2 ± 10.00 (20)	488.9 ± 9.79 (20)	478.8 ± 9.86 (20)	*381.2 ± 8.00 (20)	P<0.001					
9	504.3 ± 10.59 (20)	506.1 ± 10.05 (20)	491.2 ± 10.12 (20)	*390.3 ± 8.71 (20)	P<0.001					
10	518.6 ± 11.14 (20)	522.0 ± 10.18 (20)	508.0 ± 10.80 (20)	*405.5 ± 9.44 (20)	P<0.001					
11	532.7 ± 11.62 (20)	532.1 ± 13.26 (20)	523.4 ± 11.54 (20)	*414.3 ± 10.00 (20)	P<0.001					
12	539.2 ± 11.77 (20)	538.4 ± 11.59 (20)	528.3 ± 11.82 (20)	*417.2 ± 9.84 (20)	P<0.001					
13	548.0 ± 12.58 (20)	552.5 ± 10.86 (20)	541.2 ± 12.18 (20)	*429.0 ± 10.32 (20)	P<0.001					
14	559.6 ± 13.20 (20)	559.2 ± 15.32 (20)	553.3 ± 12.33 (20)	*439.8 ± 10.40 (20)	P<0.001					
15	574.1 ± 13.85 (20)	569.6 ± 18.11 (20)	566.3 ± 13.32 (20)	*450.4 ± 10.78 (20)	P<0.001					
16	584.5 ± 13.82 (20)	580.0 ± 18.27 (20)	573.3 ± 13.88 (20)	*460.8 ± 11.27 (20)	P<0.001					
17	598.6 ± 14.32 (20)	594.5 ± 16.74 (20)	578.3 ± 14.53 (20)	*472.4 ± 11.93 (20)	P<0.001					
18	611.0 ± 15.02 (20)	615.5 ± 11.98 (19)	588.9 ± 13.87 (20)	*483.2 ± 12.34 (20)	P<0.001					
19	619.1 ± 15.50 (20)	626.3 ± 12.64 (19)	596.4 ± 13.96 (20)	*494.3 ± 12.80 (20)	P<0.001					
20	623.8 ± 17.62 (20)	637.6 ± 13.39 (19)	603.2 ± 14.42 (20)	*506.8 ± 12.92 (20)	P<0.001					

TABLE 0-1A F_0 : SUMMARY OF MALE BODY WEIGHTS (GRAMS) TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

		DOSE GI	ROUPS ^a		
WEEK OF STUDY	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND (b)
1	192.3 ± 3.42 (20)	188.9 ± 2.91 (20)	191.8 ± 3.28 (20)	190.3 ± 2.78 (20)	P=0.693
2	215.8 ± 4.10 (20)	213.1 ± 3.63 (20)	212.9 ± 3.88 (20)	212.4 ± 3.73 (20)	P=0.556
3	232.5 ± 4.72 (20)	231.6 ± 4.14 (20)	230.4 ± 4.38 (20)	227.0 ± 3.91 (20)	P=0.422
4	248.1 ± 5.37 (20)	246.3 ± 4.53 (20)	243.4 ± 4.96 (20)	234.5 ± 4.13 (20)	P=0.033
5	261.5 ± 6.15 (20)	258.6 ± 4.83 (20)	256.4 ± 5.24 (20)	244.2 ± 4.74 (20)	P=0.036
6	269.9 ± 5.97 (20)	275.8 ± 5.34 (20)	256.0 ± 5.66 (20)	*244.1 ± 4.58 (20)	P<0.001
7	279.4 ± 6.73 (20)	279.1 ± 5.25 (20)	275.3 ± 5.62 (20)	*255.8 ± 5.01 (20)	P=0.006
8	283.0 ± 7.55 (20)	288.2 ± 5.78 (20)	284.5 ± 6.61 (20)	261.5 ± 5.26 (20)	P=0.017
9	295.3 ± 7.50 (20)	293.3 ± 5.62 (20)	288.1 ± 6.50 (20)	*266.3 ± 5.26 (20)	P=0.002
10	300.6 ± 8.02 (20)	298.3 ± 5.65 (20)	293.6 ± 6.40 (20)	*273.2 ± 5.37 (20)	P=0.006
11	304.7 ± 8.68 (20)	302.7 ± 5.90 (20)	296.8 ± 6.38 (20)	*275.0 ± 5.71 (20)	P=0.004
12	324.7 ± 8.11 (20)	319.1 ± 5.81 (20)	318.3 ± 6.72 (20)	*288.1 ± 6.26 (20)	P<0.001
13	348.4 ± 7.99 (20)	340.1 ± 6.58 (20)	335.1 ± 9.35 (20)	*296.9 ± 7.73 (20)	P<0.001
14	398.1 ± 9.86 (20)	386.4 ± 9.59 (20)	396.5 ± 11.10 (20)	*336.5 ± 7.30 (20)	P<0.001
15	350.2 ± 8.19 (20)	333.3 ± 7.11 (20)	333.1 ± 7.06 (20)	*290.4 ± 5.94 (19)	P<0.001
16	367.2 ± 8.48 (20)	*346.7 ± 7.82 (20)	353.4 ± 7.08 (20)	*306.4 ± 4.94 (19)	P<0.001
17	341.1 ± 8.35 (20)	340.7 ± 7.78 (20)	347.4 ± 5.54 (20)	*314.6 ± 5.22 (18)	P=0.043
18	326.4 ± 8.21 (20)	316.8 ± 6.30 (20)	313.0 ± 5.31 (20)	*292.4 ± 6.21 (18)	P=0.002
19	335.2 ± 9.12 (20)	325.8 ± 5.80 (20)	321.8 ± 6.35 (20)	*293.6 ± 6.36 (18)	P<0.001
20	346.0 ± 9.83 (20)	333.4 ± 6.14 (20)	329.6 ± 7.20 (20)	*300.9 ± 7.42 (18)	P<0.001

TABLE 0-1B F_0 : SUMMARY OF FEMALE BODY WEIGHTS (GRAMS) TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

DOSE GROUPS ^a										
WEEK OF STUDY	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND (b)					
		MALE								
1	101.0 ± 1.57 (20)	99.1 ± 1.21 (20)	100.3 ± 1.25 (20)	98.6 ± 1.11 (20)	P=0.336					
2	83.9 ± 1.09 (20)	84.2 ± 0.99 (20)	84.6 ± 0.92 (20)	*74.3 ± 1.14 (20)	P<0.001					
3	77.0 ± 1.09 (20)	76.3 ± 0.95 (20)	75.7 ± 0.89 (20)	*63.8 ± 0.92 (20)	P<0.001					
4	75.5 ± 0.77 (20)	75.8 ± 1.00 (20)	75.3 ± 0.91 (20)	*64.4 ± 1.02 (20)	P<0.001					
5	74.2 ± 0.99 (20)	72.5 ± 0.75 (20)	74.0 ± 1.14 (20)	*64.2 ± 1.21 (20)	P<0.001					
6	72.0 ± 0.76 (20)	*69.2 ± 0.92 (20)	71.0 ± 1.02 (20)	*58.8 ± 1.02 (20)	P<0.001					
7	66.2 ± 0.73 (20)	*63.2 ± 0.95 (20)	66.4 ± 0.88 (20)	*57.8 ± 0.95 (20)	P<0.001					
8	60.6 ± 0.67 (20)	61.6 ± 0.92 (20)	62.0 ± 0.73 (20)	*56.7 ± 1.08 (20)	P=0.045					
9	56.2 ± 0.52 (20)	56.0 ± 0.53 (20)	57.9 ± 0.69 (20)	53.3 ± 0.88 (20)	P=0.239					
10	55.3 ± 0.50 (20)	53.3 ± 1.08 (20)	53.6 ± 0.63 (20)	*50.9 ± 0.84 (20)	P<0.001					
13	57.0 ± 1.01 (20)	*50.5 ± 2.43 (20)	*50.9 ± 2.00 (20)	*52.2 ± 1.51 (20)	P=0.017					
14	54.3 ± 0.93 (20)	52.1 ± 1.04 (20)	52.6 ± 0.97 (19)	53.7 ± 1.07 (20)	P=0.827					
15	51.5 ± 0.70 (20)	52.9 ± 2.69 (19)	50.4 ± 0.70 (20)	53.0 ± 0.80 (20)	P=0.372					
16	53.6 ± 0.99 (20)	53.9 ± 3.45 (19)	48.3 ± 3.24 (20)	52.7 ± 0.76 (20)	P=0.753					
17	50.6 ± 1.60 (20)	*47.0 ± 1.39 (19)	48.6 ± 1.82 (20)	50.7 ± 1.56 (20)	P=0.478					
18	50.5 ± 0.89 (20)	49.8 ± 1.20 (19)	50.2 ± 0.88 (20)	54.0 ± 1.20 (20)	P=0.034					
19	47.2 ± 2.02 (20)	45.6 ± 1.85 (19)	47.7 ± 0.61 (20)	50.6 ± 0.87 (20)	P=0.062					
		FEN	IALE							
1	96.7 ± 1.59 (20)	98.7 ± 1.93 (20)	95.9 ± 1.78 (20)	93.0 ± 2.39 (20)	P=0.279					
2	87.4 ± 2.94 (20)	91.2 ± 1.31 (20)	89.9 ± 1.51 (20)	*84.4 ± 1.95 (20)	P=0.006					
3	87.7 ± 1.99 (19)	86.8 ± 1.18 (20)	85.2 ± 1.25 (20)	*75.9 ± 1.76 (20)	P<0.001					
4	85.3 ± 2.68 (20)	85.6 ± 1.61 (20)	85.7 ± 1.39 (20)	*73.7 ± 1.15 (20)	P<0.001					
5	86.4 ± 2.36 (20)	83.1 ± 1.32 (20)	90.6 ± 1.24 (20)	*73.8 ± 1.62 (20)	P=0.012					
6	85.0 ± 2.26 (20)	85.3 ± 1.40 (20)	81.2 ± 1.32 (20)	*78.1 ± 6.00 (20)	P<0.001					
7	76.0 ± 3.73 (19)	77.8 ± 0.87 (20)	75.2 ± 1.01 (20)	*67.0 ± 2.27 (20)	P<0.001					
8	77.4 ± 4.17 (20)	72.1 ± 1.36 (20)	69.5 ± 1.31 (20)	*64.0 ± 1.42 (19)	P<0.001					
9	64.0 ± 1.70 (19)	62.6 ± 1.23 (20)	63.8 ± 1.23 (20)	*58.4 ± 1.47 (19)	P=0.037					
10	63.7 ± 2.90 (20)	62.7 ± 1.36 (20)	61.0 ± 1.62 (20)	*56.7 ± 2.46 (20)	P<0.001					
13	65.1 ± 3.96 (20)	64.9 ± 3.17 (19)	71.4 ± 2.38 (20)	59.5 ± 2.97 (20)	P=0.130					
18	71.6 ± 4.26 (20)	81.3 ± 4.59 (18)	82.3 ± 4.13 (20)	60.3 ± 6.03 (18)	P=0.254					
19	72.5 ± 2.38 (20)	73.1 ± 2.66 (20)	70.7 ± 2.02 (20)	72.8 ± 6.57 (18)	P=0.035					

	TABLE 0-2A																		
			F ₀ :	SUMMARY	C OF	DAILY	FEED	CONS	UMPTIC	ON (G/KG	BODY	WEI	GHT/DAY)					
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPYLI	HIOUR	ACIL	WHEN	ADMINISTE	ERED	то	SPRAGUE-	-DAWLEY	RATS	IN THE	DRINKING	G WATE	R

a Mean \pm standard error (number of animals).

DOSE GROUPS ^a										
WEEK OF STUDY	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND (b)					
		<u>M</u>								
1	26.3 ± 0.43 (20)	25.9 ± 0.43 (20)	26.3 ± 0.50 (20)	25.5 ± 0.45 (20)	P=0.219					
2	26.3 ± 0.54 (20)	26.5 ± 0.51 (20)	26.7 ± 0.56 (20)	*23.2 ± 0.51 (20)	P<0.001					
3	27.4 ± 0.63 (20)	27.3 ± 0.59 (20)	27.0 ± 0.61 (20)	*21.4 ± 0.53 (20)	P<0.001					
4	29.6 ± 0.62 (20)	29.7 ± 0.64 (20)	29.3 ± 0.67 (20)	*22.0 ± 0.53 (20)	P<0.001					
5	31.2 ± 0.69 (20)	30.8 ± 0.68 (20)	30.7 ± 0.68 (20)	*22.6 ± 0.64 (20)	P<0.001					
6	31.7 ± 0.73 (20)	31.0 ± 0.69 (20)	31.0 ± 0.69 (20)	*20.7 ± 0.52 (20)	P<0.001					
7	31.1 ± 0.76 (20)	29.8 ± 0.77 (20)	30.5 ± 0.73 (20)	*21.3 ± 0.54 (20)	P<0.001					
8	29.7 ± 0.73 (20)	30.0 ± 0.59 (20)	29.7 ± 0.65 (20)	*21.6 ± 0.58 (20)	P<0.001					
9	28.3 ± 0.66 (20)	28.3 ± 0.54 (20)	28.4 ± 0.67 (20)	*20.8 ± 0.64 (20)	P<0.001					
10	28.7 ± 0.67 (20)	27.8 ± 0.80 (20)	27.2 ± 0.66 (20)	*20.7 ± 0.64 (20)	P<0.001					
13	31.2 ± 0.80 (20)	28.1 ± 1.48 (20)	*27.4 ± 1.18 (20)	*22.3 ± 0.78 (20)	P<0.001					
14	30.3 ± 0.79 (20)	29.1 ± 0.95 (20)	29.2 ± 0.94 (19)	*23.6 ± 0.75 (20)	P<0.001					
15	29.5 ± 0.65 (20)	29.4 ± 0.58 (19)	28.6 ± 0.83 (20)	*23.9 ± 0.67 (20)	P<0.001					
16	31.3 ± 0.83 (20)	$30.3 \pm 1.03 (19)$	27.8 ± 2.06 (20)	*24.3 ± 0.68 (20)	P<0.001					
17	30.2 ± 1.15 (20)	28.5 ± 0.92 (19)	27.8 ± 0.88 (20)	*24.0 ± 1.03 (20)	P<0.001					
18	30.8 ± 0.77 (20)	$30.6 \pm 0.82 (19)$	29.5 ± 0.68 (20)	*26.1 ± 0.83 (20)	P<0.001					
19	29.3 ± 1.38 (20)	28.6 ± 1.32 (19)	28.4 ± 0.70 (20)	*25.0 ± 0.74 (20)	P<0.001					
		FEI	IALE							
1	18.6 ± 0.47 (20)	18.6 ± 0.39 (20)	18.4 ± 0.48 (20)	17.7 ± 0.54 (20)	P=0.310					
2	18.8 ± 0.69 (20)	19.4 ± 0.46 (20)	19.1 ± 0.46 (20)	17.9 ± 0.41 (20)	P=0.038					
3	20.4 ± 0.67 (19)	20.1 ± 0.45 (20)	19.6 ± 0.50 (20)	*17.2 ± 0.44 (20)	P<0.001					
4	21.1 ± 0.80 (20)	21.1 ± 0.57 (20)	20.9 ± 0.53 (20)	*17.3 ± 0.36 (20)	P<0.001					
5	22.5 ± 0.68 (20)	21.5 ± 0.56 (20)	23.2 ± 0.47 (20)	*18.0 ± 0.38 (20)	P<0.001					
6	22.9 ± 0.70 (20)	23.5 ± 0.51 (20)	*20.8 ± 0.51 (20)	$*19.0 \pm 1.42$ (20)	P<0.001					
7	21.1 ± 1.08 (19)	21.7 ± 0.45 (20)	20.7 ± 0.52 (20)	*17.1 ± 0.55 (20)	P<0.001					
8	21.8 ± 1.23 (20)	20.7 ± 0.45 (20)	19.7 ± 0.51 (20)	*16.7 ± 0.51 (19)	P<0.001					
9	19.0 ± 0.69 (19)	18.3 ± 0.45 (20)	18.3 ± 0.36 (20)	*15.5 ± 0.44 (19)	P<0.001					
10	19.2 ± 1.01 (20)	18.7 ± 0.46 (20)	17.8 ± 0.44 (20)	*15.5 ± 0.74 (20)	P<0.001					
13	22.7 ± 1.44 (20)	22.2 ± 1.26 (19)	23.7 ± 0.73 (20)	*17.6 ± 0.90 (20)	P=0.003					
18	23.4 ± 1.49 (20)	25.7 ± 1.41 (18)	25.7 ± 1.34 (20)	*17.6 ± 1.76 (18)	P=0.022					
19	24.3 ± 0.95 (20)	23.8 ± 0.90 (20)	22.8 ± 0.86 (20)	*21.3 ± 1.85 (18)	P<0.001					

	TABLE 0-2B																
	F_0 : SUMMARY OF DAILY FEED CONSUMPTION (G/ANIMAL/DAY)																
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF P	ROPYLTHIO	URACIL	WHEN	ADMINISTERED	то	SPRAGUE-	DAWLEY	RATS	IN TH	E DRINKI	IG WAT	ER

a Mean ± standard error (number of animals).

	DOSE GROUPS ^a										
WEEK OF STUDY	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND (b)						
	MALE										
1	121.9 ± 3.03 (20)	125.6 ± 4.36 (20)	127.8 ± 3.57 (20)	120.1 ± 2.67 (20)	P=0.830						
2	106.2 ± 3.17 (20)	109.4 ± 6.00 (20)	109.0 ± 4.47 (20)	96.7 ± 2.89 (20)	P=0.200						
3	101.0 ± 4.20 (20)	98.9 ± 5.01 (20)	99.7 ± 4.96 (20)	90.6 ± 2.94 (19)	P=0.080						
4	87.5 ± 3.38 (20)	82.5 ± 2.42 (20)	89.1 ± 3.70 (20)	84.8 ± 3.15 (20)	P=0.830						
5	86.8 ± 3.49 (20)	79.0 ± 2.78 (20)	83.7 ± 2.41 (20)	81.3 ± 3.47 (20)	P=0.643						
6	76.9 ± 3.54 (19)	71.0 ± 2.53 (20)	80.3 ± 3.34 (20)	79.8 ± 3.65 (20)	P=0.611						
7	75.3 ± 3.20 (20)	68.1 ± 2.21 (19)	76.8 ± 3.05 (20)	75.8 ± 3.44 (20)	P=0.420						
8	73.2 ± 3.09 (20)	74.7 ± 7.27 (20)	73.9 ± 3.76 (20)	$74.7 \pm 4.06 (20)$	P=0.803						
9	70.5 ± 3.60 (20)	67.0 ± 3.68 (20)	71.9 ± 3.51 (20)	73.1 ± 3.75 (20)	P=0.476						
10	65.9 ± 2.75 (20)	63.8 ± 4.01 (20)	64.4 ± 3.29 (20)	66.7 ± 2.87 (20)	P=0.757						
13	64.9 ± 3.05 (19)	63.6 ± 8.30 (20)	62.7 ± 4.05 (19)	64.5 ± 3.52 (20)	P=0.911						
14	60.6 ± 3.29 (20)	60.0 ± 5.49 (20)	59.6 ± 2.97 (20)	63.7 ± 4.03 (20)	P=0.486						
15	58.0 ± 3.43 (20)	59.1 ± 7.89 (20)	54.7 ± 2.32 (20)	56.8 ± 2.75 (20)	P=0.790						
16	58.9 ± 2.76 (20)	52.4 ± 2.33 (19)	57.2 ± 3.23 (19)	$66.1 \pm 4.16 (18)$	P=0.244						
17	64.4 ± 4.24 (20)	52.7 ± 2.78 (19)	55.5 ± 3.48 (20)	63.8 ± 3.00 (20)	P=0.473						
18	58.1 ± 3.23 (20)	51.4 ± 2.42 (19)	56.6 ± 2.96 (20)	59.2 ± 2.89 (20)	P=0.376						
19	53.7 ± 3.76 (20)	51.0 ± 2.40 (19)	56.1 ± 2.57 (20)	58.8 ± 2.62 (20)	P=0.115						
		<u>F.F.D</u>	IALE								
1	122 7 + 4 55 (20)	1294 + 445(20)	1187 + 231(20)	113 6 + 5 32 (20)	P=0 072						
2	107.0 + 5.13 (20)	113.0 + 3.10 (20)	109.3 + 2.59 (20)	105.5 + 4.54 (20)	P=0.371						
3	108.8 + 4.75 (20)	108.2 + 4.01 (20)	103.1 + 2.84 (20)	97.8 + 4.89 (20)	P=0.033						
4	100.1 + 3.87 (20)	100.4 + 3.64 (20)	99.4 + 2.53 (20)	92.0 + 3.82(20)	P=0.108						
5	93.8 ± 3.23 (20)	102.0 ± 4.16 (20)	104.5 ± 2.75 (20)	93.0 ± 4.40 (20)	P=0.973						
6	94.1 ± 3.05 (20)	99.0 ± 3.23 (20)	98.2 ± 3.04 (20)	90.5 ± 5.21 (20)	P=0.331						
7	86.7 ± 5.50 (20)	97.0 ± 3.77 (20)	88.9 ± 2.48 (20)	95.8 ± 10.04 (19)	P=0.436						
8	94.2 ± 4.69 (20)	95.7 ± 5.45 (20)	83.5 ± 2.48 (20)	85.4 ± 4.25 (20)	P=0.084						
9	84.4 ± 3.87 (20)	85.1 ± 2.97 (20)	81.1 ± 2.41 (20)	81.2 ± 3.89 (20)	P=0.315						
10	80.8 ± 3.08 (20)	$82.4 \pm 3.37 (20)$	73.8 ± 2.48 (20)	74.0 ± 3.87 (20)	P=0.028						
13	114.9 ± 5.95 (18)	122.7 ± 4.97 (20)	117.5 ± 7.94 (20)	110.0 ± 8.81 (20)	P=0.280						
18	112.9 ± 7.55 (20)	101.3 ± 4.98 (20)	*95.5 ± 3.27 (20)	*77.8 ± 5.31 (18)	P<0.001						
19	100.6 ± 6.62 (20)	95.0 ± 4.72 (19)	88.0 ± 2.77 (20)	87.9 ± 6.54 (18)	P=0.040						

TABLE 0-3A F₀: SUMMARY OF DAILY WATER CONSUMPTION (G/KG BODY WEIGHT/DAY) TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

	DOSE GROUPS ^a										
WEEK OF STUDY	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND (b)						
		MALE									
1	31.7 ± 0.86 (20)	32.8 ± 1.12 (20)	33.5 ± 1.08 (20)	31.1 ± 0.71 (20)	P=0.810						
2	$33.2 \pm 1.10 (20)$	34.3 ± 1.59 (20)	34.3 ± 1.54 (20)	30.1 ± 0.84 (20)	P=0.088						
3	35.9 ± 1.55 (20)	35.2 ± 1.51 (20)	35.4 ± 1.82 (20)	*30.2 ± 0.90 (19)	P=0.006						
4	34.2 ± 1.31 (20)	32.3 ± 1.07 (20)	34.5 ± 1.48 (20)	*28.8 ± 0.87 (20)	P=0.004						
5	36.3 ± 1.42 (20)	33.4 ± 1.07 (20)	34.6 ± 0.89 (20)	*28.3 ± 0.96 (20)	P<0.001						
6	33.7 ± 1.47 (19)	31.7 ± 1.15 (20)	34.8 ± 1.22 (20)	*27.9 ± 1.03 (20)	P=0.006						
7	35.2 ± 1.44 (20)	32.2 ± 1.03 (19)	35.2 ± 1.48 (20)	*27.7 ± 1.00 (20)	P=0.001						
8	35.6 ± 1.41 (20)	35.8 ± 2.78 (20)	35.2 ± 1.80 (20)	*28.1 ± 1.26 (20)	P<0.001						
9	35.4 ± 1.78 (20)	33.6 ± 1.52 (20)	35.1 ± 1.70 (20)	*28.2 ± 1.15 (20)	P=0.004						
10	34.0 ± 1.36 (20)	32.9 ± 1.62 (20)	32.6 ± 1.69 (20)	*26.7 ± 0.89 (20)	P<0.001						
13	35.3 ± 1.54 (19)	34.3 ± 3.74 (20)	33.4 ± 1.82 (19)	*27.5 ± 1.49 (20)	P=0.002						
14	33.6 ± 1.70 (20)	32.2 ± 1.64 (20)	32.8 ± 1.64 (20)	*27.6 ± 1.52 (20)	P=0.011						
15	32.9 ± 1.73 (20)	31.5 ± 2.03 (20)	30.7 ± 1.17 (20)	*25.3 ± 0.97 (20)	P<0.001						
16	34.1 ± 1.42 (20)	31.0 ± 1.14 (19)	$32.6 \pm 1.64 (19)$	29.8 ± 1.42 (18)	P=0.031						
17	37.7 ± 1.88 (20)	$*31.8 \pm 1.54$ (19)	*31.5 ± 1.59 (20)	*29.9 ± 1.48 (20)	P=0.002						
18	35.1 ± 1.78 (20)	$31.4 \pm 1.30 (19)$	33.0 ± 1.53 (20)	*28.2 ± 1.16 (20)	P=0.005						
19	33.1 ± 2.21 (20)	31.8 ± 1.43 (19)	33.2 ± 1.37 (20)	*28.6 ± 0.92 (20)	P=0.026						
		FEMALE									
1	23 6 + 0 93 (20)	$24.4 \pm 0.79.(20)$	22.7 ± 0.56 (20)	$21.6 \pm 1.00.(20)$	P-0 126						
2	23.0 ± 0.03 (20)	$24.4 \pm 0.75 (20)$ $24.1 \pm 0.77 (20)$	$22.7 \pm 0.50 (20)$ 23 2 + 0 61 (20)	$21.0 \pm 1.00 (20)$ 22 3 $\pm 0.86 (20)$	P=0.609						
3	25.0 ± 1.13 (20) 25.3 + 1.20 (20)	25.0 ± 0.97 (20)	$23.2 \pm 0.01 (20)$ 23.8 + 0.83 (20)	$22.3 \pm 0.00 (20)$	P=0.011						
4	24.8 ± 1.06 (20)	24.7 ± 0.93 (20)	24.2 ± 0.75 (20)	*21.5 + 0.95 (20)	P=0.010						
5	24.4 ± 0.93 (20)	26.4 ± 1.16 (20)	26.7 ± 0.69 (20)	22.6 ± 0.96 (20)	P=0.246						
6	25.4 ± 1.04 (20)	27.2 ± 0.93 (20)	25.0 ± 0.75 (20)	21.9 + 1.14 (20)	P=0.017						
7	24.1 + 1.57 (20)	27.0 ± 1.06 (20)	24.5 ± 0.85 (20)	24.1 + 2.23 (19)	P=0.065						
8	26.4 ± 1.12 (20)	27.7 ± 1.96 (20)	23.7 ± 0.76 (20)	$*22.2 \pm 1.02$ (20)	P=0.002						
9	24.9 ± 1.30 (20)	24.9 ± 0.89 (20)	23.2 ± 0.60 (20)	21.4 ± 0.86 (20)	P=0.024						
10	24.2 ± 1.05 (20)	24.5 ± 0.97 (20)	21.5 ± 0.68 (20)	*20.0 ± 0.92 (20)	P<0.001						
13	39.1 ± 1.99 (18)	41.6 ± 1.81 (20)	39.1 ± 2.67 (20)	*31.8 ± 2.19 (20)	P=0.006						
18	36.4 ± 2.29 (20)	31.9 ± 1.43 (20)	*29.9 ± 1.13 (20)	*22.7 ± 1.53 (18)	P<0.001						
19	33.4 ± 2.04 (20)	31.0 ± 1.58 (19)	28.3 ± 1.05 (20)	*25.5 ± 1.66 (18)	P=0.001						

TABLE 0-3B F₀: SUMMARY OF DAILY WATER CONSUMPTION (G/ANIMAL/DAY) TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean \pm standard error (number of animals).

	DOSE GROUPS ^a										
WEEK OF STUDY	0.0001 %	0.0004 %	0.0015 %								
		MALE									
1	$0.1 \pm 0.00((20))$	0.5 ± 0.01 (20)	1.8 ± 0.04 (20)								
2	$0.1 \pm 0.01((20))$	0.4 ± 0.02 (20)	1.5 ± 0.04 (20)								
3	$0.1 \pm 0.01((20))$	0.4 ± 0.02 (20)	1.4 ± 0.04 (19)								
4	$0.1 \pm 0.00((20))$	0.4 ± 0.01 (20)	1.3 ± 0.05 (20)								
5	$0.1 \pm 0.00((20))$	0.3 ± 0.01 (20)	1.2 ± 0.05 (20)								
6	$0.1 \pm 0.00((20))$	0.3 ± 0.01 (20)	1.2 ± 0.05 (20)								
7	$0.1 \pm 0.00((19))$	0.3 ± 0.01 (20)	1.1 ± 0.05 (20)								
8	$0.1 \pm 0.01((20))$	0.3 ± 0.02 (20)	1.1 ± 0.06 (20)								
9	$0.1 \pm 0.00((20))$	0.3 ± 0.01 (20)	1.1 ± 0.06 (20)								
10	$0.1 \pm 0.00((20))$	0.3 ± 0.01 (20)	1.0 ± 0.04 (20)								
13	$0.1 \pm 0.01((20))$	$0.3 \pm 0.02 (19)$	1.0 ± 0.05 (20)								
14	$0.1 \pm 0.01((20))$	$0.2 \pm 0.01 (20)$	1.0 ± 0.06 (20)								
15	$0.1 \pm 0.01((20))$	$0.2 \pm 0.01 (20)$	0.9 ± 0.04 (20)								
10	$0.1 \pm 0.00((19))$	$0.2 \pm 0.01 (19)$	$1.0 \pm 0.06 (18)$								
17	$0.1 \pm 0.00((19))$	$0.2 \pm 0.01 (20)$	$1.0 \pm 0.05 (20)$								
18	$0.1 \pm 0.00((19))$	$0.2 \pm 0.01 (20)$	$0.9 \pm 0.04 (20)$								
19	0.1 ± 0.00((19)	0.2 ± 0.01 (20)	0.9 ± 0.04 (20)								
		FEMALE									
1	0 1 4 0 00 ((20)		1 7 1 0 00 (20)								
1	$0.1 \pm 0.00((20))$	$0.5 \pm 0.01 (20)$	$1.7 \pm 0.08 (20)$ $1.6 \pm 0.07 (20)$								
2	$0.1 \pm 0.00((20))$	$0.4 \pm 0.01 (20)$	$1.0 \pm 0.07 (20)$ $1.5 \pm 0.07 (20)$								
Δ	$0.1 \pm 0.00((20))$	$0.4 \pm 0.01 (20)$	$1.3 \pm 0.07 (20)$ 1 4 + 0 06 (20)								
5	$0.1 \pm 0.00((20))$	$0.4 \pm 0.01 (20)$	$1 4 \pm 0.00 (20)$								
6	$0.1 \pm 0.00((20))$	$0.4 \pm 0.01 (20)$	$1 4 \pm 0.08 (20)$								
7	$0.1 \pm 0.00((20))$	0.4 + 0.01 (20)	1.4 + 0.15 (19)								
8	$0.1 \pm 0.01((20))$	0.3 ± 0.01 (20)	1.3 ± 0.06 (20)								
9	$0.1 \pm 0.00((20))$	0.3 ± 0.01 (20)	1.2 ± 0.06 (20)								
10	$0.1 \pm 0.00((20))$	0.3 ± 0.01 (20)	1.1 ± 0.06 (20)								
13	$0.1 \pm 0.00 ((20))$	0.5 ± 0.03 (20)	1.6 ± 0.13 (20)								
18	$0.1 \pm 0.00((20))$	0.4 ± 0.01 (20)	1.2 ± 0.08 (18)								
19	$0.1 \pm 0.00((19))$	0.4 ± 0.01 (20)	1.3 ± 0.10 (18)								

	TABLE 0-4								
	F_0 : SUMMARY OF ESTIMATED DOSAGE (MG/KG BODY WEIGHT/DAY)								
TWO	GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WA	TER							

a Mean \pm standard error (number of animals).

DOSE GROUP ^a													
REPRODUCTIVE PARAMETER	0.00	900 %		0.0	001 %		0.00	04 %		0.001	5 %		TREND
Pregnancy Index ^{b,e,g} Live Pups Per Litter ^{c,h,i}	16/2	20	(80)	18/	20	(90)	18/	20	(90)	15/	20	(75)	P=0.058
Male Female Combined	6.2 ± 8.6 ± 14.8 ±	0.46 0.53 0.51	(16) (16) (16)	5.6 7.0 12.6	0.48 0.68 0.95	(18) (18) (18)	5.4 ± 7.6 ± 13.8 ±	0.62 0.68 0.58	(18) (18) (17)	5.5 ± *4.9 ± *10.3 ±	0.41 0.59 0.73	(15) (15) (15)	P=0.343 P=0.001 P<0.001
Proportion Pups Born Alive $^{\text{c,h,i}}$	0.99 ±	0.008	(16)	0.99	0.007	(18)	0.98 ±	0.015	(17)	0.95 ±	0.019	(15)	P=0.068
Sex of Pups Born Alive (Males/Total) ^{c,j,i} Live Pup Weight (grams) ^{c,j,i}	0.42 ±	0.030	(16)	0.43	0.037	(18)	0.41 ±	0.036	(17)	0.55 ±	0.040	(15)	P=0.045
Male	6.77 ±	0.135	(16)	6.84	0.174	(17)	6.82 ±	0.166	(17)	6.87 ±	0.220	(15)	P=0.967
Female	6.44 ±	0.116	(16)	6.56	0.183	(18)	6.50 ±	0.134	(17)	6.54 ±	0.228	(15)	P=0.963
Combined	6.58 ±	0.115	(16)	6.71	0.180	(18)	6.66 ±	0.133	(17)	6.74 ±	0.227	(15)	P=0.810
Adjusted Live Pup Weight (grams) ^{c,k,1} Male Female Combined	6.90 ± 6.60 ± 6.75 ±	0.175 0.164 0.161	(16) (16) (16)	6.83 ± 6.51 ± 6.66 ±	0.163 0.149 0.146	(17) (18) (18)	6.89 ± 6.59 ± 6.75 ±	0.165 0.155 0.152	(17) (17) (17)	6.68 ± 6.33 ± 6.52 ±	0.189 0.173 0.169	(15) (15) (15)	OVERALL P=0.849 P=0.686 P=0.760
Average Dam Weight (grams) ^{c,m,i} Average Sire Weight (grams) ^{n,i} Average Days to Litter ^{c,m,i}	345.0 ± 559.7 ± 25.3 ±	9.94 16.47 0.31	(16) (16) (16)	338.7 579.2 25.4	7.55 10.93 0.33	(18) (18) (18)	*322.0 ± 562.9 ± 25.3 ±	9.89 14.69 0.77	(17) (17) (18)	*281.7 ± *449.3 ± 25.7 ±	6.33 13.46 0.33	(15) (15) (15)	P<0.001 P<0.001 P=0.676

TABLE 0-5 F0: SUMMARY OF REPRODUCTIVE PERFORMANCE OF COHABITED PAIRS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Statistical significance for comparisons of dosed groups to controls: * = P<0.05.

b Only those pairs surviving cohabitation were included for statistical analysis of data.

c Only those females surviving to the end of the parturition period were included for statistical analysis of the data.

d Number of females with vaginal sperm / number of cohabiting pairs (percent with vaginal sperm).

e Number of fertile pairs / number of cohabiting pairs (percent pregnant).

f Number of fertile pairs / number of females with vaginal sperm (percent fertile).

g P-value from Cochran-Armitage trend test. Dosed groups compared to control group by Chi-squared test. If fertility index > 1, then it is set equal to 1 for statistical analysis.

- h Mean ± standard error (number of pregnant pairs).
- i Each dose group is compared to the control group by Shirley's test if P<0.01 from Jonckheere's trend test. Otherwise, Dunn's test is applied.
- j Mean ± standard error (number of pregnant pairs producing live pups).
- k Least squares estimate of mean pup weight adjusted for average litter size ± standard error (number of pregnant pairs producing live pups).
- 1 Overall differences tested with an F-test, pairwise comparisons from Dunnett's test.
- m Mean ± standard error (number of dams).
- n Mean ± standard error (number of sires).

			DOSE G	ROUPS ^a		
P	GE (DAYS)	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^b
	1	345.0 ± 9.94 (16)	338.7 ± 7.55 (18)	*322.0 ± 9.89 (17)	*281.7 ± 6.33 (15)	P<0.001
	4	348.2 ± 9.96 (14)	338.0 ± 7.93 (16)	332.6 ± 8.94 (11)	*288.0 ± 7.15 (14)	P<0.001
	_					
	.7	367.8 ± 13.01 (16)	355.3 ± 13.40 (18)	$353.9 \pm 8.28 (17)$	*311.8 ± 11.51 (15)	P=0.012
1	4	260 0 1 0 05 (16)	250 2 4 6 60 (10)		+217 0 1 C 42 (15)	D<0_001
1	.4	308.U I 8.US (10)	338.3 I 0.09 (18)	35/.3 ± /.01 (1/)	^31/.8 I 0.43 (15)	P<0.001
2	1	321 6 + 10 43 (14)	334 8 + 8 24 (15)	337 2 + 5 76 (16)	320 9 + 5 60 (14)	P=0 807
2	. 1	521.0 1 10.45 (14)	334.0 ± 0.24 (13)	337.2 ± 3.70 (±0)	520.5 ± 5.00 (14)	1-0.007

TABLE 0-6 F0: SUMMARY OF DAM WEIGHTS (GRAMS) DURING LACTATION OF THE F1 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of dams).

