DATA FORM FOR CALCULATING FLOW

$$
\text { Solving the equation: Flow }=\frac{\mathrm{ALC}}{\mathrm{~T}}
$$

Where:
A = Average cross-sectional area of the stream. L = Length of the stream reach measured (usually 20 ft .).
$C=A$ coefficient or correction factor (0.8 for rocky-bottom streams or 0.9 for muddy-bottom streams). $T=$ Time, in seconds, for the float to travel the length of L .

A: Average Cross-Sectional Area

Transect \#1 (upstream)

Interval width
(feet)
Depth (feet)
A to $B=$ \qquad(at B)
B to $C=$ \qquad (at C)
C to $\mathrm{D}=$ \qquad
(at D)
D to $\mathrm{E}=$ \qquad (shoreline)

Totals

\square $\div 4$
$=$ Avg. depth
 ft

Cross-sectional area of Transect \#1
$=$ Total width (ft) X Avg. depth (ft)
\square X \square $=$ \square ft^{2}

Transect \#2 (downstream)

Interval width
(feet)
A to $B=$ \qquad
Depth (feet)
B to $C=$ \qquad
\qquad
\qquad (at B)
C to $D=$
D to $\mathrm{E}=$
\square
Totals \square

(shoreline)
\square $\div 4$
$=$ Avg. depth \square

Cross-sectional area of Transect \#2

$=$ Total width (ft) X Avg. depth (ft)

\square $=$ \square ft^{2}
(Cross-sectional area of Transect \#1 + Cross-sectional area of Transect \#2) $\div 2$ = Average Cross-sectional area

$$
\mathrm{A}=\left(\square \mathrm{ft}^{2}+\square \mathrm{ft}^{2}\right) \div 2=\square \mathrm{ft}^{2}
$$

