Skip Navigation
Centers for Disease Control & Prevention
  Sexually Transmitted Diseases

  STD Research

Use your browser's BACK button to return to your page of origin.

Population-based genetic and evolutionary analysis of Chlamydia trachomatis urogenital strain variation in the United States.
Journal of Bacteriology 2004;186(8):2457-2465.

Millman K, Black CM, Johnson RE, Stamm WE, Jones RB, Hook EW, Martin DH, Bolan G, Tavare S, Dean D.

Abstract
Chlamydia trachomatis is a major cause of ocular and sexually transmitted diseases worldwide. While much of our knowledge about its genetic diversity comes from serotyping or ompA genotyping, no quantitative assessment of genetic diversity within serotypes has been performed. To accomplish this, 507 urogenital samples from a multicenter U.S. study were analyzed by phylogenetic and statistical modeling. No B, Da, or I serotypes were represented. Based on our analyses, all but one previous urogenital B serotype was identified as Ba. This, coupled with the lack of B serotypes in our population, suggests that B has specific tropism for ocular mucosa. We identified a Ba/D recombinant (putative crossover nucleotide 477; P < 0.0001) similar to a B/D mosaic we described previously from an African trachoma patient. Computational analyses of the Ba/D recombinant indicated that upstream changes were less important for tissue tropism than downstream incorporation of the D sequence. Since most serotypes had nonsynonymous/synonymous ratios of <1.0, the major outer membrane protein, encoded by ompA, has many functional constraints and is under purifying selection. Surprisingly, all serotype groups except for J had a unimodal population structure indicating rapid clonal expansion. Of the groups with a unimodal structure, E and Ia and, to a lesser extent, G and K were prevalent, had infrequent incorporation of mutations, and, compared to other groups, had a relatively greater degree of diversifying selection, consistent with a selective sweep of mutations within these groups. Collectively, these data suggest a diverse evolutionary strategy for different serogroups of the organism.

 


Page last modified: August 8, 2005
Page last reviewed: August 8, 2005 Historical Document

Content Source: Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention