June 2006 Review Draft

Appendix A

Occupational Safety and Health Administration (OSHA)

Health standards are promulgated under the OSHAct by the Department of Labor with technical advice from NIOSH. OSHA's limits are called Permissible Exposure Limits (PELs). OSHA's PELs are expressed as a time-weighted average and are defined as the consentration of a substance to which most workers can be exposed without adverse effect averaged over a normal 8-hour workday or a 40-hour workweek.

www.epa.gov/ttn/atw/hlthef/hapglossaryrev.html

OSHA sets PELs to protect workers against the health effects of exposure to hazardous substances. PELs are regulatory limits on the amount or concentration of a substance in the air. They may also contain a skin designation. PELs are enforceable.

http://www.osha.gov/SLTC/pel/

National Institute for Occupational Safety and Health (NIOSH)

The NIOSH recommended exposure limits (RELs) are time-weighted average (TWA) concentrations for up to a 10-hour workday during a 40-hour workweek. A short-term exposure limit (STEL) is designated by "ST" preceding the value; unless noted otherwise, the STEL is a 15-minute TWA exposure that should not be exceeded at any time during a workday. A ceiling REL is designated by "C" preceding the value; unless noted otherwise, the ceiling value should not be exceeded at any time. Any substance that NIOSH considers to be a potential occupational carcinogen is designated by the notation "Ca".

(Fundamentals of Industrial Hygiene 3rd Ed.)

American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values

Threshold Limit Values refer to airborne concentrations of substances, and it is believed represent conditions under which nearly all workers may be repeatedly exposed, day after day, without adverse effect. Control of the work environment is based on the assumption that for each substance there is some safe or tolerable level of exposure below which no significant adverse effect occurs. These tolerable levels are called Threshold Limit Values. The copyrighted trademark, "Threshold Limit Value" refers to limits published by the American Conference of Governmental Industrial Hygienists (ACGIH). The TLVs are reviewed and updated annually to reflect the most current information on the effects of each substance assigned a TLV.

Three categories of Threshold Limit Values are specified as follows:

Time-Weighted Average (TLV-TWA). The is the time-weighted average concentration for a normal 8-hour workday or 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse effect.

Short-Term Exposure Limit (TLV-STEL). This is a 15 minute TWA exposure that should not be exceeded at any time during a workshift, even if the 8-hour TWA is within the TLV-TWA. TLV-STEL is the concentration to which it is believed that workers can be exposed for continuously for a short period of time without suffering from any of the following:

- 1. Irritation
- 2. Chronic or irreversible tissue change
- 3. Narcosis of sufficient degree to increase the likelihood f accidental injury, impair self-rescue, or materially reduce work efficiency.

Exposures above the TLV-TWA up to the TLV-STEL should be less than 15 minutes, should occur less than four times per day, and there should be at least 60 minutes between successive exposures in this range.

The TLV-STEL is not a separate, independent exposure limit; it supplements the TWA limit when there are recognized acute effects from a substance that has primarily chronic effects. The STELs are recommended only when toxic effects in humans or animals have been reported from high short-term exposures.

Ceiling (TLV-C). This is the concentration that should not be exceeded during any part of the working exposure. To assess a TLV-C, the conventional industrial hygiene practice is to sample during a 15-minute period, except for those substances that can cause immediate irritation with exceedingly short exposures.

For some substances, irritant gases for example, only one category, the TLV-C, may be relevant. For other substances, two or three categories may be relevant, depending on their physiological action. If any one of these three TLVs is exceeded, a potential hazard from that substance is presumed to exist.

The amount by which threshold limits can be exceeded for short periods without injury to health depends on many factors, such as the nature of the contaminant, whether very high concentrations, even for a short period, produce acute poisoning, whether the effects are cumulative, the frequency with which high concentrations occur, an the duration of such periods. All factors must be considered when deciding whether a hazardous condition exists. (Fundamentals of Industrial Hygiene 3^{rd} Ed.)

ATSDR

An MRL is an estimate of the daily human exposure to a hazardous substance that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration of exposure. These substance specific estimates, which are intended to serve as screening levels, are used by ATSDR health assessors and other responders to identify contaminants and potential health effects that may be of concern at hazardous waste sites. The toxicological profiles include an examination, summary, and interpretation of available toxicological information and epidemiologic evaluations of a hazardous substance. During the development of toxicological profiles, MRLs are derived when ATSDR determines that reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a given route of exposure to the substance. MRLs are based on noncancer health effects only and are not on a consideration of cancer effects. Inhalation MRLs are exposure concentrations expressed in units of parts per million (ppm) for gases and volatiles, or milligrams per cubic meter (mg/m3) for particles. Oral MRLs are expressed as daily human doses in units per kilogram per day (mg/kg/day). Radiation MRLs are expresses as external exposures in units of millisieverts.

ATSDR uses the no observed adverse effect level/uncertainty factor (NOAEL/UF) approach to derive MRLs for hazardous substances. They are set below levels that, based on current information, might cause adverse health effects in the people most sensitive to such substance induced effects. MRLs are derived for acute, intermediate, and chronic exposure durations, and for the oral and inhalation routes of exposure. MRLs are generally based on the most sensitive substance-induced end point considered to be of relevance to humans. ATSDR does not use serious health effects (such as irreparable damage to the liver or kidneys, or birth defects) as a basis for establishing MRLs. Exposure to a level above the MRL does not mean that adverse health effects will occur.

MRLs are intended to serve as a screening tool to help public health professionals decide where to look more closely. They may also be viewed as a mechanism to identify those hazardous waste sites that are not expected to cause adverse health effects. Most MRLs contain some degree of uncertainty because of the lack of precise toxicological information on the people who might be most sensitive to effects of hazardous substances. ATSDR uses a conservative approach to address these uncertainties consistent with the public health principle of prevention.

Standards

OSHA

Occupational Noise Exposure – 29 CFR 1926.52 Permissible Exposure Limits – 29 CFR 1910.1000 Table Z-1, Z-2 General Industry 1910 Subpart Z Toxic and hazardous substances 1910.1017 Vinyl Chloride 1910.1028 Benzene 1910.1028 Benzene 1910.1048 Formaldehyde 1910.1051 1, 3-Butadiene 1910.1052 Methylene Chloride

NIOSH

2004 NIOSH Pocket Guide to Chemical Hazards 1998 Revised criteria – Occupational Noise Standard

ACGIH

- 2004 Threshold Limit Values for Chemical Substances in the Work Environment Adopted Threshold Limit Values, pages 10-63
- 2004 Threshold Limit Values for Physical Agents in the Work Environment Acoustic, Noise – pages 104 – 106

ATSDR

December 2004 Minimal Risk Levels (MRLs)

Appendix B

	ALDEHYDES, S	2539			
Table 1	MW: Table 1	CAS: Table 1	RTECS: Table 1		
METHOD: 2539, Issue 2	EVALUATIO	EVALUATION: PARTIAL			
OSHA : Table 1		PROPERTIES: Table 1			

ACGIH: Table 1

COMPOUNDS: acetaldehyde; acrolein; butyraldehyde; crotonaldehyde; formaldehyde; furfural; hepta nal; hexanal; isobutyrablehyde; isovaleraled hyde; propionaldehyde; valeraldehyde. Table 1 SYNONYMS:

	SAMP	LING	MEASUREMENT			
SAMPLER:	SOLID SO (10% 2-(h)	RBENT TUBE /droxymethyl) piperidine on 0. ma/60 ma)	TECHNIQUE:	GAS CHRO GC/MS	OMATOGRAPHY, FID &	
	770-2, 12		ANALYTE:	oxazolidine	eprepared from aldehyde	
FLOW RATE:	0.01 to 0.0	5 L/min	DESORPTION:	1 mL toluer	ne; 60 min ultrasonic	
VOLUME:	5 L		INJECTION			
SHIPMENT:	@ 25 °C o	r lower	VOLUME:	1µL splitle:	ss; split vent time 30 sec	
SAMPLE STABILITY:	at least 1 v	veek @ 25 °C	TEMPERATURE-IN -DETECTO -COLUMN	IJECTION: R: I:	250 °C 280 °C 1 min @ 70 °C. 6 °C/min	
FIELD BLANKS:	2 to 10 fie	d blanks per seat	0020		to 100 °C for 2 min; 30 °C/min to 260 °C	
MEDIA BLANKS:	6 per set			He 0.5 ml	/min: makeup flow 29	
	ACCU	RACY	CARGER GAD.	mL/min	anin, nakeup now, 25	
RANGE STUDIED	:	not studied	COLUMN:	capillary, 1 6% cyanop	5 m x 0.32-mm, 1.0-µm film propyl-phenyl, DB-1301 or	
BIAS:		not determined		equivalent		
OVERALL PRECIS	δION (Ŝ,τ):	not determined	CALIBRATION:	standard s on sorbent	olutions of aldehydes spiked	
ACCURACY:	CCURACY: not determined		RANGE AND PRECISION:	not determ	in ed	
			ESTIMATED LOD:	2 µg aldeh	yde per sample	

APPLICABILITY: This is a screening technique to determine the presence of aldehydes and should not be used for quantitation. Further confirmation of aldehyde identification should be performed by gas chromatographyl mass spectrometry (See Table 2 for structural ion data). Methods for quantitation of some aldehydes listed in this method are available in the NIOSH Manual of Analytical Methods (See OTHER METHODS). All aldehydes tested have detected by this method in bulk field samples.

INTERFERENCES: High-boiling naphtha mixtures, such as kerosene and mineral spirits may have components with retention times similar to the oxazolidines and may be interferences in the gas chromatographic analysis. A second column (DB-5, DB-WAX) may be needed to separate some of the earlier C_s-C_4 aldehydes from excess HMP reagent.

OTHER METHODS: This method incorporates sampling technology used in NIOSH methods 2501 (acrolein), 2541 (formaldehyde), 2529 (furfural), 2531 (glutaraldehyde)[1], and 2526 (valeraldehyde), and OSHA methods 68 (acetaldehyde) and 52 (acrolein/formaldehyde) [2].

ALDEHYDES, SCREENING: METHOD 2539, Issue 2, dated 15 August 1994 - Page 2 of 10

REAGENTS:

- 1. Toluen e, chrom atograp hic quality.
- 2-(Hydro xyme thyl) piperidine. Recrystallize 2 several times from isooctane until there is one major peak (>95% of area) by GC analysis. Store in desiccator.
- 3 Amberlite XAD-2 (Rohm and Haas or equivalent).
- Form aldeh yde, * 37% (w/v) solution in 4. water.
- 5. Formaldehyde stock solution, 1 µg/µL (see APPEND IX A).
- 6. Acetaldehyde*
- Acrolein* 7.
- Propionaldeh yde*. 8
- 9. Butyraldehyde*.
- 10. Isobutyraldehyde*.
- 11. Crotonaldehyde*
- 12. Valeraledehyde*
- Isovaleraldehyde*. 13.
- Hexanal*. 14.
- Heptana I*. 15.
- 16. Furfural*.
- Sulfuric acid, 0.02 N. 17.
- 18.
- Sodium hydroxide, 0.01 <u>N.</u> Sodium sulfite, 1.13 <u>M</u>. 19.
- 20. Water, deionezed, then distilled.
- 21. Hydrogen, prepurified.
- 22. Air, filtered, compressed.
- Helium, purified. 23.
 - * See SPECIAL PRECAUTIONS

EQUIPMENT:

- 1. Sampler: glass tube, 10 cm long, 6-mm OD, 4-m m ID; flam e-se aled ends and plastic caps, containing two sections of 40/60 mesh, 2-(hydroxymethyl) piperidine-coated XAD-2 (front = 120 mg; back = 60 mg: see APPENDIX A) retained and separated by small plugs of silanized glass wool. Pressure drop across the tube at 0.10 L/min airflow must be less than 760 kPa (5.7 mm Hg). Tubes are com mercially a vailable (Supelco, Inc. ORBO-23 or equivalent).
- Personal sampling pump, 0.01 to 0.05 2 L/min, with flexible connecting tubing.
- Gas chromatograph, flame ionization 3 detector (FID), integrator and column (page 2539-1). GC/MS system for confirmation. 4
- Ultrasonic bath. Vials, glass, 1-m L, with PTF E-lined crim p 5. caps.
- 6.
- Flasks, volumetric, 10-mL. Pipets, molumetric, 1-mL with pipet bulb. 7.
- 8. Syringes, 10-µL (readable to 0.1-µL), 25-, and 50-µL.
- 9. File.
- Beakers, 50-mL. 10.
- pH meter. 11.
- . Magnetic stirrer. 12.
- 13. Burets, 50-mL.
- 14. Flasks, round-bottomed, 100-mL.
- Soxhlet extraction apparatus. 15.
- Vacuum oven. 16.
- Distillation apparatus. 17.

SPECIAL PRECAUTIONS: Aldehydes can irritate the mucous membranes and act on the central nervous system [3]. Certain aldehydes are also suspect carcinogens. Work with these compounds only in a well-ventilated hood.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- 2. Break ends of the sampler immediately before sampling. Attach sampler to personal sampling pump with flexible tubing.
- For general screening, sample at 0.01 to 0.05 L/min for a maximum sample volume of 5 L. NOTE: Aldehydes react with the 2-(hydroxymethyl)piperidine to form an oxazolidine derivative in the sorbent bed during sampling. Sampling rate is limited by the speed of this reaction. Owing to the lower reactivities of some aldehydes, sampling even at 0.02 L/min may cause breakthrough because of incomplete reaction.

SAMPLE PREPARATION:

ALDEHYDES, SCREENING: METHOD 2539, Issue 2, dated 15 August 1994 - Page 3 of 10

- 4. Score each sampler with a file in front of the first sorbent section.
- Break sampler at score line. Remove and place front glass wool plug and front sorbent section in a vial. Transfer back section with remaining glass wool plugs to a second vial.
- Add 1.0 m L tolu ene to each vial. Crimp cap tightly onto each vial.
 Agitate vials in an ultrasonic bath for 60 min.
- 7. Agriate viais in an utrasonic bath for 60 mi

CALIBRATION AND QUALITY CONTROL:

- 8. Prepare qualitative oxazolidine standard samples.
 - a. Prepare aldehyde standard stock solutions.
 - NOTE: Aldehydes can oxidize to other compounds on exposure to air. This will introduce bias into the method, so use of freshly-opened bottles of aldehydes is recommended.
 - (1) Inject an aliquot of form aldehyde stock solution directly onto the sorbent.
 - (2) Take special care with acetaldehyde because of its volatility. To prepare acetaldehyde standard solutions, weigh a 10-mL capped volumetric flask containing about 5 mL toluene. With a cooled pipette, transfer about 1 mL of acetaldehyde into the weighed flask, recap and reweigh. Dilute to the mark.
 - (3) For the other aldehydes, add measured aliquots (ca. 12 µL) of each to toluene in 10-mL volumetric flasks and dilute to the mark. From the density of each aldehyde, determine the amount of each aldehyde present in each solution (ca. 1 µg/µL).
 - Inject 10 µL of the standard aldehyde solutions separately onto blank tubes from the same lot as the field samples.
 - c. Analyze (steps 4 through 7 and 10 through 12) along with blanks for qualitative identification of derivative peaks by retention times.
- 9. Determine limit of detection (LOD) for individual aldehydes by GC/FID with standards covering the range 0.5 to 10 µg per sample. Do this once, when first setting up the method to determine approximate sensitivities for the various aldehyde derivatives. Subsequently, analyze only low-level formaldehyde standard samples with each set of samples as an internal check that the analytical system is working.
 - a. Weigh 120-mg portions of unused sorbent from media blanks into vials. Keep at least three 120-mg portions of this sorbent for determination of the background levels of each aldehyde.
 - b. Add 0.5- to 10-µL aliquots of the individual aldehyde standard solution s to obtain standard samples in the range 0.5 to 10 µg per 120 mg portion of sorbent. Cap vials and allow to stand overnight at room temperature.
 - c. Desorb the standard samples of aldehydes (steps 6 and 7) and analyze (steps 10 through 12) along with blanks.
 - d. Determine lowest spike to be detected (peak area greater than three times the background or lowest standard observable) to estimate LOD for each aldehyde. NOTE: Because the working standards are prepared on media blanks, no additional blank correction or desorption efficiency correction is necessary.

MEASUREMENT:

- Set gas chromatograph to manufacturer's recommendations and to conditions given on page 2539-1. Inject 1-µL sam ple aliquot.
 - NOTE: If the amount of oxazolidine in the aliquot exceeds the capacity of the column, dilute the sample with toluene.
- 11. Compare retention times of unknown peaks in samples to the retention times for the
 - oxa zolid ines as determined by the qualitative standard samples. (See Appendix B for sample

ALDEHYDES, SCREENING: METHOD 2539, Issue 2, dated 15 August 1994 - Page 4 of 10

chrom atogram).

- a. Analyze samples with GC retention times matching any oxazolidine by GC/MS using the same GC columns and conditions if possible. Alternate columns such as a DB-WAX (formaldehyde, acetaldehyde, propanal) or DB-1 (remaining aldehydes) may also be used for GC/MS confirmation depending on which aldehyde is suspected.
- b. Determine the presence of oxazolidines by monitoring for specific ions known to be present in the derivative spectra. See Table 2 for characteristic ion table and Appendix C for reference mass spectra. Retention times by GC/MS must also match authentic oxazolidine standards.
 - NOTE 1: This method may also sample aldehydes other than those listed. The presence of these other aldehydes can be confirmed by examination of the mass spectral data and observation of peaks at m/e 126 and at the molecular ion minus one mass unit. The molecularion for a particular aldehyde is equal to the molecular weight of the original aldehyde plus 97. Fragmentation patterns are also important for the identification of the oxazolidines.
 - NOTE 2: The absence of some C₃-C₅ aldehydes, such as propionaldehyde, isobutyraldehyde and crotonaldehyde, does not necessarily mean that these compounds are not present in the air sampled. These compounds are not efficiently trapped by the sorbent, and will readily breakthrough the sampler sorbent beds.
 - NOTE 3: Higher molecular weight aldehydes, such as isovaleraldehyde, hexanal and heptanal, probably will be more efficiently collected on the sorbent owing to their lower va por pressure. Thus, absence of these compounds in sample results may be indicative of the absence of these compounds in the environment sampled.
- 12. Report the presence of a particular aldehyde if:
 - a. There is a detectable peak by GC-FID at the correct retention time for that aldehyde derivative.
 - b. The correct mass spectrum for the derivative is obtained by GC/MS at the proper retention time.

REFERENCES:

- NIOSH Manual of Analytical Methods, 3rd ed., P.M. Eller, Ed., DHHS (NIOSH) Publication No. 84-100 (1984).
- [2] Occupational Safety and Health Administration, "OSHA Analytical Method Manual," American Conference of Governmental Industrial Hygienists, Cincinnati, OH (1985).
- [3] Kennedy, E. R., P. F. O'Connor, Y. T. Gagnon. Determination of Acrolein in Air as an Oxazolidine Derivative by G as Chromatography. <u>Anal. Chem.</u>, <u>56</u>, 2120-2123 (1984).
- [4] Kennedy, E. R., Y. T. Gagnon, J. R. Okenfuss, A. W. Teass. The Determination in Air of Selected Low-molecular Weight Aldehydes as Their Oxazolidines by Capillary Gas Chromatography. <u>Appl. Ind. Hyg.</u>, 3, 274-279 (1988).

METHOD WRITTEN (REVISED) BY:

Ardith A. Grote and Eugene R. Kennedy, Ph.D., NIOSH/DPSE.

TABLE 1. GENERAL INFORMATION

Compound		d(g/mL)	Exposure
Limits (ppm)	VP(mm Hg)		

ALDEHYDES, SCREENING: I	METHOD 25	39, Issue	2, dated 15	5 August 1	994 - Page	5 of 10		
(Synonyms) Formaldehyde (formic aldehyde; formalin; CAS #50-00-0 RTECS LP8925000	<u>Formula</u> CH ₂ O	MW 30.03	<u>@ 20 °C</u> -	<u>BP(°C)</u> -19.5	OSHA 3; C 5; P 10/30 min	NIOSH Carc.*; 0.016 C 0.1 Group I Pesticide	ACGIH C 0.3 Suspected Carcinogen	<u>(@ 20 °C)</u> 20 (-88°C)
Acetaldehyde (acetic aldehyde; ethyl aldehyde; CAS #75-07-0 RTECS AB 1925000	C2H4O	44.05 (@	0.788 2 16°C)	21	200	Carc.* 18 ppm LOQ	100 150 STEL	740
Propionaldehyde (propanal; CAS # 123-38-6) RTECS UE0350000	C3H*O	58.08	0.807	49	-	-	-	258
Acrolein (2-propenal; allyl aldehyde; CAS #107-02-8) RTECS AS1050000	c'H'o	56.06	0.839	52.5	0.1	0.1 0.3 STEL Group I Pesticide	0.1 0.3 STEL	210
Butyraldehyde (butanal; CAS # 123-72-8) RTECS ES2275000	C'H"O	72.10	0.802	75	-		-	92
lsobutyraldehyde (2-methylpropanal dimethylacetaldehyde; CAS #78-84-2) RTECS NQ4025000	C'H"O	72.10	0.794	64	-		-	170
Crotonaldehyde (2-butenal; ß-methyl acrolein; CAS # 123-73-9) RTECS GP9625000	C'H'O	70.09	0 853	104	2	2	2	30
n-Valeraldehyde (pentanal; CAS # 110-62-3) RTECS YV3600000	C ⁵ H ¹⁶ O	86.13	0.810	102	no standard	50	50	50
lsovaleraldehyde (3-methylbutanal; isopentanal; CAS # 590-88-3) RTECS ES3450000	C ₆ H ₁₆ O	86.13	0.785	92	-	-	-	50
Hexanal (caproaldehyde; CAS # 66-25-1) RTECS MN7175000	C,H,20	100.16	0.834	131	-	-	-	10
Heptanal (enanthal; CAS #111-71-7) RTECS MI6900000	С,Н"О	114.18 ((0.809 @ 30°C)	153	-	-	-	3
Furfural (2-furancarboxaldehyde; CAS # 98-01-1) RTECS LT7000000	C'H'O'	96.08 (@	1.16 25°C)	162	5 (skin)	-	2 (skin)	

* - Carcinogen

NIOSH Manual of Analytical Methods (NMAM), Fourth Edition

50

ALDEHYDES, SCREENING: METHOD 2539, Issue 2, dated 15 August 1994 - Page 6 of 10

TABLE 2 MASS SPECTRAL DATA FOR ALDEHYDE DERIVATIVES OF 2-(HYDROXYMETHYL)PIPERIDINE (HMP)

		HMP DERIVATIVE	
Aldehyde	Formula	Base Peak /z	Other Characteristic
Formaldehyde	C,H.,NO	97	126, 127*
Acetaldehyde	C, H, NO	126	140, 141*
Propionaldehyde	C ₆ H ₁₇ NO	126	154, 155*
Acrolein	C ₆ H ₁₅ NO	126	152, 153*
Butyraldehyde	C ₁₀ H ₁₀ NO	126	168, 169*
Isobutyraldehyde	C., H., NO	126	168, 169*
Crotonaldehyde	C.,H.,NO	126	166, 167*
Valeraldehyde	C., H., NO	126	182, 183*
Isovaleraldehyde	C., H., NO	126	182, 183*
Hexanal	C.,H.,NO	126	196, 197*
Heptanal	C.,H.,NO	126	210, 211*
Furfural	C ₁₁ H ₁₅ NO ₂	192	95, 163, 193*

* indicates molecular ion.

APPENDIX A:

SORBENT PREPARATION (optional if commercially prepared tubes are used):

Extract Amb erlite XAD S-2 for 4 h in Soxh let with 50/50 (v/v) aceto ne/m ethylene chloride. Replace with fresh solvent and repeat. Vacuum dry overnight. Add 1 g purified 2-(hydroxymethyl)piperidine in 50 mL toluene for each 9 g extracted XAD-2 sorbent. Allow this mixture to stand 1 h with occasional swirling. Remove the solvent by rotary evaporation at 37 °C and dry at 130 kPa (1 mm Hg) at am bient temperature for ca. 1 h. To determine the amount of background for each batch, extract several 120-mg portions of the coated sorbent with toluene and analyze (steps 6 through 12). No blank peak is expected for any aldehydes other than formaldehyde and possibly acetaldehyde.

SYNTHESIS OF ALDEHYDE OXAZOLIDINES:

Place a solution of purified 2-hydroxymethylpiperid ine (0.57 g, 5 mmol) in 10 mL of toluene in a 50-mL round-bottomed flask. Use several 20 mL portions of toluene to rinse residual 1-(hydroxymethyl)piperidine from the container used for weighing. Add anhydrous magnesium sulfate (2.5 g) to the round-bottomed flask to dry the aldehyde solution as it is added and to remove the water which forms during the reaction. Add a solution of 10 mole of aldehyde in 10 mL of toluene to the 2-hydroxymethylpiperidine solution dropwise with stirring over 1 h. Stir the solution overnight, then filter to remove the magnesium sulfate. Remove the toluene and excess aldehyde from the solution at reduced pressure by rotary evaporation.

PREPARATION AND STANDARDIZATION OF FORMALDE HYDE STOCK SOLUTION (ca. 1 mg/m L):

Dilute 2.7 mL 37% aqueous form alin solution to 1 L with distilled, deionized water. This solution is stable for at least three months. Standardize by placing 5.0 mL of freshly prepared 1.13 <u>M</u> sodium sulfite solution in a 50-mL beaker and stir magnetically. Adjust pH to between 8.5 and 10 with base or acid. Record the pH. Add 10.0 mL stock formaldehyde solution. The pH should be greater than 11. Titrate the solution back to its original pH with 0.02 <u>N</u> sulfuric acid (1 mL acid = 0.600 mg HCHO; about 17 mL acid needed). If the endpoint pH is overrun, back titrate to the endpoint with 0.01 <u>N</u> sodium hydroxide. Calculate the concentration, C_s (mg/mL), of the formaldehyde stock solution:

$$C_s = \frac{30.0 \times (N_a \cdot V_a - N_b \cdot V_b)}{V_s}$$

where:

30.0 = 30.0 g/equivalent of formaldehyde N_a = normality of sulfuric acid

ALDEHYDES, SCREENING: METHOD 2539, Issue 2, dated 15 August 1994 - Page 7 of 10

 $\begin{array}{l} V_{a} = \text{volume of sulfuric acid} (\text{mL}) \text{ used for titration} \\ N_{b} = \text{normality of NaOH} \\ V_{b} = \text{volume of NaOH} (\text{mL}) \text{ used for back titration} \\ V_{s} = \text{volume of form aldehyde stock solution} (10.0 \text{ mL}). \end{array}$

ALDEHYDES, SCREENING: METHOD 2539, Issue 2, dated 15 August 1994 - Page 8 of 10 APPENDIX B: Sample chromatogram of aldehyde oxazolidines on DB-1301 column using conditions listed on page 2539-1.

ALDEHYDES, SCREENING: METHOD 2539, Issue 2, dated 15 August 1994 - Page 9 of 10 APPENDIX C: Reference mass spectra of oxazolidines of aldehydes individually spiked onto ORBO-23 tubes. GC/MS conditions: HP 5890 gas chromatograph interfaced (direct) to HP 5970 mass-selective detector (70eV); 30-m DB-1 column, 0.25-mm I.D., 1.0- μ m film; 70 °C for 1 min, 15 °C/min to 300 °C; interface temperature, 280 °C; injector, 250 °C, 1 μ L splitless injection; scan 20-400 amu.

NIOSH Manual of Analytical Methods (NMAM), Fourth Edition

ALDEHYDES, SCREENING: METHOD 2539, Issue 2, dated 15 August 1994 - Page 10 of 10 APPENDIX C: (Continued)

NIOSH Manual of Analytical Methods (NMAM), Fourth Edition

HYDROCARBONS, AROMATIC

1501

FORMULA: Table 1 MW: Table 1 CAS: Table 1 R

RTECS: Table 1

METHOD: 150	1, Issue 3	ssue 3 EVALUATION: Full			lssue 1: 15 August 1990 Issue 3: 15 March 2003			
OSHA: Table NIOSH: Table ACGIH: Table	e 2 e 2 e 2			PROPERTIES:	Table 1			
SYNONYMS: (Synonyms	Group A:	benzene	toluene eth	ylbenzene <u>o</u> ->	xylene <u>m</u> -xylene <u>p</u> -xylene			
in Table 1)	Group B:	cumene	<u>p</u> -tert-butyltoluene	α-methylstyrene	β-methylstyrene styrene			
	s	AMPLING		MEASUREMENT				
SAMPLER:	SOLID (cocor	SORBENT T	UBE oal. 100 mg/50 mg)	TECHNIQUE:	GAS CHROMATOGRAPHY, FID			
	Tabla		ea,	ANALYTE:	Hydrocarbons listed above			
FLOW RATE:	Table	3		DESORPTION:	1 mL CS ₂ , stand 30 min with agitation			
VOL-MIN: -MAX:	Table	3		INJECTION VOLUME:	1 μL (Group A; split 5:1;			
SHIPMENT:	Routin	е			Group B: split 1:1)			
SAMPLE STABILITY:	30 day	∕s @ 5°C		TEMPERATURE -INJECTION:	250 °C 300 °C			
BLANKS:	10% o	fsamples		-COLUMN:	Group A: 40 °C (10 min) to 230°C (10 °C/min) Group B: 35°C (8 min) to 225°C (10°C/min)			
	A	CCURACY		CARRIER GAS:	He @ 2.6 mL/min			
RANGE STUD	IED:	Table	3	COLUMN:	Capillary, fused silica Group A: 30m x 0.32-mm ID: 1-um film			
BIAS:		Table	3		100% PEG or equivalent Group P: 30m x 0.52 mm ID: 2 um film			
OVERALL PR	ECISION (Ŝ	Table	3		crossbonded®35% diphenyl 65% dimethyl polysiloxane or equivalent			
ACCURACY:		Table	3	CALIBRATION:	Solutions of analytes in CS ₂			
				RANGE:	Table 4			
				ESTIMATED LOD:	Table 4			
				PRECISION (Š,):	Table 4			

APPLICABILITY: This method is for peak, ceiling, and TWA determinations of aromatic hydrocarbons. Interactions between analytes may reduce breakthrough volumes and affect desorption efficiencies. Naphthalene, originally validated in S292 [4], failed to meet acceptable desorption efficiency recovery and storage stability criteria at the tevels evaluated in this study. However, the application of this method to naphthalene levels at or near the REL/PEL continues to meet acceptable recovery criteria. Styrene failed to meet acceptable recovery criteria at the two lowest levels evaluated in this study (highest level to meet the criteria was 181 µg/sample).

INTERFERENCES: Under conditions of high humidity, the breakthrough volumes may be reduced. Other volatile organic compounds such as alcohols, ketones, ethers, and halogenated hydrocarbons are potential analytical interferences.

 $\begin{array}{l} \textbf{OTHER METHODS:} \quad \mbox{This method updates NMAM 1501 issued on August 15, 1994 [1] which was based upon P&CAM 127 (benzene, styrene, toluene, and xylene) [2]; S22 (p-tert-butyltoluene) [3]; S23 (cumene) [3]; S29 (ethylbenzene) [3]; S26 (\alpha-methylstyrene) [3]; S30 (styrene); S311 (benzene) [4]; S343 (toluene) [4]; and S318 (xylenes) [4]. \end{array}$

HYDROCARBONS, AROMATIC: METHOD 1501, Issue 3, dated 15 March 2003 - page 2 of 7

REAGENTS:

- Carbon disulfide*, low benzene, chromatographic quality.
- 2. Analytes, reagent grade.
- 3. Helium, prepurified and filtered.
- 4. Hydrogen, prepurified and filtered.
- 5. Air, prepurified and filtered.

* See SPECIAL PRECAUTIONS

EQUIPMENT:

- Sampler: glass tube, 7 cm long, 6-mm OD, 4mm ID, flame-sealed ends, containing two sections of activated coconut shell charcoal (front = 100 mg, back = 50 mg) separated by a 2-mm urethane foam plug. A silylated glass wool plug precedes the front section and a 3mm urethane foam plug follows the back section. Tubes are commercially available.
- Personal sampling pump, 0.01 to 1.0 L/min (Table 3), with flexible connecting tubing.
- 3. Gas chromatograph, FID, integrator, and columns (page 1501-1).
- Autosampler vials, glass, 1.8 mL, with PTFElined caps.
- 5. Pipets, 1-mL, and pipet bulb.
- 6. Syringes, 10-µL, 25-µL, and 250-µL.
- 7. Volumetric flasks, 10-mL.

SPECIAL PRECAUTIONS: Carbon disulfide is toxic and extremely flammable (flash point = -30°C), benzene is a suspect carcinogen. Prepare standards and samples in a well ventilated hood.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- Break the ends of the sampler immediately before sampling. Attach sampler to personal sampling pump with flexible tubing.
- Sample at an accurately known flow rate between 0.01 and 0.2 L/min for a total sample size as shown in Table 3.
- 4. Cap the samplers with plastic (not rubber) caps and pack securely for shipment.

SAMPLE PREPARATION:

- 5. Place the front and back sorbent sections of the sampler tube in separate vials. Include the glass wool plug in the vial along with the front sorbent section.
- 6. Add 1.0 mL eluent to each vial. Attach crimp cap to each vial immediately.
- 7. Allow to stand at least 30 min with occasional agitation.

CALIBRATION AND QUALITY CONTROL:

- Calibrate daily with at least six working standards from below the LOD to 10 times the LOQ. If necessary, additional standards may be added to extend the calibration curve.
 - a. Add known amounts of analytes to carbon disulfide solvent in 10-mL volumetric flasks and dilute to the mark. Prepare additional standards by serial dilution in 10-mL volumetric flasks.
 - b. Analyze together with samples and blanks (steps 11 through 12).
 - c. Prepare calibration graph (peak area of analyte vs. µg analyte per sample).

HYDROCARBONS, AROMATIC: METHOD 1501, Issue 3, dated 15 March 2003 - page 3 of 7

- 9. Determine desorption efficiency (DE) at least once for each batch of charcoal used for sampling in the calibration range (step 8).
 - a. Prepare three tubes at each of five levels plus three media blanks.
 - b. Inject a known amount of DE stock solution (5 to 25 $\mu L)$ directly onto front sorbent section of each charcoal tube with a microliter syringe.
 - c. Allow the tubes to air equilibrate for several minutes, then cap the ends of each tube and allow to stand overnight.
 - d. Desorb (steps 5 through 7) and analyze together with standards and blanks (steps 11 and 12).

e. Prepare a graph of DE vs. µg analyte recovered.

 Analyze a minimum of three quality control blind spikes and three analyst spikes to insure that the calibration graph and DE graph are in control.

MEASUREMENT:

11. Set gas chromatograph according to manufacturer's recommendations and to conditions given on page 1501-1. Inject a 1-µL sample aliquot manually using the solvent flush technique or with an autosam pler. Note: If peak area is above the linear range of the working standards, dilute with solvent, reanalyze, and apply the appropriate dilution factor in the calculations.

Analyte	Approximate Retention Time (min)
benzene ^a	3.52
toluene ^a	6.13
ethylbenzene ^a	10.65
<u>o</u> -xylene ^a	12.92
<u>m</u> -xylene ^a	11.33
<u>p</u> -xylene ^a	11.04
cumene ^b	18.61
<u>p</u> -tert-butyltoluene ^b	21.45
α-methylstyrene ^b	19.99
β-methylstyrene ^b	20.82
styrene ^b	18.33

^a Separation achieved using a 30-m Stabilwax fused silica capillary colum.

^b Separation achieved using a 30-m Rtx-35 fused silica capillary column.

12. Measure peak areas.

CALCULATIONS:

- Determine the mass, μg (corrected for DE) of analyte found in the sample front (W_t) and back (W_b) sorbent sections, and in the average media blank front (B_t) and back (B_b) sorbent sections. NOTE: If W_b > W/10, report breakthrough and possible sample loss.
- 14. Calculate concentration, C, of analyte in the air volume sampled, V (L):

$$C = \frac{(W_f + W_b - B_f - B_b)}{V}, mg / m^3$$

NOTE: $\mu g/L = mg/m^3$

HYDROCARBONS, AROMATIC: METHOD 1501, Issue 3, dated 15 March 2003 - page 4 of 7

EVALUATION OF METHOD:

The desorption efficiency, at levels ranging from 5 times the LOQ to 0.1x the REL, was determined for each analyte by spiking known amounts (in CS_2) on coconut shell charcoal tubes. Both groups of analytes (A and B) were spiked together on the charcoal sorbent tubes. All analytes, with the exception of styrene and naphthalene, exhibited acceptable desorption efficiency recovery results at all five levels evaluated. Styrene failed to meet the 75% recovery criteria at the 18.1 µg and 90.6 µg levels. Naphthalene failed to meet the 75% criteria at all levels evaluated ranging from 48.8 µg to 976.0 µg.

Each analyte, at a level approximately 0.05x REL/PEL, was evaluated for its storage stability @ 5°C after 7, 14, and 30 days. All analytes, with the exception of naphthalene, had acceptable recoveries after 30 days storage.

REFERENCES:

- [1] NIOSH [1984]. Hydrocarbons, Aromatic: Method 1501. In: Eller PM, ed. NIOSH Manual of Analytical Methods. 4th rev. ed. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 94-113.
- [2] NIOSH [1977]. NIOSH Manual of Analytical Methods, 2nd. ed., V. 1, P&CAM 127, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-A.
- [3] Ibid, V. 2, S22, S23, S25, S26, S29, S30, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-B (1977).
- [4] Ibid, V. 3, S292, S311, S318, S343, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-C (1977).
- [5] NIOSH [1977]. Documentation of the NIOSH Validation Tests, S22, S23, S25, S26, S29, S30, S292, S311, S318, S343, U.S. Department of Health, Education, and Welfare; Publ. (NIOSH) 77-185.

METHOD WRITTEN BY:

Stephanie M. Pendergrass, NIOSH/DART

Name/Synonyms	Empirical Formula	Molecular Weight	Boiling Point (°C)	Vapor Pressure @ 25 °C (mm Hg)	(kPa)	Density @ 20 °C (g/mL)
benzene CAS #71-43-2 RTECS CY1400000	C _e H _e	78.11	80.1	95.2	12.7	0.879
p-tert-butyltoluene CAS #98-51-1 RTECS XS8400000 1-tert-butyl-4-methylbenzene	C ₁ ,H ₁₆	148.25	192.8	0.7	0.09	0.861
cumene CAS #98-82-8 RTECS GR8575000 isopropylbenzene	C ₉ H ₁₂	120.20	152.4	4.7	0.63	0.862
ethylbenzene CAS #100-41-4 RTECS DA0700000	C _a H _{re}	106.17	136.2	9.6	1.28	0.867
α-methylstyrene CAS #98-83-9 RTECS WL5075300 isopropenylbenzene (1-methylethenyl)-benzene	C ₉ H ₁₆	118.18	165.4	2.5	0.33	0.909
β-methylstyrene CAS #873-66-5 RTECS DA8400500	C ₉ H ₁₆	118.18	175.0	_	_	0.911
toluene CAS #108-88-3 RTECS XS5250000 methylbenzene	C,H,	92.14	110.6	28.4	3.79	0.867
xylene ^e CAS #1330-20-7 RTECS ZE2100000 dimethylbenzene (<u>p</u> -xylene)	C _a H ₁₀ (<u>ortho)</u> (<u>meta</u>) (<u>para</u>)	106.17	144.4 139.1 138.4	6.7 8.4 8.8	0.89 1.12 1.18	0.880 0.864 0.861
styrene CAS #100-42-5 RTECS WL3675000 vinylbenzene	C _a H _a	104.15	145.2	6.1	0.81	0.906

HYDROCARBONS, AROMATIC: METHOD 1501, Issue 3, dated 15 March 2003 - page 5 of 7

TABLE 1. SYNONYMS, FORMULA, MOLECULAR WEIGHT, PROPERTIES

HYDROCARBONS, AROMATIC: METHOD 1501, Issue 3, dated 15 March 2003 - page 6 of 7

			NIOSH		AC	GIH	
Substance	OSHA TWA	TWA	с	STEL	TLV	STEL	mg/m³ per ppm
benzene	1	0.1ª	1		10 ^b		3.19
<u>p-tert</u> -butyltoluene	10	10		20	1		6.06
cumene	50 (skin)	50 (skin)			50 (skin)		4.91
ethylbenzene	100	100		125	100	125	4.34
α-methylstyrene	100	50		100	50	100	4.83
β-methylstyrene	100	50		100	50	100	4.83
toluene	200	100		150	50 (skin)		3.77
o-xylene	100	100°		150	100	150	4.34
<u>m</u> -xylene	100	100			100	150	4.34
<u>p</u> -xylene	100	100			100	150	4.34
styrene	100	50		100	50	100 (skin)	4.26

TABLE 2. PERMISSIBLE EXPOSURE LIMITS, PPM

^a Potential carcinogen ^b Suspect carcinogen

[°] Group I Pesticide

TABLE 3. SAMPLING FLOWRATE^a, VOLUME, CAPACITY, RANGE, OVERALL BIAS AND PRECISION

	s	ampling		Brea Volur	kthrough me @	Range at	0	/erall	
Substance	Flowrate (L/min)	<u>Volu</u> MIN	me ^b (L) MAX	Conce (L)	entration (mg/m ³)	VOL-MIN (mg/m ³)	Bias (%)	Precision (Ŝ,,)	Accuracy (±%)
benzene	<0.20	5	30	>45	149	42 - 165	-0.4	0.059	11.4
<u>p-tert</u> -butyltoluene	<0.20	1	29	44	112	29 - 119	-10.3	0.071°	20.7
cumene	≤0.20	1	30	>45	480	120 - 480	5.6	0.059	15.2
ethylbenzene	≤0.20	1	24	35	917	222 - 884	-7.6	0.089°	17.1
α-methylstyrene	<0.20	1	30	>45	940	236 - 943	-7.6	0.061°	16.9
β-methylstyrene	≤0.20	1	30	>45	940	236 - 943	-7.6	0.061	16.9
toluene	≤0.20	1	8	12	2294	548 - 2190	1.6	0.052	10.9
xylene (o-,m-,p-)	≤0.20	2	23	35	870	218 - 870	-1.2	0.060	12.2
styrene	<u><</u> 1.00	1	14	21	1710	426 - 1710	-7.9	0.058°	16.7

^a Minimum recommended flow is 0.01 L/min.
 ^b V_{un} = minimum sample volume @ OSHA TWA; V_{unx} = maximum sample volume @ OSHA TWA
 ^c Corrected value, calculated from data in Reference 5.

	_	Measurement			
Substance	LOD (µg/sample)	Range (mg)	Precision (Ŝ _r)		
benzene	0.5	0.004-0.35	0.013		
<u>p-tert</u> -butyltoluene	1.1	0.013-1.09	0.017ª		
cumene	0.6	0.039-3.46	0.017		
ethylbenzene	0.5	0.045-8.67	0.015		
α-methylstyrene	0.6	0.036-3.57	0.014		
β-methylstyrene	0.6	0.036-0.728	0.014		
toluene	0.7	0.024-4.51	0.022		
o-xylene	0.8	0.044-10.4	0.014		
m-xylene	0.8	0.043-0.864	0.013		
p-xylene	0.7	0.043-0.861	0.015		
styrene	0.4	0.181-8.49	0.014		

TABLE 4. MEASUREMENT RANGE AND PRECISION^a

^a Corrected value, calculated from data in [5].

PARTICULATES NOT OTHERWISE REGULATED, RESPIRABLE 0600

DEFINITION: aerosol collected by sampler with CAS: None RTECS: None 4-µm median cut point

METHOD: 0600, Issue 3	EVALUATION: FULL	Issue 1: 15 February 1984 Issue 3: 15 January 1998	
OSHA: 5 mg/m ³ NIOSH: no REL ACGIH: 3 mg/m ³	PROPERTIES:	contains no asbestos and quartz less than 1%; penetrates non-ciliated portions of respiratory system	

SYNONYMS: nuisance dusts; particulates not otherwise classified

SAMPLING		MEASUREMENT	
SAMPLER:	CYCLONE + FILTER	TECHNIQUE:	GRAVIMETRIC (FILTER WEIGHT)
	(10-mm nyion cyclone, Higgins-Deweil [HD] cyclone, or Aluminum cyclone + tared 5-µm PVC membrane)	ANALYTE:	mass of respirable dust fraction
		BALANCE:	0.001 mg sensitivity; use same balance before and after sample collection
FLOW RATE:	nylon cyclone: 1.7 L/min HD cyclone: 2.2 L/min Al cyclone: 2.5 L/min	CALIBRATION:	National Institute of Standards and Technology Class S-1.1 or ASTM Class 1 weights
VOL-MIN: -MAX:	20 L @ 5 mg/m³ 400 L	RANGE:	0.1 to 2 mg per sample
SHIPMENT:	routine		0.03 mg per sample
SAMPLE STABILITY:	stable	PRECISION:	<10 µg with 0.001 mg sensitivity balance; <70 µg with 0.01 mg sensitivity balance [3]
BLANKS: 2 to 10 field blanks per set			
	ACCURACY		
RANGE STUDIE	D: 0.5 to 10 mg/m ³ (lab and field)		
BIAS:	dependent on dust size distribution [1]		
OVERALL PRECISION (Ŝ,	ependent on size distribution [1,2]		
ACCURACY:	dependent on size distribution [1]		

APPLICABILITY: The working range is 0.5 to 10 mg/m³ for a 200-L air sample. The method measures the mass concentration of any non-volatile respirable dust. In addition to inert dusts [4], the method has been recommended for respirable coal dust. The method is biased in light of the recently adopted international definition of respirable dust, e.g., = +7% bias for non-diesel, coal mine dust [5].

INTERFERENCES: Larger than respirable particles (over 10 µm) have been found in some cases by microscopic analysis of cyclone filters. Over-sized particles in samples are known to be caused by inverting the cyclone assembly. Heavy dust loadings, fibers, and water-saturated dusts also interfere with the cyclone's size-selective properties. The use of conductive samplers is recommended to minimize particle charge effects.

OTHER METHODS: This method is based on and replaces Sampling Data Sheet #29.02 [6].

PARTICULATES NOT OTHERWISE REGULATED: METHOD 0600, Issue 3, dated 15 January 1998 - Page 2 of 6

EQUIPMENT:

- 1. Sampler:
 - a. Filter: 5.0-µm pore size, polyvinyl chloride filter or equivalent hydrophobic membrane filter supported by a cassette filter holder (preferably conductive).
 - b. Cyclone: 10-mm nylon(Mine Safety Appliance Co., Instrument Division, P. O. Box 427, Pittsburgh, PA 15230), Higgins-Dewell(BGI Inc., 58 Guinan St., Waltham, MA 02154)[7], aluminum cyclone (SKC Inc., 863 Valley View Road, Eighty Four, PA 15330), or equivalent.
- Personal sampling pump, 1.7 L/min ± 5% for nylon cyclone, 2.2 L/min ± 5% for HD cyclone, or 2.5 L/min ± 5% for the Al cyclone with flexible connecting tubing.
 NOTE: Bulaction in the sump flow must be within ± 20% of the mean flow.
- NOTE: Pulsation in the pump flow must be within ± 20% of the mean flow.
- 3. Balance, analytical, with sensitivity of 0.001 mg.
- 4. Weights, NIST Class S-1.1, or ASTM Class 1.
- 5. Static neutralizer, e.g., Po-210; replace nine months after the production date.
- 6. Forceps (preferably nylon).
- 7. Environmental chamber or room for balance, e.g., 20 °C ± 1 °C and 50% ± 5% RH.

SPECIAL PRECAUTIONS: None.

PREPARATION OF SAMPLERS BEFORE SAMPLING:

- 1. Equilibrate the filters in an environmentally controlled weighing area or chamber for at least 2 h.
- 2. Weigh the filters in an environmentally controlled area or chamber. Record the filter tare weight, W_1 (mg).
 - a. Zero the balance before each weighing.
 - b. Handle the filter with forceps (nylon forceps if further analyses will be done).
 - c. Pass the filter over an anti-static radiation source. Repeat this step if filter does not release easily from the forceps or if filter attracts balance pan. Static electricity can cause erroneous weight readings.
- 3. Assemble the filters in the filter cassettes and close firmly so that leakage around the filter will not occur. Place a plug in each opening of the filter cassette.
- 4. Remove the cyclone's grit cap before use and inspect the cyclone interior. If the inside is visibly scored, discard this cyclone since the dust separation characteristics of the cyclone may be altered. Clean the interior of the cyclone to prevent reentrainment of large particles.
- 5. Assemble the sampler head. Check alignment of filter holder and cyclone in the sampling head to prevent leakage.

SAMPLING:

- 6. Calibrate each personal sampling pump to the appropriate flow rate with a representative sampler in line. NOTE 1: Because of their inlet designs, nylon and aluminum cyclones are calibrated within a large vessel with inlet and outlet ports. The inlet is connected to a calibrator (e.g., a bubble meter). The cyclone outlet is connected to the outlet port within the vessel, and the vessel outlet is attached to the pump. See APPENDIX for alternate calibration procedure. (The calibrator
 - can be connected directly to the HD cyclone.) NOTE 2: Even if the flowrate shifts by a known amount between calibration and use, the nominal flowrates are used for concentration calculation because of a self-correction feature of the cyclones.
- 7. Sample 45 min to 8 h. Do not exceed 2 mg dust loading on the filter. Take 2 to 4 replicate samples for each batch of field samples for quality assurance on the sampling procedure (see Step 10).
 - NOTE: Do not allow the sampler assembly to be inverted at any time. Turning the cyclone to anything more than a horizontal orientation may deposit oversized material from the cyclone body onto the filter.

PARTICULATES NOT OTHERWISE REGULATED: METHOD 0600, Issue 3, dated 15 January 1998 - Page 3 of 6

SAMPLE PREPARATION:

8. Remove the top and bottom plugs from the filter cassette. Equilibrate for at least 2 h in an environmentally controlled area or chamber.

CALIBRATION AND QUALITY CONTROL:

- Zero the microbalance before all weighings. Use the same microbalance for weighing filters before and after sample collection. Calibrate the balance with National Institute of Standards and Technology Class S-1.1 or ASTM Class 1 weights.
- 10. The set of replicate field samples should be exposed to the same dust environment, either in a laboratory dust chamber [8] or in the field [9]. The quality control samples must be taken with the same equipment, procedures, and personnel used in the routine field samples. Calculate precision from these replicates and record relative standard deviation (S_r) on control charts. Take corrective action when the precision is out of control [8].

MEASUREMENT:

11. Weigh each filter, including field blanks. Record this post-sampling weight, W₂ (mg), beside its corresponding tare weight. Record anything remarkable about a filter (e.g., visible particles, overloading, leakage, wet, torn, etc.).

CALCULATIONS:

12. Calculate the concentration of respirable particulate, C (mg/m³), in the air volume sampled, V (L):

$$C = \frac{(W_2 - W_1) - (B_2 - B_1)}{V} \cdot 10^3, \ mg/m^3$$

where: W_1 = tare weight of filter before sampling (mg)

W₂ = post-sampling weight of sample-containing filter (mg)

B₁ = mean tare weight of blank filters (mg).

B₂ = mean post-sampling weight of blank filters (mg)

V = volume as sampled at the nominal flowrate (i.e., 1.7 L/min or 2.2 L/min)

EVALUATION OF METHOD:

 Bias: In respirable dust measurements, the bias in a sample is calculated relative to the appropriate respirable dust convention. The theory for calculating bias was developed by Bartley and Breuer [10]. For this method, the bias, therefore, depends on the international convention for respirable dust, the cyclones' penetration curves, and the size distribution of the ambient dust. Based on measured penetration curves for non-pulsating flow [1], the bias in this method is shown in Figure 1.

For dust size distributions in the shaded region, the bias in this method lies within the \pm 0.10 criterion established by NIOSH for method validation. Bias larger than \pm 0.10 would, therefore, be expected for some workplace aerosols. However, bias within \pm 0.20 would be expected for dusts with geometric standard deviations greater than 2.0, which is the case in most workplaces.

Bias can also be caused in a cyclone by the pulsation of the personal sampling pump. Bartley, et al. [12] showed that cyclone samples with pulsating flow can have negative bias as large as -0.22 relative to samples with steady flow. The magnitude of the bias depends on the amplitude of the pulsation at the

PARTICULATES NOT OTHERWISE REGULATED: METHOD 0600, Issue 3, dated 15 January 1998 - Page 4 of 6

cyclone aperture and the dust size distribution. For pumps with instantaneous flow rates within 20% of the mean, the pulsation bias magnitude is less than 0.02 for most dust size distributions encountered in the workplace.

Electric charges on the dust and the cyclone will also cause bias. Briant and Moss [13] have found electrostatic biases as large as -50%, and show that cyclones made with graphite-filled nylon eliminate the problem. Use of conductive samplers and filter cassettes(Omega Specialty Instrument Co., 4 Kidder Road, Chelmsford, MA 01824) is recommended.

Precision: The figure 0.068 mg quoted above for the precision is based on a study [3] of weighing
procedures employed in the past by the Mine Safety and Health Administration (MSHA) in which filters
are pre-weighed by the filter manufacturer and post-weighed by MSHA using balances readable to 0.010
mg. MSHA [14] has recently completed a study using a 0.001 mg balance for the post-weighing,
indicating imprecision equal to 0.006 mg.

Imprecision equal to 0.010 mg was used for estimating the LOD and is based on specific suggestions [8] regarding filter weighing using a single 0.001 mg balance. This value is consistent with another study [15] of repeat filter weighings, although the actual attainable precision may depend strongly on the specific environment to which the filters are exposed between the two weighings.

REFERENCES:

- Bartley DL, Chen CC, Song R, Fischbach TJ [1994]. Respirable aerosol sampler performance testing. Am. Ind. Hyg. Assoc. J., 55(11): 1036-1046.
- [2] Bowman JD, Bartley DL, Breuer GM, Shulman SA [1985]. The precision of coal mine dust sampling. Cincinnati, OH: National Institute for Occupational Safety and Health, DHEW (NIOSH) Pub. No. 85-220721.
- [3] Parobeck P, Tomb TF, Ku H, Cameron J [1981]. Measurement assurance program for the weighings of respirable coal mine dust samples. J Qual Tech 13:157.
- [4] ACGIH [1996]. 1996 Threshold limit values (TLVs™) for chemical substances and physical agents and biological exposure indices (BEIs™). Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
- [5] American Conference of Governmental Industrial Hygienists [1991]. Notice of intended change appendix D - particle size-selective sampling criteria for airborne particulate matter. Appl Occup Env Hyg 6(9): 817-818.
- [6] NIOSH [1977]. NIOSH Manual of sampling data sheets. Cincinnati, OH: National Institute for Occupational Safety and Health, DHEW (NIOSH) Publication No. 77-159.
- [7] Higgins RI, Dewell P [1967]. A gravimetric size selecting personal dust sampler. In: Davies CN, Ed. Inhaled particles and vapors II. Oxford: Pergammon Press, pp. 575-586.
- [8] Bowman JD, Bartley DL, Breuer GM, Doemeny LJ, Murdock DJ [1984]. Accuracy criteria recommended for the certification of gravimetric coal mine dust personal samplers. NTIS Pub. No. PB 85-222446 (1984).
- [9] Breslin, JA, Page SJ, Jankowski RA [1983]. Precision of personal sampling of respirable dust in coal mines. U.S. Bureau of Mines Report of Investigations #8740.
- [10] Bartley DL, Breuer GM [1982]. Analysis and optimization of the performance of the 10-mm cyclone. Am Ind Hyg Assoc J 43: 520-528.
- [11] Caplan KJ, Doemeny LJ, Sorenson S [1973]. Evaluation of coal mine dust personal sampler performance, Final Report. NIOSH Contract No. PH CPE-r-70-0036.
- [12] Bartley DL, Breuer GM, Baron PA, Bowman JD [1984]. Pump fluctuations and their effect on cyclone performance. Am Ind Hyg Assoc J 45(1): 10-18.
- [13] Briant JK, Moss OR [1983]. The influence of electrostatic charge on the performance of 10-mm nylon cyclones. Unpublished paper presented at the American Industrial Hygiene Conference, Philadelphia, PA, May 1983.
- [14] Koqut J [1994]. Private Communication from MSHA, May 12, 1994.

PARTICULATES NOT OTHERWISE REGULATED: METHOD 0600, Issue 3, dated 15 January 1998 - Page 5 of 6

[15] Vaughn NP, Chalmers CP, Botham [1990]. Field comparison of personal samplers for inhalable dust. Ann Occup Hyg 34: 553-573.

METHOD REVISED BY: David L. Bartley, Ph.D., NIOSH/DPSE/ARDB and Ray Feldman, OSHA.

Figure 1. Bias of three cyclone types relative to the international respirable dust sampling convention.

APPENDIX: Jarless Method for Calibration of Cyclone Assemblies

This procedure may be used in the field to calibrate an air sampling pump and a cyclone assembly without using the one-liter "calibration jar .

- (1) Connect the pump to a pressure gauge or water manometer and a light load (adjustable valve or 5-µm filter) equal to 2" to 5" H₂O with a "TEE connector and flexible tubing. Connect other end of valve to an electronic bubble meter or standard bubble tube with flexible tubing (See Fig. 2.1).
 - NOTE: A light load can be a 5-µm filter and/or an adjustable valve. A heavy load can be several 0.8-µm filters and/or adjustable valve.
- (2) Adjust the pump to 1.7 L/min, as indicated on the bubble meter/tube, under the light load conditions (2" to 5" H₂O) as indicated on the pressure gauge or manometer.
- (3) Increase the load until the pressure gauge or water manometer indicates between 25" and 35" H₂O. Check the flow rate of the pump again. The flow rate should remain at 1.7 L/min ± 5%.
- (4) Replace the pressure gauge or water manometer and the electronic bubble meter or standard bubble tube with the cyclone having a clean filter installed (Fig. 2.2). If the loading caused by the cyclone assembly is between 2" and 5" H₂O, the calibration is complete and the pump and cyclone are ready for sampling.

PARTICULATES NOT OTHERWISE REGULATED: METHOD 0600, Issue 3, dated 15 January 1998 - Page 6 of 6

Figure 2.1 Block Diagram of Pump/Load/Flow Meter Set-up.

÷.

Figure 2.2. Block Diagram with Cyclone as the Test Load.

EPA/625/R-96/010b

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air

Second Edition

Compendium Method TO-15

Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS)

> Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268

> > January 1999

69

Method TO-15 Acknowledgements

This Method was prepared for publication in the *Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition* (EPA/625/R-96/010b), which was prepared under Contract No. 68-C3-0315, WA No. 3-10, by Midwest Research Institute (MRI), as a subcontractor to Eastern Research Group, Inc. (ERG), and under the sponsorship of the U.S. Environmental Protection Agency (EPA). Justice A. Manning, John O. Burckle, and Scott Hedges, Center for Environmental Research Information (CERI), and Frank F. McElroy, National Exposure Research Laboratory (NERL), all in the EPA Office of Research and Development, were responsible for overseeing the preparation of this method. Additional support was provided by other members of the Compendia Workgroup, which include:

- John O. Burckle, EPA, ORD, Cincinnati, OH
- · James L. Cheney, Corps of Engineers, Omaha, NB
- · Michael Davis, U.S. EPA, Region 7, KC, KS
- Joseph B. Elkins Jr., U.S. EPA, OAQPS, RTP, NC
- Robert G. Lewis, U.S. EPA, NERL, RTP, NC
- Justice A. Manning, U.S. EPA, ORD, Cincinnati, OH
- William A. McClenny, U.S. EPA, NERL, RTP, NC
- Frank F. McElroy, U.S. EPA, NERL, RTP, NC
- Heidi Schultz, ERG, Lexington, MA
- William T. "Jerry" Winberry, Jr., EnviroTech Solutions, Cary, NC

This Method is the result of the efforts of many individuals. Gratitude goes to each person involved in the preparation and review of this methodology.

Author(s)

- William A. McClenny, U.S. EPA, NERL, RTP, NC
- Michael W. Holdren, Battelle, Columbus, OH

Peer Reviewers

- · Karen Oliver, ManTech, RTP, NC
- · Jim Cheney, Corps of Engineers, Omaha, NB
- Elizabeth Almasi, Varian Chromatography Systems, Walnut Creek, CA
- Norm Kirshen, Varian Chromatography Systems, Walnut Creek, CA
- Richard Jesser, Graseby, Smyrna, GA
- Bill Taylor, Graseby, Smyrna, GA
- Lauren Drees, U.S. EPA, NRMRL, Cincinnati, OH

Finally, recognition is given to Frances Beyer, Lynn Kaufman, Debbie Bond, Cathy Whitaker, and Kathy Johnson of Midwest Research Institute's Administrative Services staff whose dedication and persistence during the development of this manuscript has enabled it's production.

DISCLAIMER

This Compendium has been subjected to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

11

METHOD TO-15

Determination of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS)

TABLE OF CONTENTS

		Page
1.	Scope	15-1
2.	Summary of Method	15-2
3.	Significance	15-3
4.	Applicable Documents 4.1 ASTM Standards 4.2 EPA Documents	15-4 15-4 15-4
5.	Definitions	15-4
6.	Interferences and Contamination	15-6
7.	Apparatus and Reagents 7.1 Sampling Apparatus 7.2 Analytical Apparatus 7.3 Calibration System and Manifold Apparatus 7.4 Reagents	15-6 15-6 15-8 15-10 15-10
8.	Collection of Samples in Canisters 8.1 Introduction 8.2 Sampling System Description 8.3 Sampling Procedure 8.4 Cleaning and Certification Program	15-10 15-10 15-11 15-12 15-14
9.	GC/MS Analysis of Volatiles from Canisters 9.1 Introduction 9.2 Preparation of Standards	15-16 15-16 15-17
10.	GC/MS Operating Conditions 10.1 Preconcentrator 10.2 GC/MS System 10.3 Analytical Sequence 10.4 Instrument Performance Check 10.5 Initial Calibration 10.6 Daily Calibration 10.7 Blank Analyses	15-21 15-22 15-22 15-23 15-23 15-23 15-27
	10.8 Sample Analysis	15-27

TABLE OF CONTENTS (continued)

Page

11.	. Requirements for Demonstrating Method Acceptability for VOC Analysis from			
	Canisters	15-31		
	11.1 Introduction	15-31		
	11.2 Method Detection Limit	15-31		
	11.3 Replicate Precision	15-31		
	11.4 Audit Accuracy	15-32		
12.	References	15-32		

METHOD TO-15

Determination of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS)

1. Scope

1.1 This method documents sampling and analytical procedures for the measurement of subsets of the 97 volatile organic compounds (VOCs) that are included in the 189 hazardous air pollutants (HAPs) listed in Title III of the Clean Air Act Amendments of 1990. VOCs are defined here as organic compounds having a vapor pressure greater than 10⁻¹ Torr at 25°C and 760 mm Hg. Table 1 is the list of the target VOCs along with their CAS number, boiling point, vapor pressure and an indication of their membership in both the list of VOCs covered by Compendium Method TO-14A (1) and the list of VOCs in EPA's Contract Laboratory Program (CLP) document entitled: *Statement-of-Work (SOW) for the Analysis of Air Toxics from Superfund Sites (2)*.

Many of these compounds have been tested for stability in concentration when stored in specially-prepared canisters (see Section 8) under conditions typical of those encountered in routine ambient air analysis. The stability of these compounds under all possible conditions is not known. However, a model to predict compound losses due to physical adsorption of VOCs on canister walls and to dissolution of VOCs in water condensed in the canisters has been developed (3). Losses due to physical adsorption require only the establishment of equilibrium between the condensed and gas phases and are generally considered short term losses, (i.e., losses occurring over minutes to hours). Losses due to chemical reactions of the VOCs with cocollected ozone or other gas phase species also account for some short term losses. Chemical reactions between VOCs and substances inside the canister are generally assumed to cause the gradual decrease of concentration over time (i.e., long term losses over days to weeks). Loss mechanisms such as aqueous hydrolysis and biological degradation (4) also exist. No models are currently known to be available to estimate and characterize all these potential losses, although a number of experimental observations are referenced in Section 8. Some of the VOCs listed in Title III have short atmospheric lifetimes and may not be present except near sources.

1.2 This method applies to ambient concentrations of VOCs above 0.5 ppbv and typically requires VOC enrichment by concentrating up to one liter of a sample volume. The VOC concentration range for ambient air in many cases includes the concentration at which continuous exposure over a lifetime is estimated to constitute a 10^{-6} or higher lifetime risk of developing cancer in humans. Under circumstances in which many hazardous VOCs are present at 10^{-6} risk concentrations, the total risk may be significantly greater.

1.3 This method applies under most conditions encountered in sampling of ambient air into canisters. However, the composition of a gas mixture in a canister, under unique or unusual conditions, will change so that the sample is known not to be a true representation of the ambient air from which it was taken. For example, low humidity conditions in the sample may lead to losses of certain VOCs on the canister walls, losses that would not happen if the humidity were higher. If the canister is pressurized, then condensation of water from high humidity samples may cause fractional losses of water-soluble compounds. Since the canister surface area is limited, all gases are in competition for the available active sites. Hence an absolute storage stability cannot be assigned to a specific gas. Fortunately, under conditions of normal usage for sampling ambient air, most VOCs can be recovered from canisters near their original concentrations after storage times of up to thirty days (see Section 8).

1.4 Use of the Compendium Method TO-15 for many of the VOCs listed in Table 1 is likely to present two difficulties: (1) what calibration standard to use for establishing a basis for testing and quantitation, and (2) how

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-1

0

Method TO-15

to obtain an audit standard. In certain cases a chemical similarity exists between a thoroughly tested compound and others on the Title III list. In this case, what works for one is likely to work for the other in terms of making standards. However, this is not always the case and some compound standards will be troublesome. The reader is referred to the Section 9.2 on standards for guidance. Calibration of compounds such as formaldehyde, diazomethane, and many of the others represents a challenge.

VOCs

1.5 Compendium Method TO-15 should be considered for use when a subset of the 97 Title III VOCs constitute the target list. Typical situations involve ambient air testing associated with the permitting procedures for emission sources. In this case sampling and analysis of VOCs is performed to determine the impact of dispersing source emissions in the surrounding areas. Other important applications are prevalence and trend monitoring for hazardous VOCs in urban areas and risk assessments downwind of industrialized or source-impacted areas.

1.6 Solid adsorbents can be used in lieu of canisters for sampling of VOCs, provided the solid adsorbent packings, usually multisorbent packings in metal or glass tubes, can meet the performance criteria specified in Compendium Method TO-17 which specifically addresses the use of multisorbent packings. The two sample collection techniques are different but become the same upon movement of the sample from the collection medium (canister or multisorbent tubes) onto the sample concentrator. Sample collection directly from the atmosphere by automated gas chromatographs can be used in lieu of collection in canisters or on solid adsorbents.

2. Summary of Method

2.1 The atmosphere is sampled by introduction of air into a specially-prepared stainless steel canister. Both subatmospheric pressure and pressurized sampling modes use an initially evacuated canister. A pump ventilated sampling line is used during sample collection with most commercially available samplers. Pressurized sampling requires an additional pump to provide positive pressure to the sample canister. A sample of air is drawn through a sampling train comprised of components that regulate the rate and duration of sampling into the pre-evacuated and passivated canister.

2.2 After the air sample is collected, the canister valve is closed, an identification tag is attached to the canister, and the canister is transported to the laboratory for analysis.

2.3 Upon receipt at the laboratory, the canister tag data is recorded and the canister is stored until analysis. Storage times of up to thirty days have been demonstrated for many of the VOCs (5).

2.4 To analyze the sample, a known volume of sample is directed from the canister through a solid multisorbent concentrator. A portion of the water vapor in the sample breaks through the concentrator during sampling, to a degree depending on the multisorbent composition, duration of sampling, and other factors. Water content of the sample can be further reduced by dry purging the concentrator with helium while retaining target compounds. After the concentration and drying steps are completed, the VOCs are thermally desorbed, entrained in a carrier gas stream, and then focused in a small volume by trapping on a reduced temperature trap or small volume multisorbent trap. The sample is then released by thermal desorption and carried onto a gas chromatographic column for separation.

As a simple alternative to the multisorbent/dry purge water management technique, the amount of water vapor in the sample can be reduced below any threshold for affecting the proper operation of the analytical system by

Page 15-2 Compendium of Methods for Toxic Organic Air Pollutants January 1999

Method TO-15

reducing the sample size. For example, a small sample can be concentrated on a cold trap and released directly to the gas chromatographic column. The reduction in sample volume may require an enhancement of detector sensitivity.

Other water management approaches are also acceptable as long as their use does not compromise the attainment of the performance criteria listed in Section 11. A listing of some commercial water management systems is provided in Appendix A. One of the alternative ways to dry the sample is to separate VOCs from condensate on a low temperature trap by heating and purging the trap.

2.5 The analytical strategy for Compendium Method TO-15 involves using a high resolution gas chromatograph (GC) coupled to a mass spectrometer. If the mass spectrometer is a linear quadrupole system, it is operated either by continuously scanning a wide range of mass to charge ratios (SCAN mode) or by monitoring select ion monitoring mode (SIM) of compounds on the target list. If the mass spectrometer is based on a standard ion trap design, only a scanning mode is used (note however, that the Selected Ion Storage (SIS) mode for the ion trap has features of the SIM mode). Mass spectra for individual peaks in the total ion chromatogram are examined with respect to the fragmentation pattern of ions corresponding to various VOCs including the intensity of primary and secondary ions. The fragmentation pattern is compared with stored spectra taken under similar conditions, in order to identify the compound. For any given compound, the intensity of the primary fragment is compared with the system response to the primary fragment for known amounts of the compound. This establishes the compound concentration that exists in the sample.

Mass spectrometry is considered a more definitive identification technique than single specific detectors such as flame ionization detector (FID), electron capture detector (ECD), photoionization detector (PID), or a multidetector arrangement of these (see discussion in Compendium Method TO-14A). The use of both gas chromatographic retention time and the generally unique mass fragmentation patterns reduce the chances for misidentification. If the technique is supported by a comprehensive mass spectral database and a knowledgeable operator, then the correct identification and quantification of VOCs is further enhanced.

3. Significance

3.1 Compendium Method TO-15 is significant in that it extends the Compendium Method TO-14A description for using canister-based sampling and gas chromatographic analysis in the following ways:

- Compendium Method TO-15 incorporates a multisorbent/dry purge technique or equivalent (see Appendix
 A) for water management thereby addressing a more extensive set of compounds (the VOCs mentioned
 in Title III of the CAAA of 1990) than addressed by Compendium Method TO-14A. Compendium
 Method TO-14A approach to water management alters the structure or reduces the sample stream
 concentration of some VOCs, especially water-soluble VOCs.
- Compendium Method TO-15 uses the GC/MS technique as the only means to identify and quantitate target compounds. The GC/MS approach provides a more scientifically-defensible detection scheme which is generally more desirable than the use of single or even multiple specific detectors.
- In addition, Compendium Method TO-15 establishes method performance criteria for acceptance of data, allowing the use of alternate but equivalent sampling and analytical equipment. There are several new and viable commercial approaches for water management as noted in Appendix A of this method on which to base a VOC monitoring technique as well as other approaches to sampling (i.e., autoGCs and solid

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-3
adsorbents) that are often used. This method lists performance criteria that these alternatives must meet to be acceptable alternatives for monitoring ambient VOCs.

 Finally, Compendium Method TO-15 includes enhanced provisions for inherent quality control. The method uses internal analytical standards and frequent verification of analytical system performance to assure control of the analytical system. This more formal and better documented approach to quality control guarantees a higher percentage of good data.

3.2 With these features, Compendium Method TO-15 is a more general yet better defined method for VOCs than Compendium Method TO-14A. As such, the method can be applied with a higher confidence to reduce the uncertainty in risk assessments in environments where the hazardous volatile gases listed in the Title III of the Clean Air Act Amendments of 1990 are being monitored. An emphasis on risk assessments for human health and effects on the ecology is a current goal for the U.S. EPA.

4. Applicable Documents

4.1 ASTM Standards

- · Method D1356 Definitions of Terms Relating to Atmospheric Sampling and Analysis.
- · Method E260 Recommended Practice for General Gas Chromatography Procedures.
- · Method E355 Practice for Gas Chromatography Terms and Relationships.
- Method D5466 Standard Test Method of Determination of Volatile Organic Compounds in Atmospheres (Canister Sampling Methodology).

4.2 EPA Documents

- Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, U. S. Environmental Protection Agency, EPA-600/R-94-038b, May 1994.
- Technical Assistance Document for Sampling and Analysis of Toxic Organic Compounds in Ambient Air, U. S. Environmental Protection Agency, EPA-600/4-83-027, June 1983.
- Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air: Method TO-14, Second Supplement, U. S. Environmental Protection Agency, EPA-600/4-89-018, March 1989.
- Statement-of-Work (SOW) for the Analysis of Air Toxics from Superfund Sites, U. S. Environmental Protection Agency, Office of Solid Waste, Washington, D.C., Draft Report, June 1990.
- Clean Air Act Amendments of 1990, U. S. Congress, Washington, D.C., November 1990.

5. Definitions

[Note: Definitions used in this document and any user-prepared standard operating procedures (SOPs) should be consistent with ASTM Methods D1356, E260, and E355. Aside from the definitions given below, all pertinent abbreviations and symbols are defined within this document at point of use.]

5.1 Gauge Pressure—pressure measured with reference to the surrounding atmospheric pressure, usually expressed in units of kPa or psi. Zero gauge pressure is equal to atmospheric (barometric) pressure.

Page 15-4

Compendium of Methods for Toxic Organic Air Pollutants

VOCs

Method TO-15

5.2 Absolute Pressure—pressure measured with reference to absolute zero pressure, usually expressed in units of kPa, or psi.

5.3 Cryogen—a refrigerant used to obtain sub-ambient temperatures in the VOC concentrator and/or on front of the analytical column. Typical cryogens are liquid nitrogen (bp -195.8°C), liquid argon (bp -185.7°C), and liquid CO₂ (bp -79.5°C).

5.4 Dynamic Calibration—calibration of an analytical system using calibration gas standard concentrations in a form identical or very similar to the samples to be analyzed and by introducing such standards into the inlet of the sampling or analytical system from a manifold through which the gas standards are flowing.

5.5 Dynamic Dilution—means of preparing calibration mixtures in which standard gas(es) from pressurized cylinders are continuously blended with humidified zero air in a manifold so that a flowing stream of calibration mixture is available at the inlet of the analytical system.

5.6 MS-SCAN—mass spectrometric mode of operation in which the gas chromatograph (GC) is coupled to a mass spectrometer (MS) programmed to SCAN all ions repeatedly over a specified mass range.

5.7 MS-SIM—mass spectrometric mode of operation in which the GC is coupled to a MS that is programmed to scan a selected number of ions repeatedly [i.e., selected ion monitoring (SIM) mode].

5.8 Qualitative Accuracy—the degree of measurement accuracy required to correctly identify compounds with an analytical system.

5.9 Quantitative Accuracy—the degree of measurement accuracy required to correctly measure the concentration of an identified compound with an analytical system with known uncertainty.

5.10 Replicate Precision—precision determined from two canisters filled from the same air mass over the same time period and determined as the absolute value of the difference between the analyses of canisters divided by their average value and expressed as a percentage (see Section 11 for performance criteria for replicate precision).

5.11 Duplicate Precision—precision determined from the analysis of two samples taken from the same canister. The duplicate precision is determined as the absolute value of the difference between the canister analyses divided by their average value and expressed as a percentage.

5.12 Audit Accuracy—the difference between the analysis of a sample provided in an audit canister and the nominal value as determined by the audit authority, divided by the audit value and expressed as a percentage (see Section 11 for performance criteria for audit accuracy).

6. Interferences and Contamination

6.1 Very volatile compounds, such as chloromethane and vinyl chloride can display peak broadening and co-elution with other species if the compounds are not delivered to the GC column in a small volume of carrier gas. Refocusing of the sample after collection on the primary trap, either on a separate focusing trap or at the head of the gas chromatographic column, mitigates this problem.

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-5

6.2 Interferences in canister samples may result from improper use or from contamination of: (1) the canisters due to poor manufacturing practices, (2) the canister cleaning apparatus, and (3) the sampling or analytical system. Attention to the following details will help to minimize the possibility of contamination of canisters.

6.2.1 Canisters should be manufactured using high quality welding and cleaning techniques, and new canisters should be filled with humidified zero air and then analyzed, after "aging" for 24 hours, to determine cleanliness. The cleaning apparatus, sampling system, and analytical system should be assembled of clean, high quality components and each system should be shown to be free of contamination.

6.2.2 Canisters should be stored in a contaminant-free location and should be capped tightly during shipment to prevent leakage and minimize any compromise of the sample.

6.2.3 Impurities in the calibration dilution gas (if applicable) and carrier gas, organic compounds out-gassing from the system components ahead of the trap, and solvent vapors in the laboratory account for the majority of contamination problems. The analytical system must be demonstrated to be free from contamination under the conditions of the analysis by running humidified zero air blanks. The use of non-chromatographic grade stainless steel tubing, non-PTFE thread sealants, or flow controllers with Buna-N rubber components must be avoided.

6.2.4 Significant contamination of the analytical equipment can occur whenever samples containing high VOC concentrations are analyzed. This in turn can result in carryover contamination in subsequent analyses. Whenever a high concentration (>25 ppbv of a trace species) sample is encountered, it should be followed by an analysis of humid zero air to check for carry-over contamination.

6.2.5 In cases when solid sorbents are used to concentrate the sample prior to analysis, the sorbents should be tested to identify artifact formation (see Compendium Method TO-17 for more information on artifacts).

7. Apparatus and Reagents

[<u>Note</u>: Compendium Method To-14A list more specific requirements for sampling and analysis apparatus which may be of help in identifying options. The listings below are generic.]

7.1 Sampling Apparatus

[Note: Subatmospheric pressure and pressurized canister sampling systems are commercially available and have been used as part of U.S. Environmental Protection Agency's Toxic Air Monitoring Stations (TAMS), Urban Air Toxic Monitoring Program (UATMP), the non-methane organic compound (NMOC) sampling and analysis program, and the Photochemical Assessment Monitoring Stations (PAMS).]

7.1.1 Subatmospheric Pressure (see Figure 1, without metal bellows type pump).

7.1.1.1 Sampling Inlet Line. Stainless steel tubing to connect the sampler to the sample inlet.

7.1.1.2 Sample Canister. Leak-free stainless steel pressure vessels of desired volume (e.g., 6 L), with valve and specially prepared interior surfaces (see Appendix B for a listing of known manufacturers/resellers of canisters).

7.1.1.3 Stainless Steel Vacuum/Pressure Gauges. Two types are required, one capable of measuring vacuum (-100 to 0 kPa or 0 to - 30 in Hg) and pressure (0-206 kPa or 0-30 psig) in the sampling system and a second type (for checking the vacuum of canisters during cleaning) capable of measuring at 0.05 mm Hg (see Appendix B) within 20%. Gauges should be tested clean and leak tight.

7.1.1.4 Electronic Mass Flow Controller. Capable of maintaining a constant flow rate (± 10%) over a sampling period of up to 24 hours and under conditions of changing temperature (20–40°C) and humidity.
7.1.1.5 Particulate Matter Filter. 2-µm sintered stainless steel in-line filter.

Page 15-6

Compendium of Methods for Toxic Organic Air Pollutants Jan

7.1.1.6 Electronic Timer. For unattended sample collection.

7.1.1.7 Solenoid Valve. Electrically-operated, bi-stable solenoid valve with Viton® seat and O-rings. A Skinner Magnelatch valve is used for purposes of illustration in the text (see Figure 2).

7.1.1.8 Chromatographic Grade Stainless Steel Tubing and Fittings. For interconnections. All such materials in contact with sample, analyte, and support gases prior to analysis should be chromatographic grade stainless steel or equivalent.

7.1.1.9 Thermostatically Controlled Heater. To maintain above ambient temperature inside insulated sampler enclosure.

7.1.1.10 Heater Thermostat. Automatically regulates heater temperature.

7.1.1.11 Fan. For cooling sampling system.

7.1.1.12 Fan Thermostat. Automatically regulates fan operation.

7.1.1.13 Maximum-Minimum Thermometer. Records highest and lowest temperatures during sampling period.

7.1.1.14 Stainless Steel Shut-off Valve. Leak free, for vacuum/pressure gauge.

7.1.1.15 Auxiliary Vacuum Pump. Continuously draws air through the inlet manifold at 10 L/min. or higher flow rate. Sample is extracted from the manifold at a lower rate, and excess air is exhausted.

[<u>Note</u>: The use of higher inlet flow rates dilutes any contamination present in the inlet and reduces the possibility of sample contamination as a result of contact with active adsorption sites on inlet walls.]

7.1.1.16 Elapsed Time Meter. Measures duration of sampling.

7.1.1.17 Optional Fixed Orifice, Capillary, or Adjustable Micrometering Valve. May be used in lieu of the electronic flow controller for grab samples or short duration time-integrated samples. Usually appropriate only in situations where screening samples are taken to assess future sampling activity.

7.1.2 Pressurized (see Figure 1 with metal bellows type pump and Figure 3).

7.1.2.1 Sample Pump. Stainless steel, metal bellows type, capable of 2 atmospheres output pressure. Pump must be free of leaks, clean, and uncontaminated by oil or organic compounds.

[Note: An alternative sampling system has been developed by Dr. R. Rasmussen, The Oregon Graduate Institute of Science and Technology, 20000 N.W. Walker Rd., Beaverton, Oregon 97006, 503-690-1077, and is illustrated in Figure 3. This flow system uses, in order, a pump, a mechanical flow regulator, and a mechanical compensation flow restrictive device. In this configuration the pump is purged with a large sample flow, thereby eliminating the need for an auxiliary vacuum pump to flush the sample inlet.]

7.1.2.2 Other Supporting Materials. All other components of the pressurized sampling system are similar to components discussed in Sections 7.1.1.1 through 7.1.1.17.

7.2 Analytical Apparatus

7.2.1 Sampling/Concentrator System (many commercial alternatives are available).

7.2.1.1 Electronic Mass Flow Controllers. Used to maintain constant flow (for purge gas, carrier gas and sample gas) and to provide an analog output to monitor flow anomalies.

7.2.1.2 Vacuum Pump. General purpose laboratory pump, capable of reducing the downstream pressure of the flow controller to provide the pressure differential necessary to maintain controlled flow rates of sample air.

7.2.1.3 Stainless Steel Tubing and Stainless Steel Fittings. Coated with fused silica to minimize active adsorption sites.

January 1999 Compendium of Methods for Toxic Organic Air Pollutants

7.2.1.4 Stainless Steel Cylinder Pressure Regulators. Standard, two-stage cylinder regulators with pressure gauges

7.2.1.5 Gas Purifiers. Used to remove organic impurities and moisture from gas streams.

7.2.1.6 Six-port Gas Chromatographic Valve. For routing sample and carrier gas flows.

7.2.1.7 Multisorbent Concentrator. Solid adsorbent packing with various retentive properties for adsorbing trace gases are commercially available from several sources. The packing contains more than one type of adsorbent packed in series.

7.2.1.7.1A pre-packed adsorbent trap (Supelco 2-0321) containing 200 mg Carbopack B (60/80 mesh) and 50 mg Carbosieve S-III (60/80 mesh) has been found to retain VOCs and allow some water vapor to pass through (6). The addition of a dry purging step allows for further water removal from the adsorbent trap. The steps constituting the dry purge technique that are normally used with multisorbent traps are illustrated in Figure 4. The optimum trapping and dry purging procedure for the Supelco trap consists of a sample volume of 320 mL and a dry nitrogen purge of 1300 mL. Sample trapping and drying is carried out at 25°C. The trap is back-flushed with helium and heated to 220°C to transfer material onto the GC column. A trap bake-out at 260°C for 5 minutes is conducted after each run.

7.2.1.7.2An example of the effectiveness of dry purging is shown in Figure 5. The multisorbent used in this case is Tenax/Ambersorb 340/Charcoal (7). Approximately 20% of the initial water content in the sample remains after sampling 500 mL of air. The detector response to water vapor (hydrogen atoms detected by atomic emission detection) is plotted versus purge gas volume. Additional water reduction by a factor of 8 is indicated at temperatures of 45°C or higher. Still further water reduction is possible using a two-stage concentration/dryer system

7.2.1.8 Cryogenic Concentrator. Complete units are commercially available from several vendor sources. The characteristics of the latest concentrators include a rapid, "ballistic" heating of the concentrator to release any trapped VOCs into a small carrier gas volume. This facilitates the separation of compounds on the gas chromatographic column

7.2.2 Gas Chromatographic/Mass Spectrometric (GC/MS) System.

7.2.2.1 Gas Chromatograph. The gas chromatographic (GC) system must be capable of temperature programming. The column oven can be cooled to subambient temperature (e.g., -50°C) at the start of the gas chromatographic run to effect a resolution of the very volatile organic compounds. In other designs, the rate of release of compounds from the focusing trap in a two stage system obviates the need for retrapping of compounds on the column. The system must include or be interfaced to a concentrator and have all required accessories including analytical columns and gases. All GC carrier gas lines must be constructed from stainless steel or copper tubing. Non-polytetrafluoroethylene (PTFE) thread sealants or flow controllers with Buna-N rubber components must not be used.

7.2.2.2 Chromatographic Columns. 100% methyl silicone or 5% phenyl, 95% methyl silicone fused silica capillary columns of 0.25- to 0.53-mm I.D. of varying lengths are recommended for separation of many of the possible subsets of target compounds involving nonpolar compounds. However, considering the diversity of the target list, the choice is left to the operator subject to the performance standards given in Section 11.

7.2.2.3 Mass Spectrometer. Either a linear quadrupole or ion trap mass spectrometer can be used as long as it is capable of scanning from 35 to 300 amu every 1 second or less, utilizing 70 volts (nominal) electron energy in the electron impact ionization mode, and producing a mass spectrum which meets all the instrument performance acceptance criteria when 50 ng or less of p-bromofluorobenzene (BFB) is analyzed.

7.2.2.3.1Linear Quadrupole Technology. A simplified diagram of the heart of the quadrupole mass spectrometer is shown in Figure 6. The quadrupole consists of a parallel set of four rod electrodes mounted in a square configuration. The field within the analyzer is created by coupling opposite pairs of rods together and applying radiofrequency (RF) and direct current (DC) potentials between the pairs of rods. Ions created in the ion source from the reaction of column eluates with electrons from the electron source are moved through the

Page 15-8

Compendium of Methods for Toxic Organic Air Pollutants

parallel array of rods under the influence of the generated field. Ions which are successfully transmitted through the quadrupole are said to possess stable trajectories and are subsequently recorded with the detection system. When the DC potential is zero, a wide band of m/z values is transmitted through the quadrupole. This "RF only" mode is referred to as the "total-ion" mode. In this mode, the quadrupole acts as a strong focusing lens analogous to a high pass filter. The amplitude of the RF determines the low mass cutoff. A mass spectrum is generated by scanning the DC and RF voltages using a fixed DC/RF ratio and a constant drive frequency or by scanning the frequency and holding the DC and RF constant. With the quadrupole system only 0.1 to 0.2 percent of the ions formed in the ion source actually reach the detector.

7.2.2.3.2Ion Trap Technology. An ion-trap mass spectrometer consists of a chamber formed between two metal surfaces in the shape of a hyperboloid of one sheet (ring electrode) and a hyperboloid of two sheets (the two end-cap electrodes). Ions are created within the chamber by electron impact from an electron beam admitted through a small aperture in one of the end caps. Radio frequency (RF) (and sometimes direct current voltage offsets) are applied between the ring electrode and the two end-cap electrodes establishing a quadrupole electric field. This field is uncoupled in three directions so that ion motion can be considered independently in each direction; the force acting upon an ion increases with the displacement of the ion from the center of the field but the direction of the force depends on the instantaneous voltage applied to the ring electrode. A restoring force along one coordinate (such as the distance, r, from the ion-trap's axis of radial symmetry) will exist concurrently with a repelling force along another coordinate (such as the distance, z, along the ion traps axis), and if the field were static the ions would eventually strike an electrode. However, in an RF field the force along each coordinate alternates direction so that a stable trajectory may be possible in which the ions do not strike a surface. In practice, ions of appropriate mass-to-charge ratios may be trapped within the device for periods of milliseconds to hours. A diagram of a typical ion trap is illustrated in Figure 7. Analysis of stored ions is performed by increasing the RF voltage, which makes the ions successively unstable. The effect of the RF voltage on the ring electrode is to "squeeze" the ions in the xy plane so that they move along the z axis. Half the ions are lost to the top cap (held at ground potential); the remaining ions exit the lower end cap to be detected by the electron multiplier. As the energy applied to the ring electrode is increased, the ions are collected in order of increasing mass to produce a conventional mass spectrum. With the ion trap, approximately 50 percent of the generated ions are detected. As a result, a significant increase in sensitivity can be achieved when compared to a full scan linear quadrupole system.

7.2.2.4 GC/MS Interface. Any gas chromatograph to mass spectrometer interface that gives acceptable calibration points for each of the analytes of interest and can be used to achieve all acceptable performance criteria may be used. Gas chromatograph to mass spectrometer interfaces constructed of all-glass, glass-lined, or fused silica-lined materials are recommended. Glass and fused silica should be deactivated.

7.2.2.5 Data System. The computer system that is interfaced to the mass spectrometer must allow the continuous acquisition and storage, on machine readable media, of all mass spectra obtained throughout the duration of the chromatographic program. The computer must have software that allows searching any GC/MS data file for ions of a specified mass and plotting such ion abundances versus time or scan number. This type of plot is defined as a Selected Ion Current Profile (SICP). Software must also be available that allows integrating the abundance in any SICP between specified time or scan number limits. Also, software must be available that allows for the comparison of sample spectra with reference library spectra. The National Institute of Standards and Technology (NIST) or Wiley Libraries or equivalent are recommended as reference libraries.

7.2.2.6 Off-line Data Storage Device. Device must be capable of rapid recording and retrieval of data and must be suitable for long-term, off-line data storage.

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-9

VOCs

7.3 Calibration System and Manifold Apparatus (see Figure 8)

7.3.1 Calibration Manifold. Stainless steel, glass, or high purity quartz manifold, (e.g., 1.25-cm I.D. x 66-cm) with sampling ports and internal baffles for flow disturbance to ensure proper mixing. The manifold should be heated to \sim 50°C.

7.3.2 Humidifier. 500-mL impinger flask containing HPLC grade deionized water.

7.3.3 Electronic Mass Flow Controllers. One 0 to 5 L/min unit and one or more 0 to 100 mL/min units for air, depending on number of cylinders in use for calibration.

7.3.4 Teflon Filter(s). 47-mm Teflon® filter for particulate collection.

7.4 Reagents

7.4.1 Neat Materials or Manufacturer-Certified Solutions/Mixtures. Best source (see Section 9).

7.4.2 Helium and Air. Ultra-high purity grade in gas cylinders. He is used as carrier gas in the GC.

7.4.3 Liquid Nitrogen or Liquid Carbon Dioxide. Used to cool secondary trap.

7.4.4 Deionized Water. High performance liquid chromatography (HPLC) grade, ultra-high purity (for humidifier).

8. Collection of Samples in Canisters

8.1 Introduction

8.1.1 Canister samplers, sampling procedures, and canister cleaning procedures have not changed very much from the description given in the original Compendium Method TO-14. Much of the material in this section is therefore simply a restatement of the material given in Compendium Method TO-14, repeated here in order to have all the relevant information in one place.

8.1.2 Recent notable additions to the canister technology has been in the application of canister-based systems for example, to microenvironmental monitoring (8), the capture of breath samples (9), and sector sampling to identify emission sources of VOCs (10).

8.1.3 EPA has also sponsored the development of a mathematical model to predict the storage stability of arbitrary mixtures of trace gases in humidified air (3), and the investigation of the SilcoSteelTM process of coating the canister interior with a film of fused silica to reduce surface activity (11). A recent summary of storage stability data for VOCs in canisters is given in the open literature (5).

8.2 Sampling System Description

8.2.1 Subatmospheric Pressure Sampling [see Figure 1 (without metal bellows type pump)].

8.2.1.1 In preparation for subatmospheric sample collection in a canister, the canister is evacuated to 0.05 mm Hg (see Appendix C for discussion of evacuation pressure). When the canister is opened to the atmosphere containing the VOCs to be sampled, the differential pressure causes the sample to flow into the canister. This technique may be used to collect grab samples (duration of 10 to 30 seconds) or time-weighted-average (TWA) samples (duration of 1-24 hours) taken through a flow-restrictive inlet (e.g., mass flow controller, critical orifice).

8.2.1.2 With a critical orifice flow restrictor, there will be a decrease in the flow rate as the pressure approaches atmospheric. However, with a mass flow controller, the subatmospheric sampling system can maintain a constant flow rate from full vacuum to within about 7 kPa (1.0 psi) or less below ambient pressure.

Page 15-10 Compendium of Methods for Toxic Organic Air Pollutants January 1999

8.2.2 Pressurized Sampling [see Figure 1 (with metal bellows type pump)]

8.2.2.1 Pressurized sampling is used when longer-term integrated samples or higher volume samples are required. The sample is collected in a canister using a pump and flow control arrangement to achieve a typical 101-202 kPa (15-30 psig) final canister pressure. For example, a 6-liter evacuated canister can be filled at 10 mL/min for 24 hours to achieve a final pressure of 144 kPa (21 psig).

8.2.2.2 In pressurized canister sampling, a metal bellows type pump draws in air from the sampling manifold to fill and pressurize the sample canister.

8.2.3 All Samplers

8.2.3.1 A flow control device is chosen to maintain a constant flow into the canister over the desired sample period. This flow rate is determined so the canister is filled (to about 88.1 kPa for subatmospheric pressure sampling or to about one atmosphere above ambient pressure for pressurized sampling) over the desired sample period. The flow rate can be calculated by:

$$F = \frac{P \times V}{T \times 60}$$

where:

F = flow rate, mL/min.

P = final canister pressure, atmospheres absolute. P is approximately equal to

$$\frac{\text{kPa gauge}}{101.2}$$
 + 1

V = volume of the canister, mL.

T = sample period, hours.

For example, if a 6-L canister is to be filled to 202 kPa (2 atmospheres) absolute pressure in 24 hours, the flow rate can be calculated by:

$$F = \frac{2 \times 6000}{24 \times 60} = 8.3 \text{ mL/min}$$

8.2.3.2 For automatic operation, the timer is designed to start and stop the pump at appropriate times for the desired sample period. The timer must also control the solenoid valve, to open the valve when starting the pump and to close the valve when stopping the pump.

8.2.3.3 The use of the Skinner Magnelatch valve (see Figure 2) avoids any substantial temperature rise that would occur with a conventional, normally closed solenoid valve that would have to be energized during the entire sample period. The temperature rise in the valve could cause outgassing of organic compounds from the Viton® valve seat material. The Skinner Magnelatch valve requires only a brief electrical pulse to open or close at the appropriate start and stop times and therefore experiences no temperature increase. The pulses may be obtained either with an electronic timer that can be programmed for short (5 to 60 seconds) ON periods, or with a conventional mechanical timer and a special pulse circuit. A simple electrical pulse circuit for operating the Skinner Magnelatch solenoid valve with a conventional mechanical timer is illustrated in Figure 2(a). However, with this simple circuit, the valve may operate unreliably during brief power interruptions or if the timer is manually switched on and off too fast. A better circuit incorporating a time-delay relay to provide more reliable valve operation is shown in Figure 2(b).

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-11

VOCs

8.2.3.4 The connecting lines between the sample inlet and the canister should be as short as possible to minimize their volume. The flow rate into the canister should remain relatively constant over the entire sampling period.

8.2.3.5 As an option, a second electronic timer may be used to start the auxiliary pump several hours prior to the sampling period to flush and condition the inlet line.

8.2.3.6 Prior to field use, each sampling system must pass a humid zero air certification (see Section 8.4.3). All plumbing should be checked carefully for leaks. The canisters must also pass a humid zero air certification before use (see Section 8.4.1).

8.3 Sampling Procedure

8.3.1 The sample canister should be cleaned and tested according to the procedure in Section 8.4.1.8.3.2 A sample collection system is assembled as shown in Figures 1 and 3 and must be cleaned according to the procedure outlined in Sections 8.4.2 and 8.4.4.

[Note: The sampling system should be contained in an appropriate enclosure.]

8.3.3 Prior to locating the sampling system, the user may want to perform "screening analyses" using a portable GC system, as outlined in Appendix B of Compendium Method TO-14A, to determine potential volatile organics present and potential "hot spots." The information gathered from the portable GC screening analysis would be used in developing a monitoring protocol, which includes the sampling system location, based upon the "screening analysis" results.

8.3.4 After "screening analysis," the sampling system is located. Temperatures of ambient air and sampler box interior are recorded on the canister sampling field test data sheet (FTDS), as documented in Figure 9.

[Note: The following discussion is related to Figure 1]

8.3.5 To verify correct sample flow, a "practice" (evacuated) canister is used in the sampling system.

[<u>Note</u>: For a subatmospheric sampler, a flow meter and practice canister are needed. For the pump-driven system, the practice canister is not needed, as the flow can be measured at the outlet of the system.]

A certified mass flow meter is attached to the inlet line of the manifold, just in front of the filter. The canister is opened. The sampler is turned on and the reading of the certified mass flow meter is compared to the sampler mass flow controller. The values should agree within $\pm 10\%$. If not, the sampler mass flow meter needs to be recalibrated or there is a leak in the system. This should be investigated and corrected.

[<u>Note</u>: Mass flow meter readings may drift. Check the zero reading carefully and add or subtract the zero reading when reading or adjusting the sampler flow rate to compensate for any zero drift.]

After 2 minutes, the desired canister flow rate is adjusted to the proper value (as indicated by the certified mass flow meter) by the sampler flow control unit controller (e.g., 3.5 mL/min for 24 hr, 7.0 mL/min for 12 hr). Record final flow under "CANISTER FLOW RATE" on the FTDS.

8.3.6 The sampler is turned off and the elapsed time meter is reset to 000.0.

[Note: Whenever the sampler is turned off, wait at least 30 seconds to turn the sampler back on.]

Page 15-12

Compendium of Methods for Toxic Organic Air Pollutants

8.3.7 The "practice" canister and certified mass flow meter are disconnected and a clean certified (see Section 8.4.1) canister is attached to the system.

8.3.8 The canister valve and vacuum/pressure gauge valve are opened.

8.3.9 Pressure/vacuum in the canister is recorded on the canister FTDS (see Figure 9) as indicated by the sampler vacuum/pressure gauge.

8.3.10 The vacuum/pressure gauge valve is closed and the maximum-minimum thermometer is reset to current temperature. Time of day and elapsed time meter readings are recorded on the canister FTDS.

8.3.11 The electronic timer is set to start and stop the sampling period at the appropriate times. Sampling starts and stops by the programmed electronic timer.

8.3.12 After the desired sampling period, the maximum, minimum, current interior temperature and current ambient temperature are recorded on the FTDS. The current reading from the flow controller is recorded.

8.3.13 At the end of the sampling period, the vacuum/pressure gauge valve on the sampler is briefly opened and closed and the pressure/vacuum is recorded on the FTDS. Pressure should be close to desired pressure.

[Note: For a subatmospheric sampling system, if the canister is at atmospheric pressure when the field final pressure check is performed, the sampling period may be suspect. This information should be noted on the sampling field data sheet.]

Time of day and elapsed time meter readings are also recorded.

8.3.14 The canister valve is closed. The sampling line is disconnected from the canister and the canister is removed from the system. For a subatmospheric system, a certified mass flow meter is once again connected to the inlet manifold in front of the in-line filter and a "practice" canister is attached to the Magnelatch valve of the sampling system. The final flow rate is recorded on the canister FTDS (see Figure 9).

[Note: For a pressurized system, the final flow may be measured directly.]

The sampler is turned off.

air

8.3.15 An identification tag is attached to the canister. Canister serial number, sample number, location, and date, as a minimum, are recorded on the tag. The canister is routinely transported back to the analytical laboratory with other canisters in a canister shipping case.

8.4 Cleaning and Certification Program

8.4.1 Canister Cleaning and Certification.

8.4.1.1 All canisters must be clean and free of any contaminants before sample collection.

8.4.1.2 All canisters are leak tested by pressurizing them to approximately 206 kPa (30 psig) with zero

[Note: The canister cleaning system in Figure 10 can be used for this task.]

The initial pressure is measured, the canister valve is closed, and the final pressure is checked after 24 hours. If acceptable, the pressure should not vary more than \pm 13.8 kPa (\pm 2 psig) over the 24 hour period.

8.4.1.3 A canister cleaning system may be assembled as illustrated in Figure 10. Cryogen is added to both the vacuum pump and zero air supply traps. The canister(s) are connected to the manifold. The vent shut-off valve and the canister valve(s) are opened to release any remaining pressure in the canister(s). The vacuum pump is started and the vent shut-off valve is then closed and the vacuum shut-off valve is opened. The canister(s) are evacuated to <0.05 mm Hg (see Appendix B) for at least 1 hour.

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-13

[Note: On a daily basis or more often if necessary, the cryogenic traps should be purged with zero air to remove any trapped water from previous canister cleaning cycles.]

Air released/evacuated from canisters should be diverted to a fume hood.

8.4.1.4 The vacuum and vacuum/pressure gauge shut-off valves are closed and the zero air shut-off valve is opened to pressurize the canister(s) with humid zero air to approximately 206 kPa (30 psig). If a zero gas generator system is used, the flow rate may need to be limited to maintain the zero air quality.

8.4.1.5 The zero air shut-off valve is closed and the canister(s) is allowed to vent down to atmospheric pressure through the vent shut-off valve. The vent shut-off valve is closed. Repeat Sections 8.4.1.3 through 8.4.1.5 two additional times for a total of three (3) evacuation/pressurization cycles for each set of canisters.

8.4.1.6 At the end of the evacuation/pressurization cycle, the canister is pressurized to 206 kPa (30 psig) with humid zero air. The canister is then analyzed by a GC/MS analytical system. Any canister that has not tested clean (compared to direct analysis of humidified zero air of less than 0.2 ppbv of targeted VOCs) should not be used. As a "blank" check of the canister(s) and cleanup procedure, the final humid zero air fill of 100% of the canisters is analyzed until the cleanup system and canisters are proven reliable (less than 0.2 ppbv of any target VOCs). The check can then be reduced to a lower percentage of canisters.

8.4.1.7 The canister is reattached to the cleaning manifold and is then reevacuated to <0.05 mm Hg (see Appendix B) and remains in this condition until used. The canister valve is closed. The canister is removed from the cleaning system and the canister connection is capped with a stainless steel fitting. The canister is now ready for collection of an air sample. An identification tag is attached to the inlet of each canister for field notes and chain-of-custody purposes. An alternative to evacuating the canister at this point is to store the canisters and reevacuate them just prior to the next use.

8.4.1.8 As an option to the humid zero air cleaning procedures, the canisters are heated in an isothermal oven not to exceed 100°C during evacuation of the canister to ensure that higher molecular weight compounds are not retained on the walls of the canister.

[<u>Note</u>: For sampling more complex VOC mixtures the canisters should be heated to higher temperatures during the cleaning procedure although a special high temperature valve would be needed].

Once heated, the canisters are evacuated to <0.05 mm Hg (see Appendix B) and maintained there for 1 hour. At the end of the heated/evacuated cycle, the canisters are pressurized with humid zero air and analyzed by a GC/MS system after a minimum of 12 hrs of "aging." Any canister that has not tested clean (less than 0.2 ppbv each of targeted compounds) should not be used. Once tested clean, the canisters are reevacuated to <0.05 mm Hg (see Appendix B) and remain in the evacuated state until used. As noted in Section 8.4.1.7, reevacuation can occur just prior to the next use.

8.4.2 Cleaning Sampling System Components.

8.4.2.1 Sample components are disassembled and cleaned before the sampler is assembled. Nonmetallic parts are rinsed with HPLC grade deionized water and dried in a vacuum oven at 50°C. Typically, stainless steel parts and fittings are cleaned by placing them in a beaker of methanol in an ultrasonic bath for 15 minutes. This procedure is repeated with hexane as the solvent.

8.4.2.2 The parts are then rinsed with HPLC grade deionized water and dried in a vacuum oven at 100°C for 12 to 24 hours.

8.4.2.3 Once the sampler is assembled, the entire system is purged with humid zero air for 24 hours.8.4.3 Zero Air Certification.

Page 15-14

Compendium of Methods for Toxic Organic Air Pollutants

[Note: In the following sections, "certification" is defined as evaluating the sampling system with humid zero air and humid calibration gases that pass through all active components of the sampling system. The system is "certified" if no significant additions or deletions (less than 0.2 ppbv each of target compounds) have occurred when challenged with the test gas stream.]

8.4.3.1 The cleanliness of the sampling system is determined by testing the sampler with humid zero air without an evacuated gas sampling canister, as follows.

8.4.3.2 The calibration system and manifold are assembled, as illustrated in Figure 8. The sampler (without an evacuated gas canister) is connected to the manifold and the zero air cylinder is activated to generate a humid gas stream (2 L/min) to the calibration manifold [see Figure 8(b)].

8.4.3.3 The humid zero gas stream passes through the calibration manifold, through the sampling system (without an evacuated canister) to the water management system/VOC preconcentrator of an analytical system.

[Note: The exit of the sampling system (without the canister) replaces the canister in Figure 11.]

After the sample volume (e.g., 500 mL) is preconcentrated on the trap, the trap is heated and the VOCs are thermally desorbed and refocussed on a cold trap. This trap is heated and the VOCs are thermally desorbed onto the head of the capillary column. The VOCs are refocussed prior to gas chromatographic separation. Then, the oven temperature (programmed) increases and the VOCs begin to elute and are detected by a GC/MS (see Section 10) system. The analytical system should not detect greater than 0.2 ppbv of any targeted VOCs in order for the sampling system to pass the humid zero air certification test. Chromatograms (using an FID) of a certified sampler and contaminated sampler are illustrated in Figures 12(a) and 12(b), respectively. If the sampler passes the humid zero air test, it is then tested with humid calibration gas standards containing selected VOCs at concentration levels expected in field sampling (e.g., 0.5 to 2 ppbv) as outlined in Section 8.4.4.

8.4.4 Sampler System Certification with Humid Calibration Gas Standards from a Dynamic Calibration System

8.4.4.1 Assemble the dynamic calibration system and manifold as illustrated in Figure 8.

8.4.4.2 Verify that the calibration system is clean (less than 0.2 ppbv of any target compounds) by sampling a humidified gas stream, *without* gas calibration standards, with a previously certified clean canister (see Section 8.1).

8.4.4.3 The assembled dynamic calibration system is certified clean if less than 0.2 ppbv of any targeted compounds is found.

8.4.4.4 For generating the humidified calibration standards, the calibration gas cylinder(s) containing nominal concentrations of 10 ppmv in nitrogen of selected VOCs is attached to the calibration system as illustrated in Figure 8. The gas cylinders are opened and the gas mixtures are passed through 0 to 10 mL/min certified mass flow controllers to generate ppb levels of calibration standards.

8.4.4.5 After the appropriate equilibrium period, attach the sampling system (containing a certified evacuated canister) to the manifold, as illustrated in Figure 8(b).

8.4.4.6 Sample the dynamic calibration gas stream with the sampling system.

8.4.4.7 Concurrent with the sampling system operation, realtime monitoring of the calibration gas stream is accomplished by the on-line GC/MS analytical system [Figure 8(a)] to provide reference concentrations of generated VOCs.

8.4.4.8 At the end of the sampling period (normally the same time period used for experiments), the sampling system canister is analyzed and compared to the reference GC/MS analytical system to determine if the concentration of the targeted VOCs was increased or decreased by the sampling system.

8.4.4.9 A recovery of between 90% and 110% is expected for all targeted VOCs.

8.4.5 Sampler System Certification without Compressed Gas Cylinder Standards.

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-15

VOCs

8.4.5.1 Not all the gases on the Title III list are available/compatible with compressed gas standards. In these cases sampler certification must be approached by different means.

8.4.5.2 Definitive guidance is not currently available in these cases; however, Section 9.2 lists several ways to generate gas standards. In general, Compendium Method TO-14A compounds (see Table 1) are available commercially as compressed gas standards.

9. GC/MS Analysis of Volatiles from Canisters

9.1 Introduction

9.1.1 The analysis of canister samples is accomplished with a GC/MS system. Fused silica capillary columns are used to achieve high temporal resolution of target compounds. Linear quadrupole or ion trap mass spectrometers are employed for compound detection. The heart of the system is composed of the sample inlet concentrating device that is needed to increase sample loading into a detectable range. Two examples of concentrating systems are discussed. Other approaches are acceptable as long as they are compatible with achieving the system performance criteria given in Section 11.

9.1.2 With the first technique, a whole air sample from the canister is passed through a multisorbent packing (including single adsorbent packings) contained within a metal or glass tube maintained at or above the surrounding air temperature. Depending on the water retention properties of the packing, some or most of the water vapor passes completely through the trap during sampling. Additional drying of the sample is accomplished after the sample concentration is completed by forward purging the trap with clean, dry helium or another inert gas (air is not used). The sample is then thermally desorbed from the packing and backflushed from the trap onto a gas chromatographic column. In some systems a "refocusing" trap is placed between the primary trap and the gas chromatographic column. The specific system design downstream of the primary trap depends on technical factors such as the rate of thermal desorption and sampled volume, but the objective in most cases is to enhance chromatographic resolution of the individual sample components before detection on a mass spectrometer.

9.1.3 Sample drying strategies depend on the target list of compounds. For some target compound lists, the multisorbent packing of the concentrator can be selected from hydrophobic adsorbents which allow a high percentage of water vapor in the sample to pass through the concentrator during sampling and without significant loss of the target compounds. However, if very volatile organic compounds are on the target list, the adsorbents required for their retention may also strongly retain water vapor and a more lengthy dry purge is necessary prior to analysis.

9.1.4 With the second technique, a whole air sample is passed through a concentrator where the VOCs are condensed on a reduced temperature surface (cold trap). Subsequently, the condensed gases are thermally desorbed and backflushed from the trap with an inert gas onto a gas chromatographic column. This concentration technique is similar to that discussed in Compendium Method TO-14, although a membrane dryer is not used. The sample size is reduced in volume to limit the amount of water vapor that is also collected (100 mL or less may be necessary). The attendant reduction in sensitivity is offset by enhancing the sensitivity of detection, for example by using an ion trap detector.

Page 15-16

Compendium of Methods for Toxic Organic Air Pollutants

9.2 Preparation of Standards

9.2.1 Introduction

9.2.1.1 When available, standard mixtures of target gases in high pressure cylinders must be certified traceable to a NIST Standard Reference Material (SRM) or to a NIST/EPA approved Certified Reference Material (CRM). Manufacturer's certificates of analysis must be retained to track the expiration date.

9.2.1.2 The neat standards that are used for making trace gas standards must be of high purity; generally a purity of 98 percent or better is commercially available.

9.2.1.3 Cylinder(s) containing approximately 10 ppmv of each of the target compounds are typically used as primary stock standards. The components may be purchased in one cylinder or in separate cylinders depending on compatibility of the compounds and the pressure of the mixture in the cylinder. Refer to manufacturer's specifications for guidance on purchasing and mixing VOCs in gas cylinders.

9.2.2 Preparing Working Standards.

9.2.2.1 Instrument Performance Check Standard. Prepare a standard solution of BFB in humidified zero air at a concentration which will allow collection of 50 ng of BFB or less under the optimized concentration parameters.

9.2.2.2 Calibration Standards. Prepare five working calibration standards in humidified zero air at a concentration which will allow collection at the 2, 5, 10, 20, and 50 ppbv level for each component under the optimized concentration parameters.

9.2.2.3 Internal Standard Spiking Mixture. Prepare an internal spiking mixture containing bromochloromethane, chlorobenzene-d₅, and 1,4-difluorobenzene at 10 ppmv each in humidified zero air to be added to the sample or calibration standard. 500 μ L of this mixture spiked into 500 mL of sample will result in a concentration of 10 ppbv. The internal standard is introduced into the trap during the collection time for all calibration, blank, and sample analyses using the apparatus shown in Figure 13 or by equivalent means. The volume of internal standard spiking mixture added for each analysis must be the same from run to run.

9.2.3 Standard Preparation by Dynamic Dilution Technique.

9.2.3.1 Standards may be prepared by dynamic dilution of the gaseous contents of a cylinder(s) containing the gas calibration stock standards with humidified zero air using mass flow controllers and a calibration manifold. The working standard may be delivered from the manifold to a clean, evacuated canister using a pump and mass flow controller.

9.2.3.2 Alternatively, the analytical system may be calibrated by sampling directly from the manifold if the flow rates are optimized to provide the desired amount of calibration standards. However, the use of the canister as a reservoir prior to introduction into the concentration system resembles the procedure normally used to collect samples and is preferred. Flow rates of the dilution air and cylinder standards (all expressed in the same units) are measured using a bubble meter or calibrated electronic flow measuring device, and the concentration of target compounds in the manifold are then calculated using the dilution ratio and the original concentration of each compound.

Manifold Conc. = (Original Conc.) (Std. Gas Flowrate) (Air Flowrate) + (Std. Gas Flowrate)

9.2.3.3 Consider the example of 1 mL/min flow of 10 ppmv standard diluted with 1,000 mL/min of humid air provides a nominal 10 ppbv mixture, as calculated below:

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Manifold Conc. = (10 ppm)(1 mL/min)(1000 ppb/1 ppm) (1000 mL/min) + (1 mL/min) = 10 ppb

9.2.4 Standard Preparation by Static Dilution Bottle Technique

[Note: Standards may be prepared in canisters by spiking the canister with a mixture of components prepared in a static dilution bottle (12). This technique is used specifically for liquid standards.]

9.2.4.1 The volume of a clean 2-liter round-bottom flask, modified with a threaded glass neck to accept a Mininert septum cap, is determined by weighing the amount of water required to completely fill up the flask. Assuming a density for the water of 1 g/mL, the weight of the water in grams is taken as the volume of the flask in milliliters.

