APPENDIX A – Model and data assumptions for the candidate set of multinomial logit models.

For a large population, let π_0 , π_1 , and π_2 correspond to the proportion of population units that have responses of 0, 1, and 2, respectively. If a sample of size *n* is obtained by independently sampling units from this large population, then the sampled frequencies f_0 , f_1 , and f_2 of response categories 0, 1, and 2, respectively, follow a multinomial distribution with expected frequencies $F_0 = n\pi_0$, $F_1 = n\pi_1$, and $F_2 = n\pi_2$.

For each species monitored during our study, the population consisted of all winter OSV human/wildlife encounters with that species along established roads used by snowmobiles and coaches. The sampling unit was an encounter with a wildlife group, not an encounter with individual animals. Across the four winter seasons (2003-2006), the size of these encounter populations were large for bison, elk, and trumpeter swans. Though the number of bald eagle and coyote observations did not appear large, it was the number of actual encounters that formed the populations (both observed and unobserved). Thus, we can reasonably assume the populations for these species are also large.

Ideally, the collected sample should be random, but this was not the case during our study for two reasons. First, we did not know when or where human/wildlife encounters would occur. Hence, we had no control to randomly select which encounters would be observed. Second, the established roads used by snowmobiles and coaches were stratified into road segments that were repeatedly sampled across the winter. The effects of this deviation from strict random sampling (which often is infeasible in wildlife studies) should be negligible given similar effort in sampling each road segment within a winter season. That is, given equal sampling effort in each road segment across time, we expect the observed numbers and types of human/wildlife encounters in each segment to be close to the numbers and types of encounters that would be expected under with true random sampling during the winter.

Hypothetically, a predetermined sample of size *n* should be collected. However, our sample sizes were random rather than predetermined. Like other statistical procedures where a fixed sample size is assumed but not obtained, the fact that it is random should not seriously affect our conclusions.

APPENDIX B – The *a priori* candidate set of multinomial logit models. Abbreviations are: *year* (year of study); *dist* (distance of group from road); *sppnum* (group size); *onroad* (on or off road); *hact* (human activity); *intxn* (interaction time); *sb* (number of snowmobiles); *coach* (number of coaches); *hab* (habitat), and *cumvis* (cumulative daily number of over-snow vehicles).

Bison and Elk (86 models): Each a priori model contains the base model, $year + sppnum + dist + hact + intxn + and the spinor is the base model.$
onroad + sb + coach + sppnum*dist, plus the effects indicated by X in the table.

ID	hab	cumvis	dist*hact	sppnum*hact	intxn*dist	intxn*sppnum	sppnum*hab	year*cumvis
А	Х	Х	Х	Х	Х	Х	Х	Х
В	Х	Х	Х	Х	Х	Х		Х
С	Х	Х	Х	Х	Х	Х	Х	
D	Х	Х	Х	Х	Х	Х		
Е		Х	Х	Х	Х	Х		Х
F		Х	Х	Х	Х	Х		
G	Х		Х	Х	Х	Х	Х	
Н	Х		Х	Х	Х	Х		
Ι			Х	Х	Х	Х		
1A1	Х	Х		Х	Х	Х	Х	Х
1A2	Х	Х	Х		Х	Х	Х	Х
1A3	Х	Х	Х	Х		Х	Х	Х
1A4	Х	Х	Х	Х	Х		Х	Х
1B1	Х	Х		Х	Х	Х		Х
1B2	Х	Х	Х		Х	Х		Х
1B3	Х	Х	Х	Х		Х		Х
1B4	Х	Х	Х	Х	Х			Х
1C1	Х	Х		Х	Х	Х	Х	
1C2	Х	Х	Х		Х	Х	Х	
1C3	Х	Х	Х	Х		Х	Х	
1C4	Х	Х	Х	Х	Х		Х	
1D1	Х	Х		Х	Х	Х		
1D2	Х	X	Х		Х	Х		
1D3	Х	Х	Х	Х		Х		
1D4	Х	Х	X	Х	X			
1E1		X		Х	X	Х		X
1E2		Х	X		X	Х		Х
1E3		X	X	Х		Х		X

ID	hab	cumvis	dist*hact	sppnum*hact	intxn*dist	intxn*sppnum	sppnum*hab	year*cumvis
1E4		Х	Х	Х	Х			Х
1F1		Х		Х	Х	Х		
1F2		Х	Х		Х	Х		
1F3		Х	Х	Х		Х		
1F4		Х	Х	Х	Х			
1G1	Х			Х	Х	Х	Х	
1G2	Х		Х		Х	Х	Х	
1G3	Х		Х	Х		Х	Х	
1G4	Х		Х	Х	Х		Х	
2A1	Х	Х			Х	Х	Х	Х
2A2	Х	Х		Х		Х	Х	Х
2A3	Х	Х		Х	Х		Х	Х
2A4	Х	Х	Х			Х	Х	Х
2A5	Х	Х	Х		Х		Х	Х
2B1	Х	Х			Х	Х		Х
2B2	Х	Х		Х		Х		Х
2B3	Х	Х		Х	Х			Х
2B4	Х	Х	Х			Х		Х
2B5	Х	Х	Х		Х			Х
2C1	Х	Х			Х	Х	Х	
2C2	Х	Х		Х		Х	Х	
2C3	Х	Х		Х	Х		Х	
2C4	Х	Х	Х			Х	Х	
2C5	Х	Х	Х		Х		Х	
2D1	Х	Х			Х	Х		
2D2	Х	Х		Х		Х		
2D3	Х	Х		Х	Х			
2D4	Х	Х	Х			Х		
2D5	Х	Х	Х		Х			
2E1		Х			Х	Х		Х
2E2		Х		Х		Х		Х
2E3		Х		Х	Х			Х
2E4		Х	Х			Х		Х
2E5		Х	Х		Х			Х
2F1		Х			Х	Х		

ID	hab	cumvis	dist*hact	sppnum*hact	intxn*dist	intxn*sppnum	sppnum*hab	year*cumvis
2F2		Х		Х		Х		
2F3		Х		Х	Х			
2F4		Х	Х			Х		
2F5		Х	X		Х			
2G1	Х	Х			Х	Х	Х	
2G2	Х	Х		Х		Х	Х	
2G3	Х	Х		Х	Х		Х	
2G4	Х	Х	X			Х	Х	
2G5	Х	Х	Х		Х		Х	
3A1	Х	Х				Х	Х	Х
3A2	Х	Х			Х		Х	Х
3B1	Х	Х				Х		Х
3B2	Х	Х			Х			Х
3C1	Х	Х				Х	Х	
3C2	Х	Х			Х		Х	
3D1	Х	Х				Х		
3D2	Х	Х			Х			
3E1		Х				Х		Х
3E2		Х			Х			Х
3F1		Х				Х		
3F2		Х			Х			
3G1	Х					Х	Х	
3G2	Х				X		Х	

<u>Trumpeter Swans (36 models)</u>: Each *a priori* model contains the base model, year + sppnum + dist + hact + intxn + sb + coach + sppnum*dist, plus the effects indicated by X in the table.

ID	cumvis	dist*hact	sppnum*hact	intxn*dist	intxn*sppnum	year*cumvis
А	Х	Х	Х	Х	Х	Х
В	Х	Х	Х	Х	Х	
С		Х	Х	Х	Х	
1A1	Х		Х	Х	Х	Х
1A2	Х	Х		Х	Х	Х
1A3	Х	Х	Х		Х	Х
1A4	Х	Х	Х	Х		Х

ID	cumvis	dist*hact	sppnum*hact	intxn*dist	intxn*sppnum	year*cumvis
1B1	Х		Х	Х	Х	
1B2	Х	Х		Х	Х	
1B3	Х	Х	Х		Х	
1B4	Х	Х	Х	Х		
1C1			Х	Х	Х	
1C2		Х		Х	Х	
1C3		Х	Х		Х	
1C4		Х	Х	Х		
2A1	Х			Х	Х	Х
2A2	Х		Х		Х	Х
2A3	Х		Х	Х		Х
2A4	Х	Х			Х	Х
2A5	Х	Х		Х		Х
2B1	Х			Х	Х	
2B2	Х		Х		Х	
2B3	Х		Х	Х		
2B4	Х	Х			Х	
2B5	Х	Х		Х		
2C1				Х	Х	
2C2			Х		Х	
2C3			Х	Х		
2C4		Х			Х	
2C5		Х		Х		
3A1	Х				Х	Х
3A2	Х			Х		Х
3B1	Х				Х	
3B2	Х			Х		
3C1					Х	
3C2				Х		

<u>Bald Eagles (12 models)</u>: Each *a priori* model contains the base model, year + sppnum + dist + hact + intxn + sb + coach, plus the effects indicated by X in the table.

ID	cumvis	intxn*dist	year*cumvis	hab
А	Х	Х	Х	Х
В	Х	Х	Х	
С	Х	Х		Х
D	Х	Х		
Е		Х		Х
F		Х		
1A	Х		Х	Х
1B	Х		Х	
1C	Х			Х
1D	Х			
1E				Х
1F				

<u>Coyotes (6 models)</u>: Each *a priori* model contains the base model, year + sppnum + dist + hact + intxn + sb + coach, plus the effects indicated by X in the table.

ID	cumvis	intxn*dist	year*cumvis
А	Х	Х	Х
В	Х	Х	
С		Х	
1A	Х		Х
1B			Х
1C			

APPENDIX C – Results of the sequential approach for evaluating various forms of the quantitative covariates.

We graphically summarized the AIC_C values for the best models at each step in the sequential process determining the best covariate forms for bison, elk, swans, and eagles (Figure 1). A change in covariate form can cause dramatic changes in AIC_C. For bison, elk, and swans, the greatest improvements in AIC_C occurred with setting a threshold for group size (*sppnum*), while for bald eagles and coyote the greatest improvements occurred with setting a threshold for interaction time (*intxn*). There were also large improvements in AIC_C by using either a distance (*dist*) threshold form for bison, bald eagles, and coyotes, or a moderated form for swans. A large improvement in elk model AIC_C values also occurred with an interaction time (*intxn*) threshold. Limiting the number of best models prior to examining alternative covariate forms can seriously affect the final results. For example, the initial elk models at Step 0 had the 31^{st} and 32^{nd} smallest AIC_C values, but had the 7^{th} and 2^{nd} smallest AIC_C values after Step 5 in the sequential process.

APPENDIX D – Estimates, standard errors, and *P*-values for the movement (M) logit and vigilance (V) logit from exploratory analyses of the bison model best supported by the data. Abbreviations are: *year* (year of study); *dist* (distance of group from road); *sppnum* (group size); *onroad* (on or off road); *hact* (human activity); *intxn* (interaction time); *sb* (number of snowmobiles); *coach* (number of coaches); *hab* (habitat); *cumvis* (cumulative daily number of over-snow vehicles); IH (impeded/hastened animal movement); AP (approached animals on foot); D (dismounted or exited OSVs); S (stopped to observe animals); N (no visible reaction); ON (animals on the road); OFF (animals off the road); A (aquatic); BF (burned forest); F (unburned forest); TH (thermal); and M (meadow). For each categorical variable, results are presented relative to the baseline level (i.e., 2006 for *year*, N for *hact*, ON for *onroad*, and M for *hab*) and each estimate represents a departure from zero (i.e., no effect).

	Mo	vement log	it	Vigilance logit		
Effect	Estimate	SE	Р	Estimate	SE	Р
intercept	-0.23	0.63	0.776	0.82	0.42	0.055
year = 2003	2.20	0.42	< 0.0001	0.74	0.25	0.003
= 2004	-0.08	0.40	0.839	-0.03	0.27	0.912
= 2005	-0.08	0.48	0.545	0.21	0.30	0.478
= 2006	-1.83	0.63	0.004	-0.92	0.31	0.003
sppnum	-2.9	0.72	< 0.0001	1.53	0.54	0.004
dist	-6.82	2.61	0.009	-2.32	0.81	0.004
hact = IH	1.41	0.33	< 0.0001	1.12	0.31	< 0.001
= AP	0.33	0.65	0.608	-0.53	0.49	0.282
= D	-1.47	0.50	0.003	0.08	0.30	0.782
= S	0.20	0.27	0.456	-0.07	0.22	0.738
= N	-0.47	0.30	0.112	-0.60	0.23	0.009
intxn	0.27	0.21	0.206	0.49	0.14	< 0.001
onroad = OFF	-1.43	0.20	< 0.0001	-0.50	0.12	< 0.0001
= ON	1.43	0.20	< 0.0001	0.50	0.12	< 0.0001
sb	0.11	0.04	0.002	0.08	0.03	0.002
coach	0.41	0.15	0.009	0.32	0.12	0.009
hab = A	1.90	0.53	< 0.001	1.28	0.34	< 0.001
= BF	-0.37	0.27	0.161	-0.27	0.19	0.156
= F	-0.11	0.21	0.588	0.08	0.14	0.581
= TH	-0.47	0.24	0.047	-0.66	0.17	< 0.0001
= M	-0.95	0.22	< 0.0001	-0.43	0.14	0.002
cumvis	0.00	0.02	0.825	-0.04	0.01	0.001
sppnum*dist	4.85	1.25	< 0.001	-0.74	0.72	0.305
dist*hact = IH	1.06	3.77	0.779	-2.10	2.47	0.395
= AP	-11.62	8.87	0.190	-0.11	1.29	0.935
= D	5.38	2.47	0.029	0.70	0.84	0.406
= S	2.59	2.39	0.279	0.85	0.75	0.256
= N	2.59	2.38	0.277	0.66	0.72	0.364
intxn* sppnum	0.01	0.32	0.966	-0.66	0.22	0.003
cumvis*year = 2003	-0.07	0.02	0.005	0.03	0.02	0.095
= 2004	0.07	0.03	0.786	-0.03	0.02	0.110
= 2005	0.03	0.04	0.496	-0.01	0.03	0.656
= 2006	0.03	0.04	0.399	0.02	0.02	0.392