		DC	SE GROUPS ^a		
POSTNATAL DAYS	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^b
		FEM	ALE		
1-4	123 2 + 20 64 (14)	90 5 + 6 69 (15)	129 0 + 19 19 (11)	833 + 313 (14)	P=0 153
1 1	123.2 1 20.04 (14)	50:3 ± 0:05 (±5)	129.0 1 19.19 (11)	03.3 1 3.13 (14)	1-0.100
4-7	134.2 ± 7.00 (16)	*99.6 ± 10.87 (18)	115.0 ± 10.14 (17)	*77.7 ± 16.39 (14)	P=0.002
11-14	190.3 ± 7.85 (16)	187.8 ± 10.65 (18)	*237.6 ± 12.53 (17)	170.8 ± 16.23 (15)	P=0.814
10 01				+101 4 + 12 07 (14)	D-0 000
10-21	200.0 ± 9.42 (14)	240.0 ± 0.12 (15)	270.3 ± 0.52 (10)	~101.4 ± 13.07 (14)	₽=0.002

	TABLE 0-7A												
	F ₀ : SUM	MARY OF	DAM DAILY	FEED	CONSUMPTION	(G/KG BODY	WEIGHT/DAY)	DURING	LACTATION OF	THE E	1 LITTE	R	
TWO	GENERATION REPRO	DUCTION	TOXICITY	STUDY (OF PROPYLTHIC	OURACIL WHE	N ADMINISTER	ED TO 3	SPRAGUE-DAWLEY	RATS	IN THE	DRINKING	WATER

a Mean \pm standard error (number of dams).

DOSE GROUPS ^a															
POSTNATAL DAYS	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND										
	FEMALE														
1-4	45.5 ± 7.47 (16)	*29.1 ± 2.01 (17)	38.9 ± 4.94 (15)	*28.7 ± 4.91 (15)	P=0.004										
4-7	48.8 ± 2.77 (16)	*33.4 ± 3.51 (18)	*40.8 ± 3.57 (17)	*25.0 ± 6.00 (14)	P<0.001										
7-11	68.3 ± 3.54 (16)	61.3 ± 4.61 (18)	58.5 ± 5.27 (17)	*46.9 ± 5.89 (15)	P=0.009										
11-14	69.6 ± 2.64 (16)	66.5 ± 3.13 (18)	*84.6 ± 4.37 (17)	54.4 ± 5.37 (15)	P=0.740										
14-18	69.2 ± 2.16 (16)	68.3 ± 2.12 (18)	76.3 ± 1.51 (17)	62.5 ± 3.81 (14)	P=0.953										
18-21	85.0 ± 2.17 (16)	78.6 ± 3.62 (18)	90.7 ± 2.40 (17)	*58.7 ± 4.71 (14)	P=0.014										

TABLE 0-7B F0: SUMMARY OF DAM DAILY FEED CONSUMPTION (G/ANIMAL/DAY) DURING LACTATION OF THE F1 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean \pm standard error (number of dams).

	DOSE GROUPS ^a														
POSTNATAL DAYS	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^b										
	FEMALE														
1-4	137.0 ± 10.78 (14)	123.2 ± 11.03 (15)	131.2 ± 9.80 (11)	125.1 ± 8.84 (14)	P=0.799										
4-7	181.9 ± 19.53 (16)	152.4 ± 13.19 (18)	156.9 ± 9.16 (17)	*131.3 ± 9.48 (15)	P=0.027										
11-14	254.9 ± 14.61 (16)	235.5 ± 15.70 (18)	270.5 ± 11.95 (17)	*183.6 ± 12.74 (15)	P=0.041										
18-21	375.3 ± 24.22 (13)	316.8 ± 15.39 (15)	334.6 ± 11.16 (15)	*224.9 ± 14.34 (14)	P<0.001										

TABLE 0-8A F0: SUMMARY OF DAM DAILY WATER CONSUMPTION (G/KG BODY WEIGHT/DAY) DURING LACTATION OF THE F1 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of dams).

	DOSE GROUPS [®]													
POSTNATAL DAYS	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND									
		FEM	ALE											
1-4	46.3 ± 2.70 (16)	39.7 ± 3.26 (17)	43.9 ± 2.15 (17)	*34.9 ± 2.38 (15)	P=0.023									
4-7	65.1 ± 5.59 (16)	52.6 ± 4.08 (18)	55.0 ± 3.04 (17)	*40.2 ± 2.75 (15)	P<0.001									
7-11	767+396(16)	68 8 + 4 46 (18)	66.4 + 5.54.(17)	*51 6 + 5 80 (15)	P-0 003									
/ 11	/0./ ± 5.90 (10)	00.0 1 4.40 (10)	00.4 1 0.04 (17)	51.0 ± 5.00 (15)	1-0.005									
11-14	92.7 ± 3.88 (16)	83.4 ± 4.88 (18)	96.3 ± 4.07 (17)	*58.5 ± 4.41 (15)	P=0.003									
14-18	93.7 ± 2.19 (16)	*83.3 ± 3.85 (18)	89.8 ± 2.38 (17)	*70.3 ± 5.05 (13)	P=0.001									
18-21	$118.6 \pm 4.02 (15)$	*99.3 ± 5.71 (18)	$112.4 \pm 3.89 (16)$	*72.6 ± 5.35 (14)	P<0.001									

TABLE 0-8B F0: SUMMARY OF DAM DAILY WATER CONSUMPTION (G/ANIMAL/DAY) DURING LACTATION OF THE F1 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean \pm standard error (number of dams).

POSTNATAL DAYS	0.0001 %	DOSE GROUPS ^a 0.0004 %	0.0015 %	
		FEMALE		
1-4	0.1 ± 0.01 (15)	0.5 ± 0.04 (11)	1.9 ± 0.13 (14)	
4-7	0.2 ± 0.01 (18)	0.6 ± 0.04 (17)	2.0 ± 0.14 (15)	
11-18	0.2 ± 0.02 (18)	1.1 ± 0.05 (17)	2.8 ± 0.19 (15)	
18-21	0.3 ± 0.02 (15)	1.3 ± 0.04 (15)	3.4 ± 0.22 (14)	

TABLE 0-9 F0: SUMMARY OF ESTIMATED DOSAGE (MG/KG BODY WEIGHT/DAY) DURING LACTATION OF THE F1 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of dams).

Endpoint	0.0000 %	DOSE GROUPS ^a 0.0001 %	0.0004 %	0.0015 %	TREND ^b
		MALE			
Anogenital Distance (PND1)	2.58 ± 0.041 (16)	2.58 ± 0.030 (17)	2.59 ± 0.038 (17)	2.61 ± 0.043 (15)	P=0.586
Average Pup Weight (PND1)	6.75 ± 0.125 (16)	6.83 ± 0.175 (17)	6.84 ± 0.176 (17)	6.63 ± 0.155 (15)	P=0.554
Ratio AGD/Pup Weight (PND1)	0.39 ± 0.010 (16)	0.38 ± 0.011 (17)	0.38 ± 0.008 (17)	0.40 ± 0.010 (15)	P=0.274
		FEMALE			
Anogenital Distance (PND1)	1.14 ± 0.024 (16)	1.14 ± 0.020 (18)	1.15 ± 0.019 (17)	1.12 ± 0.013 (15)	P=0.688
Average Pup Weight (PND1)	6.42 ± 0.115 (16)	6.53 ± 0.177 (18)	6.51 ± 0.136 (17)	6.24 ± 0.145 (15)	P=0.381
Ratio AGD/Pup Weight (PND1)	0.18 ± 0.006 (16)	0.18 ± 0.003 (18)	0.18 ± 0.004 (17)	0.18 ± 0.005 (15)	P=0.509

TABLE 0-10 F_0 : SUMMARY OF ANOGENITAL DISTANCE AND PUP WEIGHT FOR THE F_1 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of dams).

		DOSE	GROUPS ^a		
AGE (DAYS)	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^b
		1	ALE		
1	6.77 ± 0.135 (16)	6.84 ± 0.174 (17)	6.82 ± 0.166 (17)	6.87 ± 0.220 (15)	P=0.967
4	9.55 ± 0.245 (14)	9.80 ± 0.392 (15)	10.29 ± 0.575 (12)	10.48 ± 1.070 (14)	P=0.946
7	15.83 ± 1.564 (16)	17.38 ± 2.221 (17)	17.85 ± 2.424 (17)	17.75 ± 2.716 (13)	P=0.572
14	27.53 ± 0.701 (16)	27.69 ± 0.796 (17)	28.20 ± 1.383 (17)	*23.39 ± 0.690 (15)	P<0.001
21	45.63 ± 5.280 (16)	56.45 ± 9.869 (17)	39.96 ± 1.217 (16)	*30.77 ± 1.039 (14)	P<0.001
		FI	EMALE		
1	6.44 ± 0.116 (16)	6.56 ± 0.183 (18)	6.50 ± 0.134 (17)	6.54 ± 0.228 (15)	P=0.963
4	9.25 ± 0.223 (14)	9.50 ± 0.328 (16)	10.06 ± 0.460 (12)	10.35 ± 1.145 (14)	P=0.650
7	13.69 ± 0.779 (16)	16.43 ± 1.967 (18)	15.89 ± 1.438 (17)	17.27 ± 3.549 (13)	P=0.971
14	26.67 ± 0.768 (16)	26.78 ± 0.795 (18)	27.20 ± 1.293 (17)	*22.75 ± 0.752 (15)	P=0.003
21	47.16 ± 5.859 (16)	68.76 ±16.683 (18)	38.76 ± 1.334 (16)	*29.71 ± 0.830 (14)	P<0.001

	TABLE 0-11															
	F0: SUMMARY OF AVERAGE PUP WEIGHTS FOR THE F1 LITTER															
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPYLTHIOURA	CIL WHE	ADM	INISTERED	то	SPRAGUE-DAWLEY	RATS	IN 1	THE	DRINKING	WATER

a Mean \pm standard error (number of litters).
DOSE GROUPS ^a										
AGE (DAYS)	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^b					
		M	ALE							
4	1.00 ± 0.000 (16)	0.97 ± 0.014 (17)	0.99 ± 0.007 (17)	0.96 ± 0.028 (15)	P=0.381					
7	1.00 ± 0.000 (16)	0.97 ± 0.014 (17)	0.99 ± 0.010 (17)	0.96 ± 0.028 (15)	P=0.310					
14	0.97 ± 0.015 (16)	0.97 ± 0.014 (17)	0.99 ± 0.010 (17)	0.96 ± 0.028 (15)	P=0.633					
21	0.97 ± 0.015 (16)	0.97 ± 0.014 (17)	0.99 ± 0.010 (17)	0.99 ± 0.012 (14)	P=0.315					
FEMALE										
4	0.99 ± 0.006 (16)	0.98 ± 0.018 (18)	1.00 ± 0.000 (17)	0.94 ± 0.030 (15)	P=0.266					
7	0.98 ± 0.014 (16)	0.98 ± 0.019 (18)	1.00 ± 0.000 (17)	0.94 ± 0.030 (15)	P=0.764					
14	0.97 ± 0.015 (16)	0.97 ± 0.019 (18)	1.00 ± 0.000 (17)	0.94 ± 0.030 (15)	P=0.766					
21	0.97 ± 0.016 (16)	0.97 ± 0.019 (18)	1.00 ± 0.000 (17)	0.96 ± 0.024 (14)	P=0.211					
		COM	BINED							
4	1.00 ± 0.004 (16)	0.98 ± 0.015 (18)	1.00 ± 0.005 (17)	0.95 ± 0.026 (15)	P=0.194					
7	0.99 ± 0.009 (16)	0.97 ± 0.015 (18)	0.99 ± 0.006 (17)	0.95 ± 0.026 (15)	P=0.443					
14	0.97 ± 0.011 (16)	0.97 ± 0.015 (18)	0.99 ± 0.006 (17)	0.95 ± 0.026 (15)	P=0.636					
21	0.97 ± 0.012 (16)	0.97 ± 0.015 (18)	0.99 ± 0.006 (17)	0.98 ± 0.014 (14)	P=0.320					

							TABLE	E 0-12								
				\mathbf{F}_0 :	SU	MMARY OF	F PUP SUR	VIVAL	FOR THE F1 LI	TTE	R					
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPYLTH	IIOURACIL	WHEN	ADMINISTERED	то	SPRAGUE-DAWLEY	RATS	IN 1	THE	DRINKING	WATER

a Mean of (number of live pups/number of pups born alive) ± standard error (number of litters). Ratios greater than 1 or increases in survival over time indicate missexing of pups.

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (* = P<0.05).</pre>

DOSE GROUPS ^a							
AGE (DAYS)	0.0000 %	0.0001 %	0.0004 %	0.0015 %			
12	0.00 ± 0.00 (16)	0.00 ± 0.00 (18)	0.00 ± 0.00 (17)	0.00 ± 0.00 (15)			
13	0.00 ± 0.00 (16)	0.00 ± 0.00 (18)	0.00 ± 0.00 (17)	0.00 ± 0.00 (15)			

TABLE 0-13 F_0 : SUMMARY OF NIPPLE RETENTION FOR THE F_1 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

THE GENERATION REPRODUCTION TORICITY STUDY OF PROFILITIONACTI WHEN ADMINISTERED TO SPRAGUE DAWLET RATS IN THE DRINKING WHEN									
	DOSE GROUPS ^a								
ENDPOINT ^b	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^c				
DAY OF EYE OPENING	15.7 ± 0.20 (16)	15.6 ± 0.22 (18)	16.2 ± 0.18 (17)	*17.6 ± 0.36 (14)	P<0.001				
DAY OF PINNA DETACHMENT	4.2 ± 0.21 (16)	4.1 ± 0.16 (18)	4.0 ± 0.19 (17)	4.5 ± 0.19 (15)	P=0.538				

TABLE 0-14 F_0 : SUMMARY OF PINNA DETACHMENT AND EYE OPENING FOR THE F_1 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean \pm standard error (number of animals).

b Mean = age (days)

c Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (* = P<0.05).

DOSE GROUPS ^a									
ENDPOINT ^B	0.0000 %	0.0001 %	0.0004 %	TREND ^c					
		MALE							
DAY OF PREPUCE SEPARATION	42.7 ± 0.31 (28)	43.3 ± 0.41 (30)	*44.7 ± 0.74 (31)	P=0.009					
DAY OF TESTICULAR DESCENT	28.7 ± 0.36 (28)	29.4 ± 0.46 (30)	30.2 ± 0.82 (31)	P=0.175					
		FEMALE							
DAY OF VAGINAL OPENING	32.4 ± 0.35 (30)	32.9 ± 0.39 (33)	*33.8 ± 0.43 (33)	P=0.020					

 $\begin{array}{c} \text{TABLE 0-15} \\ \text{F}_0: \text{ SUMMARY OF F}_1 \text{ SEXUAL DEVELOPMENT DATA} \\ \text{TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER \\ \end{array}$

a Mean ± standard error (number of animals).

b Mean = age (days)

c Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (* = P<0.05).

GROUP :	1	2	3	4	
	<u> </u>	0 0 0 0 1	0 0 0 0 4	0 0015	
DOSE (8) :	0.0000	0.0001	0.0004	0.0015	
NUMPER OF ANTALL ON COURT.	47	FO	10	11	
NOMBER OF ANIMALS ON STUDY:	4 /	50	40	41	
NUMBER OF ANIMALS COMPLETED:	(46)	(50)	(46)	(41)	
RIGHT TESTIS;					
SUBMITTED	(47)	(50)	(46)	(40)	
	(17)	(00)	(10)	(10)	
NO VISIBLE LESIONS	4 /	50	46	41	
LIVER;					
SUBMITTED	(47)	(50)	(46)	(41)	
NO VISIBLE LESIONS	47	50	46	41	
	-17	50	-10	-1-1	
LEFT TESTES W/EPIDIDYMIDES:					
	(17)	(40)	(10)	(40)	
SUBMITTED	(47)	(49)	(40)	(40)	
NO VISIBLE LESIONS	47	50	46	41	
THYROID/PARATHYROID;					
SUBMITTED	(47)	(50)	(46)	(41)	
	(17)	(00)	(10)	(11)	
NO VISIBLE LESIONS	4 /	50	46	41	
SEMINAL VESTILES W/ COACULATING CLANDS.					
SEMINAL VESICLES W/ COAGOLATING GLANDS,					
SUBMITTED	(47)	(50)	(46)	(40)	
NO VISIBLE LESIONS	47	50	46	41	
NO VIDIDEE EDUTORO	1 /	00	10	11	
ADRENAL GLAND(S):					
	(17)	(50)	(16)	(11)	
SUBMITTED	(47)	(50)	(46)	(41)	
NO VISIBLE LESIONS	47	50	46	41	
BRAIN;					
SUBMITTED	(0)	(0)	(0)	(0)	
	47	(C /	10	(1)	
NO VISIBLE LESIONS	4 /	50	40	41	
KIDNEV (S) ·					
NIDMET (S),					
SUBMITTED	(47)	(50)	(46)	(41)	
NO VISTBLE LESTONS	47	49	4.5	40	
		1 1	1	- 0	
DILATION; RIGHI	U	T	Ţ	∠	

TABLE 0-16 F_0 : SUMMARY OF F_1 MALE PND 21 NECROPSY GROSS OBSERVATIONS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

GROUP :	1	2	3	4	
DOSE (%) :	0.0000	0.0001	0.0004	0.0015	
MAMMARY GLAND(S); SUBMITTED. NO VISIBLE LESIONS DISCOLORATION; BLUE; LEFT; FOCAL	(0) 0 0	(1) 0 1	(0) 0 0	(0) 0 0	
PITUITARY GLAND; SUBMITTED. NO VISIBLE LESIONS.	(47) 47	(50) 50	(46) 46	(41) 41	
SPLEEN; SUBMITTED. NO VISIBLE LESIONS.	(0) 47	(0) 50	(1) 46	(0) 41	
THYMUS; SUBMITTED. NO VISIBLE LESIONS. MASS(2) MASS(4) NODULE(S)	(44) 47 0 0	(47) 50 0 0	(42) 45 1 1	(36) 41 0 0 0	
VENTRAL PROSTATE; SUBMITTED NO VISIBLE LESIONS	(47) 47	(50) 50	(46) 46	(40) 41	
DORSOLATERAL PROSTATE; SUBMITTED NO VISIBLE LESIONS	(47) 47	(50) 50	(46) 46	(40) 41	

TABLE 0-16 (CONTINUED) F_0 : SUMMARY OF F_1 MALE PND 21 NECROPSY GROSS OBSERVATIONS

TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

TABLE 0-17 F₀: SUMMARY OF F₁ MALE PND 21 ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

		DOSE GROU	JPS		
ORGAN	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^a
		ORGAN WEIGHT	'S (g) ^b		
BODY BRAIN SPLEEN THYMUS	$\begin{array}{c} 40.3 \pm 0.87 & (47) \\ 1.389 \pm 0.0109 & (47) \\ 0.160 \pm 0.0048 & (47) \\ 0.155 \pm 0.0186 & (47) \end{array}$	$\begin{array}{c} 42.9 \pm 1.01 \ (50) \\ 1.394 \pm 0.0110 \ (50) \\ 0.170 \pm 0.0049 \ (50) \\ 0.214 \pm 0.0189 \ (50) \end{array}$	41.1 ± 0.73 (46) 1.425 ± 0.0111 (46) 0.154 ± 0.0049 (46) 0.154 ± 0.0190 (46)	*30.9 ± 0.86 (41) *1.306 ± 0.0138 (41) 0.154 ± 0.0061 (41) 0.103 ± 0.0237 (41)	P<0.001 P=0.026 P=0.245 P=0.105
		ORGAN-TO-BODY WEI	GHT RATIOS [°]		
BRAIN SPLEEN THYMUS	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	33.874 ± 0.6416 (50) 4.409 ± 0.1237 (50) 5.406 ± 0.8582 (50)	35.474 ± 0.5677 (46) 3.986 ± 0.0971 (46) 3.925 ± 0.1042 (46)	*41.089 ± 0.9854 (41) *3.465 ± 0.2631 (41) *2.296 ± 0.0854 (41)	P<0.001 P<0.001 P<0.001

a Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (*= P<0.05).

b Mean organ weight ± standard error (number of animals).

c Mean ratio (mg/g body weight) \pm standard error (number of animals).

