### **Final**

# RECORD OF DECISION FOR OPERABLE UNIT 32 ENVIRONMENTAL RESTORATION PROGRAM SITE WP-14 LANGLEY AIR FORCE BASE, VIRGINIA



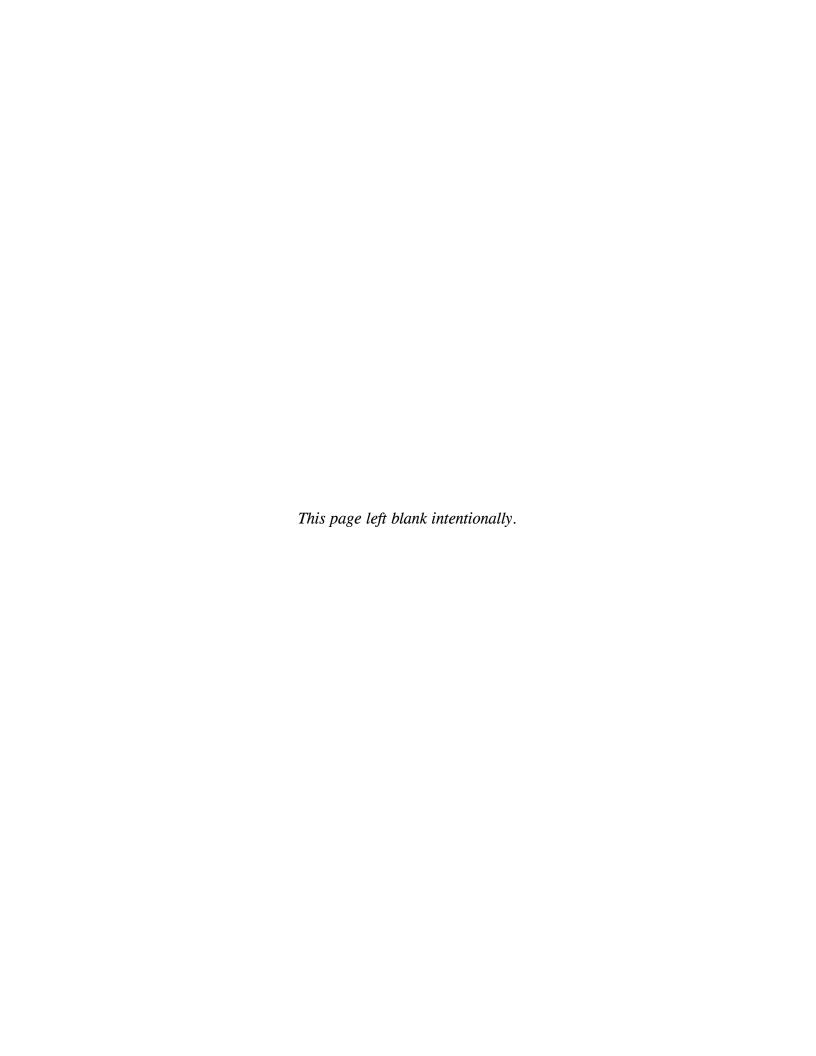
August 2008

#### TABLE OF CONTENTS

|     |      |                                                                         | Page   |
|-----|------|-------------------------------------------------------------------------|--------|
| 1.0 | DECI | LARATION                                                                | 1_1    |
| 1.0 | 1.1  | SITE NAME AND LOCATION                                                  |        |
|     | 1.2  | STATEMENT OF BASIS AND PURPOSE                                          |        |
|     | 1.3  | ASSESSMENT OF THE SITE                                                  |        |
|     | 1.4  | DESCRIPTION OF THE SELECTED REMEDY                                      |        |
|     | 1.5  | STATUTORY DETERMINATIONS                                                |        |
|     | 1.6  | DATA CERTIFICATION CHECKLIST                                            |        |
|     | 1.7  | AUTHORIZING SIGNATURES                                                  |        |
|     |      |                                                                         |        |
| 2.0 |      | ISION SUMMARY                                                           |        |
|     | 2.1  | SITE NAME, LOCATION, AND DESCRIPTION                                    |        |
|     | 2.2  | INVESTIGATION HISTORY                                                   | 2-1    |
|     |      | 2.2.1 Installation Restoration Program Records Search for Langley       |        |
|     |      | AFB (CH2M HILL, 1981)                                                   | 2-1    |
|     |      | 2.2.2 Site Inspection and Screening Risk Assessment for 33 Installation |        |
|     |      | Restoration Program Sites (Radian Corporation, 1996)                    |        |
|     |      | 2.2.3 Remedial Investigation (Radian, 2000)                             |        |
|     |      | 2.2.4 Feasibility Study (URS Corporation [URS], 2001a)                  |        |
|     |      | 2.2.5 Proposed Plan (URS, 2001b)                                        |        |
|     |      | 2.2.6 Pre-Remedial Action Activities (HGL, 2005)                        |        |
|     |      | 2.2.7 Revised Proposed Plan (HGL, 2008)                                 |        |
|     | 2.3  | COMMUNITY PARTICIPATION                                                 |        |
|     | 2.4  | SCOPE AND ROLE OF RESPONSE ACTION                                       |        |
|     | 2.5  | SITE CHARACTERISTICS                                                    |        |
|     |      | 2.5.1 Conceptual Site Model                                             | 2-5    |
|     |      | 2.5.2 Site Overview                                                     | 2-5    |
|     |      | 2.5.3 Sampling Strategy                                                 |        |
|     |      | 2.5.4 Nature and Extent of Contamination                                | 2-6    |
|     | 2.6  | CURRENT AND POTENTIAL FUTURE LAND AND RESOURCE                          |        |
|     |      | USES                                                                    |        |
|     | 2.7  | SUMMARY OF SITE RISKS                                                   |        |
|     |      | 2.7.1 Human Health Risk Summary                                         |        |
|     |      | 2.7.1.1 Chemicals of Potential Concern                                  | 2-7    |
|     |      | 2.7.1.2 Exposure Assessment.                                            |        |
|     |      | 2.7.1.3 Toxicity Assessment                                             | 2-8    |
|     |      | 2.7.1.4 Risk Characterization                                           | 2-8    |
|     |      | 2.7.1.5 Uncertainty                                                     | . 2-11 |
|     |      | 2.7.2 Ecological Risk Assessment                                        | . 2-11 |
|     |      | 2.7.2.1 Chemicals of Potential Ecological Concern                       | . 2-11 |
|     |      | 2.7.2.2 Exposure and Ecological Effects Assessment                      | . 2-12 |
|     |      | 2.7.2.3 Ecological Risk Characterization                                | . 2-12 |
|     |      | 2.7.2.4 Uncertainty                                                     | . 2-13 |

HGL 9/30/2008

#### **TABLE OF CONTENTS (continued)**


|     |       |                                      | Page |
|-----|-------|--------------------------------------|------|
|     |       | 2.7.3 Conclusion                     |      |
|     | 2.8   | DOCUMENTATION OF SIGNIFICANT CHANGES | 2-13 |
| 3.0 | RESP  | ONSIVENESS SUMMARY                   | 3-1  |
| 4.0 | REFE  | RENCES                               | 4-1  |
| APP | ENDIX | A Risk Tables                        |      |

#### LIST OF TABLES

| Table 2.1 | Arsenic and Manganese in Surface Soils (mg/kg), Site WP-14, Langley AFB,  |
|-----------|---------------------------------------------------------------------------|
|           | VA                                                                        |
| Table 2.2 | Arsenic and Manganese in Near-Surface Sub-Surface Soils (mg/kg), Site WP- |
|           | 14, Langley AFB, VA                                                       |
| Table 2.3 | Arsenic and Manganese in Deeper Sub-Surface Soils (mg/kg), Site WP-14,    |
|           | Langley AFB, VA                                                           |
| Table 2.4 | Arsenic Quantified in Surface Soil Samples (mg/kg), September 2004 Pre-   |
|           | Confirmation Sampling, Site WP-14, Langley AFB, VA                        |
| Table 2.5 | Manganese Quantified in Surface Soil Samples (mg/kg), September 2004 Pre- |
|           | Confirmation Sampling, Site WP-14, Langley AFB, VA                        |
| Table 2.6 | Arsenic Quantified in Deeper Subsurface Samples (mg/kg), September 2004   |
|           | Pre-Confirmation Sampling, Site WP-14, Langley AFB, VA                    |
|           |                                                                           |

#### LIST OF FIGURES

| Figure 2.1 | Location Map, Langley AFB                             |
|------------|-------------------------------------------------------|
| Figure 2.2 | ERP Site WP-14, Langley AFB                           |
| Figure 2.3 | WP-14 Human Health Conceptual Site Model, Langley AFB |
| Figure 2.4 | WP-14 Ecological Conceptual Site Model, Langley AFB   |



#### LIST OF ACRONYMS AND ABBREVIATIONS

AFB Air Force Base

bgs below ground surface

BTAG Biological Technical Advisory Group

CDI chronic daily intake

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

("Superfund")

CFR Code of Federal Regulations
CNS central nervous system
COC contaminant of concern
COPC chemical of potential concern

COPEC chemical of potential ecological concern

CSFs carcinogenic slope factors CSM conceptual site model

EPA U.S. Environmental Protection Agency

EPC exposure point concentration ERA ecological risk assessment

ERP Environmental Restoration Program

FS Feasibility Study

HGL HydroGeoLogic, Inc.

HHRA human health risk assessment

HI hazard index HQ hazard quotient

ID identification

IRP Installation Restoration Program

LOAEL lowest observed adverse effect level

 $\mu$ g/kg micrograms per kilogram

NASA National Aeronautics and Space Administration

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NOAEL no observed adverse effect level

OU Operable Unit

PAH polynuclear aromatic hydrocarbon

#### LIST OF ACRONYMS AND ABBREVIATIONS (continued)

RAB Restoration Advisory Board
Radian Radian International, LLC
RBC Risk-Based Concentration
RBSL risk-based screening level

RfDs noncarcinogenic reference doses

RI remedial investigation

RME reasonable maximum exposure

ROD Record of Decision

SARA Superfund Amendments and Reauthorization Act

SI Site Investigation

SRA screening risk assessment

TAL target analyte list

URS URS Corporation
USAF U.S. Air Force
U.S.C. U.S. Code

UTL upper tolerance limit

VDEQ Virginia Department of Environmental Quality

#### **FINAL**

#### RECORD OF DECISION FOR OPERABLE UNIT 32 ENVIRONMENTAL RESTORATION PROGRAM SITE WP-14 LANGLEY AIR FORCE BASE, VIRGINIA AUGUST 2008

#### 1.0 DECLARATION

#### 1.1 SITE NAME AND LOCATION

Operable Unit 32 (OU32), Environmental Restoration Program (ERP) Site WP-14 Langley Air Force Base (AFB), Virginia U.S. Environmental Protection Agency (EPA) Identification (ID) # VA2800005033

#### 1.2 STATEMENT OF BASIS AND PURPOSE

This Record of Decision (ROD) documents the U.S. Air Force's (USAF) determination that No Action is necessary to address soils at OU32 (ERP Site WP-14) at Langley AFB near Hampton, Virginia. This determination was made in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and, to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This decision is based on the information contained in the Administrative Record file for the site; this ROD will become part of the Administrative Record pursuant to the NCP.

The USAF is the lead agency and provides funding for site clean-up activities at Langley AFB. The USAF and EPA Region III agree and the Virginia Department of Environmental Quality (VDEQ) concurs that No Action is required for soils at OU32 (ERP Site WP-14).