APPENDIX E – Estimates, standard errors, and *P*-values for the movement logit and vigilance logit from exploratory analyses of the elk model best supported by the data. Abbreviations are: *year* (year of study); *dist* (distance of group from road); *sppnum* (group size); *onroad* (on or off road); *hact* (human activity); *intxn* (interaction time); *coach* (number of coaches); *hab* (habitat); *cumvis* (cumulative daily number of over-snow vehicles); AP (approached animals on foot); D (dismounted or exited OSVs); S (stopped to observe animals); N (no visible reaction); ON (animals on the road); OFF (animals off the road); A (aquatic); BF (burned forest); F (unburned forest); TH (thermal); and M (meadow). For each categorical variable, results are presented relative to the baseline level (i.e., 2006 for *year*, ON for *onroad*, N for *hact*, and M for *hab*) and each estimate represents a departure from zero (i.e., no effect).

	Mo	Movement logit			gilance log	it
Effect	Estimate	SE	Р	Estimate	SE	Р
intercept	-1.87	0.50	< 0.001	-0.50	0.35	0.151
<i>year</i> = 2003	0.40	0.30	0.182	0.40	0.15	0.008
= 2004	0.24	0.22	0.203	-0.02	0.10	0.841
= 2005	1.17	0.29	< 0.0001	0.61	0.15	< 0.0001
= 2006	-1.81	0.35	< 0.0001	-0.99	0.14	< 0.0001
intxn	1.34	0.17	< 0.0001	0.98	0.13	< 0.0001
onroad = OFF	-1.71	0.32	< 0.0001	-0.18	0.30	0.536
= ON	1.71	0.32	< 0.0001	0.18	0.30	0.536
coach	0.58	0.29	0.045	-0.04	0.15	0.786
cumvis	0.02	0.02	0.332	0.03	0.01	0.007
sppnum*hact = AP	1.69	0.57	0.003	0.19	0.40	0.635
= D	0.31	0.71	0.666	-0.14	0.41	0.729
= S	0.46	0.56	0.414	0.60	0.30	0.043
= N	-2.45	0.62	< 0.0001	-0.65	0.26	0.011
intxn*dist	-0.42	0.13	0.001	-0.43	0.09	< 0.0001
intxn* sppnum	-1.13	0.18	< 0.0001	-0.69	0.13	< 0.0001
sppnum*hab = A	3.18	0.70	< 0.0001	1.37	0.39	< 0.001
= BF	-0.66	0.60	0.275	-0.33	0.24	0.173
= F	1.30	0.63	0.039	0.57	0.34	0.089
= TH	-3.67	1.07	< 0.001	-0.98	0.38	0.010
= M	-0.15	0.64	0.809	-0.62	0.27	0.020

APPENDIX F – Estimates, standard errors, and *P*-values for the movement logit and vigilance logit from exploratory analyses of the trumpeter swan model best supported by the data. Abbreviations are: *year* (year of study); *dist* (distance of group from road); *sppnum* (group size); *hact* (human activity); *intxn* (interaction time); *sb* (number of snowmobiles); *coach* (number of coaches); and *cumvis* (cumulative daily number of over-snow vehicles); AP (approached animals on foot); D (dismounted or exited OSVs); S (stopped to observe animals); and N (no visible reaction). For each categorical variable, results are presented relative to the baseline level (i.e., 2006 for *year* and N for *hact*) and each estimate represents a departure from zero (i.e., no effect).