Note: Absolute organ weights were covaried by body weight.

1	2	3	4	
0 0000	0 0001	0 0004	0 0015	
0.0000	0.0001	0.0001	0.0013	
48	49	51	32	
(48)	(49)	(51)	(32)	
(,	()	(= _ /	(=)	
(48)	(49)	(51)	(32)	
48	49	51	32	
			(
(48)	(49)	(51)	(32)	
48	49	51	32	
(40)	(40)	(= 1)	(20)	
(48)	(49)	(51)	(32)	
48	49	51	32	
(40)	(40)		(20)	
(48)	(49)	(51)	(32)	
48	49	51	32	
(\cap)	(0)	(0)	(\cap)	
(0)	(0)	(0)	(0)	
48	49	21	32	
(48)	(49)	(51)	(32)	
17	10	51	32	
4/	40	JI	52	
T	T	0	0	
(48)	(49)	(51)	(32)	
(-0)	(10)	(31)	(32)	
40	49	τc	32	
(48)	(49)	(51)	(32)	
18	19	51	32	
40	49	JT	52	
	1 0.0000 48 (48) 48 (48) 48 (48) 48 (48) 48 (48) 48 (48) 47 1 (48) 47 1 (48) 47 1 (48) 48	$\begin{array}{ccccccc} 1 & 2 \\ 0.0000 & 0.0001 \\ \\ 48 & 49 \\ (48) & (49) \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 47 & 48 \\ 1 & 1 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\ 48 & 49 \\ \\ (48) & (49) \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 0-18F0: SUMMARY OF F1 FEMALE PND 21 NECROPSY GROSS OBSERVATIONSTWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

GROUP: DOSE (%):	1 0.0000	2 0.0001	3 0.0004	4 0.0015	
SPLEEN; SUBMITTED. NO VISIBLE LESIONS. REDUCTION IN SIZE	(0) 47 1	(1) 49 0	(0) 51 0	(0) 32 0	
THYMUS; SUBMITTED NO VISIBLE LESIONS	(45) 48	(44) 49	(51) 51	(32) 32	

		DOSE GROU	JPS		
ORGAN	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^a
		ORGAN WEIGHT	'S (g) ^B		
BODY	39.6 ± 0.81 (48)	40.9 ± 1.02 (49)	39.4 ± 0.74 (51)	*29.4 ± 0.80 (32)	P<0.001
BRAIN	1.350 ± 0.0116 (48)	1.338 ± 0.0118 (49)	1.387 ± 0.0113 (51)	*1.260 ± 0.0167 (32)	P=0.026
SPLEEN	0.160 ± 0.0049 (48)	0.164 ± 0.0049 (49)	0.154 ± 0.0047 (51)	0.156 ± 0.0070 (32)	P=0.245
THYMUS	0.159 ± 0.0137 (48)	0.159 ± 0.0138 (49)	0.181 ± 0.0132 (51)	0.127 ± 0.0196 (32)	P=0.105
		ORGAN-TO-BODY WEI	GHT RATIOS [°]		
BRAIN SPLEEN	34.935 ± 0.6078 (48) 4.212 ± 0.1151 (48)	$34.128 \pm 0.7531 (49)$ $4.395 \pm 0.1502 (49)$	35.981 ± 0.5943 (51) 4.054 ± 0.1348 (51)	*40.948 ± 0.9223 (32) *3.510 ± 0.2928 (32)	P<0.001 P<0.001
THYMUS	4.200 ± 0.1369 (48)	4.295 ± 0.1167 (49)	4.716 ± 0.5545 (51)	*2.450 ± 0.0929 (32)	P<0.001

TABLE 0-19 F0: SUMMARY OF F1 FEMALE PND 21 ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (*= P<0.05).

b Mean organ weight ± standard error (number of animals).

c Mean ratio (mg/g body weight) \pm standard error (number of animals).

Note: Absolute organ weights were covaried by body weight.

ING GENERATION REPRODUCTION TOATCHTT STUDT OF PROPILITIOURACTI WHEN ADMINISTERED TO SPRAGUE-DAWLET RATS IN THE DRINKING WATER											
	ESTROUS STAGE (%)		S STAGE (%) CYCLE LENGTH ^{a,d}			NUMBER OF	NUMBER OF CYCLING	NUMBER OF FEMALES			
P	E	М	D	Ν	(DAYS)	CYCLES ^{a,d}	FEMALES ^{b, c}	W/REGULAR CYCLE ^{c,e}			
15.0	29.3	20.0	35.4	0.4	$4.1 \pm 0.05 (19)^{f}$	2.6 ± 0.14 (20)	20/20 (100)	19/20 (95)			
8.6	30.7	21.4	39.3	0.0	4.4 ± 0.16 (20)	2.3 ± 0.12 (20)	20/20 (100)	19/20 (95)			
7.9	26.8	21.4	42.9	1.1	4.4 ± 0.17 (20)	2.4 ± 0.13 (20)	20/20 (100)	18/20 (90)			
3.6	33.2	19.3	41.8	2.1	4.5 ± 0.14 (19) ^g	2.4 ± 0.14 (19)	20/20 (100)	*14/20 (70)			
	P 15.0 8.6 7.9 3.6	ESTRO ESTRO P E 15.0 29.3 8.6 30.7 7.9 26.8 3.6 33.2	ESTROUS STAGE P E M 15.0 29.3 20.0 8.6 30.7 21.4 7.9 26.8 21.4 3.6 33.2 19.3	ESTROUS STAGE (%) P E M D 15.0 29.3 20.0 35.4 8.6 30.7 21.4 39.3 7.9 26.8 21.4 42.9 3.6 33.2 19.3 41.8	ESTROUS STAGE (%) P E M D N 15.0 29.3 20.0 35.4 0.4 8.6 30.7 21.4 39.3 0.0 7.9 26.8 21.4 42.9 1.1 3.6 33.2 19.3 41.8 2.1	ESTROUS STAGE (%) CYCLE LENGTH CYCLE LENGTH a,d P E M D N (DAYS) 15.0 29.3 20.0 35.4 0.4 4.1 ± 0.05 (19) f 8.6 30.7 21.4 39.3 0.0 4.4 ± 0.16 (20) 7.9 26.8 21.4 42.9 1.1 4.4 ± 0.17 (20) 3.6 33.2 19.3 41.8 2.1 4.5 ± 0.14 (19) g	TWO GENERATION REPRODUCTION TOATCHT STODI OF PROPERITIONACTE WHEN ADMINISTERED TO SPECTURE STRONG STAGE (%) P E M D N CYCLE LENGTH a',d (DAYS) NUMBER OF CYCLES a',d 15.0 29.3 20.0 35.4 0.4 4.1 ± 0.05 (19) f 2.6 ± 0.14 (20) 8.6 30.7 21.4 39.3 0.0 4.4 ± 0.16 (20) 2.3 ± 0.12 (20) 7.9 26.8 21.4 42.9 1.1 4.4 ± 0.17 (20) 2.4 ± 0.13 (20) 3.6 33.2 19.3 41.8 2.1 4.5 ± 0.14 (19) g 2.4 ± 0.14 (19)	TWO GENERATION REPRODUCTION TOXICITY STOLT OF PROPERTATIONAL CTL WHEN ADMINISTERED TO SPRAGUE-DAWLET RATS IN THE E M D N CYCLE LENGTH a,d NUMBER OF CYCLING FEMALES b,c NUMBER OF CYCLING FEMALES b,c 15.0 29.3 20.0 35.4 0.4 4.1 ± 0.05 (19) f 2.6 ± 0.14 (20) 20/20 (100) 8.6 30.7 21.4 39.3 0.0 4.4 ± 0.16 (20) 2.3 ± 0.12 (20) 20/20 (100) 7.9 26.8 21.4 42.9 1.1 4.4 ± 0.17 (20) 2.4 ± 0.13 (20) 20/20 (100) 3.6 33.2 19.3 41.8 2.1 4.5 ± 0.14 (19) g 2.4 ± 0.14 (19) 20/20 (100)	INC GENERATION REPRODUCTION TOXICITY STOLT OF PROPERTATIONRACIL WEN ADMINISTERED TO SPRAGUE-DAWLET RATS IN THE DRINKING WATER p E M D N CYCLE LENGTH and (DAYS) NUMBER OF CYCLES and CYCLES and CYCLES bnc NUMBER OF CYCLING FEMALES bnc NUMBER OF FEMALES bnc NUMBER OF CYCLECtectectectectectectectectectectectectect		

TABLE 0-20 F₀: SUMMARY OF STAGES AND LENGTH OF ESTROUS CYCLE TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

P=Proestrus, E=Estrus, M=Metestrus, D=Diestrus, N=Not Clear, Poor Quality, or Insufficient Number of Cells

a Mean ± standard error (number of animals)

b Number of cycling females / number of females sampled (percent cycling).

c Number of females with a regular cycle / number of females sampled (percent regular).

d Each dose group is compared to the control group by Shirley's test if P<0.01 from Jonckheere's trend test. Otherwise, Dunn's test is applied.

e Dose group compared to the control group using the Chi-squared test (* = P<0.05).

f Estrous cycle ten days or longer, not cycling, not available, or unclear in 1 of 20 animals.

g Estrous cycle ten days or longer, not cycling, not available, or unclear in 1 of 20 animals.

NOTE: There is significant evidence (Wilks' criterion P=0.0210) that females in the high dose group differed from the control group in the relative amount of time spent in estrous stages.

DOSE GROUPS ^a											
ENDPOINT	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^b						
		MALE	<u>1</u>								
T3 (NG/DL)	96.08 ± 3.634 (20)	96.19 ± 3.913 (19)	95.08 ± 3.744 (20)	88.33 ± 3.358 (20)	P=0.156						
T4 (UG/DL)	2.09 ± 0.312 (20)	2.96 ± 0.410 (19)	*1.13 ± 0.217 (20)	*0.47 ± 0.177 (20)	P<0.001						
TSH (NG/ML)	3.63 ± 0.644 (20)	3.79 ± 0.563 (19)	*8.20 ± 1.309 (20)	*22.15 ± 2.560 (20)	P<0.001						
		FEMAL	<u>.E</u>								
T3 (NG/DL)	105.29 ± 3.828 (20)	113.78 ± 4.364 (20)	111.51 ± 4.827 (20)	90.93 ± 7.690 (18)	P=0.294						
T4 (UG/DL)	1.19 ± 0.260 (20)	1.41 ± 0.229 (20)	0.57 ± 0.186 (20)	0.61 ± 0.239 (18)	P=0.004						
TSH (NG/ML)	3.76 ± 0.837 (20)	4.61 ± 0.747 (20)	*7.19 ± 0.834 (20)	*21.64 ± 1.651 (18)	P<0.001						

TABLE 0-21 F₀: SUMMARY OF THYROID HORMONES TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

b Each dose group is compared to the control with Dunnett's one-tailed low test for T3 and T4 or Dunnett's one-tailed high test for TSH.

(* = P<0.05 from Jonckheere's trend test.)

GROUP:	1	2	3	4	
DOSE (%):	0.0000	0.0001	0.0004	0.0015	
NUMBER OF ANIMALS ON STUDY:	20	20	20	20	
NUMBER OF ANIMALS COMPLETED:	(20)	(20)	(20)	(20)	
THYROID/PARATHYROID;					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	13	0	
ENLARGEMENT; BILATERAL	0	0	7	20	
VENTRAL PROSTATE;					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	20	20	
RIGHT TESTIS;					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	20	20	
SIBMITTED	(0)	(0)	(1)	(0)	
NO VISIBLE LESIONS	(0)	(0)	0	0	
NG VIGIDAE DESTONG DISCOLORATION: BLACK: FOCAL	0	0	1	0	
Discologation, Denot, Foone	0	0	1	0	
ADRENAL GLAND(S);					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	20	20	
BRAIN;					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	20	20	
KIDNEY(S) ·					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	19	19	20	20	
	1	0		20	
	-	0	0	0	
LIVER;					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	20	20	

 $\label{eq:table_0-22} F_0\colon SUMMARY \mbox{ OF MALE GROSS OBSERVATIONS} TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER$

	1	0	2		
GROUP:	T	2	3	4	
DOSE (%):	0.0000	0.0001	0.0004	0.0015	
MANMARY CLAND(C).					
MAMMARI GLAND(5);					
SUBMITTED	(0)	(0)	(0)	(1)	
NO VISIBLE LESIONS	0	0	0	0	
DISCOLORATION, CREEN, LEFT, FOCAL	0	0	0	1	
Discondition, Gallar, Leit, Ioone	0	0	0	1	
PITUITARY GLAND;					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	20	20	
SDI FFN.					
	(20)	(10)	(20)	(00)	
SOBMITTED	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	20	20	
DORSOLATERAL PROSTATE:					
SIIBMI TOTED	(20)	(19)	(20)	(20)	
	(20)	(19)	(20)	(20)	
NO VISIBLE LESIONS	20	19	20	20	
LEFT TESTIS W/ EPIDIDYMIS;					
SUBMTTTED	(20)	(19)	(20)	(20)	
NO VICTOLE LECIONO	20	10	(20)	20	
NO VISIBLE LESIONS	20	TO	20	20	
SEMINAL VESICLES W/COAGULATING GLANDS;					
SUBMITTED	(20)	(19)	(20)	(20)	
NO VISTBLE LESIONS	20	19	20	20	
	20	10	20	20	

DOSE GROUPS										
ORGAN	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^a					
		ORGAN WEIGHTS	(g) ^b							
BODY	628.9 ± 17.82 (20)	643.2 ± 13.19 (19)	608.6 ± 14.59 (20)	*511.7 ± 13.16 (20)	P<0.001					
ADRENALS	0.0590 ± 0.00228 (20)	0.0531 ± 0.00240 (19)	0.0576 ± 0.00222 (20)	0.0509 ± 0.00266 (20)	P=0.111					
BRAIN	2.123 ± 0.0224 (20)	2.068 ± 0.0237 (19)	2.117 ± 0.0219 (20)	2.070 ± 0.0263 (20)	P=0.326					
KIDNEYS	3.9069 ± 0.06175 (20)	4.0242 ± 0.06516 (19)	4.0177 ± 0.06020 (20)	3.7460 ± 0.07223 (20)	P=0.413					
LIVER	19.9736 ± 0.35780 (20)	22.6335 ± 0.37756 (19)	20.3357 ± 0.34881 (20)	21.2523 ± 0.41850 (20)	P=0.069					
PITUITARY	0.0123 ± 0.00165 (20)	0.0126 ± 0.00174 (19)	0.0161 ± 0.00161 (20)	0.0123 ± 0.00193 (20)	P=0.495					
DORSOLATERAL PROSTATE	0.7294 ± 0.03209 (20)	0.6560 ± 0.03386 (19)	0.6424 ± 0.03128 (20)	0.6329 ± 0.03753 (20)	P=0.041					
VENTRAL PROSTATE	0.6876 ± 0.05257 (20)	0.6777 ± 0.05548 (19)	0.6781 ± 0.05125 (20)	0.6947 ± 0.06149 (20)	P=0.979					
RIGHT CAUDA EPIDIDYMIS	0.3060 ± 0.01021 (20)	0.2979 ± 0.01078 (19)	0.3256 ± 0.09951 (20)	0.2931 ± 0.01194 (20)	P=0.949					
RIGHT EPIDIDYMIS	0.7562 ± 0.02063 (20)	0.7202 ± 0.02177 (19)	0.7896 ± 0.02011 (20)	0.7197 ± 0.02413 (20)	P=0.865					
RIGHT TESTIS	1.7087 ± 0.03673 (20)	1.7520 ± 0.03876 (19)	1.7110 ± 0.03581 (20)	1.7843 ± 0.04296 (20)	P=0.375					
SEMINAL VESICLES	2.3010 ± 0.09383 (20)	2.2072 ± 0.09901 (19)	2.5045 ± 0.09147 (20)	2.1866 ± 0.10975 (20)	P=0.859					
SPLEEN	0.818 ± 0.0254 (20)	0.888 ± 0.0268 (19)	0.845 ± 0.0248 (20)	0.726 ± 0.0298 (20)	P=0.124					
THYROID	0.0323 ± 0.00474 (20)	0.0294 ± 0.00500 (19)	*0.0539 ± 0.00462 (20)	*0.1295 ± 0.00554 (20)	P<0.001					
		ORGAN-TO-BODY WEIG	HT RATIOS [°]							
ADRENALS	0.0971 ± 0.00400 (20)	0.0853 ± 0.00343 (19)	0.0957 ± 0.00364 (20)	0.0946 ± 0.00566 (20)	P=0.779					
BRAIN	3.452 ± 0.0905 (20)	3.280 ± 0.0678 (19)	3.521 ± 0.0765 (20)	*3.984 ± 0.1043 (20)	P<0.001					
KIDNEYS	6.4801 ± 0.06584 (20)	6.6240 ± 0.11151 (19)	6.7313 ± 0.13322 (20)	6.4730 ± 0.10702 (20)	P=0.909					
LIVER	33.7161 ± 0.76665 (20)	35.0990 ± 0.53426 (19)	34.1839 ± 0.59443 (20)	34.0647 ± 0.66415 (20)	P=0.726					
PITUITARY	0.0196 ± 0.00064 (20)	0.0195 ± 0.00091 (19)	*0.0270 ± 0.00542 (20)	*0.0247 ± 0.00094 (20)	P<0.001					
DORSOLATERAL PROSTATE	1.1656 ± 0.04758 (20)	1.0228 ± 0.05987 (19)	1.0681 ± 0.06376 (20)	1.2794 ± 0.06814 (20)	P=0.285					
VENTRAL PROSTATE	1.1137 ± 0.08972 (20)	1.0625 ± 0.08258 (19)	1.1270 ± 0.06223 (20)	1.3617 ± 0.12883 (20)	P=0.049					
RIGHT CAUDA EPIDIDYMIS	0.4998 ± 0.01831 (20)	0.4754 ± 0.01530 (19)	0.5421 ± 0.02030 (20)	0.5546 ± 0.02593 (20)	P=0.010					
RIGHT EPIDIDYMIS	1.2280 ± 0.03113 (20)	1.1457 ± 0.03450 (19)	1.3137 ± 0.04020 (20)	1.3775 ± 0.06483 (20)	P=0.029					
RIGHT TESTIS	2.7829 ± 0.09072 (20)	2.7819 ± 0.07505 (19)	2.8413 ± 0.07289 (20)	*3.4314 ± 0.10726 (20)	P<0.001					
SEMINAL VESICLES	3.7062 ± 0.13912 (20)	3.4884 ± 0.18279 (19)	4.1495 ± 0.21360 (20)	*4.3077 ± 0.18792 (20)	P=0.009					
SPLEEN	1.361 ± 0.0498 (20)	1.459 ± 0.0347 (19)	1.416 ± 0.0373 (20)	1.229 ± 0.0418 (20)	P=0.041					
THYROID	0.0518 ± 0.00281 (20)	0.0455 ± 0.00330 (19)	*0.0884 ± 0.00561 (20)	*0.2601 ± 0.01930 (20)	P<0.001					

TABLE 0-23													
	F ₀ :	SUMMARY O	F MALE	ABSOLUTE	ORGAN WEIG	HTS (G) AND ORGA	N-TO-	BODY WEIGHT RA	TIOS			
TWO GENERATION	REPRODUCTION	TOXICITY	STUDY	OF PROPYI	THIOURACIL	WHEN	ADMINISTER	ED TO	SPRAGUE-DAWLE	Y RATS	IN TH	E DRINKING	WATER

a Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (*= P<0.05).

b Mean organ weight ± standard error (number of animals).

c Mean ratio (mg/g body weight) ± standard error (number of animals).