#### 1.3 ASSESSMENT OF THE SITE

OU32 is one of 24 ERP OUs identified under CERCLA at Langley AFB. The results of site environmental studies show that there are no hazardous constituents present in site soils at concentrations posing a potential unacceptable threat to human health and the environment. No response action is necessary at ERP Site WP-14 to protect public health and the environment from actual or threatened releases of hazardous substances.

#### 1.4 DESCRIPTION OF THE SELECTED REMEDY

Under CERCLA, "No Action" is necessary for OU26. The USAF's determination that no action is necessary at ERP WP-14 is based on an evaluation of site conditions and site-related risks which are detailed in the ERP Site WP-14 Remedial Investigation (RI) Report (Radian International, LLC [Radian], 2000) and the ERP Site WP-14 Final Risk Re-Evaluation Report (HydroGeoLogic, Inc. [HGL], 2005). This report indicates that current conditions are

protective of human health and the environment. The No Action decision applies to the site surface and subsurface soils only. Groundwater associated with Site WP-14 will be addressed as part of the remedy for ERP site OT-64, the basewide groundwater operable unit. There is no surface water or sediment at the site.

The Management Action Plan for Langley AFB is updated annually and includes the current CERCLA status and schedule of remedial actions for each OU at Langley AFB. The Management Action Plan and supplemental information can be found in the Information Repository maintained at Langley AFB (see Section 2.3).

#### 1.5 STATUTORY DETERMINATIONS

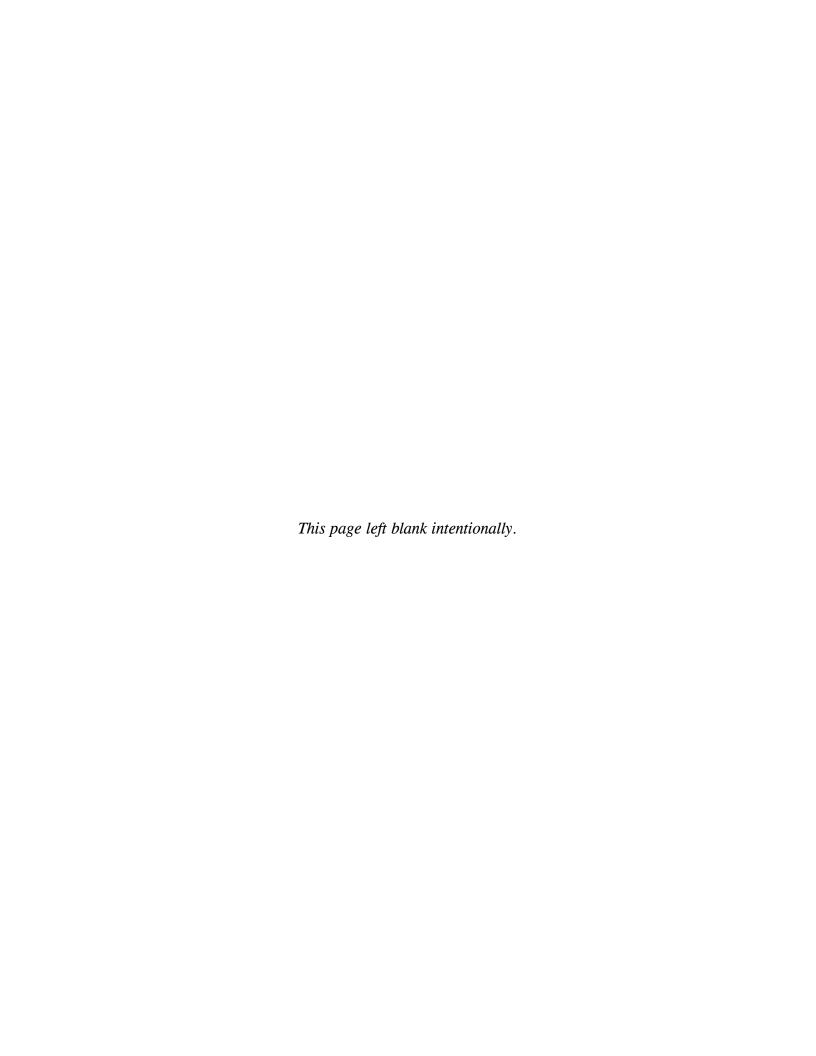
No remedial action is necessary to ensure protection of human health and the environment. The Selected Remedy is protective of human health and the environment and will not result in hazardous substances, pollutants, or contaminants remaining on site above levels that prevent unlimited use and unrestricted exposure. Therefore, a 5-year review will not be required for this remedial action.

#### 1.6 DATA CERTIFICATION CHECKLIST

The following information is included in the ROD.

- Chemicals of potential concern (COPCs) and their respective concentrations (Section 2.7 and associated tables).
- Baseline risk represented by the COPCs (Section 2.7).
- Current and reasonably anticipated future land and resource use (Section 2.6).

Additional information can be found in the Administrative Record file for Langley AFB. There are no costs associated with the No Action decision and no contaminants of concern (COCs) requiring establishment of cleanup levels.


#### 1.7 **AUTHORIZING SIGNATURES**

Colonel, USAF

Deputy Director of Installations and Mission Support (A7)

Hazardous Site Cleanup Division

**EPA Region III** 



#### 2.0 DECISION SUMMARY

#### 2.1 SITE NAME, LOCATION, AND DESCRIPTION

Langley AFB is located near Hampton, Virginia, between the Northwest Branch and Southwest Branch of the Back River, a tidal estuary of the Chesapeake Bay. The location of Langley AFB is shown on Figure 2.1. The layout of ERP Site WP-14, a former chemical leach pit, is shown on Figure 2.2. Langley AFB was listed jointly on the Superfund National Priorities List with the National Aeronautics and Space Administration (NASA) Langley Research Center in 1994 (EPA ID#: VA2800005033). However, the CERCLA investigations for these two facilities are conducted separately. Langley AFB investigations and site cleanups are funded by the Air Force and the NASA Langley Research Center investigations and site cleanups are funded by NASA. The USAF is the lead agency for CERCLA activities at Langley AFB; the EPA is the lead regulatory agency, and VDEQ is the support agency.

ERP Site WP-14 is located in the north-central portion of Langley AFB, north of Weyland Road near the Firing-in Abutment. Currently, the site is an open grassy area. The grass is well-maintained. The ground surface is relatively flat except for a soil berm that borders the site to the north and west. According to Langley AFB personnel, the source of this berm is golf course soils and sediments. A drainage ditch leading into Tabbs Creek runs along the western edge of the berm and forms the west border of the site. The site has a current land use and anticipated future land use of light industrial. Adjacent land use includes business (administration), light industrial, and recreation.

ERP Site WP-14 was originally identified as containing a chemical leach pit adjacent to a former taxiway. The leach pit was used to collect washdown and spills associated with the loading of pesticides onto spray airplanes. The main contaminant entering the leach pit was reportedly malathion, but contamination from other pesticides is believed possible. The operational dates for WP-14 are unknown; however, aerial photographs from 1963 show a topographic depression believed to be the leach pit area.

#### 2.2 INVESTIGATION HISTORY

The following subsections summarize the investigations that have been conducted to address surface soil and subsurface soil at ERP Site WP-14. As previously stated, the groundwater associated with ERP Site WP-14 will be addressed as part of ERP Site OT-64, the basewide groundwater operable unit. No surface water or sediment is present at ERP Site WP-14. No CERCLA enforcement activities have been conducted at Langley AFB.

## 2.2.1 Installation Restoration Program Records Search for Langley AFB (CH2M HILL, 1981)

The Installation Restoration Program (IRP) Records Search was conducted to determine the potential, if any, for migration of toxic and hazardous materials off the Langley AFB installation boundaries. ERP Site WP-14 was identified as a result of this records search.

# 2.2.2 Site Inspection and Screening Risk Assessment for 33 Installation Restoration Program Sites (Radian Corporation, 1996)

In 1993 and 1994, a Site Inspection (SI) was conducted to determine the presence or absence of contamination at 33 IRP sites, including WP-14. In September 1993, 24 subsurface soil samples were collected from 12 locations at WP-14. The locations for the soil samples were chosen based on site knowledge and aerial photograph analysis. In December 1994, three surface soil samples were collected in low-lying areas of the site. Pesticides and herbicides were found in surface and subsurface soils. With respect to Target Analyte List (TAL) metals, only cadmium (in surface and subsurface soils) and arsenic (subsurface soils only) exceeded background levels. Polynuclear aromatic hydrocarbons (PAHs) were found in some subsurface soils. A screening risk assessment (SRA) performed on these data indicated that constituent concentrations in surface soils resulted in acceptable risks for all receptors. For subsurface soils, cancer risk exceeded 1x10<sup>-5</sup> and non-cancer hazard indices exceeded 1 for residential receptors.

The SRA concluded that remediation of surface soil at ERP Site WP-14 may not be needed to protect human health, and that remediation of subsurface soil may not be needed unless the subsurface soil is brought to the surface by intrusive activities. A screening level ecological risk assessment (SLERA) identified the potential for adverse effects from exposure of wildlife to organochlorine pesticides and metals.

#### 2.2.3 Remedial Investigation (Radian, 2000)

An RI was performed to characterize further the potential contamination at ERP Site WP-14. RI activities included collection of soil and groundwater samples. As discussed in Section 1.4, groundwater at ERP Site WP-08 will be addressed as part of ERP Site OT-64, the basewide groundwater operable unit, and only soil results are discussed below.

The RI soil sampling was conducted in May 1997. Six surface soil samples and 18 subsurface soil samples were collected from nine locations. The pesticide dieldrin was detected in one surface soil sample above its background upper tolerance limit (UTL) of 28.5 micrograms per kilogram ( $\mu$ g/kg) and risk-based screening level (RBSL) of 40  $\mu$ g/kg. Arsenic and manganese were present at or above both their background UTLs and RBSLs in two surface soil samples. Only two constituents were reported in subsurface soils at concentrations above background UTLs and RBSLs. Dieldrin was detected in two near-surface soil samples (0.5 to 2 feet below ground surface [bgs]) and one deeper sample (2 to 4 feet bgs) at concentrations that exceed the dieldrin background UTL of 1.42  $\mu$ g/kg and RBSL of 40  $\mu$ g/kg. Arsenic was found in three deeper samples at concentrations that exceed both the background UTL and RBSL for arsenic. In addition, benzo[a]pyrene, which was not detected in background samples, was found above the RBSL of 89  $\mu$ g/kg in one near-surface soil sample and in one deeper subsurface soil sample.

The Final RI Report for the site (Radian, 2000) contained a human health risk assessment (HHRA) and a SLERA. The HHRA concluded that arsenic present in surface and subsurface soils posed an unacceptable risk to potential future residents, and that manganese in surface

soils posed potential unacceptable risk to construction workers. The SLERA determined that site-related chemicals did not pose a threat to ecological receptors.

No principal threat wastes have been identified at ERP Site WP-14.

#### 2.2.4 Feasibility Study (URS Corporation [URS], 2001a)

A Feasibility Study (FS) was conducted to evaluate, screen, and develop remedial alternatives to address the arsenic and manganese contamination in soil that posed a potential threat to human health. Remedial action objectives were identified, and alternatives were developed to reduce risks to human health. The Final FS Report (URS, 2001a) evaluated a land use control remedy, and a remedy to achieve unrestricted use of the site (soil excavation with off-site disposal). The conclusion of the FS was that both alternatives were feasible, with excavation providing a higher level of protection for human health and the environment and achieving unlimited use and unrestricted exposure.

#### 2.2.5 **Proposed Plan (URS, 2001b)**

Pursuant to CERCLA Section 117 (Chapter 42 U.S. Code [42 U.S.C.] Section 9617) and the NCP (Section 300.430(f)(3)(ii)(B), 40 Code of Federal Regulations [CFR]), a Proposed Plan (URS, 2001b) was prepared in October 2001. Based on the evaluation in the FS, excavation with off-site disposal was identified as the preferred alternative for ERP Site WP-14.

#### 2.2.6 Pre-Remedial Action Activities (HGL, 2005)

After the original Proposed Plan was finalized and prior to identifying the Selected Remedy for ERP Site WP-14 in a final ROD, additional soil samples were collected to better define the area requiring excavation. In September 2004, 87 surface soil samples were collected. All samples were analyzed for manganese and 85 samples were analyzed for arsenic, based on the distribution in surface soils. Twelve subsurface samples were collected from 3.5 to 4.0 feet bgs. The subsurface soil samples were analyzed for arsenic.

No substantial arsenic and manganese contamination was observed in the September 2004 soil samples. Consequently, the September 2004 arsenic and manganese concentrations were combined with the SI data and RI data, and the risks to future residents and construction workers were re-calculated with this expanded data set as well as updated exposure assumptions. The SI, RI, and 2004 arsenic and manganese data sets are shown in Tables 2.1 through 2.6. This re-evaluation of the human health risk is presented in the *Final Risk Re-Evaluation Report for ERP Site WP-14* (HGL, 2005). As documented in this report, the human health risks calculated with the expanded data set and updated exposure assumptions demonstrate that arsenic and manganese in the soil do not pose an unacceptable threat to either a future resident or a future construction worker. This report concluded that excavation and off-site disposal of the soil at ERP Site WP-14 is not warranted and recommended that the site be closed with no further action.

#### 2.2.7 Revised Proposed Plan (HGL, 2008)

A Revised Proposed Plan was prepared in January 2008 to document the determination that contaminants in the ERP Site WP-14 soils do not warrant remediation, and to identify No Action as the preferred alternative for the site.

#### 2.3 COMMUNITY PARTICIPATION

The USAF and EPA provide information regarding the cleanup of Langley AFB to the public through a community relations program, which includes a Restoration Advisory Board (RAB), public meetings, the Administrative Record file for the site, the information repository, and announcements published in local newspapers. The activities conducted under the community relations program complied with the requirements of CERCLA Sections 113(k)(2)(B)(i-v) and 117, 42 U.S. Code (U.S.C.) Sections 9613(k)(2)(B)(i-v) and 9617.

For the original Proposed Plan for ERP Site WP-14, Langley AFB provided a public comment period from October 8, 2001 to November 7, 2001. An announcement for a public meeting, the comment period, and the availability of the Proposed Plan and supporting documentation was published in the *Daily Press*, a newspaper of general circulation in Hampton, Virginia, on October 7, 2001. Additionally, this information was published in the *Langley Flyer*, a Langley AFB newspaper, on October 5, 2001. A public meeting was held at the Chamberlin Hotel, located at 2 Fenwick Road in Hampton, Virginia, on October 15, 2001.

Langley AFB provided a public comment period from February 3 through March 4, 2008, for the Revised Proposed Plan for ERP Site WP-14. To fulfill the public participation requirement under Section 117(a) of CERCLA, as amended by SARA, a Notice of Availability of the Revised Proposed Plan and supporting documentation and the public notice for the public comment period and the public meeting was published in the *Daily Press* (Newport News) newspaper. The public meeting to present the Revised Proposed Plan was held on February 12, 2008, at the Machen Elementary School, located in Hampton, Virginia.

The Revised Proposed Plan and previous investigation reports for ERP Site WP-14 are available to the public in the Administrative Record and Information Repository maintained at:

Langley AFB 37 Sweeney Boulevard Langley AFB, Virginia 23665 By Appointment Mr. John Tice (757) 764-1082

#### 2.4 SCOPE AND ROLE OF RESPONSE ACTION

The USAF has organized work to date at Langley AFB into 24 OUs. The current CERCLA status and schedule of remedial actions for each OU is detailed in the Management Action

Plan, which can be found in the Information Repository maintained at Langley AFB (see Section 2.3).

This ROD documents the rationale for determining that No Action is necessary for ERP Site WP-14 soils. Groundwater underlying the site will be addressed as part of ERP Site OT-64, the basewide groundwater operable unit (OU52). Surface water and sediment are not present at the site; consequently, these media are not part of this ROD. No Action will be the final action for soil at Site WP-14.

#### 2.5 SITE CHARACTERISTICS

Because historical accounts of potentially hazardous material and waste handling activities were noted at the site, several investigations were conducted at ERP Site WP-14 to determine the nature and extent of any potential contamination. The results of these investigations are summarized in Section 2.2. For further information, all of the documents summarized in Section 2.2 and in the site characterization discussion below can be found in the associated Administrative Record files maintained at Langley AFB (see Section 2.3).

#### 2.5.1 Conceptual Site Model

The source of exposure at ERP Site WP-14 is contaminated surface soil and subsurface soil. The conceptual site models (CSMs) for human health (Figure 2.3) and ecological receptors (Figure 2.4) show potential exposure pathways for ERP Site WP-14. The HHRA and SLERA were based on these CSMs. A detailed description of the selection of human exposure pathways is presented in Appendix A.1.

#### 2.5.2 Site Overview

ERP Site WP-14 is located north of Weyland Road near the Firing-in Abutment, in the north-central portion of Langley AFB. The site encompasses an area that used to be a chemical leach pit. The washdown and spills associated with the loading of pesticides onto spray airplanes collected in the leach pit where the fluid seeped into the ground or evaporated. The main contaminant entering the leach pit was reportedly malathion, but contamination from other pesticides is believed possible. The operational dates for ERP Site WP-14 are unknown. However, aerial photographs from 1963 show a topographic depression believed to be the leach pit area. Currently, the site is vacant of all structures and is covered by grass that is periodically mowed.

Except for the berm along the northwest corner, the site is relatively flat. Surface runoff flows to a drainage ditch bordering the site to the west. Water in this ditch flows northwest into Tabbs Creek, which eventually discharges to the Northwest Branch of the Back River. There are no classified wetlands on or adjacent to ERP Site WP-14.

The current land use for ERP Site WP-14 is classified as light industrial. This land use is not expected to change in the future. Adjacent land is business (administration), light industrial, recreation, and open.

No areas of archaeological or historical importance have been identified at the site.

#### 2.5.3 Sampling Strategy

The intent of the 1993-1994 SI and the 1997 RI was to collect surface soil and subsurface soil data to characterize the nature and extent of contamination and to assess the potential risks to human health and the environment at ERP Site WP-14. The locations of the SI soil samples were selected on the basis of aerial photography and historical site knowledge. The RI samples were located to provide additional information on the area near the taxiway, and to assess the presence of contamination along the earthen berm. The purpose of the soil sampling conducted in 2004 was to delineate the soil originally scheduled for a remedial action to address arsenic and manganese contamination. These soil sample locations were selected based on the arsenic and manganese data collected during the SI and the RI.

#### 2.5.4 Nature and Extent of Contamination

Pesticides, herbicides, and PAHs were detected in the soil samples collected at ERP Site WP-14. Concentrations of the organic compounds tended to be low. Only dieldrin and benzo(a)pyrene were detected at concentrations greater than the RBSLs.

Arsenic, manganese, antimony, barium, and cadmium were detected in surface soil samples at concentrations greater than their respective background 95 percent upper tolerance levels (UTLs), suggesting that these metals are contaminants. Arsenic was the only metal identified as a contaminant in the subsurface soils. The highest arsenic and manganese concentrations in the surface soil tended to be in samples collected adjacent to the berm in the northwest corner of the site.

The primary contaminant migration pathway for soil at ERP Site WP-14 is infiltration and leaching of precipitation through the soil to the groundwater system. The groundwater beneath ERP Site WP-14 will be addressed as part of ERP Site OT-64, the basewide groundwater operable unit. Because of the flat and vegetated nature of the site, surface water runoff and erosion are expected to contribute minimally to contaminant migration.

#### 2.6 CURRENT AND POTENTIAL FUTURE LAND AND RESOURCE USES

The current and anticipated future land use at ERP Site WP-14 is categorized as light industrial, as defined in the Base General Plan. Adjacent property is designated as open space to the south, light industrial (the Fire Training Area) to the north, recreational (the golf course) to the west, and business administration (under construction) to the east. The reasonably anticipated future land use for the site is to remain light industrial under the Base General Plan. The USAF has no plan to change the existing land or resource use in the foreseeable future.

#### 2.7 SUMMARY OF SITE RISKS

A HHRA and SLERA were completed to identify and characterize the current and potential future risks associated with the ERP Site WP-14 soil if no remediation is implemented. The

SLERA and HHRA evaluated exposure of ecological and human receptors to chemicals in the site soil and site groundwater. As described previously, the groundwater beneath ERP Site WP-14 will be addressed as part of ERP Site OT-64. Therefore, this description of site risks only addresses exposure to the ERP Site WP-14 soil. A detailed discussion of potential risks is provided in the Final RI Report (Radian, 2000). The conclusions of the RI HHRA with respect to the construction worker and future child resident were modified by the Risk Re-Evaluation Report (HGL, 2005), which incorporated additional soil data for arsenic and manganese and revised the exposure assumptions for these two metals.

Based on the re-evaluation of risks to human health, the HHRA concluded that site contaminants do not pose a threat to human health. The SLERA determined that, if no further action is taken, contaminants in the site surface soil do not pose a threat to the environment. No response action is required to protect human health and the environment. Accordingly, this ROD documents the rationale for determining that No Action is necessary for ERP Site WP-14.

#### 2.7.1 Human Health Risk Summary

#### **2.7.1.1** Chemicals of Potential Concern

The initial screening of the RI data resulted in identification of several COPCs for the surface soil and subsurface soil. The COPCs and their associated exposure point concentrations (EPCs) used to estimate the risk are provided in Appendix A.2 and A.3, respectively. Surface soil and subsurface soil COPCs included metals, dieldrin, and benzo(a)pyrene. Detailed information for the selection of COPCs at ERP Site WP-14 is provided in Section 6.5.1 of the Final RI Report (Radian, 2000).

#### 2.7.1.2 Exposure Assessment

The human health exposure assessment identifies and evaluates the contaminant sources, release mechanisms, exposure pathways, exposure routes, and receptors. The elements of the exposure assessment for ERP Site WP-14 are identified in the CSM (Figure 2.3), and are described in detail in Table A.1. A detailed discussion of the exposure assessment for all the scenarios considered in the HHRA is provided in Section 6.5.2 of the Final RI Report (Radian, 2000). The receptors evaluated in the ERP Site WP-14 HHRA were the other worker, construction worker, industrial worker, child trespasser/visitor, fisher, and resident (adult and child). Each receptor is described below.

- **Child Trespasser** The child trespasser may play at the site, thereby being exposed to the site surface soil through incidental ingestion and dermal contact.
- **Fisher** This receptor was developed to evaluate the exposure of individuals who catch and consume fish from the Back River to chemicals in the groundwater that discharges to the Back River. This receptor is not exposed to the soil at ERP Site WP-14. Therefore, this receptor is not discussed further in this risk summary.

- Other Worker The other worker is intended to represent a groundskeeper who spends the majority of his time outdoors tending yards and gardens, trimming shrubs, and performing other general outdoor duties. Currently, the potential exposure pathways for the groundskeeper are incidental ingestion and dermal contact with surface soil, and inhalation of fugitive dust emissions from the surface soil; however, the risk assessment performed in the Final RI Report (Radian, 2000) also includes an evaluation of risk to this receptor associated with subsurface soil exposure.
- Industrial Worker The industrial worker is intended to represent a utility line worker who performs infrequent minor excavations to repair underground utility lines. Exposure pathways include incidental ingestion and dermal contact with surface soil and subsurface soil, and inhalation of dust and volatile emissions generated by excavation activities.
- **Resident (adult and child)** For the potential future resident receptor, exposure pathways include incidental ingestion and dermal contact with surface and subsurface soil.
- Construction Worker For the future construction worker, exposure pathways include incidental ingestion and dermal contact with surface soil and subsurface soil, and inhalation of dust and volatile emissions generated by excavation activities.

#### 2.7.1.3 Toxicity Assessment

The toxicity assessment provides a numerical estimate of the relationship between the extent of exposure and possible severity of adverse effects, and consists of two steps: hazard identification and dose-response assessment. Most toxicity data used in the HHRA are the EPA toxicity values (non-carcinogenic reference doses [RfDs] and carcinogenic slope factors [CSFs]) published in the Integrated Risk Information System and the Health Effects Assessment Summary Tables databases, or in the EPA Region III Risk-Based Concentration (RBC) Table. The equations and assumptions for calculating receptor exposures to chemicals in soil are presented in Appendix A.4. Toxicity data used in risk evaluations are provided in Appendix A.5 (non-cancer) and Appendix A.6 (cancer). A detailed discussion of the toxicity assessment is provided in Section 6.5.3 and in Appendix F.2 of the Final RI Report (Radian, 2000).

#### 2.7.1.4 Risk Characterization

For carcinogens, risks are generally expressed as the incremental probability of an individual's developing cancer over a lifetime as a result of exposure to the carcinogen. Excess lifetime cancer risk is calculated using the following equation:

$$Risk = CDI \times CSF$$

where:

Risk = a unitless probability (e.g.,  $2 \times 10^{-6}$ ) of an individual's developing cancer

CDI = chronic daily intake averaged over 70 years (milligrams per kilogram of body weight per day [mg/kg-day])

CSF = carcinogenic slope factor, expressed as  $(mg/kg-day)^{-1}$ 

These risks are probabilities that usually are expressed in scientific notation (e.g.,  $1x10^{-6}$ ). An excess lifetime cancer risk of  $1x10^{-6}$  indicates that an individual experiencing the reasonable maximum exposure (RME) estimate has a 1 in 1,000,000 chance of developing cancer as a result of site-related exposure. EPA's generally acceptable risk range for site-related exposures is  $1x10^{-6}$  to  $1x10^{-4}$ .

The potential for non-carcinogenic effects is evaluated by comparing an exposure level over a specified time period (e.g., lifetime) with an RfD derived for a similar exposure period. An RfD represents a level that an individual may be exposed to that is not expected to cause any deleterious effect. The ratio of exposure to toxicity is called a hazard quotient (HQ). An HQ<1 indicates that a receptor's dose of a single contaminant is less than the RfD, and that toxic non-carcinogenic effects from that chemical are unlikely. The hazard index (HI) is generated by adding the HQs for all COPCs that affect the same target organ (e.g., liver) or that act through the same mechanism of action within a medium or across all media to which a given individual may reasonably be exposed. An HI<1 indicates that, based on the sum of all HQs from different contaminants and exposure routes, toxic non-carcinogenic effects from all contaminants are unlikely. An HI>1 indicates that site-related exposures may present a risk to human health. The HQ is calculated as follows:

#### Non-cancer HQ = CDI/RfD

Detailed risk characterization results are provided in Section 6.5.4 and Appendix G3 of the Final RI Report (Radian, 2000) and in the Risk Re-Evaluation Report (HGL, 2005). The risk estimates are presented in tabular form in Appendices A.7 (non-cancer detail), A.8 (cancer detail), A.9 (non-cancer and cancer summary).

The risk re-evaluation revised the risk calculations only for those receptors and chemicals for which unacceptable health risks had been identified during the RI. Thus, the risk re-evaluation quantified only exposure of the construction worker to manganese, and exposure of the resident (age-adjusted and child) to arsenic. The risk re-evaluation did not re-quantify risks to the other worker, child trespasser, and industrial worker; the risks for these receptors were obtained directly from the RI Report without alteration.

With three exceptions, the tables in Appendices A.7 and A.8 present the original risk assessment (Radian, 2000) results. Tables 7.19, 7.20, and 8.19 are from the Risk Re-

Evaluation Report (HGL, 2005). Tables 7.19 and 7.20 present revised non-cancer risk evaluations for the child resident exposure to arsenic and the construction worker exposure to manganese, respectively. Table 8.19 presents the revised cancer risk for exposure of the age-adjusted resident to arsenic.

To update the cumulative non-cancer hazard for the construction worker, the HQs for the non-manganese COPCs were obtained from the RI Report and were combined with the revised manganese HQ in Table 9.2.RME. Only the HQs associated with site-related chemicals were included; HQs for metals present because of background conditions were excluded. CERCLA does not address potential risks or hazards associated with background conditions.

The cumulative non-cancer hazard for the child resident was updated in the same manner as described for the construction worker. The results are presented in Table 9.6.RME.

The original HHRA evaluated cancer risk to the adult resident and child resident, but did not perform an age-adjusted analysis. The age-adjusted analysis, which was used for the revised arsenic evaluation, provides a more conservative assessment than either the adult resident or child resident. To combine the original HHRA cancer risks with the revised arsenic cancer risk, the child resident and adult resident risks for the non-arsenic COPCs were added, and the sums were combined with the revised arsenic cancer risk in Table 9.5.RME.

The final RME risk estimates presented in Appendix A.9 are summarized below. These summaries only include the calculated risks associated with exposure to soil (ingestion and dermal absorption) and soil particulates in air. Any risk contributions from groundwater presented in Appendices A.7, A.8, and A.9 are excluded from the values presented.

- Child Trespasser RME estimates for exposure (ingestion, dermal contact, and inhalation) to surface soil are within acceptable risk levels. The total non-cancer HI is 0.2 and the cancer risk is  $2 \times 10^{-6}$  across all pathways.
- Other Worker RME risk estimates for exposure (ingestion, dermal contact, and inhalation) to surface soil are within acceptable risk levels. Currently, the potential exposure pathways for the groundskeeper are incidental ingestion and dermal contact with surface soil, and inhalation of fugitive dust emissions from the surface soil; however, the risk assessment performed in the Final RI Report (Radian, 2000) also includes an evaluation of risk to this receptor associated with subsurface soil exposure. The total non-cancer HI is 0.4 and the cancer risk is 9 x 10<sup>-6</sup> across the soil exposure pathways.
- **Resident adult and child** The risk to residential receptors was recalculated in the Risk Re-Evaluation Report (HGL, 2005). The revised RME risk estimates for exposure (ingestion and dermal contact) to surface soil and subsurface soil resulted in a cancer risk estimate of 7 x 10<sup>-5</sup> for the age-adjusted adult/child resident, predominantly due to arsenic. The age-adjusted adult/child resident provides the most conservative cancer risk analysis for the resident receptor. For the non-cancer analysis, the most conservative receptor is the child

resident. For the child resident, the highest target organ HI from exposure to site-related chemicals in the soil was 1.2 due to arsenic, which affects the skin and vascular system. This HI of 1.2 reflects the results of the risk re-evaluation with the expanded arsenic surface and subsurface soil data set. The HI for the central nervous system (CNS) is less than 1 (0.4, due to manganese). In the case of arsenic, with a daily chronic intake approximately equal to the chronic reference dose, it is unlikely that a future child resident would experience an adverse non-cancer health effect due to the arsenic at the site. Thus, no site-related chemical posed an unacceptable non-cancer hazard or cancer risk to the future adult or child resident.

- Construction Worker RME risk estimates for exposure (ingestion, dermal contact, and inhalation of fugitive dust and volatile emissions) to surface soil and subsurface soil are within acceptable risk levels. The total cancer risk is 8 x 10<sup>-6</sup>, and the site-related non-cancer HI attributable to manganese (CNS) is 0.1; the HI for arsenic (skin/vascular) is 0.3. The manganese HI reflects the risk re-evaluation with the expanded surface and subsurface soil data set.
- Industrial Worker RME risk estimates for exposure (ingestion, dermal contact, and inhalation of fugitive dust and volatile emissions) to surface soil and subsurface soil are within acceptable risk levels. The total cancer risk is 6  $\times 10^{-7}$ , and the total non-cancer HI is 0.7.

#### 2.7.1.5 Uncertainty

The risk measures used in risk assessments are not fully probabilistic estimates of risk but are conditional estimates given that a set of assumptions about exposure and toxicity are realized. Thus, it is important to specify the assumptions and uncertainties inherent in the risk assessment to place the risk estimates in proper perspective. A detailed discussion of the uncertainties associated with the risk assessment is included in Section 6.5.5 of the Final RI Report (Radian, 2000). The uncertainties identified in the RI Report are also applicable to the risk re-evaluation conducted by HGL in 2005. The uncertainties identified in the RI were not considered to have a substantial impact on the conclusions of the original HHRA or the risk re-evaluation. Conservative assumptions were used in order to ensure that any resulting error would tend to overestimate risk.

#### 2.7.2 Ecological Risk Assessment

#### 2.7.2.1 Chemicals of Potential Ecological Concern

The first phase of the ecological risk assessment (ERA) at ERP Site WP-14 compared maximum concentrations of all analytes in surface and subsurface soil to EPA Region III Biological Technical Advisory Group (BTAG) screening values. The resulting chemicals of potential ecological concern (COPECs) identified in surface soil are presented in Appendix A.10.

#### 2.7.2.2 Exposure and Ecological Effects Assessment

The ecological setting at ERP Site WP-14 consists of a mowed lawn that could provide an area for birds and animals to forage. Although there is a drainage ditch along the earthen berm, exposure to surface water was determined to be an incomplete pathway because of the infrequency with which the ditch contains water. Based on the CSM (Figure 2.4), the SLERA characterized potential risks to terrestrial receptors from exposure to surface soil. The terrestrial receptors selected for this assessment were the earthworm, deer mouse, red fox, American robin, and red-tailed hawk. These species were selected due to their potential presence at ERP Site WP-14 and their importance in the food chain. A detailed description of each ecological receptor is provided in Appendix H of the Final RI Report (Radian, 2000). Appendix A.10 presents the ecological exposure pathways of concern for the surface soil, including receptors, exposure routes, and assessment and measurement endpoints. No sensitive environments or endangered or threatened species have been identified at Langley AFB.

A toxicity/bioaccumulation study specific to Langley AFB was conducted using earthworms. The resulting toxicity data were used to estimate risks to earthworms at ERP Site WP-14. Food chain models were used to evaluate risks to the American robin, red-tailed hawk, deer mouse, and red fox. Equations used to determine the total daily dose for receptor species are provided in Appendix H of the Final RI Report (Radian, 2000). A detailed discussion of the exposure and ecological effects assessment considered in the ERA is provided in Section 6.6 of the Final RI Report (Radian, 2000).