	Mo	vement logi	it	Vi	gilance log	it
Effect	Estimate	SE	Р	Estimate	SE	Р
intercept	0.56	0.68	0.409	2.07	0.45	< 0.0001
<i>year</i> = 2003	1.40	0.56	0.013	0.32	0.39	0.414
= 2004	0.75	0.77	0.331	1.44	0.48	0.003
= 2005	-1.99	0.97	0.041	0.04	0.45	0.932
= 2006	-0.15	0.64	0.811	-1.80	0.50	< 0.001
sppnum	-1.83	0.55	< 0.001	-2.16	0.34	< 0.0001
dist	-2.12	0.48	< 0.0001	-2.07	0.30	< 0.0001
hact = AP	0.33	0.34	0.340	0.30	0.31	0.334
= D	0.34	0.28	0.228	-0.30	0.27	0.266
= S	0.11	0.22	0.616	0.23	0.18	0.208
= N	-0.77	0.23	< 0.001	-0.23	0.18	0.215
intxn	0.21	0.05	< 0.0001	0.03	0.04	0.569
sb	0.09	0.03	0.009	0.06	0.02	0.004
coach	0.55	0.18	0.002	0.45	0.14	0.001
cumvis	-0.10	0.07	0.156	-0.08	0.04	0.060
cumvis*year = 2003	-0.10	0.09	0.272	0.00	0.06	0.981
= 2004	-0.09	0.12	0.473	-0.18	0.07	0.018
= 2005	0.38	0.15	0.011	0.08	0.07	0.263
= 2006	-0.20	0.11	0.070	0.09	0.08	0.232

APPENDIX G – Estimates, standard errors, and *P*-values for the movement logit and vigilance logit from exploratory analyses of the bald eagle model best supported by the data. Abbreviations are: *year* (year of study); *dist* (distance of group from road); *hact* (human activity); *intxn* (interaction time); *sb* (number of snowmobiles); *coach* (number of coaches); *hab* (habitat); AP (approached animals on foot); S (stopped to observe animals); N (no visible reaction); BF (burned forest); F (unburned forest); and M (meadow). For each categorical variable, results are presented relative to the baseline level (i.e., 2006 for *year*, N for *hact*, and M for *hab*) and each estimate represents a departure from zero (i.e., no effect).

	Mo	vement logi	t	Vigilance logit		
Effect	Estimate	SE	P	Estimate	SE	Р
intercept	0.13	1.36	0.925	-3.38	1.23	0.006
<i>year</i> = 2003	1.13	0.45	0.011	0.09	0.37	0.814
= 2004	-0.23	0.50	0.648	0.78	0.34	0.020
= 2005	0.53	0.43	0.220	0.35	0.36	0.334
= 2006	-1.43	0.55	0.010	-1.21	0.35	< 0.001
dist	-1.25	0.71	0.080	0.59	0.55	0.284
hact = AP	0.83	0.77	0.280	-0.43	0.67	0.518
= S	-0.08	0.48	0.860	-0.70	0.42	0.093
= N	-0.75	0.64	0.239	1.14	0.52	0.028
intxn	-0.06	1.25	0.960	4.09	1.14	< 0.001
sb	0.24	0.08	0.002	0.19	0.07	0.004
coach	1.44	0.65	0.027	0.66	0.50	0.185
hab = BF	.45	0.36	0.211	2.14	0.33	< 0.0001
= F	-0.72	0.39	0.066	-0.29	0.32	0.365
= M	0.26	0.45	0.556	-1.85	0.48	< 0.0001
intxn*dist	0.28	0.65	0.667	-1.21	0.57	0.032

APPENDIX H – Estimates, standard errors, and *P*-values for the movement logit and vigilance logit from exploratory analyses of the coyote model best supported by the data. Abbreviations are: *year* (year of study); *dist* (distance of group from road); *hact* (human activity); *intxn* (interaction time); AP (approached animals on foot); N (no visible reaction). For each categorical variable, results are presented relative to the baseline level (i.e., 2006 for *year* and N for *hact*) and each estimate represents a departure from zero (i.e., no effect).

