Soybean Genomics and Improvement Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
Soybeans
Alfalfa
Electron Microscope Unit
 

Research Project: Genomics and Proteomics Approaches to Broadening Resistance of Soybean to Pests and Pathogens

Location: Soybean Genomics and Improvement

Project Number: 1275-21220-221-00
Project Type: Appropriated

Start Date: Apr 06, 2006
End Date: Apr 05, 2011

Objective:
Objective 1: Discover and characterize plant and pathogen genes important for resistance or pathogenicity at the molecular level with special emphasis on, but not limited to soybean interactions with soybean rust and soybean cyst nematode. Hypothesis: There are detectable gene and protein differences between uninfected and pathogen-infected plants and between susceptible and resistant plants, and there are pathogen virulence factors critical to pathogen infection, development and survival. Objective 2: Determine modes of action for plant disease resistance genes, pathogen virulence factors and molecular signals responsible for host-parasite interactions through analysis and characterization of genetic, molecular, protein and metabolite networks. Hypothesis: Examination of the many genes involved in plant-pathogen interactions will reveal critical molecular networks with specific modes of action that are essential to resistance in soybean and to virulence in soybean pathogens. These networks may share commonalities to networks in other plants and pathogens. Objective 3: Engineer and evaluate new methods for obtaining resistance, such as gene silencing, over-expression and protein antagonism, and chemical inhibition of host and pathogen processes, with special emphasis on soybean rust and the soybean cyst nematode. Hypothesis: Expression of gene silencing constructs or of proteins inhibitory to important aspects of pathogen infection, development or maintenance can result in increased tolerance or resistance to a particular pest or pathogen.

Approach:
We have soybean genotypes resistant to one or more rust isolates, but susceptible to all others. These soybean genotypes will be challenged with specific pathogen isolates to study the resistance and susceptible response. Gene and protein expression in both plants and pathogens will be monitored using microarrays, membrane arrays, expressed sequence tag analysis, in situ hybridization, and RT-PCR. Proteins will be detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cell fractionation, laser capture microdissection, and subtractive hybridization will be used to isolate specific tissues, organelles, or materials involved in disease processes or responses. Other methods such as antibody localization, gene silencing, plant hairy root transformation (for SCN studies) and mutant analysis will be used to determine the function of genes and proteins and to evaluate their importance in resistance and susceptibility. The disease and pest resistance responses to infection in soybeans will be elucidated systematically using microarrays, proteomics and metabolomics to resolve the biological network evoked. A comparison of differential gene expression and protein accumulation in the resistant and susceptible response of soybean to pathogens will identify components of the network. These networks will be built, examined, and perturbed to confirm function of components using an array of tools, including bioinformatics, yeast two-hybrid screens, mutation analysis, immuno-localization, immuno-precipitation, affinity purification, protein tagging, gene over-expression, phage library display, and other methods that will resolve protein-protein interactions and interactions among molecules. Based on these data, we can identify candidate members of pathways and networks involved in signaling and evoking the resistance response. Other plant systems, including common bean and Medicago truncatula, will be used as needed in parallel investigations studying host-pathogen responses and interactions to take advantage of the knowledge and specific traits of the resistance response in these systems. Approaches for achieving pathogen control include engineering transgenic plant tissue and organs to express genes that boost the natural defense system of the plant or to provide the plant with a new trait that confers resistance by blocking pathogen attack or survival. Genes shown to have important roles in plant defense may be over-expressed in transgenic plants. Likewise genes that are critical to survival of the SCN in the host or that make the plant susceptible to SCN may be silenced in transgenic roots using hairy root transformation techniques. Additionally, genes that express antibodies or protein antagonists will be engineered into soybean to block the survival and development of the pest or pathogen. BL1/BL1-P certified 7/14/05.

   

 
Project Team
Matthews, Benjamin - Ben
Tucker, Mark
Cooper, Bret
 
Project Annual Reports
  FY 2008
  FY 2007
  FY 2006
 
Publications
   Publications
 
Related National Programs
  Plant Biological and Molecular Processes (302)
  Plant Diseases (303)
 
Related Projects
   Application of Bioinformatics to Identification of Plant Gene Function
   Analysis of Soybean Genes Involved in Pest Resistance
   Bioinformatics and Statistics of Proteomics
   Application of Biotechnology to Control the Scn
   Developing Soybean Resistance to Soybean Rust Using Biotechnology
   Application of Biotechnology to Control the Soybean Cyst Nematode (Scn)
   Application of Biotechnology to Control the Soybean Cyst Nematode (Scn)
   Towards Detecting Protein-Protein Interactions in Soybean and Other Plants Via Mass Spectrometry
 
 
Last Modified: 05/08/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House