9.2.4.2 The flask is flushed with helium by attaching a tubing into the glass neck to deliver the helium. After a few minutes, the tubing is removed and the glass neck is immediately closed with a Mininert septum cap.

9.2.4.3 The flask is placed in a 60° C oven and allowed to equilibrate at that temperature for about 15 minutes. Predetermined aliquots of liquid standards are injected into the flask making sure to keep the flask temperature constant at 60° C.

9.2.4.4 The contents are allowed to equilibrate in the oven for at least 30 minutes. To avoid condensation, syringes must be preheated in the oven at the same temperature prior to withdrawal of aliquots to avoid condensation.

9.2.4.5 Sample aliquots may then be taken for introduction into the analytical system or for further dilution. An aliquot or aliquots totaling greater than 1 percent of the flask volume should be avoided.

9.2.4.6 Standards prepared by this method are stable for one week. The septum must be replaced with each freshly prepared standard.

9.2.4.7 The concentration of each component in the flask is calculated using the following equation:

Concentration, mg/L =
$$\frac{(V_a)(d)}{V_f}$$

where:

d = Density of the liquid neat standard, mg/µL.

V_f = Volume of the flask, L.

9.2.4.8 To obtain concentrations in ppbv, the equation given in Section 9.2.5.7 can be used.

V. = Volume of liquid neat standard injected into the flask. uL.

[Note: In the preparation of standards by this technique, the analyst should make sure that the volume of neat standard injected into the flask does not result in an overpressure due to the higher partial pressure produced by the standard compared to the vapor pressure in the flask. Precautions should also be taken to avoid a significant decrease in pressure inside the flask after withdrawal of aliquot(s).]

9.2.5 Standard Preparation Procedure in High Pressure Cylinders

[Note: Standards may be prepared in high pressure cylinders (13). A modified summary of the procedure is provided below.]

9.2.5.1 The standard compounds are obtained as gases or neat liquids (greater than 98 percent purity).

Page 15-18 Compendium of Methods for Toxic Organic Air Pollutants January 1999

9.2.5.2 An aluminum cylinder is flushed with high-purity nitrogen gas and then evacuated to better than 25 in. Hg.

9.2.5.3 Predetermined amounts of each neat standard compound are measured using a microliter or gastight syringe and injected into the cylinder. The cylinder is equipped with a heated injection port and nitrogen flow to facilitate sample transfer.

9.2.5.4 The cylinder is pressurized to 1000 psig with zero nitrogen.

[<u>Note</u>: User should read all SOPs associated with generating standards in high pressure cylinders. Follow all safety requirements to minimize danger from high pressure cylinders.]

9.2.5.5 The contents of the cylinder are allowed to equilibrate (~24 hrs) prior to withdrawal of aliquots into the GC system.

9.2.5.6 If the neat standard is a gas, the cylinder concentration is determined using the following equation:

Concentration, ppbv =
$$\frac{\text{Volume}_{\text{standard}}}{\text{Volume}_{\text{dilution gas}}} \times 10^9$$

[Note: Both values must be expressed in the same units.]

9.2.5.7 If the neat standard is a liquid, the gaseous concentration can be determined using the following equations:

$$V = \frac{nRT}{P}$$

and:

$$n = \frac{(mL)(d)}{MW}$$

where:

V = Gaseous volume of injected compound at EPA standard temperature (25°C) and pressure (760 mm Hg), L.

n = Moles.

R = Gas constant, 0.08206 L-atm/mole °K.

T = 298°K (standard temperature).

P = 1 standard pressure, 760 mm Hg (1 atm).

mL = Volume of liquid injected, mL.

d = Density of the neat standard, g/mL.

MW = Molecular weight of the neat standard expressed, g/g-mole.

The gaseous volume of the injected compound is divided by the cylinder volume at STP and then multiplied by 10^{9} to obtain the component concentration in ppb units.

January 1999 Comp

Compendium of Methods for Toxic Organic Air Pollutants

9.2.6 Standard Preparation by Water Methods.

[Note: Standards may be prepared by a water purge and trap method (14) and summarized as follows].

9.2.6.1 A previously cleaned and evacuated canister is pressurized to 760 mm Hg absolute (1 atm) with zero grade air.

9.2.6.2 The air gauge is removed from the canister and the sparging vessel is connected to the canister with the short length of 1/16 in. stainless steel tubing.

[<u>Note</u>: Extra effort should be made to minimize possible areas of dead volume to maximize transfer of analytes from the water to the canister.]

9.2.6.3 A measured amount of the stock standard solution and the internal standard solution is spiked into 5 mL of water.

9.2.6.4 This water is transferred into the sparge vessel and purged with nitrogen for 10 mins at 100 mL/min. The sparging vessel is maintained at 40° C.

9.2.6.5 At the end of 10 mins, the sparge vessel is removed and the air gauge is re-installed, to further pressurize the canister with pure nitrogen to 1500 mm Hg absolute pressure (approximately 29 psia).

9.2.6.6 The canister is allowed to equilibrate overnight before use.

9.2.6.7 A schematic of this approach is shown in Figure 14.

9.2.7 Preparation of Standards by Permeation Tubes.

9.2.7.1 Permeation tubes can be used to provide standard concentration of a trace gas or gases. The permeation of the gas can occur from inside a permeation tube containing the trace species of interest to an air stream outside. Permeation can also occur from outside a permeable membrane tube to an air stream passing through the tube (e.g., a tube of permeable material immersed in a liquid).

9.2.7.2 The permeation system is usually held at a constant temperature to generate a constant concentration of trace gas. Commercial suppliers provide systems for generation and dilution of over 250 compounds. Some commercial suppliers of permeation tube equipment are listed in Appendix D.

9.2.8 Storage of Standards.

9.2.8.1 Working standards prepared in canisters may be stored for thirty days in an atmosphere free of potential contaminants.

9.2.8.2 It is imperative that a storage logbook be kept to document storage time.

10. GC/MS Operating Conditions

10.1 Preconcentrator

The following are typical cryogenic and adsorbent preconcentrator analytical conditions which, however, depend on the specific combination of solid sorbent and must be selected carefully by the operator. The reader is referred to Tables 1 and 2 of Compendium Method TO-17 for guidance on selection of sorbents. An example of a system using a solid adsorbent preconcentrator with a cryofocusing trap is discussed in the literature (15). Oven temperature programming starts above ambient.

10.1.1 Sample Collection Conditions

<u>Cryogenic Trap</u>	<u>Adsorbent Trap</u>

Page 15-20

Compendium of Methods for Toxic Organic Air Pollutants

VOCs			Method TO-15
Set point Sample volume	-150°C	Set point Sample volume	27°C
Carrier gas purge flow	- none	Carrier gas purge flow	- selectable

[Note: The analyst should optimize the flow rate, duration of sampling, and absolute sample volume to be used. Other preconcentration systems may be used provided performance standards (see Section 11) are realized.]

10.1.2 Desorption Conditions

<u>Cryogenic Trap</u>		<u>Adsorbent Trap</u>	
Desorb Temperature Desorb Flow Rate	120°C ~ 3 mL/min He	Desorb Temperature Desorb Flow Rate	Variable ~3 mL/min He
Desorb Time	<60 sec	Desorb Time	<60 sec

The adsorbent trap conditions depend on the specific solid adsorbents chosen (see manufacturers' specifications).

10.1.3 Trap Reconditioning Conditions.

<u>Cryogenic Trap</u>		<u>Adsorbent Trap</u>	
Initial bakeout Variable (24 hrs)	120°C (24 hrs)	Initial bakeout	
After each run	120°C (5 min)	After each run	Variable (5 min)

10.2 GC/MS System

10.2.1 Optimize GC conditions for compound separation and sensitivity. Baseline separation of benzene and carbon tetrachloride on a 100% methyl polysiloxane stationary phase is an indication of acceptable chromatographic performance.

10.2.2 The following are the recommended gas chromatographic analytical conditions when using a 50-meter by 0.3-mm I.D., 1 µm film thickness fused silica column with refocusing on the column.

Item	Condition	
Carrier Gas:	Helium	
Flow Rate:	Generally 1-3 mL/min a	s recommended by manufacturer
Temperature Program:	Initial Temperature:	-50°C
	Initial Hold Time:	2 min
	Ramp Rate:	8° C/min
	Final Temperature:	200°C
	Final Hold Time:	Until all target compounds elute.

10.2.3 The following are the recommended mass spectrometer conditions:

<u>Item</u>	Condition

January 1999

_

Compendium of Methods for Toxic Organic Air Pollutants

Electron Energy:	70 Volts (nominal)
Mass Range:	35-300 amu [the choice of 35 amu excludes the detection of some target compounds
	such as methanol and formaldehyde, and the quantitation of others such as ethylene
	oxide, ethyl carbamate, etc. (see Table 2). Lowering the mass range and using special
	programming features available on modern gas chromatographs will be necessary in
	these cases, but are not considered here.
Scan Time:	To give at least 10 scans per peak, not to exceed 1 second per scan].

A schematic for a typical GC/MS analytical system is illustrated in Figure 15.

10.3 Analytical Sequence

10.3.1 Introduction. The recommended GC/MS analytical sequence for samples during each 24-hour time period is as follows:

- · Perform instrument performance check using bromofluorobenzene (BFB).
- · Initiate multi-point calibration or daily calibration checks.
- · Perform a laboratory method blank.
- Complete this sequence for analysis of ≤20 field samples.

10.4 Instrument Performance Check

10.4.1 Summary. It is necessary to establish that a given GC/MS meets tuning and standard mass spectral abundance criteria prior to initiating any data collection. The GC/MS system is set up according to the manufacturer's specifications, and the mass calibration and resolution of the GC/MS system are then verified by the analysis of the instrument performance check standard, bromofluorobenzene (BFB).

10.4.2 Frequency. Prior to the analyses of any samples, blanks, or calibration standards, the Laboratory must establish that the GC/MS system meets the mass spectral ion abundance criteria for the instrument performance check standard containing BFB. The instrument performance check solution must be analyzed initially and once per 24-hour time period of operation.

The 24-hour time period for GC/MS instrument performance check and standards calibration (initial calibration or daily calibration check criteria) begins at the injection of the BFB which the laboratory records as documentation of a compliance tune.

10.4.3 Procedure. The analysis of the instrument performance check standard is performed by trapping 50 ng of BFB under the optimized preconcentration parameters. The BFB is introduced from a cylinder into the GC/MS via a sample loop valve injection system similar to that shown in Figure 13.

The mass spectrum of BFB must be acquired in the following manner. Three scans (the peak apex scan and the scans immediately preceding and following the apex) are acquired and averaged. Background subtraction is conducted using a single scan prior to the elution of BFB.

10.4.4 Technical Acceptance Criteria. Prior to the analysis of any samples, blanks, or calibration standards, the analyst must establish that the GC/MS system meets the mass spectral ion abundance criteria for the instrument performance check standard as specified in Table 3.

10.4.5 Corrective Action. If the BFB acceptance criteria are not met, the MS must be retuned. It may be necessary to clean the ion source, or quadrupoles, or take other necessary actions to achieve the acceptance criteria.

Page 15-22

Compendium of Methods for Toxic Organic Air Pollutants

10.4.6 Documentation. Results of the BFB tuning are to be recorded and maintained as part of the instrumentation log.

10.5 Initial Calibration

10.5.1 Summary. Prior to the analysis of samples and blanks but after the instrument performance check standard criteria have been met, each GC/MS system must be calibrated at five concentrations that span the monitoring range of interest in an initial calibration sequence to determine instrument sensitivity and the linearity of GC/MS response for the target compounds. For example, the range of interest may be 2 to 20 ppbv, in which case the five concentrations would be 1, 2, 5, 10 and 25 ppbv.

One of the calibration points from the initial calibration curve must be at the same concentration as the daily calibration standard (e.g., 10 ppbv).

10.5.2 Frequency. Each GC/MS system must be recalibrated following corrective action (e.g., ion source cleaning or repair, column replacement, etc.) which may change or affect the initial calibration criteria or if the daily calibration acceptance criteria have not been met.

If time remains in the 24-hour time period after meeting the acceptance criteria for the initial calibration, samples may be analyzed.

If time does not remain in the 24-hour period after meeting the acceptance criteria for the initial calibration, a new analytical sequence shall commence with the analysis of the instrument performance check standard followed by analysis of a daily calibration standard.

10.5.3 Procedure. Verify that the GC/MS system meets the instrument performance criteria in Section 10.4.

The GC must be operated using temperature and flow rate parameters equivalent to those in Section 10.2.2. Calibrate the preconcentration-GC/MS system by drawing the standard into the system. Use one of the standards preparation techniques described under Section 9.2 or equivalent.

A minimum of five concentration levels are needed to determine the instrument sensitivity and linearity. One of the calibration levels should be near the detection level for the compounds of interest. The calibration range should be chosen so that linear results are obtained as defined in Sections 10.5.1 and 10.5.5.

Quantitation ions for the target compounds are shown in Table 2. The primary ion should be used unless interferences are present, in which case a secondary ion is used.

10.5.4 Calculations.

[<u>Note</u>: In the following calculations, an internal standard approach is used to calculate response factors. The area response used is that of the primary quantitation ion unless otherwise stated.]

10.5.4.1 Relative Response Factor (RRF). Calculate the relative response factors for each target compound relative to the appropriate internal standard (i.e., standard with the nearest retention time) using the following equation:

$$RRF = \frac{A_x C_{is}}{A_{is} C_x}$$

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

where: RRF = Relative response factor.

A_x = Area of the primary ion for the compound to be measured, counts.

Ais = Area of the primary ion for the internal standard, counts.

 C_{is} = Concentration of internal standard spiking mixture, ppbv.

 $C_x =$ Concentration of the compound in the calibration standard, ppbv.

[<u>Note</u>: The equation above is valid under the condition that the volume of internal standard spiking mixture added in all field and QC analyses is the same from run to run, and that the volume of field and QC sample introduced into the trap is the same for each analysis. C_{ix} and C_{x} must be in the same units.]

10.5.4.2 Mean Relative Response Factor. Calculate the mean RRF for each compound by averaging the values obtained at the five concentrations using the following equation:

$$\overline{\text{RRF}} = \sum_{i=1}^{n} \frac{x_i}{n}$$

where: \overline{RRF} = Mean relative response factor.

 $x_i = RRF$ of the compound at concentration i.

n = Number of concentration values, in this case 5.

10.5.4.3 Percent Relative Standard Deviation (%RSD). Using the RRFs from the initial calibration, calculate the %RSD for all target compounds using the following equations:

$$\%RSD = \frac{SD_{RRF}}{RRF} \times 100$$

and

$$SD_{RRF} = \sqrt{\sum_{i=1}^{N} \frac{(RRF_i - \overline{RRF})^2}{N - 1}}$$

where:

SD_{RRF} = Standard deviation of initial response factors (per compound).

RRF_i = Relative response factor at a concentration level i.

RRF = Mean of initial relative response factors (per compound).

10.5.4.4 Relative Retention Times (RRT). Calculate the RRTs for each target compound over the initial calibration range using the following equation:

$$RRT = \frac{RT_{c}}{RT_{is}}$$

where: $RT_c = Retention time of the target compound, seconds$

10.5.4.5 Mean of the Relative Retention Times (\overline{RRT}). Calculate the mean of the relative retention times (\overline{RRT}) for each analyte target compound over the initial calibration range using the following equation:

Page 15-24 Compendium of Methods for Toxic Organic Air Pollutants January 1999

$$\overline{\text{RRT}} = \sum_{i=1}^{n} \frac{\text{RRT}}{n}$$

where: \overline{RRT} = Mean relative retention time for the target compound for each initial calibration standard.

RRT = Relative retention time for the target compound at each calibration level.

10.5.4.6 Tabulate Primary Ion Area Response (Y) for Internal Standard. Tabulate the area response (Y) of the primary ions (see Table 2) and the corresponding concentration for each compound and internal standard.

10.5.4.7 Mean Area Response (\overline{Y}) for Internal Standard. Calculate the mean area response (\overline{Y}) for each internal standard compound over the initial calibration range using the following equation:

$$\overline{\mathbf{Y}} = \sum_{i=1}^{n} \frac{\mathbf{Y}_i}{n}$$

where: \overline{Y} = Mean area response.

Y = Area response for the primary quantitation ion for the internal standard for each initial calibration standard.

10.5.4.8 Mean Retention Times (\overline{RT}). Calculate the mean of the retention times (\overline{RT}) for each internal standard over the initial calibration range using the following equation:

$$\overline{\mathrm{RT}} = \sum_{i=1}^{n} \frac{\mathrm{RT}_{i}}{n}$$

where: $\overline{RT} = Mean$ retention time, seconds

RT = Retention time for the internal standard for each initial calibration standard, seconds.

10.5.5 Technical Acceptance Criteria for the Initial Calibration.

10.5.5.1 The calculated %RSD for the RRF for each compound in the calibration table must be less than 30% with at most two exceptions up to a limit of 40%.

[Note: This exception may not be acceptable for all projects. Many projects may have a specific target list of compounds which would require the lower limit for all compounds.]

10.5.5.2 The RRT for each target compound at each calibration level must be within 0.06 RRT units of the mean RRT for the compound.

10.5.5.3 The area response Y of at each calibration level must be within 40% of the mean area response \overline{Y} over the initial calibration range for each internal standard.

10.5.5.4 The retention time shift for each of the internal standards at each calibration level must be within 20 s of the mean retention time over the initial calibration range for each internal standard.

10.5.6 Corrective Action.

10.5.6.1 Criteria. If the initial calibration technical acceptance criteria are not met, inspect the system for problems. It may be necessary to clean the ion source, change the column, or take other corrective actions to meet the initial calibration technical acceptance criteria.

10.5.6.2 Schedule. Initial calibration acceptance criteria <u>must</u> be met before any field samples, performance evaluation (PE) samples, or blanks are analyzed.

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-25

VOCs

10.6 Daily Calibration

10.6.1 Summary. Prior to the analysis of samples and blanks but after tuning criteria have been met, the initial calibration of each GC/MS system must be routinely checked by analyzing a daily calibration standard to ensure that the instrument continues to remain under control. The daily calibration standard, which is the nominal 10 ppbv level calibration standard, should contain all the target compounds.

10.6.2 Frequency. A check of the calibration curve must be performed once every 24 hours on a GC/MS system that has met the tuning criteria. The daily calibration sequence starts with the injection of the BFB. If the BFB analysis meets the ion abundance criteria for BFB, then a daily calibration standard may be analyzed.

10.6.3 Procedure. The mid-level calibration standard (10 ppbv) is analyzed in a GC/MS system that has met the tuning and mass calibration criteria following the same procedure in Section 10.5.

10.6.4 Calculations. Perform the following calculations.

[<u>Note</u>: As indicated earlier, the area response of the primary quantitation ion is used unless otherwise stated.]

10.6.4.1 Relative Response Factor (RRF). Calculate a relative response factor (RRF) for each target compound using the equation in Section 10.5.4.1.

10.6.4.2 Percent Difference (%D). Calculate the percent difference in the RRF of the daily RRF (24-hour) compared to the mean RRF in the most recent initial calibration. Calculate the %D for each target compound using the following equation:

$$\%D = \frac{RRF_{c} - \overline{RRF_{i}}}{\overline{RRF_{i}}} \times 100$$

where: RRF = RRF of the compound in the continuing calibration standard.

 $\overline{RRF_i}$ = Mean RRF of the compound in the most recent initial calibration.

10.6.5 Technical Acceptance Criteria. The daily calibration standard must be analyzed at the concentration level and frequency described in this Section 10.6 and on a GC/MS system meeting the BFB instrument performance check criteria (see Section 10.4).

The %D for each target compound in a daily calibration sequence must be within ± 30 percent in order to proceed with the analysis of samples and blanks. A control chart showing %D values should be maintained.

10.6.6 Corrective Action. If the daily calibration technical acceptance criteria are not met, inspect the system for problems. It may be necessary to clean the ion source, change the column, or take other corrective actions to meet the daily calibration technical acceptance criteria.

Daily calibration acceptance criteria must be met before any field samples, performance evaluation (PE) samples, or blanks are analyzed. If the % D criteria are not met, it will be necessary to rerun the daily calibration sample.

10.7 Blank Analyses

10.7.1 Summary. To monitor for possible laboratory contamination, laboratory method blanks are analyzed at least once in a 24-hour analytical sequence. All steps in the analytical procedure are performed on the blank

Page 15-26 Compendium of Methods for Toxic Organic Air Pollutants January 1999

using all reagents, standards, equipment, apparatus, glassware, and solvents that would be used for a sample analysis.

A laboratory method blank (LMB) is an unused, certified canister that has not left the laboratory. The blank canister is pressurized with humidified, ultra-pure zero air and carried through the same analytical procedure as a field sample. The injected aliquot of the blank must contain the same amount of internal standards that are added to each sample.

10.7.2 Frequency. The laboratory method blank must be analyzed after the calibration standard(s) and before any samples are analyzed.

Whenever a high concentration sample is encountered (i.e., outside the calibration range), a blank analysis should be performed immediately after the sample is completed to check for carryover effects.

10.7.3 Procedure. Fill a cleaned and evacuated canister with humidified zero air (RH >20 percent, at 25 °C). Pressurize the contents to 2 atm.

The blank sample should be analyzed using the same procedure outlined under Section 10.8.

10.7.4 Calculations. The blanks are analyzed similar to a field sample and the equations in Section 10.5.4 apply.

10.7.5 Technical Acceptance Criteria. A blank canister should be analyzed daily.

The area response for each internal standard (IS) in the blank must be within ± 40 percent of the mean area response of the IS in the most recent valid calibration.

The retention time for each of the internal standards must be within ± 0.33 minutes between the blank and the most recent valid calibration.

The blank should not contain any target analyte at a concentration greater than its quantitation level (three times the MDL as defined in Section 11.2) and should not contain additional compounds with elution characteristics and mass spectral features that would interfere with identification and measurement of a method analyte.

10.7.6 Corrective Action. If the blanks do not meet the technical acceptance criteria, the analyst should consider the analytical system to be out of control. It is the responsibility of the analyst to ensure that contaminants in solvents, reagents, glassware, and other sample storage and processing hardware that lead to discrete artifacts and/or elevated baselines in gas chromatograms be eliminated. If contamination is a problem, the source of the contamination must be investigated and appropriate corrective measures need to be taken and documented before further sample analysis proceeds.

If an analyte in the blank is found to be out of control (i.e., contaminated) and the analyte is also found in associated samples, those sample results should be "flagged" as possibly contaminated.

10.8 Sample Analysis

10.8.1 Summary. An aliquot of the air sample from a canister (e.g., 500 mL) is preconcentrated and analyzed by GC/MS under conditions stated in Sections 10.1 and 10.2. If using the multisorbent/dry purge approach, adjust the dry purge volume to reduce water effects in the analytical system to manageable levels.

[Note: The analyst should be aware that pressurized samples of high humidity samples will contain condensed water. As a result, the humidity of the sample released from the canister during analysis will vary

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-27

in humidity, being lower at the higher canister pressures and increasing in humidity as the canister pressures decreases. Storage integrity of water soluble compounds may also be affected.]

10.8.2 Frequency. If time remains in the 24-hour period in which an initial calibration is performed, samples may be analyzed without analysis of a daily calibration standard.

If time does not remain in the 24-hour period since the injection of the instrument performance check standard in which an initial calibration is performed, both the instrument performance check standard and the daily calibration standard should be analyzed before sample analysis may begin.

10.8.3 Procedure for Instrumental Analysis. Perform the following procedure for analysis.

10.8.3.1 All canister samples should be at temperature equilibrium with the laboratory.

10.8.3.2 Check and adjust the mass flow controllers to provide correct flow rates for the system.

10.8.3.3 Connect the sample canister to the inlet of the GC/MS analytical system, as shown in Figure 15 [Figure 16 shows an alternate two stage concentrator using multisorbent traps followed by a trap cooled by a closed cycle cooler (15)]. The desired sample flow is established through the six-port chromatographic value and the preconcentrator to the downstream flow controller. The absolute volume of sample being pulled through the trap must be consistent from run to run.

10.8.3.4 Heat/cool the GC oven and cryogenic or adsorbent trap to their set points. Assuming a six-port value is being used, as soon as the trap reaches its lower set point, the six-port chromatographic valve is cycled to the trap position to begin sample collection. Utilize the sample collection time which has been optimized by the analyst.

10.8.3.5 Use the arrangement shown in Figure 13, (i.e., a gastight syringe or some alternate method) introduce an internal standard during the sample collection period. Add sufficient internal standard equivalent to 10 ppbv in the sample. For example, a 0.5 mL volume of a mixture of internal standard compounds, each at 10 ppmv concentration, added to a sample volume of 500 mL, will result in 10 ppbv of each internal standard in the sample.

10.8.3.6 After the sample and internal standards are preconcentrated on the trap, the GC sampling valve is cycled to the inject position and the trap is swept with helium and heated. Assuming a focusing trap is being used, the trapped analytes are thermally desorbed onto a focusing trap and then onto the head of the capillary column and are separated on the column using the GC oven temperature program. The canister valve is closed and the canister is disconnected from the mass flow controller and capped. The trap is maintained at elevated temperature until the beginning of the next analysis.

10.8.3.7 Upon sample injection onto the column, the GC/MS system is operated so that the MS scans the atomic mass range from 35 to 300 amu. At least ten scans per eluting chromatographic peak should be acquired. Scanning also allows identification of unknown compounds in the sample through searching of library spectra.

10.8.3.8 Each analytical run must be checked for saturation. The level at which an individual compound will saturate the detection system is a function of the overall system sensitivity and the mass spectral characteristics of that compound.

10.8.3.9 Secondary ion quantitation is allowed only when there are sample matrix interferences with the primary ion. If secondary ion quantitation is performed, document the reasons in the laboratory record book. 10.8.4 Calculations. The equation below is used for calculating concentrations.

$$C_x = \frac{A_x C_{is} DF}{A_{is} \overline{RRF}}$$

where: C_v = Compound concentration, ppbv.

Page 15-28

Compendium of Methods for Toxic Organic Air Pollutants

 $A_x =$ Area of the characteristic ion for the compound to be measured, counts.

- A_{is} = Area of the characteristic ion for the specific internal standard, counts.
- C_{is} = Concentration of the internal standard spiking mixture, ppbv

RRF = Mean relative response factor from the initial calibration.

DF = Dilution factor calculated as described in section 2. If no dilution is performed, DF = 1.

[<u>Note</u>: The equation above is valid under the condition that the volume (~500 μ L) of internal standard spiking mixture added in all field and QC analyses is the same from run to run, and that the volume (~500 mL) of field and QC sample introduced into the trap is the same for each analysis.]

10.8.5 Technical Acceptance Criteria.

[Note: If the most recent valid calibration is an initial calibration, internal standard area responses and RTs in the sample are evaluated against the corresponding internal standard area responses and RTs in the mid level standard (10 ppbv) of the initial calibration.]

10.8.5.1 The field sample must be analyzed on a GC/MS system meeting the BFB tuning, initial calibration, and continuing calibration technical acceptance criteria at the frequency described in Sections 10.4, 10.5 and 10.6.

10.8.5.2 The field samples must be analyzed along with a laboratory method blank that met the blank technical acceptance criteria.

10.8.5.3 All of the target analyte peaks should be within the initial calibration range.

10.8.5.4 The retention time for each internal standard must be within ± 0.33 minutes of the retention time of the internal standard in the most recent valid calibration.

10.8.6 Corrective Action. If the on-column concentration of any compound in any sample exceeds the initial calibration range, an aliquot of the original sample must be diluted and reanalyzed. Guidance in performing dilutions and exceptions to this requirement are given below.

- Use the results of the original analysis to determine the approximate dilution factor required to get the largest analyte peak within the initial calibration range.
- The dilution factor chosen should keep the response of the largest analyte peak for a target compound in the upper half of the initial calibration range of the instrument.

[Note: Analysis involving dilution should be reported with a dilution factor and nature of the dilution gas.]

10.8.6.1 Internal standard responses and retention times must be evaluated during or immediately after data acquisition. If the retention time for any internal standard changes by more than 20 sec from the latest daily (24-hour) calibration standard (or mean retention time over the initial calibration range), the GC/MS system must be inspected for malfunctions, and corrections made as required.

10.8.6.2 If the area response for any internal standard changes by more than ± 40 percent between the sample and the most recent valid calibration, the GC/MS system must be inspected for malfunction and

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

corrections made as appropriate. When corrections are made, reanalysis of samples analyzed while the system was malfunctioning is necessary.

10.8.6.3 If, after reanalysis, the area responses or the RTs for all internal standards are inside the control limits, then the problem with the first analysis is considered to have been within the control of the Laboratory. Therefore, submit only data from the analysis with SICPs within the limits. This is considered the initial analysis and should be reported as such on all data deliverables.

11. Requirements for Demonstrating Method Acceptability for VOC Analysis from Canisters

11.1 Introduction

11.1.1 There are three performance criteria which must be met for a system to qualify under Compendium Method TO-15. These criteria are: the method detection limit of ≤ 0.5 ppbv, replicate precision within 25 percent, and audit accuracy within 30 percent for concentrations normally expected in contaminated ambient air (0.5 to 25 ppbv).

11.1.2 Either SIM or SCAN modes of operation can be used to achieve these criteria, and the choice of mode will depend on the number of target compounds, the decision of whether or not to determine tentatively identified compounds along with other VOCs on the target list, as well as on the analytical system characteristics.

11.1.3 Specific criteria for each Title III compound on the target compound list must be met by the analytical system. These criteria were established by examining summary data from EPA's Toxics Air Monitoring System Network and the Urban Air Toxics Monitoring Program network. Details for the determination of each of the criteria follow.

11.2 Method Detection Limit

11.2.1 The procedure chosen to define the method detection limit is that given in the *Code of Federal Regulations* (40 CFR 136 Appendix B).

11.2.2 The method detection limit is defined for each system by making seven replicate measurements of the compound of interest at a concentration near (within a factor of five) the expected detection limit, computing the standard deviation for the seven replicate concentrations, and multiplying this value by 3.14 (i.e., the Student's t value for 99 percent confidence for seven values). Employing this approach, the detection limits given in Table 4 were obtained for some of the VOCs of interest.

11.3 Replicate Precision

11.3.1 The measure of replicate precision used for this program is the absolute value of the difference between replicate measurements of the sample divided by the average value and expressed as a percentage as follows:

percent difference =
$$\frac{|\mathbf{x}_1 - \mathbf{x}_2|}{\overline{\mathbf{x}}} \times 100$$

where:

x₁ = First measurement value.

x₂ = Second measurement value

 $\overline{\mathbf{x}}$ = Average of the two values.

Page 15-30

Compendium of Methods for Toxic Organic Air Pollutants

11.3.2 There are several factors which may affect the precision of the measurement. The nature of the compound of interest itself such as molecular weight, water solubility, polarizability, etc., each have some effect on the precision, for a given sampling and analytical system. For example, styrene, which is classified as a polar VOC, generally shows slightly poorer precision than the bulk of nonpolar VOCs. A primary influence on precision is the concentration level of the compound of interest in the sample, i.e., the precision degrades as the concentration approaches the detection limit. A conservative measure was obtained from replicate analysis of "real world" canister samples from the TAMS and UATMP networks. These data are summarized in Table 5 and suggest that a replicate precision value of 25 percent can be achieved for each of the target compounds.

11.4 Audit Accuracy

11.4.1 A measure of analytical accuracy is the degree of agreement with audit standards. Audit accuracy is defined as the difference between the nominal concentration of the audit compound and the measured value divided by the audit value and expressed as a percentage, as illustrated in the following equation:

Audit Accuracy, % = <u>Spiked Value</u> - Observed Value Spiked Value x 100

11.4.2 Audit accuracy results for TAMS and UATMP analyses are summarized in Table 6 and were used to form the basis for a selection of 30 percent as the performance criterion for audit accuracy.

12. References

 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air: Method TO-14A, Second Edition, U. S. Environmental Protection Agency, Research Triangle Park, NC, EPA 600/625/R-96/010b, January 1997.

 Winberry, W. T., Jr., et al., Statement-of-Work (SOW) for the Analysis of Air Toxics From Superfund Sites, U. S. Environmental Protection Agency, Office of Solid Waste, Contract Laboratory Program, Washington, D.C., Draft Report, June 1990.

 Coutant, R.W., Theoretical Evaluation of Stability of Volatile Organic Chemicals and Polar Volatile Organic Chemicals in Canisters, U. S. Environmental Protection Agency, EPA Contract No. 68-DO-0007, Work Assignment No. 45, Subtask 2, Battelle, Columbus, OH, June 1993.

 Kelly, T.J., Mukund, R., Gordon, S.M., and Hays, M.J., Ambient Measurement Methods and Properties of the 189 Title III Hazardous Air Pollutants, U. S. Environmental Protection Agency, EPA Contract No. 68-DO-0007, Work Assignment 44, Battelle, Columbus, OH, March 1994.

 Kelly T. J. and Holdren, M.W., "Applicability of Canisters for Sample Storage in the Determination of Hazardous Air Pollutants," *Atmos. Environ.*, Vol. 29, 2595-2608, May 1995.

6. Kelly, T.J., Callahan, P.J., Pleil, J.K., and Evans, G.E., "Method Development and Field Measurements for Polar Volatile Organic Compounds in Ambient Air," *Environ. Sci. Technol.*, Vol. 27, 1146-1153, 1993.

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-31

VOCs

 McClenny, W.A., Oliver, K.D. and Daughtrey, E.H., Jr. "Dry Purging of Solid Adsorbent Traps to Remove Water Vapor Before Thermal Desorption of Trace Organic Gases," *J. Air and Waste Manag. Assoc.*, Vol. 45, 792-800, June 1995.

8. Whitaker, D.A., Fortmann, R.C. and Lindstrom, A.B. "Development and Testing of a Whole Air Sampler for Measurement of Personal Exposures to Volatile Organic Compounds," *Journal of Exposure Analysis and Environmental Epidemiology*, Vol. 5, No. 1, 89-100, January 1995.

9. Pleil, J.D. and Lindstrom, A.B., "Collection of a Single Alveolar Exhaled Breath for Volatile Organic Compound Analysis," *American Journal of Industrial Medicine*, Vol. 28, 109-121, 1995.

 Pleil, J.D. and McClenny, W.A., "Spatially Resolved Monitoring for Volatile Organic Compounds Using Remote Sector Sampling," *Atmos. Environ.*, Vol. 27A, No. 5, 739-747, August 1993.

 Holdren, M.W., et al., Unpublished Final Report, EPA Contract 68-DO-0007, Battelle, Columbus, OH. Available from J.D. Pleil, MD-44, U. S. Environmental Protection Agency, Research Triangle Park, NC, 27711, 919-541-4680.

12. Morris, C.M., Burkley, R.E. and Bumgarner, J.E., "Preparation of Multicomponent Volatile Organic Standards Using Dilution Bottles," *Anal. Letts.*, Vol. 16 (A20), 1585-1593, 1983.

13. Pollack, A.J., Holdren, M.W., "Multi-Adsorbent Preconcentration and Gas Chromatographic Analysis of Air Toxics With an Automated Collection/Analytical System," in the *Proceedings of the 1990 EPA/A&WMA International Symposium of Measurement of Toxic and Related Air Pollutants*, U. S. Environmental Protection Agency, Research Triangle Park, NC, EPA/600/9-90-026, May 1990.

 Stephenson, J.H.M., Allen, F., Slagle, T., "Analysis of Volatile Organics in Air via Water Methods" in Proceedings of the 1990 EPA/A&WMA International Symposium on Measurement of Toxic and Related Air Pollutants, U. S. Environmental Protection Agency, Research Triangle Park, NC, EPA 600/9-90-026, May 1990.

 Oliver, K. D., Adams, J. R., Davehtrey, E. H., Jr., McClenny, W. A., Young, M. J., and Parade, M. A., "Techniques for Monitoring Toxices VOCs in Air: Sorbent Preconcentration Closed-Cycle Cooler Cryofocusing, and GC/MS Analysis," *Environ. Sci. Technol.*, Vol. 30, 1938-1945, 1996.

104

APPENDIX A.

LISTING OF SOME COMMERCIAL WATER MANAGEMENT SYSTEMS USED WITH AUTOGC SYSTEMS

Tekmar Dohrman Company 7143 East Kemper Road Post Office Box 429576 Cincinnati, Ohio 45242-9576 (513) 247-7000 (513) 247-7050 (Fax) (800) 543-4461 [Moisture control module]

Entech Laboratory Automation 950 Enchanted Way No. 101 Simi Valley, California 93065 (805) 527-5939 (805) 527-5687 (Fax) [Microscale Purge and Trap]

Dynatherm Analytical Instruments Post Office Box 159 Kelton, Pennsylvania 19346 (215) 869-8702 (215) 869-3885 (Fax) [Thermal Desorption System] XonTech Inc. 6862 Hayenhurst Avenue Van Nuys, CA 91406 (818) 787-7380 (818) 787-4275 (Fax) [Multi-adsorbent trap/dry purge]

Graseby 500 Technology Ct. Smyrna, Georgia 30082 (770) 319-9999 (770) 319-0336 (Fax) (800) 241-6898 [Controlled Desorption Trap]

Varian Chromatography System 2700 Mitchell Drive Walnut Creek, California 94898 (510) 945-2196 (510) 945-2335 (FAX) [Variable Temperature Adsorption Trap]

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

VOCs

APPENDIX B.

COMMENT ON CANISTER CLEANING PROCEDURES

The canister cleaning procedures given in Section 8.4 require that canister pressure be reduced to <0.05mm Hg before the cleaning process is complete. Depending on the vacuum system design (diameter of connecting tubing, valve restrictions, etc.) and the placement of the vacuum gauge, the achievement of this value may take several hours. In any case, the pressure gauge should be placed near the canisters to determine pressure. The objective of requiring a low pressure evacuation during canister cleaning is to reduce contaminants. If canisters can be routinely certified (<0.2 ppbv for target compounds) while using a higher vacuum, then this criteria can be relaxed. However, the ultimate vacuum achieved during cleaning should always be <0.2mm Hg.

Canister cleaning as described in Section 8.4 and illustrated in Figure 10 requires components with special features. The vacuum gauge shown in Figure 10 must be capable of measuring 0.05mm Hg with less than a 20% error. The vacuum pump used for evacuating the canister must be noncontaminating while being capable of achieving the 0.05 mm Hg vacuum as monitored near the canisters. Thermoelectric vacuum gauges and turbomolecular drag pumps are typically being used for these two components.

An alternate to achieving the canister certification requirement of <0.2 ppbv for all target compounds is the criteria used in Compendium Method TO-12 that the total carbon count be <10ppbC. This check is less expensive and typically more exacting than the current certification requirement and can be used if proven to be equivalent to the original requirement. This equivalency must be established by comparing the total nonmethane organic carbon (TNMOC) expressed in ppbC to the requirement that individual target compounds be <0.2 ppbv for a series of analytical runs.

Page 15-34

Compendium of Methods for Toxic Organic Air Pollutants

Method TO-15

APPENDIX C.

LISTING OF COMMERCIAL MANUFACTURERS AND RE-SUPPLIERS OF SPECIALLY-PREPARED CANISTERS

BRC/Rasmussen 17010 NW Skyline Blvd. Portland, Oregon 97321 (503) 621-1435

Meriter 1790 Potrero Drive San Jose, CA 95124 (408) 265-6482

Restek Corporation 110 Benner Circle Bellefonte, PA 16823-8812 (814) 353-1300 (800) 356-1688

Scientific Instrumentation Specialists P.O. Box 8941 815 Courtney Street Moscow, ID 83843 (208) 882-3860

Graseby 500 Technology Ct. Smyrna, Georgia 30082 (404) 319-9999 (800) 241-6898

XonTech Inc. 6862 Hayenhurst Avenue Van Nuys, CA 91406 (818) 787-7380

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

APPENDIX D.

LISTING OF COMMERCIAL SUPPLIERS OF PERMEATION TUBES AND SYSTEMS

Kin-Tek 504 Laurel St. Lamarque, Texas 77568 (409) 938-3627 (800) 326-3627

Vici Metronics, Inc. 2991 Corvin Drive Santa Clara, CA 95051 (408) 737-0550

Analytical Instrument Development, Inc. Rt. 41 and Newark Rd. Avondale, PA 19311 (215) 268-3181

Ecology Board, Inc. 9257 Independence Ave. Chatsworth, CA 91311 (213) 882-6795

Tracor, Inc. 6500 Tracor Land Austin, TX (512) 926-2800

Metronics Associates, Inc. 3201 Porter Drive Standford Industrial Park Palo Alto, CA 94304 (415) 493-5632

Page 15-36

Compendium of Methods for Toxic Organic Air Pollutants

June 2006 Review Draft	

MEMBERSHIP IN COMPENDIUM	METHOD T	0-14A LIST A	ND THE SO	W-CLPL	IST OF VOC	s
Compound	CAS No.	BP (°C)	v.p. (mmHg) ¹	MW^1	TO-14A	CLP-SOW
Methyl chloride (chloromethane); CH3Cl	74-87-3	-23.7	3.8 x 10	50.5	Х	Х
Carbonyl sulfide; COS	463-58-1	-50.0	3.7 x 10	60.1		
Vinyl chloride (chloroethene); C2H3Cl	75-01-4	-14.0	3.2 x 10	62.5	Х	Х
Diazomethane; CH2N2	334-88-3	-23.0	2.8 x 10	42.1		
Formaldehyde; CH2O	50-00-0	-19.5	2.7 x 10	30		
1,3-Butadiene; C4H6	106-99-0	-4.5	2.0×10	54		Х
Methyl bromide (bromomethane); CH3Br	74-83-9	3.6	1.8 x 10	94.9	Х	Х
Phosgene; CC12O	75-44-5	8.2	1.2 x 10	99		
Vinyl bromide (bromoethene); C2H3Br	593-60-2	15.8	l.l x 10	107		
Ethylene oxide; C2H4O	75-21-8	10.7	1.1 x 10	44		
Ethyl chloride (chloroethane); C2H5Cl	75-00-3	12.5	1.0 x 10	64.5	Х	Х
A cetal dehyde (ethanal); C2H4O	75-07-0	21.0	952	44		
Vinylidene chloride (1,1-dichloroethylene); C2H2Cl2	75-35-4	31.7	500	97	Х	Х
Propylene oxide; C3H6O	75-56-9	34.2	445	58		
Methyl iodide (iodomethane); CH3I	74-88-4	42.4	400	141.9		
Methylene chloride; CH2Cl2	75-09-2	40.0	349	84.9	Х	Х
Methyl isocyanate; C2H3NO	624-83-9	59.6	348	57.1		
Allyl chloride (3-chloropropene); C3H5Cl	107-05-1	44.5	340	76.5	Х	Х
Carbon disulfide; CS2	75-15-0	46.5	260	76		
Methyl tert-butyl ether; C5H12O	1634-04-4	55.2	249	86		
Propional dehyde; C2H5CHO	123-38-6	49.0	235	58.1		
Ethylidene dichloride (1, 1-dichloroethane); C2H4Cl2	75-34-3	57.0	230	66	Х	

_

Method TO-15

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

	TABLE 1.	(continued)				
Compound	CAS No.	BP (°C)	v.p. (mmHg)	MW^1	TO-14A	CLP-SOW
Chloroprene (2-chloro-1,3-butadiene); C4H5Cl	126-99-8	59.4	226	88.5		
Chloromethyl methyl ether; C2H5ClO	107-30-2	59.0	224	80.5		
Acrolein (2-propenal); C3H4O	107-02-8	52.5	220	56		Х
1,2-Epoxybutane (1,2-butylene oxide); C4H8O	106-88-7	63.0	163	72		
Chloroform; CHCl3	67-66-3	61.2	160	119	Х	Х
Ethyleneimine (aziridine); C2H5N	151-56-4	56	160.0	43		
1,1-Dimethylhydrazine; C2H8N2	57-14-7	63	157.0	60.0		
Hexane; C6H14	110-54-3	69.0	120	86.2	Х	
1,2-Propyleneimine (2-methylaziridine); C3H7N	75-55-8	66.0	112	57.1		
Acrylonitrile (2-propenenitrile); C3H3N	107-13-1	77.3	100	53	Х	
Methyl chloroform (1,1,1-trichloroethane); C2H3Cl3	71-55-6	74.1	100	133.4	Х	Х
Methanol; CH4O	67-56-1	65.0	92.0	32		Х
Carbon tetrachloride; CCl4	56-23-5	76.7	90.0	153.8	Х	Х
Vinyl acetate; C4H6O2	108-05-4	72.2	83.0	86		Х
Methyl ethyl ketone (2-butanone), C4H8O	78-93-3	79.6	77.5	72		Х
Benzene; C6H6	71-43-2	80.1	76.0	78	Х	Х
Acetonitrile (cyanomethane); C2H3N	75-05-8	82	74.0	41.0		Х
Ethylene dichloride (1,2-dichloroethane); C2H4Cl2	107-06-2	83.5	61.5	66	Х	Х
Triethylamine; C6H15N	121-44-8	89.5	54.0	101.2		
Methylhydrazine; CH6N2	60-34-4	87.8	49.6	46.1		
Propylene dichloride (1,2-dichloropropane); C3H6Cl2	78-87-5	97.0	42.0	113	Х	Х
2,2,4-Trimethyl pentane C8H18	540-84-1	99.2	40.6	114		
1,4-Dioxane (1,4-Diethylene oxide); C4H8O2	123-91-1	101	37.0	88		
Bis(chloromethyl) ether, C2H4Cl2O	542-88-1	104	30.0	115		
Ethyl acrylate; C5H8O2	140-88-5	100	29.3	100		
Methyl methacrylate; C5H8O2	80-62-6	101	28.0	100.1		

_

Page 15-38

Compendium of Methods for Toxic Organic Air Pollutants

January 1999

VOCs

	TABLE 1.	(continued)				
Compound	CAS No.	BP (°C)	v.p. (mmgHg)	MW^1	TO-14A	CLP-SO
Methyl methacrylate; C5H8O2	80-62-101	101	28.0	100.1		
1,3-Dichloropropene; C3H4Cl2 (cis)	542-75-6	112	27.8	111	Х	Х
Toluene; C7H8	108-88-3	111	22.0	92	Х	Х
Trichloroethylene; C2HCl3	79-01-6	87.0	20.0	131.4	Х	Х
1,1,2-Trichloroethane; C2H3Cl3	79-00-5	114	19.0	133.4	Х	Х
Tetrachloroethylene; C2Cl4	127-18-4	121	14.0	165.8	Х	Х
Epichlorohydrin (1-chloro-2,3-epoxy propane); C3H5ClO	106-89-8	117	12.0	92.5		
Ethylene dibromide (1,2-dibromoethane); C2H4Br2	106-93-4	132	11.0	187.9	Х	Х
N-Nitroso-N-methylurea; C2H5N3O2	684-93-5	124	10.0	103		
2-Nitropropane; C3H7NO2	79-46-9	120	10.0	89		
Chlorobenzene; C6H5Cl	108-90-7	132	8.8	112.6	Х	Х
Ethylbenzene; C8H10	100-41-4	136	7.0	106	Х	Х
Xylenes (isomer & mixtures); C8H10	1330-20-7	142	6.7	106.2	Х	Х
Styrene; C8H8	100-42-5	145	6.6	104	Х	Х
p-Xylene; C8H10	106-42-3	138	6.5	106.2	Х	Х
m-Xylene; C8H10	108-38-3	139	6.0	106.2	Х	Х
Methyl isobutyl ketone (hexone); C6H12O	108-10-1	117	6.0	100.2		
Bromoform (tribromomethane), CHBr3	75-25-2	149	5.6	252.8		
1,1,2,2-Tetrachloroethane; C2H2C14	79-34-5	146	5.0	167.9	Х	Х
o-Xylene; C8H10	95-47-6	144	5.0	106.2	Х	Х
Dimethylcarbamyl chloride; C3H6CINO	79-44-7	166	4.9	107.6		
N-Nitrosodimethylamine; C2H6N2O	62-75-9	152	3.7	74		
Beta-Propiolactone; C3H4O2	57-57-8	Decomposes at 162	3.4	72		
Cumene (isopropylbenzene): C9HI2	98-82-8	153	3.2	120		

Method TO-15

January 1999

Compendium of Methods for Toxic Organic Air Pollutants
	TABLE 1.	(continued)				
Compound	CAS No.	BP (°C)	v.p. (mmHg) ¹	MW^1	TO-14A	CLP-SOW
Cumene (isopropylbenzene); C9H12	98-82-8	153	3.2	120		
Acrylic acid; C3H4O2	79-10-7	141	3.2	72		
N,N-Dimethylformamide; C3H7NO	68-12-2	153	2.7	73		
1,3-Propane sultone; C3H6O3S	1120-71-4	180/30mm	2.0	122.1		
Acetophenone; C8H8O	98-86-2	202	1.0	120		
Dimethyl sulfate; C2H6O4S	77-78-1	188	1.0	126.1		
Benzyl chloride (a-chlorotoluene); C7H7Cl	100-44-7	179	1.0	126.6	Х	Х
1,2-Dibromo-3-chloropropane; C3H5Br2Cl	96-12-8	196	0.80	236.4		
Bis(2-Chloroethyl)ether; C4H8Cl2O	111-44-4	178	0.71	143		
Chloroacetic acid; C2H3ClO2	79-11-8	189	0.69	94.5		
Aniline (aninobenzene); C6H7N	62-53-3	184	0.67	93		
1,4-Dichlorobenzene (p-); C6H4Cl2	106-46-7	173	0.60	147	Х	Х
Ethyl carbamate (urethane); C3H7NO2	51-79-6	183	0.54	89		
Acrylamide; C3H5NO	79-06-1	125/25 mm	0.53	71		
N,N-Dimethylaniline; C8H11N	121-69-7	192	0.50	121		
Hexachloroethane; C2Cl6	67-72-1	Sublimes at 186	0.40	236.7		
Hexachlorobutadiene; C4Cl6	87-68-3	215	0.40	260.8	Х	Х
Isophorone; C9H14O	78-59-1	215	0.38	138.2		
N-Nitrosomorpholine; C4H8N2O2	59-89-2	225	0.32	116.1		
Styrene oxide; C8H8O	96-09-3	194	0.30	120.2		
Diethyl sulfate; C4H10O4S	64-67-5	208	0.29	154		
Cresylic acid (cresol isomer mixture);C7H8O	1319-77-3	202	0.26	108		
o-Cresol; C7H8O	95-48-7	191	0.24	108		
Catechol (o-hydroxyphenol); C6H6O2	120-80-9	240	0.22	110		
Phenol; C6H6O	108-95-2	182	0.20	94		
2						

Page 15-40

Compendium of Methods for Toxic Organic Air Pollutants

January 1999

TABLE 1. (continued)

_

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-41

Compound	CAS No.	BP (°C)	v.p. (mmHg) ¹	MW ¹	TO-14A	CLP-SOW
Catechol (o-hydroxyphenol); C6H6O2	120-80-9	240	0.22	110		
Phenol; C6H6O	108-95-2	182	0.20	94		
1,2,4-Trichlorobenzene; C6H3Cl3	120-82-1	213	0.18	181.5	Х	Х
nitrobenzene. C6H5NO2	98-95-3	211	0.15	123		
¹ Vapor pressure (v. p.), boiling point (BP) and molecularweig (a)D. L. Jones and J. bursey, "simultaneous Control of PM-1 Pollutants as Potential Particulate Matter," Report EP A-452/1 NC. October 1992. (b)R. C. Weber, P. A. Parker, and M. Bowser, Vapor Pressu U. S. Environmental Protection Agency, Cincimati, OH, Fet (c)R. C. West, ed., "CKC Handbook of Chemistry and Phys	pht (MW) data fr [0 and Hazardou R-93/013, U. S.] re Distribution o bruary 1981; and sics," 59th edition	om: s Air Pollutants II Environmental Pr f Selected Organi 1, CRC Press, Boo	 Rationale for otection Agenc Chemicals, R ca Raton, 1979. 	Selection of J y, Research T eport EPA-60	Hazardous Air riangle Park, 0/2-81-021,	

VOCs

TABLE 2. CHARACTERISTIC MASSES (M/Z) USED FOR QUANTIFYING THE TITLE III CLEAN AIR ACT AMENDMENT COMPOUNDS

Compound	CAS No.	Primary Ion	Secondary Ion
Methyl chloride (chloromethane); CH3Cl	74-87-3	50	52
Carbonyl sulfide; COS	463-S8-1	60	62
Vinyl chloride (chloroethene); C2H3C1	7S-01-4	62	64
Diazomethane; CH2N2	334-88-3	42	41
Formaldehyde; CH2O	50-00-0	29	30
1,3-Butadiene; C4H6	106-99-0	39	54
Methyl bromide (bromomethane); CH3Br	74-83-9	94	96
Phosgene; CC12O	75-44-5	63	65
Vinyl bromide (bromoethene); C2H3Br	593-60-2	106	108
Ethylene oxide; C2H4O	75-21-8	29	44
Ethyl chloride (chloroethane); C2H5Cl	75-00-3	64	66
Acetaldehyde (ethanal); C2H4O	75-07-0	44	29, 43
Vinylidene chloride (1,1-dichloroethylene); C2H2Cl2	75-35-4	61	96
Propylene oxide; C3H6O	75-56-9	58	57
Methyl iodide (iodomethane); CH3I	74-88-4	142	127
Methylene chloride; CH2Cl2	75-09-2	49	84, 86
Methyl isocyanate; C2H3NO	624-83-9	57	56
Allyl chloride (3-chloropropene); C3H5Cl	107-05-1	76	41, 78
Carbon disulfide; CS2	75-15-0	76	44, 78
Methyl tert-butyl ether; C5H12O	1634-04-4	73	41, 53
Propionaldehyde; C2H5CHO	123-38-6	58	29, 57
Ethylidene dichloride (1,1-dichloroethane); C2H4Cl2	75-34-3	63	65, 27
Chloroprene (2-chloro-1,3-butadiene); C4H5C1	126-99-8	88	53, 90
Chloromethyl methyl ether; C2H5C1O	107-30-2	45	29, 49
Acrolein (2-propenal); C3H4O	107-02-8	56	55
1,2-Epoxybutane (1,2-butylene oxide); C4H8O	106-88-7	42	41, 72
Chloroform; CHC13	67-66-3	83	85, 47
Ethyleneimine (aziridine); C2H5N	151-56-4	42	43
1,1-Dimethylhydrazine; C2H8N2	57-14-7	60	45, 59
Hexane; C6H14	110-54-3	57	41, 43
1,2-Propyleneimine (2-methylazindine); C3H7N	75-55-8	56	57, 42
Acrylonitrile (2-propenenitrile); C3H3N	107-13-1	53	52
Methyl chloroform (1,1,1 trichloroethane); C2H3C13	71-55-6	97	99, 61
Methanol; CH4O	67-56-1	31	29
Carbon tetrachloride; CC14	56-23-5	117	119
Vinyl acetate; C4H6O2	108-05-4	43	86
Methyl ethyl ketone (2-butanone); C4H8O	78-93-3	43	72

Page 15-42

Compendium of Methods for Toxic Organic Air Pollutants

January 1999

VOCs

Method T(0-15
-----------	------

TABLE 2. (continued)					
Compound	CAS No.	Primary Ion	Secondary Ion		
Benzene; C6H6	71-43-2	78	77,50		
Acetonitrile (cyanomethane); C2H3N	75-05-8	41	40		
Ethylene dichloride (1,2-dichloroethane); C2H4Cl2	107-06-2	62	64, 27		
Triethylamine; C6H15N	121-44-8	86	58, 101		
Methylhydrazine; CH6N2	60-34-4	46	31, 45		
Propylene dichloride (1,2-dichloropropane); C3H6C12	78-87-5	63	41, 62		
2,2,4-Trimethyl pentane; C8H18	540-84-1	57	41, 56		
1,4-Dioxane (1,4 Diethylene oxide); C4H8O2	123-91-1	88	58		
Bis(chloromethyl) ether; C2H4C12O	542-88-1	79	49, 81		
Ethyl acrylate; C5H8O2	140-88-5	55	73		
Methyl methacrylate; C5H8O2	80-62-6	41	69, 100		
1,3-Dichloropropene; C3H4Cl2 (cis)	542-75-6	75	39, 77		
Toluene; C7H8	108-88-3	91	92		
Trichloethylene; C2HCl3	79-01-6	130	132, 95		
1,1,2-Trichloroethane; C2H3Cl3	79-00-5	97	83, 61		
Tetrachloroethylene; C2C14	127-18-4	166	164, 131		
Epichlorohydrin (1-chloro-2,3-epoxy propane); C3H5ClO	106-89-8	57	49, 62		
Ethylene dibromide (1,2-dibromoethane); C2H4Br2	106-93-4	107	109		
N-Nitrso-N-methylurea; C2H5N3O2	684-93-5	60	44, 103		
2-Nitropropane; C3H7NO2	79-46-9	43	41		
Chlorobenzene; C6H5C1	108-90-7	112	77, 114		
Ethylbenzene; C8H10	100-41-4	91	106		
Xylenes (isomer & mixtures); C8H10	1330-20-7	91	106		
Styrene; C8H8	100-42-5	104	78, 103		
p-Xylene; C8H10	106-42-3	91	106		
m-Xylene; C8H10	108-38-3	91	106		
Methyl isobutyl ketone (hexone); C6H12O	108-10-1	43	58, 100		
Bromoform (tribromomethane); CHBr3	75-25-2	173	171, 175		
1,1,2,2-Tetrachloroethane; C2H2C14	79-34-5	83	85		
o-Xylene; C8H10	95-47-6	91	106		
Dimethylcarbamyl chloride; C3H6CINO	79-44-7	72	107		
N-Nitrosodimethylamine; C2H6N2O	62-75-9	74	42		
Beta-Propiolactone; C3H4O2	57-57-8	42	43		
Cumene (isopropylbenzene); C9H12	98-82-8	105	120		
Acrylic acid; C3H4O2	79-10-7	72	45, 55		
N,N-Dimethylformamide; C3H7NO	68-12-2	73	42, 44		
1,3-Propane sultone; C3H6O3S	1120-71-4	58	65, 122		
TABLE 2. (continued)					

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-43

Compound	CAS No.	Primary Ion	Secondary Ion
Acetophenone; C8H8O	98-86-2	105	77,120
Dimethyl sulfate; C2H6O4S	77-78-1	95	66,96
Benzyl chloride (a-chlorotoluene); C7H7C1	100-44-7	91	126
1,2-Dibromo-3-chloropropane; C3H5Br2C1	96-12-8	57	155, 157
Bis(2-Chloroethyl)ether; C4H8Cl2O	111-44-4	93	63, 95
Chloroacetic acid; C2H3ClO2	79-11-8	50	45, 60
Aniline (aminobenzene); C6H7N	62-53-3	93	66
1,4-Dichlorobenzene (p-); C6H4Cl2	106-46-7	146	148, 111
Ethyl carbamate (urethane); C3H7NO2	51-79-6	31	44, 62
Acrylamide; C3H5NO	79-06-1	44	55, 71
N,N-Dimethylaniline; C8H11N	121-69-7	120	77, 121
Hexachloroethane; C2C16	67-72-1	201	199, 203
Hexachlorobutadiene; C4C16	87-68-3	225	227, 223
Isophorone; C9H14O	78-59-1	82	138
N-Nitrosomorpholine; C4H8N2O2	59-89-2	56	86, 116
Styrene oxide; C8H8O	96-09-3	91	120
Diethyl sulfate; C4H10O4S	64-67-5	45	59, 139
Cresylic acid (cresol isomer mixture); C7H8O	1319-77-3		
o-Cresol; C7H8O	95-48-7	108	107
Catechol (o-hydroxyphenol); C6H6O2	120-80-9	110	64
Phenol; C6H6O	108-95-2	94	66
1,2,4-Trichlorobenzene; C6H3Cl3	120-82-1	180	182, 184
Nitrobenzene; C6H5NO2	98-95-3	77	51, 123

Page 15-44

Compendium of Methods for Toxic Organic Air Pollutants

January 1999

VOCs

	ION ABONDANCE CRITERIA
Mass	Ion Abundance Criteria ¹
50	8.0 to 40.0 Percent of m/e 95
75	30.0 to 66.0 Percent of m/e 95
95	Base Peak, 100 Percent Relative Abundance
96	5.0 to 9.0 Percent of m/e 95 (See note)
173	Less than 2.0 Percent of m/e 174
174	50.0 to 120.0 Percent of m/e 95
175	4.0 to 9.0 Percent of m/e 174
176	93.0 to 101.0 Percent of m/e 174
177	5.0 to 9.0 Percent of m/e 176

TABLE 3. REQUIRED BFB KEY IONS AND ION ABUNDANCE CRITERIA

 1All ion abundances must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120 percent that of m/z 95.