	Movement logit			Vigilance logit		
Effect	Estimate	SE	Р	Estimate	SE	Р
intercept	-0.50	1.33	0.706	-1.54	1.05	0.141
<i>year</i> = 2003	0.79	0.56	0.157	1.06	0.40	0.008
= 2004	-0.44	0.58	0.449	-0.32	0.40	0.428
= 2005	0.49	0.53	0.356	0.73	0.37	0.048
= 2006	-0.84	0.54	0.120	-1.47	0.43	< 0.001
dist	-5.10	1.21	< 0.0001	-1.49	1.06	0.160
hact = AP	1.13	0.58	0.053	-0.42	0.74	0.571
= N	-1.13	0.58	0.053	0.42	0.74	0.571
intxn	3.21	1.22	0.008	2.18	0.68	0.001

APPENDIX I – Output from a maximum likelihood analysis of variance for *a priori* and post hoc exploratory bison model main effects and interactions. Degrees of freedom (df) and P-values indicate if a variable's effect was statistically significant.

	<i>a prior</i> model	ri	explorator model	y	
Model Effect	df	<i>P</i> -value	df	<i>P</i> -value	
year	6	<.0001	6	<.0001	
sppnum	2	.0001	2	.0001	
dist	2	.0009	2	.0009	
hact	8	<.0001	8	<.0001	
intxn	2	.0027	2	.0027	
oroad	2	<.0001	2	<.0001	
sb	2	.0009	2	.0009	
coach	2	.0083	2	.0083	
hab	8	<.0001	8	<.0001	
cumvis	2	.0020	2	.0020	
sppnum*dist	2	<.0001	2	<.0001	
dist*hact	6	.1490	6	.1490	
sppnum*intxni	t 2	.0055	2	.0055	
cumvis*year	8	.0048	8	.0048	

APPENDIX J – Output from a maximum likelihood analysis of variance for *a priori* and post hoc exploratory elk model main effects and interactions. Degrees of freedom (df) and *P*-values indicate if a variable's effect was statistically significant.

<i>a priori</i> model			exploratory model		
Model Effect	df	<i>P</i> -value	df	<i>P</i> -value	
year sppnum	6 2	<.0001 .3628	6	<.0001	
dist hact	2	.1443			
intxn	2	<.0001	2	<.0001	
oroad sb	2 2	<.0001 .7010	2	<.0001	
coach bab	2	.0843	2	.0758	
nad cumvis sppnum*dist	8 2 2	.0004 .0258 .0556	2	.0272	
sppnum*hact	6	.0023	6	.0002	
dist*intxn sppnum*intxn	2 2	.0325 <.0001	2 2	<.0001 <.0001	
sppnum*hab			8	<.0001	

APPENDIX K – Output from a maximum likelihood analysis of variance for *a priori* and post hoc exploratory trumpeter swan model main effects and interactions. Degrees of freedom (df) and *P*-values indicate if a variable's effect was statistically significant.

ue
06
01
01
94
03
35
14
72
20

APPENDIX L – Output from a maximum likelihood analysis of variance for *a priori* and post hoc exploratory bald eagle model main effects and interactions. Degrees of freedom (df) and *P*-values indicate if a variable's effect was statistically significant.

<i>a priori</i> model			exploratory model		
Model Effect	df	<i>P</i> -value	df	<i>P</i> -value	
year	6	.0004	6	.0003	
sppnum	2	.3114			
dist	2	.0356	2	.0363	
hact	6	.0230	4	.0056	
intxn	2	<.0001	2	.0001	
Sb	2	.0094	2	.0064	
coach	2	.1098	2	.0855	
hab	4	<.0001	4	<.0001	
dist*intxn	2	.0195	2	.0254	

APPENDIX M – Output from a maximum likelihood analysis of variance for *a priori* and post hoc exploratory coyote model main effects and interactions. Degrees of freedom (df) and P-values indicate if a variable's effect was statistically significant.

<i>a priori</i> model			exploratory model		
df	<i>P</i> -value	df	<i>P</i> -value		
6	.0160	6	.0111		
2	.1999				
2	.0061	2	<.0001		
6	.1407	2	.0087		
2	.0230	2	.0015		
2	.9078				
2	.2457				
2	.9410				
	<i>prio</i> mode <i>df</i> 6 2 6 2 6 2 2 2 2 2 2	<i>df P</i> -value 6 .0160 2 .1999 2 .0061 6 .1407 2 .0230 2 .9078 2 .2457 2 .9410	exploriori $exploratoric model$ $model$ $model$ df P -value df 6 .0160 6 2 .1999 2 2 .0061 2 6 .1407 2 2 .9078 2 2 .2457 2 2 .9410 2		