#### 2.7.2.3 Ecological Risk Characterization

To characterize potential ecological risks, HQs were determined for the chemicals of potential ecological concern and receptors. HQs were calculated by comparing maximum and mean site concentrations to the associated no observed adverse effects level (NOAEL) and lowest observed adverse effects level (LOAEL):

NOAEL or LOAEL HQ = [Mean or Maximum Total Daily Dose]/[NOAEL or LOAEL]

For each receptor, the SLERA calculated a maximum NOAEL HQ, a mean NOAEL HQ, a maximum LOAEL HQ, and a mean LOAEL HQ for each COPEC. If one of these four HQ values was less than 1, then the risk assessment concluded that the chemical did not pose a risk to that particular receptor. Because LOAEL HQs are less than NOAEL HQs, the LOAEL HQs dictated whether a chemical was identified as having the potential to pose a risk to a given receptor. If the average chemical exposure level was less than the LOAEL (mean LOAEL-based HQ<1), then the chemical did not pose an unacceptable threat to ecological receptors. Chemicals with mean LOAEL-based HQs greater than or equal to 1 were identified as COPECs and were evaluated in greater detail. The detailed evaluation considered a number of factors. First, the analysis identified those COPECs present at background levels. If a chemical's presence was due to background conditions, the chemical was eliminated as a COPEC because CERCLA does not address potential effects associated with background conditions. If a COPEC's presence was determined to be due to a site-related release, the

evaluation assessed the detection frequency, spatial distribution, chemical bioavailability, and conservatism of the toxicity values.

Aluminum, antimony, beryllium, thallium, and vanadium were identified as having the potential to pose a threat to ecological receptors. However, the concentrations of these five metals were consistent with background values, indicating that the metals were due to background conditions and not to historical use of the Site. CERCLA does not address potential effects associated with background conditions.

#### 2.7.2.4 Uncertainty

The results of the SLERA are influenced to some degree by variability and uncertainty, which need to be considered when interpreting results. Major sources of uncertainty include natural variability, and incomplete knowledge of site-specific biological processes and fate and transport mechanisms. A discussion of the uncertainties associated with the SLERA is included in Section 6.6.15 of the Final RI Report (Radian, 2000).

#### 2.7.3 Conclusion

The chemicals potentially released at ERP Site WP-14 during historical use of the site do not pose a threat to human health or the environment. Therefore, no response action is necessary.

#### 2.8 DOCUMENTATION OF SIGNIFICANT CHANGES

The Revised Proposed Plan for Operable Unit 32 (ERP Site WP-14) at Langley AFB, Virginia (HGL, 2008), was released for public comment in February 2008. The Revised Proposed Plan identified No Action is necessary for protection of human health and the environment. No comments were received during the public comment period; therefore, no significant changes to this decision identified in the Revised Proposed Plan were necessary or appropriate.

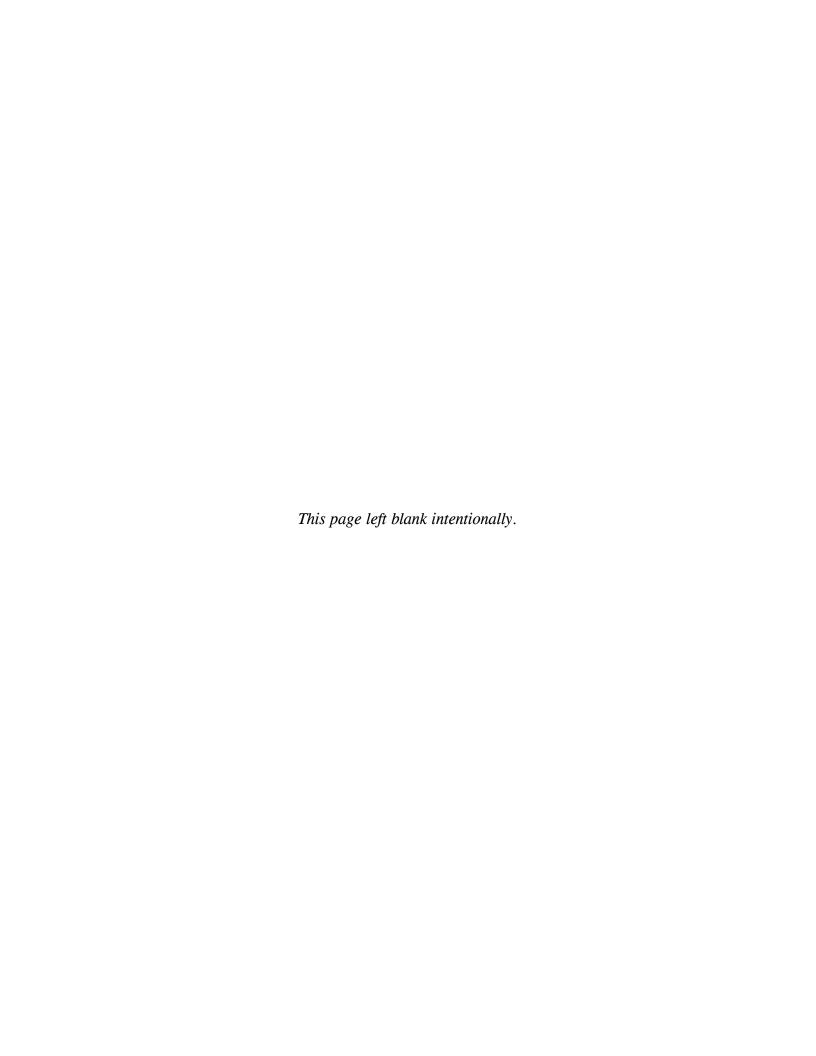





Table 2.1 Arsenic and Manganese in Surface Soils (mg/kg) Site WP-14, Langley AFB, VA

|                 |          | SI Results |          |         | RI Results                                     |         |         |         |         |         |         | Data   |      | Background         |         |         |  |
|-----------------|----------|------------|----------|---------|------------------------------------------------|---------|---------|---------|---------|---------|---------|--------|------|--------------------|---------|---------|--|
| Sample:         | 14S01    | 14S02      | 14S03    | 14SS04  | S04 14SS05 14SS05 (DUP) 14SS06 14SS07 14SS08 1 |         |         |         |         |         | Summary |        |      | Summary Statistics |         |         |  |
| Depth (ft bgs): | 0.0-0.25 | 0.0-0.25   | 0.0-0.25 | 0.0-0.5 | 0.0-0.5                                        | 0.0-0.5 | 0.0-0.5 | 0.0-0.5 | 0.0-0.5 | 0.0-0.5 | Min.    | Mean   | Max. | Mean               | 95% UCL | 95% UTL |  |
| Parameter       |          |            |          |         |                                                |         |         |         |         |         |         |        |      |                    |         |         |  |
| Arsenic         | 6.35     | 29.4       | 3.2      | 28.1    | 31.1                                           | 32.3    | 2.88    | 2.78    | 20.2    | 8.53    | 2.78    | 16.484 | 32.3 | 8.99               | 11.9    | 23.8    |  |
| Manganese       | 56.7     | 305        | 24.2     | 334     | 393                                            | 347     | 36      | 45.3    | 240     | 71.3    | 24.2    | 185.25 | 393  | 116                | 159     | 334     |  |

Table 2.2 Arsenic and Manganese in Near-Surface Sub-Surface Soils (mg/kg) Site WP-14, Langley AFB, VA

|                 |                                                                                                                                                                 |         |         |         |         | SI Re   | esults  |         |         |         |         |         |         | Data  |      | Background Summary |         |         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|------|--------------------|---------|---------|
| Sample:         | 14B01         14B02         14B03         14B04         14B05         14B06         14B07         14B08         14B09         14B10         14B11         14B12 |         |         |         |         |         |         |         |         |         |         | 14B12   | Summary |       |      | Statistics         |         |         |
| Depth (ft bgs): | 1.0-2.5                                                                                                                                                         | 1.0-3.0 | 1.0-2.5 | 1.0-2.5 | 1.0-2.5 | 0.5-2.5 | 0.5-2.5 | 1.0-2.5 | 1.0-2.5 | 1.0-2.5 | 1.0-2.5 | 1.0-2.5 | Min.    | Mean  | Max. | Mean               | 95% UCL | 95% UTL |
| Parameter       |                                                                                                                                                                 |         |         |         |         |         |         |         |         |         |         |         |         |       |      |                    |         |         |
| Arsenic         | 3.03                                                                                                                                                            | 6.43    | 34.7    | 4.5     | 30.6    | 6.93    | 9.69    | 10.9    | 4.82    | 4.11    | 19.5    | 9.95    | 3.03    | 12.1  | 34.7 | 28.6               | 46.9    | 66.7    |
| Manganese       | 44.3                                                                                                                                                            | 32.2    | 543     | 24.8    | 123     | 109     | 122     | 127     | 41.8    | 23.4    | 1010    | 66.4    | 23.4    | 188.9 | 1010 | 333                | 588     | 1100    |

|                 |                 |         |         |         |         | RI Results |         |         |         |         |         |      | Data    |      | Background Summary |            |         |  |
|-----------------|-----------------|---------|---------|---------|---------|------------|---------|---------|---------|---------|---------|------|---------|------|--------------------|------------|---------|--|
|                 | 12DPS2   14DPS7 |         |         |         |         |            |         |         |         |         |         |      |         |      |                    |            |         |  |
| Sample:         | 14DPS1          | 14DPS2  | (DUP)   | 14DPS3  | 14DPS4  | 14DPS5     | 14DPS6  | 14DPS7  | (DUP)   | 14DPS8  | 14DPS9  |      | Summary | y    |                    | Statistics |         |  |
| Depth (ft bgs): | 0.5-2.0         | 0.5-2.0 | 0.5-2.0 | 0.5-2.0 | 0.5-2.0 | 0.5-2.0    | 0.5-2.0 | 0.5-2.0 | 0.5-2.0 | 0.5-2.0 | 0.5-2.0 | Min. | Mean    | Max. | Mean               | 95% UCL    | 95% UTL |  |
| Parameter       |                 |         |         |         |         |            |         |         |         |         |         |      |         |      |                    |            |         |  |
| Arsenic         | 5.37            | 30.3    | 36.2    | 16.7    | 22.2    | 3.64       | 6.74    | 15.9    | 18.6    | 6.6     | 22.6    | 3.64 | 16.8    | 36.2 | 28.6               | 46.9       | 66.7    |  |
| Manganese       | 47.6            | 181     | 235     | 91.7    | 132     | 20.3       | 90.1    | 187     | 187     | 66.6    | 433     | 20.3 | 151.9   | 433  | 333                | 588        | 1100    |  |

Table 2.3 Arsenic and Manganese in Deeper Sub-Surface Soils (mg/kg) Site WP-14, Langley AFB, VA

|                 |                                                                                                                                                                                     | SI Results |         |         |         |         |         |         |         |         |         |         |         |         |            | Data    |      | Background Summary |         |         |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------|---------|------|--------------------|---------|---------|--|
| Sample:         | 14B01         14B02 (DUP)         14B03         14B04         14B05 (DUP)         14B06 (DUP)         14B07 (14B08)         14B09 (14B09)         14B10         14B11         14B12 |            |         |         |         |         |         |         |         |         | 14B12   | Summary |         |         | Statistics |         |      |                    |         |         |  |
| Depth (ft bgs): | 3.5-4.5                                                                                                                                                                             | 3.5-5.5    | 3.5-5.5 | 2.5-4.5 | 3.5-5.0 | 2.5-4.5 | 2.5-4.5 | 4.5-5.5 | 3.5-5.0 | 2.5-4.0 | 2.5-4.0 | 3.5-4.5 | 3.0-4.5 | 4.0-5.0 | Min.       | Mean    | Max. | Mean               | 95% UCL | 95% UTL |  |
| Parameter       |                                                                                                                                                                                     |            |         |         |         |         |         |         |         |         |         |         |         |         |            |         |      |                    |         |         |  |
| Arsenic         | 30.8                                                                                                                                                                                | 44.2       | 22.2    | 50.8    | 59.3    | 157     | 40.9    | 46.6    | 38.7    | 48.9    | 64.3    | 8.88    | 13.6    | 35.9    | 8.88       | 47.2914 | 157  | 28.6               | 46.9    | 66.7    |  |
| Manganese       | 208                                                                                                                                                                                 | 181        | 50.4    | 163     | 273     | 919     | 671     | 166     | 510     | 636     | 200     | 306     | 66.5    | 285     | 50.4       | 331.064 | 919  | 333                | 588     | 1100    |  |

|                 |         |         |         |         | RI Results |            |         |         |         |      | Data    |      | Ba   | ckground Su | mmary   |
|-----------------|---------|---------|---------|---------|------------|------------|---------|---------|---------|------|---------|------|------|-------------|---------|
| Sample:         | 14DPS1  | 14DPS2  |         | Summary |            | Statistics |         |         |         |      |         |      |      |             |         |
| Depth (ft bgs): | 2.0-4.0 | 2.0-4.0 | 2.0-4.0 | 2.0-4.0 | 2.0-4.0    | 2.0-4.0    | 2.0-4.0 | 2.0-4.0 | 2.0-4.0 | Min. | Mean    | Max. | Mean | 95% UCL     | 95% UTL |
| Parameter       |         |         |         |         | _          | _          | _       | _       |         |      |         | _    | _    |             |         |
| Arsenic         | 20.9    | 40.6    | 112     | 31.5    | 21.3       | 7.63       | 24.2    | 108     | 75.8    | 7.63 | 49.1033 | 112  | 28.6 | 46.9        | 66.7    |
| Manganese       | 29.9    | 532     | 291     | 315     | 538        | 72.6       | 258     | 477     | 338     | 29.9 | 316.833 | 538  | 333  | 588         | 1100    |