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-45

TABLE 4. METHOD DETECTION LIMITS (MDL) ¹			
TO-14A List	Lab #1, SCAN	Lab #2, SIM	
Benzene	0.34	0.29	
Benzyl Chloride			
Carbon tetrachloride	0.42	0.15	
Chlorobenzene	0.34	0.02	
Chloroform	0.25	0.07	
1,3-Dichlorobenzene	0.36	0.07	
1,2-Dibromoethane		0.05	
1,4-Dichlorobenzene	0.70	0.12	
1,2-Dichlorobenzene	0.44		
1,1-Dichloroethane	0.27	0.05	
1,2-Dichloroethane	0.24		
1,1-Dichloroethene		0.22	
cis-1,2-Dichloroethene		0.06	
Methylene chloride	1.38	0.84	
1,2-Dichloropropane	0.21		
cis-1,3-Dichloropropene	0.36		
trans-1,3-Dichloropropene	0.22		
Ethylbenzene	0.27	0.05	
Chloroethane	0.19		
Trichlorofluoromethane			
1,1,2-Trichloro-1,2,2-trifluoroethane			
1,2-Dichloro-1,1,2,2-tetrafluoroethane			
Dichlorodifluoromethane			
Hexachlorobutadiene	-		
Bromomethane	0.53		
Chloromethane	0.40		
Styrene	1.64	0.06	
1,1,2,2-Tetrachloroethane	0.28	0.09	
Tetrachloroethene	0.75	0.10	
Toluene	0.99	0.20	
1,2,4-Trichlorobenzene	_		
1,1,1-Trichloroethane	0.62	0.21	
1,1,2-Trichloroethane	0.50		
Trichloroethene	0.45	0.07	
1,2,4-Trimethylbenzene	_		
1,3,5-Trimethylbenzene			
Vinyl Chloride	0.33	0.48	
m,p-Xylene	0.76	0.08	
o-Xylene	0.57	0.28	

¹Method Detection Limits (MDLs) are defined as the product of the standard deviation of seven replicate analyses and the student's "t" test value for 99% confidence. For Lab #2, the MDLs represent an average over four studies. MDLs are for MS/SCAN for Lab #1 and for MS/SIM for Lab #2.

Page 15-46

Compendium of Methods for Toxic Organic Air Pollutants

January 1999

VOCs

TABLE 5. SUMMARY OF EPA DATA ON REPLICATE PRECISION (RP) FROM EPA NETWORK OPERATIONS1

Manitoring Compound	EPA's Urban Air Toxics Monitoring Program (UATMP)			EPA's Toxics	s Air Monito (TAMS)	ring Stations
Identification	%RP	#	ppbv	%RP	#	ppbv
Dichlorodifluoromethane Methylene chloride 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Trichloroethene Toluene Tetrachloroethene Chlorobenzene Ethvlbenzene		7 07 31 44 56 08 76 12 21 32	4.3 1.6 1.0 1.6 1.3 3.1 0.8 0.9 0.7	13.9 19.4 10.6 4.4 3.4 5.4	# 47 47 47 47 47 47 47 47	0.9 0.6 2.0 1.5 3.1 0.5
m-Xylene Styrene o-Xylene p-Xylene	14.7 22.8 	75 59²	4.0 1.1	5.3 8.7 6.0	47 47 47	1.5 0.2 ² 0.5
1,3-Dichlorobenzene 1,4-Dichlorobenzene	49.1 14.7	06 14	0.6 6.5			

¹Denotes the number of replicate or duplicate analysis used to generate the statistic. The replicate precision is defined as the mean ratio of absolute difference to the average value.
²Styrene and o-xylene coelute from the GC column used in UATMP. For the TAMS entries, both values were below detection limits for 18 of 47 replicates and were not included in the calculation.

TABLE 6. AUDIT ACCURACY (AA) VALUES1 FOR SELECTED COMPENDIUM METHOD TO-14A COMPOUNDS

Selected Compounds From TO-14A List	FY-88 TAMS AA(%), N=30	FY-88 UATMP AA(%), N=3
Vinyl chloride	4.6	17.9
Bromomethane		6.4
Trichlorofluoromethane	6.4	
Methylene chloride	8.6	31.4
Chloroform		4.2
1,2-Dichloroethane	б.8	11.4
1,1,1-Trichloroethane	18.6	11.3
Benzene	10.3	10.1
Carbon tetrachloride	12.4	9.4
1,2-Dichloropropane		6.2
Trichloroethene	8.8	5.2
Toluene	8.3	12.5
Tetrachloroethene	6.2	
Chlorobenzene	10.5	11.7
Ethylbenzene	12.4	12.4
o-Xylene	16.2	21.2

¹Audit accuracy is defined as the relative difference between the audit measurement result and its nominal value divided by the nominal value. N denotes the number of audits averaged to obtain the audit accuracy value. Information is not available for other TO-14A compounds because they were not present in the audit materials.

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-47

Figure 1. Sampler configuration for subatmospheric pressure or pressurized canister sampling.

Page 15-48

Compendium of Methods for Toxic Organic Air Pollutants

January 1999

⁽a). Simple Circuit for Operating Magnelatch Valve

regure 2. Electrical pulse circuits for driving skinler inagnetation solehold valve with mechanical timer.

Figure 3. Alternative sampler configuration for pressurized canister sampling.

Page 15-50

Compendium of Methods for Toxic Organic Air Pollutants January 1999

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-51

Page 15-52 Compendium of Methods for Toxic Organic Air Pollutants January 1999

Figure 6. Simplified diagram of a quadrupole mass spectrometer.

January 1999 Compendium of Methods for Toxic Organic Air Pollutants Page 15-53

Page 15-54

Compendium of Methods for Toxic Organic Air Pollutants

Method	TO-15
True the the the the the the the the the th	10-15

COMPENDIUM METHOD TO-15 CANISTER SAMPLING FIELD TEST DATA SHEET A.GENERAL INFORMATION

SITE LOCATION:	
SITE ADDRESS:	

SAMPLING DATE:

SHIPPING DATE:	
CANISTER SERIAL NO .:	
SAMPLER ID:	
OPERATOR:	
CANISTER LEAK	
CHECK DATE:	

B. SAMPLING INFORMATION

		TEMPE	PRESS	SURE		
	INTERIOR	AMBIENT	MAXIMUM	MINIMUM	CANISTER I	PRESSURE
START						
STOP						

SAM	SAMPLING TIMES			FLOW RATES		
LOCAL TIME	ELAPSED TIME METER READING		MANIFOLD FLOW RATE	CANISTER FLOW RATE	FLOW CONTROLLER READOUT	
START						
STOP]				

SAMPLING SYSTEM CERTIFICATION DATE: ______ QUARTERLY RECERTIFICATION DATE: ______

C. LABORATORY INFORMATION

DATA RECEIVED:	
RECEIVED BY:	
INITIAL PRESSURE:	
FINAL PRESSURE:	
DILUTION FACTOR:	
ANALYSIS	
GC-FID-ECD DATE:	
GC-MSD-SCAN DATE:	
GC-MSD-SIM DATE:	
RESULTS*:	
GC-FID-ECD:	
GC-MSD-SCAN:	
GC-MSD-SIM:	

SIGNATURE/TITLE

Figure 9. Canister sampling field test data sheet (FTDS).

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-55

Page 15-56

Compendium of Methods for Toxic Organic Air Pollutants January 1999

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-57

Page 15-58

Compendium of Methods for Toxic Organic Air Pollutants

130

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-59

VOCs

Figure 14. Water method of standard preparation in canisters.

Page 15-60

Compendium of Methods for Toxic Organic Air Pollutants

January 1999

Figure 15. Diagram of the GC/MS analytical system.

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-61

Figure 15. Diagram of the GC/MS analytical system.

January 1999

Compendium of Methods for Toxic Organic Air Pollutants

Page 15-61

Page 15-62

Compendium of Methods for Toxic Organic Air Pollutants

January 1999

June 2006 Review Draft

Appendix C

Appendix C Yellowstone Winter Use Air Monitoring 2006 Aldehydes Table 1C

Sample ID: X218A Date: 2/18/2006 Sample Location: Kiosk A Type: Area Sample Sample Length: 271 minutes Sample Volume: 17.3 Liters PEL-TWA **REL-TWA** Aldehyde Lab Result 8-Hour **TLV ppm** ppm TWA ppm ppm ppm Acetaldehyde < 0.0096 < 0.005 200 25 (STEL) None 0.1 (STEL) Acrolein < 0.0076 < 0.004 0.1 0.1 Butyraldehyde < 0.0059 < 0.003 None None None 0.3 (STEL) Formaldehyde < 0.014 < 0.008 0.75 0.016 Heptanal < 0.0037 < 0.002 None None None Hexanal < 0.0042 < 0.002 None None None Iso-valeraledhyde < 0.0049 < 0.003 None None None Propionaldehyde < 0.0073 < 0.004None None None < 0.0049 < 0.003 Valeraldehyde None None None

Sample ID: X218P Sample Location: Kiosk A Sample Length: 271 minutes Date: 2/18/2006 Type: Personal Sample Sample Volume: 17.4 Liters

Aldehyde	Lab Result	8-Hour	PEL-TWA	TLV ppm	REL-TWA
	ppm	TWA ppm	ppm		ppm
Acetaldehyde	< 0.0096	< 0.005	200	25 (STEL)	None
Acrolein	< 0.0075	< 0.004	0.1	0.1 (STEL)	0.1
Butyraldehyde	< 0.0058	< 0.003	None	None	None
Formaldehyde	< 0.014	< 0.008	0.75	0.3 (STEL)	0.016
Heptanal	< 0.0037	< 0.002	None	None	None
Hexanal	< 0.0042	< 0.002	None	None	None
iso-valeraledhyde	< 0.0049	< 0.003	None	None	None
Propionaldehyde	< 0.0073	< 0.004	None	None	None
Valeraldehyde	< 0.0049	< 0.003	None	None	None

Sample ID: X219P	ple ID: X219P Date: 2/18/2006						
Location: Kiosk A	Location: Kiosk A Type: Personal Sample						
Sample Length: 200	minutes	Sample Volume	e: 10.5 Liters				
Aldehyde	Lab Result	8-Hour	PEL-TWA	TLV ppm	REL-TWA		
	ppm	TWA ppm	ppm		ppm		
Acetaldehyde	< 0.016	< 0.007	200	25 (STEL)	None		
Acrolein	< 0.012	< 0.005	0.1	0.1 (STEL)	0.1		
Butyraldehyde	< 0.0097	< 0.004	None	None	None		
Formaldehyde	< 0.023	< 0.009	0.75	0.3 (STEL)	0.016		
Heptanal	< 0.0061	< 0.003	None	None	None		
Hexanal	< 0.0070	< 0.003	None	None	None		
iso-valeraledhyde	< 0.0081	< 0.003	None	None	None		
Propionaldehyde	< 0.012	< 0.005	None	None	None		
Valeraldehyde	< 0.0081	< 0.003	None	None	None		
î							

Sample ID: X219A		Date: 2/19/2006	5					
Location: Kiosk A		Type: Area Sample						
Sample Length: 225	Sample Length: 225 minutes Sample Volume: 10.4 Liters							
Aldehyde	Lab Result	8-Hour	PEL-TWA	TLV ppm	REL-TWA			
	ppm	TWA ppm	ppm		ppm			
Acetaldehyde	< 0.016	< 0.007	200	25 (STEL)	None			
Acrolein	< 0.013	< 0.006	0.1	0.1 (STEL)	0.1			
Butyraldehyde	< 0.0098	< 0.005	None	None	None			
Formaldehyde	< 0.023	< 0.011	0.75	0.3 (STEL)	0.016			
Heptanal	< 0.0062	< 0.003	None	None	None			
Hexanal	< 0.0070	< 0.003	None	None	None			
iso-valeraledhyde	< 0.0082	< 0.0004	None	None	None			
Propionaldehyde	< 0.012	< 0.006	None	None	None			
Valeraldehyde	< 0.0082	< 0.004	None	None	None			

Location: Klosk A		Type: Area San	nple		
Sample Length: 261	minutes	Sample Volume	e: 14.6 Liters		
Aldehyde	Lab Result	8-Hour	PEL-TWA	TLV ppm	REL-TWA
	ppm	TWA ppm	ppm		ppm
Acetaldehyde	< 0.011	< 0.006	200	25 (STEL)	None
Acrolein	< 0.0090	< 0.005	0.1	0.1 (STEL)	0.1
Butyraldehyde	< 0.0070	< 0.004	None	None	None
Formaldehyde	< 0.0170	< 0.009	0.75	0.3 (STEL)	0.016
Heptanal	< 0.0044	< 0.002	None	None	None
Hexanal	< 0.0050	< 0.003	None	None	None
iso-valeraledhyde	< 0.0058	< 0.003	None	None	None
Propionaldehyde	< 0.0087	< 0.005	None	None	None
Valeraldehyde	< 0.0058	< 0.003	None	None	None

Date: 2/19/2006

Sample ID: X220P Location: Kiosk A Sample Length: 223 minutes

Sample ID: X220A

Date: 2/20/2006 Type: Personal Sample Sample Volume: 11.3 Liters

1							
Aldehyde	Lab Result	8-Hour	PEL-TWA	TLV ppm	REL-TWA		
	ppm	TWA ppm	ppm		ppm		
Acetaldehyde	< 0.015	< 0.007	200	25 (STEL)	None		
Acrolein	< 0.012	< 0.006	0.1	0.1 (STEL)	0.1		
Butyraldehyde	< 0.0090	< 0.004	None	None	None		
Formaldehyde	< 0.0220	< 0.010	0.75	0.3 (STEL)	0.016		
Heptanal	< 0.0057	< 0.003	None	None	None		
Hexanal	< 0.0065	< 0.003	None	None	None		
iso-valeraledhyde	< 0.0075	< 0.003	None	None	None		
Propionaldehyde	< 0.0078	< 0.006	None	None	None		
Valeraldehyde	< 0.0053	< 0.004	None	None	None		

Sample ID: X221	Date: 2/20/2006							
Location: NA		Quality Control Blank Sample						
Sample Length: NA		Sample Volume: NA						
Aldehyde	Lab Result	8-Hour	PEL-TWA	TLV ppm	REL-TWA			
	ppm	TWA ppm	ppm		ppm			
Acetaldehyde	ND	ND	ND	ND	ND			
Acrolein	ND	ND	ND	ND	ND			
Butyraldehyde	ND	ND	ND	ND	ND			
Formaldehyde	ND	ND	ND	ND	ND			
Heptanal	ND	ND	ND	ND	ND			
Hexanal	ND	ND	ND	ND	ND			
iso-valeraledhyde	ND	ND	ND	ND	ND			
Propionaldehyde	ND	ND	ND	ND	ND			
Valeraldehyde	ND	ND	ND	ND	ND			

Table 2C

Yellowstone Winter Use Air Monitoring 2006 BETX and Total Petroleum Hydrocarbons (TPH)

Sample ID: B218A					
Location: Kiosk A		Type: Area San	nple		
Sample Length: 272	minutes	Sample Volume	e: 50.9 Liters		
BETX and TPH	Lab Result	8-Hour	PEL-TWA	TLV-TWA	REL-TWA
	ppm	TWA ppm	ppm	ppm	ppm
Benzene	< 0.0061	< 0.003	1.0	0.5	0.1
ethyl benzene	< 0.0450	< 0.025	100	100	100
Toluene	< 0.0520	< 0.029	200	50	100
Xylene	< 0.0450	< 0.025	100	100	100
Total Petroleum	< 0.056	< 0.032	None	None	None
Hydrocarbons					

Sample ID: B218P Location: Kiosk A Sample Length: 251 minutes

Date: /18/2006 Type: Personal Sample Sample Volume: 51.7 Liters

BETX and TPH	Lab Result	8-Hour	PEL-TWA	TLV-TWA	REL-TWA
	ppm	TWA ppm	ppm	ppm	ppm
Benzene	< 0.0061	< 0.003	1.0	0.5	0.1
ethyl benzene	< 0.0450	< 0.023	100	100	100
Toluene	< 0.0510	< 0.027	200	50	100
Xylene	< 0.0450	< 0.024	100	100	100
Total Petroleum	< 0.0550	< 0.029	None	None	None
Hydrocarbons					

Sample ID: 219P1		Date: 2/19/2006	5				
Location: Kiosk A		Type: Personal	Sample				
Sample Length: 204	minutes	Sample Volume	e: 36.8 Liters	36.8 Liters			
BETX and TPH	Lab Result	8-Hour	8-Hour PEL-TWA TLV-TWA REL				
	ppm	TWA ppm	ppm	ppm	ppm		
Benzene	< 0.0085	< 0.004	1.0	0.5	0.1		
ethyl benzene	< 0.0630	< 0.024	100	100	100		
Toluene	< 0.0720	< 0.031	200	50	100		
Xylene	< 0.0630	< 0.027	100	100	100		
Total Petroleum	< 0.0770	< 0.033	None	None	None		
Hydrocarbons							

Sample ID: B219P Location: Kiosk A Sample Length: 202 m Date: 2/19/2006 Type: Area Sample

Sample Length: 202 minutes Sample Volume: 43.6 Liters						
BETX and TPH	Lab Result	8-Hour	PEL-TWA	TLV-TWA	REL-TWA	
	ppm	TWA ppm	ppm	ppm	ppm	
Benzene	< 0.0072	< 0.003	1.0	0.5	0.1	
ethyl benzene	< 0.0530	< 0.022	100	100	100	
Toluene	< 0.0610	< 0.026	200	50	100	
Xylene	< 0.0530	< 0.022	100	100	100	
Total Petroleum	< 0.0650	< 0.027	None	None	None	
Hydrocarbons						

Sample ID: B220P Location: Kiosk A Sample Length: 220 minutes Date: 2/20/2006 Type: Personal Sample

Sample Volume: 44.2 Liters

BETX and TPH	Lab Result	8-Hour	PEL-TWA	TLV-TWA	REL-TWA
	ppm	TWA ppm	ppm	ppm	ppm
Benzene	< 0.0071	< 0.003	1.0	0.5	0.1
ethyl benzene	< 0.0520	< 0.024	100	100	100
Toluene	< 0.0600	< 0.028	200	50	100
Xylene	< 0.0520	< 0.024	100	100	100
Total Petroleum	< 0.0640	0.029	None	None	None
Hydrocarbons					

Sample ID: B220PA Location: Kiosk A Sample Longth: 222 minu Date: 2/20/2006 Type: Personal Sample

Sample Length: 222 minutes Sample Volume: 45.2 Liters

BETX and TPH	Lab Result	8-Hour	PEL-TWA	TLV-TWA	REL-TWA
	ppm	TWA ppm	ppm	ppm	ppm
Benzene	< 0.0069	< 0.003	1.0	0.5	0.1
ethyl benzene	< 0.0510	< 0.024	100	100	100
Toluene	< 0.0590	< 0.027	200	50	100
Xylene	< 0.0510	< 0.024	100	100	100
Total Petroleum	< 0.0630	< 0.029	None	None	None
Hydrocarbons					

Sample ID: B221 Location: NA Sample Length: NA

Date: 2/20/2005 Type: Quality Control Blank Sample Sample Volume: NA

BETX and TPH	Lab Result	8-Hour	PEL-TWA	TLV-TWA	REL-TWA
	ppm	TWA ppm	ppm	ppm	ppm
Benzene	ND	ND	ND	ND	ND
ethyl benzene	ND	ND	ND	ND	ND
Toluene	ND	ND	ND	ND	ND
Xylene	ND	ND	ND	ND	ND
Total Petroleum	ND	ND	ND	ND	ND
Hydrocarbons					

Table 3C Yellowstone Winter Use Air Monitoring 2006 **Respirable Particulate**

		0.11				DEI
Sample Length: 272 min	nutes	Sample Volume: 680 Liters				
Location: Kiosk A		Type: Personal Sample PM _{4.0}				
Sample ID: ZF A06-11		Date: 2/18/2006				
$\mathbf{C}_{1} = \mathbf{I}_{1} \mathbf{D}_{1} \mathbf{T} \mathbf{E}_{1} \mathbf{A} \mathbf{O} \mathbf{C}_{1} \mathbf{I}_{1}$		D 0/1	0/2000			

Analyte	Lab Result mg/m ³	8-Hour TWA mg/m ³	PEL-TWA mg/m ³	TLV-TWA mg/m ³	REL-TWA mg/m ³
Respirable Particulate PM _{4.0}	0.100	0.057	1.0	0.5	0.1

Sample ID: ZF A06-15 Location: Kiosk A

Date: 2/18/2006 Type: Area Sample PM_{4.0}

Sample Length: 271 minutes Sample Volume: 682.9 Liters

Analyte	Lab Result	8-Hour TWA	PEL-TWA	TLV-TWA	REL-TWA
	mg/m ³				
Respirable Particulate PM _{4.0}	< 0.030	<0.017	1.0	0.5	0.1

Sample ID: ZF A04-268 Location: Kiosk A Sample Length: 264 minutes Date: 2/18/2006

Type Area Sample PM₁₀ Sample Volume: 528.9 Liters

Analyte	Lab Result mg/m ³	8-Hour TWA mg/m ³	PEL-TWA mg/m ³	TLV-TWA mg/m ³	REL-TWA mg/m ³
Respirable Particulate PM ₁₀	<0.040	<0.022	NA	NA	NA

Sample ID: ZF A04-269 Location: Kiosk A

Date: 2/18/2006

Type: Area Sample PM_{2.5} Sample Volume: 524.2 Liters

Sample Length: 261	minutes	Sample Volume: 524.2 Liters				
Analyte	Lab Result mg/m ³	8-Hour TWAPEL-TWATLV-TWARELmg/m3mg/m3mg/m3m				
Respirable Particulate PM _{2.5}	<0.040	<0.023	NA	NA	NA	

Sample ID: ZF A06	-13	Date: 2/19/2006				
Location: Kiosk A		Type: Area Sampl	le PM _{4.0}			
Sample Length: 223	minutes	Sample Volume: :	560.8 Liters			
Analyte	Lab Result	8-Hour TWA PEL-TWA TLV-TWA REL				
	mg/m ³	mg/m ³	mg/m ³	mg/m ³		
Respirable	< 0.040	< 0.019	1.0	0.5	0.1	
Particulate PM _{4.0}						

Sample ID: ZF A06-12 Location: Kiosk A

Date: 2/19/2006 Type: Personal Sample PM_{4.0}

Sample Volume: 516.1 Liters

Sample Length: 204	minutes	Sample Volume: 5	516.1 Liters		
Analyte	Lab Result mg/m ³	8-Hour TWA mg/m ³	REL-TWA mg/m ³		
Respirable Particulate PM _{4.0}	<0.040	<0.017	1.0	0.5	0.1

Sample ID: ZF A04-267
Location: Kiosk A

Date: 2/19/2006

Type: Area Sample PM₁₀ a nle Volu 15/31

Location. Riosk 11		Type. Thea bamp			
Sample Length: 230 minutes		Sample Volume: 4	454.3 Liters		
Analyte	Lab Result	8-Hour TWA mg/m ³	PEL-TWA	TLV-TWA mg/m ³	REL-TWA
Respirable	<0.040	< 0.019	NA	NA	NA
Particulate PM ₁₀					

Sample ID: ZF A04-266 Location: Kiosk A

Date: 2/19/2006

Type: Area Sample PM_{2.5} Sample Volume: 482.5 Liters

Sample Length: 230	minutes	Sample Volume: 4	482.5 Liters		
Analyte	Lab Result	8-Hour TWA	PEL-TWA	TLV-TWA	REL-TWA
	mg/m [°]	mg/m [°]	mg/m [°]	mg/m'	mg/m'
Respirable	< 0.040	< 0.019	NA	NA	NA
Particulate PM _{2.5}					

Sample ID: ZF A06-14 Location: Kiosk A Sample Length: 218 minutes Date: 2/20/2006

Type: Personal Sample PM_{4.0} Sample Volume: 547.8 Liters

Analyte	Lab Result mg/m ³	8-Hour TWA mg/m ³	PEL-TWA mg/m ³	TLV-TWA mg/m ³	REL-TWA mg/m ³
Respirable Particulate PM _{4.0}	< 0.040	<0.018	1.0	0.5	0.1

Sample ID: ZF A06-17 Location: Kiosk A Sample Length: 242 minutes Date: 2/20/2006 Type: Area Sample PM_{4.0} Sample Volume: 623 2 Liters

Analyte	Lab Result mg/m ³	8-Hour TWA mg/m ³	PEL-TWA mg/m ³	TLV-TWA mg/m ³	REL-TWA mg/m ³
Respirable Particulate PM _{4.0}	< 0.030	<0.015	1.0	0.5	0.1

Particulate PM₁₀

Sample ID: ZF A04-257		Date: 2/20/2006				
Location: Kiosk A		Type: Area Sample PM PM ₁₀				
Sample Length: 240		Sample Volume: 4	494.9			
Analyte	Lab Result	8-Hour TWA	PEL-TWA	TLV-TWA	REL-TWA	
	mg/m ³	mg/m ³	mg/m ³	mg/m ³	mg/m ³	
Respirable	0.040	0.020	NA	NA	NA	

Sample ID: ZF A04-256 Location: Kiosk A

Date: 2/20/2006

Type: Area Sample PM_{2.5} Sample Volume: 521.6 Liters

Sample Length: 243 minutes		Sample Volume: 5	521.6 Liters		
Analyte	Lab Result mg/m ³	8-Hour TWA mg/m ³	PEL-TWA mg/m ³	TLV-TWA mg/m ³	REL-TWA mg/m ³
Respirable Particulate PM _{2.5}	<0.040	<0.020	NA	NA	NA

Sample ID: ZF A06-14	
Location: NA	
Sample Length: NA	

Date: 2/20/2006

Type: Quality Control Blank Sample

Sample Length: NA		Sample Volume: 1	NA		
Analyte	Lab Result	8-Hour TWA	PEL-TWA	TLV-TWA	REL-TWA
	mg/m ³				
Respirable	ND	ND	NA	NA	NA
Particulate Blank					

Sample ID: ZF A06-17 Location: NA

Date: 2/20/2006

Type: Quality Control Blank Sample Sample Volume NA

Sample Length: NA		Sample Volume: 1	NA	1	
Analyte	Lab Result	8-Hour TWA	PEL-TWA	TLV-TWA	REL-TWA
Respirable	ND	ND	NA	NA	NA
Particulate Blank					

Sample ID: ZF A06-18 Location: NA

Date: 2/20/2006

Type: Quality Control Blank Sample Sample Volume: NA

Sample Length: NA		Sample Volume:	NA	-	
Analyte	Lab Result	8-Hour TWA	PEL-TWA	TLV-TWA	REL-TWA
	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³
Respirable	ND	ND	NA	NA	NA
Particulate Blank					

Appendix D

ANALYTICAL REPORT

Form ARF-AL Page 1 of 4 Part 1 of 3 03050622593087RX

Date ______ MAR 0 8 2006

Laboratory Group Name 061-0855-02 Account No. 07003

Montana Tech Attention: Terry Spear 1300 West Park Street Butte, MT 59701

	FAX (406) 496-4650
	Telephone (406) 496-4445
E-mail	tspear@mtech.edu

Sampling Collection and Shipment Sampling Site ____

_ Date of Collection February 18, 2006

Date Samples Received at Laboratory February 25, 2006

Analysis

Method of Analysis NMAM 2539

Date(s) of Analysis March 05, 2006

Analytical Results

Field Sample Number	Laboratory Number	Sample Type	Acetaldehyde µg/sample GC/FID	Acrolein µg/sample GC/FID	Butyraldehyde µg/sample GC/FID	Formaldehyde µg/sample GC/FID	Heptanal µg/sample GC/FID	Hexanal µg/sample GC/FID	Iso-Valerald ehyde µg/sample GC/FID	Propionaldehyde gg/sample GC/FID	
X218A	06106996	TUBE	ND	ND	ND	ND	ND	ND	ND	ND	F
X218P	06106997	TUBE	ND	ND	ND	ND	ND	ND	ND	ND	F
X219P	06106998	TUBE	ND	ND	ND	ND	ND	ND	ND	ND	F
X219A	06106999	TUBE	ND	ND	ND	ND	ND	ND	ND	ND	F
X220A	06107000	TUBE	ND	ND	ND	ND	ND	ND	ND	ND	F
X220P	06107001	TUBE	ND	ND	ND	ND	ND	ND	ND	ND	-
X221	06107002	TUBE	ND	ND	ND	ND	ND	ND	ND	ND	
Reporting Limit			0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	-
				,	1. A. M	ş. 1					

† See comment on last page. ND Parameter not detected above LOD. NR Parameter not requested. NA Parameter not applicable.

** See comment () Parameter be last page. een LOD and LOQ. on

Analy Fred Rev

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992E-mail: lab@datachem.com

ANALYTICAL REPORT

Date_

Form ARF-AL Page 2 of Part 2 of 4 Part 2 of 3 03050622593087RX

MAR 0 6 2006

Laboratory Group Name 061-0855-02 Account No. 07003

Montana Tech Attention: Terry Spear 1300 West Park Street Butte, MT 59701

FAX (406) 496-4650 Telephone (406) 496-4445 E-mail tspear@mtech.edu

Sampling Collection and Shipment

Sampling Site ____ _ Date of Collection February 18, 2006

Date Samples Received at Laboratory February 25, 2006

Analysis

Method of Analysis NMAM 2539

Date(s) of Analysis March 05, 2006

Analytical Results

Field Sample Number	Laboratory Number	Sample Type	Valeraldehyde µg/sample GC/FID	Acetaldehyde ppm GC/FID	Acrolein ppm GC/FID	Butyraldehyde ppm GC/FID	Formaldehyde ppm GC/FID	Heptanal ppm 3C/FID	iexanal pm SC/FID	tso-Valerald bryde ppm SC/FID	
X218A	06106996	TUBE	ND	<0.0096	<0.0076	<0.0059	<0.014	<0.0037	<0.0042	<0.0049	F
X218P	06106997	TUBE	ND	<0.0096	<0.0075	<0.0058	<0.014	<0.0037	<0.0042	<0.0049	⊢
X219P	06106998	TUBE	ND	<0.016	<0.012	<0.0097	<0.023	<0.0061	<0.0070	<0.0081	ŀ
X219A	06106999	TUBE	ND	<0.016	<0.013	<0.0098	<0.023	<0.0062	<0.0070	<0.0082	⊢
X220A	06107000	TUBE	ND	<0.011	<0.0090	<0.0070	<0.017	<0.0044	<0.0050	<0.0058	⊢
X220P	06107001	TUBE	ND	<0.015	<0.012	<0.0090	<0.022	<0.0057	<0.0065	<0.0075	-
X221	06107002	TUBE	ND	<0.017	<0.013	<0.010	<0.024	<0.0064	<0.0073	<0.0085	-
Reporting Limit			0.3							-010003	
					i j, i						
t See com	ment on last										

ND Parameter not detected above LOD. NR Parameter not requested. NA Parameter not applicable. () Parameter between LOD and LOQ.

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com FAX (801) 268-9992 E-mail: lab@datachem.com

_

-

	A			.4				Fo	rm ARF-	AL	
ГЛЛ	א 📰		A	NALYTI	CAL RE	PORT		Pa	ge 3	of	4
C	HEM		í.					Pa 03	rt 3 0506225	of 93087	RX 3
L A B A Sor	ORATORIES enson Company	, ¹ .									
						Date	MAR	0 6 200	6		
						Laborat	ory Gro	oup Nam	e <u>061-0</u>	855-02	2
						Account	No0	7003			
Montona	Tool					· ·					
Attentio	Tech n: Terry Sp	Par									
1300 Wes	t Park Stree	et									
Butte, M	T 59701							-		100	
							т	Flenhor	AX (406)) 496-	4650
						E-mail	tspear	@mtech	.edu	490-	444
Sampling	Collection	and Sh	inmont								
Compring	COTICEDION		Thmene			5.5	·				
	Sampling	Site				Doto of	0.011.04	tion D			~ ~ ~ ~
	Sampling	Site _				Date of	Collec	etion E	ebruary	18,	2006
Analysis	Sampling ; Date Samp	Site les Re	ceived a	at Labor	ratory]	Date of Eebruary	Collec 25, 20	otion E	ebruary		2006
Analysis	Date Samp Method of Date(s) of	Site les Re Analy f Analy	ceived a sis NMAM ysis Mar	at Labor 1 2539 ch 05, 2	ratory] 2006	Date of February	Collec 25, 20	otion E	ebruary		2006
Analysis Analytica	Date Samping : Date Samp Method of Date(s) o: 1 Results	Site les Re Analy f Analy	ceived a sis NMAM ysis Mar	at Labor 1 2539 ch 05, 5	ratory] 2006	Date of February	Collec	otion E	ebruary		2006
Analysis Analytica Field Sample Number	Sampling 3 Date Samp Method of Date(s) of Results Laboratory Number	Site les Re Analy: f Analy f Analy Sample Type	ceived a	at Labor (2539 ch 05, ;	2006	Date of February	Collec 25, 24	006	ebruary		2006
Analysis Analytica Field Sample Number	Date Sampling 3 Date Sample Method of Date(s) of Results Laboratory Number	Analy: Analy: f Analy Sample Type	eeived a	at Labor	Patory J 11 Alit Volume 0006	Date of February	Collec 7 25, 20	006			2006
Analysis Analytica ^{Field} Sample Number X218A X218P	Date Sampling 3 Date Samp. Method of Date(s) of Results Laboratory Number 06106996 06106997	Analy: Analy: f Analy f Analy f Analy TUBE	sis NMAM sis NMAM ysis Mar ^{epfqep} do <u>ud</u> do <u>ud</u> do <u>ud</u> do <u>ud</u> do <u>ud</u> do <u>ud</u> do <u>ud</u> do <u>ud</u> do do do do do do do do do do do do do	at Labor (2539 ch 05, ; ^e phi ^e ta ^b hi ^e ta ^b h	2006 ^e ^m ¹⁷ ¹⁷ ¹⁷ ⁴	Date of Tebruary	Collec 7 25, 20	006	ebruary		2006
Analysis Analytica ^{Field} Sample Number x218A x218P x219P	Date Sampling S Date Samp Method of Date(s) of Results Laboratory Number 06106996 06106997 06106998	Analy: Analy: f Analy f Analy f Analy TUBE TUBE TUBE	ceived a sis NMAM ysis Mar ^{eph} domoral domor	at Labor (2539 ch 05, ;)))))))))))))))))))	2006 2006 19 17 17.3 17.4 10.5	Date of	Collec 7 25, 20	006			2006
Analysis Analytica Field Sample Number X218A X218P X219P X219A	Sampling Date Samp Method of Date(s) of Results Laboratory Number 06106996 06106997 06106998 06106999	Analy: Analy: f Analy f Analy f Analy TUBE TUBE TUBE TUBE	ceived a sis NMAM ysis Mar ^{epydy} dogy dogy co.0073 co.012 co.012	at Labor (2539 ch 05, : ep ep e e e e e e e e e e	2006 2006 2006 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Date of	Collec 7 25, 20	006	ebruary		2006
Analysis Analytica Field Sample Number X218A X218P X219P X219A X220A	Sampling 3 Date Samp. Method of Date(s) of Results Laboratory Number 06106996 06106997 06106998 06106999	Analy: Analy: f Analy f Analy f Analy f Analy TUBE TUBE TUBE TUBE	ceived a sis NMAM ysis Mar ophydd a dag y a dag y a co.0073 <0.0012 <0.0012 <0.002	at Labor (2539 ch 05, :	2006 2006 2006 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Date of	Collec 7 25, 20	006			
Analysis Analytica Field Sample Number X218A X218P X219P X219A X220A X220A	Sampling 3 Date Samp. Method of Date(s) of Results Laboratory Number 06106996 06106997 06106998 06106999 06107000	Analy: Analy: Analy: Analy: Analy: Analy: TUBE TUBE TUBE TUBE TUBE TUBE TUBE	ceived a sis NMAM ysis Mar or A d a	at Labor 2539 ch 05, : epp epp epp epp epp epp epp ep	2006 2006 2006 17.5 4 4 17.3 17.4 10.5 10.4 14.6 11.3	Date of	Collec 7 25, 20	006			
Analysis Analytica Field Sample Number X218A X218P X219P X219A X220A X220P X221	Sampling 3 Date Samp. Method of Date(s) of Results Laboratory Number 06106996 06106997 06106998 06107000 06107001 06107002	Site les Red Analy: f Analy: f Analy: f Analy f Analy f Analy TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	ceived a sis NMAM ysis Mar or di di di di di di di di di di di di di d	at Labor 2539 ch 05, : epp epp epp epp epp epp epp ep	2006 2006 2006 17.3 17.4 10.5 10.4 14.6 11.3 10	Date of	Collec 7 25, 20	006			

† See comment on last page. ND Parameter not detected above LOD. NR Parameter not requested. NA Parameter not applicable. ** See comment on last page. () Parameter between LOD and LOQ.

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992E-mail: lab@datachem.com

147

Form ARF-C Page 4 of 03050622593087RX 4

Date MAR 0 6 2006

Laboratory Group Name 061-0855-02

General Set Comments

ppm formula: (24.45 * Result) / (Volume * MW)

General Lab Comments

The results provided in this report relate only to the items tested. Samples were received in acceptable condition unless otherwise noted in the General Set Comments above. Samples have not been field blank corrected unless otherwise noted in the General Set Comments above. This test report shall not be reproduced, except in full, without written approval of DataChem Laboratories, Inc. This page is the concluding page of the report.

1.1

DATA CHEM LABORATORIES, IÑC.	ANALYTICAL REQUEST FORM 1. REGULAR Status 067-0855-02- RUSH Status Requested - ADDITIONAL CHARGE RESULTS REQUIRED BY DATE CONTACT DATACHEM LABS PRIOR TO SENDING SAMPLES
2. Date 2-22-06 Purchase Order No. <u>Vellowstoke</u> 3. Company Name Muntan Tech Address <u>J300 West Parts Street</u> <u>Butte MT 59701</u> Person to Contact <u>Terry Spear</u> Telephone (Yor) <u>Y96 - 4445</u> Fax Telephone (Yux) <u>496 - 4650</u> E-mall Address <u>Tspear Mtech.edm</u> Billing Address (if different from above)	Project J Quote No DCL Project Manager Sample Collection Sampling Site Industrial Process Date of Collection Time Collected Date of Shipment Chain of Custody No

6. REQUEST FOR ANALYSES Sample Volume ANALYSES REQUESTED - Use method number if known Laboratory Use Only Client Sample Number Matrix* Units** B218A chargon (50.9 1, tors BETX & Total Hydrocarbons NHAMISOI 51,7 liters OFTX e Total Hydrocartons NMAM 1501 B218P Charcoal XAD 17.3 liters Aldelyde screen X 218 A . NHAM 2539 正 169 年6 AD Pro weished Pre weished Pre weished 17.4 liters Aldehyde screen X 21P P -NMAM 2539 680 liters gravitatriz NMIAM 0600 2,F A06 11 Filter Preventier Preventier Freventier Preventier Preventier Filter 682.9 liters gravible tria NMAM 0000 2FA06 15 NTAM 0600 528,9 liters gravinetuic ZFA04268 524,2 liters Aravine tric 10.5 liters Aldehyde screen 10.4 liters Aldehyde screen MAAM 0600 2F A04 269 X 219 P XAD NMAM 2539 -X 219 A -XAD MM/JM 2539 36.8 liters BETX a Total Hydrandons NMAM 1501 B219 P1 charcoa /

Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soil; Water; Other
 * 1. ug/sample
 2. mg/m³
 3. ppm
 4. %
 5. _____ (other)
 Please indicate one or more units in the column entitled Units**

7. Chain of Custody (Optional)	
Pelinguished by	Date/Time
The the second s	Date Time
Received by	Date/Time/ V
Relinquished by F_24-1	Date/Time
Received by <u>F. Refele</u>	Date/Time 03/03/06 2100
Relinquished by	Date/Time
Beceived by	Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

Comments

Ĵ		, INC.	RUSH State RESULTS	Status us Requested - ADDITIONAL CHARGE REQUIRED BY DATE DATACHEM LABS PRIOR TO SENDING SAMP	LES
Date	Purchase Order No.		4	Quote No.	
Company Name				DCL Project Manager	
Address			5	5. Sample Collection	
				Sampling Site	
Person to Contact				Industrial Process	
Telephone ()				Date of Collection	
Fax Telephone ()			Time Collected	
E-mail Address				Date of Shipment	
Billing Address (if di	ferent from above)			Chain of Custody No	
-					

	Chefit Gample Humber	Maurix	Sample volume		Office
	BZI9P	chaucou/	43.4 1,ters	BETX & Total Hydrocarbuns NMAM 1501	
	2F A06 13	Filter	560.8 liters	gravinetric MMAMOLOG	
	ZFA06 12	P~ X1+2	5/6.1 lite-s	gravimetric NMAM0600	
	ZF AUY 267 .	Prilter	454.3 liters	gravimetric INM/11 OLUG	
NOT OTODO	2 / HOY 266	Bilter	482,5 liters	gravitactuic NMBM 0000	
all plants	X220A 1	XAD	14.6 /itous	Aldehyle screen NMIAM 2639	
01	X220 P .	XAD	11.3 1:tog	Aldehyde screen NMAM 2539	
	B220 P	clarcu-1	44.2 1.ters	BETX & Total Hydrocarbons NMAM 1501	
	B220 PA	charcon l	45.2 liters	BETXETotal Hydrocarbons NMAM 1561	
	ZFAGY 256	×1Ht	521.6 liteus	gravine tric jumism ocou	
	2FA04 257	Alter	494.9 liters	gravinetuit - MM/AM 0600	

* Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soli; Water; Other ** 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. ____ (other) Please indicate one or more units in the column entitled Units**

Possible Contamination and/or Chemical Hazards	
7. Chain of Custody (Optional)	

Comments _

Relinquished by		_ Date/Time
Received by	ZIJN	_ Date/Time 2 / 2 5/06
Relinquished by	ab F24-1	_ Date/Time
Received by	-F. hept-	Date/Time 03/03/06_2100
Relinquished by		Date/Time
Received by		_ Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

CHEM LABORATORIES, INC.	1. REGULAR Status RUSH Status Requested - ADDITIONAL CHARGE RESULTS REQUIRED BY DATE CONTACT DATACHEM LABS PRIOR TO SENDING SAMPLES
Date Purchase Order No	4. Quote No
Company Name	DCL Project Manager
Address	5. Sample Collection
	Sampling Site
Person to Contact	Industrial Process
Telephone ()	Date of Collection
Fax Telephone ()	Time Collected
E-mail Address	Date of Shipment
Billing Address (if different from above)	Chain of Custody No

6. REQUEST FOR ANALYSES

Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED - Use method number if known	Units**
	21= AOG 14	fueweighed filty	547.8 liters	gravinetric NMAMOLOG	
	2PAUG 17	prevershad to Iter	623.2 1:ters	grassing this NAAM 0600	
	B 221	charcon/	so liters	BETX Total Hydrocendons NM/1m 1501	
XI07007	X 22/ · ·	XAD	10 liters	Alde hyde screen NMAM 2539	
	ZFA06 18	Preweight 4	SSO liters	quaimetuite NMAMOCOD	
				0	
Concernant and					
			,	*	

Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soil; Water; Other
 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. _____ (other) Please indicate one or more units in the column entitled Units**

Possible Contamination and/or Chemical Hazards

Comments ____

7. Chain of Cust	tody (Optional)	
Relinquished by		Date/Time
Received by	Put N	Date/Time 2 / 25 / 06
Relinquished by	F24-1-03	Date/Time
Received by	F. Rejd-	Date/Time 03/03/06 2100
Relinquished by		Date/Time
Received by		Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

Date

Form ARF-AL Page 1 of 3 Part 1 of 03060613574024RX 2

MAR 0 6 2006

Dave				
Laboratory	Group	Name	061-0855-01	
Account No.	. 0700	3		

Montana Tech Attention: Terry Spear 1300 West Park Street Butte, MT 59701

	FAX (406) 496-4650
	Telephone (406) 496-4445
E-mail	tspear@mtech.edu

Sampling Collection and Shipment Sampling Site ____

___ Date of Collection February 18, 2006

Date Samples Received at Laboratory February 25, 2006

Analysis

Method of Analysis NMAM 1501

Date(s) of Analysis March 04, 2006

Analytical Results

Field Sample Number	Laboratory Number	Sample Type	Benzene mg/sample GC/FID	Ethyl Benzene mg/sample GC/FID	Toluene mg/sample GC/FID	Xylene mg/sample GC/FID	Total Hydrocarbons mg/sample GC/FID	Benzene ppm GC/FID	Bthyl Benzene ppm GC/FID	Toluene Dpm GC/FID	
B218A	06106989	TUBE	ND	ND	ND	ND	ND	<0.0061	<0.045	<0.052	Г
B218P	06106990	TUBE	ND	ND	ND	ND	ND	<0.0061	<0.045	<0.051	F
B219P1	06106991	TUBE	ND	ND	ND	ND	ND	<0.0085	<0.063	<0.072	
B219P	06106992	TUBE	ND	ND	ND	ND	ND	<0.0072	<0.053	<0.061	Г
B220P	06106993	TUBE	ND	ND	ND	ND	ND	<0.0071	<0.052	<0.060	
B220PA	06106994	TUBE	ND	ND	ND	ND	ND	<0.0069	<0.051	<0.059	
B221	06106995	TUBE	ND	ND	ND	ND	ND	<0.0063	<0.046	<0.053	
Reporting 1	Limit		0.001	. 0.01	0.01	0.01	0.01				
					1						

† See comment on last page. ND Farameter not detected above LOD. NR Farameter not requested. NA Parameter not applicable. ** See comment on last page. () Parameter between LOD and LOQ.

Analyst: Fred . U.h C Reviewer:

Form ARF-AL Page 2 of 3 Part 2 of 03060613574024RX 2

MAR 0 6 2006 Date

Laboratory	Group	Name	061-0855-01	
Account No.	0700	3		

Montana Tech Attention: Terry Spear 1300 West Park Street Butte, MT 59701

FAX (406) 496-4650 Telephone (406) 496-4445 E-mail tspear@mtech.edu

Sampling Collection and Shipment Sampling Site ____

_ Date of Collection February 18, 2006

Date Samples Received at Laboratory February 25, 2006

Analysis

Method of Analysis NMAM 1501

Date(s) of Analysis March 04, 2006

Analytical Results

Field Sample Number	Laboratory Number	Sample Type	Xylene ppm GC/FID	Total Hydrocarbons Ppm GC/FID	Air Volume liters	2 			
B218A	06106989	TUBE	<0.045	<0.056	50.9				
B218P	06106990	TUBE	<0.045	<0.055	51.7				
B219P1	06106991	TUBE	<0.063	<0.077	36.8				
B219P	06106992	TUBE	<0.053	<0.065	43.6				
B220P	06106993	TUBE	<0.052	<0.064	44.2				
B220PA	06106994	TUBE	<0.051	<0.063	45.2				
B221	06106995	TUBE	<0.046	<0.057	50.0				
Reporting L	imit								
1									

[†] See comment on last page. ND Farameter not detected above LOD. NR Farameter not requested. NA Parameter not applicable. ** See comment on last page. () Parameter between LOD and LOQ.

١

Date _

Form ARF-C Page 3 of 3 03060613574024RX

MAR 0 6 2006

Laboratory Group Name 061-0855-01

General Set Comments

Total Hydrocarbons is the sum of all peaks minus solvent and analyte peaks and was quantitated against hexane.

ppm formula: (24.45 * (Result * 1000)) / (Volume * MW)

General Lab Comments

The results provided in this report relate only to the items tested. Samples were received in acceptable condition unless otherwise noted in the General Set Comments above. Samples have not been field blank corrected unless otherwise noted in the General

Set Comments above. This test report shall not be reproduced, except in full, without written approval of DataChem Laboratories, Inc. This page is the concluding page of the report.

6. REQUEST FOR ANALYSES

D. REQUEST FOR ANA	LIGEO				
Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED - Use method number if known	Units**
16L069 89	B218A -	Charcon (50.9 1, tus	BETX & Total Hydrocarbons NHAMISOI	
6 th 90	B218P -	Charcont	51,7. 1, Tevs	BETX & Total Hudrocaulous NMAM 1501	
and the state of the	X 218 A	XAD	17.3 1:ters	Aldenide screen NAAM 2539	
	X 218 P	XAO	17.4 liters	Aldehyde screen NMAM 2639	
	ZF A06 11	Pre Weighed	680 liters	gravitetric NMIAM 0600	
	2F A06 15	Pre waighed F.IFer	682.9 liters	gravitetric NMIM 0000	
	2F A04 268	Filer	528.9 liters	gravinetuic NAAM OLOO	
A Section of the	2F AUY 269	Filter	524.2 lite->	graving frik NMAM 0600	
	X 219 P	XAO	10.5 1,ters	Aldchyde screen NMHM 2539	
And a state of the	X 219 A	XAD .	10.4 1. ters	Aldehyde Seven NM/AM 2539	
a 1 a 1	B219 P1 .	Charges	36.8 1 ters	BETX& Total Hydrocardons NMAM 1501	

Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soli; Water; Other
 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. ____ (other) Please indicate one or more units in the column entitled Units**

Possible Contamination and/or Chemical Hazards	
7. Chain of Custody (Optional)	
Relinquished by	Date/Time
Received by <u>Jul IV</u>	Date/Time 2 / 2 5 / 06
Relinquished by <u>AB F24-1</u>	Date/Time
Received by F. Rejati	Date/Time_03/03/06_2100
Relinquished by	Date/Time
Received by	Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

ANALYTICAL REQUEST FORM

	REGULAR	Status
	HEGOLAN	Olulus

RUSH Status Requested -	ADDITIONAL CHARGE
	DATE
CONTACT DATACHEM LA	BS PRIOR TO SENDING SAMPLES

2.	Date Purchase Order No 4.	Quote No.
з.	Company Name	DCL Project Manager
	Address5.	Sample Collection
		Sampling Site
	Person to Contact	Industrial Process
	Telephone ()	Date of Collection
	Fax Telephone ()	Time Collected
	E-mail Address	Date of Shipment
	Billing Address (if different from above)	Chain of Custody No.

6. REQUEST FOR ANALYSES

Laboratory Use Only.	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED - Use method number if known	Units**
DET DER 92	B219P -	chaucoul	43.4 1iters	BETX & Total itydrocarbons NAAM 1501	100
	2F A06 13	Filter	560.8 liters	gravinetric NMHM 0600	
and the state of the	ZFA06 12	Prexiting-	5/6.1 lite-s	gravimetric NMAM0400	
	ZF AUY 267 .	Printer	454.3 liters	gravimetric MM/1M 0600	
	ZF HOY 266	Alter	482,5 liters	gravitactuic NMAM DCOD	
	X 220 A	XAD	14.6 /iters	Aldehyle Screen NMIHM 2539	
	X 220 P	XAD	11.3 1: +== 3	Aldehyde screen NMAM 2539	
93	B220P -	clarco-1	44.2 liters	BETX & Total Hydrocarbons NMAM 1501	
· 1 94	B220 PA -	charcon 1	45.2 liters	BETX = Total Hydrocarbons NMAM 1561	
	ZFAGY 256	Filter	521.6 liteus	gravine tric jum 13M ocou	
	2FA04 257	Alter	494.9 liters	gravinetuite - MM/AM 0600	

* Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soli; Water; Other ** 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. ____ (other) Please indicate one or more units in the column entitled Units**

.

Comments _

Possible Contamination and/or Chemical Hazards	
7 Chain of Custody (Ontional)	

7. Chain of Cust	Say (Optional)
Relinquished by	Date/Time
Received by	Date/Time 2 / 25/06
Relinquished by	Date/Time
Received by	Date/Time
Relinquished by	Date/Time
Received by	Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

ANALYTICAL REQUEST FORM

1. REGULAR Status

RUSH Status Requested - ADDITIONAL CHARGE
 RESULTS REQUIRED BY ______
 DATE
 CONTACT DATACHEM LABS PRIOR TO SENDING SAMPLES

2. Date Purchase Order No	4. Quote No
3. Company Name	DCL Project Manager
Address	
	Sampling Site
Person to Contact	Industrial Process
Telephone ()	Date of Collection
Fax Telephone ()	Time Collected
E-mail Address	Date of Shipment
Billing Address (if different from above)	Chain of Custody No.