Note: Absolute organ weights were covaried by body weight.

		DOSE GROUPS ^a			
ENDPOINT	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^b
EPIDIDYMAL SPERM DENSITY $^{\circ}$	423.64 ± 16.385 (20)	390.00 ± 21.443 (19)	398.55 ± 12.948 (20)	375.07 ± 28.224 (20)	P=0.349
SPERM MORPHOLOGY (% ABNORMAL)	^d 0.3 ± 0.11 (20)	*1.0 ± 0.18 (19)	0.4 ± 0.10 (20)	0.7 ± 0.17 (18)	P=0.354
SPERMATIDS/MG TESTIS ^e	63.36 ± 2.670 (20)	57.87 ± 2.184 (19)	64.43 ± 3.065 (20)	59.10 ± 2.828 (20)	P=0.563
TOTAL SPERMATIDS/TESTIS ^f	101.31 ± 3.445 (20)	95.33 ± 3.513 (19)	101.47 ± 4.143 (20)	94.25 ± 4.553 (20)	P=0.324
TOTAL SPERMAT/CAUDA ^f	130.03 ± 4.474 (20)	117.63 ± 6.469 (19)	129.25 ± 4.419 (20)	111.10 ± 9.620 (20)	P=0.170

a Endpoint mean ± standard error (number of animals).

b Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (* = P<0.05).</p>

c Sperm density expressed as 1000 sperm per mg right caudal tissue.

d Dose group means and standard errors are computed only from samples with at least 200 sperm.

e Spermatid heads per mg testis (x 1,000) = (total number of spermatid heads per right testis) / (right testis weight in mg)

f Total number of spermatid heads or sperm (x 1,000,000) = (average number of spermatid heads or sperm x 2.5 x 100) / 0.0001

		DOSE GROUPS	1		
ENDPOINT	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^b
AMPLITUDE	18.6 ± 0.38 (20)	18.1 ± 0.35 (19)	18.1 ± 0.37 (20)	18.6 ± 0.47 (18)	P=0.920
BEAT/CROSS FREQUENCY (hz/sec)	16.1 ± 0.22 (20)	16.2 ± 0.36 (19)	16.1 ± 0.32 (20)	16.4 ± 0.43 (18)	P=0.792
LINEARITY	37.4 ± 0.48 (20)	37.7 ± 0.55 (19)	37.9 ± 0.42 (20)	37.8 ± 0.61 (18)	P=0.649
MOTILE PERCENTAGE	93.0 ± 1.62 (20)	93.6 ± 0.62 (19)	94.8 ± 0.49 (20)	88.3 ± 4.46 (18)	P=0.246
PROGRESSIVE VELOCITY	103.6 ± 2.03 (20)	102.2 ± 1.68 (19)	105.2 ± 2.79 (20)	104.7 ± 2.82 (18)	P=0.392
PATH VELOCITY	163.1 ± 3.12 (20)	159.7 ± 2.30 (19)	163.4 ± 3.68 (20)	163.5 ± 4.68 (18)	P=0.630
STRAIGHTNESS	63.1 ± 0.80 (20)	63.8 ± 0.83 (19)	63.5 ± 0.63 (20)	63.6 ± 0.75 (18)	P=0.844
TRACK SPEED	284.5 ± 5.27 (20)	279.7 ± 4.36 (19)	283.2 ± 6.11 (20)	286.6 ± 8.14 (18)	P=0.551

TABLE 0-24B F0: SUMMARY OF HAMILTON-THORNE SPERM ANALYSIS DATA TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Endpoint mean \pm standard error (number of animals).

b Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (* = P<0.05).</p>

GROUP:	1	2	3	4	
DOSE (%):	0.0000	0.0001	0.0004	0.0015	
NUMBER OF ANIMALS ON STUDY :	20	20	20	20	
NUMBER OF ANIMALS COMPLETED.	(20)	(20)	(20)	(20)	
	(20)	(20)	(20)	(20)	
THYROTD/PARATHYROTD:					
SUBMITTED	(20)	(20)	(20)	(18)	
NO VICIDIE LECTONO	(20)	(20)	10	(10)	
NU VISIBLE LESIONS	19	20	19	0	
DISCOLORATION; TAN; BILATERAL; FOCAL	1	0	0	0	
ENLARGEMENT; BILATERAL	0	0	1	18	
AURENAL GLADD(5);	(20)	(20)	(20)	(10)	
SUDMITED.	(20)	(20)	(20)	(10)	
NO VISIBLE LESIONS	20	20	20	18	
DDATN.					
	(20)	(20)	(20)	(10)	
SUDMITED.	(20)	(20)	(20)	(10)	
NO VISIBLE LESIONS	20	20	20	18	
KIDNEV (S) ·					
SIIBMTTTED	(20)	(20)	(20)	(18)	
NO VICIDIE LECTONO	(20)	(20)	(20)	10	
NU VISIBLE LESIONS	19	20	20	10	
ENLARGEMENT; RIGHT	T	0	0	0	
I TYPP.					
	(20)	(20)	(20)	(18)	
NO VICIDIE LECTONO	(20)	(20)	(20)	10	
NO VISIBLE LESIONS	20	20	20	10	
MAMMARY GLAND(S):					
SUBMITTED	(0)	(0)	(1)	(1)	
NO VICIDIE LECTONO	(0)	(0)	(1)	(1)	
NU VISIBLE LESIUNS	0	0	0	0	
DISCOLORATION; YELLOW; RIGHT; FOCAL	0	0	0	1	
ENLARGEMENT; RIGHT	0	0	1	0	
ENLARGEMENT; RIGHT; FOCAL	0	0	0	1	
OVARY (IES);	(00)	(00)	(00)	(1.0.)	
SUBMITTED	(20)	(20)	(20)	(18)	
NO VISIBLE LESIONS	20	20	20	18	

 $\begin{array}{c} \text{TABLE 0-25} \\ \text{F}_0: \text{ SUMMARY OF FEMALE GROSS OBSERVATIONS} \\ \text{Two generation reproduction toxicity study of propylthiouracil when administered to sprague-dawley rats in the drinking water \\ \end{array}$

TABLE 0-25 (CONTINUED) F_0 : SUMMARY OF FEMALE GROSS OBSERVATIONS

TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

GROUP:	1	2	3	4	
DOSE (%):	0.0000	0.0001	0.0004	0.0015	
PITTIITTARY CLAND.					
SUBMITTED	(20)	(20)	(20)	(18)	
NO VISIBLE LESIONS	20	19	20	18	
NO VIDIDIDI DISTONU	20	1	20	10	
	0	-	0	0	
SPLEEN:					
SUBMITTED	(20)	(20)	(20)	(18)	
NO VISIBLE LESIONS	20	2.0	20	18	
	20	20	20	20	
URINARY BLADDER;					
SUBMITTED	(1)	(0)	(0)	(0)	
NO VISIBLE LESIONS	0	0	0	0	
ENLARGEMENT	1	0	0	0	
VAGINA/CERVIX/UTERUS;					
SUBMITTED	(20)	(20)	(20)	(18)	
NO VISIBLE LESIONS	19	19	20	18	
DISTENSION; RIGHT	0	1	0	0	
ENLARGEMENT; RIGHT	1	0	0	0	
FLUID-FILLED	0	1	0	0	

	DOSE GROUPS										
ORGAN	0.0000 %	0.0001 %	0.0004 %	0.0015 %	TREND ^a						
		ORGAN WEIGHTS	5 (g) ^b								
BODY ADRENALS BRAIN KIDNEYS LIVER OVARIES PITUITARY SPLEEN THYROID UTERUS	$\begin{array}{c} 349.3 \pm 10.09 \ (20) \\ 0.0754 \pm 0.00399 \ (20) \\ 1.963 \pm 0.0236 \ (20) \\ 2.4098 \pm 0.06308 \ (20) \\ 12.7812 \pm 0.30173 \ (20) \\ 0.1311 \pm 0.00716 \ (20) \\ 0.0170 \pm 0.00079 \ (20) \\ 0.609 \pm 0.0188 \ (20) \\ 0.0245 \pm 0.00566 \ (20) \\ 1.045 \pm 0.0796 \ (20) \end{array}$	$\begin{array}{r} 338.9 \pm 6.56 (20) \\ 0.0828 \pm 0.00388 (20) \\ 1.934 \pm 0.0230 (20) \\ 2.3157 \pm 0.06143 (20) \\ 12.9263 \pm 0.29381 (20) \\ 0.1354 \pm 0.00697 (20) \\ 0.0174 \pm 0.00077 (20) \\ 0.567 \pm 0.0183 (20) \\ 0.0281 \pm 0.00551 (20) \\ 0.994 \pm 0.0775 (20) \end{array}$	$\begin{array}{c} 333.6 \pm 7.38 \ (20) \\ 0.0716 \pm 0.00386 \ (20) \\ 1.901 \pm 0.0229 \ (20) \\ 2.3415 \pm 0.06112 \ (20) \\ 12.4662 \pm 0.29236 \ (20) \\ 0.1348 \pm 0.00694 \ (20) \\ 0.0156 \pm 0.00077 \ (20) \\ 0.599 \pm 0.0182 \ (20) \\ *0.0319 \pm 0.00548 \ (20) \\ 1.097 \pm 0.0772 \ (20) \end{array}$	*303.5 ± 6.93 (18) *0.0586 ± 0.00439 (18) *1.842 ± 0.0260 (18) *2.1244 ± 0.06945 (18) *11.5513 ± 0.33217 (18) *0.1173 ± 0.00788 (18) 0.0165 ± 0.00087 (18) *0.520 ± 0.0207 (18) *0.1159 ± 0.00623 (18) 0.937 ± 0.0877 (18)	P<0.001 P=0.005 P=0.013 P=0.010 P=0.310 P=0.315 P=0.024 P<0.001 P=0.661						
		ORGAN-TO-BODY WEIG	HT RATIOS [°]								
ADRENALS BRAIN KIDNEYS LIVER OVARIES PITUITARY SPLEEN THYROID UTERUS	$\begin{array}{c} 0.2199 \pm 0.00982 \ (20) \\ 5.717 \pm 0.2072 \ (20) \\ 7.1608 \pm 0.34801 \ (20) \\ 38.1986 \pm 0.95614 \ (20) \\ 0.3866 \pm 0.01899 \ (20) \\ 0.0502 \pm 0.00219 \ (20) \\ 1.805 \pm 0.0715 \ (20) \\ 0.0710 \pm 0.00288 \ (20) \\ 3.048 \pm 0.2530 \ (20) \end{array}$	$\begin{array}{c} 0.2462 \pm 0.01801 \ (20) \\ 5.731 \pm 0.0873 \ (20) \\ 6.9189 \pm 0.13672 \ (20) \\ 38.8161 \pm 0.80916 \ (20) \\ 0.4044 \pm 0.02178 \ (20) \\ 0.0522 \pm 0.00260 \ (20) \\ 1.688 \pm 0.0550 \ (20) \\ *0.0837 \pm 0.00397 \ (20) \\ 2.932 \pm 0.1577 \ (20) \end{array}$	$\begin{array}{c} 0.2163 \pm 0.00867 \ (20) \\ 5.754 \pm 0.1565 \ (20) \\ 7.0396 \pm 0.14600 \ (20) \\ 37.5723 \pm 0.65854 \ (20) \\ 0.4067 \pm 0.02374 \ (20) \\ 0.0470 \pm 0.00248 \ (20) \\ 1.805 \pm 0.0438 \ (20) \\ *0.0958 \pm 0.00474 \ (20) \\ 3.313 \pm 0.3827 \ (20) \end{array}$	$\begin{array}{c} 0.1936 \pm 0.01161 & (18) \\ 6.136 \pm 0.1549 & (18) \\ 6.7208 \pm 0.17960 & (18) \\ 35.1795 \pm 1.04268 & (18) \\ 0.3696 \pm 0.01943 & (18) \\ 0.0523 \pm 0.00230 & (18) \\ 1.655 \pm 0.0730 & (18) \\ *0.3858 \pm 0.04129 & (18) \\ 3.164 \pm 0.1565 & (18) \end{array}$	P=0.028 P=0.023 P=0.288 P=0.016 P=0.668 P=0.755 P=0.401 P<0.001 P=0.172						

	TABLE 0-26														
		F ₀ : S	UMMARY OF	FEMALE	ABSOLUTE	ORGAN WEI	GHTS (G)	AND C	ORGAN-TO	-BODY W	EIGHT RA	TIOS			
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY O	F PROPYLT	THIOURACIL	WHEN AD	MINIST	ERED TO	SPRAGUE	-DAWLEY	RATS	IN THE	DRINKING	WATER

a Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (*= P<0.05).

b Mean organ weight \pm standard error (number of animals).

c Mean ratio (mg/g body weight) \pm standard error (number of animals).

Note: Absolute organ weights were covaried by body weight.

	DOSE	GROUPS ^a .0001 % C	0.0004 % C	0.0015 %					
MALE									
FOUND DEAD	0/20	0/20	0/20	0/20					
MORIBUND KILLS	0/20	1/20	0/20	0/20					
REMOVED FROM STUDY	0/20	0/20	0/20	0/20					
	FI	EMALE							
FOUND DEAD	0/20	0/20	0/20	2/20					
MORIBUND KILLS	0/20	0/20	0/20	0/20					
REMOVED FROM STUDY	0/20	0/20	0/20	0/20					

TABLE 0-27 F0: SUMMARY OF MORTALITY DATA TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Number of animals found dead, moribund, or removed / total number of animals in group.

-	DOSE GROUP ^a									
POSTNATAL DAY	0.0000 %	0.0001 %	0.0004 %	TREND ^b						
		MALE								
32	120.4 ± 3.42 (28)	113.3 ± 3.37 (30)	112.3 ± 5.29 (31)	P=0.210						
39	182.4 ± 4.31 (28)	172.5 ± 4.32 (30)	169.7 ± 7.13 (31)	P=0.196						
46	247.6 ± 5.52 (28)	234.8 ± 5.71 (30)	229.9 ± 8.83 (31)	P=0.158						
53	312.3 ± 6.13 (28)	295.8 ± 7.27 (30)	291.6 ± 10.18 (31)	P=0.135						
60	366.6 ± 6.44 (28)	354.9 ± 7.27 (30)	347.1 ± 11.46 (31)	P=0.224						
67	405.7 ± 7.38 (28)	399.7 ± 7.73 (30)	390.9 ± 12.44 (31)	P=0.431						
74	448.8 ± 7.39 (28)	438.8 ± 8.57 (30)	428.1 ± 13.55 (31)	P=0.280						
81	482.2 ± 8.05 (28)	469.0 ± 8.65 (30)	461.9 ± 14.53 (31)	P=0.309						
88	505.6 ± 8.76 (28)	493.9 ± 9.09 (30)	485.3 ± 15.35 (31)	P=0.298						
95	528.9 ± 9.06 (28)	516.2 ± 9.35 (30)	507.4 ± 15.86 (31)	P=0.293						
		FEMALE								
32	103.9 ± 2.27 (30)	$101.5 \pm 2.61 (33)$	95.6 ± 2.98 (33)	P=0.082						
39	145.2 ± 2.44 (30)	141.3 ± 2.63 (33)	137.5 ± 3.26 (33)	P=0.149						
46	175.4 ± 2.87 (30)	171.7 ± 2.83 (33)	167.1 ± 3.12 (33)	P=0.099						
53	201.5 ± 3.61 (30)	200.2 ± 3.65 (33)	194.1 ± 3.40 (33)	P=0.179						
60	227.5 ± 3.83 (30)	223.6 ± 3.97 (33)	217.2 ± 3.66 (33)	P=0.115						
67	245.5 ± 3.95 (30)	244.3 ± 4.39 (33)	236.2 ± 3.94 (33)	P=0.173						
74	261.0 ± 4.62 (30)	261.9 ± 4.57 (33)	253.8 ± 4.40 (33)	P=0.374						
81	273.0 ± 5.05 (30)	275.8 ± 5.12 (33)	269.7 ± 4.64 (33)	P=0.790						
88	279.4 ± 5.53 (30)	280.2 ± 5.11 (33)	273.8 ± 4.58 (33)	P=0.482						
95	291.0 ± 5.85 (30)	290.7 ± 5.67 (33)	281.8 ± 4.91 (33)	P=0.313						

	TABLE 1A-1														
	F1: SUMMARY OF ADOLESCENT BODY WEIGHTS (GRAMS)														
TWO (GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPYLTH	IOURACIL	WHEN	ADMINISTERE	о то	SPRAGUE-DAWLEY	RATS	IN TH	HE DRINKING	WATER

a Mean \pm standard error (number of animals). b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).

	0.0000 %	DOSE GROUP ^a 0.0001 %	0.0004 %	0.0015 %	
		MALE			
FOUND DEAD	0/28	0/30	0/31	6/29	
MORIBUND KILLS	0/28	0/30	0/31	17/29	
REMOVED FROM STUDY	0/28	0/30	0/31	6/29	
		FEMALE			
FOUND DEAD	0/30	0/33	0/33	8/26	
MORIBUND KILLS	0/30	0/33	0/33	12/26	
REMOVED FROM STUDY	0/30	0/33	0/33	6/26	

	TABLE 1A-2																
	F1: SUMMARY OF ADOLESCENT MORTALITY DATA																
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPYLTI	HIOURA	CIL V	WHEN	ADMINISTERED	то	SPRAGUE-DAWLEY	RATS	IN :	THE	DRINKING	WATER

a Number of animals found dead, moribund, or removed / total number of animals in group.