Table 2.4
Arsenic Quantified in Surface Soil Samples (mg/kg)
September 2004 Pre-Confirmation Sampling
Site WP-14, Langley AFB, VA

| Excavation     |      |      | Sa   | mpling | Quadra | ınt  |      |      | Sample<br>Location | Background | Background |
|----------------|------|------|------|--------|--------|------|------|------|--------------------|------------|------------|
| Number         | Q1   | Q12  | Q2   | Q23    | Q3     | Q34  | Q4   | Q14  | Average            | Mean       | 95% UTL    |
| SO-1 (120 ft.) | 37.3 | 13.9 | 23.7 | 33.3   | 18.9   | -    | -    | -    | 25.4               | 8.99       | 23.8       |
| SO-2 (120 ft.) | 5.2  | 26.1 | 3.9  | 53.1   | 17.1   | 30.3 | 22.9 | 12.4 | 21.4               | 8.99       | 23.8       |
| SO-3 (120 ft.) | 23.1 | 4.0  | 4.6  | 17.0   | -      | -    | -    | 29.9 | 15.7               | 8.99       | 23.8       |
| SO-5 (120 ft.) | 12.4 | 30.1 | -    | -      | -      | -    | -    | 23.5 | 22.0               | 8.99       | 23.8       |
| SO-1 (60 ft.)  | 14.4 | 47.8 | 32.2 | 33.0   | 26.4   | 6.7  | 13.6 | 30.8 | 25.6               | 8.99       | 23.8       |
| SO-2 (60 ft.)  | 33.2 | 45.3 | 38.6 | 28.1   | 40.9   | 35.9 | 21.5 | 22.0 | 33.2               | 8.99       | 23.8       |
| SO-3 (60 ft.)  | 23.3 | 4.1  | -    | 48.6   | 20.9   | 29.8 | 37.0 | 37.0 | 28.7               | 8.99       | 23.8       |
| SO-5 (60 ft.)  | 41.0 | 10.4 | -    | 8.4    | 4.4    | 30.5 | 47.2 | 31.7 | 24.8               | 8.99       | 23.8       |
| SO-1 (45 ft.)  | 32.2 | -    | 32.2 | -      | 28.4   | -    | 21.8 | -    | 28.7               | 8.99       | 23.8       |
| SO-2 (45 ft.)  | 29.5 | -    | 37.2 | -      | 22.8   | -    | 40.0 | -    | 32.4               | 8.99       | 23.8       |
| SO-3 (45 ft.)  | 22.9 | -    | -    | -      | 22.7   | -    | 42.8 | -    | 29.5               | 8.99       | 23.8       |
| SO-5 (45 ft.)  | 36.5 | -    | -    | -      | 17.6   | -    | 19.5 | -    | 24.5               | 8.99       | 23.8       |
| SO-1 (30 ft.)  | 11.1 | -    | 18.4 | -      | 16.1   | -    | 11.8 | -    | 14.4               | 8.99       | 23.8       |
| SO-2 (30 ft.)  | 17.7 | -    | 30.0 | -      | 25.8   | -    | 20.8 | -    | 23.6               | 8.99       | 23.8       |
| SO-3 (30 ft.)  | 11.0 | -    | 2.3  | -      | 21.8   | -    | 14.4 | -    | 12.4               | 8.99       | 23.8       |
| SO-4 (30 ft.)  | 3.1  | -    | 2.7  | -      | 3.3    | -    | 2.1  | -    | 2.8                | 8.99       | 23.8       |
| SO-5 (30 ft.)  | 16.9 | -    | 7.7  | -      | 13.0   | -    | 10.2 | -    | 12.0               | 8.99       | 23.8       |

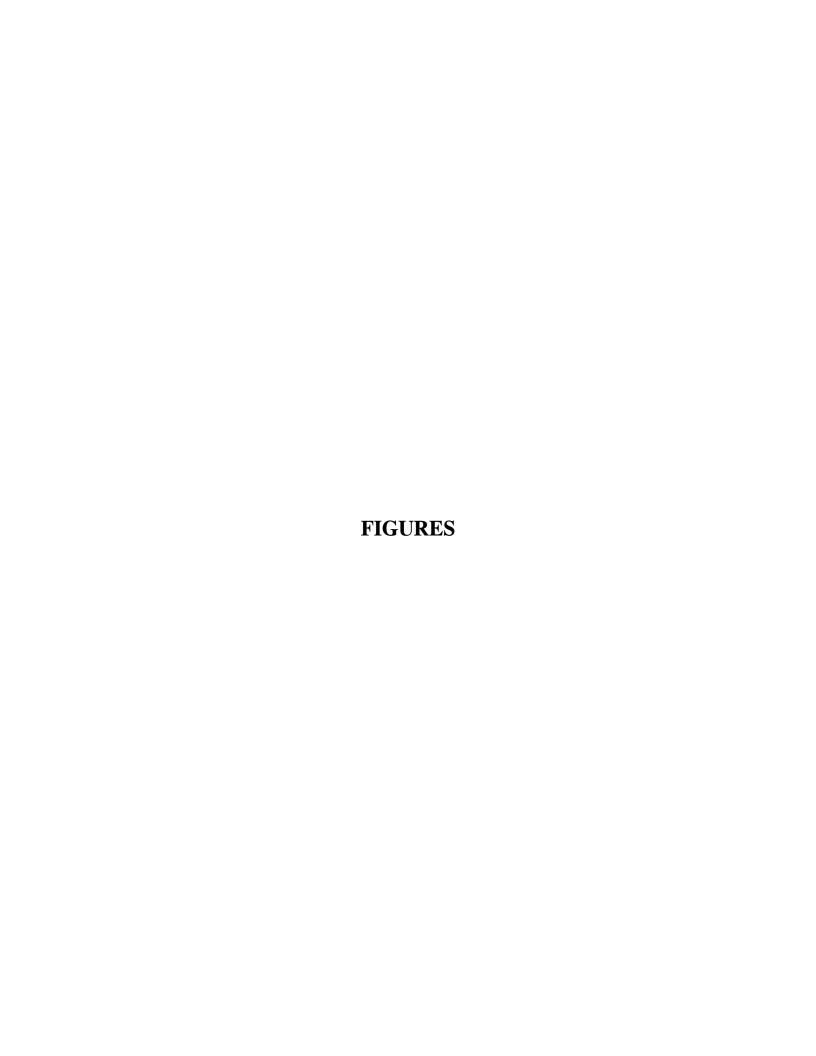
Notes:

Sample location average values in bold exceed the background mean Individual sample results in bold exceed the background 95% UTL.

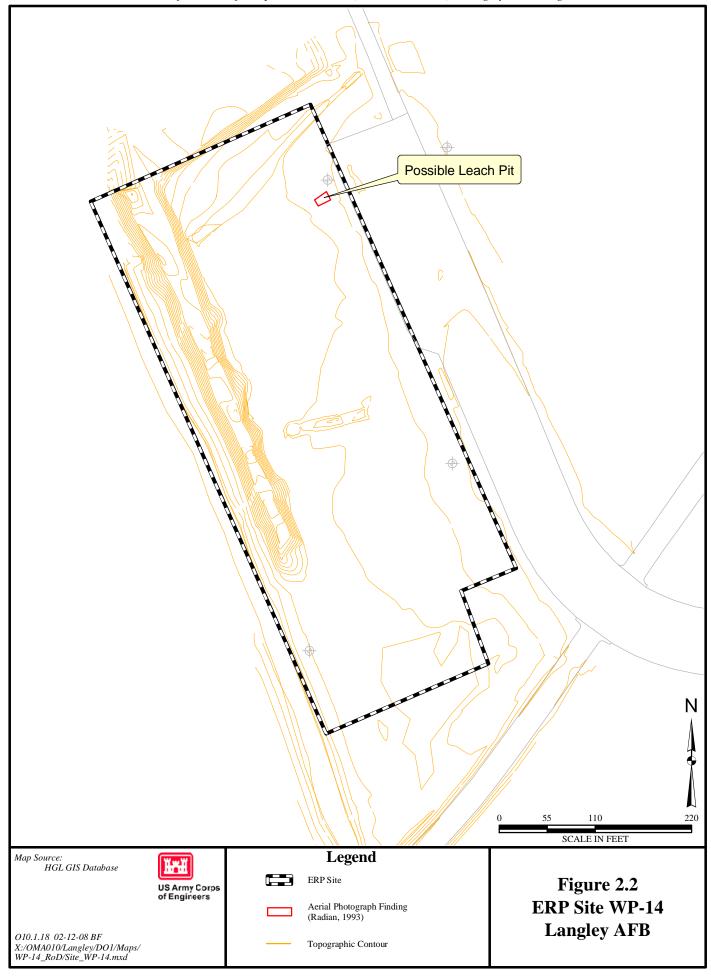
Table 2.5
Manganese Quantified in Surface Soil Samples (mg/kg)
September 2004 Pre-Confirmation Sampling
Site WP-14, Langley AFB, VA