6. REQUEST FOR ANALYSES

Laboratory Use Only	Client Sample Number	Matrix*-	Sample Volume	ANALYSES REQUESTED - Use method number if known	Units**
to an entry	21= 1406 14	filty -	547.8 liters	gunvinetuic NMAMOLOO	
	21° AUG 17	prevershad to Iter	623.2 1:ters	gravinetvic NMAM 0600	
NET 06995	B 221 -	Charcon	50 liters	BETK & Total Hydrocensons NM/BM 1501	
Line and the second	X 22/	XAD	10 iters	Alde hyde screen NMAM 2539	
	ZFA06 18	Frewersher	SSO /ites	avanime tuice prophy ocor	•
				*	

* Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soli; Water; Other ** 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. ____ (other) Please indicate one or more units in the column entitled Units**

Comments

Possible Contamination and/or Chemical Hazards

	011	- 4	Ourse des	(0-1
٬.	Chain	01	Custouy	(Optional)

n onun or ouo	(optional)
Relinquished by	Date/Time
Received by	Date/Time 2/25/06
Relinquished by	<u>43 F24-/</u>
Received by	Date/Time
Relinquished by	Date/Time
Received by	Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

Date _

Form ARF-AL Page 1 of 3 Part 1 of 1 03060611164009RX

MAR 0 6 2006

Laboratory Group Name 061-0855-03 Account No. 07003

Montana Tech Attention: Terry Spear 1300 West Park Street Butte, MT 59701

	FAX (406) 496-4650)
	Telephone (406) 496-4445	ö
E-mail	tspear@mtech.edu	

Sampling Collection and Shipment

Date of Collection _

Sampling Site _

Date Samples Received at Laboratory February 25, 2006

Analysis

Method of Analysis NMAM 0600

Date(s) of Analysis March 06, 2006

Analytical Results

FSNN	Field ample umber	Laboratory Number	Sample Type	Respirable Dust ¤g∕sample	Respirable Dust ¤g∕m³	Air Volume Liters					
ZF P	A06-11	06107003	FILTER	0.07	0.10	680					
ZF #	A06-15	06107004	FILTER	ND	<0.03	682.9					
ZF Z	A04-268	06107005	FILTER	ND	<0.04	528.9		-			
ZF #	A04-269	06107006	FILTER	ND	<0.04	524.2			· .		
ZF P	A06-13	06107007	FILTER	ND	<0.04	560.8					
ZF #	A06-12	06107008	FILTER	ND	<0.04	516.1					
ZF Z	A04-267	06107009	FILTER	ND	<0.04	454.3					
ZF #	A04-266	06107010	FILTER	ND	<0.04	482.5					
ZF Z	A04-256	06107011	FILTER	ND	<0.04	521.6					
ZF /	A04-257	06107012	FILTER	ND	<0.04	494.9					
ZF #	A06-14	06107013	FILTER	ND	<0.04	547.8					
ZF 2	A06-17	06107014	FILTER	ND	<0.03	623.2					
ZF P	A06-18	06107015	FILTER	ND	<0.04	550				-	
+	See com	ment on last	page.		** 5	See comme	nt on la	st page.			

ND Parameter not detected above LOD. NR Parameter not requested. NR Parameter not requested.

() Parameter between LOD and LOQ.

Analyst: Conte 52

Reviewer: Johnathan M. Yonk

 960 West LeVoy Drive / Salt Lake City, Utah 84123-2547

 Phone (801) 266-7700
 Web Page: www.datachem.com

 FAX (801) 268-9992
 E-mail: lab@datachem.com

		ANALYTICAL REPORT				Form ARF-BL Page 2 of 3 Part 1 of 1 03060611164009PX				3 1	
L A B A Sor	ORATORIES enson Company				_		MAR O	6 2006			
Analytica	al Results					ate aborat	ory Grou	ıp Name	061-085	5-03	_
Field Sample Number	Laboratory Number	Sample Type	Respirable Dust mg∕sample	Respirable Dust mg/m ³	Air Volume liters						
Reporting L	imit		0.02								
			-								
											-
											+
											1
									1.1		
								, , ,			4
									-		+
											┥
											_
											+
-											+
											+
											+
											+
											1
	1										_
		$\left \right $					-				+
											4

7 See comment on last page. ND Parameter not detected above LOD. NR Parameter not requested. NA Parameter not applicable.
** See comment on last page. () Parameter between LOD and LOQ. NA Parameter not applicable.

Date

Form ARF-C Page 3 of 3 03060611164009RX

MAR 0 6 2006

Laboratory Group Name <u>061-0855-03</u>

General Set Comments

Results are not blank corrected.

General Lab Comments

The results provided in this report relate only to the items tested. Samples were received in acceptable condition unless otherwise noted in the General Set Comments above. Samples have not been field blank corrected unless otherwise noted in the General Set Comments above. This test report shall not be reproduced, except in full, without written approval

This test report shall not be reproduced, except in full, without written approval of DataChem Laboratories, Inc. This page is the concluding page of the report.

 960 West LeVoy Drive / Salt Lake City, Utah 84123-2547

 Phone (801) 266-7700
 Web Page: www.datachem.com

 FAX (801) 268-9992
 E-mail: lab@datachem.com

LABORATORIES, INC.	1. REGULAR Status RUSH Status Requested - ADDITIONAL CHARGE RESULTS REQUIRED BY DATE CONTACT DATACHEM LABS PRIOR TO SENDING SAMPLE
Date 2-22-06 Purchase Order No. Vellowston, Company Name Mon Tann Tech Address 1300 West Park Street Butte MT 59701 Person to Contact Terry Spear Telephone (Yot) 496 - 4445 Fax Telephone (Yot) 496 - 4650 E-mail Address TSPEG-0 m Tech celu Billing Address (If different from above)	Project 4. Quote No. DCL Project Manager DCL Project Manager Sample Collection Sampling Site Industrial Process Date of Collection Time Collected Date of Shipment Chain of Custody No.

anne (marandaridati) data internetia (marandarida) di dia mandaria da da da da da marandaria da da da da da da

6. REQUEST FOR ANALYSES

Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED - Use method number if known	Units**
	B218A	Charcon (50.9 1,7005	BETX & Total Hydrocarboas NHAMISOI	
	B218P	Charcon 1	51,7 1, Tevs	OSTX & Total Hudrocarbons NMAM 1501	
	X218 A	XAD	17.3 1:ters	Aldehydescreen NAAM 2539	
	X 218 P	XAO	17.4 liters	Aldehyde screen NMAM 2539	
ALT 07 003	Z/F A06 11 :	Pro weighted	680 liters	gravitativia NMIAM 0000	
1 09	2FA06 15 -	Pre weighed F.Irer	682.9 liters	gravitetin NMBM 0600	
1.05	2FA04268 .	A1102	528.9 1, ters	gravitestic NAM 0600	
1 06	2F A0Y 269 .	Premeiched Kiltes	524.2 1iters	graving frik NMAM 0600	
的影响。	X 219 P	XAD	10.5 1,70-5	Aldehyde screen NMAM 2539	
	X 219 A	XAD	104 1 tous	Aldehyde Seveen NMAM 2539	
	BZIGPI	charcoal .	36.8 1:ters	BETX & Total Hydrocardons NMAM 1501	

* Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soli; Water; Other ** 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. _____ (other) Please indicate one or more units in the column entitled Units**

Comment	ts	_

Possible Contamination and/or Chemical Hazards							
7. Chain of Cus	tody (Optional)						
Relinquished by		_ Date/Time					
Received by		Date/Time7/ 25/06					
Relinquished by	03 TW-512	_ Date/Time					
Received by		Date/Time					
Relinquished by	·	Date/Time					
Received by		Date/Time					

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

CHEM LABORATORIES, IÑC.	1. REGULAR Status RUSH Status Requested - ADDITIONAL CHARGE RESULTS REQUIRED BY DATE CONTACT DATACHEM LABS PRIOR TO SENDING SAMPLE
Date Purchase Order No Company Name Address	4. Quote No DCL Project Manager 5. Sample Collection
Person to Contact	Industrial Process Date of Collection
Fax Telephone () E-mail Address Billino Address (if different from above)	Time Collected Date of Shipment Chain of Custody No.

6. REQUEST FOR ANALYSES

6. REQUEST FOR ANA	LYSES		-		
Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED - Use method number if known	Units**
President and	BZI9P	chaucoal	43.4 1iters	BETX & Total Ifydrucar buns NMAM 1501	
AGE 07007	ZF A06 13 -	Filter	560.8 liters	gravinetric MMAMOLOO	
1 08	ZFA06 12 .	Prever how	5/6.1 lite-s	gravimetric NMAM 0600	
P.9	ZF AUY 267 .	Alter	454.3 liters	gravimetric NM/1 M 0000	
10	ZF AUY 266 .	pre weighed Filter	482,5 liters	avanimetric NMAM DOD	
	X 220 A	XAD	14.6 liters	Aldehyle screen NMAM 2539	
	X220 P	XAD	11.3 1:ters	Aldehyde Screen NMAM 2539	
	B220 P	charcon 1	44.2 1.ters	BETX e Total Hydrocurbors NMAM 1501	
	B220 PA	charcon /	45.2 liters	BETX eTotal Hydroca-boas NMAM 1561	
1 11	ZFAOY 256 -	Filter	521.6 liters	gravine Tric provide of our	
1 12	2FA04 257 .	filter	494.9 liters	gravinetuic - MM/AM 0600	
		the second s	- Lating Dull and a	In Disert Hidda There Only Waters Office	

* Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soli; Water; Other ** 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. _____ (other) Please indicate one or more units in the column entitled Units**

Comments	

Possible Contami	nation and/or Chemical Hazards	
7. Chain of Cust	ody (Optional)	
Relinquished by		Date/Time
Received by	AIN	Date/Time 2 / 25/06
Relinquished by	AB TW-512	Date/Time
Received by		Date/Time
Relinquished by		Date/Time
Received by	· · · · · · · · · · · · · · · · · · ·	Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

CHEM LABORATORIES, INC.	1. REGULAR Status RUSH Status Requested - ADDITIONAL CHARGE RESULTS REQUIRED BY DATE CONTACT DATACHEM LABS PRIOR TO SENDING SAMPLES
Date Purchase Order No Company Name Address	4. Quote No DCL Project Manager 5. Sample Collection
Person to Contact	Samping Site Industrial Process Date of Collection Time Collected Date of Shipment

O. HEGOLOT FOR ANA	1010					
Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED - Use m	ethod number if known	Units**
06L07043	21= 1406 14 .	filter	547.8 liters	gunvinetuic	NMAMOLOO	
16 14	2PAUG 17 -	prevershad	623.2 1. ters	gravinetvic	NMAM 0600	
	B 221	Charcon	50 liters	BIETX + Total Hydrocandons	NM/SM 1501	
A second providence	X 221	XAD	10 liters	Alde hyde severn	NMAM 2539	
Sel 15	ZFA06 18 -	Prewebber	550 /ites	a vavi me tus'i	MMM OCON	
					· · · ·	
"Search marks when		1.1.1				
				-		

* Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soli; Water; Other ** 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. ____ (other) Please indicate one or more units in the column entitled Units**

Possible Contami	nation and/or Chemical Hazards		
7. Chain of Cus	ody (Optional)		
Relinguished by		Date/Time	
Received by	ANN N	Date/Time	2/25/06
Relinquished by	B TW-SH	Date/Time	·
Received by		Date/Time	
Relinquished by		Date/Time	· · · · · · · · · · · · · · · · · · ·
Received by		Date/Time	

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

Comments _

June 2006 Review Draft

Appendix E

-

MAR 0 3 2006

Montana Tech

COVER PAGE

ANALYTICAL REPORT FOR Montana Tech Phone(406) 496-4445 Fax(406) 496-4650 E-mail: tspear@mtech.edu

DCL Report Group..: 061-0804-01

Date Printed.....: 03-MAR-06 08:29

Project Protocol #: P021C001 Client Ref Number.: Yellowstone Projec Release Number: Yellowstone Projec

Analysis Method(s): TO-15

Attention: Terry Spear 1300 West Park Street Butte, MT 59701

Client Sample Name	Laboratory Sample Name	Date Sampled	Date Received	_
Method Blank	BL-241819-1	NA	NA	
LCS	QC-241819-1	NA	NA	
LCS Dup	QD-241819-1	NA	NA	
MC218-21 107041	06106631	18-FEB-06	23-FEB-06	
MC218-22 107033	06106632	18-FEB-06	23-FEB-06	
MC218-51 107039	06106633	18-FEB-06	23-FEB-06	- 10 - 11
MC219-21 108758	06106634	19-FEB-06	23-FEB-06	
MC219-22 108963	06106635	19-FEB-06	23-FEB-06	
MC219-5 105827	06106636	19-FEB-06	23-FEB-06	
MC220-21 107040	06106637	20-FEB-06	23-FEB-06	
MC220-22 107036	06106638	20-FEB-06	23-FEB-06	
MC220-E21 107024	06106639	20-FEB-06	23-FEB-06	
MC220-E22 108958	06106640	20-FEB-06	23-FEB-06	
MC220-B5 107042	06106641	20-FEB-06	23-FEB-06	
MC220-51 107037	06106642	20-FEB-06	23-FEB-06	
MC220-PR5 108961	06106643	20-FEB-06	23-FEB-06	

la 3.3.06 Date oian 3-3.0L Date Reviewer: Christopher Q. Coleman

SAMPLE GROUP COMMENTS

DCL Report Group ..: 061-0804-01 Date Printed....: 03-MAR-06 08:29

Release Number....: Yellowstone Projec

Client Name...: Montana Tech

Sample Group Comments

Analyzed by GC/MS according to method TO15.

PQL - Practical Quantitation Limit - Lowest standard that is detectable. MDL - Method Detection Limit - Statisticaly derived value using 40 CFR methods.

 $\mu g/m^3$ formula: (Result * MW) / 24.45

The "E" qualifier indicates a reported value above the analytical linear range.

General Information

The DCL QC Database maintains all numerical figures which are input from the pertinent data source. These data have not been rounded to significant figures nor have they been moisture corrected. Reports generated from the system, however, list data which have been rounded to the number of significant figures requested by the client or deemed appropriate for the method. This may create minor discrepancies between data which appear on the QC Summary Forms (Forms B-G) and those that would be calculated from rounded analytical results. Additionally, if a moisture correction is performed, differences will be observed between the QC data and the surrogate data reported on Form A (or other report forms) and corresponding data reported on QC Summary Forms. In these cases, the Form A will indicate the "Report Basis" as well as the moisture value used for making the correction.

Report generation options: IBX

Result Symbol Definitions

ND - Not Detected above the MDL (LLD or MDC for radiochemistry). ** - No result could be reported, see sample comments for details.

Qualifier Symbol Definitions

- U Not Detected above the MDL (LLD or MDC for radiochemistry).
 B For organic analyses the qualifier indicates that this analyte was found in the method blank. For inorganic analyses the qualifier signifies the value is between the MDL and PQL.
 J For organic analyses the qualifier indicates that the value is between the MDL and the PQL. It is also used for indicating an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.

QC Flag Symbol Definitions

* - Parameter outside of specified QC limits.

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 3

Date Printed.....: 03-MAR-06 08:29

Client Name..... Montana Tech Client Ref Number....: Yellowstone Project Sampling Site Not Provided Release Number....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume...: Not Required Client Sample Name: MC218-21 107041 DCL Sample Name...: 06106631 DCL Report Group ..: 061-0804-01

Matrix....: AIR Date Sampled....: 18-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis.....: XAs Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type ...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Analyte	Date	MDT	Perult	Unite	0.0.01	Dilution	DOT
Propaga	27_PPP_06 15.10	0.190	7 2	units w/m	Quar.	Difucion	PQL
Propene	27-FEB-06 15:10	0.180	12	ppb v/v		<u>+</u>	0.5
Dichlorodifluoromothano	27-220-06 15:10	0.0660	13.	mg/m ^o			0.86
Dichlorodifluoromethane	27-FEB-06 15:10	0.0889	2.0	ppb v/v			0.5
Chloromethane	27-FEB-06 15:10	0.33	2.9	<u>µg/m²</u>		+ <u>+</u> -	2.5
Chloromethane	27-FEB-06 15:10	0.249	1 5	ppb v/v		<u>+</u>	0.5
Eroon 114	27-228-06 15:10	0.51	1.5	µg/m ³		+	1.0
Freen 114	27-FEB-06 15:10	0.156	ND	ppb v/v		1	0.5
Vinul Chlonide	27-FEB-06 15:10	1.1	ND	µg/m ³		- 1	3.5
Vinyi Chioride	27-FEB-06 15:10	0.301	ND	ppb v/v		1	0.5
1 2 Putadiana	27-FEB-06 15:10	0.77	ND 0.00	<u>μg/m³</u>			1.3
1,3-Butadiene	27-FEB-06 15:10	0.346	0.80			1	0.5
Promomothano	27-FEB-06 15:10	0.77	1.0	µg/m ³			
Bromomethane	27-FEB-06 15:10	0.215	ND	ppb v/v		1	0.5
Chlereethane	27-FEB-06 15:10	0.83	ND	µg/m ³		1	1.9
Chloroethane	27-FEB-06 15:10	0.388	ND	ppb v/v			0.5
Ercon 11	27-FEB-06 15:10	1.0	ND 0.07	<u>μg/m³</u>		1	1.3
Freen 11	27-FEB-06 15:10	0.0921	0.2/	ppb V/V	<u> </u>	<u> </u>	0.5
ric-1 2 Dichlereethere	27-FEB-06 15110	0.52	1.5	µg/m ³	<u> </u>	- 1	2.8
cis-1,2-Dichloroethene	27-FEB-06 15:10	0.102	ND	ppb v/v		1	0.5
Carbon Digulfide	27-FEB-06 13:10	0.40	ND	μg/m ³			2.0
Carbon Disulfide	27-FEB-06 15:10	0.111	ND	ppb v/v		1	0.5
Excep 112	27-FAB-06 15:10	0.35	<u>UN</u>	μg/m³			1.6
Preen 112	27-FEB-06 15:10		ND	ppb V/V		1	0.5
Preon 113	27-FEB-06 15:10	0.73	ND	µg/m ³		. 1	3.8
Acecone	27-FEB-06 15:10	0.113	4.1	ppb v/v		1	0.5
Acetone	27-FEB-06 15:10	0.27	9.7	µg/m ³		1	1.2
Wethylene Chloride	27-FEB-06 15:10	0.168	0.40	ppb v/v		1	0.5
hethylene Chioride	27-FEB-06 15:10	0.58	1.4	μg/m ³		1	1.7
trans-1,2-Dichloroethene	27-FEB-06 15:10	0.118	ND	ppb v/v		1	0.5
1.1-Dichlaraathana	27-FEB-06 15:10	0.47	ND	µg/m ³			2.0
1.1-Dichloroethane	27-PEP-06 15:10	0.116	ND	ppb v/v		1	0.5
Kothul t-Butul Ethor	27-FEB-06 15:10	0.47		µg/m ³			2.0
Methyl t-Butyl Ether	27-FEB-06 15:10	0.147	ND	ppb v/v			0.5
Winul Agetate	27-FEB-06 13:10	0.53	ND	<u>μg/m³</u>			1.8
Vinyl Acetate	27-FEB-06 15:10	0.133	ND	ppb v/v		1	0.5
1.1-Dichloroothone	27-FED-06 15:10	0.47	ND	μg/m ³		1	1.8
1 1-Dichloroethene	27-FEB-06 15:10	0.109	ND	ppb v/v		1	0.5
2-Butanone	27-FED-06 15:10	0.43	ND	µg/m ³			2.0
2-Butanone	27-FEB-06 15:10	0.182	ND	ppb v/v		1	0.5
E-bucanone	27-FEB-06 15:10	0.54	ND	µg/m ³		1	1.5
Achyr Acetate	27-FEB-06 15:10	0.273	ND	ppb v/v		1	0.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992Web Page: www.datachem.comE-mail: lab@datachem.com

Analytical Results

FORM A (TYPE I) SINGLE METHOD ANALYSES

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 4

S061Q0PH

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106631 DCL Report Group ..: 061-0804-01

Date Analyte Analyzed Result Units MDL Qual. Dilution PQL Ethyl Acetate 27-FEB-06 15:10 0.98 ND µg/m³ 1.8 Hexane 27-FEB-06 15:10 0.121 2.4 ppb v/v 1 0.5 Hexane 27-FEB-06 15:10 0.43 8.6 µg/m³ ppb v/v 1.8 27-FEB-06 15:10 0.115 27-FEB-06 15:10 0.56 27-FEB-06 15:10 0.0725 27-FEB-06 15:10 0.0725 Chloroform ND 1 0.5 Chloroform ND µg/m³ 2.4 1,1,1-Trichloroethane 1,1,1-Trichloroethane ND ppb v/v 1 0.5 27-FEB-06 15:10 0.40 ND µg/m³ 27-FEB-06 15:10 0.0657 27-FEB-06 15:10 0.41 Carbon Tetrachloride ND ppb v/v 1 0.5 Carbon Tetrachloride ND µg/m³ 3.1 27-FEB-06 15:10 0.102 27-FEB-06 15:10 0.33 Benzene 2.3 ppb v/v Benzene 0.33 7.3 µg/m³ 1.6 Tetrahydrofuran 27-FEB-06 15:10 0.227 27-FEB-06 15:10 0.67 ND ppb v/v 0.5 1 Tetrahydrofuran ND µg/m³ 1.5 1,2-Dichloroethane 27-FEB-06 15:10 0.153 27-FEB-06 15:10 0.62 ND ppb v/v 0.5 1,2-Dichloroethane 0.62 ND µg/m³ 2.0 27-FEB-06 15:10 0.120 27-FEB-06 15:10 0.41 27-FEB-06 15:10 0.420 27-FEB-06 15:10 0.420 Cyclohexane 0.60 ppb v/v 0.5 Cyclohexane 2.1 µg/m³ 1.7 Trichloroethene ppb v/v ND 0.5 Trichloroethene ND µg/m³ 2.7 1,2-Dichloropropane 27-FEB-06 15:10 0.123 ND ppb v/v 0.5 1,2-Dichloropropane 27-FEB-06 15:10 0.57 ND µg/m³ 2.3 Bromodichloromethane 27-FEB-06 15:10 0.0779 ND ppb v/v 0.5 Bromodichloromethane 27-FEB-06 15:10 0.52 ND µg/m³ 3.3 Heptane 27-FEB-06 15:10 0.101 27-FEB-06 15:10 0.41 0.48 ppb v/v µg/m³ J 0.5 Heptane cis-1,3-Dichloropropene 1.9 J 2.0 27-FEB-06 15:10 0.106 ND ppb v/v 0.5 cis-1,3-Dichloropropene 4-Methyl-2-Pentanone 27-FEB-06 15:10 0.48 27-FEB-06 15:10 0.116 ND µg/m³ 2.3 ND ppb v/v 0.5 4-Methy1-2-Pentanone 27-FEB-06 15:10 0.48 ND µg/m³ 2.0 Toluene 27-FEB-06 15:10 0.115 4.3 ppb v/v 0.5 Toluene 27-FEB-06 15:10 0.43 16. µg/m³ 1.9 trans-1,3-Dichloropropene 27-FEB-06 15:10 0.130 ND v/v dgg 0.5 trans-1,3-Dichloropropene 1,1,2-Trichloroethane 27-FEB-06 15:10 0.59 ND µg/m³ 2.3 27-FEB-06 15:10 0.0972 ND ppb v/v 0.5 27-FEB-06 15:10 27-FEB-06 15:10 1,1,2-Trichloroethane 0.53 ND µg/m³ 2.7 Tetrachloroethene 0.0847 ND v/v dgg 0.5 Tetrachloroethene 27-FEB-06 15:10 0.57 ND μg/m³ ı 3.4 2-Hexanone 27-FEB-06 15:10 0.136 ND ppb v/v 0.5 27-FEB-06 15:10 0.56 27-FEB-06 15:10 0.0792 2-Hexanone ND µg/m³ 2.0 Dibromochloromethane ppb v/v ND 0.5 Dibromochloromethane 27-FEB-06 15:10 0.67 27-FEB-06 15:10 0.119 µg/m³ ND 4.2 1,2-Dibromoethane ND ppb v/v 0.5 1,2-Dibromoethane 27-FEB-06 15:10 0.91 27-FEB-06 15:10 0.0882 ND µg/m³ 3.8 Chlorobenzene ND ppb v/v 0.5 Chlorobenzene 27-FEB-06 15:10 0.41 27-FEB-06 15:10 0.150 27-FEB-06 15:10 0.65 ND µg/m³ 2.3 Ethylbenzene 0.5 ppb v/v J Ethylbenzene 27-FEB-06 15:10 0.65 27-FEB-06 15:10 0.213 2.0 µg/m³ J m,p-Xylene ppb v/v 1.7 1.0 7.6 m,p-Xylene 27-FEB-06 15:10 0.92 µg/m³ 4.3 o-Xylene 27-FEB-06 15:10 0.113 0.58 v/v dqq 0.5 o-Xylene 27-FEB-06 15:10 0.49 2.5 µg/m³ 2.2 Styrene 27-FEB-06 15:10 0.0748 0.11 ppb v/v J 0.5 Styrene 27-FEB-06 15:10 0.32 0.48 µg/m³ J 2.1 Bromoform 27-FEB-06 15:10 0.0884 ND ppb v/v 0.5 Bromoform 27-FEB-06 15:10 0.90 ND µg/m³ 5.1 1,1,2,2-Tetrachloroethane 27-FEB-06 15:10 0.108 ND ppb v/v 0.5 1,1,2,2-Tetrachloroethane 27-FEB-06 15:10 0.74 ND μg/m³ 3.4 Benzyl Chloride -FEB-06 15:10 0.136 ND ppb v/v 0.5

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 5

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech DCL Sample Name...: 06106631 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 15:10	0.70	ND	µg/m³		1	2.6
4-Ethyl toluene	27-FEB-06 15:10	0.0983	0.15	ppb v/v	J	1	0.5
4-Ethyl toluene	27-FEB-06 15:10	0.48	0.75	µg/m³	J	1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 15:10	0.112	0.15	ppb v/v	J	1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 15:10	0.55	0.72	µg/m ³	J	1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 15:10	0.117	0.45	ppb v/v	J	1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 15:10	0.58	2.2	µg/m³	J	1	2.5
1,3-Dichlorobenzene	27-FEB-06 15:10	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 15:10	0.72	ND	µg/m³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 15:10	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 15:10	0.59	ND	µg/m ³		1	3.0
1,2-Dichlorobenzene	27-FEB-06 15:10	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 15:10	0.51	ND	µg/m ³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 15:10	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 15:10	0.85	ND	µg/m³		1	3.7
Hexachlorobutadiene	27-FEB-06 15:10	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 15:10	1.3	ND	µg/m³		1	5.3

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Isobutane(4.64)	27-FEB-06 15:10	4.4	ppb v/v	J	1
Ethanol(5.43)	27-FEB-06 15:10	9.9	ppb v/v	J	1
Pentane(6.24)	27-FEB-06 15:10	4.8	ppb v/v	J	1

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

 $< \pi$

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 6

Date Printed.....: 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number....: Yellowstone Project Sampling Site Not Provided Release Number....: Yellowstone Project

Date Received....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Client Sample Name: MC218-22 107033 DCL Sample Name...: 06106632 DCL Report Group ..: 061-0804-01

Matrix..... AIR Date Sampled....: 18-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis.....: X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Propene	27-FEB-06 15:45	0.180	14.	v/v dag		1	0.5
Propene	27-FEB-06 15:45	0.31	23.	µg/m ³		1 .	0.86
Dichlorodifluoromethane	27-FEB-06 15:45	0.0669	0.59	ppb v/v		1 '	0.5
Dichlorodifluoromethane	27-FEB-06 15:45	0.33	2.9	µg/m ³		1	2.5
Chloromethane	27-FEB-06 15:45	0.249	0.76	ppb v/v		1	0.5
Chloromethane	27-FEB-06 15:45	0.51	1.6	µg/m ³		1	1.0
Freon 114	27-FEB-06 15:45	0.156	ND	ppb v/v		1	0.5
Freon 114	27-FEB-06 15:45	1.1	ND	µg/m ³		1	3.5
Vinyl Chloride	27-FEB-06 15:45	0.301	ND	ppb v/v		1	0.5
Vinyl Chloride	27-FEB-06 15:45	0.77	ND	µg/m ³		1	1.3
1,3-Butadiene	27-FEB-06 15:45	0.346	1.8	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 15:45	0.77	3.9	µg/m ³		1	1.1
Bromomethane	27-FEB-06 15:45	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 15:45	0.83	ND	µg/m ³		1	1.9
Chloroethane	27-FEB-06 15:45	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 15:45	1.0	ND	µg/m ³		1	1.3
Freon 11	27-FEB-06 15:45	0.0921	0.25	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 15:45	0.52	1.4	ug/m ³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 15:45	0.102	ND	v/v dag		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 15:45	0.40	ND	µq/m ³		1	2.0
Carbon Disulfide	27-FEB-06 15:45	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 15:45	0.35	ND	µg/m ³		1	1.6
Freon 113	27-FEB-06 15:45	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 15:45	0.73	ND	µg/m ³		1	3.8
Acetone	27-FEB-06 15:45	0.113	4.2	ppb v/v		1	0.5
Acetone	27-FEB-06 15:45	0.27	9.9	µg/m ³		1	1.2
Methylene Chloride	27-FEB-06 15:45	0.168	0.92	ppb v/v		1	0.5
Methylene Chloride	27-FEB-06 15:45	0.58	3.2	µg/m ³		1	1.7
trans-1,2-Dichloroethene	27-FEB-06 15:45	0.118	ND	ppb v/v		1 .	0.5
trans-1,2-Dichloroethene	27-FEB-06 15:45	0.47	ND	µg/m ³		1	2.0
1,1-Dichloroethane	27-FEB-06 15:45	0.116	ND	ppb v/v		1 :	0.5
1,1-Dichloroethane	27-FEB-06 15:45	0.47	ND	µg/m ³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 15:45	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 15:45	0.53	ND	µq/m ³		1	1.8
Vinyl Acetate	27-FEB-06 15:45	0.133	ND	v/v dqq		1	0.5
Vinyl Acetate	27-FEB-06 15:45	0.47	ND	µg/m ³		1	1.8
1,1-Dichloroethene	27-FEB-06 15:45	0.109	ND	ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 15:45	0.43	ND	µg/m ³		1	2.0
2-Butanone	27-FEB-06 15:45	0.182	ND	ppb v/v		1	0.5
2-Butanone	27-FEB-06 15:45	0.54	ND	µg/m ³		1	1.5
Ethyl Acetate	27-FEB-06 15:45	0.273	2.0	v/v dqq		1	0.5
						_	

Form RLIMS63A-V1.4 03030608294517 Page 7

SAMPLE ANALYSIS DATA SHEET

Date Printed..... 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106632 DCL Report Group ..: 061-0804-01

Analytical Results

Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Ethyl Acetate	27-FEB-06 15:45	0.98	7.2	µg/m³		1	1.8
Hexane	27-FEB-06 15:45	0.121	3.8	ppb v/v		1	0.5
Hexane	27-FEB-06 15:45	0.43	13.	µg/m³		1	1.8
Chloroform	27-FEB-06 15:45	0.115	ND	ppb v/v		1	0.5
Chloroform	27-FEB-06 15:45	0.56	ND	µg/m³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 15:45	0.0725	ND	ppb v/v		1	0.5
1,1,1-Trichloroethane	27-FEB-06 15:45	0.40	ND	µg/m ³		1	2.7
Carbon Tetrachloride	27-FEB-06 15:45	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 15:45	0.41	ND	µg/m³		1	3.1
Benzene	27-FEB-06 15:45	0.102	4.0	ppb v/v		1	0.5
Benzene	27-FEB-06 15:45	0.33	13.	µg/m ³		1	1.6
Tetrahydrofuran	27-FEB-06 15:45	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 15:45	0.67	ND	µg/m ³		1	1.5
1,2-Dichloroethane	27-FEB-06 15:45	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 15:45	0.62	ND	µg/m ³		1	2.0
Cyclohexane	27-FEB-06 15:45	0.120	0.91	ppb v/v		1	0.5
Cyclohexane	27-FEB-06 15:45	0.41	3.1	µg/m ³		1	1.7
Trichloroethene	27-FEB-06 15:45	0.120	ND	ppb v/v		1 /	0.5
Trichloroethene	27-FEB-06 15:45	0.64	ND	µg/m ³		1	2.7
1,2-Dichloropropane	27-FEB-06 15:45	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 15:45	0.57	ND	µq/m ³		1	2.3
Bromodichloromethane	27-FEB-06 15:45	0.0779	ND	ppb v/v		1	0.5
Bromodichloromethane	27-FEB-06 15:45	0.52	ND	µg/m ³		1	3.3
Heptane	27-FEB-06 15:45	0.101	1.3	ppb v/v		1	0.5
Heptane	27-FEB-06 15:45	0.41	5.4	ug/m ³		1	2.0
cis-1,3-Dichloropropene	27-FEB-06 15:45	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 15:45	0.48	ND	µq/m ³		1	2.3
4-Methy1-2-Pentanone	27-FEB-06 15:45	0.116	ND	ppb v/v		1	0.5
4-Methy1-2-Pentanone	27-FEB-06 15:45	0.48	ND	ug/m ³		1	2.0
Toluene	27-FEB-06 15:45	0.115	8.3	ppb v/v		1	0.5
Toluene	27-FEB-06 15:45	0.43	31.	µg/m ³		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 15:45	0.130	ND	ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 15:45	0.59	ND	µg/m ³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 15:45	0.0972	ND	ppb v/v		1	0.5
1,1,2-Trichloroethane	27-FEB-06 15:45	0.53	ND	µg/m ³		1	2.7
Tetrachloroethene	27-FEB-06 15:45	0.0847	ND	ppb v/v		1	0.5
Tetrachloroethene	27-FEB-06 15:45	0.57	ND	µg/m ³		1	3.4
2-Hexanone	27-FEB-06 15:45	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 15:45	0.56	ND	µg/m ³		1	2.0
Dibromochloromethane	27-FEB-06 15:45	0.0792	ND	ppb v/v		1	0.5
Dibromochloromethane	27-FEB-06 15:45	0.67	ND	µg/m ³		1	4.2
1,2-Dibromoethane	27-FEB-06 15:45	0.119	ND	v/v dgg		1	0.5
1,2-Dibromoethane	27-FEB-06 15:45	0.91	ND	µq/m ³		1	3.8
Chlorobenzene	27-FEB-06 15:45	0.0882	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 15:45	0.41	ND	µg/m ³		1	2.3
Ethylbenzene	27-FEB-06 15:45	0.150	1.2	ppb v/v		1 :	0.5
Ethylbenzene	27-FEB-06 15:45	0.65	5.3	µg/m ³		1	2.2
m,p-Xylene	27-FEB-06 15:45	0.213	5.0	ppb v/v		. 1	1.0
m,p-Xylene	27-FEB-06 15:45	0.92	22.	µg/m ³		1	4.3
o-Xylene	27-FEB-06 15:45	0.113	1.8	ppb v/v		1	0.5
o-Xylene	27-FEB-06 15:45	0.49	7.8	µg/m ³		1	2.2
Styrene	27-FEB-06 15:45	0.0748	0.25	ppb v/v	J	1	0.5
Styrene	27-FEB-06 15:45	0.32	1.1	µg/m ³	J	1	2.1
Bromoform	27-FEB-06 15:45	0.0884	ND	v/v dgg		1	0.5
Bromoform	27-FEB-06 15:45	0.90	ND	µg/m ³		1	5.1
1,1,2,2-Tetrachloroethane	27-FEB-06 15:45	0.108	ND	v/v dgg		1	0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 15:45	0.74	ND	µg/m ³		1	3.4
Benzyl Chloride	27-FEB-06 15:45	0.136	ND	pph v/v		1	0.5
		01200		220 V/V			0.0

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992Web Page: www.datachem.comE-mail: lab@datachem.com

Form RLIMS63A-V1.4 03030608294517 Page 8

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech DCL Sample Name...: 06106632 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 15:45	0.70	ND	µg/m ³		1	2.6
4-Ethyl toluene	27-FEB-06 15:45	0.0983	0.46	ppb v/v	J	1	0.5
4-Ethyl toluene	27-FEB-06 15:45	0.48	2.3	µg/m ³	J	1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 15:45	0.112	0.51	ppb v/v		1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 15:45	0.55	2.5	µg/m ³		1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 15:45	0.117	1.9	ppb v/v		1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 15:45	0.58	9.3	µg/m ³		1	2.5
1,3-Dichlorobenzene	27-FEB-06 15:45	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 15:45	0.72	ND	µg/m ³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 15:45	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 15:45	0.59	ND	µg/m ³		1	3.0
1,2-Dichlorobenzene	27-FEB-06 15:45	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 15:45	0.51	ND	µg/m ³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 15:45	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 15:45	0.85	ND .	µg/m ³		1	3.7
Hexachlorobutadiene	27-FEB-06 15:45	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 15:45	1.3	ND	µg/m ³		1	5.3

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Isobutane(4.64)	27-FEB-06 15:45	4.7	ppb v/v	J	1
Ethanol(5.43)	27-FEB-06 15:45	11.	ppb v/v	J	1
Acetonitrile(5.60)	27-FEB-06 15:45	10.	ppb v/v	J	1
Pentane(6.25)	27-FEB-06 15:45	4.3	ppb v/v	J	1
Silanol, trimethy1-(7.48)	27-FEB-06 15:45	5.7	ppb v/v	J	1
Pentane, 2-methyl-(7.68)	27-FEB-06 15:45	2.6	ppb v/v	J	1
CYCLOPENTANE, METHYL-(9.10)	27-FEB-06 15:45	2.0	ppb v/v	J	1
C8 Hydrocarbon(10.62)	27-FEB-06 15:45	3.1	v/v dgg	J	1

i

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 9

Date Printed..... 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number....: Yellowstone Project Sampling Site..... Not Provided Release Number....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared...... Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Client Sample Name: MC218-51|107039 DCL Sample Name...: 06106633 DCL Report Group ..: 061-0804-01

Matrix..... AIR Date Sampled....: 18-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis....: X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

3443444	Date						
Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Propene	27-FEB-06 16:24	0.180	4.2	ppb v/v		1	0.5
Propene	27-FEB-06 16:24	0.31	7.3	µg/m³		1	0.86
Dichlorodifluoromethane	27-FEB-06 16:24	0.0669	0.46	ppb v/v	J	1	0.5
Dichlorodifluoromethane	27-FEB-06 16:24	0.33	2.3	μg/m ³	J	1	2.5
Chloromethane	27-FEB-06 16:24	0.249	0.60	ppb v/v		1	0.5
Chloromethane	27-FEB-06 16:24	0.51	1.2	µg/m³		1	1.0
Freon 114	27-FEB-06 16:24	0.156	ND	ppb v/v		1	0.5
Freon 114	27-FEB-06 16:24	1.1	ND	µg/m³		1	3.5
Vinyl Chloride	27-FEB-06 16:24	0.301	ND	ppb v/v		1	0.5
Vinyl Chloride	27-FEB-06 16:24	0.77	ND	µg/m ³		1	1.3
1,3-Butadiene	27-FEB-06 16:24	0.346	ND	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 16:24	0.77	ND	µg/m ³		1	1.1
Bromomethane	27-FEB-06 16:24	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 16:24	0.83	ND	µg/m ³		1	1.9
Chloroethane	27-FEB-06 16:24	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 16:24	1.0	ND	µg/m ³		1	1.3
Freon 11	27-FEB-06 16:24	0.0921	0.19	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 16:24	0.52	1.1	ug/m ³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 16:24	0.102	ND	ppb v/v		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 16:24	0.40	ND	ug/m ³		1	2.0
Carbon Disulfide	27-FEB-06 16:24	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 16:24	0.35	ND	u a/m ³		1	1.6
Freon 113	27-FEB-06 16:24	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 16:24	0.73	ND	ug/m ³		1	3.8
Acetone	27-FEB-06 16:24	0.113	7.6	ppb v/v		1	0.5
Acetone	27-FEB-06 16:24	0.27	18.	μα/m ³		1	1.2
Methylene Chloride	27-FEB-06 16:24	0.168	0.39	ppb v/v	J	1	0.5
Methylene Chloride	27-FEB-06 16:24	0.58	1.3	μα/m ³	J .	ī	1.7
trans-1,2-Dichloroethene	27-FEB-06 16:24	0.118	ND	nnh v/v		1	0.5
trans-1,2-Dichloroethene	27-FEB-06 16:24	0.47	ND	ug/m ³		1	2.0
1,1-Dichloroethane	27-FEB-06 16:24	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 16:24	0.47	ND	ug/m ³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 16:24	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 16:24	0.53	ND	u a /m ³		1	1.8
Vinvl Acetate	27-FEB-06 16:24	0.133	ND	nnh y/y		1	0.5
Vinyl Acetate	27-FEB-06 16:24	0.47	ND	11 cl /m 3		1	1.8
1,1-Dichloroethene	27-FEB-06 16:24	0.109	ND	nnh y/y		1	0.5
1,1-Dichloroethene	27-FEB-06 16:24	0.43		u a /m3			2.0
2-Butanone	27-FEB-06 16:24	0.182	0.23	nnh u/u	.7	1	2.0
2-Butanone	27-FEB-06 16:24	0.54	0.66	v/v		1	1.5
Ethyl Acetate	27-FEB-06 16:24	0 272	ND	- pg/m ^o	<u> </u>	+	
avinge inseeure	a7-225-00 10:24	0.4/3	ND	000 V/V			0.5

 $\langle 2$

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com E-mail: lab@datachem.com

Form RLIMS63A-V1.4 03030608294517 Page 10

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106633 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	POL
Ethyl Acetate	27-FEB-06 16:24	0.98	ND	ug/m ³		1	1.8
Hexane	27-FEB-06 16:24	0.121	1.6	ppb v/v		1	0.5
Hexane	27-FEB-06 16:24	0.43	5.7	µq/m ³		1	1.8
Chloroform	27-FEB-06 16:24	0.115	ND	ppb v/v		1	0.5
Chloroform	27-FEB-06 16:24	0.56	ND	μg/m ³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 16:24	0.0725	ND	ppb v/v		1	0.5
1,1,1-Trichloroethane	27-FEB-06 16:24	0.40	ND	µg/m³		1	2.7
Carbon Tetrachloride	27-FEB-06 16:24	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 16:24	0.41	ND	µg/m³		1	3.1
Benzene	27-FEB-06 16:24	0.102	0.82	ppb v/v		1	0.5
Benzene	27-FEB-06 16:24	0.33	2.6	μg/m ³		1	1.6
Tetrahydrofuran	27-FEB-06 16:24	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 16:24	0.67	ND	µg/m³		1	1.5
1,2-Dichloroethane	27-FEB-06 16:24	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 16:24	0.62	ND	µg/m³		1	2.0
Cyclohexane	27-FEB-06 16:24	0.120	ND	ppb v/v		1	0.5
Cyclonexane	27-FEB-06 16:24	0.41	ND	µg/m ³		1	1.7
Trichlereethere	27-FEB-06 16:24	0.120	ND	ppb v/v		1	0.5
1 2 Dishlamanana	27-FEB-06 16:24	0.64	ND	µg/m ³		1	2.7
1,2-Dichloropropane	27-FEB-06 16:24	0.123	ND	ppb v/v		1	0.5
1,2-Dichioropropane	27-FEB-06 16:24	0.57	ND	µg/m ³		1	2.3
Bromodicnioromethane	27-FEB-06 16:24	0.0779	ND	ppb v/v		1	0.5
Hontano	27-FEB-06 16:24	0.52	ND	µg/m ³		1	3.3
Ventane	27-FEB-06 16:24	0.101	1.32	ppb v/v		1	0.5
cis-1.3-Dichloropropone	27-PPP-06 16:24	0.106	1.3	µg/m ³	J		2.0
cis-1,3-Dichloropropene	27-FFB-06 16:24	0.108	ND	<u>ppb v/v</u>		++	0.5
4-Methyl-2-Pentanone	27-FEB-06 16:24	0.116	ND	$\mu g/m^2$			2.3
4-Methyl-2-Pentanone	27-FEB-06 16:24	0.48	ND	ug/m3		1	2.0
Toluene	27-FEB-06 16:24	0.115	3.0	nnh y/y		1 1	0.5
Toluene	27-FEB-06 16:24	0.43	11.	ug/m3		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 16:24	0.130	ND	ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 16:24	0.59	ND	ug/m ³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 16:24	0.0972	ND	v/v dag		1	0.5
1,1,2-Trichloroethane	27-FEB-06 16:24	0.53	ND	µg/m ³		1	2.7
Tetrachloroethene	27-FEB-06 16:24	0.0847	ND	ppb v/v		1	0.5
Tetrachloroethene	27-FEB-06 16:24	0.57	ND	µg/m ³		1	3.4
2-Hexanone	27-FEB-06 16:24	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 16:24	0.56	ND	µg/m ³		1	2.0
Dibromochloromethane	27-FEB-06 16:24	0.0792	ND	ppb v/v		1	0.5
Dibromochloromethane	27-FEB-06 16:24	0.67	ND	µg/m³		1	4.2
1,2-Dibromoethane	27-FEB-06 16:24	0.119	ND	ppb v/v		1	0.5
1,2-Dibromoethane	27-FEB-06 16:24	0.91	ND	µg/m³		1	3.8
Chlorobenzene	27-FEB-06 16:24	0.0882	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 16:24	0.41	ND	μg/m³		1	2.3
Ethylbenzene	27-FEB-06 16:24	0.150	0.24	ppb v/v	J	1	0.5
Ethylbenzene	27-FEB-06 16:24	0.65	1.0	μg/m ³	J	1	2.2
m,p-Xylene	27-FEB-06 16:24	0.213	0.83	ppb v/v	J	1	1.0
m, p-xyiene	27-FEB-06 16:24	0.92	3.6	μg/m ³	J	1	4.3
o-xyiene	27-FEB-06 16:24	0.113	0.32	ppb v/v	J	1	0.5
o-xylene	27-FEB-06 16:24	0.49	1.4	µg/m³	J	1	2.2
Styrene	27-FEB-06 16:24	0.0748	ND	ppb v/v		1	0.5
Styrene	27-FEB-06 16:24	0.32	ND	µg/m³		1	2.1
BIOMOLOFM	27-FEB-06 16:24	0.0884	ND	ppb v/v		1	0.5
biomotorm	27-FEB-06 16:24	0.90	ND	µg/m³		1	5.1
1.1.2.2-Tetrachioroethane	27-FEB-06 16:24	0.108	ND	ppb v/v		1	0.5
Pongul Chlarida	27-FEB-06 16:24	0.74	ND	µg/m³		1	3.4
Densyl Chioride	27-FEB-06 16:24	0.136	ND	ppb v/v	_	1	0.5

5.784 14

Form RLIMS63A-V1.4 03030608294517 Page 11

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech DCL Sample Name...: 06106633 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	POL
Benzyl Chloride	27-FEB-06 16:24	0.70	ND	µg/m ³		1	2.6
4-Ethyl toluene	27-FEB-06 16:24	0.0983	ND	ppb v/v		1	0.5
4-Ethyl toluene	27-FEB-06 16:24	0.48	ND	µg/m ³		1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 16:24	0.112	ND	ppb v/v		1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 16:24	0.55	ND	µg/m ³		1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 16:24	0.117	0.36	ppb v/v	J	1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 16:24	0.58	1.8	µq/m ³	J	1	2.5
1,3-Dichlorobenzene	27-FEB-06 16:24	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 16:24	0.72	ND	µg/m ³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 16:24	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 16:24	0.59	ND	µg/m ³		1	3.0
1,2-Dichlorobenzene	27-FEB-06 16:24	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 16:24	0.51	ND	µg/m ³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 16:24	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 16:24	0.85	ND	µg/m³		1	3.7
Hexachlorobutadiene	27-FEB-06 16:24	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 16:24	1.3	ND	μg/m ³		1 .	5.3

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Isobutane(4.65)	27-FEB-06 16:24	3.4	ppb v/v	J	1
Butane(4.92)	27-FEB-06 16:24	2.2	ppb v/v	J	1
Ethanol(5.44)	27-FEB-06 16:24	12.	ppb v/v	J	1
Isopropyl Alcohol(6.08)	27-FEB-06 16:24	3.3	ppb v/v	J	1
Pentane(6.26)	27-FEB-06 16:24	4.6	ppb v/v	J	1
Silanol, trimethy1-(7.49)	27-FEB-06 16:24	2.1	ppb v/v	J	1

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 12

Date Printed.....: 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number....: Yellowstone Project Sampling Site Not Provided Release Number.....: Yellowstone Project

Date Received....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Client Sample Name: MC219-21|108758 DCL Sample Name...: 06106634 DCL Report Group ..: 061-0804-01

Matrix..... AIR Date Sampled.....: 19-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis.....: X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Analyte	Date	MDL	Result	Units	01121	Dilution	POL
Propene	27-FEB-06 16:59	0.100	21.	pph v/v	gouz:	1	0.5
Propene	27-FEB-06 16:59	0.31	35.	ug/m ³		1	0.86
Dichlorodifluoromethane	27-FEB-06 16:59	0.0669	0.61	ppb v/v		1	0.5
Dichlorodifluoromethane	27-FEB-06 16:59	0.33	3.0	ug/m ³		1	2.5
Chloromethane	27-FEB-06 16:59	0.249	0.86	v/v dgg		1	0.5
Chloromethane	27-FEB-06 16:59	0.51	1.8	ug/m ³	-	1	1.0
Freon 114	27-FEB-06 16:59	0.156	ND	v/v dgg		1	0.5
Freon 114	27-FEB-06 16:59	1.1	ND	ug/m ³		1	3.5
Vinyl Chloride	27-FEB-06 16:59	0.301	ND	v/v dgg		1	0.5
Vinyl Chloride	27-FEB-06 16:59	0.77	ND	ug/m ³		1	1.3
1,3-Butadiene	27-FEB-06 16:59	0.346	3.5	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 16:59	0.77	7.7	µg/m ³		1	1.1
Bromomethane	27-FEB-06 16:59	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 16:59	0.83	ND	µg/m ³		1	1.9
Chloroethane	27-FEB-06 16:59	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 16:59	1.0	ND	µg/m ³		1	1.3
Freon 11	27-FEB-06 16:59	0.0921	0.25	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 16:59	0.52	1.4	µg/m ³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 16:59	0.102	ND	ppb v/v		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 16:59	0.40	ND	µg/m³		1	2.0
Carbon Disulfide	27-FEB-06 16:59	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 16:59	0.35	ND	µg/m ³		1	1.6
Freon 113	27-FEB-06 16:59	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 16:59	0.73	ND	µg/m³		1	3.8
Acetone	27-FEB-06 16:59	0.113	4.9	ppb v/v		1	0.5
Acetone	27-FEB-06 16:59	0.27	12.	μg/m³		1	1.2
Methylene Chloride	27-FEB-06 16:59	0.168	1.2	ppb v/v		1	0.5
Methylene Chloride	27-FEB-06 16:59	0.58	4.2	μg/m ³		1	1.7
trans-1,2-Dichloroethene	27-FEB-06 16:59	0.118	ND	ppb v/v		1	0.5
trans-1,2-Dichloroethene	27-FEB-06 16:59	0.47	ND	µg/m³		1	2.0
1,1-Dichloroethane	27-FEB-06 16:59	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 16:59	0.47	ND	μg/m³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 16:59	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 16:59	0.53	ND	μg/m³		1	1.8
Vinyl Acetate	27-FEB-06 16:59	0.133	ND	ppb v/v		1	0.5
Vinyl Acetate	27-FEB-06 16:59	0.47	ND	μg/m ³		1	1.8
1,1-Dichloroethene	27-FEB-06 16:59	0.109	ND	ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 16:59	0.43	ND	µg/m³		1	2.0
2-Butanone	27-FEB-06 16:59	0.182	ND	ppb v/v		1	0.5
2-Butanone	27-FEB-06 16:59	0.54	ND	µg/m ³		1	1.5
Ethyl Acetate	27-FEB-06 16:59	0.273	ND	ppb v/v		1	0.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 13

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106634 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Ethyl Acetate	27-FEB-06 16:59	0.98	ND	µg/m ³		1	1.8
Hexane	27-FEB-06 16:59	0.121	6.3	v/v dag		1	0.5
Hexane	27-FEB-06 16:59	0.43	22.	µg/m ³		1	1.8
Chloroform	27-FEB-06 16:59	0.115	ND	v/v dgg		1	0.5
Chloroform	27-FEB-06 16:59	0.56	ND	µg/m ³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 16:59	0.0725	ND	v/v dgg		1	0.5
1,1,1-Trichloroethane	27-FEB-06 16:59	0.40	ND	µg/m ³		1	2.7
Carbon Tetrachloride	27-FEB-06 16:59	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 16:59	0.41	ND	µg/m ³		- 1	3.1
Benzene	27-FEB-06 16:59	0.102	7.2	ppb v/v		1	0.5
Benzene	27-FEB-06 16:59	0.33	23.	µg/m ³		1	1.6
Tetrahydrofuran	27-FEB-06 16:59	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 16:59	0.67	ND	µg/m ³		1	1.5
1,2-Dichloroethane	27-FEB-06 16:59	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 16:59	0.62	ND	µg/m³		1	2.0
Cyclohexane	27-FEB-06 16:59	0:120	1.2	ppb v/v		1	0.5
Cyclohexane	27-FEB-06 16:59	0.41	4.2	μ <u>g/m</u> ³		1	1.7
Trichloroethene	27-FEB-06 16:59	0.120	ND	ppb v/v		1	0.5
Trichloroethene	27-FEB-06 16:59	0.64	ND	µg/m³		1	2.7
1,2-Dichloropropane	27-FEB-06 16:59	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 16:59	0.57	ND	µg/m ³		1	2.3
Bromodichloromethane	27-FEB-06 16:59	0.0779	ND	ppb v/v		1	0.5
Bromodichloromethane	27-FEB-06 16:59	0.52	ND	µg/m ³		1	3.3
Heptane	27-FEB-06 16:59	0.101	ND	ppb v/v		1	0.5
Heptane	27-FEB-06 16:59	0.41	ND	µg/m ³		1	2.0
cis-1,3-Dichloropropene	27-FEB-06 16:59	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 16:59	0.48	ND	µg/m ³		1 .	2.3
4-Methyl-2-Pentanone	27-FEB-06 16:59	0.116	ND	ppb v/v		1	0.5
4-Methy1-2-Pentanone	27-FEB-06 16:59	0.48	ND	µg/m ³		1	2.0
Toluene	27-FEB-06 16:59	0.115	14.	_ppb v/v		1	0.5
Toluene	27-FEB-06 16:59	0.43	55.	µg/m ³		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 16:59	0.130	ND	ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 16:59	0.59	ND	μg/m ³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 16:59	0.0972	ND	ppb v/v	1.	1	0.5
1,1,2-Trichloroethane	27-FEB-06 16:59	0.53	ND	μg/m ³		1	2.7
Tetrachloroethene	27-FEB-06 16:59	0.0847	ND	ppb v/v		1	0.5
Tetrachloroethene	27-FEB-06 16:59	0.57	ND	µg/m³		1	3.4
2-Hexanone	27-FEB-06 16:59	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 16:59	0.56	ND	μg/m ³		1	2.0
Dibromochloromethane	27-FEB-06 16:59	0.0792	ND	ppb v/v		1	0.5
Dibromochloromethane	27-FEB-06 16:59	0.67	ND	µg/m³		1	4.2
1,2-Dibromoethane	27-FEB-06 16:59	0.119	ND	ppb v/v		1	0.5
1,2-Dibromoethane	27-FEB-06 16:59	0.91	ND	µg/m³		1	3.8
Chlorobenzene	27-FEB-06 16:59	0.0882	ND	ppb v/v		_ 1	0.5
Chioropenzene	27-FEB-06 16:59	0.41	ND	μg/m ³		1	2.3
Ethylberzene	27-FEB-06 16:59	0.150	1.9	ppb v/v		1	0.5
n-Nulene	27-FEB-U6 16:59	0.65	8.3	μg/m ³		1	2.2
m,p-Aylene	27-FEB-06 16:59	0.213	7.4	ppb v/v		_ 1	1.0
-Yulene	27-FEB-06 16:59	0.92	32.	µg/m ³		1	4.3
-Yulana	27-FEB-U6 16:59	0.113	2.6	ppb v/v		1	0.5
Charles	27-FEB-06 16:59	0.49	11.	μg/m ³		1	2.2
Styrene	27-FEB-06 16:59	0.0748	0.41	ppb v/v	J	1	0.5
Bromoform	27-FEB-06 16:59	0.32	1.7	µg/m³	J	1	2.1
Bromotorm	27-FEB-06 16:59	0.0884	ND	ppb v/v		1	0.5
1.1.2.2-Motrachloroothar-	27-FEB-06 16:59	0.90	ND	µg/m³		1	5.1
1 1 2 2 motrachlareatha	27-FEB-06 16:59	0.108	ND	ppb v/v		1	0.5
Liliane Pongul Chloride	27-FEB-06 16:59	0.74	ND	µg/m³		1	3.4
Densyl Chioride	27-FEB-06 16:59	0.136	ND	ppb v/v		1	0.5
		1					

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com E-mail: lab@datachem.com

Form RLIMS63A-V1.4 03030608294517 Page 14

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech DCL Sample Name...: 06106634 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 16:59	0.70	ND	µg/m ³		1.	2.6
4-Ethyl toluene	27-FEB-06 16:59	0.0983	0.59	ppb v/v		1	0.5
4-Ethyl toluene	27-FEB-06 16:59	0.48	2.9	µg/m ³		1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 16:59	0.112	0.68	ppb v/v		1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 16:59	0.55	3.3	µg/m ³		1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 16:59	0:117	2.4	ppb v/v		1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 16:59	0.58	12.	µg/m ³		1	2.5
1,3-Dichlorobenzene	27-FEB-06 16:59	0.120	ND	ppb v/v		1 .	0.5
1,3-Dichlorobenzene	27-FEB-06 16:59	0.72	ND	µg/m ³		1 .	3.0
1,4-Dichlorobenzene	27-FEB-06 16:59	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 16:59	0.59	ND	µg/m ³		1	3.0
1,2-Dichlorobenzene	27-FEB-06 16:59	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 16:59	0.51	ND	µg/m ³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 16:59	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 16:59	0.85	ND	μq/m ³		1	3.7
Hexachlorobutadiene	27-FEB-06 16:59	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 16:59	1.3	ND	µg/m ³		1	5.3