DOSE GROUP ^a								
WEEK OF STUDY	0.0000 %	0.0001 %	0.0004 %	TREND ^b				
1	552.8 ± 10.88 (20)	531.6 ± 12.86 (20)	531.4 ± 16.64 (20)	P=0.191				
2	567.4 ± 10.66 (20)	547.0 ± 13.45 (20)	547.6 ± 16.60 (20)	P=0.249				
3	587.0 ± 10.82 (20)	564.8 ± 14.29 (20)	564.5 ± 17.33 (20)	P=0.186				
4	605.5 ± 11.00 (20)	581.6 ± 15.26 (20)	585.0 ± 17.43 (20)	P=0.212				
5	619.1 ± 11.42 (20)	591.9 ± 15.25 (20)	597.6 ± 17.60 (20)	P=0.184				
6	633.3 ± 11.70 (20)	607.3 ± 16.10 (20)	613.8 ± 18.18 (20)	P=0.255				
7	647.7 ± 12.39 (20)	621.7 ± 16.07 (20)	629.6 ± 19.42 (20)	P=0.306				
8	662.5 ± 13.36 (20)	635.2 ± 16.38 (20)	643.4 ± 19.99 (20)	P=0.309				
9	672.0 ± 13.44 (20)	646.6 ± 16.90 (20)	652.4 ± 20.60 (20)	P=0.296				
10	681.1 ± 13.49 (20)	659.6 ± 17.26 (20)	663.5 ± 21.41 (20)	P=0.303				
11	689.9 ± 14.38 (19)	669.6 ± 17.78 (20)	671.1 ± 21.65 (20)	P=0.310				
12	708.7 ± 26.52 (9)	620.0 ± 19.93 (10)	685.1 ± 33.63 (10)	P=0.401				

TABLE 1-1A F1: SUMMARY OF MALE BODY WEIGHTS (GRAMS) TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</p>

WEEK OF STUDY	0.0000 %	DOSE GROUP ª 0.0001 %	0.0004 %	TREND ^b
1	295.9 ± 7.90 (20)	295.3 ± 7.71 (20)	283.0 ± 6.97 (20)	P=0.332
2	330.7 ± 7.21 (20)	322.2 ± 7.44 (20)	311.0 ± 6.84 (20)	P=0.068
3	359.9 ± 7.56 (20)	348.7 ± 7.53 (20)	335.5 ± 8.19 (20)	P=0.042
4	407.6 ± 10.54 (20)	394.0 ± 10.16 (20)	375.6 ± 12.75 (20)	P=0.139
7	353.3 ± 7.23 (20)	352.0 ± 8.00 (20)	336.4 ± 7.33 (20)	P=0.179
8	327.9 ± 8.82 (20)	329.3 ± 9.15 (20)	317.9 ± 7.15 (20)	P=0.592
9	341.8 ± 7.42 (20)	341.5 ± 8.27 (20)	324.8 ± 5.88 (20)	P=0.095
10	355.8 ± 7.71 (20)	345.5 ± 7.50 (20)	334.9 ± 6.56 (20)	P=0.065
11	363.2 ± 8.28 (20)	350.9 ± 7.91 (20)	340.3 ± 7.43 (20)	P=0.055
12	366.1 ± 13.76 (10)	364.2 ± 11.50 (10)	355.4 ± 8.07 (10)	P=0.776

TABLE 1-1B F1: SUMMARY OF FEMALE BODY WEIGHTS (GRAMS) TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</p>

MEEK OF OUIDY	DOSE GROUP ^a										
WEER OF SIDDI	0.0000 %	0.0001 %	0.0004 %	IKEND							
		MALE									
3	55.6 ± 0.95 (20)	59.2 ± 2.24 (20)	56.1 ± 0.95 (20)	P=0.724							
4	51.7 ± 0.79 (20)	49.7 ± 1.01 (20)	50.8 ± 0.98 (20)	P=0.306							
5	50.9 ± 0.80 (20)	51.6 ± 0.68 (20)	51.9 ± 0.93 (20)	P=0.578							
6	49.6 ± 0.71 (20)	49.9 ± 0.64 (20)	49.7 ± 0.51 (20)	P=0.704							
7	51.3 ± 0.80 (20)	51.4 ± 0.71 (19)	50.1 ± 0.83 (20)	P=0.206							
8	49.3 ± 1.31 (19)	49.1 ± 0.71 (20)	48.6 ± 1.01 (20)	P=0.626							
9	48.0 ± 0.92 (20)	48.1 ± 0.64 (20)	49.6 ± 2.52 (20)	P=0.139							
10	46.2 ± 0.77 (19)	46.5 ± 0.85 (20)	46.3 ± 0.62 (20)	P=0.540							
		FEMALE									
3	76.1 ± 2.23 (20)	76.2 ± 2.27 (20)	75.5 ± 2.28 (20)	P=0.903							
10	68.0 ± 1.76 (20)	64.8 ± 1.41 (20)	65.1 ± 1.35 (20)	P=0.150							

	TABLE 1-2A																	
	F1: SUMMARY OF DAILY FEED CONSUMPTION (G/KG BODY WEIGHT/DAY)																	
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY (OFI	PROPYL	THIOUR	ACIL	WHEN	ADMINIS	TERED	то	SPRAGUE-DAWLEY	RATS	IN	THE	DRINKING	WATER

a Mean \pm standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</p>

		DOSE GROUP ^a		h
WEEK OF STUDY	0.0000 %	0.0001 %	0.0004 %	TREND
		MALE		
3	32.5 ± 0.56 (20)	33.2 ± 1.05 (20)	31.5 ± 0.76 (20)	P=0.220
4	31.2 ± 0.57 (20)	*28.8 ± 0.65 (20)	29.5 ± 0.75 (20)	P=0.067
5	31.5 ± 0.59 (20)	30.4 ± 0.70 (20)	30.8 ± 0.75 (20)	P=0.356
6	31.4 ± 0.62 (20)	30.2 ± 0.62 (20)	30.4 ± 0.89 (20)	P=0.166
7	33.2 ± 0.73 (20)	31.7 ± 0.73 (19)	31.4 ± 0.86 (20)	P=0.071
8	32.5 ± 0.98 (19)	31.1 ± 0.73 (20)	31.1 ± 0.95 (20)	P=0.330
9	32.2 ± 0.75 (20)	31.0 ± 0.76 (20)	31.9 ± 1.09 (20)	P=0.447
10	31.4 ± 0.74 (19)	30.6 ± 0.79 (20)	30.5 ± 0.78 (20)	P=0.404
		FEMALE		
3	27.3 ± 0.84 (20)	26.5 ± 0.77 (20)	25.4 ± 1.04 (20)	P=0.147
10	24.1 ± 0.72 (20)	22.3 ± 0.44 (20)	21.8 ± 0.70 (20)	P=0.028

	TABLE 1-2B																	
	F1: SUMMARY OF DAILY FEED CONSUMPTION (G/ANIMAL/DAY)																	
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY O	F PROP	YLTHIOU	RACIL W	WHEN	ADMINIS	STERED	то	SPRAGUE-	-DAWLEY	RATS	IN !	THE	DRINKING	WATER

a Mean \pm standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</p>

WEEK OF STUDY	0.0000 %	DOSE GROUP ^a 0.0001 %	0.0004 %	$\mathtt{TREND}^{\mathtt{b}}$
		MALE		
3	64.7 ± 1.91 (20)	66.1 ± 2.96 (20)	66.2 ± 2.34 (20)	P=0.735
4	63.4 ± 2.05 (20)	65.5 ± 2.87 (20)	67.3 ± 3.81 (20)	P=0.431
5	60.0 ± 2.20 (20)	64.5 ± 3.28 (20)	62.6 ± 2.90 (20)	P=0.533
6	59.5 ± 2.16 (20)	60.6 ± 3.04 (20)	59.3 ± 2.06 (20)	P=1.000
7	57.8 ± 1.78 (20)	59.7 ± 3.29 (19)	57.6 ± 2.19 (20)	P=0.900
8	54.1 ± 1.96 (20)	58.4 ± 2.77 (19)	54.7 ± 2.38 (20)	P=0.878
9	50.8 ± 1.72 (20)	53.5 ± 2.18 (20)	53.1 ± 2.89 (20)	P=0.674
10	50.5 ± 1.49 (19)	53.7 ± 2.16 (20)	52.8 ± 2.23 (20)	P=0.461
		FEMALE		
3	107.1 ± 10.20 (20)	122.5 ± 5.13 (20)	121.3 ± 6.61 (20)	P=0.342
10	88.2 ± 3.38 (20)	87.9 ± 4.11 (20)	89.1 ± 3.25 (20)	P=0.946

 TABLE 1-3A

 F1: SUMMARY OF DAILY WATER CONSUMPTION (G/KG BODY WEIGHT/DAY)

 TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</pre>

WEEK OF STUDY	0 0000 %	DOSE GROUP ^a 0.0001 %	0 0004 %	TREND ^b
WEER OF STODI	0.0000 %	0.0001 %	0.0001 0	IREND
		MALE		
3	37.9 ± 1.12 (20)	37.3 ± 1.76 (20)	36.9 ± 1.08 (20)	P=0.729
4	38.2 ± 1.02 (20)	37.9 ± 1.67 (20)	38.6 ± 1.51 (20)	P=0.802
5	36.9 ± 1.12 (20)	38.0 ± 1.91 (20)	36.9 ± 1.24 (20)	P=0.729
6	37.4 ± 1.06 (20)	36.5 ± 1.74 (20)	36.0 ± 0.93 (20)	P=0.424
7	37.2 ± 1.01 (20)	37.1 ± 1.93 (19)	35.7 ± 0.93 (20)	P=0.388
8	35.6 ± 1.07 (20)	37.3 ± 1.73 (19)	34.6 ± 0.84 (20)	P=0.536
9	34.0 ± 1.06 (20)	34.5 ± 1.57 (20)	33.9 ± 1.10 (20)	P=0.679
10	34.2 ± 0.97 (19)	35.4 ± 1.58 (20)	34.4 ± 0.96 (20)	P=0.911
		FEMALE		
3	38.2 ± 3.55 (20)	42.3 ± 1.50 (20)	40.7 ± 2.34 (20)	P=0.914
10	31.3 ± 1.33 (20)	30.1 ± 1.30 (20)	29.6 ± 0.99 (20)	P=0.272

								TABLE	1-3E	3									
			:	F1: SUM	MARY	YOF	DAILY	WATER	CONSU	JMPTION	(G/ANI	IAM	L/DAY)						
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPY	LTHIC	URACIL	WHEN	ADMINI	STERED	то	SPRAGUE-DAW	LEY	RATS	IN	THE	DRINKING	WATER

a Mean \pm standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</p>

WEEK OF STUDY	0.0001 %	DOSE GROUP ^a 0.0004 %	
		MALE	
3	0.1 ± 0.00 (20)	0.3 ± 0.01 (20)	
4	0.1 ± 0.00 (20)	0.3 ± 0.02 (20)	
5	0.1 ± 0.00 (20)	0.3 ± 0.01 (20)	
6	0.1 ± 0.00 (20)	0.2 ± 0.01 (20)	
7	0.1 ± 0.00 (19)	0.2 ± 0.01 (20)	
8	0.1 ± 0.00 (19)	0.2 ± 0.01 (20)	
9	0.1 ± 0.00 (20)	0.2 ± 0.01 (20)	
10	0.1 ± 0.00 (20)	0.2 ± 0.01 (20)	
		FEMALE	
3	0.1 ± 0.01 (20)	0.5 ± 0.03 (20)	
10	0.1 ± 0.00 (20)	0.4 ± 0.01 (20)	

	TABLE 1-4																	
	F1: SUMMARY OF ESTIMATED DOSAGE (MG/KG BODY WEIGHT/DAY)																	
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROE	YLTHIOURA	CIL WHI	N ADM	NISTER	ED TO	SPRAGUE	-DAWLEY	RATS	IN	THE	DRINKING	WATER

a Mean \pm standard error (number of animals).

	DOS	E GROUP ^a		
REPRODUCTIVE PARAMETER	0.0000 %	0.0001 %	0.0004 %	TREND
Pregnancy Index ^{b,e,g} Live Pups Per Litter ^{c,h,i}	15/20 (75)	15/20 (75)	14/20 (70)	P=0.500
Male Female Combined	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	P=0.803 P=0.154 P=0.100
Proportion Pups Born Alive ^{c,h,i}	1.00 ± 0.003 (15)	0.98 ± 0.012 (15)	0.98 ± 0.012 (14)	P=0.236
Sex of Pups Born Alive (Males/Total) ^{c,j,i} Live Pup Weight (grams) ^{c,j,i}	0.47 ± 0.028 (15)	0.48 ± 0.040 (15)	0.51 ± 0.048 (14)	P=0.412
Male	6.83 ± 0.137 (14)	6.74 ± 0.191 (15)	6.93 ± 0.157 (13)	P=0.412
Female	6.34 ± 0.123 (14)	6.41 ± 0.189 (15)	6.55 ± 0.135 (13)	P=0.166
Combined	6.57 ± 0.139 (14)	6.52 ± 0.163 (15)	6.75 ± 0.142 (13)	P=0.128
Adjusted Live Pup Weight (grams) ^{c,k,1} Male Female Combined	6.94 ± 0.147 (14) 6.43 ± 0.144 (14) 6.67 ± 0.135 (14)	6.63 ± 0.142 (15) 6.32 ± 0.140 (15) 6.42 ± 0.131 (15)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	OVERALL P=0.240 P=0.520 P=0.191
Average Dam Weight (grams) ^{c,m,i} Average Sire Weight (grams) ^{n,i} Average Days to Litter ^{c,m,i}	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	P=0.598 P=0.235 P=0.298

	TABLE 1-5														
	F1: SUMMARY OF REPRODUCTIVE PERFORMANCE OF COHABITED PAIRS														
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPYLTHIOURACIL	WHEN	ADMINISTERED	то	SPRAGUE-DAWLEY	RATS	IN	THE	DRINKING	WATER

a Statistical significance for comparisons of dosed groups to controls: * = P<0.05.

b Only those pairs surviving cohabitation were included for statistical analysis of data.

c Only those females surviving to the end of the parturition period were included for statistical analysis of the data.

d Number of females with vaginal sperm / number of cohabiting pairs (percent with vaginal sperm).

e Number of fertile pairs / number of cohabiting pairs (percent pregnant).

f Number of fertile pairs / number of females with vaginal sperm (percent fertile).

g P-value from Cochran-Armitage trend test. Dosed groups compared to control group by Chi-squared test. If fertility index > 1, then it is set equal to 1 for statistical analysis.

- h Mean ± standard error (number of pregnant pairs).
- i Each dose group is compared to the control group by Shirley's test if P<0.01 from Jonckheere's trend test. Otherwise, Dunn's test is applied.
- j Mean ± standard error (number of pregnant pairs producing live pups).
- k Least squares estimate of mean pup weight adjusted for average litter size ± standard error (number of pregnant pairs producing live pups).
- 1 Overall differences tested with an F-test, pairwise comparisons from Dunnett's test.
- m Mean ± standard error (number of dams).
- n Mean ± standard error (number of sires).

	D	OSE GROUP ^a		
AGE (DAYS)	0.0000 %	0.0001 %	0.0004 %	TREND ^b
1	356.9 ± 9.64 (15)	352.2 ± 11.10 (15)	342.3 ± 10.34 (14)	P=0.598
4	366.4 ± 8.96 (14)	353.7 ± 10.85 (15)	347.5 ± 8.08 (13)	P=0.188
7	363.7 ± 8.82 (10)	358.3 ± 10.65 (15)	359.1 ± 8.13 (14)	P=0.826
14	366.6 ± 7.00 (15)	361.5 ± 9.04 (15)	360.8 ± 6.71 (14)	P=0.880
21	336.4 ± 6.19 (15)	341.2 ± 8.95 (15)	335.5 ± 7.47 (14)	P=0.813

TABLE 1-6 F1: SUMMARY OF DAM WEIGHTS (GRAMS) DURING LACTATION OF THE F2 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of dams).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (* = P<0.05).</p>

POSTNATAL DAYS	0.0000 %	DOSE GROUP ^a 0.0001 %	0.0004 %	TREND ^b
		FEMALE		
1-4	90.3 ± 6.93 (14)	86.2 ± 5.19 (15)	111.5 ± 17.62 (13)	P=0.791
4-7	149.5 ± 5.77 (10)	135.3 ± 7.31 (15)	141.5 ± 7.90 (13)	P=0.397
11-14	194.3 ± 3.88 (14)	184.2 ± 9.60 (14)	193.5 ± 6.29 (14)	P=0.818
18-21	243.7 ± 7.49 (15)	219.6 ± 12.14 (15)	222.0 ± 8.07 (14)	P=0.172

TABLE 1-7A F1: SUMMARY OF DAM DAILY FEED CONSUMPTION (G/KG BODY WEIGHT/DAY) DURING LACTATION OF THE F2 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</p>

POSTNATAL DAYS	0.0000 %	DOSE GROUP ^a 0.0001 %	0.0004 %	TREND ^b
		FEMALE		
1-4	33.1 ± 2.13 (15)	29.9 ± 1.28 (15)	38.5 ± 5.92 (13)	P=0.608
4-7	54.3 ± 1.31 (11)	*47.9 ± 2.29 (15)	50.1 ± 2.36 (13)	P=0.141
7-11	63.7 ± 0.97 (11)	*56.5 ± 2.43 (15)	61.3 ± 1.98 (14)	P=0.440
11-14	71.0 ± 0.87 (14)	65.4 ± 3.10 (14)	69.6 ± 2.11 (14)	P=0.764
14-18	68.1 ± 2.03 (15)	65.7 ± 2.89 (15)	69.1 ± 1.97 (14)	P=0.755
18-21	81.7 ± 2.27 (15)	74.2 ± 3.71 (15)	*74.0 ± 2.28 (14)	P=0.027

TABLE 1-7B F1: SUMMARY OF DAM DAILY FEED CONSUMPTION (G/ANIMAL/DAY) DURING LACTATION OF THE F2 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</p>

POSTNATAL DAYS	0.0000 %	DOSE GROUP ^a 0.0001 %	0.0004 %	TREND ^b
		FEMALE		
1-4	135.8 ± 6.55 (13)	123.3 ± 6.12 (15)	132.9 ± 8.78 (13)	P=0.765
4-7	190.0 ± 8.11 (10)	163.8 ± 10.76 (14)	173.9 ± 8.70 (13)	P=0.189
11-14	245.8 ± 5.07 (15)	226.7 ± 14.21 (15)	253.9 ± 14.30 (14)	P=0.957
18-21	333.2 ± 11.72 (15)	289.7 ± 20.13 (15)	304.6 ± 16.33 (14)	P=0.216

	TABLE 1-8A															
	\mathbf{F}_1 :	: SUMMARY	OF	DAM DAIL	WATER	CONSUMPTION	(G/KG	BODY	WEIGHT/DAY)	DURIN	G LACTATION OF	THE	F ₂ L]	TTER		
TWO GENERAT	ION F	REPRODUCT	ION	TOXICITY	STUDY	OF PROPYLTHI	OURACII	WHEN	ADMINISTER	ED TO	SPRAGUE-DAWLEY	RATS	IN	THE DI	RINKING	WATER

a Mean ± standard error (number of animals). b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).