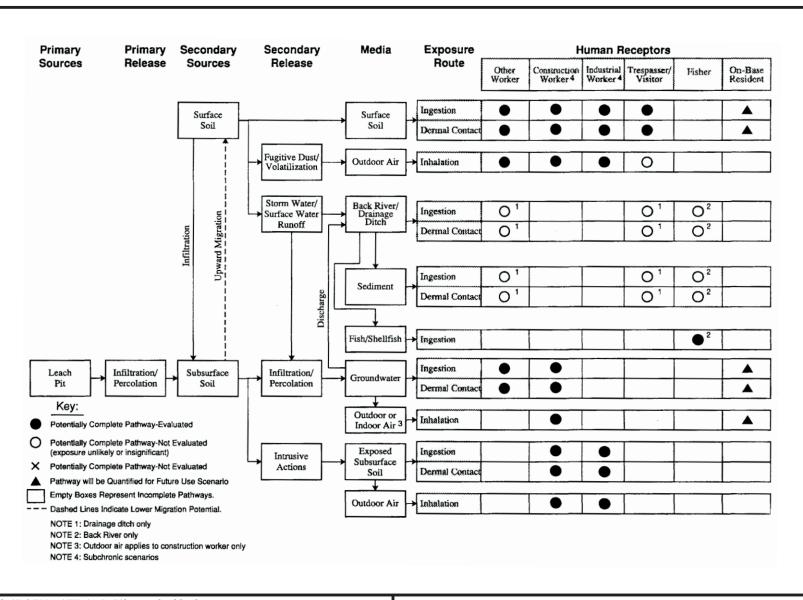
| Excavation     |     |      | S    | ampling ( | Duadran | f   |     |     | Sample<br>Location | Background | Background |
|----------------|-----|------|------|-----------|---------|-----|-----|-----|--------------------|------------|------------|
| Number         | Q1  | Q12  | Q2   | Q23       | Q3      | Q34 | Q4  | Q14 | Average            | Mean       | 95% UTL    |
| SO-1 (120 ft.) | 466 | 365  | 349  | 543       | 681     | -   | -   | -   | 480.8              | 116        | 334        |
| SO-2 (120 ft.) | 292 | 310  | 316  | 519       | 213     | 514 | 543 | 238 | 368.1              | 116        | 334        |
| SO-3 (120 ft.) | 284 | 64.8 | 38.9 | 232       | -       | -   | -   | 448 | 213.5              | 116        | 334        |
| SO-5 (120 ft.) | 200 | 280  | -    | -         | -       | -   | -   | 509 | 329.7              | 116        | 334        |
| SO-1 (60 ft.)  | 248 | 568  | 433  | 433       | 354     | 388 | 265 | 435 | 390.5              | 116        | 334        |
| SO-2 (60 ft.)  | 538 | 542  | 631  | 379       | 679     | 576 | 359 | 320 | 503.0              | 116        | 334        |
| SO-3 (60 ft.)  | 249 | 27.6 | -    | 1140      | 331     | 424 | 379 | 372 | 417.5              | 116        | 334        |
| SO-5 (60 ft.)  | 475 | 116  | 111  | 84.1      | 56.6    | 395 | 644 | 363 | 280.6              | 116        | 334        |
| SO-1 (45 ft.)  | 445 | -    | 443  | -         | 364     | -   | 239 | -   | 372.8              | 116        | 334        |
| SO-2 (45 ft.)  | 447 | -    | 587  | -         | 313     | -   | 870 | -   | 554.3              | 116        | 334        |
| SO-3 (45 ft.)  | 346 | ı    | 1    | -         | 191     | -   | 605 | -   | 380.7              | 116        | 334        |
| SO-5 (45 ft.)  | 645 | -    | 157  | -         | 195     | -   | 234 | -   | 307.8              | 116        | 334        |
| SO-1 (30-ft.)  | 290 | -    | 363  | -         | 399     | -   | 286 | -   | 334.5              | 116        | 334        |
| SO-2 (30 ft.)  | 463 | -    | 512  | -         | 443     | -   | 430 | -   | 462.0              | 116        | 334        |
| SO-3 (30 ft.)  | 236 | -    | 35.1 | -         | 385     | -   | 136 | -   | 198.0              | 116        | 334        |
| SO-4 (30 ft.)  | 4.9 | ı    | 5.2  | -         | 23.9    | -   | 7.0 | -   | 10.3               | 116        | 334        |
| SO-5 (30 ft.)  | 316 | -    | 163  | -         | 198     | -   | 198 | -   | 218.8              | 116        | 334        |

Notes:


Sample location average values in bold exceed the background mean Individual sample results in bold exceed the background 95% UTL.


# Table 2.6 Arsenic Quantified in Deeper Subsurface Samples (mg/kg) September 2004 Pre-Confirmation Sampling Site WP-14, Langley AFB, VA


| Excavation    | Sampling Quadrant |      |      |      | Sample Location | Background | Background |
|---------------|-------------------|------|------|------|-----------------|------------|------------|
| Number        | Q1                | Q2   | Q3   | Q4   | Average         | Mean       | 95% UTL    |
| SS-3 (30 ft.) | 15.5              | 17.6 | 11.5 | 14.1 | 14.7            | 28.6       | 66.7       |
| SS-4 (30 ft.) | 10.2              | 11.1 | 4.4  | 9.0  | 8.7             | 28.6       | 66.7       |
| SS-5 (30 ft.) | 11.3              | 17.6 | 21.8 | 20.8 | 17.9            | 28.6       | 66.7       |

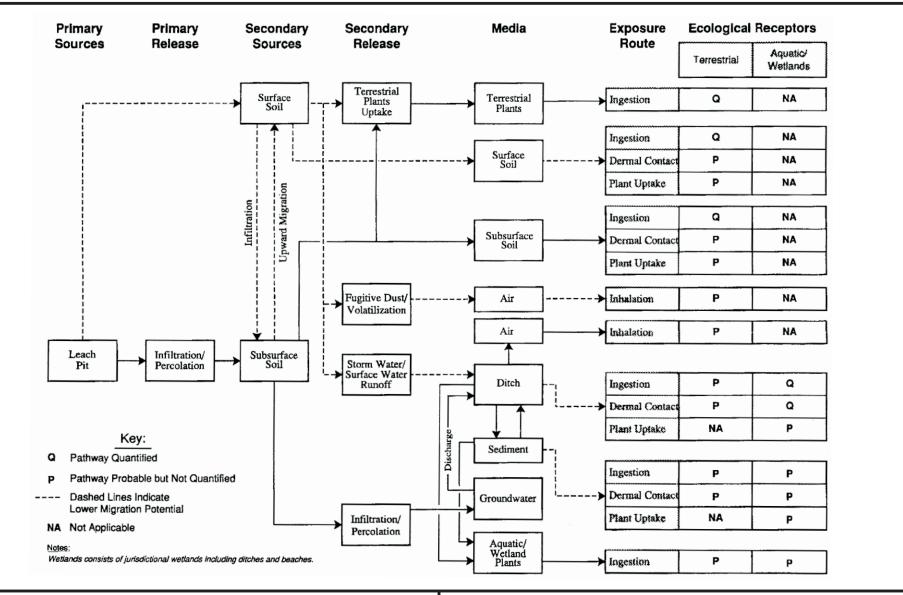

Notes:

Sample location average values in bold exceed the background mean Individual sample results in bold exceed the background 95% UTL.










 $X: \label{lower} $X: OMA010 \land Langley \land DO1 \land Maps \land WP-14\_RoD \land Langley \land DO2/12/08 BF $$$ 





Figure 2.3 WP-14 Human Health Conceptual Site Model Langley AFB



 $X: \label{local_maps_wp-14_rod_local} X: \label{local_maps_wp-14_rod_local} WP-14\_RoD \label{local_rod_local} \ BF$ 

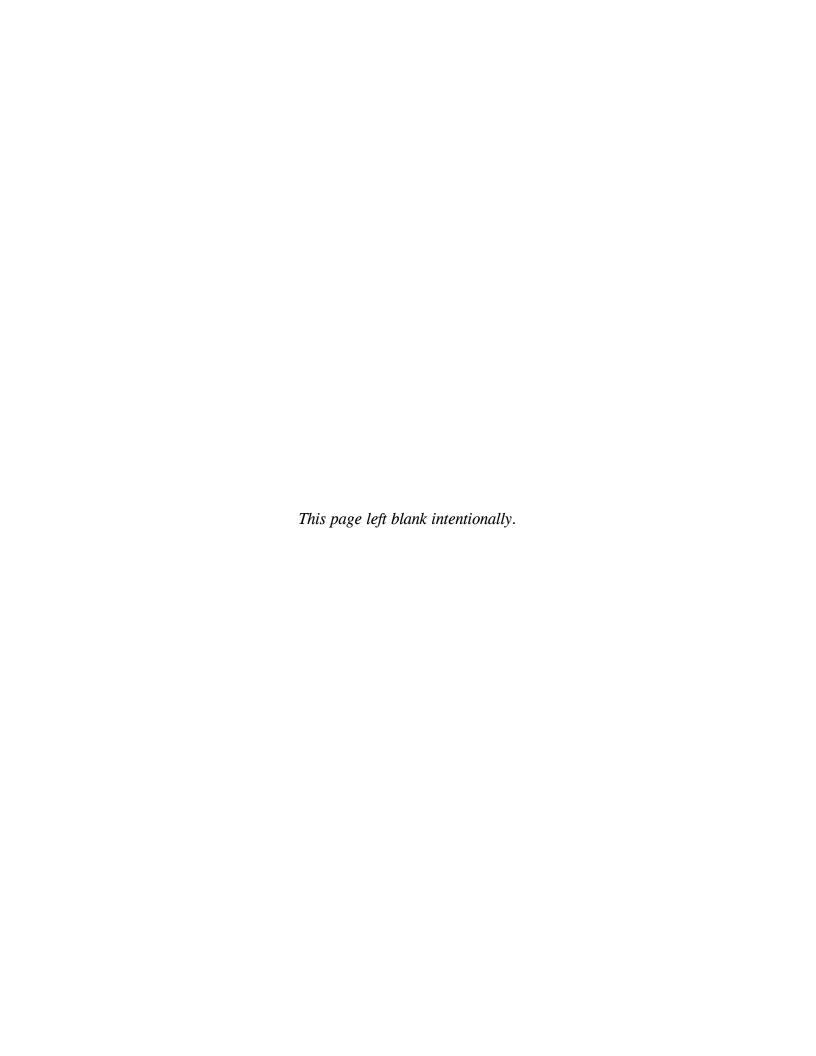
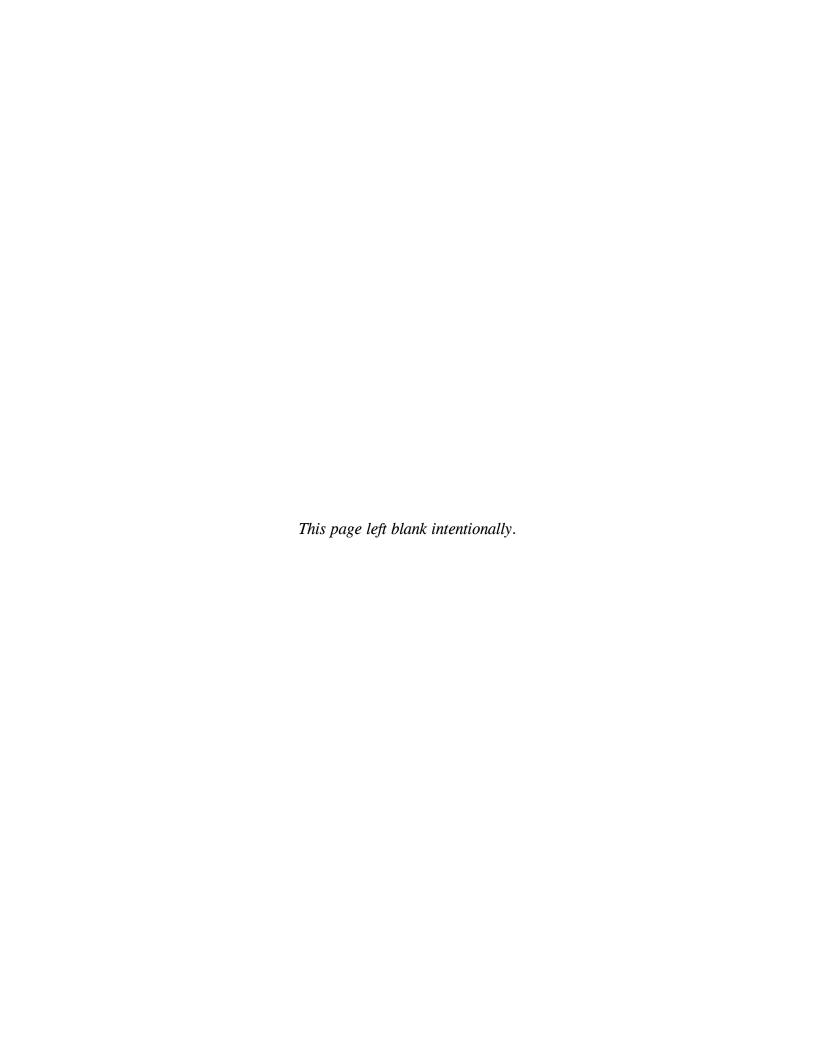





Figure 2.4 WP-14 Ecological Conceptual Site Model Langley AFB


#### 3.0 RESPONSIVENESS SUMMARY

The public participation requirements set out in the NCP at 40 Code of Federal Regulations (CFR) 300.435(c)(2)(ii) have been met for ERP Site WP-14. No questions or comments were received in the public meeting for the Revised Proposed Plan held on February 12, 2008. No oral or written comments were received during the public comment period from February 3, 2008 through March 4, 2008.