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Isobutane(4.64)	27-FEB-06 16:59	5.7	ppb v/v	J	1
Butane(4.92)	27-FEB-06 16:59	11.	ppb v/v	J	1
Ethanol(5.43)	27-FEB-06 16:59	16.	ppb v/v	J	1
Pentane(6.25)	27-FEB-06 16:59	8.2	ppb v/v	J	1
Pentane, 2-methyl-(7.68)	27-FEB-06 16:59	4.1	ppb v/v	J	1
Pentane, 3-methyl-(8.00)	27-FEB-06 16:59	2.5	ppb v/v	J	1
CYCLOPENTANE, METHYL-(9.10)	27-FEB-06 16:59	3.2	ppb v/v	J	1
C7 Hydrocarbon(10.12)	27-FEB-06 16:59	2.1	ppb v/v	J	1
C8 Hydrocarbon(10.62)	27-FEB-06 16:59	3.8	ppb v/v	J	1

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 15

Date Printed.....: 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number...: Yellowstone Project Sampling Site Not Provided Release Number.....: Yellowstone Project

Date Received....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Client Sample Name: MC219-22|108963 DCL Sample Name...: 06106635 DCL Report Group ..: 061-0804-01

Matrix..... AIR Date Sampled.....: 19-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis.....: 🖾 As Received 🗌 Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Analyte	Date	MDL	Result	Unite	01121	Dilution	POL
Propene	27-FEB-06 17:37	0.180	4.2	nnh u/u	guar.	Diración	- FQ1
Propene	27-FEB-06 17:37	0.31	7.2	10/m3			0.5
Dichlorodifluoromethane	27-FEB-06 17:37	0.0669	0.53	nnh y/y		1	0.88
Dichlorodifluoromethane	27-FEB-06 17:37	0.33	2.6	μα/m ³		1	2 5
Chloromethane	27-FEB-06 17:37	0.249	0.77	pph v/v		1	0.5
Chloromethane	27-FEB-06 17:37	0.51	1.6	ug/m3			1.0
Freon 114	27-FEB-06 17:37	0.156	ND	ppb v/v		1	0.5
Freon 114	27-FEB-06 17:37	1.1	ND	ug/m ³		1	3.5
Vinyl Chloride	27-FEB-06 17:37	0.301	ND			ĩ	0.5
Vinyl Chloride	27-FEB-06 17:37	0.77	ND	μα/m ³		1	1.3
1,3-Butadiene	27-FEB-06 17:37	0.346	ND	v/v dgg		1	0.5
1,3-Butadiene	27-FEB-06 17:37	0.77	ND	µg/m ³	-	1	1.1
Bromomethane	27-FEB-06 17:37	0.215	ND	v/v dag		1	0.5
Bromomethane	27-FEB-06 17:37	0.83	ND	ug/m ³		1 .	1.9
Chloroethane	27-FEB-06 17:37	0.388	ND	v/v dgg		1	0.5
Chloroethane	27-FEB-06 17:37	1.0	ND	µq/m ³		1	1.3
Freon 11	27-FEB-06 17:37	0.0921	0.23	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 17:37	0.52	1.3	µg/m ³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 17:37	0.102	ND	ppb v/v		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 17:37	0.40	ND	µg/m ³		1	2.0
Carbon Disulfide	27-FEB-06 17:37	0.111	ND	ppb v/v		· 1	0.5
Carbon Disulfide	27-FEB-06 17:37	0.35	ND	µg/m ³		1	1.6
Freon 113	27-FEB-06 17:37	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 17:37	0.73	ND	µg/m³		1	3.8
Acetone	27-FEB-06 17:37	0.113	250	ppb v/v	E	10	0.5
Acetone	27-FEB-06 17:37	0.27	580	μg/m ³	E	10	1.2
Methylene Chloride	27-FEB-06 17:37	0.168	2.7	ppb v/v		1	0.5
Methylene Chloride	27-FEB-06_17:37	0.58	9.2	µg/m³		1	1.7
trans-1,2-Dichloroethene	27-FEB-06 17:37	0.118	ND	ppb v/v	-	1	0.5
trans-1,2-Dichloroethene	27-FEB-06 17:37	0.47	.ND	μg/m ³		1	2.0
1,1-Dichloroethane	27-FEB-06 17:37	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 17:37	0.47	ND	µg/m³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 17:37	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 17:37	0.53	ND	µg/m³		1	1.8
Vinyl Acetate	27-FEB-06 17:37	0.133	ND	ppb v/v		1	0.5
Vinyl Acetate	27-FEB-06 17:37	0.47	ND	μg/m ³		1	1.8
1,1-Dichloroethene	27-FEB-06 17:37	0.109	ND	_ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 17:37	0.43	ND	µg/m³		1	2.0
2-Butanone	27-FEB-06 17:37	0.182	13.	ppb v/v		1	0.5
2-Butanone	27-FEB-06 17:37	0.54	39.	µg/m³		1	1.5
stnyi Acetate	27-FEB-06 17:37	0.273	1.9	ppb v/v		1	0.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com E-mail: lab@datachem.com

Form RLIMS63A-V1.4 03030608294517 Page 16

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106635 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Ethyl Acetate	27-FEB-06 17:37	0.98	6.7	µg/m ³		1	1.8
Hexane	27-FEB-06 17:37	0.121	1.9	ppb v/v		1	0.5
Hexane	27-FEB-06 17:37	0.43	6.6	µg/m ³		1	1.8
Chloroform	27-FEB-06 17:37	0.115	ND	ppb v/v		1	0.5
Chloroform	27-FEB-06 17:37	0.56	ND	ug/m ³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 17:37	0.0725	ND	ppb v/v		1	0.5
1,1,1-Trichloroethane	27-FEB-06 17:37	0.40	ND	µg/m ³		1	2.7
Carbon Tetrachloride	27-FEB-06 17:37	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 17:37	0.41	ND	µg/m ³		1	3.1
Benzene	27-FEB-06 17:37	0.102	1.7	ppb v/v		1	0.5
Benzene	27-FEB-06 17:37	0.33	5.3	µg/m ³		1	1.6
Tetrahydrofuran	27-FEB-06 17:37	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 17:37	0.67	ND	µg/m³		1	1.5
1,2-Dichloroethane	27-FEB-06 17:37	0.153	0.74	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 17:37	0.62	3.0	μg/m³		1	2.0
Cyclohexane	27-FEB-06 17:37	0.120	ND	ppb v/v		1	0.5
Cyclohexane	27-FEB-06 17:37	0.41	ND	µg/m³		1	1.7
Trichloroethene	27-FEB-06 17:37	0.120	0.29	ppb v/v	Ĵ	1	0.5
Trichloroethene	27-FEB-06 17:37	0.64	1.6	µg/m³	J	1	2.7
1,2-Dichloropropane	27-FEB-06 17:37	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 17:37	0.57	ND	µg/m³		1	2.3
Bromodichloromethane	27-FEB-06 17:37	0.0779	ND	ppb v/v		1	0.5
Bromodichioromethane	27-FEB-06 17:37	0.52	ND	µg/m³		1	3.3
Heptane	27-FEB-06 17:37	0.101	0.65	ppb v/v		1	0.5
Heptane	27-FEB-06 17:37	0.41	2.7	µg/m³		1	2.0
cis-1, 3-Dichloropropene	27-FEB-06 17:37	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 17:37	0.48	ND	µg/m³		1	2.3
4-Methyl-2-Pentanone	27-FEB-06 17:37	0.116	2.0	ppb v/v		1	0.5
4-Methyl-2-Pentanone	27-FEB-06 17:37	0.48	8.2	µg/m ³		1	2.0
Toluene	27-FEB-06 17:37	0.115		ppb V/V		1	0.5
toruene	27-FEB-06 17:37	0.43	59.	µg/m ³		1	1.9
trans-1, 3-Dichloropropene	27-FEB-06 17137	0.130	ND	ppb v/v		1	0.5
1 1 2-Trichloroothano	27-FEB-06 17:37	0.0072	ND	μg/m ³		<u> </u>	2.3
1,1,2-Trichloroothane	27-FEB-06 17:37	0.0972	ND	ppb v/v		÷	0.5
Tetrachloroothone	27-FEB-06 17:37	0.0947	0.17	µg/m*		<u>+</u>	- 2.1
Tetrachloroethene	27-FFB-06 17:37	0.001/	1.2	000 V/V	- 		2.4
2-Hexanone	27-FFB-06 17:37	0 136	ND	nnh u/u			3.4
2-Hexanone	27-FEB-06 17:37	0.56	ND	ug/m3		1	2.0
Dibromochloromethane	27-FEB-06 17:37	0.0792	ND	nnh y/y			0.5
Dibromochloromethane	27-FEB-06 17:37	0.67	ND	ug/m3			4 2
1,2-Dibromoethane	27-FEB-06 17:37	0.119	ND	ppb v/v		1	0.5
1,2-Dibromoethane	27-FEB-06 17:37	0.91	ND	µg/m ³		1	3.8
Chlorobenzene	27-FEB-06 17:37	0.0882	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 17:37	0.41	ND	µg/m ³		1	2.3
Ethylbenzene	27-FEB-06 17:37	0.150	2.9	ppb v/v		1	0.5
Ethylbenzene	27-FEB-06 17:37	0.65	13.	µg/m ³		1	2.2
m,p-Xylene	27-FEB-06 17:37	0.213	13.	ppb v/v		1	1.0
m,p-Xylene	27-FEB-06 17:37	0.92	55.	µg/m³		1	4.3
o-Xylene	27-FEB-06 17:37	0.113	4.1	ppb v/v		1	0.5
o-Xylene	27-FEB-06 17:37	0.49	18.	µg/m³		1	2.2
Styrene	27-FEB-06 17:37	0.0748	4.8	ppb v/v		1	0.5
Styrene	27-FEB-06 17:37	0.32	21.	µg/m³		1	2.1
Bromoform	27-FEB-06 17:37	0.0884	ND	ppb v/v		1	0.5
Bromoform	27-FEB-06 17:37	0.90	ND	µg/m³		1	5.1
1,1,2,2-Tetrachloroethane	27-FEB-06 17:37	0.108	ND	ppb v/v		1	0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 17:37	0.74	ND	µg/m³		1	3.4
Benzyl Chloride	27-FEB-06 17:37	0.136	ND	ppb v/v		_ 1	0.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 17

SO61QOPT

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech DCL Sample Name...: 06106635 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 17:37	0.70	ND	µg/m ³		1	2.6
4-Ethyl toluene	27-FEB-06 17:37	0.0983	0.54	ppb v/v		1	0.5
4-Ethyl toluene	27-FEB-06 17:37	0.48	2.6	µg/m ³		1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 17:37	0.112	0.55	ppb v/v		1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 17:37	0.55	2.7	µg/m ³		1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 17:37	0.117	2.1	ppb v/v		1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 17:37	0.58	10.	μg/m³		1	2.5
1,3-Dichlorobenzene	27-FEB-06 17:37	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 17:37	0.72	ND	µg/m³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 17:37	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 17:37	0.59	ND	μg/m ³		1	3.0
1,2-Dichlorobenzene	27-FEB-06 17:37	0.0851	0.74	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 17:37	0.51	4.4	µg/m ³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 17:37	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 17:37	0.85	ND	µg/m ³		1	3.7
Hexachlorobutadiene	27-FEB-06 17:37	0:119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 17:37	1.3	ND	µg/m ³		1	5.3

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Isobutane(4.65)	27-FEB-06 17:37	3.0	ppb v/v	J	1
Butane(4.92)	27-FEB-06 17:37	3.7	ppb v/v	J	1
Ethanol(5.44)	27-FEB-06 17:37	7.7	ppb v/v	J	1
Acetonitrile(5.61)	27-FEB-06 17:37	3.7	ppb v/v	J	1
Pentane(6.26)	27-FEB-06 17:37	3.1	ppb v/v	J	1
Pentane, 2,3-dimethyl-(10.12)	27-FEB-06 17:37	3.3	ppb v/v	J	1
Methyl Methacrylate(10.74)	27-FEB-06 17:37	2.3	ppb v/v	J	1
Acetic acid, butyl ester(13.00)	27-FEB-06 17:37	3.4	ppb v/v	J	1

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 18

Date Printed.....: 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number...: Yellowstone Project Sampling Site.....: Not Provided Release Number.....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Client Sample Name: MC219-5 105827 DCL Sample Name...: 06106636 DCL Report Group ..: 061-0804-01

Matrix..... ATR Date Sampled....: 19-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis.....: X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type ...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	POL
Propene	27-FEB-06 18:15	0.180	5.6	v/v dag		1	0.5
Propene	27-FEB-06 18:15	0.31	. 9.6	µq/m ³		1	0.86
Dichlorodifluoromethane	27-FEB-06 18:15	0.0669	0.55	ppb v/v		1	0.5
Dichlorodifluoromethane	27-FEB-06 18:15	0.33	2.7	µg/m ³		1	2.5
Chloromethane	27-FEB-06 18:15	0.249	0.82	ppb v/v		1	0.5
Chloromethane	27-FEB-06 18:15	0.51	1.7	µg/m ³		1	1.0
Freon 114	27-FEB-06 18:15	0.156	ND	ppb v/v		1	0.5
Freon 114	27-FEB-06 18:15	1.1	ND	µg/m ³		1	3.5
Vinyl Chloride	27-FEB-06 18:15	0.301	ND	ppb v/v		1	0.5
Vinyl Chloride	27-FEB-06 18:15	0.77	ND	µg/m ³		1	1.3
1,3-Butadiene	27-FEB-06 18:15	0.346	0.41	ppb v/v	J	1	0.5
1,3-Butadiene	27-FEB-06 18:15	0.77	0.91	µg/m ³	J	1	1.1
Bromomethane	27-FEB-06 18:15	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 18:15	0.83	ND	µg/m ³		1	1.9
Chloroethane	27-FEB-06 18:15	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 18:15	1.0	ND	µg/m ³		1	1.3
Freon 11	27-FEB-06 18:15	0.0921	ND	v/v dgg		1	0.5
Freon 11	27-FEB-06 18:15	0.52	ND	µg/m ³		1	2.8
cis-1,2-Dichloroethene	27-FEB-06 18:15	0.102	ND	v/v dgg		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 18:15	0.40	ND	µg/m ³		1	2.0
Carbon Disulfide	27-FEB-06 18:15	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 18:15	0.35	ND	µg/m ³		1	1.6
Freon 113	27-FEB-06 18:15	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 18:15	0.73	ND	µg/m ³		1	3.8
Acetone	27-FEB-06 18:15	0.113	10.	ppb v/v		1	0.5
Acetone	27-FEB-06 18:15	0.27	24.	µg/m ³		1	1.2
Methylene Chloride	27-FEB-06 18:15	0.168	0.54	ppb v/v		1	0.5
Methylene Chloride	27-FEB-06 18:15	0.58	1.9	µg/m ³		1	1.7
trans-1,2-Dichloroethene	27-FEB-06 18:15	0.118	ND	ppb v/v		1 .	0.5
trans-1,2-Dichloroethene	27-FEB-06 18:15	0.47	ND	µg/m³		1	2.0
1,1-Dichloroethane	27-FEB-06 18:15	0.116	ND	ppb v/v		1 .	0.5
1,1-Dichloroethane	27-FEB-06 18:15	0.47	ND	µg/m ³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 18:15	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 18:15	0.53	ND	µg/m ³		1	1.8
Vinyl Acetate	27-FEB-06 18:15	0.133	ND	ppb v/v		1	0.5
Vinyl Acetate	27-FEB-06 18:15	0.47	ND	µg/m ³		1	1.8
1,1-Dichloroethene	27-FEB-06 18:15	0.109	ND	v/v dag		1	0.5
1,1-Dichloroethene	27-FEB-06 18:15	0.43	ND	µg/m ³		1	2.0
2-Butanone	27-FEB-06 18:15	0.182	ND	ppb v/v		1	0.5
2-Butanone	27-FEB-06 18:15	0.54	ND	µg/m ³		1	1.5
Ethyl Acetate	27-FEB-06 18:15	0.273	ND	v/v dag		1	0.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com E-mail: lab@datachem.com

Date

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 19

SOGLQOPV

Date Printed..... 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106636 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Ethyl Acetate	27-FEB-06 18:15	0,98	ND	µg/m³		1	1.8
Hexane	27-FEB-06 18:15	0.121	2.3	ppb v/v		1	0.5
Hexane	27-FEB-06 18:15	0.43	8.1	µg/m³		1	1.8
Chloroform	27-FEB-06 18:15	0.115	ND	ppb v/v		1	0.5
Chloroform	27-FEB-06 18:15	0.56	ND	µg/m³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 18:15	0.0725	ND	ppb v/v		1	0.5
1,1,1-Trichloroethane	27-FEB-06 18:15	0.40	ND	µg/m³		1	2.7
Carbon Tetrachloride	27-FEB-06 18:15	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 18:15	0.41	ND	µg/m³		1	3.1
Benzene	27-FEB-06 18:15	0.102	1.5	ppb v/v		1	0.5
Benzene	27-FEB-06 18:15	0.33	4.9	µg/m³		1	1.6
Tetrahydrofuran	27-FEB-06 18:15	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 18:15	0.67	ND	μg/m ³		1	1.5
1,2-Dichloroethane	27-FEB-06 18:15	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 18:15	0.62	ND	µg/m³		1	2.0
Cyclohexane	27-FEB-06 18:15	0.120	ND	ppb v/v		1	0.5
Cyclohexane	27-FEB-06 18:15	0.41	ND	µg/m ³		1	1.7
Trichloroethene	27-FEB-06 18:15	0.120	ND	ppb v/v		1	0.5
Trichloroethene	27-FEB-06 18:15	0.64	ND	_µg/m³		1	2.7
1,2-Dichloropropane	27-FEB-06 18:15	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 18:15	0.57	ND	µg/m³		1	2.3
Bromodichloromethane	27-FEB-06 18:15	0.0779	ND .	ppb v/v		1	0.5
Bromodichloromethane	27-FEB-06 18:15	0.52	ND	_µg/m³		1	3.3
Heptane	27-FEB-06 18:15	0.101	0.33	ppb v/v	J	1	0.5
Heptane	27-FEB-06 18:15	0.41	1.4	µg/m³	J	1	2.0
cis-1,3-Dichloropropene	27-FEB-06 18:15	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 18:15	0.48	ND	µg/m³		1	2.3
4-Methy1-2-Pentanone	27-FEB-06 18:15	0.116	ND	ppb v/v		1	0.5
4-Methyl-2-Pentanone	27-FEB-06 18:15	0.48	ND	µg/m³		1	2.0
Toluene	27-FEB-06 18:15	0.115	5.4	ppb v/v		1	0.5
Toluene	27-FEB-06 18:15	0.43	20.	μg/m ³		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 18:15	0.130	ND	ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 18:15	0.59	ND	µg/m³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 18:15	0.0972	ND	ppb v/v		1	0.5
1,1,2-Trichloroethane	27-FEB-06 18:15	0.53	ND	µg/m³		1	2.7
Tetrachloroethene	27-FEB-06 18:15	0.0847	0.21	ppb v/v	J	1	0.5
Tetrachloroethene	27-FEB-06 18:15	0.57	1.4	μg/m ³	J	1	3.4
2-Hexanone	27-FEB-06 18:15	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 18:15	0.56	ND	µg/m³		1	2.0
Dibromochloromethane	27-FEB-06 18:15	0.0792	ND	ppb v/v		1	0.5
Dibromochloromethane	27-FEB-06 18:15	0.67	ND	µg/m³		1	4.2
1,2-Dibromoethane	27-FEB-06 18:15	0.119	ND	ppb v/v		1	0.5
1,2-Dibromoethane	27-FEB-06 18:15	0.91	ND	µg/m³		1	3.8
Chlorobenzene	27-FEB-06 18:15	0.0882	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 18:15	0.41	ND	µg/m³		1	2.3
Ethylbenzene	27-FEB-06 18:15	0.150	0.44	ppb v/v	J	1	0.5
Ethylbenzene	27-FEB-06 18:15	0.65	1.9	µg/m³	J	1	2.2
m,p-Xylene	27-FEB-06 18:15	0.213	1.7	ppb v/v		1	1.0
m,p-Xylene	27-FEB-06 18:15	0.92	7.4	<u>μg/m³</u>		1	4.3
o-Xylene	27-FEB-06 18:15	0.113	0.65	_ppb v/v		1	0.5
o-xyiene	27-FEB-06 18:15	0.49	2.8	<u>μg/m³</u>		1	2.2
Styrene	27-FEB-06 18:15	0.0748	0.12	ppb v/v	J	1	0.5
Styrene	27-FEB-06 18:15	0.32	0.50	µg/m³	J	1	2.1
Bromoform	27-FEB-06 18:15	0.0884	ND	ppb v/v		1	0.5
Bromoform	27-FEB-06 18:15	0.90	ND	µg/m³		1	5.1
1,1,2,2-Tetrachloroethane	27-FEB-06 18:15	0.108	ND	ppb v/v		1	0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 18:15	0.74	ND	µg/m³		1 .	3.4
Benzyl Chloride	27-FEB-06 18:15	0.136	ND	ppb v/v		1	0.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Web Page: www.datachem.com E-mail: lab@datachem.com

Form RLIMS63A-V1.4 03030608294517 Page 20

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech

DCL Sample Name...: 06106636 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 18:15	0.70	ND	µg/m³		1	2.6
4-Ethyl toluene	27-FEB-06 18:15	0.0983	0.13	ppb v/v	J	1	0.5
4-Ethyl toluene	27-FEB-06 18:15	0.48	0.63	µg/m³	J	1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 18:15	0.112	0.13	ppb v/v	J	1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 18:15	0.55	0.61	µg/m³	J	1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 18:15	0.117	0.57	ppb v/v		1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 18:15	0.58	2.8	μg/m ³		1	2.5
1,3-Dichlorobenzene	27-FEB-06 18:15	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 18:15	0.72	ND	µg/m³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 18:15	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 18:15	0.59	ND	µg/m ³		1 .	3.0
1,2-Dichlorobenzene	27-FEB-06 18:15	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 18:15	0.51	ND	µg/m ³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 18:15	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 18:15	0.85	ND	µg/m ³		1	3.7
Hexachlorobutadiene	27-FEB-06 18:15	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 18:15	1.3	ND	µg/m³		1	5.3

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Ethanol(5.46)	27-FEB-06 18:15	11.	ppb v/v	J	1
Silanol, trimethyl-(7.51)	27-FEB-06 18:15	2.9	ppb v/v	J	1
Pentane, 3-methy1-(8.03)	27-FEB-06 18:15	2.1	ppb v/v	J	1

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 21

Date Printed.....: 03-MAR-06 08:29

Client Name..... Montana Tech Client Ref Number....: Yellowstone Project Sampling Site...... Not Provided Release Number.....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared...... Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Clie	ent	Samp	le	Name:	MC220-21 107040
DCL	Sam	ple	Nan	ne:	06106637
DCL	Rep	ort	Gro	;	061-0804-01

Matrix..... AIR Date Sampled....: 20-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis..... X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

2001040	Date	WDT	Desult	The	0	Dilution.	
Analyte	Analyzed	MDL	Result	Units	Quar.	Dilution	POL
Propene	27-FEB-06 18:50	0.180	5.9	ppb v/v		1	0.5
Propene	27-FEB-06 18:50	0.31	10.	µg/m ³		1	0.86
Dichlorodifluoromethane	27-FEB-06 18:50	0.0669	0.60	ppb v/v		1	0.5
Dichlorodifluoromethane	27-FEB-06 18:50	0.33	3.0	µg/m³		1	2.5
Chloromethane	27-FEB-06 18:50	0.249	0.85	ppb v/v		1	0.5
Chloromethane	27-FEB-06 18:50	0.51	1.8	µg/m³		1	1.0
Freon 114	27-FEB-06 18:50	0.156	ND	ppb v/v		1	0.5
Freon 114	27-FEB-06 18:50	1.1	ND	µg/m ³		1	3.5
Vinyl Chloride	27-FEB-06 18:50	0.301	ND	ppb v/v		1	0.5
Vinyl Chloride	27-FEB-06 18:50	0.77	ND	µg/m³		1	1.3
1,3-Butadiene	27-FEB-06 18:50	0.346	0.52	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 18:50	0.77	1.2	µg/m³		1	1.1
Bromomethane	27-FEB-06 18:50	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 18:50	0.83	ND	µg/m³		1	1.9
Chloroethane	27-FEB-06 18:50	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 18:50	1.0	ND	µg/m³		1	1.3
Freon 11	27-FEB-06 18:50	0.0921	0.25	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 18:50	0.52	1.4	µg/m ³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 18:50	0.102	ND	ppb v/v		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 18:50	0.40	ND	µg/m³		1	2.0
Carbon Disulfide	27-FEB-06 18:50	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 18:50	0.35	ND	µg/m³		1	1.6
Freon 113	27-FEB-06 18:50	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 18:50	0.73	ND	µg/m³		1	3.8
Acetone	27-FEB-06 18:50	0.113	6.0	ppb v/v	1	1	0.5
Acetone	27-FEB-06 18:50	0.27	14.	µg/m ³		1	1.2
Methylene Chloride	27-FEB-06 18:50	0.168	0.38	ppb v/v	J	1	0.5
Methylene Chloride	27-FEB-06 18:50	0.58	1.3	µg/m ³	J	1	1.7
trans-1,2-Dichloroethene	27-FEB-06 18:50	0.118	ND	ppb v/v		1 '	0.5
trans-1,2-Dichloroethene	27-FEB-06 18:50	0.47	ND	µg/m ³		1	2.0
1,1-Dichloroethane	27-FEB-06 18:50	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 18:50	0.47	ND	µg/m ³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 18:50	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 18:50	0.53	ND	µg/m ³		1	1.8
Vinyl Acetate	27-FEB-06 18:50	0.133	ND	ppb v/v		1	0.5
Vinyl Acetate	27-FEB-06 18:50	0.47	ND	ug/m ³		1	1.8
1,1-Dichloroethene	27-FEB-06 18:50	0.109	ND	ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 18:50	0.43	ND	ug/m3			2.0
2-Butanone	27-FEB-06 18:50	0.182	0.39	nnh v/v	л	1	0.5
2-Butanone	27-FEB-06 18:50	0.54	1.2	ug/m3		1	1.5
Ethyl Acetate	27-FEB-06 18:50	0.273	ND	nnh y/m	- -		0.5
	a, 200 10:50	012/3	L. ND				0.5

Form RLIMS63A-V1.4 03030608294517 Page 22

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106637 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Ethyl Acetate	27-FEB-06 18:50	0.98	ND	µg/m³		1	1.8
Hexane	27-FEB-06 18:50	0:121	4.8	ppb v/v		1	0.5
Hexane	27-FEB-06 18:50	0.43	17.	µg/m³		1	1.8
Chloroform	27-FEB-06 18:50	0.115	ND	ppb v/v		1	0.5
Chloroform	27-FEB-06 18:50	0.56	ND	μg/m ³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 18:50	0.0725	ND	ppb v/v		1	0.5
1,1,1-Trichloroethane	27-FEB-06 18:50	0.40	ND	µg/m ³		1	2.7
Carbon Tetrachloride	27-FEB-06 18:50	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 18:50	0.41	ND	µg/m³		1	3.1
Benzene	27-FEB-06 18:50	0.102	3.0	ppb v/v		1	0.5
Benzene	27-FEB-06 18:50	0.33	9.4	µg/m³		1	1.6
Tetrahydrofuran	27-FEB-06 18:50	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 18:50	0.67	ND	µg/m³		1	1.5
1,2-Dichloroethane	27-FEB-06 18:50	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 18:50	0.62	ND	μg/m ³		1	2.0
Cyclohexane	27-FEB-06 18:50	0.120	1.1	ppb v/v		1	0.5
Cyclohexane	27-FEB-06 18:50	0.41	3.7	µg/m³		1	1.7
Trichloroethene	27-FEB-06 18:50	0.120	ND	ppb v/v		1	0.5
Trichloroethene	27-FEB-06 18:50	0.64	· ND	µg/m ³		1	2.7
1,2-Dichloropropane	27-FEB-06 18:50	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 18:50	0.57	ND	_µg/m³		1	2.3
Bromodichloromethane	27-FEB-06 18:50	0.0779	ND	ppb v/v		1	0.5
Bromodichloromethane	27-FEB-06 18:50	0.52	ND	µg/m³		1	3.3
Heptane	27-FEB-06 18:50	0.101	1.0	ppb v/v		1	0.5
Heptane	27-FEB-06 18:50	0.41	4.1	μg/m ³		1	2.0
cis-1,3-Dichloropropene	27-FEB-06 18:50	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 18:50	0.48	ND	µg/m ³		1 .	2.3
4-Methy1-2-Pentanone	27-FEB-06 18:50	0.116	ND	ppb v/v		1	0.5
4-Methyl-2-Pentanone	27-FEB-06 18:50	0,48	ND	µg/m³		1	2.0
Toluene	27-FEB-06 18:50	0.115	6.9	ppb v/v		1	0.5
Toluene	27-FEB-06 18:50	0.43	26.	µg/m³		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 18:50	0.130	ND	ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 18:50	0.59	ND	µg/m³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 18:50	0.0972	ND	ppb v/v		1	0.5
1,1,2-Trichloroethane	27-FEB-06 18:50	0.53	ND	µg/m³		1	2.7
Tetrachloroethene	27-FEB-06 18:50	0.0847	ND	ppb v/v		_ 1	0.5
Tetrachloroethene	27-FEB-06 18:50	0.57	ND	µg/m³		1	3.4
2-Hexanone	27-FEB-06 18:50	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 18:50	0.56	ND	µg/m³		1	2.0
Dibromochloromethane	27-FEB-06 18:50	0.0792	ND	_ppb v/v		1	0.5
Dibromochloromethane	27-FEB-06 18:50	0.67	ND	μg/m³		1	4.2
1,2-Dibromoethane	27-FEB-06 18:50	0.119	ND	ppb v/v		1	0.5
1,2-Dibromoethane	27-FEB-06 18:50	0.91	ND	µg/m³		1	3.8
Chlorobenzene	27-FEB-06 18:50	0.0882	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 18:50	0.41	ND	μg/m ³		1	2.3
Ethylbenzene	27-FEB-06 18:50	0.150	0.87	ppb v/v		_ 1	0.5
Ethylbenzene	27-FEB-06 18:50	0.65	3.8	µg/m³		1	2.2
m,p-Xylene	27-FEB-06 18:50	0.213	3.1	ppb v/v		1	1.0
m,p-Xylene	27-FEB-06 18:50	0.92	13.	µg/m³		1	4.3
o-Xylene	27-FEB-06 18:50	0.113	1.1	ppb v/v		1	0.5
o-Xylene	27-FEB-06 18:50	0.49	4.7	µg/m³		1	2.2
Styrene	27-FEB-06 18:50	0.0748	ND	ppb v/v		1	0.5
Styrene	27-FEB-06 18:50	0.32	ND	µg/m³		1	2.1
Bromoform	27-FEB-06 18:50	0.0884	ND	ppb v/v		1.	0.5
Bromoform	27-FEB-06 18:50	0.90	ND	µg/m³		1	5.1
1,1,2,2-Tetrachloroethane	27-FEB-06 18:50	0.108	ND	ppb v/v		1.	0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 18:50	0.74	ND	µg/m³		1	3.4
Benzyl Chloride	27-FEB-06 18:50	0.136	ND	ppb v/v		1	0.5

T

FORM A (TYPE I) SINGLE METHOD ANALYSES

SAMPLE ANALYSIS DATA SHEET

S061Q0PV

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech

DCL Sample Name...: 06106637 DCL Report Group..: 061-0804-01

Analytical Results

Analytical Results									
Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL		
Benzyl Chloride	27-FEB-06 18:50	0.70	ND	µg/m ³		1	2.6		
4-Ethyl toluene	27-FEB-06 18:50	0.0983	0.29	ppb v/v	J	1	0.5		
4-Ethyl toluene	27-FEB-06 18:50	0.48	1.4	µg/m ³	J	1	2.5		
1,3,5-Trimethylbenzene	27-FEB-06 18:50	0:112	0.22	ppb v/v	J	1	0.5		
1,3,5-Trimethylbenzene	27-FEB-06 18:50	0.55	1.1	µg/m ³	J	1	2.5		
1,2,4-Trimethylbenzene	27-FEB-06 18:50	0.117	0.90	ppb v/v		1	0.5		
1,2,4-Trimethylbenzene	27-FEB-06 18:50	0.58	4.4	µg/m ³		1	2.5		
1,3-Dichlorobenzene	27-FEB-06 18:50	0.120	ND	ppb v/v		1	0.5		
1,3-Dichlorobenzene	27-FEB-06 18:50	0.72	ND	µg/m ³		1	3.0		
1,4-Dichlorobenzene	27-FEB-06 18:50	0:0987	ND	ppb v/v		1	0.5		
1,4-Dichlorobenzene	27-FEB-06 18:50	0.59	ND	µg/m ³		1	3.0		
1,2-Dichlorobenzene	27-FEB-06 18:50	0.0851	ND	ppb v/v		1	0.5		
1,2-Dichlorobenzene	27-FEB-06 18:50	0.51	ND	μg/m ³		1	3.0		
1,2,4-Trichlorobenzene	27-FEB-06 18:50	0.115	ND	ppb v/v		1	0.5		
1,2,4-Trichlorobenzene	27-FEB-06 18:50	0.85	ND	ug/m ³		1	3.7		
Hexachlorobutadiene	27-FEB-06 18:50	0.119	ND	v/v dog		1	0.5		
Hexachlorobutadiene	27-FEB-06 18:50	1.3	ND	µg/m ³		1	5.3		

÷

Tentatively Identified Compound Results

	Date				
Analyte(Retention Time)	Analyzed	Result	Units	Qual.	Dilution
Acetaldehyde(4.65)	27-FEB-06 18:50	8.0	ppb v/v	J	1
Butane(4.93)	27-FEB-06 18:50	7.2	ppb v/v	J	1
Ethanol(5.43)	27-FEB-06 18:50	25.	ppb v/v	J	1
Isopropyl Alcohol(6.08)	27-FEB-06 18:50	2.7	ppb v/v	J	1
Pentane(6.26)	27-FEB-06 18:50	7.3	ppb v/v	J	1
Pentane, 2-methyl-(7.67)	27-FEB-06 18:50	3.4	ppb v/v	J	1
Pentane, 3-methyl-(8.01)	27-FEB-06 18:50	2.3	ppb v/v	J	1
CYCLOPENTANE, METHYL-(9.10)	27-FEB-06 18:50	2.3	ppb v/v	J	1
C8 Hydrocarbon(10.62)	27-FEB-06 18:50	2.7	ppb v/v	J	1

SAMPLE ANALYSIS DATA SHEET

Date Printed..... 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number....: Yellowstone Project Sampling Site..... Not Provided Release Number....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Client Sample Name: MC220-22|107036 DCL Sample Name...: 06106638 DCL Report Group..: 061-0804-01

Matrix..... AIR Date Sampled.....: 20-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis..... XAs Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Analyte	Date	MDT	Regult	Unite	01101	Dilution	POL
Propose	27-FFR-06 10:26	0 190	24	pph u/u	gud1.	1 I	- FAP
Propene	27-FEB-06 19:20	0.100	41	000 0/0			0.5
Pichlenedifluenenethene	27-FEB-06 19:20	0.31	41.	mg/m ⁻	E		0.00
Dichlorodifluoromethane	27-FEB-06 19:20	0.0009	2.0	ppb v/v		1 1	2 5
Chloremothere	27-FEB-06 19:20	0.33	2.9	ng/m ^o		1	2.5
Chloromethane	27-FEB-06 19:20	0.249	1.6	ppb v/v			1.0
Proop 114	27-FEB-06 19:20	0.51	1.0	mg/m ²			1.0
Freen 114	27-FEB-06 19:20	1 1	ND	ppb v/v			0.5
Vinul Chlonida	27-FEB-06 19:20	0.001	ND	mg/m ²		1	3.5
Vinyi Chloride	27-FEB-06 19:26	0.301	ND	v/v			0.5
Vinyi Chioride	27-FEB-06 19:26	0.77	2.2	µg/m ³			1.3
1,3-Butadiene	27-FEB-06 19:26	0.346	3.2	ppb v/v			0.5
1, 3-Butadiene	27-FEB-06 19126	0.77	7.0	µg/m ³		-	1.1
Bromomethane	27-FEB-06 19:26	0.215	ND	ppb V/V		<u> </u>	0.5
Bromomethane	27-FEB-06 19:26	0.83	ND	μg/m³		<u> </u>	1.9
Chloroethane	27-FEB-06 19:26	0.388	ND	ppb v/v		-	0.5
Chloroethane	27-FEB-06 19:26	1.0	ND	<u>μg/m³</u>		1	1.3
Freon 11	27-FEB-06 19:26	0.0921	0.24	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 19:26	0.52	1.3	µg/m³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 19:26	0.102	ND	ppb v/v		1	0.5
Cis-1,2-Dichloroethene	27-FEB-06 19:26	0.40	ND ND	µg/m ³		<u>+</u>	2.0
Carbon Disulfide	27-FEB-06 19:26	0.111	ND	ppb v/v		-	0.5
Carbon Disulfide	27-FEB-06 19:26	0.35	ND	µg/m³			1.6
Freon 113	27-FEB-06 19:26	0.0950	ND	ppb v/v			0.5
Freon 113	27-FEB-06 19:26	0.73		µg/m³		<u> </u>	3.8
Acetone	27-FEB-06 19126	0.113	7.1	ppb v/v	-	1	0.5
Acetone Oblania	27-FEB-06 19:26	0.27	1/.	μg/m ³	-		1.2
Methylene Chloride	27-FEB-06 19126	0.168	0.28	ppb v/v	3		0.5
Methylene Chioride	27-FEB-06 19:26	0.50	0.97	µg/m ³	J	+	1./
trans-1,2-Dichloroethene	27-FEB-06 19:26	0.118	ND ND				0.5
lans-1,2-Dichloroethene	27-FEB-06 19:26	0.47	UND ND	µg/m ³			2.0
1,1-Dichioroethane	27-FEB-06 19:26	0.116	ND ND	ppp v/v		1	0.5
Yethel t Batel Bthes	27-FEB-06 19:26	0.47	UN ND	<u>μg/m³</u>		1	2.0
Methyl t-Butyl Ether	27-FEB-06 19:26	0.147	ND	ppb V/V		!	0.5
Methyl t-Butyl Sther	27-FEB-06 19:26	0.53	ND	μg/m³			1.8
Vinyl Acetate	27-FEB-06 19:26	0.133	ND	ppb v/v		1	0.5
Vinyi Acetate	27-FEB-06 19:26	0.47	ND	µg/m³		1	1.8
1,1-Dichloroethene	27-FEB-06 19:26	0.109	ND	ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 19:26	0.43	ND	µg/m ³		1	2.0
z-Butanone	27-FEB-06 19:26	0.182	0.39	_ppb v/v	J	1	0.5
2-Butanone	27-FEB-06 19:26	0.54	1.2	µg/m ³	J	1	1.5
Sthyl Acetate	27-FEB-06 19:26	0.273	ND	ppb v/v		1	0.5

Form RLIMS63A-V1.4 03030608294517 Page 25

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106638 DCL Report Group..: 061-0804-01

Analytical Results

Analyta	Date	MDT	Recult	Unite	01121	Dilution	POL
Ethul Jacksto	27_PPP_06 10.26	0.09	ND	ua/ml	guar.	J	1 0
Sthyl Acetate	27-FEB-06 19:26	0.98	7.2	µg/m ³		1	1.8
Rexane	27-FEB-06 19:26	0.121	1.3	ppb v/v			1.0
Hexane	27-FEB-06 19:26	0.43	20.	µg/m ³			1.0
Chloroform	27-FEB-06 19:26	0.115		ppb v/v		-	0.5
Chloroform	27-FEB-06 19:26	0.56	ND ND	µg/m ³			2.4
1,1,1-Trichloroethane	27-FEB-06 19:26	0.0725	ND	ppb v/v		<u> </u>	0.5
1,1,1-Trichloroethane	27-FEB-06 19:26	0.40	ND	<u>μg/m³</u>		1	2.7
Carbon Tetrachloride	27-FEB-06 19:26	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 19:26	0.41		µg/m ³			3.1
Benzene	27-FEB-06 19:26	0.102	8.6	ppb v/v		1	0.5
Benzene	27-FEB-06 19:26	0.33	28.	µg/m ³		1	1.6
Tetrahydrofuran	27-FEB-06 19:26	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 19:26	0.67	ND	µg/m ³		1	1.5
1,2-Dichloroethane	27-FEB-06 19:26	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 19:26	0.62	ND	μg/m ³		1	2.0
Cyclohexane	27-FEB-06 19:26	0.120	1.4	ppb v/v		1	0.5
Cyclohexane	27-FEB-06 19:26	0.41	4.8	µg/m³		1	1.7
Trichloroethene	27-FEB-06 19:26	0.120	ND	ppb v/v		1 .	0.5
Trichloroethene	27-FEB-06 19:26	0.64	ND	µg/m³		1	2.7
1,2-Dichloropropane	27-FEB-06 19:26	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 19:26	0.57	ND	µg/m³		1	2.3
Bromodichloromethane	27-FEB-06 19:26	0.0779	ND	ppb v/v		1	0.5
Bromodichloromethane	27-FEB-06 19:26	0.52	ND	µg/m³		1	3.3
Heptane	27-FEB-06 19:26	0.101	1.9	ppb v/v		1	0.5
Heptane	27-FEB-06 19:26	0.41	7.6	µg/m³		1	2.0
cis-1,3-Dichloropropene	27-FEB-06 19:26	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 19:26	0.48	ND	µg/m³		1	2.3
4-Methy1-2-Pentanone	27-FEB-06 19:26	0.116	ND	ppb v/v		1	0.5
4-Methy1-2-Pentanone	27-FEB-06 19:26	0.48	ND	µg/m³		1	2.0
Toluene	27-FEB-06 19:26	0.115	16.	ppb v/v		1	0.5
Toluene	27-FEB-06 19:26	0.43	59.	µg/m³		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 19:26	0.130	ND	ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 19:26	0.59	ND	µg/m³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 19:26	0.0972	ND	ppb v/v		1	0.5
1,1,2-Trichloroethane	27-FEB-06 19:26	0.53	ND	µg/m³		1	2.7
Tetrachloroethene	27-FEB-06 19:26	0.0847	ND	ppb v/v		1	0.5
Tetrachloroethene	27-FEB-06 19:26	0.57	ND	µg/m³		1	3.4
2-Hexanone	27-FEB-06 19:26	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 19:26	0.56	ND	µg/m³		1	2.0
Dibromochloromethane	27-FEB-06 19:26	0.0792	ND	ppb v/v		1	0.5
Dibromochloromethane	27-FEB-06 19:26	0.67	ND	µg/m³		1	4.2
1,2-Dibromoethane	27-FEB-06 19:26	0.119	ND	ppb v/v		1	0.5
1,2-Dibromoethane	27-FEB-06 19:26	0.91	ND	µg/m ³		1	3.8
Chlorobenzene	27-FEB-06 19:26	0.0882	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 19:26	0.41	ND	µg/m³		1	2.3
Ethylbenzene	27-FEB-06 19:26	0.150	2.1	ppb v/v		1	0.5
Ethylbenzene	27-FEB-06 19:26	0.65	9.2	µg/m³		1	2.2
m,p-Xylene	27-FEB-06 19:26	0.213	8.1	ppb v/v		1 :	1.0
m,p-Xylene	27-FEB-06 19:26	0.92	35.	µg/m³		1	4.3
o-Xylene	27-FEB-06 19:26	0.113	2.9	ppb v/v		1	0.5
o-Xylene	27-FEB-06 19:26	0.49	13.	µg/m³		1	2.2
Styrene	27-FEB-06 19:26	0.0748	0.40	ppb v/v	J	1	0.5
Styrene	27-FEB-06 19:26	0.32	1.7	µg/m ³	J	1	2.1
Bromoform	27-FEB-06 19:26	0.0884	ND	ppb v/v		1	0.5
Bromoform	27-FEB-06 19:26	0.90	ND	µg/m ³		1	5.1
1,1,2,2-Tetrachloroethane	27-FEB-06 19:26	0.108	ND	ppb v/v		1	0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 19:26	0.74	ND	µg/m³		1	3.4
Benzyl Chloride	27-FEB-06 19:26	0.136	ND	ppb v/v		1	0.5

SAMPLE ANALYSIS DATA SHEET

SOGLQOPX

DCL Sample Name...: 06106638

DCL Report Group ..: 061-0804-01

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 19:26	0.70	ND	µg/m³		1	2.6
4-Ethyl toluene	27-FEB-06 19:26	0.0983	0.74	ppb v/v		1	0.5
4-Ethyl toluene	27-FEB-06 19:26	0.48	3.6	µg/m ³		1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 19:26	0.112	0.66	ppb v/v		1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 19:26	0.55	3.2	µg/m³		1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 19:26	0.117	2.6	ppb v/v		1	0.5
1.2.4-Trimethylbenzene	27-FEB-06 19:26	0.58	13.	µg/m ³		1	2.5
1,3-Dichlorobenzene	27-FEB-06 19:26	0,120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 19:26	0.72	ND	μg/m ³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 19:26	0.0987	ND	ppb v/v		1	0.5
1.4-Dichlorobenzene	27-FEB-06 19:26	0.59	ND	µg/m³		1	3.0
1.2-Dichlorobenzene	27-FEB-06 19:26	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 19:26	0.51	ND	µg/m ³		1	3.0
1.2.4-Trichlorobenzene	27-FEB-06 19:26	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 19:26	0.85	ND	µg/m ³		1	3.7
Hexachlorobutadiene	27-FEB-06 19:26	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 19:26	1.3	ND	µg/m ³		1	5.3

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Isobutane(4.66)	27-FEB-06 19:26	16.	ppb v/v	J	1
Butane(4.92)	27-FEB-06 19:26	16.	ppb v/v	J	1
1-Butene(5.17)	27-FEB-06 19:26	2.5	ppb v/v	J	1
Ethanol(5.44)	27-FEB-06 19:26	19.	ppb v/v	J	1
Pentane(6.26)	27-FEB-06 19:26	12.	ppb v/v	J	1
BUTANE, 2,3-DIMETHYL-(7.60)	27-FEB-06 19:26	2.1	ppb v/v	J	1
Pentane, 2-methyl-(7.68)	27-FEB-06 19:26	5.3	ppb v/v	J	1
Pentane, 3-methyl-(8.02)	27-FEB-06 19:26	3.4	ppb v/v	J	1
CYCLOPENTANE, METHYL-(9.11)	27-FEB-06 19:26	3.6	ppb v/v	J	1
Pentane, 2,3-dimethy1-(10.12)	27-FEB-06 19:26	2.3	ppb v/v	J	1
Hexane, 3-methyl-(10.26)	27-FEB-06 19:26	2.3	ppb v/v	J	1
C8 Hydrocarbon(10,63)	27-FEB-06 19:26	4.3	ppb v/v	J	1

ł.

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number....: Yellowstone Project Sampling Site Not Provided Release Number.....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Preparation Group: Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume...: Not Required

Client Sample Name: MC220-B21|107024 DCL Sample Name...: 06106639 DCL Report Group ..: 061-0804-01

Matrix..... AIR Date Sampled.....: 20-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis..... XAs Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type ...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Propene	27-FEB-06 20:02	0.180	15.	ppb v/v		1	0.5
Propene	27-FEB-06 20:02	0.31	26.	µg/m ³		1	0.86
Dichlorodifluoromethane	27-FEB-06 20:02	0.0669	0.62	ppb v/v		1	0.5
Dichlorodifluoromethane	27-FEB-06 20:02	0.33	3.1	µg/m ³		1	2.5
Chloromethane	27-FEB-06 20:02	0.249	0.98	ppb v/v		1	0.5
Chloromethane	27-FEB-06 20:02	0.51	2.0	µg/m ³		1	1.0
Freon 114	27-FEB-06 20:02	0.156	ND	ppb v/v		1	0.5
Freon 114	27-FEB-06 20:02	1.1	ND	µg/m ³		1	3.5
Vinyl Chloride	27-FEB-06 20:02	0.301	ND	ppb v/v		1	0.5
Vinyl Chloride	27-FEB-06 20:02	0.77	ND	µg/m³		1	1.3
1,3-Butadiene	27-FEB-06 20:02	0.346	1.8	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 20:02	0.77	3.9	µg/m³		1	1.1
Bromomethane	27-FEB-06 20:02	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 20:02	0.83	ND	_µg/m³		1	1.9
Chloroethane	27-FEB-06 20:02	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 20:02	1.0	ND	µg/m ³		1	1.3
Freon 11	27-FEB-06 20:02	0.0921	0.25	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 20:02	0.52	1.4	µg/m³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 20:02	0.102	ND	ppb v/v		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 20:02	0.40	ND	µg/m³	L	1	2.0
Carbon Disulfide	27-FEB-06 20:02	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 20:02	0.35	ND	µg/m³		1	1.6
Freon 113	27-FEB-06 20:02	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 20:02	0.73	ND	µg/m³		1	3.8
Acetone	27-FEB-06 20:02	0.113	3.0	ppb v/v		1	0.5
Acetone	27-FEB-06 20:02	0.27	7.2	µg/m³		1	1.2
Methylene Chloride	27-FEB-06 20:02	0.168	0.35	ppb v/v	J	1	0.5
Methylene Chloride	27-FEB-06 20:02	0.58	1.2	µg/m³	J	1	1.7
trans-1,2-Dichloroethene	27-FEB-06 20:02	0.118	ND	ppb v/v		1	0.5
trans-1,2-Dichloroethene	27-FEB-06 20:02	0.47	ND	μg/m ³		1	2.0
1,1-Dichloroethane	27-FEB-06 20:02	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 20:02	0.47	ND	µg/m³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 20:02	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 20:02	0.53	ND	µg/m³		1	1.8
Vinyl Acetate	27-FEB-06 20:02	0.133	ND	_ppb v/v		1	0.5
Vinyl Acetate	27-FEB-06 20:02	0.47	ND	µg/m³		1	1.8
1,1-Dichloroethene	27-FEB-06 20:02	0.109	ND	ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 20:02	0.43	ND ·	µg/m³		1	2.0
2-Butanone	27-FEB-06 20:02	0.182	0.99	ppb v/v		1	0.5
2-Butanone	27-FEB-06 20:02	0.54	2.9	µg/m³		1	1.5
Ethyl Acetate	27-FEB-06 20:02	0.273	ND	ppb v/v		1	0.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992E-mail: lab@datachem.com

.