POSTNATAL DAYS	0.0000 %	DOSE GROUP ^a 0.0001 %	0.0004 %	TREND ^b
		FEMALE		
1-4	49.2 ± 1.67 (14)	*43.0 ± 1.70 (15)	45.9 ± 2.80 (13)	P=0.184
4-7	69.7 ± 2.32 (11)	*58.3 ± 3.40 (14)	*61.5 ± 2.48 (13)	P=0.027
7-11	79.5 ± 1.61 (11)	*68.6 ± 3.41 (15)	75.3 ± 3.19 (14)	P=0.279
11-14	89.8 ± 1.41 (15)	*81.0 ± 4.51 (15)	91.3 ± 4.97 (14)	P=0.377
14-18	85.0 ± 3.64 (15)	85.6 ± 4.90 (15)	90.0 ± 3.52 (14)	P=0.525
18-21	111.6 ± 3.39 (15)	97.6 ± 6.13 (15)	101.6 ± 5.17 (14)	P=0.135

TABLE 1-8B F1: SUMMARY OF DAM DAILY WATER CONSUMPTION (G/ANIMAL/DAY) DURING LACTATION OF THE F2 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (*= P<0.05).</p>
	DOSE GROUP	, a							
POSTNATAL DAYS	0.0001 % 0.0004 %								
	FEMALE								
1-4	0.1 ± 0.01 (15)	0.5 ± 0.04 (13)							
4-7	$0.2 \pm 0.01 (14)$	0.7 ± 0.03 (13)							
11-14	0.2 ± 0.01 (15)	$1 0 \pm 0 06 (14)$							
11 11	0.2 ± 0.01 (13)	1.0 1 0.000 (14)							
18-21	0.3 ± 0.02 (15)	$1.2 \pm 0.07 (14)$							

	TABLE 1-9																				
		F1: S	SUMMARY	OF EST	IMATED	DOS	AGE (N	4G/KG	BODY	WEIGHT	'/DAY)	DURING	LAC	TATION	OF TH	ΕF	r_2 LIT	TER			
TWO	GENERATION	REPRODUC	CTION TO	XICITY	STUDY	OF	PROPYI	LTHIOU	URACII	WHEN	ADMIN	ISTERED	то	SPRAGUE	E-DAWI	ΕY	RATS	IN	THE	DRINKING	WATER

a Mean \pm standard error (number of animals).

	DOSE GROUPS ^a													
Endpoint	0.0000 %	0.0001 %	0.0004 %	TREND ^b										
		MALE												
Anogenital Distance (PND1)	2.72 ± 0.041 (15)	*2.51 ± 0.034 (15)	*2.52 ± 0.055 (14)	P=0.001										
Average Pup Weight (PND1)	6.79 ± 0.132 (15)	6.81 ± 0.177 (15)	6.87 ± 0.154 (14)	P=0.575										
Ratio AGD/Pup Weight (PND1)	0.40 ± 0.007 (15)	0.37 ± 0.011 (15)	*0.37 ± 0.009 (14)	P=0.021										
		FEMALE												
Anogenital Distance (PND1)	1.20 ± 0.020 (15)	1.20 ± 0.024 (15)	1.22 ± 0.016 (14)	P=0.738										
Average Pup Weight (PND1)	6.31 ± 0.119 (15)	6.36 ± 0.173 (15)	6.50 ± 0.123 (14)	P=0.126										
Ratio AGD/Pup Weight (PND1)	0.19 ± 0.005 (15)	0.19 ± 0.006 (15)	0.19 ± 0.004 (14)	P=0.355										

TABLE 1-10 F_1 : SUMMARY OF ANOGENITAL DISTANCE AND PUP WEIGHT FOR THE F_2 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean \pm standard error (number of dams).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (* = P<0.05).</p>

	DOSE	GROUP ^a		
AGE (DAYS)	0.0000 %	0.0001 %	0.0004 %	TREND
		MALE		
1	6.83 ± 0.137 (14)	6.74 ± 0.191 (15)	6.93 ± 0.157 (13)	P=0.412
4	9.55 ± 0.298 (14)	9.94 ± 0.356 (15)	9.84 ± 0.345 (13)	P=0.350
7	14.15 ± 0.790 (10)	15.13 ± 0.718 (15)	14.26 ± 0.362 (14)	P=0.707
14	28.14 ± 0.866 (15)	29.23 ± 1.367 (15)	27.27 ± 0.727 (14)	P=0.813
21	44.31 ± 1.528 (15)	45.66 ± 2.359 (15)	41.79 ± 1.197 (14)	P=0.338
	E	EMALE		
1	6.34 ± 0.123 (14)	6.41 ± 0.189 (15)	6.55 ± 0.135 (13)	P=0.166
4	8.95 ± 0.286 (14)	9.31 ± 0.335 (15)	9.45 ± 0.341 (13)	P=0.090
7	13.26 ± 0.785 (10)	14.30 ± 0.669 (15)	13.70 ± 0.364 (14)	P=0.415
14	26.44 ± 0.995 (15)	27.87 ± 1.386 (15)	26.29 ± 0.558 (14)	P=0.643
21	42.02 ± 1.697 (15)	43.18 ± 2.169 (15)	39.89 ± 1.075 (14)	P=0.458

							TZ	ABLE	1-11										
				F1: SU	MMAF	NY OF	AVERAGE	PUP	WEIG	HTS F	OR THE	F ₂ L	ITTER						
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPY	LTHIOURA	CIL	WHEN	ADMIN	ISTER	ED TO	SPRAGUE	-DAWLEY	RATS	IN	THE	DRINKING	WATER

a Mean ± standard error (number of litters).

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (* = P<0.05).</p>

		DOSE GROUP ^a		
AGE (DAYS)	0.0000 %	0.0001 %	0.0004 %	TREND ^b
		MALE		
4	0.99 ± 0.012 (14)	0.99 ± 0.007 (15)	0.99 ± 0.007 (13)	P=0.979
7	0.98 ± 0.017 (10)	0.99 ± 0.007 (15)	0.99 ± 0.006 (14)	P=0.758
14	0.98 ± 0.012 (15)	0.98 ± 0.010 (15)	0.99 ± 0.010 (14)	P=1.000
21	0.97 ± 0.014 (15)	0.98 ± 0.010 (15)	0.97 ± 0.019 (14)	P=0.962
		FEMALE		
4	1.00 ± 0.000 (14)	0.99 ± 0.008 (15)	0.97 ± 0.017 (13)	P=0.043
7	0.99 ± 0.011 (10)	0.98 ± 0.017 (15)	0.97 ± 0.016 (14)	P=0.337
14	0.98 ± 0.012 (15)	0.98 ± 0.017 (15)	0.97 ± 0.016 (14)	P=0.879
21	0.98 ± 0.012 (15)	0.98 ± 0.018 (15)	0.97 ± 0.016 (14)	P=0.848
		COMBINED		
4	0.93 ± 0.066 (15)	0.99 ± 0.008 (15)	0.98 ± 0.010 (13)	P=0.300
7	0.99 ± 0.008 (11)	0.98 ± 0.015 (15)	0.98 ± 0.009 (14)	P=0.402
14	0.98 ± 0.008 (15)	0.98 ± 0.015 (15)	0.97 ± 0.012 (14)	P=0.934
21	0.97 ± 0.009 (15)	0.97 ± 0.015 (15)	0.97 ± 0.012 (14)	P=0.858

	TABLE 1-12																
F_1 : SUMMARY OF PUP SURVIVAL FOR THE F_2 LITTER																	
TWO	GENERATION	REPRODUCTION	TOXICITY	STUDY	OF	PROPYLTH	IOURACIL	WHEN	ADMINISTE	ERED 1	то	SPRAGUE-DAWLEY	RATS	IN	THE	DRINKING	WATER

a Mean of (number of live pups/number of pups born alive) ± standard error (number of litters). Ratios greater than 1 or increases in survival over time indicate missexing of pups.

b Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (* = P<0.05).</pre>

DOSE GROUP ^a														
AGE (DAYS)	0.0000 %	0.0001 %	0.0004 %											
12	0.00 ± 0.00 (15)	0.00 ± 0.00 (15)	0.00 ± 0.00 (14)											
13	0.00 ± 0.00 (15)	0.00 ± 0.00 (15)	0.00 ± 0.00 (14)											

TABLE 1-13 F_1 : SUMMARY OF NIPPLE RETENTION FOR THE F_2 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

	DC	DSE GROUP ^a		
ENDPOINT ^b	0.0000 %	0.0001 %	0.0004 %	TREND [°]
DAY OF EYE OPENING	16.3 ± 0.18 (15)	16.1 ± 0.17 (15)	16.9 ± 0.25 (14)	P=0.045
DAY OF PINNA DETACHMENT	5.2 ± 0.17 (15)	5.5 ± 0.24 (15)	4.9 ± 0.27 (14)	P=0.431

TABLE 1-14 F_1 : SUMMARY OF PINNA DETACHMENT AND EYE OPENING FOR THE F_2 LITTER TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean \pm standard error (number of animals).

b Mean = age (days)

c Each dose group is compared to the control with Shirley's test when a trend is present (P<0.01 from Jonckheere's trend test), otherwise Dunn's test is applied (* = P<0.05).

GROUP:	1	2	3	
DOSE (%):	0.0000	0.0001	0.0004	
NUMBER OF ANIMALS ON STUDY:	45	42	42	
NUMBER OF ANIMALS COMPLETED:	(45)	(42)	(42)	
	(45)	(42)	(42)	
SUDMITED	(45)	(42)	(42)	
NO VISIBLE LESIONS	40	42	42	
SEMINAL VESICLES W/ COAGULATING GLANDS:				
SUBMITTED.	(45)	(42)	(42)	
NO VISIBLE LESTONS.	45	42	42	
LIVER;				
SUBMITTED	(45)	(42)	(42)	
NO VISIBLE LESIONS	45	42	42	
ENLARGEMENT; ALL LOBES	. 1	0	0	
LEFT TESTES W/EPIDIDYMIDES;				
SUBMITTED	(45)	(42)	(42)	
NO VISIBLE LESIONS	45	42	42	
THYROID/PARATHYROID;				
SUBMITTED	(45)	(42)	(42)	
NO VISIBLE LESIONS	45	42	42	
ADRENAL GLAND(S);	(45)	(40)	(40)	
SUBMITTED.	(45)	(42)	(42)	
NO VISIBLE LESIONS	45	42	42	
- NT - CO				
	(1)	(1)	(4)	
SUDMITED	(1)	(1)	(4)	
NO VISIBLE RESTONS	40	42	42	
KIDNEY(S):				
SUBMITTED.	(45)	(42)	(42)	
NO VISIBLE LESIONS.	45	42	42	

TABLE 1-15 F_1 : SUMMARY OF F_2 MALE PND 21 NECROPSY GROSS OBSERVATIONS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

GROUP: DOSE (%):	10.0000	2 0.0001	3 0.0004	
PITUITARY GLAND; SUBMITTED NO VISIBLE LESIONS	(45) 45	(42) 42	(41) 42	
SPLEEN; SUBMITTED. NO VISIBLE LESIONS	(1) 45	(2) 42	(4) 42	
THYMUS; SUBMITTED. NO VISIBLE LESIONS	(18) 45	(6) 42	(8) 42	
VENTRAL PROSTATE; SUBMITTED NO VISIBLE LESIONS	(45 45) (42 42) (42) 42	
DORSOLATERAL PROSTATE; SUBMITTED NO VISIBLE LESIONS	(45) 45	(42) 42	(42) 42	

TABLE 1-15 (CONTINUED) F_1 : SUMMARY OF F_2 MALE PND 21 NECROPSY GROSS OBSERVATIONS

TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

TABLE 1-16																		
		\mathbf{F}_1 :	SUMMA	ARY OF 1	F ₂ MALE	PND	21	ABSOLUTE	ORGAN	WEIGH	CS AND	ORGAN-	TO-BODY	WEIGHT	RATIOS	5		
TWO	GENERATION	REPRODUCT	ION TO	OXICITY	STUDY	OF	PROI	PYLTHIOUR	ACIL W	HEN ADI	INIST	ERED TO	SPRAGU	E-DAWLEY	RATS	IN THE	DRINKING	G WATER

		DOSE GROUP		
ORGAN	0.0000 %	0.0001 %	0.0004 %	TREND ^a
		ORGAN WEIGHTS (g) ^B		
BODY	44.9 ± 0.95 (45)	44.7 ± 1.17 (42)	43.2 ± 0.78 (42)	P=0.264
BRAIN	1.477 ± 0.0092 (45)	1.466 ± 0.0096 (42)	1.479 ± 0.0096 (42)	P=0.884
SPLEEN	0.190 ± 0.0046 (45)	*0.216 ± 0.0048 (42)	0.201 ± 0.0048 (42)	P=0.105
THYMUS	0.191 ± 0.0041 (45)	0.187 ± 0.0042 (42)	0.180 ± 0.0042 (42)	P=0.064
		ORGAN-TO-BODY WEIGHT RATIOS [°]		
BRAIN	33.479 ± 0.5867 (45)	33.632 ± 0.7650 (42)	34.479 ± 0.5796 (42)	P=0.289
SPLEEN	$4.270 \pm 0.1124 (45)$	*4.799 ± 0.1460 (42)	4.406 ± 0.1209 (42)	P=0.601
THYMUS	4.295 ± 0.0782 (45)	4.211 ± 0.1069 (42)	4.020 ± 0.0940 (42)	P=0.073

a Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (*= P<0.05).

b Mean organ weight ± standard error (number of animals).

c Mean ratio (mg/g body weight) ± standard error (number of animals).

Note: Absolute organ weights were covaried by body weight.

GROUP:	1	2	3	
DOSE (%):	0.0000	0.0001	0.0004	
NUMBER OF ANIMALS ON STUDY: NUMBER OF ANIMALS COMPLETED:	45 (45)	43 (43)	40 (40)	
LIVER; SUBMITTED NO VISIBLE LESIONS	(45) 45	(43) 43	(40) 40	
THYROID/PARATHYROID;				
SUBMITTED NO VISIBLE LESIONS	(45) 45	(43) 43	(40) 40	
ADRENAL GLAND(S); SUBMITTED NO VISIBLE LESIONS	(45) 45	(43) 43	(40) 40	
BRAIN; SUBMITTED NO VISIBLE LESIONS	(1) 45	(1) 43	(4) 40	
CERVIX; SUBMITTED NO VISIBLE LESIONS	(45) 45	(43) 43	(40) 40	
KIDNEY(S); SUBMITTED NO VISIBLE LESIONS	(45) 45	(43) 43	(40) 40	
DVARY(IES); SUBMITTED NO VISIBLE LESIONS	(45) 45	(43) 43	(40) 40	
PITUITARY GLAND; SUBMITTED NO VISIBLE LESIONS	(45) 45	(43) 43	(40) 40	

TABLE 1-17 F_1 : SUMMARY OF F_2 FEMALE PND 21 NECROPSY GROSS OBSERVATIONS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

GROUP:	1	2	3	
DOSE (%):	0.0000	0.0001	0.0004	
SPLEEN; SUBMITTED. NO VISIBLE LESIONS	(0) 45	(1) 43	(4) 40	
THYMUS; SUBMITTED NO VISIBLE LESIONS	(16) 45	(8) 43	(9 40	
UTERUS; SUBMITTED. NO VISIBLE LESIONS.	(45) 45	(43) 43	(40) 40	
VAGINA; SUBMITTED NO VISIBLE LESIONS	(45) 45	(43) 43	(40) 40	

$\begin{array}{c} \text{TABLE 1-17 (CONTINUED)} \\ \text{F}_1: \text{ SUMMARY OF F}_2 \text{ FEMALE PND 21 NECROPSY GROSS OBSERVATIONS} \\ \text{TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER \\ \end{array}$

		DOSE GROUP		
ORGAN	0.0000 %	0.0001 %	0.0004 %	TREND ^a
		ORGAN WEIGHTS (g) ^B		
BODY	42.8 ± 1.06 (45)	42.6 ± 1.27 (43)	41.3 ± 0.72 (40)	P=0.348
BRAIN	1.403 ± 0.0089 (45)	$1.418 \pm 0.0091 (43)$	1.432 ± 0.0095 (40)	P=0.027
SPLEEN	0.198 ± 0.0047 (45)	0.211 ± 0.0049 (43)	0.196 ± 0.0050 (40)	P=0.789
THYMUS	0.194 ± 0.0041 (45)	0.192 ± 0.0042 (43)	*0.177 ± 0.0044 (40)	P=0.007
		<u>ORGAN-TO-BODY WEIGHT RATIOS^{c}</u>		
BRAIN	33.554 ± 0.6693 (45)	34.285 ± 0.8345 (43)	34.804 ± 0.5544 (40)	P=0.121
SPLEEN	4.615 ± 0.1508 (45)	4.878 ± 0.1657 (43)	4.493 ± 0.1067 (40)	P=0.643
THYMUS	4.559 ± 0.0917 (45)	4.537 ± 0.0994 (43)	*4.145 ± 0.1106 (40)	P=0.012

TABLE 1-18 F1: SUMMARY OF F2 FEMALE PND 21 ABSOLUTE ORGAN WEIGHTS AND ORGAN-TO-BODY WEIGHT RATIOS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (*= P<0.05).

b Mean organ weight ± standard error (number of animals).

c Mean ratio (mg/g body weight) \pm standard error (number of animals).

Note: Absolute organ weights were covaried by body weight.

TABLE 1-19 F1: SUMMARY OF STAGES AND LENGTH OF ESTROUS CYCLE TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

DOSE %	Р	ESTRO E	US STAGE M	C (%) D	N	CYCLE LENGTH ^{a,d} (DAYS)	NUMBER OF CYCLES ^{a,d}	NUMBER OF CYCLING FEMALES ^{b,c}	NUMBER OF FEMALES W/REGULAR CYCLE ^{c,e}
0.0000	17 5	33.0	20 7	27 5	0.4	$(1.2 \pm 0.10 (1.8)^{f})$	$2 4 \pm 0.12 (18)$	19/20 (90)	17/20 (85)
0.0000	17.5	55.9	20.7	27.3	0.4	4.2 1 0.10 (10)	2.4 1 0.12 (10)	10/20 (90)	1//20 (05)
0.0001	16.1	35.0	18.2	30.7	0.0	$4.5 \pm 0.21 (18)^{g}$	2.4 ± 0.16 (18)	18/20 (90)	15/20 (75)
0.0004	18.6	33.9	19.6	27.9	0.0	$4.3 \pm 0.16 (19)^{h}$	2.5 ± 0.18 (19)	19/20 (95)	14/20 (70)

P=Proestrus, E=Estrus, M=Metestrus, D=Diestrus, N=Not Clear, Poor Quality, or Insufficient Number of Cells

a Mean ± standard error (number of animals)

b Number of cycling females / number of females sampled (percent cycling).

c Number of females with a regular cycle / number of females sampled (percent regular).

