Beneficial Use of Clean Dredged Material to Restore Wetlands at Blackwater National Wildlife Refuge

Dixie Birch and Rebekah Packett

Strategic Partnerships

US Army Corps of Engineers Baltimore District

Remaining marsh shown in red

Roughly 60 miles from the Bay Bridge by land

Blackwater is 31 miles from Poplar Island and 5 Miles from James Island by water Blackwater National Wildlife Refuge

- •Established 1933
- 28,000 acre complex
- 1/3 marsh, 1/3 forest, 1/3 water

Blackwater NWR is part of the Chesapeake Marshlands National Wildlife Refuge Complex:

Blackwater NWR Eastern Neck NWR Martin NWR Susquehanna NWR Watts Island Bishops Head Point Spring Island Barren Island

Significance of Blackwater Wetlands

Vetlands of International Importance (RAMSAR site)

1 of 6 priority wetland areas by North American Waterfowl Management Plan

The Nature Conservancy: one of the "LAST GREAT PLACES" Blackwater Watershed
 "The Everglades of the North"

 Exceptional Recreational and Ecological System Waters (ERES)

• Over 1/3 of all tidal wetlands in MD

 Northernmost 3-square bulrush marshes in the U.S.

Internationally Important Bird Area: American Bird Conservancy

85 nesting songbird species
34 waterfowl species
52 shorebird species
30 marsh and wading birds
24 raptor species
Over 350 bird species annually

Biodiversity

Endangered Delmarva Fox Squirrel

The Disappearing Marsh

Wetland types that are decreasing at Blackwater

Palustrine emergent Palustrine forested Palustrine scrub-shrub Estuarine intertidal emergent Estuarine intertidal forested Estuarine intertidal scrub-shrub

Marsh Loss

8,000 acres or 12 sq. miles have been lost

150 acres lost/year

Curt Larsen (USGS) Model of Sea Level Rise over next 50 years

Blackwater National Wildlife Refuge LIDAR NAVD88 @ 0.0ft

MHHW 1900

MHHW 1960

MHHW 1980

MHHW 2000 NAVD88

MHHW +20 years

Blue is 0.06 meters

MHHW + 30 years

Blue is 0.09 meters

MHHW + 50 years

Blue is 0.15 meters

Causes of Marsh Loss

Sea level rise
Subsidence
Erosion
Salt water intrusion
Invasive species - herbivory

MARSH LOSS AT BLACKWATER

Efforts to Restore Blackwater Wetlands

Reduce salt water intrusion
Extirpate nutria
Reduce resident Canada geese
1980s Wetland Restoration of 12 acres
2003 Wetland Restoration of 8 acres

Control Resident Canada Geese

Eliminate Nutria

Nutria Extirpated from Blackwater Watershed

Marsh Areas Recovering

By 2006, over 9,500 nutria removed

Monitoring continues to eliminate "new" nutria

Trapping efforts expanded to State and Private Lands

Three-square transplanted in 1982 restoration project

1982 Restoration Site in 2005

1983 Restoration Site in 2005

2003 Wetland Restoration Partners

National Aquarium
Army Corps of Engineers
Friends of Blackwater
Salisbury Zoo
U.S. Fish and Wildlife Service

Methods

Restore 8 acres of tidal wetlands at 3 sites Plant 70,000 marsh grass units Monitor plant success Sediment containability

Initial Containment

Installation of Straw Bales and Wooden Stakes

Water Depths were often too deep for thin layering and required 1 to 1.5 feet of fill

Floating Excavator moved pipeline

Dredge

Wildlife Drive

-

Wildlife Drive Cells

Shorters Wharf

Shorter's Wharf Road

Dredge slurry: 10% sediment and 90% water Overall sediment containment was successful

AND I ADDRESS TO THE

Hydro-seeding and Hand-planting were used; no fertilization necessary

Volunteers planted 70,000 units combined of Olney's 3-square (*Schoenoplectus americanus*), salt marsh bulrush (*Schoenoplectus robustus*), and smooth cordgrass (*Spartina alterniflora*)

May 2003

Photo Station Documentation

Compare permanent photo stations over time to assess sediment and vegetation sustainability

May 2003

June 2003

August 2003

and and the second of the to have the to the

August 2004

August 2005

What's Next?

Recreate the Lost Marsh

2015

2020

Blackwater's Comprehensive Conservation Plan (CCP) calls for restoring wetlands to 1933 conditions

Additional restoration is needed to meet this management goal

Blackwater NWR
Marsh condition
Healthy Marsh
Moderate deterioration
Severe deterioration
Complete deterioration
Open water
0 0.5 1 2 Miles

-Dennis King & Liz Price, CBL -Uni. of MD Geography Dept., Coastal Marsh Project

Dredge Material Placement

Total dredging needs for approach channels in MD portion of Chesapeake Bay is about 3 to 4 million cubic yards annually

Dr. Dennis King and Liz Price Chesapeake Biological Lab

Tiered Environmental Impact Statement

3 Options:

1.Expansion of Poplar Island

2.Mid-Bay Islands

3.Blackwater/Dorchester County Use clean Dredged Material to Restore the Marsh <u>Restoring 8,000 acres (12 miles²) at:</u>

*1 foot requires 12,907,000 cubic yards

2 feet requires 25,813,000 cubic yards

3 feet requires 38,720,000 cubic yards

*5 feet requires 64,533,000 cubic yards

Other Partners in Dorchester County also want to restore Wetlands

Blackwater NWR
Marsh condition
Healthy Marsh
Moderate deterioration
Severe deterioration
Complete deterioration
Open water

0 0.5 1 2 Miles

-Dennis King & Liz Price, CBL -Uni. of MD Geography Dept., Coastal Marsh Project

udor

arms

Fishing

Bay

Dorchester Restoration provides placement opportunities for dredged material for 20 to 50 years and would restore the watershed

Bucket and barge to move clean dredged material

James Island could be used as a re-handling station

Note: To maintain the proper salinity, freshwater is piped 1.5 miles from Site B in Blackwater to Site A, the barge material delivery site, and is used to pump material back into Blackwater. Site C1 represents the nearest material placement site within Blackwater which is about 8 miles from Site A. Site C2 is the farthest material placement site, and is about 13 miles from Site A.

Using fresh or brackish water would minimize any saline impacts from clean dredged material

Future Wetland Restoration Benefits

- 1. Ecosystem and Environmental Restoration
- 2. Placement of Substantial amounts of Dredged Material
- 3. Easy Public Access, Community Involvement, Public Support
- 4. Prevent additional wetland loss

5. Watershed restoration benefits finfish, shellfish fisheries, wildlife, and the overall health of the Chesapeake Bay Ecosystem

Currently, we do not know of any other options to restore

Congress appropriated \$247,000 to Army Corps in FY 2006

Purpose: Develop Project Management Plan

Create Sub-groups – technical expertise
 Determine Biological/Technical Data gaps
 Engineering and Economics
 Estimate Costs for Full Implementation

Wetland Restoration is feasible and beneficial, and is critical to avoid additional wetland loss at Blackwater NWR Citizen's Advisory Group and Technical Working Group. If you would like to serve on a group, Please contact Dixie Birch: Email: <u>dixie_birch@fws.gov</u>

Phone: 410-228-2692, ext. 118

Pilot study using 2-10 acres of material