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 28

SO61QOPY

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106639 DCL Report Group ..: 061-0804-01

Analytical Results

Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Ethyl Acetate	27-FEB-06 20:02	0.98	ND	µg/m ³		1	1.8
Hexane	27-FEB-06 20:02	0.121	3.7	ppb v/v		1	0.5
Hexane	27-FEB-06 20:02	0.43	13.	µg/m ³		1	1.8
Chloroform	27-FEB-06 20:02	0.115	ND	ppb v/v		1	0.5
Chloroform	27-FEB-06 20:02	0.56	ND	µg/m ³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 20:02	0.0725	ND	v/v dgg		1	0.5
1,1,1-Trichloroethane	27-FEB-06 20:02	0.40	ND	ug/m ³		1	2.7
Carbon Tetrachloride	27-FEB-06 20:02	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 20:02	0.41	ND	ug/m ³		1	3.1
Benzene	27-FEB-06 20:02	0.102	4.9	ppb v/v		1	0.5
Benzene	27-FEB-06 20:02	0.33	16.	µg/m ³		1	1.6
Tetrahydrofuran	27-FEB-06 20:02	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 20:02	0.67	ND	µg/m ³		1	1.5
1,2-Dichloroethane	27-FEB-06 20:02	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 20:02	0.62	ND	µg/m ³		1	2.0
Cyclohexane	27-FEB-06 20:02	0.120	0.79	v/v dqq		1	0.5
Cyclohexane	27-FEB-06 20:02	0.41	2.7	µg/m ³		1	1.7
Trichloroethene	27-FEB-06 20:02	0.120	ND	ppb v/v		1	0.5
Trichloroethene	27-FEB-06 20:02	0.64	ND	µg/m ³		1	2.7
1,2-Dichloropropane	27-FEB-06 20:02	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 20:02	0.57	ND	µg/m ³		1	2.3
Bromodichloromethane	27-FEB-06 20:02	0.0779	ND	ppb v/v		1	0.5
Bromodichloromethane	27-FEB-06 20:02	0.52	ND	µg/m ³		1	3.3
Heptane	27-FEB-06 20:02	0.101	0.99	v/v dgg		1	0.5
Heptane	27-FEB-06 20:02	0.41	4.0	µg/m ³		1	2.0
cis-1,3-Dichloropropene	27-FEB-06 20:02	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 20:02	0.48	ND	µg/m ³		1	2.3
4-Methy1-2-Pentanone	27-FEB-06 20:02	0.116	ND	ppb v/v		1	0.5
4-Methy1-2-Pentanone	27-FEB-06 20:02	0.48	ND	µg/m³		1	2.0
Toluene	27-FEB-06 20:02	0.115	8.4	ppb v/v		1	0.5
Toluene	27-FEB-06 20:02	0.43	31.	µg/m³		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 20:02	0.130	ND	ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 20:02	0.59	ND	µg/m³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 20:02	0.0972	ND	ppb v/v		1	0.5
1,1,2-Trichloroethane	27-FEB-06 20:02	0.53	ND	µg/m³		1	2.7
Tetrachloroethene	27-FEB-06 20:02	0.0847	ND	ppb v/v		1	0.5
Tetrachloroethene	27-FEB-06 20:02	0.57	ND	µg/m³		1	3.4
2-Hexanone	27-FEB-06 20:02	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 20:02	0.56	ND	µg/m³		1	2.0
Dibromochloromethane	27-FEB-06 20:02	0.0792	ND	_ppb v/v		1	0.5
Dibromochloromethane	27-FEB-06 20:02	0.67	ND	µg/m ³		1	4.2
1,2-Dibromoethane	27-FEB-06 20:02	0.119	ND	ppb v/v		1	0.5
1,2-Dibromoethane	27-FEB-06 20:02	0.91	ND	µg/m³		1	3.8
Chlorobenzene	27-FEB-06 20:02	0.0882	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 20:02	0.41	ND	µg/m³		1	2.3
Ethylbenzene	27-FEB-06 20:02	0.150	1.1	ppb v/v		1	0.5
Ethylbenzene	27-FEB-06 20:02	0.65	4.7	µg/m ³		1	2.2
m,p-xyiene	27-FEB-06 20:02	0.213	4.6	ppb v/v		1	1.0
m,p-Xylene	27-FEB-06 20:02	0.92	20.	μg/m ³		1	4.3
o-xylene	27-FEB-06 20:02	0.113	1.7	ppb v/v		1	0.5
o-xyiene	27-FEB-06 20:02	0.49	7.4	μg/m ³		1	2.2
Styrene	27-FEB-06 20:02	0.0748	0.30	ppb v/v	J	1	0.5
Styrene	27-FEB-06 20:02	0.32	1.3	µg/m ³	J	1	2.1
Bromotorm	27-FEB-06 20:02	0.0884	ND	ppb v/v		1	0.5
Bromotorm	27-FEB-06 20:02	0.90	ND	μg/m ³	-	1	5.1
1,1,2,2-Tetrachioroethane	27-FEB-06 20:02	0.108	ND	ppb v/v		1	0.5
L, L, Z, Z-Tetrachloroethane	27-FEB-06 20:02	0.74	ND	μg/m ³		1	3,4
Benzyi Chioride	27-FEB-06 20:02	0.136	ND	ppb v/v		1	0.5

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 29

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech DCL Sample Name...: 06106639 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 20:02	0.70	ND	µg/m³		1	2.6
4-Ethyl toluene	27-FEB-06 20:02	0.0983	0.30	ppb v/v	J	1	0.5
4-Ethyl toluene	27-FEB-06 20:02	0.48	1.5	µg/m³	J	1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 20:02	0.112	0.43	ppb v/v	J	1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 20:02	0.55	2.1	µg/m ³	J	1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 20:02	0.117	1.0	ppb v/v		1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 20:02	0.58	4.9	µg/m ³		1	2.5
1,3-Dichlorobenzene	27-FEB-06 20:02	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 20:02	0.72	ND	µg/m³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 20:02	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 20:02	0.59	ND	µg/m ³		1	3.0
1,2-Dichlorobenzene	27-FEB-06 20:02	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 20:02	0.51	ND	µg/m³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 20:02	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 20:02	0.85	ND	µg/m³		1	3.7
Hexachlorobutadiene	27-FEB-06 20:02	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 20:02	1.3	ND	µg/m ³		1	5.3

Tentatively Identified Compound Results

	Date				
Analyte(Retention Time)	Analyzed	Result	Units	Qual.	Dilution
Acetaldehyde(4.65)	27-FEB-06 20:02	15.	ppb v/v	J	1
Butane(4.93)	27-FEB-06 20:02	5.9	ppb v/v	J	1
Ethanol(5.44)	27-FEB-06 20:02	17.	ppb v/v	J	1
Butane, 2-methy1-(5.84)	27-FEB-06 20:02	12.	ppb v/v	J	1
Isopropyl Alcohol(6.09)	27-FEB-06 20:02	1.6	ppb v/v	J	1
Pentane(6.25)	27-FEB-06 20:02	5.3	ppb v/v	J	1
Pentane, 2-methyl-(7.68)	27-FEB-06 20:02	2.6	ppb v/v	J	1
Pentane, 3-methyl-(8.02)	27-FEB-06 20:02	2.4	ppb v/v	J	1
1-Butano1(9.61)	27-FEB-06 20:02	5.0	ppb v/v	J	1
C8 Hydrocarbon(10.63)	27-FEB-06 20:02	2.4	ppb v/v	J	1
Pyrazine, methyl-(13.27)	27-FEB-06 20:02	2.4	ppb v/v	J	1
1,2-Benzenediamine(15.15)	27-FEB-06 20:02	2.2	ppb v/v	J	1
Unknown Oxyhydrocarbon(15.77)	27-FEB-06 20:02	3.2	ppb v/v	J	1
Limonene(17.59)	27-FEB-06 20:02	4.5	ppb v/v	J	1

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4

Date Printed.....: 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number....: Yellowstone Project Sampling Site Not Provided Release Number.....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Client Sample Name: MC220-B22|108958 DCL Sample Name...: 06106640 DCL Report Group..: 061-0804-01

Matrix..... AIR Date Sampled.....: 20-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis..... X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Decase and the second sec		MDL	Result	Units	Qual.	Dilution	PQL
riopene	27-FEB-06 20:36	0.180	11.	ppb v/v		1	0.5
Propene	27-FEB-06 20:36	0.31	: 18.	µg/m ³		1	0.86
Dichlorodifluoromethane	27-FEB-06 20:36	0.0669	0.58	ppb v/v		1	0.5
Dichlorodifluoromethane	27-FEB-06 20:36	0.33	2.8	µg/m ³		1	2.5
Chloromethane	27-FEB-06 20:36	0.249	1.3	ppb v/v		1	0.5
Chloromethane	27-FEB-06 20:36	0.51	2.7	µg/m ³		1	1.0
Freon 114	27-FEB-06 20:36	0.156	ND	ppb v/v		1	0.5
Freon 114	27-FEB-06 20:36	1.1	ND	µg/m³		1	3.5
Vinyl Chloride	27-FEB-06 20:36	0.301	ND	ppb v/v		1	0.5
Vinyl Chloride	27-FEB-06 20:36	0.77	ND	µg/m³		1	1.3
1,3-Butadiene	27-FEB-06 20:36	0.346	1.2	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 20:36	0.77	2.6	µg/m³		1	1.1
Bromomethane	27-FEB-06 20:36	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 20:36	0.83	ND	µg/m³		1	1.9
Chloroethane	27-FEB-06 20:36	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 20:36	1.0	ND	µg/m ³		1	1.3
Freon 11	27-FEB-06 20:36	0.0921	ND	ppb v/v		1	0.5
Freon 11	27-FEB-06 20:36	0.52	ND	µg/m ³		1	2.8
cis-1,2-Dichloroethene	27-FEB-06 20:36	0.102	ND	ppb v/v		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 20:36	0.40	ND	µg/m³		1	2.0
Carbon Disulfide	27-FEB-06 20:36	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 20:36	0.35	ND	µg/m ³		1	1.6
Freon 113	27-FEB-06 20:36	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 20:36	0.73	ND	µg/m ³		1	3.8
Acetone	27-FEB-06 20:36	0.113	23.	ppb v/v	E	1	0.5
Acetone	27-FEB-06 20:36	0.27	54.	µg/m ³	E	1	1.2
Methylene Chloride	27-FEB-06 20:36	0.168	0.27	ppb v/v	J	1	0.5
Methylene Chloride	27-FEB-06 20:36	0.58	0.93	µg/m ³	J	1	1.7
trans-1,2-Dichloroethene	27-FEB-06 20:36	0.118	ND	ppb v/v		1	0.5
trans-1,2-Dichloroethene	27-FEB-06 20:36	0.47	ND	µg/m ³		1	2.0
1,1-Dichloroethane	27-FEB-06 20:36	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 20:36	0.47	ND	µg/m³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 20:36	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 20:36	0.53	ND	µg/m³		1	1.8
Vinyl Acetate	27-FEB-06 20:36	0.133	ND	ppb v/v		1	0.5
Vinyl Acetate	27-FEB-06 20:36	0.47	ND	µg/m³		1	1.8
1,1-Dichloroethene	27-FEB-06 20:36	0.109	ND	ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 20:36	0.43	ND	µg/m ³		1	2.0
2-Butanone	27-FEB-06 20:36	0.182	ND	ppb v/v		1	0.5
2-Butanone	27-FEB-06 20:36	0.54	ND	µg/m ³		1	1.5
Ethyl Acetate	27-FEB-06 20:36	0.273	ND	ppb v/v		1	0.5

SAMPLE ANALYSIS DATA SHEET

S061Q0PZ

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech

DCL	Sample	Name:	06106640
DCL	Report	Group:	061-0804-01

Analytical Results

Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Ethyl Acetate	27-FEB-06 20:36	0.98	ND	µg/m ³		1	1.8
Hexane	27-FEB-06 20:36	0.121	2.1	v/v dgg		1	0.5
Hexane	27-FEB-06 20:36	0.43	7.3	ug/m ³		1	1.8
Chloroform	27-FEB-06 20:36	0.115	ND	v/v dgg		1	0.5
Chloroform	27-FEB-06 20:36	0.56	ND	ug/m ³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 20:36	0.0725	ND	ppb v/v		1	0.5
1,1,1-Trichloroethane	27-FEB-06 20:36	0.40	ND	ug/m ³		1	2.7
Carbon Tetrachloride	27-FEB-06 20:36	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 20:36	0.41	ND	ug/m ³		1	3.1
Benzene	27-FEB-06 20:36	0.102	2.5	ppb v/v		1	0.5
Benzene	27-FEB-06 20:36	0.33	7.9	ug/m ³		1	1.6
Tetrahydrofuran	27-FEB-06 20:36	0.227	ND	v/v dag		1	0.5
Tetrahydrofuran	27-FEB-06 20:36	0.67	ND	µg/m ³		1	1.5
1,2-Dichloroethane	27-FEB-06 20:36	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 20:36	0.62	ND	ug/m ³		1	2.0
Cyclohexane	27-FEB-06 20:36	0.120	ND	v/v dgg		1	0.5
Cyclohexane	27-FEB-06 20:36	0.41	ND	ug/m ³		1	1.7
Trichloroethene	27-FEB-06 20:36	0.120	ND	ppb v/v		1 .	0.5
Trichloroethene	27-FEB-06 20:36	0.64	ND	µg/m ³		1 .	2.7
1,2-Dichloropropane	27-FEB-06 20:36	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 20:36	0.57	ND	µg/m ³		1	2.3
Bromodichloromethane	27-FEB-06 20:36	0.0779	ND	ppb v/v		1	0.5
Bromodichloromethane	27-FEB-06 20:36	0.52	ND	µg/m ³		1	3.3
Heptane	27-FEB-06 20:36	0.101	0.66	ppb v/v		1	0.5
Heptane	27-FEB-06 20:36	0.41	2.7	µg/m³		1	2.0
cis-1,3-Dichloropropene	27-FEB-06 20:36	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 20:36	0.48	ND	µg/m ³		1	2.3
4-Methyl-2-Pentanone	27-FEB-06 20:36	0.116	ND	ppb v/v		1	0.5
4-Methy1-2-Pentanone	27-FEB-06 20:36	0.48	ND	µg/m³		1	2.0
Toluene	27-FEB-06 20:36	0.115	4.4	ppb v/v		1	0.5
Toluene	27-FEB-06_20:36	0.43	17.	µg/m³		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 20:36	0.130	ND	ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 20:36	0.59	ND	µg/m³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 20:36	0.0972	ND	ppb v/v		1	0.5
1,1,2-Trichloroethane	27-FEB-06 20:36	0.53	ND	µg/m³		1	2.7
Tetrachloroethene	27-FEB-06 20:36	0.0847	ND	ppb v/v		1	0.5
Tetrachloroethene	27-FEB-06 20:36	0.57	ND	μg/m ³		1	3.4
2-Hexanone	27-FEB-06 20:36	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 20:36	0.56	ND	µg/m³		1	2.0
Dibromochioromethane	27-FEB-06 20136	0.0/92	ND	ppb V/V		1	0.5
1 2 Dibromochioromethane	27-FEB-06 20136	0.67	UND III	μg/m ³			4.2
1,2-Dibromoethane	27-FEB-06 20136	0.119	ND	ppb v/v			0.5
Chlorobenzene	27-220-06 20:36	0.91	ND	ng/m ²		+	3.8
Chlorobenzene	27-FEB-06 20:36	0.0882	ND	ppb V/V			0.5
Ethulbenzene	27-FFR-06 20:36	0.41	0.61	ng/m ³			2.3
Ethylbenzene	27-FEB-06 20:36	0.65	2.7			1	2.2
m,p-Xylene	27-FEB-06 20:36	0.213	2.7	nnh y/y		1	1.0
m,p-Xvlene	27-FEB-06 20:36	0.92	12.	ug/m ³		1	4.3
o-Xylene	27-FEB-06 20:36	0.113	0.94	v/v dgg		1	0.5
o-Xylene	27-FEB-06 20:36	0.49	4.1	ug/m ³		1	2.2
Styrene	27-FEB-06 20:36	0.0748	0.14	v/v dgg	J	1	0.5
Styrene	27-FEB-06 20:36	0.32	0.61	ug/m ³	J	1	2.1
Bromoform	27-FEB-06 20:36	0.0884	ND	ppb v/v		1	0.5
Bromoform	27-FEB-06 20:36	0.90	ND	µg/m ³		1	5.1
1,1,2,2-Tetrachloroethane	27-FEB-06 20:36	0.108	ND	ppb v/v		1	0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 20:36	0.74	ND	µg/m ³		1	3.4
Benzyl Chloride	27-FEB-06 20:36	0.136	ND	ppb v/v		1	0.5

SAMPLE ANALYSIS DATA SHEET

i

ŧ.

Form RLIMS63A-V1.4 03030608294517 Page 32

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech DCL Sample Name...: 06106640 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 20:36	0.70	ND	µg/m³		1	2.6
4-Ethyl toluene	27-FEB-06 20:36	0.0983	0.26	ppb v/v	J	1	0.5
4-Ethyl toluene	27-FEB-06 20:36	0.48	1.3	μg/m ³	J	1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 20:36	0.112	0.26	ppb v/v	J	1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 20:36	0.55	1.3	µg/m ³	J	1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 20:36	0.117	0.89	ppb v/v		1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 20:36	0.58	4.4	µg/m³		1	2.5
1,3-Dichlorobenzene	27-FEB-06 20:36	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 20:36	0.72	ND	μg/m ³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 20:36	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 20:36	0.59	ND	µg/m³		1	3.0
1,2-Dichlorobenzene	27-FEB-06 20:36	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 20:36	0.51	ND	µg/m³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 20:36	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 20:36	0.85	ND	µg/m³		1	3.7
Hexachlorobutadiene	27-FEB-06 20:36	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 20:36	1.3	ND	µg/m³		1	5.3
1							

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Acetaldehyde(4.67)	27-FEB-06 20:36	46.	ppb v/v	J	1
Ethanol(5.46)	27-FEB-06 20:36	26.	ppb v/v	J	1

SAMPLE ANALYSIS DATA SHEET

S0610000

Date Printed.....: 03-MAR-06 08:29

Client Name.....: Montana Tech Client Ref Number....: Yellowstone Project Sampling Site..... Not Provided Release Number.....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

DCF	Sample Report	Name: Group:	06106641 061-0804-	01
Mati	ix Sample		AIR 20-FEB-06	00:00

Client Sample Name: MC220-B5|107042

Reporting Units...: ppb v/v Report Basis..... X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type ...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Oual.	Dilution	POL
Propene	27-FEB-06 21:10	0.180	2.3	ppb v/v		1	0.5
Propene	27-FEB-06 21:10	0.31	4.0	µg/m ³		1	0.86
Dichlorodifluoromethane	27-FEB-06 21:10	0.0669	0.59	ppb v/v		1	0.5
Dichlorodifluoromethane	27-FEB-06 21:10	0.33	2.9	µg/m ³		1	2.5
Chloromethane	27-FEB-06 21:10	0.249	0.90	ppb v/v		1	0.5
Chloromethane	27-FEB-06 21:10	0.51	1.8	µg/m ³		1	1.0
Freon 114	27-FEB-06 21:10	0.156	ND	v/v dgg		1	0.5
Freon 114	27-FEB-06 21:10	1.1	ND	µg/m ³		1	3.5
Vinyl Chloride	27-FEB-06 21:10	0.301	ND	v/v dag		1	0.5
Vinyl Chloride	27-FEB-06 21:10	0.77	ND	ug/m ³		1	1.3
1,3-Butadiene	27-FEB-06 21:10	0.346	ND	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 21:10	0.77	ND	µg/m ³		1	1.1
Bromomethane	27-FEB-06 21:10	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 21:10	0.83	ND	µg/m ³		1	1.9
Chloroethane	27-FEB-06 21:10	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 21:10	1.0	ND	µg/m ³		1	1.3
Freon 11	27-FEB-06 21:10	0.0921	0.22	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 21:10	0.52	1.3	µg/m ³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 21:10	0.102	ND	ppb v/v		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 21:10	0.40	ND	µg/m ³		1	2.0
Carbon Disulfide	27-FEB-06 21:10	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 21:10	0.35	ND	µg/m ³		1	1.6
Freon 113	27-FEB-06 21:10	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 21:10	0.73	ND	μg/m ³		1	3.8
Acetone	27-FEB-06 21:10	0.113	8.2	ppb v/v		1	0.5
Acetone	27-FEB-06 21:10	0.27	19.	μg/m ³		1	1.2
Methylene Chloride	27-FEB-06 21:10	0.168	0.30	ppb v/v	J	1	0.5
Methylene Chloride	27-FEB-06 21:10	0.58	1.0	µg/m³	J	1	1.7
trans-1,2-Dichloroethene	27-FEB-06 21:10	0.118	ND	ppb v/v		1	0.5
trans-1,2-Dichloroethene	27-FEB-06 21:10	0.47	ND	μg/m ³		1	2.0
1,1-Dichloroethane	27-FEB-06 21:10	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 21:10	0.47	ND	µg/m³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 21:10	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 21:10	0.53	ND	µg/m ³		1	1.8
Vinyl Acetate	27-FEB-06 21:10	0.133	ND	ppb v/v		1	0.5
Vinyl Acetate	27-FEB-06 21:10	0.47	ND	µg/m³		1	1.8
1,1-Dichloroethene	27-FEB-06 21:10	0.109	ND	ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 21:10	0.43	ND	µg/m ³		1	2.0
2-Butanone	27-FEB-06 21:10	0.182	ND	ppb v/v		1	0.5
2-Butanone	27-FEB-06 21:10	0.54	ND	µg/m³		1	1.5
Ethyl Acetate	27-FEB-06 21:10	0.273	ND	ppb v/v		1	0.5

Form RLIMS63A-V1.4 03030608294517 Page 34

SAMPLE ANALYSIS DATA SHEET

Client Name..... Montana Tech

DCL Sample Name...: 06106641 DCL Report Group ..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Rthul Acotato	27-FEB-06 21:10	0.98	ND	µg/m ³		1	1.8
Benyi Acetate	27-FEB-06 21:10	0.121	ND	v/v dgg		1	0.5
Veyane	27-FEB-06 21:10	0.43	ND	µg/m ³		1	1.8
Chloroform	27-FEB-06 21:10	0.115	ND	ppb v/v		1	0.5
Chloroform	27-FEB-06 21:10	0.56	ND	ug/m ³		1	2.4
1.1.1-Trichloroethane	27-FEB-06 21:10	0.0725	ND	ppb v/v		1	0.5
1,1,1-Trichloroethane	27-FEB-06 21:10	0.40	ND	µg/m ³		1	2.7
Carbon Tetrachloride	27-FEB-06 21:10	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 21:10	0.41	ND	µg/m ³		1	3.1
Benzene	27-FEB-06 21:10	0.102	0.31	ppb v/v	J	1	0.5
Benzene	27-FEB-06 21:10	0.33	0.98	µg/m ³	J	1	1.6
Tetrahudrofuran	27-FEB-06 21:10	0.227	ND	ppb v/v		1	0.5
Tetrahydrofuran	27-FEB-06 21:10	0.67	ND	µg/m ³		1	1.5
1 2 Dichlereethane	27-FEB-06 21:10	0.153	ND	ppb v/v		1	0.5
1,2-Dichloroethane	27-FEB-06 21:10	0.62	ND	ug/m ³		1	2.0
Curleheusne	27-FEB-06 21:10	0.120	ND	ppb v/v	-	1	0.5
Cusloberane	27-FEB-06 21:10	0.41	ND	ug/m ³		1	1.7
Trichloroethene	27-FEB-06 21:10	0.120	ND	v/v dag		1	0.5
Trichlereethene	27-FEB-06 21:10	0.64	ND	ug/m ³		1	2.7
1.2-Dichloropropage	27-FEB-06 21:10	0.123	ND	v/v dag		1	0.5
1. 2-Dichloropropane	27-FEB-06 21:10	0.57	ND	µg/m ³		1	2.3
Bromodichloromethane	27-FEB-06 21:10	0.0779	ND	ppb v/v		1	0.5
Bromodichloromethane	27-FEB-06 21:10	0.52	ND	µg/m ³		1	3.3
Hentane	27-FEB-06 21:10	0.101	ND	ppb v/v		1	0.5
Ventane	27-FEB-06 21:10	0.41	ND	µq/m ³		1	2.0
cis-1.3-Dichloropropene	27-FEB-06 21:10	0.106	ND	v/v dgg		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 21:10	0.40	ND	µg/m ³		1	2.3
4-Methyl-2-Pentanone	27-FEB-06 21:10	0.116	ND	ppb v/v		1	0.5
4-Methyl-2-Pentanone	27-FEB-06 21:10	0.48	ND	µg/m³		1	2,0
Toluene	27-FEB-06 21:10	0.115	0.77	ppb v/v		1	0.5
Toluene	27-FEB-06 21:10	0.43	2.9	µg/m ³		1	1.9
trans-1.3-Dichloropropene	27-FEB-06 21:10	0.130	ND	ppb v/v		1	0.5
trans-1.3-Dichloropropene	27-FEB-06 21:10	0.59	ND	µg/m ³		1	2.3
1.1.2-Trichloroethane	27-FEB-06 21:10	0.0972	ND	ppb v/v		1	0.5
1,1,2-Trichloroethane	27-FEB-06 21:10	0.53	ND	µg/m³		1	2.7
Tetrachloroethene	27-FEB-06 21:10	0.0847	ND	ppb v/v		1	0.5
Tetrachloroethene	27-FEB-06 21:10	0.57	ND	µg/m³		1	3.4
2-Hexanone	27-FEB-06 21:10	0.136	ND	ppb v/v		1	0.5
2-Hexanone	27-FEB-06 21:10	0.56	ND	µg/m ³		1	2.0
Dibromochloromethane	27-FEB-06 21:10	0.0792	ND	ppb v/v		1	0.5
Dibromochloromethane	27-FEB-06 21:10	0.67	ND	µg/m³		1	4.2
1,2-Dibromoethane	27-FEB-06 21:10	0.119	ND	ppb v/v		1	0.5
1,2-Dibromoethane	27-FEB-06 21:10	0.91	ND	µg/m³		1	3.8
Chlorobenzene	27-FEB-06 21:10	0.0882	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 21:10	0.41	ND	µg/m³		1	2.3
Ethylbenzene	27-FEB-06 21:10	0.150	ND	ppb v/v		1	0.5
Ethylbenzene	27-FEB-06 21:10	0.65	ND	µg/m ³		1	2.2
m,p-Xylene	27-FEB-06 21:10	0.213	0.29	ppb v/v	J	1	1.0
m,p-Xylene	27-FEB-06 21:10	0.92	1.3	µg/m ³	J	1	4.3
o-Xylene	27-FEB-06 21:10	0.113	ND	ppb v/v		1	0.5
o-Xylene	27-FEB-06 21:10	0.49	ND	µg/m ³		1	2.2
Styrene	27-FEB-06 21:10	0.0748	ND	ppb v/v		1	0.5
Styrene	27-FEB-06 21:10	0.32	ND	µg/m ³		1	2.1
Bromoform	27-FEB-06 21:10	0.0884	ND	ppb v/v		1	0.5
Bromoform	27-FEB-06 21:10	0.90	ND	µg/m ³		1	5.1
1,1,2,2-Tetrachloroethane	27-FEB-06 21:10	0.108	ND	ppb v/v		1	0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 21:10	0.74	ND	µg/m ³		1	3.4
Benzyl Chloride	27-FEB-06 21:10	0.136	ND	ppb v/v		1	0.5
			-				

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992E-mail: lab@datachem.com

Form RLIMS63A-V1.4 03030608294517 Page 35

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech DCL Sample Name...: 06106641 DCL Report Group..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 21:10	0.70	ND	µg/m ³		1	2.6
4-Ethyl toluene	27-FEB-06 21:10	0.0983	ND	ppb v/v		1	0.5
4-Ethyl toluene	27-FEB-06 21:10	0.48	ND	μg/m ³		1	2.5
1.3.5-Trimethylbenzene	27-FEB-06 21:10	0.112	ND	ppb v/v		1	0.5
1.3.5-Trimethylbenzene	27-FEB-06 21:10	0.55	ND	μg/m ³		1	2.5
1.2.4-Trimethylbenzene	27-FEB-06 21:10	0.117	0.15	ppb v/v	J	1	0.5
1 2 4-Trimethylbenzene	27-FEB-06 21:10	0.58	0.73	µg/m ³	J	1	2.5
1.3-Dichlorobenzene	27-FEB-06 21:10	0.120	ND	ppb v/v		1	0.5
1.3-Dichlorobenzene	27-FEB-06 21:10	0.72	ND	µg/m ³		1	3.0
1.4-Dichlorobenzene	27-FEB-06 21:10	0.0987	ND	ppb v/v		1	0.5
1.4-Dichlorobenzene	27-FEB-06 21:10	0.59	ND	µg/m ³		1	3.0
1 2-Dichlorobenzene	27-FEB-06 21:10	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 21:10	0.51	ND	µg/m ³		1	3.0
1,2 A-Trichlorobenzene	27-FEB-06 21:10	0.115	ND	ppb v/v		1	0.5
1 2 A-Trichlorobenzene	27-FEB-06 21:10	0.85	ND	µg/m ³		1	3.7
Vewaghlerebutadiene	27-FEB-06 21:10	0.119	ND	ppb v/v		1	0.5
Heyachlorobutadiene	27-FEB-06 21:10	1.3	ND	µg/m ³		1	5.3

Tentatively Identified Compound Results

Analyte (Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Ethanol(5.46)	27-FEB-06 21:10	5.2	ppb v/v	J	1

Date Printed.....: 03-MAR-06 08:29

Client Ref Number....: Yellowstone Project Sampling Site Not Provided

Release Number.....: Yellowstone Project Date Received.....: 23-FEB-06 00:00

Client Name..... Montana Tech

DCL Preparation Group: Not Applicable

Date Prepared.....: Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL

Net Weight/Volume....: Not Required

FORM A (TYPE I) SINGLE METHOD ANALYSES

SAMPLE ANALYSIS DATA SHEET

Client Sample Name: MC220-51|107037 DCL Sample Name...: 06106642

> Matrix....: AIR Date Sampled..... 20-FEB-06 00:00 Reporting Units... ppb v/v Report Basis..... X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

DCL Report Group ..: 061-0804-01

Analytical Results

Analyte	Date	MDT	Recult	Unite	01101	Dilution	DOT
Propene	27-FEB-06 21:48	0.180	2.5	pph y/y	Quar.	Difución	FV1
Propene	27-FEB-06 21:48	0.31	4.3	000 V/V		1	0.5
Dichlorodifluoromethane	27-FEB-06 21:48	0.0669	0.58	nnh y/y		1	0.60
Dichlorodifluoromethane	27-FEB-06 21:48	0.33	2.8	ug/m ³		1	2.5
Chloromethane	27-FEB-06 21:48	0.249	0.52	nnh y/y		1	0.5
Chloromethane	27-FEB-06 21:48	0.51	1.1	ug/m3		1	1.0
Freon 114	27-FEB-06 21:48	0.156	ND	nnh y/y		1	0.5
Freon 114	27-FEB-06 21:48	1.1	ND	ug/m3		1	3.5
Vinvl Chloride	27-FEB-06 21:48	0.301	ND	ppb v/v		1	0.5
Vinvl Chloride	27-FEB-06 21:48	0.77	ND	ua/m3			1.3
1,3-Butadiene	27-FEB-06 21:48	0.346	ND	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 21:48	0.77	ND	ug/m ³		1	1.1
Bromomethane	27-FEB-06 21:48	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 21:48	0.83	ND	ug/m ³		1	1.9
Chloroethane	27-FEB-06 21:48	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 21:48	1.0	ND	ug/m ³		1	1.3
Freon 11	27-FEB-06 21:48	0.0921	0.20	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 21:48	0.52	1.1	µg/m ³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 21:48	0.102	ND	v/v dgg		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 21:48	0.40	ND	µg/m ³		1 .	2.0
Carbon Disulfide	27-FEB-06 21:48	0.111	ND	ppb v/v	-	1	0.5
Carbon Disulfide	27-FEB-06 21:48	0.35	ND	ug/m ³		1	1.6
Freon 113	27-FEB-06 21:48	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 21:48	0.73	ND	µg/m ³		1	3.8
Acetone	27-FEB-06 21:48	0.113	16.	ppb v/v		1	0.5
Acetone	27-FEB-06 21:48	0.27	38.	µg/m ³		1	1.2
Methylene Chloride	27-FEB-06 21:48	0.168	0.33	ppb v/v	J	1	0.5
Methylene Chloride	27-FEB-06 21:48	0.58	1.2	µg/m ³	J	1	1.7
trans-1,2-Dichloroethene	27-FEB-06 21:48	0.118	ND	ppb v/v		1	0.5
trans-1,2-Dichloroethene	27-FEB-06 21:48	0.47	ND	µg/m³		1	2.0
1,1-Dichloroethane	27-FEB-06 21:48	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 21:48	0.47	ND	µg/m ³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 21:48	0.147	ND	ppb v/v		1	0.5
Methyl t-Butyl Ether	27-FEB-06 21:48	0.53	ND	µg/m ³		1	1.8
Vinyl Acetate	27-FEB-06 21:48	0.133	ND	ppb v/v		1	0.5
Vinyl Acetate	27-FEB-06 21:48	0.47	ND	µg/m³		1	1.8
1,1-Dichloroethene	27-FEB-06 21:48	0.109	ND	ppb v/v		1	0.5
1,1-Dichloroethene	27-FEB-06 21:48	0.43	ND	µg/m³		1	2.0
2-Butanone	27-FEB-06 21:48	0.182	ND	ppb v/v		1	0.5
2-Butanone	27-FEB-06 21:48	0.54	ND	µg/m³		1	1.5
Ethyl Acetate	27-FEB-06 21:48	0.273	ND	ppb v/v		1	0.5

Form RLIMS63A-V1.4 03030608294517 Page 37

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech

DCL Sample Name...: 06106642 DCL Report Group ..: 061-0804-01

Analytical Results

Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	POL
Ethyl Acetate	27-FEB-06 21:48	0.98	ND	ug/m ³		1	1.8
Hexane	27-FEB-06 21:48	0.121	ND	ppb v/v		1	0.5
Hexane	27-FEB-06 21:48	0.43	ND	ug/m ³		1	1.8
Chloroform	27-FEB-06 21:48	0.115	ND	ppb v/v		- 1	0.5
Chloroform	27-FEB-06 21:48	0.56	ND	ug/m ³		1	2.4
1,1,1-Trichloroethane	27-FEB-06 21:48	0.0725	ND	ppb v/v		1	0.5
1,1,1-Trichloroethane	27-FEB-06 21:48	0.40	ND	ug/m ³		1	2.7
Carbon Tetrachloride	27-FEB-06 21:48	0.0657	ND	ppb v/v		1	0.5
Carbon Tetrachloride	27-FEB-06 21:48	0.41	ND	ug/m3		î	3.1
Benzene	27-FEB-06 21:48	0.102	0.49	ppb v/v	J	1	0.5
Benzene	27-FEB-06 21:48	0.33	1.6	ug/m ³	J	1	1.6
Tetrahydrofuran	27-FEB-06 21:48	0.227	ND	ppb v/v		ī	0.5
Tetrahydrofuran	27-FEB-06 21:48	0.67	ND	ug/m ³		î	1.5
1,2-Dichloroethane	27-FEB-06 21:48	0.153	ND	ppb v/v		ī	0.5
1,2-Dichloroethane	27-FEB-06 21:48	0.62	ND	ug/m ³		1	2.0
Cyclohexane	27-FEB-06 21:48	0.120	ND	ppb v/v		1	0.5
Cyclohexane	27-FEB-06 21:48	0.41	ND	ug/m ³		ī	1.7
Trichloroethene	27-FEB-06 21:48	0.120	ND	v/v dag		1	0.5
Trichloroethene	27-FEB-06 21:48	0.64	ND	µg/m ³		1	2.7
1,2-Dichloropropane	27-FEB-06 21:48	0.123	ND	ppb v/v		1	0.5
1,2-Dichloropropane	27-FEB-06 21:48	0.57	ND	µg/m ³		1	2.3
Bromodichloromethane	27-FEB-06 21:48	0.0779	ND	ppb v/v	-	1	0.5
Bromodichloromethane	27-FEB-06 21:48	0.52	ND	µg/m ³		1	3.3
Heptane	27-FEB-06 21:48	0.101	ND	ppb v/v	-	1	0.5
Heptane	27-FEB-06 21:48	0.41	ND	µg/m ³		1	2.0
cis-1,3-Dichloropropene	27-FEB-06 21:48	0.106	ND	ppb v/v		1	0.5
cis-1,3-Dichloropropene	27-FEB-06 21:48	0.48	ND	µg/m ³		1	2.3
4-Methyl-2-Pentanone	27-FEB-06 21:48	0.116	ND	ppb v/v		1	0.5
4-Methyl-2-Pentanone	27-FEB-06 21:48	0.48	ND	µg/m ³		1	2.0
Toluene	27-FEB-06 21:48	0.115	2.2	ppb v/v		1	0.5
Toluene	27-FEB-06 21:48	0.43	8.2	µg/m ³		1	1.9
trans-1,3-Dichloropropene	27-FEB-06 21:48	0.130	ND	_ppb v/v		1	0.5
trans-1,3-Dichloropropene	27-FEB-06 21:48	0.59	ND	µg/m³		1	2.3
1,1,2-Trichloroethane	27-FEB-06 21:48	0.0972	ND	ppb v/v		1	0.5
1,1,2-Trichloroethane	27-FEB-06 21:48	0.53	ND	µg/m³		1	2.7
Tetrachloroethene	27-FEB-06 21:48	0.0847	0.31	ppb v/v	J	1	0.5
Tetrachloroethene	27-FEB-06 21:48	0.57	2.1	µg/m ³	J	1	3.4
2-Hexanone	27-FEB-06 21:48	0.136	ND	ppb v/v		1	0.5
2-Aexanone	27-FEB-06 21:48	0.56	ND	<u>μg/m³</u>		1	2.0
Dibromochloromethane	27-FEB-06 21:48	0.0792	ND	ppb v/v		1	0.5
1.2-Dibromochioromechane	27-FEB-06 21:48	0.67	ND	μg/m ³		1	4.2
1.2-Dibromoethane	27-FFR-06 21-40	0.119	ND	ppb v/v		1	0.5
Chlorobenzene	27-FEB-06 21:40	0.91	DM	μg/m ³		1	3.8
Chlorobenzene	27-PPP-06 21:48	0.0002	ND	ppb v/v		<u> </u>	0.5
Ethylbenzene	27-FEB-06 21.40	0.150	0.25	nph	7		2.3
Ethylbenzene	27-FEB-06 21:48	0.65	1 1	UD V/V	J 7	·	0.5
m,p-Xvlene	27-FEB-06 21:40	0.213	1.0	nph u/m	J		2.2
m,p-Xylene	27-FEB-06 21:48	0.92	4.3	UD V/V		1	
o-Xylene	27-FEB-06 21:48	0,113	0.39	nnh y/y	.7		
o-Xylene	27-FEB-06 21:48	0.49	1.7	1. a /m3		1	2.2
Styrene	27-FEB-06 21:48	0.0748	ND	ppb y/y			0.5
Styrene	27-FEB-06 21:48	0.32	ND	ug/m ³		1	2.1
Bromoform	27-FEB-06 21:48	0.0884	ND	ppb v/v		1	0.5
Bromoform	27-FEB-06 21:48	0.90	ND	ug/m3			5 1
1,1,2,2-Tetrachloroethane	27-FEB-06 21:48	0.108	ND	ppb v/v			0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 21:48	0.74	ND	ug/m ³		1	3.4
Benzyl Chloride	27-FEB-06 21:48	0.136	ND	v/v dqq		1	0.5

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 03-MAR-06 08:29 Client Name..... Montana Tech DCL Sample Name...: 06106642 DCL Report Group..: 061-0804-01

Analytical Results

	Dete						
Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 21:48	0.70	ND	µg/m³		1	2.6
4-Ethyl toluene	27-FEB-06 21:48	0.0983	ND	ppb v/v		1	0.5
4-Ethyl toluene	27-FEB-06 21:48	0.48	ND	μg/m ³		1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 21:48	0.112	ND	ppb v/v		1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 21:48	0.55	ND	µg/m³		1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 21:48	0.117	0.41	ppb v/v	J	1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 21:48	0.58	2.0	µg/m³	J	1	2.5
1,3-Dichlorobenzene	27-FEB-06 21:48	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 21:48	0.72	ND	µg/m ³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 21:48	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 21:48	0.59	ND	µg/m ³		1	3.0
1,2-Dichlorobenzene	27-FEB-06 21:48	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 21:48	0.51	ND	µg/m ³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 21:48	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 21:48	0.85	ND	µg/m³		1	3.7
Hexachlorobutadiene	27-FEB-06 21:48	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 21:48	1.3	ND	µg/m³		1	5.3

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Ethanol(5.44)	27-FEB-06 21:48	18.	ppb v/v	J	1
Isopropyl Alcohol(6.08)	27-FEB-06 21:48	3.2	ppb v/v	J	1

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 39

Date Printed.....: 03-MAR-06 08:29

Client Name..... Montana Tech Client Ref Number....: Yellowstone Project Sampling Site Not Provided Release Number.....: Yellowstone Project

Date Received.....: 23-FEB-06 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Clie	ent Sam	ple Name	:	MC220-PR5 1089	61
DCL	Sample	Name	:	06106643	•
DCL	Report	Group	:	061-0804-01	

Matrix..... AIR Date Sampled....: 20-FEB-06 00:00 Reporting Units...: ppb v/v Report Basis.....: X As Received Dried

DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type ...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

Analytical Results

Inclute	Date	WDT	Beenlt	Thite	0	B11064.00	DOT
Analyte	Analyzed	MDL	Result	Units	Quar.	DILUCION	- PQL
Propene	27-FEB-06 22:26	0.180	8.5	ppb v/v		1	0.5
Propene	27-FEB-06 22:26	0.31	. 15.	µg/m³	-	1	0.86
Dichlorodifluoromethane	27-FEB-06 22:26	0.0669	0.49	ppb v/v	J	1	0.5
Dichlorodifluoromethane	27-FEB-06 22:26	0.33	2.4	µg/m³	J	1	2.5
Chloromethane	27-FEB-06 22:26	0.249	0.90	ppb v/v		1	0.5
Chloromethane	27-FEB-06 22:26	0.51	1.9	µg/m³		1	1.0
Freon 114	27-FEB-06 22:26	0,156	ND	ppb v/v		1	0.5
Freon 114	27-FEB-06 22:26	1.1	ND	μg/m ³		1	3.5
Vinyl Chloride	27-FEB-06 22:26	0.301	ND	ppb v/v		1	0.5
Vinyl Chloride	27-FEB-06 22:26	0.77	ND	µg/m³		1	1.3
1,3-Butadiene	27-FEB-06 22:26	0.346	ND ·	ppb v/v		1	0.5
1,3-Butadiene	27-FEB-06 22:26	0.77	ND	µg/m³		1	1.1
Bromomethane	27-FEB-06 22:26	0.215	ND	ppb v/v		1	0.5
Bromomethane	27-FEB-06 22:26	0.83	ND	µg/m³		1	1.9
Chloroethane	27-FEB-06 22:26	0.388	ND	ppb v/v		1	0.5
Chloroethane	27-FEB-06 22:26	1.0	ND	µg/m³		1	1.3
Freon 11	27-FEB-06 22:26	0.0921	0.23	ppb v/v	J	1	0.5
Freon 11	27-FEB-06 22:26	0.52	1.3	µg/m ³	J	1	2.8
cis-1,2-Dichloroethene	27-FEB-06 22:26	0.102	ND	ppb v/v		1	0.5
cis-1,2-Dichloroethene	27-FEB-06 22:26	0.40	ND	µg/m ³		1	2.0
Carbon Disulfide	27-FEB-06 22:26	0.111	ND	ppb v/v		1	0.5
Carbon Disulfide	27-FEB-06 22:26	0.35	ND	µg/m ³		1	1.6
Freon 113	27-FEB-06 22:26	0.0950	ND	ppb v/v		1	0.5
Freon 113	27-FEB-06 22:26	0.73	ND	µg/m ³		1	3.8
Acetone	27-FEB-06 22:26	0.113	3.7	v/v dgg		1	0.5
Acetone	27-FEB-06 22:26	0.27	8.8	µg/m ³		1	1.2
Methylene Chloride	27-FEB-06 22:26	0.168	0.44	ppb v/v	J	1	0.5
Methylene Chloride	27-FEB-06 22:26	0.58	1.5	ug/m ³	·J	1	1.7
trans-1,2-Dichloroethene	27-FEB-06 22:26	0.118	ND	ppb v/v		1	0.5
trans-1,2-Dichloroethene	27-FEB-06 22:26	0.47	ND	µg/m ³		1	2.0
1,1-Dichloroethane	27-FEB-06 22:26	0.116	ND	ppb v/v		1	0.5
1,1-Dichloroethane	27-FEB-06 22:26	0.47	ND	ug/m ³		1	2.0
Methyl t-Butyl Ether	27-FEB-06 22:26	0.147	ND	v/v dgg		1	0.5
Methyl t-Butyl Ether	27-FEB-06 22:26	0.53	ND	ug/m ³		1	1.8
Vinvl Acetate	27-FEB-06 22:26	0.133	ND	v/v dag		1	0.5
Vinvl Acetate	27-FEB-06 22:26	0.47	ND	ua/m3		1	1.8
1.1-Dichloroethene	27-FEB-06 22:26	0,109	ND	nnh y/y		1	0.5
1.1-Dichlorgethene	27-FEB-06 22:26	0.43	ND	ug/m3		1	2.0
2-Butanone	27-FEB-06 22:26	0.182	ND	nnh y/y		1 1	0.5
2-Butanone	27-FEB-06 22:26	0.54	ND '	ug/m3		1	1.5
Ethyl Acetate	27-FEB-06 22:26	0.273	ND	pph y/y		1	0.5
and a mootage	127 200 00 22120	312/3	, AD	220 4/4			0.5