- d Each dose group is compared to the control group by Shirley's test if P<0.01 from Jonckheere's trend test. Otherwise, Dunn's test is applied.
- e Dose group compared to the control group using the Chi-squared test.

f Estrous cycle ten days or longer, not cycling, not available, or unclear in 2 of 20 animals.

g Estrous cycle ten days or longer, not cycling, not available, or unclear in 2 of 20 animals.

h Estrous cycle ten days or longer, not cycling, not available, or unclear in 1 of 20 animals.

NOTE: There is no evidence of any differences between the dosed and control groups in cycle length, in number of cycles, or in relative length of time spent in estrous stages.

ENDPOINT	0.0000 %	DOSE GROUP ^a 0.0001 %	0.0004 %	TREND ^b
		MALE		
T3 (NG/DL)	94.34 ± 4.686 (19)	92.87 ± 4.819 (20)	87.07 ± 3.762 (20)	P=0.278
T4 (UG/DL)	3.53 ± 0.207 (19)	4.58 ± 0.234 (20)	*1.37 ± 0.158 (20)	P<0.001
TSH (NG/ML)	5.13 ± 0.642 (19)	5.47 ± 0.704 (20)	*13.93 ± 1.542 (20)	P<0.001
		FEMALE		
T3 (NG/DL)	111.00 ± 5.190 (20)	109.43 ± 5.600 (20)	111.77 ± 5.084 (20)	P=0.989
T4 (UG/DL)	2.25 ± 0.187 (20)	2.61 ± 0.306 (20)	*0.92 ± 0.189 (20)	P<0.001
TSH (NG/ML)	3.73 ± 0.565 (20)	4.77 ± 0.503 (20)	*9.09 ± 1.340 (20)	P<0.001

TABLE 1-20 F1: SUMMARY OF THYROID HORMONES TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Mean ± standard error (number of animals).

b Each dose group is compared to the control with Dunnett's one-tailed low test for T3 and T4 or Dunnett's one-tailed high test for TSH.

(* = P<0.05 from Jonckheere's trend test.)

	TABLE 1	1-21					
F ₁ : S	UMMARY OF MALE G	GROSS OBSERVATIONS					
TWO GENERATION REPRODUCTION TOXICITY STUDY OF PRO	OPYLTHIOURACIL W	HEN ADMINISTERED 7	O SPRAGUE-DAWLEY	RATS	IN THE	DRINKING WAY	TER
			CROUP	1	0	2	

GROUP: DOSE (%):	1 0.0000	2 0.0001	3 0.0004	
NUMBER OF ANIMALS ON STUDY: NUMBER OF ANIMALS COMPLETED:	19 (19)	20 (20)	20 (20)	
RIGHT TESTIS; SUBMITTED NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	
VENTRAL PROSTATE; SUBMITTED NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	
THYROID/PARATHYROID; SUBMITTED NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	
ADRENAL GLAND(S); SUBMITTED NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	
BRAIN; SUBMITTED NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	
KIDNEY(S); SUBMITTED NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	
LIVER; SUBMITTED NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	
PITUITARY GLAND; SUBMITTED NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	
SPLEEN; SUBMITTED. NO VISIBLE LESIONS	(19) 19	(20) 20	(20) 20	

National Institute of Environmental Health Sciences

TABLE 1-21 (CONTINUED) F1: SUMMARY OF MALE GROSS OBSERVATIONS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

GROUP:	1	2	3	
DOSE (%):	0.0000	0.0001	0.0004	
URINARY BLADDER;				
SIIBMITTED	(0)	(1)	(0)	
NO VISIBLE LESIONS	(0)	(1)	(0)	
NO VIDIDE DEDIONS	0	1	0	
DISTENSION; RED	0	Ţ	0	
OUNTERED PROSTATE;	(10)	(20)	(20)	
SUBMITTED.	(19)	(20)	(20)	
NO VISIBLE LESIONS	19	20	20	
TEEM MECHIC M/ EDIDIDIVITO.				
LEFT TESTIS W/ EPIDIDIMIS;	(4.0)	(0.0.)	(0.0.)	
SUBMITTED	(19)	(20)	(20)	
NO VISIBLE LESIONS	19	20	20	
ADMINIAL MERICIPE N/COLOUR ADING CLANDS.				
SEMINAL VESICLES W/COAGULATING GLANDS;				
SUBMITTED	(19)	(20)	(20)	
NO VISIBLE LESIONS	19	20	20	
RIGHT CAUDA EPIDIDYMIS;				
SUBMITTED	(19)	(20)	(20)	
NO VISIBLE LESIONS	19	20	20	
RIGHT EPIDIDYMIS;				
SUBMITTED	(19)	(20)	(20)	
NO VISTBLE LESIONS	19	20	20	
NO VIOLDEE ELEVINO	1)	20	20	

		DOSE GROUP ^a		
ORGAN	0.0000 %	0.0001 %	0.0004 %	TREND ^b
		ORGAN WEIGHTS (g) ^b		
		<u> </u>		
BODY	698.7 ± 15.78 (19)	673.6 ± 17.60 (20)	678.9 ± 21.57 (20)	P=0.307
ADRENALS	0.0556 ± 0.00269 (19)	0.0574 ± 0.00262 (20)	0.0581 ± 0.00268 (19)	P=0.505
BRAIN	2.242 ± 0.0233 (19)	2.208 ± 0.0227 (20)	2.190 ± 0.0232 (19)	P=0.118
KIDNEYS	4.2506 ± 0.07942 (19)	4.2579 ± 0.07725 (20)	4.1637 ± 0.07903 (19)	P=0.436
LIVER	23.0832 ± 0.46462 (19)	23.1898 ± 0.45191 (20)	22.2020 ± 0.46234 (19)	P=0.182
PITUITARY	0.0146 ± 0.00063 (19)	0.0146 ± 0.00061 (20)	0.0145 ± 0.00063 (19)	P=0.868
DORSOLAT PROSTATE	0.7059 ± 0.04331 (19)	0.6811 ± 0.04213 (20)	0.7130 ± 0.04310 (19)	P=0.903
VENTRAL PROSTATE	0.6347 ± 0.03540 (19)	0.5541 ± 0.03443 (20)	0.5874 ± 0.03523 (19)	P=0.357
RIGHT CAUDA EPIDIDYMIS	0.3464 ± 0.01178 (19)	0.3334 ± 0.01146 (20)	0.3774 ± 0.01172 (19)	P=0.073
RIGHT EPIDIDYMIS	0.7560 ± 0.01754 (19)	0.7413 ± 0.01706 (20)	0.7902 ± 0.01745 (19)	P=0.174
RIGHT TESTIS	1.8022 ± 0.05495 (19)	1.7661 ± 0.05345 (20)	1.8889 ± 0.05486 (19)	P=0.266
SEMINAL VESICLES	2.1614 ± 0.10701 (19)	2.0554 ± 0.10408 (20)	2.2805 ± 0.10648 (19)	P=0.430
SPLEEN	0.931 ± 0.0268 (19)	0.937 ± 0.0261 (20)	$0.940 \pm 0.0267 (19)$	P=0.803
THYROID	0.0306 ± 0.00241 (19)	0.0379 ± 0.00234 (20)	*0.0551 ± 0.00240 (19)	P<0.001
		ORGAN-TO-BODY WEIGHT RATIOS [°]		
ADRENALS	0.0808 ± 0.00363 (19)	0.0849 ± 0.00421 (20)	0.0848 ± 0.00346 (19)	P=0.653
BRAIN	3.243 ± 0.0740 (19)	3.310 ± 0.0844 (20)	3.266 ± 0.0956 (19)	P=0.825
KIDNEYS	6.1934 ± 0.13949 (19)	6.2876 ± 0.11873 (20)	6.1221 ± 0.11526 (19)	P=0.674
LIVER	33.6967 ± 0.84311 (19)	33.6435 ± 0.66433 (20)	32.3431 ± 0.50029 (19)	P=0.251
PITUITARY	0.0212 ± 0.00093 (19)	0.0216 ± 0.00084 (20)	0.0216 ± 0.00098 (19)	P=0.412
DORSOLATERAL PROSTATE	1.0222 ± 0.05691 (19)	1.0112 ± 0.06289 (20)	1.0654 ± 0.07331 (19)	P=0.792
VENTRAL PROSTATE	0.9213 ± 0.05007 (19)	0.8288 ± 0.05947 (20)	0.8743 ± 0.05290 (19)	P=0.462
RIGHT CAUDA EPIDIDYMIS	0.5001 ± 0.01232 (19)	0.4984 ± 0.02502 (20)	0.5639 ± 0.02312 (19)	P=0.043
RIGHT EPIDIDYMIS	1.0933 ± 0.02508 (19)	1.1123 ± 0.04720 (20)	1.1794 ± 0.03828 (19)	P=0.091
RIGHT TESTIS	2.6065 ± 0.05803 (19)	2.6431 ± 0.12859 (20)	2.8194 ± 0.10059 (19)	P=0.076
SEMINAL VESICLES	3.1351 ± 0.17383 (19)	3.0741 ± 0.19020 (20)	3.3748 ± 0.12505 (19)	P=0.182
SPLEEN	1.356 ± 0.0420 (19)	1.376 ± 0.0319 (20)	1.384 ± 0.0416 (19)	P=0.705
THYROID	0.0446 ± 0.00229 (19)	*0.0563 ± 0.00399 (20)	$*0.0819 \pm 0.00440$ (19)	P<0.001

TABLE 1-22 F1: SUMMARY OF MALE ABSOLUTE ORGAN WEIGHTS (G) AND ORGAN-TO-BODY WEIGHT RATIOS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (*= P<0.05).

b Mean organ weight ± standard error (number of animals).

c Mean ratio (mg/g body weight) ± standard error (number of animals).

TABLE 1-23A F1: SUMMARY OF SPERM ANALYSIS DATA TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

	0.0000 *	DOSE GROUP ^a	0.0004 %	derive a second
ENDPOINT	0.0000 %	0.0001 %	0.0004 %	TREND
$\texttt{EPIDIDYMAL SPERM DENSITY}^{\circ}$	399.62 ± 14.314 (19)	394.59 ± 24.371 (20)	396.44 ± 12.458 (19)	P=0.937
SPERM MORPHOLOGY (% ABNORMAL) ^d	0.5 ± 0.20 (19)	0.7 ± 0.13 (19)	0.4 ± 0.07 (20)	P=0.944
SPERMATIDS/MG TESTIS ^e	61.72 ± 3.023 (19)	52.56 ± 3.526 (20)	54.62 ± 2.802 (20)	P=0.198
TOTAL SPERMATIDS/TESTIS ^f	105.03 ± 4.630 (19)	90.63 ± 5.962 (20)	95.25 ± 4.000 (20)	P=0.168
TOTAL SPERM/CAUDA ^f	138.28 ± 4.963 (19)	135.51 ± 8.874 (20)	146.46 ± 4.630 (20)	P=0.333

a Endpoint mean ± standard error (number of animals).

b Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (* = P<0.05).</p>

c Sperm density expressed as 1000 sperm per mg right caudal tissue.

d Dose group means and standard errors are computed only from samples with at least 200 sperm.

e Spermatid heads per mg testis (x 1,000) = (total number of spermatid heads per right testis) / (right testis weight in mg)

f Total number of spermatid heads or sperm (x 1,000,000) = (average number of spermatid heads or sperm x 2.5 x 100) / 0.0001

ENDPOINT	0.0000 %	DOSE GROUP ^a 0.0001 %	0.0004 %	TREND ^a
AMPLITUDE	15.6 ± 0.55 (18)	15.2 ± 0.59 (19)	14.4 ± 0.70 (18)	P=0.237
BEAT/CROSS FREQUENCY (hz/sec)	16.9 ± 0.47 (18)	17.1 ± 0.52 (19)	17.2 ± 0.48 (18)	P=0.716
LINEARITY	35.7 ± 0.81 (18)	37.6 ± 0.48 (19)	37.7 ± 0.53 (18)	P=0.068
MOTILE PERCENTAGE	72.3 ± 3.79 (18)	80.9 ± 4.65 (19)	74.6 ± 4.24 (18)	P=0.526
PROGRESSIVE VELOCITY	82.5 ± 2.71 (18)	89.8 ± 2.80 (19)	86.0 ± 3.52 (18)	P=0.250
PATH VELOCITY	136.8 ± 3.56 (18)	145.9 ± 4.64 (19)	137.5 ± 5.10 (18)	P=0.865
STRAIGHTNESS	60.3 ± 1.22 (18)	60.9 ± 0.56 (19)	61.3 ± 0.91 (18)	P=0.889
TRACK SPEED	240.7 ± 6.69 (18)	248.1 ± 8.34 (19)	234.6 ± 8.14 (18)	P=0.688

TABLE 1-23B F1: SUMMARY OF HAMILTON-THORNE SPERM ANALYSIS DATA TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Endpoint mean \pm standard error (number of animals).

b Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (* = P<0.05).</p>

Note: Absolute organ weights were covaried by body weight.

CDOID.	1	2	3	
	0 0000	0 0001	0 0004	
DOSE (%):	0.0000	0.0001	0.0004	
NUMBER OF ANIMALS ON STUDY:	20	20	20	
NUMBER OF ANIMALS COMPLETED:	(20)	(20)	(20)	
THYROID/PARATHYROID;				
SUBMITTED	(20)	(20)	(20)	
NO VISIBLE LESIONS	20	20	20	
	20	20	20	
	(20)	(20)	(20)	
	(20)	(20)	(20)	
NO VISIBLE LESIONS	20	20	20	
BRAIN;				
SUBMITTED	(20)	(20)	(20)	
NO VISIBLE LESIONS	20	20	20	
KIDNEY(S);				
SUBMITTED	(20)	(2.0)	(2.0)	
NO VISIBLE LESIONS	20	20	20	
	20	20	20	
- T T T T T T T T T T T T T T T T T T T				
	(20)	(20)	(20)	
	(20)	(20)	(20)	
NO VISIBLE LESIONS	20	20	20	
OVARY(IES);				
SUBMITTED	(20)	(20)	(20)	
NO VISIBLE LESIONS	20	20	20	
PITUITARY GLAND;				
SUBMITTED	(20)	(20)	(20)	
NO VISIBLE LESIONS.	2.0	2.0	2.0	
	(20)	(20)	(20)	
	(20)	(20)	(20)	
MO ATTITT TESTORS	∠0	20	ZU	
VAGINA/CERVIX/UTERUS;				
SUBMITTED	(20)	(20)	(20)	
NO VISIBLE LESIONS	20	20	20	

TABLE 1-24F1: SUMMARY OF FEMALE GROSS OBSERVATIONSTWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

DOSE GROUP							
ORGAN	0.0000 %	0.0001 %	0.0004 %	TREND ^a			
		ORGAN WEIGHTS (g) ^b					
BODY	367.1 ± 8.97 (20)	354.4 ± 7.79 (20)	347.2 ± 8.03 (20)	P=0.158			
ADRENALS	0.0772 ± 0.00284 (19)	0.0703 ± 0.00274 (20)	0.0703 ± 0.00276 (20)	P=0.091			
BRAIN	1.962 ± 0.0233 (19)	1.998 ± 0.0224 (20)	2.013 ± 0.0226 (20)	P=0.125			
KIDNEYS	2.2830 ± 0.04624 (19)	2.2549 ± 0.04458 (20)	2.2726 ± 0.04496 (20)	P=0.879			
LIVER	12.7539 ± 0.28576 (19)	12.5759 ± 0.27553 (20)	12.3024 ± 0.27785 (20)	P=0.261			
OVARIES	0.1234 ± 0.00540 (19)	0.1104 ± 0.00521 (20)	0.1183 ± 0.00525 (20)	P=0.533			
PITUITARY	0.0165 ± 0.00081 (19)	0.0171 ± 0.00078 (20)	0.0156 ± 0.00078 (20)	P=0.441			
SPLEEN	0.590 ± 0.0208 (19)	0.604 ± 0.0200 (20)	0.610 ± 0.0202 (20)	P=0.489			
THYROID	0.0234 ± 0.00148 (19)	0.0268 ± 0.00143 (20)	*0.0403 ± 0.00144 (20)	P<0.001			
UTERUS	1.012 ± 0.0493 (19)	0.997 ± 0.0475 (20)	1.053 ± 0.0479 (20)	P=0.553			
		ORGAN-TO-BODY WEIGHT RATIOS ^c					
ADRENALS	0.2144 ± 0.00896 (19)	0.2004 ± 0.00957 (20)	0.2028 ± 0.00640 (20)	P=0.243			
BRAIN	5.463 ± 0.1544 (19)	5.675 ± 0.1063 (20)	5.831 ± 0.1331 (20)	P=0.053			
KIDNEYS	6.4075 ± 0.11635 (19)	6.3893 ± 0.14526 (20)	6.4343 ± 0.12564 (20)	P=0.846			
LIVER	35.9446 ± 0.72829 (19)	35.4875 ± 0.81424 (20)	34.3619 ± 0.77643 (20)	P=0.085			
OVARIES	0.3428 ± 0.01956 (19)	0.3144 ± 0.01731 (20)	0.3460 ± 0.01426 (20)	P=0.781			
PITUITARY	0.0465 ± 0.00218 (19)	0.0481 ± 0.00211 (20)	0.0436 ± 0.00228 (20)	P=0.373			
SPLEEN	1.654 ± 0.0577 (19)	1.713 ± 0.0671 (20)	1.730 ± 0.0443 (20)	P=0.303			
THYROID	0.0660 ± 0.00394 (19)	0.0757 ± 0.00383 (20)	*0.1150 ± 0.00437 (20)	P<0.001			
UTERUS	2.816 ± 0.1479 (19)	2.841 ± 0.1466 (20)	3.056 ± 0.1679 (20)	P=0.156			

TABLE 1-25 F1: SUMMARY OF FEMALE ABSOLUTE ORGAN WEIGHTS (G) AND ORGAN-TO-BODY WEIGHT RATIOS TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Each dose group is compared with the control group by Shirley's test if P<0.01 from Jonckheere's trend test, otherwise Dunn's test is applied (*= P<0.05).

b Mean organ weight \pm standard error (number of animals).

c Mean ratio (mg/g body weight) \pm standard error (number of animals).

Note: Absolute organ weights were covaried by body weight.

DOSE GROUP ^a								
	0.0000 % 0	.0001 % 0	.0004 %					
MALE								
FOUND DEAD	1/20	0/20	0/20					
MORIBUND KILLS	0/20	0/20	0/20					
REMOVED FROM STUDY	0/20	0/20	0/20					
FEMALE								
FOUND DEAD	0/20	0/20	0/20					
MORIBUND KILLS	0/20	0/20	0/20					
REMOVED FROM STUDY	0/20	0/20	0/20					

TABLE 1-26 F1: SUMMARY OF MORTALITY DATA TWO GENERATION REPRODUCTION TOXICITY STUDY OF PROPYLTHIOURACIL WHEN ADMINISTERED TO SPRAGUE-DAWLEY RATS IN THE DRINKING WATER

a Number of animals found dead, moribund, or removed / total number of animals in group.