D A Sorenson Company

FORM A (TYPE I) SINGLE METHOD ANALYSES

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03030608294517 Page 40

Date Printed..... 03-MAR-06 08:29 Client Name..... Montana Tech

DCL Sample Name...: 06106643 DCL Report Group..: 061-0804-01

Analytical Results

Ethyl Acetate 27-FEB-06 221.26 0.98 ND µg/m ¹ 1 1 1 0.5 Hexane 27-FEB-06 221.26 0.43 4.6 µg/m ¹ 1 0.5 Chooroform 27-FEB-06 221.26 0.15 Dbp V/V 1 0.5 Chooroform 27-FEB-06 221.26 0.075 ND Pbp V/V 1 0.5 1/1/1-Trichloroethane 27-FEB-06 221.26 0.075 ND Pbp V/V 1 0.5 1/1/1-Trichloroethane 27-FEB-06 221.26 0.40 ND µg/m ¹ 1 0.5 Carbon Tetrachioride 27-FEB-06 221.26 0.41 ND Pbp V/V 1 0.5 Partardotoruran 27-FEB-06 221.26 0.42 ND Pbb V/V 1 0.5 1/2-Dichioroethane 27-FEB-06 221.26 0.51 ND Pbb V/V 1 0.5 1/2-Dichioroethane 27-FEB-06 221.26 0.51 ND </th <th>Analyte</th> <th>Analyzed</th> <th>MDL</th> <th>Result</th> <th>Units</th> <th>Qual.</th> <th>Dilution</th> <th>PQL</th>	Analyte	Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Hexane 27-F28-06 21:26 0.121 1.4 PDD V/V 1 0.5 Choroform 27-F28-06 22:126 0.135 0.52 PDD V/V 1 0.5 Choroform 27-F28-06 22:126 0.556 2.5 µ/m ¹ 1 2.4 1.1.1-7richloroethane 27-F28-06 22:126 0.463 ND µ/m ¹ 1 2.7 Caboa Tetrachorolde 27-F28-06 22:126 0.404 ND µ/m ¹ 1 2.7 Caboa Tetrachorolde 27-F28-06 22:126 0.402 2.0 PDb V/V 1 0.5 Benzene 27-F28-06 22:126 0.427 ND PDb V/V 1 0.5 Tetrahydrofuran 27-F28-06 22:126 0.452 ND PDb V/V 1 0.5 Cycloherane 27-F28-06 22:126 0.421 ND PDb V/V 1 0.5 Cycloherane 27-F28-06 22:126 0.421 ND PDb V/V	Ethyl Acetate	27-FEB-06 22:26	0.98	ND	µg/m ³		1	1.8
Herane 27-FEB-06 21:26 0.43 4.8 fig/m² 1 1.1 Chloroform 27-FEB-06 22:126 0.155 0.52 Dbb v/v 1 0.5 Chloroform 27-FEB-06 22:126 0.552 ND Dpb v/v 1 0.5 1.1.1-Trichloroethane 27-FEB-06 22:126 0.632 ND Dpb v/v 1 0.5 Carbon Tetrachioride 27-FEB-06 22:126 0.643 ND Pbb v/v 1 0.5 Carbon Tetrachioride 27-FEB-06 22:126 0.613 ND Pbb v/v 1 0.5 Carbon Tetrachioride 27-FEB-06 22:126 0.617 ND Pbb v/v 1 0.5 Tetrahydrofuran 27-FEB-06 22:126 0.61 ND Pbb v/v 1 0.5 1.2-Dichioroethane 27-FEB-06 22:126 0.61 ND Pbb v/v 1 0.5 1.2-Dichioroethane 27-FEB-06 22:126 0.610 ND	Hexane	27-FEB-06 22:26	0.121	1.4	ppb v/v		1	0.5
Chloroform 27-FFB-06 22126 0.52 ppb p/v 1 0.5 Chloroform 27-FFB-06 22126 0.52 2.5 10/2 1 2.4 1.1.1-Trichoroethane 27-FFB-06 22126 0.40 ND ppb 1 2.7 Carbon Tetrachloride 27-FFB-06 22126 0.40 ND ppb 1 0.5 Danzene 27-FFB-06 22126 0.41 ND ppb 1 0.5 Danzene 27-FFB-06 22126 0.33 B0 ppb 1 1.6 Tetrachioride 27-FFB-06 22126 0.13 B0 ppb 1 1.6 Tetrachioride 27-FFB-06 22126 0.12 ND ppb v/v 1 0.5 Cyclobexane 27-FFB-06 22126 0.12 ND ppb v/v 1 0.5 Trichoroethane 27-FFB-06 22126 0.12 ND ppb v/v 1 0.5	Hexane	27-FEB-06 22:26	0.43	4.8	ug/m ³		1	1.8
Chloroform 27-FFB-06 22:26 0.56 2.5 10/1-7 1.1.1Trichloroethane 27-FFB-06 22:26 0.40 ND 19/8' 1 0.5 1.1.1Trichloroethane 27-FFB-06 22:26 0.40 ND 19/8' 1 0.5 Carbon Tetrachloride 27-FFB-06 22:26 0.41 ND 19/8' 1 0.5 Benzene 27-FFB-06 22:26 0.33 6.3 19/2' 1 0.5 Benzene 27-FFB-06 22:26 0.53 ND 19/2' 1 0.5 Tetrahydrofuran 27-FFB-06 22:26 0.53 ND 19/2' 1 0.5 1.2-Dichloroethane 27-FFB-06 22:26 0.52 ND 19/2'' 1 2.5 1.2-Dichloroethane 27-FFB-06 22:26 0.57 ND 10/2'' 1 2.7 1.2-Dichloroethane 27-FFB-06 22:26 0.57 ND 10/2'' 1 2.7	Chloroform	27-FEB-06 22:26	0.115	0.52	v/v dag		1	0.5
1,1,1,-Trichloroethane 27-FEB-06 22126 0.40 ND ppb v/v 1 0.5 Carbon Tetrachloride 27-FEB-06 22126 0.40 ND ppb v/v 1 0.5 Carbon Tetrachloride 27-FEB-06 22126 0.41 ND ig/s ² 1 3.1 Benzene 27-FEB-06 22126 0.102 2.0 ppb v/v 1 0.5 Tetrahdrofuran 27-FEB-06 22126 0.53 ND ppb v/v 1 0.5 Tetrahdrofuran 27-FEB-06 22126 0.613 ND ppd v/v 1 0.5 1/2-Dichloroethane 27-FEB-06 22126 0.62 ND ig/a ³ 1 1.7 1/2-Dichloroethane 27-FEB-06 22126 0.41 ND ppb v/v 1 0.5 Cyclohexane 27-FEB-06 22126 0.44 1.8 ig/a ³ 1 1.7 7 Trichloroethane 27-FEB-06 22126 0.57 ND ppb v/v 1 0.5 1/2-Dichloropropane 27-FEB-06 22126 0.57 ND ppb v/v 1 0.5 1/2-Dichloropropane <td>Chloroform</td> <td>27-FEB-06 22:26</td> <td>0.56</td> <td>2.5</td> <td>µg/m³</td> <td></td> <td>1</td> <td>2.4</td>	Chloroform	27-FEB-06 22:26	0.56	2.5	µg/m ³		1	2.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1,1-Trichloroethane	27-FEB-06 22:26	0.0725	ND	ppb v/v		1	0.5
	1,1,1-Trichloroethane	27-FEB-06 22:26	0.40	ND	µg/m ³		1	2.7
Carbon Tetrachloride 27-FFB-06 22126 0.41 ND µµ/m ¹ 1 3.1. Benzene 27-FFB-06 22126 0.32 2.0 ppb v/v 1 0.5 Benzene 27-FFB-06 22126 0.33 6.3 µµ/m ² 1 1.5 Tetrahydrofuran 27-FFB-06 22126 0.67 ND µµ/m ² 1 0.5 1.2-Dichloroethane 27-FFB-06 22126 0.62 ND µµ/m ² 1 0.5 Cyclohexane 27-FFB-06 22126 0.612 ND µµ/m ² 1 0.5 Cyclohexane 27-FFB-06 22126 0.41 ND µµ/m ² 1 0.5 Cyclohexane 27-FFB-06 22126 0.64 1.8 µµ/m ² 1 2.7 1.2-Dichloropropane 27-FFB-06 22126 0.57 ND µµ/m ² 1 2.3 Bromodichloromethane 27-FFB-06 22126 0.512 ND µµ/m ² 1 3.3 Heptane 27-FFB-06 22126 0.52 ND µµ/m ²	Carbon Tetrachloride	27-FEB-06 22:26	0.0657	ND	ppb v/v		1	0.5
Benzene 27-FEB-06 22126 0.102 2.0 ppb v/v 1 0.5 Benzene 27-FEB-06 22126 0.227 ND ppb v/v 1 0.5 Tetrahydrofuran 27-FEB-06 22126 0.627 ND ppb v/v 1 0.5 Iz2-Dichloroethane 27-FEB-06 22126 0.153 ND ppb v/v 1 0.5 Iz2-Dichloroethane 27-FEB-06 22126 0.120 ND ppb v/v 1 0.5 Cyclohexane 27-FEB-06 22126 0.120 ND ppb v/v 1 0.5 Cyclohexane 27-FEB-06 22126 0.120 ND pb v/v J 1 0.7 Iz2-Dichloropropane 27-FEB-06 22126 0.123 ND pb v/v J 0.5 Bromodichloromethane 27-FEB-06 22126 0.123 ND pb v/v J 0.5 Bromodichloropropane 27-FEB-06 22126 0.101 ND pb v/v J 0.5 Jeromodichloropropane 27-FEB-05 22126 0.101 <td>Carbon Tetrachloride</td> <td>27-FEB-06 22:26</td> <td>0.41</td> <td>ND</td> <td>µg/m³</td> <td></td> <td>1</td> <td>3.1</td>	Carbon Tetrachloride	27-FEB-06 22:26	0.41	ND	µg/m³		1	3.1
Benzene $27-FEB-05$ $22:26$ 0.33 (6.3) (μ_q/m^2) 1 1.6 Tetrahydrofuran $27-FEB-05$ $22:26$ 0.67 ND μ_q/m^2 1 0.5 $1,2-0$ ichloroethane $27-FEB-05$ $22:26$ 0.67 ND μ_q/m^2 1 0.5 $1,2-0$ ichloroethane $27-FEB-05$ $22:126$ 0.62 ND μ_g/m^2 1 2.0 $Cyclohexane27-FEB-0522:1260.62ND\mu_g/m^210.5Cyclohexane27-FEB-0522:1260.41ND\mu_g/m^210.5Cyclohexane27-FEB-0522:1260.641.8\mu_g/m^210.51,2-0ichloropropane27-FEB-0522:1260.57ND\mu_g/m^212.31,2-0ichloropropane27-FEB-0522:1260.52ND\mu_g/m^210.51,2-0ichloropropane27-FEB-0522:1260.512ND\mu_g/m^210.51,2-0ichloropropene27-FEB-0522:1260.410ND\mu_g/m^210.51,2-0ichloropropene27-FEB-0522:1260.410ND\mu_g/m^210.51,2-0ichloropropene27-FEB-0522:1260.410ND\mu_g/m^210.51,2-2reithanone27-FEB-0522:1260.410ND\mu_g/m^210.51,2-2reithanone27-FEB-$	Benzene	27-FEB-06 22:26	0.102	2.0	ppb v/v		1	0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzene	27-FEB-06 22:26	0.33	6.3	µg/m³		1	1.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tetrahydrofuran	27-FEB-06 22:26	0.227	ND	ppb v/v		1	0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tetrahydrofuran	27-FEB-06 22:26	0.67	ND	µg/m³		1	1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dichloroethane	27-FEB-06 22:26	0.153	ND	ppb v/v		1	0.5
$ \begin{array}{c} Cyclohexame & 27-F2B-06 \ 22126 \ 0.120 & ND \ ppb y/v & 1 \ 0.5 \\ Cyclohexame & 27-F2B-06 \ 22126 \ 0.41 & ND \ \mu y/m^3 & 1 \ 1.7 \\ Trichlorostheme & 27-F2B-06 \ 22126 \ 0.130 \ 0.34 \ ppb y/v \ J \ 1 \ 0.5 \\ Trichlorostheme & 27-F2B-06 \ 22126 \ 0.164 \ 1.8 \ \mu y/m^3 \ J \ 1 \ 2.7 \\ 1,2-Dichloropropane & 27-F2B-06 \ 22126 \ 0.157 \ ND \ \mu y/w \ 1 \ 0.5 \\ Honditoropropane & 27-F2B-06 \ 22126 \ 0.179 \ ND \ \mu y/w \ 1 \ 0.5 \\ Honditoropropane & 27-F2B-06 \ 22126 \ 0.179 \ ND \ \mu y/w \ 1 \ 0.5 \\ Honditoropropane & 27-F2B-06 \ 22126 \ 0.161 \ ND \ \mu y/w \ 1 \ 0.5 \\ Honditoropropane & 27-F2B-06 \ 22126 \ 0.161 \ ND \ \mu y/w \ 1 \ 0.5 \\ Honditoropropane & 27-F2B-06 \ 22126 \ 0.161 \ ND \ \mu y/w \ 1 \ 0.5 \\ Honditoropropane & 27-F2B-06 \ 22126 \ 0.161 \ ND \ \mu y/w \ 1 \ 0.5 \\ Honditoropropane & 27-F2B-06 \ 22126 \ 0.161 \ ND \ \mu y/w \ 1 \ 0.5 \\ Cis-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.164 \ ND \ \mu y/w \ 1 \ 0.5 \\ Cis-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.164 \ ND \ \mu y/w \ 1 \ 0.5 \\ Cis-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.18 \ ND \ \mu y/w \ 1 \ 0.5 \\ Cis-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.18 \ ND \ \mu y/w \ 1 \ 0.5 \\ Toluene \ 27-F2B-06 \ 22126 \ 0.18 \ ND \ \mu y/w \ 1 \ 0.5 \\ Toluene \ 27-F2B-06 \ 22126 \ 0.18 \ ND \ \mu y/w \ 1 \ 0.5 \\ Trans-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.19 \ ND \ ppb v/v \ 1 \ 0.5 \\ Team-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.19 \ ND \ ppb v/v \ 1 \ 0.5 \\ Team-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.19 \ ND \ ppb v/v \ 1 \ 0.5 \\ Team-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.19 \ ND \ ppb v/v \ 1 \ 0.5 \\ Team-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.19 \ ND \ ppb v/v \ 1 \ 0.5 \\ Team-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.130 \ ND \ ppb v/v \ 1 \ 0.5 \\ Team-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.57 \ ND \ ppb v/v \ 1 \ 0.5 \\ Team-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.57 \ ND \ ppb v/v \ 1 \ 0.5 \\ Team-1, 3-Dichloropropane \ 27-F2B-06 \ 22126 \ 0.57 \ ND \ ppb v/v \ 1 \ 0.5 \\ Tetrachloroethane \ 27-F2B-06 \ 22126$	1,2-Dichloroethane	27-FEB-06 22:26	0.62	ND	µg/m³		1	2.0
$ \begin{array}{c} Cyclohexane & 27-FEB-06 \ 22126 \ 0.140 \ ND \ \mu g/m^3 & 1 \ 1.7 \\ Trichlorostheme & 27-FEB-06 \ 22126 \ 0.120 \ 0.34 \ \mu pb \ v'v \ J \ 1 \ 0.5 \\ Trichlorostheme & 27-FEB-06 \ 22126 \ 0.120 \ 0.34 \ \mu pb \ v'v \ J \ 1 \ 0.5 \\ 1,2-Dichloropropane & 27-FEB-06 \ 22126 \ 0.123 \ ND \ \mu pb \ v'v \ 1 \ 0.5 \\ 1,2-Dichlorostheme & 27-FEB-06 \ 22126 \ 0.127 \ ND \ \mu g/m^3 \ 1 \ 0.5 \\ Bromodichloromethame & 27-FEB-06 \ 22126 \ 0.120 \ ND \ \mu g/m^3 \ 1 \ 0.5 \\ Bromodichloromethame & 27-FEB-06 \ 22126 \ 0.120 \ ND \ \mu g/m^3 \ 1 \ 0.5 \\ Bromodichloromethame & 27-FEB-06 \ 22126 \ 0.101 \ ND \ \mu g/m^3 \ 1 \ 0.5 \\ Cia-1, 3-Dichloropropene & 27-FEB-06 \ 22126 \ 0.101 \ ND \ \mu g/m^3 \ 1 \ 2.0 \\ Cia-1, 3-Dichloropropene \ 27-FEB-06 \ 22126 \ 0.106 \ ND \ \mu g/v'v \ 1 \ 0.5 \\ Cia-1, 3-Dichloropropene \ 27-FEB-06 \ 22126 \ 0.160 \ ND \ \mu g/v'v \ 1 \ 0.5 \\ Cia-1, 3-Dichloropropene \ 27-FEB-06 \ 22126 \ 0.161 \ ND \ \mu g/v'v \ 1 \ 0.5 \\ Cia-1, 3-Dichloropropene \ 27-FEB-06 \ 22126 \ 0.161 \ ND \ \mu g/v'v \ 1 \ 0.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.161 \ ND \ \mu g/w^3 \ 1 \ 2.0 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.133 \ 1.6 \ \mu g/w^3 \ 1 \ 2.0 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.133 \ 1.6 \ \mu g/w^3 \ 1 \ 2.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.133 \ ND \ \mu g/v'v \ 1 \ 0.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.133 \ ND \ \mu g/w^3 \ 1 \ 2.3 \\ 1,1,2-Trichloropropene \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w^3 \ 1 \ 2.3 \\ 1,1,2-Trichloropropene \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w^3 \ 1 \ 2.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w^3 \ 1 \ 2.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w^3 \ 1 \ 2.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w^3 \ 1 \ 2.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w^3 \ 1 \ 2.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w^3 \ 1 \ 2.5 \\ Toluene \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w \ 1 \ 0.5 \\ Toluenchane \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w^3 \ 1 \ 2.5 \\ Toluenchane \ 27-FEB-06 \ 22126 \ 0.153 \ ND \ \mu g/w \ 1 \ 0.5 \ 1.2 \ 1.5 \ 1.2 \ 1.5 \ 1.5 \ 1.5 \ 1.5 \ 1.5 \ 1.$	Cyclohexane	27-FEB-06 22:26	0.120	ND	ppb v/v		1	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cyclohexane	27-FEB-06 22:26	0.41	ND	µg/m³		_ 1	1.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trichloroethene	27-FEB-06 22:26	0.120	0.34	ppb v/v	J	1	0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trichloroethene	27-FEB-06 22:26	0.64	1.8	μg/m ³	J	1	2.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dichloropropane	27-FEB-06 22:26	0.123	ND	ppb v/v		1	0.5
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	1,2-Dichloropropane	27-FEB-06 22:26	0.57	ND	μg/m ³		1	2.3
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Bromodichloromethane	27-FEB-06 22:26	0.0779	ND	ppb v/v		1	0.5
Heptane $27-FEB-06$ $22:26$ 0.101 ND ppb y/v 1 0.5 $cis-1,3-Dichloropropene27-FEB-0622:260.461ND\mu g/m^312.0cis-1,3-Dichloropropene27-FEB-0622:260.466ND\mu g/m^312.3d-Methyl-2-Pentanone27-FEB-0622:260.466ND\mu g/m^312.3d-Methyl-2-Pentanone27-FEB-0622:260.116ND\mu g/m^312.0Toluene27-FEB-0622:260.448ND\mu g/m^312.0Toluene27-FEB-0622:260.4313.\mu g/m^311.9trans-1,3-Dichloropropene27-FEB-0622:260.4313.\mu g/m^312.31,1,2-Trichloroethane27-FEB-0622:260.59ND\mu g/m^312.31,1,2-Trichloroethane27-FEB-0622:260.55ND\mu g/m^312.31,1,2-Trichloroethane27-FEB-0622:260.55ND\mu g/m^312.7Tetrachloroethene27-FEB-0622:260.0972NDppbv/v10.52-FEB-0622:260.0972NDppbv/v10.52-Hexanone27-FEB-0622:260.0974ND\mu g/m^312.72-Hexanone27-FEB-0622:26$	Bromodichloromethane	27-FEB-06 22:26	0.52	ND	µg/m ³		1	3.3
Heptane $27-FBD-06$ $22:26$ 0.41 ND $\mu g/m^3$ 1 2.0 $cis-1, 3-Dichloropropene27-FED-0622:260.106NDppb v/v10.55d-Methyl-2-Pentanone27-FED-0622:260.116ND\mu g/m^312.3d-Methyl-2-Pentanone27-FED-0622:260.48ND\mu g/m^312.0Toluene27-FED-0622:260.48ND\mu g/m^310.5Toluene27-FED-0622:260.4313.\mu g/m^310.5trans-1, 3-Dichloropropene27-FED-0622:260.4313.\mu g/m^312.7trans-1, 3-Dichloropropene27-FED-0622:260.59ND\mu g/m^312.31, 1, 2-Trichloroethane27-FED-0622:260.597ND\mu g/m^312.7Tetrachloroethane27-FED-0622:260.597ND\mu g/m^312.7Tetrachloroethane27-FED-0622:260.574.5\mu g/m^312.7Tetrachloroethane27-FED-0622:260.56ND\mu g/m^312.01, 1, 2-Trichloroethane27-FED-0622:260.574.5\mu g/m^312.0Tetrachloroethane27-FED-0622:260.574.5\mu g/m^310.51, 2-Dibromo$	Heptane	27-FEB-06 22:26	0.101	ND	ppb v/v		1	0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Heptane	27-FEB-06 22:26	0.41	ND	µg/m³		1	2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cis-1,3-Dichloropropene	27-FEB-06 22:26	0.106	ND	ppb v/v		1	0.5
	cis-1,3-Dichloropropene	27-FEB-06 22:26	0.48	ND	µg/m³		1	2.3
4-Methyl-2-Pentanone27-FEB-0622:260.48ND $\mu g/m^3$ 12.0Toluene27-FEB-0622:260.1153.6ppb v/v10.5Toluene27-FEB-0622:260.4313. $\mu g/m^3$ 11.9trans-1,3-Dichloropropene27-FEB-0622:260.59ND $\mu g/m^3$ 12.31,1,2-Trichloroethane27-FEB-0622:260.0972NDppb v/v10.5Tetrachloroethane27-FEB-0622:260.08470.66ppb v/v10.5Tetrachloroethane27-FEB-0622:260.08470.66ppb v/v10.5Z-Hexanone27-FEB-0622:260.136ND $\mu g/m^3$ 12.0Dibromochloromethane27-FEB-0622:260.55ND $\mu g/m^3$ 12.0Dibromochloromethane27-FEB-0622:260.56ND $\mu g/m^3$ 14.21,2-Dibromochloromethane27-FEB-0622:260.57ND $\mu g/m^3$ 14.21,2-Dibromochloromethane27-FEB-0622:260.91ND $\mu g/m^3$ 14.21,2-Dibromochloromethane27-FEB-0622:260.91ND $\mu g/m^3$ 13.8Chlorobenzene27-FEB-0622:260.91ND $\mu g/m^3$ 14.21,2-Dibromochloromethane27-FEB-0622:260.91ND $\mu g/m^3$ 12.3Chlorobenzene27-FEB-06	4-Methy1-2-Pentanone	27-FEB-06 22:26	0.116	ND	_ppb v/v		1	0.5
Tolluene $27-FEB-06$ $22:26$ 0.415 3.6 ppb v/v1 0.5 trans-1,3-Dichloropropene $27-FEB-06$ $22:26$ 0.43 13 $\mu g/m^3$ 1 0.5 trans-1,3-Dichloropropene $27-FEB-06$ $22:26$ 0.130 NDppb v/v1 0.5 trans-1,3-Dichloropropene $27-FEB-06$ $22:26$ 0.130 ND $\mu g/m^3$ 1 2.3 1,1,2-Trichloroethane $27-FEB-06$ $22:26$ 0.0972 ND $\mu g/m^3$ 1 2.7 Tetrachloroethane $27-FEB-06$ $22:26$ 0.53 ND $\mu g/m^3$ 1 3.4 2-Hexanone $27-FEB-06$ $22:26$ 0.57 4.5 $\mu g/m^3$ 1 0.5 2-Hexanone $27-FEB-06$ $22:26$ 0.56 ND $\mu g/m^3$ 1 0.5 2-Hexanone $27-FEB-06$ $22:26$ 0.56 ND $\mu g/m^3$ 1 4.2 0 lb comochloromethane $27-FEB-06$ $22:26$ 0.57 ND $\mu g/m^3$ 1 4.2 1,2-Dibromochlaromethane $27-FEB-06$ $22:26$ 0.57 ND $\mu g/m^3$ 1 4.2 1,2-Dibromethane $27-FEB-06$ $22:26$ 0.57 ND $\mu g/m^3$ 1 3.8 Chlorobenzene $27-FEB-06$ $22:26$ 0.57 ND $\mu g/m^3$ 1 3.8 Chlorobenzene $27-FEB-06$ $22:26$ 0.51 ND $\mu g/m^3$ 1 2.3 Ethylbenzene $27-FEB-06$ $22:26$ 0.16	4-Methy1-2-Pentanone	27-FEB-06 22:26	0.48	ND	µg/m³		1	2.0
Tollene17-FEB-06 221260.4313. $\mu g/m^3$ 11.9trans-1,3-Dichloropropene27-FEB-06 221260.130ND $\mu g/m^3$ 12.31,1,2-Trichloroethane27-FEB-06 221260.0972ND $\mu g/m^3$ 12.31,1,2-Trichloroethane27-FEB-06 221260.0972ND $\mu g/m^3$ 12.312.7Tetrachloroethane27-FEB-06 221260.136ND $\mu g/m^3$ 12.72-Hexanone27-FEB-06 221260.65ND $\mu g/m^3$ 12.0Dibromochloromethane27-FEB-06 221260.67ND $\mu g/m^3$ 12.0Dibromochloromethane27-FEB-06 221260.67ND $\mu g/m^3$ 12.0Dibromochloromethane27-FEB-06 221260.67ND $\mu g/m^3$ 12.0Dibromochloromethane27-FEB-06 221260.67 <td>Toluene</td> <td>27-FEB-06 22:26</td> <td>0.115</td> <td>3.6</td> <td>ppb v/v</td> <td></td> <td>1</td> <td>0.5</td>	Toluene	27-FEB-06 22:26	0.115	3.6	ppb v/v		1	0.5
$\begin{array}{c class-1,3-Dicholoropropene} & 27-FEB-06 22126 0.130 & ND & ppb v/v & 1 & 0.5 \\ \hline trans-1,3-Dicholoropropene & 27-FEB-06 22126 0.59 & ND & \mu g/m^3 & 1 & 2.3 \\ 1,1,2-Trichloroethane & 27-FEB-06 22126 0.0972 & ND & ppb v/v & 1 & 0.5 \\ \hline 1,1,2-Trichloroethane & 27-FEB-06 22126 0.0947 & 0.66 & ppb v/v & 1 & 0.5 \\ \hline tetrachloroethene & 27-FEB-06 22126 0.57 & 4.5 & \mu g/m^3 & 1 & 2.7 \\ \hline Tetrachloroethene & 27-FEB-06 22126 0.57 & 4.5 & \mu g/m^3 & 1 & 2.7 \\ \hline Tetrachloroethene & 27-FEB-06 22126 0.57 & 4.5 & \mu g/m^3 & 1 & 2.0 \\ \hline Dibromochloromethane & 27-FEB-06 22126 0.55 & ND & \mu g/m^3 & 1 & 2.0 \\ \hline Dibromochloromethane & 27-FEB-06 22126 0.0792 & ND & ppb v/v & 1 & 0.5 \\ \hline Dibromochloromethane & 27-FEB-06 22126 0.0792 & ND & \mu g/m^3 & 1 & 4.2 \\ 0.5 & 1.2-Dibromoethane & 27-FEB-06 22126 0.0119 & ND & \mu g/m^3 & 1 & 3.8 \\ \hline Chlorobenzene & 27-FEB-06 22126 0.0082 & ND & ppb v/v & 1 & 0.5 \\ 1,2-Dibromoethane & 27-FEB-06 22126 0.0119 & ND & \mu g/m^3 & 1 & 2.3 \\ \hline Chlorobenzene & 27-FEB-06 22126 0.0102 & ND & ppb v/v & 1 & 0.5 \\ \hline thylbenzene & 27-FEB-06 22126 0.0119 & ND & \mu g/m^3 & 1 & 2.3 \\ \hline Sthylbenzene & 27-FEB-06 22126 0.150 & 0.37 & ppb v/v & 1 & 0.5 \\ \hline Strytene & 27-FEB-06 22126 0.113 & 0.52 & ppb v/v & 1 & 0.5 \\ \hline dropp v/1 & 0.5 & 0.37 & ppb v/v & 1 & 1.0 \\ \hline dropp v/1 & 0.5 & 0.41 & ND & \mu g/m^3 & 1 & 2.2 \\ \hline dropp v/1 & 0.5 & 0.37 & ppb v/v & 1 & 0.5 \\ \hline Strytene & 27-FEB-06 22126 0.0262 & ND & ppb v/v & 1 & 0.5 \\ \hline dropp v/1 & 0.5 & 0.37 & ppb v/v & 1 & 0.5 \\ \hline dropp v/1 & 0.5 & 0.78 & \mu g/m^3 & 1 & 2.2 \\ \hline dropp v/1 & 0.5 & 0.78 & \mu g/m^3 & 1 & 2.2 \\ \hline dropp v/1 & 0.5 & 0.78 & \mu g/m^3 & 1 & 2.2 \\ \hline dropp v/1 & 0.5 & 0.78 & \mu g/m^3 & 1 & 2.2 \\ \hline dropp v/v & 1 & 0.5 & 0.51 & 0.52 & ppb v/v & 1 & 0.5 \\ \hline dropp v/1 & 0.5 & 0.748 & 0.18 & ppb v/v & 1 & 0.5 \\ \hline dropp v/2 & 0.22126 & 0.0748 & 0.18 & ppb v/v & 1 & 0.5 \\ \hline dropp v/2 & 0.22126 & 0.0748 & 0.18 & ppb v/v & 1 & 0.5 \\ \hline dropp v/2 & 1 & 0.5 & 0.51 & 0.51 & 0.51 & 0.51 & 0.51 & 0.51 & 0.51 \\ \hline dropp v/v & 1 & 0.5 & 0.51 & 0.51 & 0.51 & 0.51 & 0.51 & 0.51 $	Toluene	27-FEB-06 22:26	0.43		µg/m³		1	1.9
$\begin{array}{c classer} 1.73-D1CH10FOPDPene & 2/2+2E0-06 22126 0.0972 & ND & \mu g/m^3 & 1 & 2.3 \\ 1,1,2-Trichloroethane & 27-FEB-06 22126 0.0972 & ND & ppb v/v & 1 & 0.5 \\ 1,1,2-Trichloroethane & 27-FEB-06 22126 0.0847 0.666 & ppb v/v & 1 & 0.5 \\ \hline retrachloroethene & 27-FEB-06 22126 0.57 & 4.5 & \mu g/m^3 & 1 & 2.7 \\ \hline retrachloroethene & 27-FEB-06 22126 0.57 & 4.5 & \mu g/m^3 & 1 & 0.5 \\ \hline 2-Hexanone & 27-FEB-06 22126 0.57 & 4.5 & \mu g/m^3 & 1 & 0.5 \\ \hline 2-Hexanone & 27-FEB-06 22126 0.57 & 4.5 & \mu g/m^3 & 1 & 0.5 \\ \hline 2-Hexanone & 27-FEB-06 22126 0.57 & ND & \mu g/m^3 & 1 & 0.5 \\ \hline 1bromochloromethane & 27-FEB-06 22126 0.677 & ND & \mu g/m^3 & 1 & 4.2 \\ \hline 1,2-Dibromochlaromethane & 27-FEB-06 22126 0.677 & ND & \mu g/m^3 & 1 & 4.2 \\ \hline 1,2-Dibromoethane & 27-FEB-06 22126 0.911 & ND & \mu g/m^3 & 1 & 3.8 \\ \hline Chlorobenzene & 27-FEB-06 22126 0.911 & ND & \mu g/m^3 & 1 & 3.8 \\ \hline Chlorobenzene & 27-FEB-06 22126 0.911 & ND & \mu g/m^3 & 1 & 3.8 \\ \hline Chlorobenzene & 27-FEB-06 22126 0.119 & ND & \mu g/m^3 & 1 & 3.8 \\ \hline Chlorobenzene & 27-FEB-06 22126 0.911 & ND & \mu g/m^3 & 1 & 2.3 \\ \hline Bthylbenzene & 27-FEB-06 22126 0.912 & ND & ppb v/v & 1 & 0.5 \\ \hline Styrene & 27-FEB-06 22126 0.92 & 6.2 & \mu g/m^3 & 1 & 2.2 \\ \hline 3romoform & 27-FEB-06 22126 0.92 & 6.2 & \mu g/m^3 & 1 & 2.2 \\ \hline 3romoform & 27-FEB-06 22126 0.92 & 6.2 & \mu g/m^3 & 1 & 2.2 \\ \hline 3romoform & 27-FEB-06 22126 0.92 & 0.18 & ND & pb v/v & 1 & 0.5 \\ \hline 3romoform & 27-FEB-06 22126 0.92 & 6.2 & \mu g/m^3 & 1 & 2.2 \\ \hline 3romoform & 27-FEB-06 22126 0.92 & 6.2 & \mu g/m^3 & 1 & 2.1 \\ \hline 3romoform & 27-FEB-06 22126 0.92 & 0.18 & ND & pb v/v & 1 & 0.5 \\ \hline 3romoform & 27-FEB-06 22126 0.90 & ND & \mu g/m^3 & 1 & 2.1 \\ \hline 3romoform & 27-FEB-06 22126 0.90 & ND & \mu g/m^3 & 1 & 2.1 \\ \hline 3romoform & 27-FEB-06 22126 0.90 & ND & \mu g/m^3 & 1 & 5.1 \\ 1,1,2,2-Tetrachloroethane & 27-FEB-06 22126 0.90 & ND & \mu g/m^3 & 1 & 5.1 \\ 1,1,2,2-Tetrachloroethane & 27-FEB-06 22126 0.90 & ND & \mu g/m^3 & 1 & 5.1 \\ 1,1,2,2-Tetrachloroethane & 27-FEB-06 22126 0.90 & ND & \mu g/m^3 & 1 & 5.1 \\ \hline 3romoform & 27-FEB-06 22126 0.90 & ND & \mu g/m^3 & 1 & 5$	trans-1,3-Dichloropropene	27-FEB-06 22:26	0.130	ND	ppb v/v		1	0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 maistichioropropene	27-FEB-06 22:26	0.59	ND	µg/m³		1	2.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1,2-Trichloroethane	27-FEB-06 22:26	0.0972	ND	ppb v/v		1	0.5
Tetrachoroethene $27-FEB-06$ 22126 0.084 0.166 ppb v/v 1 0.5 2-Hexanone $27-FEB-06$ 22126 0.57 4.5 $\mu g/m^2$ 1 3.4 2-Hexanone $27-FEB-06$ 22126 0.56 ND ppb v/v 1 0.5 2-Hexanone $27-FEB-06$ 22126 0.56 ND $\mu g/m^3$ 1 2.0 Dibromochloromethane $27-FEB-06$ 22126 0.67 ND $\mu g/m^3$ 1 4.2 1,2-Dibromochlaromethane $27-FEB-06$ 22126 0.67 ND $\mu g/m^3$ 1 4.2 1,2-Dibromoethane $27-FEB-06$ 22126 0.91 ND $\mu g/m^3$ 1 3.8 Chlorobenzene $27-FEB-06$ 22126 0.91 ND $\mu g/m^3$ 1 3.8 Chlorobenzene $27-FEB-06$ 22126 0.160 ND $\mu g/m^3$ 1 2.3 Ethylbenzene $27-FEB-06$ 22126 0.150 0.37 ppb v/v 1 0.5 Ethylbenzene $27-FEB-06$ 22126 0.150 0.37 ppb v/v 1 0.5 Ethylbenzene $27-FEB-06$ 22126 0.213 1.4 ppb v/v 1 0.5 Ethylbenzene $27-FEB-06$ 22126 0.221 1.4 ppb v/v 1 0.5 Stylene $27-FEB-06$ 22126 0.92 6.2 $\mu g/m^3$ 1 2.2 Stylene $27-FEB-06$ 22126	Totrachleveethere	27-FEB-06 22:26	0.53	ND	µg/m³		1	2.7
Tetrachaone $27-FEB-06$ 22126 0.57 4.5 $\mu q/m^3$ 1 3.4 $2-\text{Hexanone}$ $27-FEB-06$ 22126 0.136 ND $ppb v/v$ 1 0.5 $2-\text{Hexanone}$ $27-FEB-06$ 22126 0.56 ND $\mu g/m^3$ 1 2.0 Dibromochloromethane $27-FEB-06$ 22126 0.67 ND $\mu g/m^3$ 1 4.2 $1,2-Dibromoethane27-FEB-06221260.67ND\mu g/m^314.21,2-Dibromoethane27-FEB-06221260.91ND\mu g/m^310.51,2-Dibromoethane27-FEB-06221260.91ND\mu g/m^310.5Chlorobenzene27-FEB-06221260.921ND\mu g/m^310.5Chlorobenzene27-FEB-06221260.302ND\mu g/m^312.3Ethylbenzene27-FEB-06221260.571.6\mu g/m^312.2m, p-Xylene27-FEB-06221260.571.6\mu g/m^312.2m, p-Xylene27-FEB-06221260.2131.4ppb v/v10.55Styrene27-FEB-06221260.2131.4ppb v/v10.55Styrene27-FEB-06221260.926.2\mu g/m^312.2Styrene27-FEB-06221260.926.2\mu g/m^31$	Tetrachioroethene	27-FEB-06 22:26	0.0847	0.66	ppb v/v		1	0.5
2-Hexanone 2/-FEB-06 22:26 0.136 ND ppb v/v 1 0.5 Dibromochloromethane 27-FEB-06 22:26 0.55 ND µg/m³ 1 2.0 Dibromochloromethane 27-FEB-06 22:26 0.0792 ND ppb v/v 1 0.5 Dibromochloromethane 27-FEB-06 22:26 0.67 ND µg/m³ 1 4.2 1,2-Dibromoethane 27-FEB-06 22:26 0.118 ND µg/m³ 1 0.5 1,2-Dibromoethane 27-FEB-06 22:26 0.91 ND µg/m³ 1 3.8 Chlorobenzene 27-FEB-06 22:26 0.41 ND µg/m³ 1 2.3 Ethylbenzene 27-FEB-06 22:26 0.41 ND µg/m³ 1 2.2 m,p-Xylene 27-FEB-06 22:26 0.41 ND µg/m³ 1 2.2 m,p-Xylene 27-FEB-06 22:26 0.41 ND µg/m³ 1 <td>2-Hevenene</td> <td>27-FEB-06 22:26</td> <td>0.57</td> <td>4.5</td> <td>μg/m³</td> <td></td> <td>1</td> <td>3.4</td>	2-Hevenene	27-FEB-06 22:26	0.57	4.5	μg/m ³		1	3.4
12-reperform	2-Hevanone	27-FEB-06 22126	0.136	ND	ppb v/v		1	0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibromochloromothano	27-FEB-06 22126	0.56	ND	µg/m³		1	2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibromochloromethane	27-FEB-06 22126	0.0792	ND	ppb v/v		1	0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2-Dibromoethane	27-FFR-06 22:25	0.110	ND	µg/m ³		1	4.2
11 12 12 12 12 13 8 Chlorobenzene 27-FEB-06 22:26 0.0882 ND ppb v/v 1 0.5 Chlorobenzene 27-FEB-06 22:26 0.0882 ND ppb v/v 3 1 2.3 Ethylbenzene 27-FEB-06 22:26 0.55 1.6 μg/m³ 3 1 2.2 n,p-Xylene 27-FEB-06 22:26 0.55 1.6 μg/m³ 3 1 2.2 n,p-Xylene 27-FEB-06 22:26 0.52 ppb v/v 1 1.0 m,p-Xylene 27-FEB-06 22:26 0.52 ppb v/v 1 0.5 o-Xylene 27-FEB-06 22:26 0.49 2.3 µg/m³ 1 2.2 Styrene 27-FEB-06 22:26 0.32 0.78 µg/m³ 1 2.1 Bromoform 27-FEB-06 22:26 0.3084 ND ppb v/v 1 0.5 Bromof	1.2-Dibromoethane	27-FFB-06 22:25	0.01	ND	ppb v/v		1	0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorobenzene	27-FEB-06 22:26	0.0882	ND	pph u/-			3.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorobenzene	27-FEB-06 22:26	0.41	ND			- +	0.5
Ethylbenzene 27-FEB-06 22:126 0.137 ppb v/v J 1 0.5 m,p-Xylene 27-FEB-06 22:26 0.65 1.6 µq/m ³ J 1 2.2 m,p-Xylene 27-FEB-06 22:26 0.92 6.2 µq/m ³ J 1 2.2 m,p-Xylene 27-FEB-06 22:26 0.92 6.2 µq/m ³ 1 4.3 o-Xylene 27-FEB-06 22:26 0.49 2.3 µq/m ³ 1 2.2 o-Xylene 27-FEB-06 22:26 0.49 2.3 µq/m ³ 1 2.2 Styrene 27-FEB-06 22:26 0.0748 0.18 ppb v/v J 0.5 Styrene 27-FEB-06 22:26 0.32 0.78 µq/m ³ J 2.1 Bromoform 27-FEB-06 22:26 0.90 ND µg/m ³ J 2.1 Bromoform 27-FEB-06 22:26 0.90 ND µg/m ³ J<	Ethylbenzene	27-FEB-06 22:26	0.150	0.37	nph u/m	7	1	2.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ethylbenzene	27-FEB-06 22:26	0.65	1.6				2 2
m,p-Xylene27-FEB-0622:260.926.2 $\mu g/m^3$ 11.0o-Xylene27-FEB-0622:260.926.2 $\mu g/m^3$ 14.3o-Xylene27-FEB-0622:260.1130.52ppb.v/v10.5o-Xylene27-FEB-0622:260.492.3 $\mu g/m^3$ 12.2Styrene27-FEB-0622:260.07480.18ppb v/vJ10.5Styrene27-FEB-0622:260.07480.18ppb v/vJ10.5Bromoform27-FEB-0622:260.0884NDppb v/vJ10.5Bromoform27-FEB-0622:260.90ND $\mu g/m^3$ 15.11,1,2,2-Tetrachloroethane27-FEB-0622:260.74ND $\mu g/m^3$ 13.4Benzyl Chloride27-FEB-0622:260.136NDppb v/v10.5	m,p-Xvlene	27-FEB-06 22:26	0.213	1.4	nph u/m			1.0
o-Xylene27-FEB-0622:260.1130.52pp/m²14.3o-Xylene27-FEB-0622:260.492.3 $\mu g/m^3$ 12.2Styrene27-FEB-0622:260.07480.18ppb v/vJ10.5Styrene27-FEB-0622:260.320.78 $\mu g/m^3$ J2.1Bromoform27-FEB-0622:260.0884NDppb v/vJ0.5Bromoform27-FEB-0622:260.0108ND $\mu g/m^3$ J2.1Bromoform27-FEB-0622:260.108NDppb v/v10.51,1,2,2-Tetrachloroethane27-FEB-0622:260.108NDppb v/v10.51,1,2,2-Tetrachloroethane27-FEB-0622:260.74ND $\mu g/m^3$ 13.4Benzyl Chloride27-FEB-0622:260.136NDppb v/v10.5	m,p-Xylene	27-FEB-06 22:26	0.92	6.2	10/m3			4.2
o-Xylene 27-FEB-06 22:26 0.49 2.3 $\mu g/m^3$ 1 2.2 Styrene 27-FEB-06 22:26 0.49 2.3 $\mu g/m^3$ 1 2.2 Styrene 27-FEB-06 22:26 0.0748 0.18 ppb v/v J 1 0.5 Styrene 27-FEB-06 22:26 0.32 0.78 $\mu g/m^3$ J 2.1 Bromoform 27-FEB-06 22:26 0.084 ND ppb v/v 1 0.5 Bromoform 27-FEB-06 22:26 0.90 ND $\mu g/m^3$ 1 5.1 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.90 ND $\mu g/m^3$ 1 5.1 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.74 ND $\mu g/m^3$ 1 3.4 Benzyl Chloride 27-FEB-06 22:26 0.136 ND ppb v/v 1 0.5	o-Xvlene	27-FEB-06 22:26	0.113	0.52	nph u/m			4.3
Styrene 27-FEB-06 22:26 0.0748 0.18 pp/m ³ 1 2.1 Styrene 27-FEB-06 22:26 0.0748 0.18 ppb v/v J 1 0.5 Styrene 27-FEB-06 22:26 0.32 0.78 µg/m ³ J 1 2.1 Bromoform 27-FEB-06 22:26 0.0804 ND ppb v/v 1 0.5 Bromoform 27-FEB-06 22:26 0.90 ND µg/m ³ 1 5.1 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.108 ND ppb v/v 1 0.5 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.74 ND µg/m ³ 1 3.4 Benzyl Chloride 27-FEB-06 22:26 0.136 ND ppb v/v 1 0.5	o-Xylene	27-FEB-06 22:26	0.49	2.3	10/m3		1	2.2
Styrene 27-FEB-06 22:26 0.32 0.78 $\mu g/m^3$ 1 2.1 Bromoform 27-FEB-06 22:26 0.0884 ND ppb v/v 1 0.5 Bromoform 27-FEB-06 22:26 0.0884 ND ppb v/v 1 0.5 Bromoform 27-FEB-06 22:26 0.90 ND $\mu g/m^3$ 1 5.1 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.108 ND ppb v/v 1 0.5 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.74 ND $\mu g/m^3$ 1 3.4 Benzyl Chloride 27-FEB-06 22:26 0.136 ND ppb v/v 1 0.5	Styrene	27-FEB-06 22+26	0.0748	0.18	nph v/v	7		4.4
Bromoform 27-FEB-06 22:26 0.0884 ND pp/m² 1 2.1 Bromoform 27-FEB-06 22:26 0.0884 ND ppb v/v 1 0.5 Bromoform 27-FEB-06 22:26 0.90 ND µg/m³ 1 5.1 1,1:2,2-Tetrachloroethane 27-FEB-06 22:26 0.108 ND ppb v/v 1 0.5 1,1:2,2-Tetrachloroethane 27-FEB-06 22:26 0.74 ND µg/m³ 1 3.4 Benzyl Chloride 27-FEB-06 22:26 0.136 ND ppb v/v 1 0.5	Styrene	27-FEB-06 22:26	0.32	0.78	UC/m3	7	+	2 1
Bromoform 27-FEB-06 22:26 0.90 ND μg/m³ 1 5.1 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.108 ND ppb v/v 1 0.5 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.108 ND ppb v/v 1 0.5 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.74 ND μg/m³ 1 3.4 Benzyl Chloride 27-FEB-06 22:26 0.136 ND ppb v/v 1 0.5	Bromoform	27-FEB-06 22+26	0.0884	ND	nph u/m	<u> </u>		<u>4.1</u>
1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.108 ND pp/m" 1 5.1 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.108 ND pp v/v 1 0.5 1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.74 ND µg/m³ 1 3.4 Benzyl Chloride 27-FEB-06 22:26 0.136 ND ppb v/v 1 0.5	Bromoform	27-FEB-06 22:26	0.90	ND	200 V/V			<u>0.5</u>
1,1,2,2-Tetrachloroethane 27-FEB-06 22:26 0.74 ND μg/m ³ 1 3.4 Benzyl Chloride 27-FEB-06 22:26 0.136 ND ppb v/v 1 0.5	1,1,2,2-Tetrachloroethane	27-FEB-06 22:26	0.108	ND	nph y/y		1	5.1
Benzyl Chloride 27-FEB-06 22:26 0.136 ND pp/m ⁻¹ 3.4	1,1,2,2-Tetrachloroethane	27-FEB-06 22:26	0.74	ND			1	3.4
	Benzyl Chloride	27-FEB-06 22:26	0.136	ND	nph y/m			3.4
			0.100	MD .	PPD V/V		I	0.5

SAMPLE ANALYSIS DATA SHEET

1

Date Printed.....: 03-MAR-06 08:29 Client Name.....: Montana Tech DCL Sample Name...: 06106643 DCL Report Group..: 061-0804-01

Analytical Results

					_		
Analyte	Date Analyzed	MDL	Result	Units	Qual.	Dilution	PQL
Benzyl Chloride	27-FEB-06 22:26	0.70	ND	µg/m³		1	2.6
4-Ethyl toluene	27-FEB-06 22:26	0.0983	0.12	ppb v/v	J	1 '	0.5
4-Ethyl toluene	27-FEB-06 22:26	0.48	0.58	µg/m³	J	1	2.5
1,3,5-Trimethylbenzene	27-FEB-06 22:26	0.112	0.12	ppb v/v	J	1	0.5
1,3,5-Trimethylbenzene	27-FEB-06 22:26	0.55	0.61	µg/m³	J	1	2.5
1,2,4-Trimethylbenzene	27-FEB-06 22:26	0.117	0.52	ppb v/v		1	0.5
1,2,4-Trimethylbenzene	27-FEB-06 22:26	0.58	2.6	µg/m³		1	2.5
1,3-Dichlorobenzene	27-FEB-06 22:26	0.120	ND	ppb v/v		1	0.5
1,3-Dichlorobenzene	27-FEB-06 22:26	0.72	ND	µg/m³		1	3.0
1,4-Dichlorobenzene	27-FEB-06 22:26	0.0987	ND	ppb v/v		1	0.5
1,4-Dichlorobenzene	27-FEB-06 22:26	0.59	ND	µg/m³		1.	3.0
1,2-Dichlorobenzene	27-FEB-06 22:26	0.0851	ND	ppb v/v		1	0.5
1,2-Dichlorobenzene	27-FEB-06 22:26	0.51	ND	μg/m ³		1	3.0
1,2,4-Trichlorobenzene	27-FEB-06 22:26	0.115	ND	ppb v/v		1	0.5
1,2,4-Trichlorobenzene	27-FEB-06 22:26	0.85	ND	µg/m³		1	3.7
Hexachlorobutadiene	27-FEB-06 22:26	0.119	ND	ppb v/v		1	0.5
Hexachlorobutadiene	27-FEB-06 22:26	1.3	ND	µg/m³		1	5.3

i

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Units	Qual.	Dilution
Isobutane(4.66)	27-FEB-06 22:26	3.1	ppb v/v	J	1
Butane(4.92)	27-FEB-06 22:26	2.9	ppb v/v	J	1
Ethanol(5.36)	27-FEB-06 22:26	680	ppb v/v	J	1
Acetonitrile(5.61)	27-FEB-06 22:26	4.6	ppb v/v	J	1
Isopropyl Alcohol(6.05)	27-FEB-06 22:26	9.3	ppb v/v	J	1
Pentane(6.25)	27-FEB-06 22:26	2.9	ppb v/v	J	1
Silanol, trimethy1-(7.49)	27-FEB-06 22:26	3.2	ppb v/v	J	1
Limonene(17.60)	27-FEB-06 22:26	2.2	ppb v/v	J	1

- 1

960 West LeVoy Drive / Sa	lt Lake City, Utah 84123-2547
Phone (801) 266-7700	Web Page: www.datachem.com
FAX (801) 268-9992	E-mail: lab@datachem.com

QUALITY CONTROL DATA SHEET LABORATORY CONTROL SAMPLE (LCS) LABORATORY CONTROL DUPL (LCD)

Form RLIMS63J-V1.4 03030608294517 Page 42

DCL Sample Name...: QC-241819-1 Date Printed....: 03-MAR-06 08:29

Client Name....: Montana Tech Release Number.....: Yellowstone Project

Matrix..... AIR Reporting Units..... ppb v/v

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Analytical Results

DCL Analysis Group: G062100D Analysis Method...: TO15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary Confirmation

QC Limit Type : Method

Analyte	Date Analyzed	Target	Result	Percent Recovery	QC Limits	QC Flag
Propene	27-FEB-06 11:01	10.0	12.7	127.	70.0/130.	
Dichlorodifluoromethane	27-FEB-06 11:01	10.0	11.3	113.	70.0/130.	
Chloromethane	27-FEB-06 11:01	10.0	13.0	130.	70.0/130.	
Freon 114	27-FEB-06 11:01	10.0	11.7	117.	70.0/130.	
Vinyl Chloride	27-FEB-06 11:01	10.0	12.4	124.	70.0/130.	
1,3-Butadiene	27-FEB-06 11:01	10.0	13.7	137.	70.0/130.	*
Bromomethane	27-FEB-06 11:01	10.0	11.7	117.	70.0/130.	
Chloroethane	27-FEB-06 11:01	10.0	12.8	128.	70.0/130.	-
Freon 11	27-FEB-06 11:01	10.0	10.6	106.	70.0/130.	
cis-1,2-Dichloroethene	27-FEB-06 11:01	10.0	11.9	119.	70.0/130.	
Carbon Disulfide	27-FEB-06 11:01	10.0	11.7	117.	70.0/130.	
Freon 113	27-FEB-06 11:01	10.0	11.1	111.	70.0/130.	
Acetone	27-FEB-06 11:01	10.0	11.3	113.	70.0/130.	1
Methylene Chloride	27-FEB-06 11:01	10.0	12.3	123.	70.0/130.	
trans-1,2-Dichloroethene	27-FEB-06 11:01	10.0	11.7	117.	70.0/130.	
1,1-Dichloroethane	27-FEB-06 11:01	10.0	11.9	119.	70.0/130.	-
Methyl t-Butyl Ether	27-FEB-06 11:01	10.0	11.6	116.	70.0/130.	
Vinyl Acetate	27-FEB-06 11:01	10.0	12.1	121.	70.0/130.	
1,1-Dichloroethene	27-FEB-06 11:01	10.0	11.4	114.	70.0/130.	
2-Butanone	27-FEB-06 11:01	10.0	11.3	113.	70.0/130.	
Ethyl Acetate	27-FEB-06 11:01	10.0	12.6	126.	70.0/130.	
Hexane	27-FEB-06 11:01	10.0	12.4	124.	70.0/130.	
Chloroform	27-FEB-06 11:01	10.0	10.6	106.	70.0/130.	
1,1,1-Trichloroethane	27-FEB-06 11:01	10.0	10.7	107.	70.0/130.	
Carbon Tetrachloride	27-FEB-06 11:01	10.0	10.8	108.	70.0/130.	
Benzene	27-FEB-06 11:01	10.0	11.5	115.	70.0/130.	
Tetrahydrofuran	27-FEB-06 11:01	10.0	14.0	140.	70.0/130.	* .
1,2-Dichloroethane	27-FEB-06 11:01	10.0	10.7	107.	70.0/130.	
Cyclohexane	27-FEB-06 11:01	10.0	12.1	121.	70.0/130.	
Trichloroethene	27-FEB-06 11:01	10.0	11.3	113.	70.0/130.	
1,2-Dichloropropane	27-FEB-06 11:01	10.0	12.3	123.	70.0/130.	
Bromodichloromethane	27-FEB-06 11:01	10.0	10.9	109.	70.0/130.	
Heptane	27-FEB-06 11:01	10.0	12.2	122.	70.0/130.	
cis-1,3-Dichloropropene	27-FEB-06 11:01	10.0	11.8	118.	70.0/130.	
4-Methyl-2-Pentanone	27-FEB-06 11:01	10.0	11.6	116.	70.0/130.	
Toluene	27-FEB-06 11:01	10.0	12.0	120.	70.0/130.	
trans-1,3-Dichloropropene	27-FEB-06 11:01	10.0	12.1	121.	70.0/130.	
1,1,2-Trichloroethane	27-FEB-06 11:01	10.0	11.3	113.	70.0/130.	
Tetrachloroethene	27-FEB-06 11:01	10.0	10.6	106.	70.0/135.	1
2-Hexanone	27-FEB-06 11:01	10.0	11.9	119.	70.0/130.	
1,2-Dibromoethane	27-FEB-06 11:01	10.0	11.7	117.	70.0/130.	
Chlorobenzene	27-FEB-06 11:01	10.0	11.2	. 112.	70.0/130.	
Ethylbenzene	27-FEB-06 11:01	10.0	11.8	118.	70.0/130.	
m,p-Xylene	27-FEB-06 11:01	20.0	23.1	116.	70.0/130.	
o-Xylene	27-FEB-06 11:01	10.0	12.2	122.	70.0/130.	
Styrene	27-FEB-06 11:01	10.0	12.2	122.	70.0/130.	
Bromoform	27-FEB-06 11:01	10.0	11.7	117.	70.0/130.	

QUALITY CONTROL DATA SHEET LABORATORY CONTROL SAMPLE (LCS) LABORATORY CONTROL DUPL (LCD)

S062000T

Client Name..... Montana Tech

Analytical Results

Analyte	Date Analyzed	Target	Result	Percent Recovery	QC Limits	QC Flag
1,1,2,2-Tetrachloroethane	27-FEB-06 11:01	10.0	11.8	118.	70.0/130.	
Benzyl Chloride	27-FEB-06 11:01	10.0	12.8	128.	70.0/130.	
4-Ethyl toluene	27-FEB-06 11:01	10.0	11.8	118.	70.0/130.	
1,3,5-Trimethylbenzene	27-FEB-06 11:01	10.0	11.5	115.	70.0/130.	
1,2,4-Trimethylbenzene	27-FEB-06 11:01	10.0	11.4	114.	70.0/130.	
1,3-Dichlorobenzene	27-FEB-06 11:01	10.0	11.5	115.	70.0/130.	
1,4-Dichlorobenzene	27-FEB-06 11:01	10.0	11.4	114.	70.0/130.	
1,2-Dichlorobenzene	27-FEB-06 11:01	10.0	11.5	115.	70.0/130.	
1,2,4-Trichlorobenzene	27-FEB-06 11:01	10.0	12.0	120.	70.0/130.	
Hexachlorobutadiene	27-FEB-06 11:01	10.0	10.4	104.	70.0/130.	
Ethanol	27-FEB-06 11:01	10.0	12.3	123.	70.0/130.	
Isopropyl Alcohol	27-FEB-06 11:01	10.0	11.8	118.	70.0/130.	

S062000V	

DCL Sample Name...: QD-241819-1

1 12 - 1

DCL Sample Name...: QC-241819-1

Date Printed....: 03-MAR-06 08:29

Analytical Results							I	
Analyte	Date Analyzed	Duplicate Result	Percent Recovery	Mean	Range	RPD	QC Limits	QC Flag
Chloromethane	27-FEB-06 11:38	12.6	126.	12.8	0.307	2.4	0.00/25.0	
1,3-Butadiene	27-FEB-06 11:38	13.6	136.	13.6	0.147	1.1	0.00/25.0	
Bromomethane	27-FEB-06 11:38	12.3	123.	12.0	0.543	4.5	0.00/25.0	
Chloroethane	27-FEB-06 11:38	13.1	131.	13.0	0.318	2.5	0.00/25.0	
Freon 11	27-FEB-06 11:38	11.2	112.	10.9	0.659	6.0	0.00/25.0	
cis-1,2-Dichloroethene	27-FEB-06 11:38	11.9	119.	11.9	0.0160	0.13	0.00/25.0	
Carbon Disulfide	27-FEB-06 11:38	11.4	114.	11.6	0.334	2.9	0.00/25.0	
Acetone	27-FEB-06 11:38	11.9	119.	11.6	0.595	5.1	0.00/25.0	
Methylene Chloride	27-FEB-06 11:38	12.1	121.	12.2	0.236	1.9	0.00/25.0	
trans-1,2-Dichloroethene	27-FEB-06 11:38	11.5	115.	11.6	0.263	2.3	0.00/25.0	
1,1-Dichloroethane	27-FEB-06 11:38	11.7	117.	11.8	0.214	1.8	0.00/25.0	
Methyl t-Butyl Ether	27-FEB-06 11:38	11.7	117.	11.7	0.00600	0.051	0.00/25.0	
Vinyl Acetate	27-FEB-06 11:38	11.9	119.	12.0	0.238	2.0	0.00/25.0	
1,1-Dichloroethene	27-FEB-06 11:38	11.7	117.	11.6	0.276	2.4	0.00/25.0	
2-Butanone	27-FEB-06 11:38	11.2	112.	11.3	0.0920	0.81	0.00/25.0	1
Chloroform	27-FEB-06 11:38	10.5	105.	10.6	0.186	1.8	0.00/25.0	
1,1,1-Trichloroethane	27-FEB-06 11:38	10.7	107.	10.7	0.0230	0.21	0.00/25.0	
Carbon Tetrachloride	27-FEB-06 11:38	10.9	109.	10.9	0.0660	0.61	0.00/25.0	
Benzene	27-FEB-06 11:38	11.8	118.	11.6	0.293	2.5	0.00/25.0	1
1,2-Dichloroethane	27-FEB-06 11:38	10.9	109.	10.8	0.208	1.9	0.00/25.0	1
Cyclohexane	27-FEB-06 11:38	11.7	117.	11.9	0.351	3.0	0.00/25.0	
Trichloroethene	27-FEB-06 11:38	11.6	116.	11.4	0.233	2.0	0.00/25.0	1
1,2-Dichloropropane	27-FEB-06 11:38	12.3	123.	12.3	0.0350	0.28	0.00/25.0	
Bromodichloromethane	27-FEB-06 11:38	10.7	107.	10.8	0.206	1.9	0.00/25.0	
Heptane	27-FEB-06 11:38	11.8	118.	12.0	0.398	3.3	0.00/25.0	
cis-1,3-Dichloropropene	27-FEB-06 11:38	11.7	117.	· 11.8	0.146	1.2	0.00/25.0	
4-Methy1-2-Pentanone	27-FEB-06 11:38	11.5	115.	11.5	0.107	0.93	0.00/25.0	
Toluene	27-FEB-06 11:38	12.1	121.	12.0	0.129	1.1	0.00/25.0	
trans-1,3-Dichloropropene	27-FEB-06 11:38	12.0	120.	12.1	0.133	1.1	0.00/25.0	
1,1,2-Trichloroethane	27-FEB-06 11:38	13.0	130.	12.2	1.69	14.	0.00/25.0	
Tetrachloroethene	27-FEB-06 11:38	11.3	113.	11.0	0.692	6.3	0.00/25.0	
2-Hexanone	27-FEB-06 11:38	11.8	118.	11.8	0.133	1.1	0.00/25.0	
Ethylbenzene	27-FEB-06 11:38	11.8	118.	11.8	0.00100	0.009	0.00/25.0	
m,p-Xylene	27-FEB-06 11:38	22.6	113.	22.9	0.522	2.3	0.00/25.0	

QUALITY CONTROL DATA SHEET LABORATORY CONTROL SAMPLE (LCS) LABORATORY CONTROL DUPL (LCD) Form RLIMS63J-V1.4 03030608294517 Page 44

DCL Sample Name...: QD-241819-1

Date Printed.....: 03-MAR-06 08:29

Client Name..... Montana Tech

Analytical Results

Analyte	Date	Duplicate	Percent			—	0C	00
Analyce	Analyzed	Result	Recovery	Mean	Range	RPD	Limits	Flag
o-Xylene	27-FEB-06 11:38	12.2	122.	12.2	0.00600	0.049	0.00/25.0	
Styrene	27-FEB-06 11:38	11.6	116.	11.9	0.567	4 0	0.00/25.0	
Bromoform	27-FEB-06 11:38	11.5	115.	11.6	0.122	1.0	0.00/25.0	
1,1,2,2-Tetrachloroethane	27-FEB-06 11:38	11.5	115	11.7	0.122	1.1	0.00/25.0	
Benzyl Chloride	27-FEB-06 11:38	12.2	100	11.7	0.263	2.3	0.00/25.0	
4-Ethyl toluene	27-2280-06 11:30	12.3	123.	12.5	0.485	3.9	0.00/25.0	
1.3.5-Trimethulhengene	27-228-06 11:36	11.7	117.	11.7	0.0490	0.42	0.00/25.0	
1/3/3-11 Imethylbenzene	27-FEB-06 11:38	11.7	117	11.6	0.255	2.2	0.00/25.0	
1,2,4-Trimethylbenzene	27-FEB-06 11:38	11.7	117.	11.6	0.220	1.9	0.00/25.0	
1, 3-Dichlorobenzene	27-FEB-06 11:38	11.0	110.	11.3	0.522	4.6	0.00/25.0	
1,4-Dichlorobenzene	27-FEB-06 11:38	11.1	111.	11.2	0.262	23	0 00/25 0	
1,2-Dichlorobenzene	27-FEB-06 11:38	11.4	114.	11.4	0.163	7 4	0.00/25.0	
1,2,4-Trichlorobenzene	27-FEB-06 11:38	11.6	116	11 0	0.103	1.4	0.00/25.0	
Hexachlorobutadiene	27-FEB-06 11:39	0.01		11.0	0.402	3.4	0.00/25.0	
Ethanol	27 225 00 11:30	9.01	98.1	10.1	0.566	5.6	0.00/25.0	
Jonano 1	27-FEB-06 11:38	11.9.	119.	12.1	0.435	3.6	0.00/25.0	

QUALITY CONTROL DATA SHEET BLANK SAMPLE

S062000S

ļ

DCL Sample Name...: BL-241819-1

Client Name..... Montana Tech Release Number....: Yellowstone Project

Matrix..... AIR Reporting Units....: ppb v/v

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable

Analytical Results

Analyte	Date	Result	MDL	CRDL
Propene	27-FEB-06 12.16	ND	0.180	0.5
Dichlorodifluoromethane	27-FFB-06 12:16	ND	0.0669	0.5
Chloromothana	27-FFB-06 12:16	ND	0.249	0.5
Freen 114	27-FEB-06 12:10	ND	0.156	0.5
Vinul Chloride	27-FFB-06 12:16	ND	0.301	0.5
1.2-Butadiana	27-FFB-06 12:16	ND	0.346	0.5
Bromomethane	27-FEB-06 12:16	ND	0.215	0.5
Chloroethane	27-FFB-06 12:16	ND	0.388	0.5
Freen 11	27-FEB-06 12:16	ND	0.0921	0.5
cis-1.2-Dichloroethene	27-FEB-06 12:16	ND	0.102	0.5
Carbon Digulfide	27-FEB-06 12:16	ND	0.111	0.5
Freen 113	27-FEB-06 12:16	ND	0.0950	0.5
Acetone	27-FEB-06 12:16	ND	0.113	0.5
Methylene Chloride	27-FEB-06 12:16	ND	0,168	0.5
trans-1.2-Dichloroethere	27-FEB-06 12:16	ND	0.118	0.5
1.1-Dichloroethane	27-FEB-06 12:16	ND	0.116	0.5
Methyl t-Butyl Ether	27-FEB-06 12:16	ND	0.147	0.5
Vinul Acetate	27-FEB-06 12:16	ND	0,133	0.5
1.1-Dichloroethene	27-FEB-06 12:16	ND	0.109	0.5
2-Butanone	27-FEB-06 12:16	ND	0.182	0.5
Ethul Acetate	27-FFE-06 12:16	ND	0.273	0.5
Hevane	27-FEB-06 12:16	ND	0.121	0.5
Chloroform	27-FFB-06 12:16	ND	0.115	0.5
1 1 1-Trichloroothane	27-228-06 12.16	ND	0.0725	0.5
Carbon Tetrachloride	27-FEB-06 12:16	ND	0.0657	0.5
Benzene	27-FEB-06 12:16	ND	0.102	0.5
Tetrabydrofuran	27-FEB-06 12:16	ND	0.227	0.5
1.2-Dichloroethane	27-FFB-06 12:16	ND	0.153	0.5
Cyclobevane	27-FEB-06 12:16	ND	0.120	0.5
Trichloroethene	27-FFB-06 12:16	ND	0.120	0.5
1.2-Dichloropropage	27-228-06 12:16	ND	0.123	0.5
Promodiation of the second second	27-22-06 12:10	ND	0.123	0.5
Ventane	27-FFB-06 12:16	ND	0.0775	0.5
dig_1 2-Dichloronronono	27-220-06 12:10	ND	0.101	0.5
A-Methyl-2-Pentanone	27-FEB-06 12:16	ND	0.116	0.5
Toluene	27-FEB-06 12:16	ND	0.115	0.5
trans-1.3-Dichloropropene	27-FFB-06 12:16	ND	0 130	0.5
1.1.2-Trichloroethane	27-FEB-06 12:16	ND	0.0972	0.5
Tetrachloroethene	27-FFB-06 12:16	ND	0.0847	0.5
2-Weyspone	27-FFB-06 12:16	ND	0.136	0.5
Dibromochloromethane	27-FFB-06 12:16	ND	0.0792	0.5
1.2-Dibromoethane	27-228-06 12:10	ND	0.119	0.5
Chlorobenzene	27_PPB_06 12:16	ND	0.0002	0.5
Pthylbonzone	27-FEB-06 12:16	ND	0.0002	0.5
m n_Vuloso	27-FFB-06 12:16	ND	0.213	1.0
11 - FT - A V - A T A		n D	0.413	±.0
m/p-Aytene	27-FFR-06 12:16	ND	0 112	0 5

Date Printed....: 03-MAR-06 08:29 DCL Analysis Group: G062100D Analysis Method...: TO-15 Instrument Type ...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1 X Primary

Confirmation

QC Limit Type....: Method

QUALITY CONTROL DATA SHEET BLANK SAMPLE

S062000S

DCL Sample Name...: BL-241819-1

Date Printed....: 03-MAR-06 08:29

Client Name..... Montana Tech

1

Analytical Results

Analyte	Date Analyzed	Result	MDL	CRDL
Bromoform	27-FEB-06 12:16	ND	0.0884	0.5
1,1,2,2-Tetrachloroethane	27-FEB-06 12:16	ND	0.108	0.5
Benzyl Chloride	27-FEB-06 12:16	ND	0.136	0.5
4-Ethyl toluene	27-FEB-06 12:16	ND	0.0983	0.5
1,3,5-Trimethylbenzene	27-FEB-06 12:16	ND	0.112	0.5
1,2,4-Trimethylbenzene	27-FEB-06 12:16	ND	0.117	0.5
1,3-Dichlorobenzene	27-FEB-06 12:16	ND	0.120	0.5
1,4-Dichlorobenzene	27-FEB-06 12:16	ND	0.0987	0.5
1,2-Dichlorobenzene	27-FEB-06 12:16	ND	0.0851	0.5
1,2,4-Trichlorobenzene	27-FEB-06 12:16	ND	0.115	0.5
Hexachlorobutadiene	27-FEB-06 12:16	ND	0.119	0.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com FAX (801) 268-9992 E-mail: lab@datachem.com

210

QUALITY CONTROL DATA SHEET SURROGATE SUMMARY

G062100D

Client Name..... Montana Tech Release Number..... Yellowstone Project

Matrix..... AIR Reporting Units.....: ppb v/v Date Printed.....: 03-MAR-06 08:29

DCL Analysis Group: G062100D Analysis Method...: TO15

DCL Prep Group....: Not Applicable Preparation Method: Not Applicable

QC Limit Type....: Method

Surrogate	Recoveries
-----------	------------

Surr, ID QC Limits	4-Brom	ofluoroben	zene	_		1						_
DCL Sample Number	Analyte Result	Spiked Amount	Rec.	0	Analyte	Spiked	Rec.		Analyte	Spiked	*	Г
06106631	17.6	20.0	88.0	Π				1×		Amount	Rec.	14
06106632	17.5	20.0	87.6	П		1		++			+	H
06106633	18.1	20.0	90.7			4		++				+
06106634	18.4	20.0	91.8					+				H
06106635	18.6	20.0	93.1	П								H
06106636	17.6	20.0	87.8					+				H
06106637	18.9	20.0	94.5					+			+	H
06106638	18.8	20.0	94.0	П								Η
06106639	18.7	20.0	93.6	П				Ŧ				Н
06106640	18.0	20.0	89.9	П	3			++			+	Н
06106641	18.5	20.0	92.5					+				Н
06106642	17.2	20.0	85.9					+				Н
06106643	17.5	20.0	87.5					++				Н
BL-241819-1	18.1	20.0	90.7					+				н
QC-241819-1	18.9	20.0	94.6				-	++				H
QD-241819-1	18.7	20.0	93.4					++				Н

	ANALYTICAL REQUEST FORM 1. REGULAR Status
	RUSH Status Requested - ADDITIONAL CHARGE RESULTS REQUIRED BY DATE CONTACT DATACHEM LABS PRIOR TO SENDING SAMPLES
2. Date 2-21-06 Purchase Order No. 1/e/10-57	one Project 4. Quote No.
3. Company Name Montana Tech	DCL Project Manager
Address 1300 West Park Store	5. Sample Collection
Butte MT 59701	Sampling Site
Person to Contact Spear	Industrial Process
Telephone (404) 96 4495	Date of Collection
Fax Telephone (4) 96 46 50	Time Collected
E-mail Address _ TSpear O mtech. edu	Date of Shipment
Billing Address (if different from above)	Chain of Custody No

6. REQUEST FOR ANA	LYSES				
Laboratory Use Only 1	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED - Use method number if known	Units**
06106631	MC218-21	minican	107041	VOC, TO-15	
1 32	MC218-22	Minican	107 033	VOC. TO-15	
33	MC218-51	Minicah	107039	VOCS TO-15	
- 34	MC 219-21	minican	108758	VOC: TO-15	
3	MC 219-22	Minican	108963	VUC, TO-15	
36	MC 219-5	Minican	108527	VOC. TO-15	
33	MC 220 - 21	Minican	107040	VOCS TO-15	
	MC 220 - 22	Hinican	107036	VOC. 50-15	
39	MC 220-621	Minican	107024	VOC, TO-15	
ها	MC 220 - E22	Minican	108958	VOC, TO-15	
Jan H	MC 220 - 85	Minican	107042	UOC, TO-15	

Specify: Solid sorbent tube, e.g. Charcoal; Filter type; Impinger solution; Bulk sample; Blood; Urine; Tissue; Soli; Water; Other
 ** 1. ug/sample 2. mg/m³ 3. ppm 4. % 5. _____ (other) Please indicate one or more units in the column entitled Units**
Comments ______

.

Possible	Contamination	and/or	Chemical	Hazards	_
1 0001010	o or mouth in the off	0110101	ononioui	1 IGE GI GO	-

.

7. Chain of Cust	ody (Optional)		n
Relinquished by Received by	R_IBIT	· · · · · · · · · · · · · · · · · · ·	Date/Time Date/Time
Relinguished by			Date/Time
Received by Relinquished by	······	r V	Date/Time Date/Time
Received by			Date/Time

960 West LeVoy Drive / Salt Lake City, UT 84123 DATACHEM LABORATORIES, INC.

800-356-9135 or 801-266-7700 / FAX: 801-268-9992 www.datachem.com

_____ · .