#### 4.0 REFERENCES

- CH2M HILL, 1981. Installation Restoration Program Records Search for Langley Air Force Base, Virginia.
- HydroGeoLogic, Inc., 2005. Final Risk Re-Evaluation Report, ERP Site WP-14, Langley Air Force Base, Virginia, July.
- HydroGeoLogic, Inc., 2008. Revised Proposed Plan, Operable Unit 32 (ERP Site WP-14), Langley Air Force Base, Virginia, February 2008.
- Radian Corporation, 1996. Draft Site Inspection and Screening Risk Assessment Report for 33 Installation Restoration Program Sites, Langley Air Force Base, Virginia.
- Radian International, LLC, 2000. Final Remedial Investigation Report, Environmental Restoration Program Sites WP-08 and WP-14, Langley Air Force Base, Virginia, August.
- URS, 2001a. Final Feasibility Study Report for Environmental Restoration Program Site WP-14, Langley Air Force Base, Virginia, October.
- URS, 2001b. Proposed Plan, Operable Units 22 and 32 (Environmental Restoration program Sites WP-02 and WP-14), Langley Air Force Base, Virginia, October.



#### APPENDIX A

#### **RISK TABLES**

(Source: Radian, 2000 and HGL, 2005)

#### Appendix A.1

RAGS Part D Table 1's Selection of Exposure Pathways

| Rationals for Selection or Exclusion                               |           | of Exposure Pathway | Receptor incidentally ingest soil white conducting fourthe maintenance activities (e.g., mowing lawns, firmming shrubs). | Receptor Count Come into Contact with Son while performing round maintenance activities (e.g., mowing lawns, trimming shrubs). | Receptor could incidentally ingest soil while infrequently working at the site (e.g., excavation). | Receptor could come into contact with soil while infrequently working at the site (e.g., excavation). | Receptor could incidentally ingest soil while infrequently working at the site (e.g., checking utility lines). | Receptor could come into contact with soil while infrequently working at the site (e.g., checking utility lines). | Receptor could incidentally ingest soil while playing. | Receptor could come into contact with soil while playing. | Receptor is most likely to spend more time near water and not in direct contact with soil at the site. | Receptor is most likely to spend more time near water and not in direct contact with soil at the site. | Receptor is most likely to spend more time near water and not in direct contact with soil at the site. | Receptor is most likely to spend more time near water and not in direct contact with soil at the site. | Wild bernes are not available at this site. | Wild berries are not available at this site. | Wild berries are not available at this site. | Wild berries are not available at this site. | Wild berries are not available at this site. | Wild berries are not available at this site. | Receptor could inhale vapors/particulates from ambient air above the surface soil while working at the site. | Receptor could inhale vapors/particulates from ambient air above the surface soil while excavating soil. | Receptor could inhale vapors/particulates from ambient air above the surface soil while infrequently working at the site. | Receptor could inhale vapors/particulates from ambient air above the surface soil while trespassing or playing at the site. | Receptor is most likely to spend more time near water than to be exposed to vapors/particulates via this pathway. Exposure pathway is insignificant. | Receptor is most likely to spend more time near water than to be exposed to vapors/particulates via this pathway. Exposure pathway is insignificant. | Receptor could incidentally ingest subsurface soil if it is excavated and<br>brought to the surface during excavation activities. | Receptor could come into contact with subsurface soil if it is excavated and brought to the surface during excavation activities. |
|--------------------------------------------------------------------|-----------|---------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| - 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1 | o pois    | Analysis            | Quant                                                                                                                    | Quant                                                                                                                          | Quant                                                                                              | Quant                                                                                                 | Quant                                                                                                          | Quant                                                                                                             | Quant                                                  | Quant                                                     | None                                                                                                   | None                                                                                                   | None                                                                                                   | None                                                                                                   | None                                        | None                                         | None                                         | None                                         | None                                         | None                                         | Quant                                                                                                        | Quant                                                                                                    | Quant                                                                                                                     | Quant                                                                                                                       | None                                                                                                                                                 | None                                                                                                                                                 | Quant                                                                                                                             | Quant                                                                                                                             |
| i di                                                               | i die     | Off-Site            | On-site                                                                                                                  | On-site                                                                                                                        | On-site                                                                                            | On-site                                                                                               | On-site                                                                                                        | On-site                                                                                                           | On-site                                                | On-site                                                   | On-site                                                                                                | On-site                                                                                                | On-site                                                                                                | On-site                                                                                                | On-site                                     | On-site                                      | On-site                                      | On-site                                      | On-site                                      | On-site                                      | On-site                                                                                                      | On-site                                                                                                  | On-site                                                                                                                   | On-site                                                                                                                     | On-site                                                                                                                                              | On-site                                                                                                                                              | On-site                                                                                                                           | On-site                                                                                                                           |
|                                                                    | a insodxa | Route               | Ingestion                                                                                                                | Dermal Absorption                                                                                                              | Ingestion                                                                                          | Dermal Absorption                                                                                     | Ingestion                                                                                                      | Dermal Absorption                                                                                                 | Ingestion                                              | Dermal Absorption                                         | Ingestion                                                                                              | Dermal Absorption                                                                                      | Ingestion                                                                                              | Dermal Absorption                                                                                      | Ingestion                                   | Ingestion                                    | Ingestion                                    | Ingestion                                    | Ingestion                                    | Ingestion                                    | Inhalation                                                                                                   | Inhalation                                                                                               | Inhalation                                                                                                                | Inhalation                                                                                                                  | Inhalation                                                                                                                                           | Inhalation                                                                                                                                           | Ingestion                                                                                                                         | Dermal Absorption                                                                                                                 |
|                                                                    | Keceptor  | Age                 | Adult                                                                                                                    |                                                                                                                                | Adult                                                                                              |                                                                                                       | Adult                                                                                                          |                                                                                                                   | Child                                                  |                                                           | Child                                                                                                  |                                                                                                        | Adult                                                                                                  |                                                                                                        | Adult                                       | Adult                                        | Adult                                        | Child                                        | Child                                        | Adult                                        | Adult                                                                                                        | Adult                                                                                                    | Adult                                                                                                                     | Child                                                                                                                       | Child                                                                                                                                                | Adult                                                                                                                                                | Adult                                                                                                                             |                                                                                                                                   |
|                                                                    | Receptor  | Population          | Other Worker                                                                                                             |                                                                                                                                | Construction Worker (1)                                                                            |                                                                                                       | Industrial Worker (1)                                                                                          |                                                                                                                   | Trespasser/Visitor                                     | -                                                         | Fisher                                                                                                 | =: - <del>=</del> :                                                                                    | 1                                                                                                      |                                                                                                        | Other Worker                                | Construction Worker (1)                      | Industrial Worker (1)                        | Trespasser/Visitor                           | Fisher                                       | 1                                            | Other Worker                                                                                                 | Construction Worker (1)                                                                                  | Industrial Worker (1)                                                                                                     | Trespasser/Visitor                                                                                                          | Fisher                                                                                                                                               |                                                                                                                                                      | Other Worker                                                                                                                      |                                                                                                                                   |
|                                                                    | Exposure  | Point               | Surface Soil at WP-14                                                                                                    |                                                                                                                                | •                                                                                                  |                                                                                                       | 4                                                                                                              |                                                                                                                   | <del></del>                                            |                                                           | •                                                                                                      |                                                                                                        |                                                                                                        |                                                                                                        | Ingestion of wild berries                   | grown in surface soil                        | at WP-14                                     |                                              | •                                            |                                              | Ambient air above WP-14 (vapors and particulates)                                                            | •                                                                                                        | •                                                                                                                         |                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      | Subsurface Soil at                                                                                                                | WP-14                                                                                                                             |
|                                                                    | Exposure  | Medium              | Surface Soil                                                                                                             | <u>-</u>                                                                                                                       |                                                                                                    | _                                                                                                     |                                                                                                                |                                                                                                                   | -                                                      |                                                           |                                                                                                        |                                                                                                        |                                                                                                        |                                                                                                        | Plant Tissue                                |                                              |                                              |                                              |                                              |                                              | Air                                                                                                          |                                                                                                          |                                                                                                                           |                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      | Subsurface Soil                                                                                                                   |                                                                                                                                   |
|                                                                    | Medium    |                     | Surface Soil                                                                                                             |                                                                                                                                |                                                                                                    |                                                                                                       |                                                                                                                |                                                                                                                   | •                                                      |                                                           | <del></del>                                                                                            |                                                                                                        |                                                                                                        |                                                                                                        | •                                           |                                              |                                              |                                              |                                              |                                              |                                                                                                              |                                                                                                          |                                                                                                                           |                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      | Subsurface Soil                                                                                                                   |                                                                                                                                   |
|                                                                    | Scenario  | Timeframe           | Current/Future                                                                                                           |                                                                                                                                |                                                                                                    |                                                                                                       |                                                                                                                |                                                                                                                   |                                                        |                                                           |                                                                                                        |                                                                                                        | . 60-20-                                                                                               |                                                                                                        |                                             |                                              |                                              |                                              |                                              |                                              |                                                                                                              |                                                                                                          |                                                                                                                           |                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                   |                                                                                                                                   |

| receptor receptor cyposure organical type of the companies of the companie | Allanysis | Construction Worker (1) Adult ingestion On-site Quant Receptor could incidentally ingest subsurface soil during excavation activities. | Dermal Absorption On-site Quant Receptor could come into contact with subsurface soil during excavation activities. | Industrial Worker (1) Adult Ingestion On-site Quant underground utility lines. | Dermal Absorption On-site Quant | Trespasser/Visitor Child Ingestion On-site None Receptor is not likely to incidentally ingest subsurface soil at the site. | Dermal Absorption On-site None Receptor is not likely to come into contact with subsurface soil at the site. | Fisher Child Ingestion On-site None Site. | Dermal Absorption On-site None Site. | Adult Ingestion On-site None Receptor is likely to remain near water and away from subsurface soil at the | Dermal Absorption On-site None Receptor is likely to remain near water and away from subsurface soil at the | ilent air above WP-14 Other Worker Adult Inhalation On-site Quant excavated to the surface. | Construction Worker (1) Adult Inhalation On-site Quant excavation activities. | dustrial Worker (1) Adult Inhalation On-site Quant | Trespasser/Visitor Child Inhalation On-site None vapors or particulates from ambient air at the site. | Child Inhalation On-site None | Adult Inhalation On-site None vapors or particulates from ambient air at the site. | Surface Water  Other Worker  Adult Dermal Absorption On-site None addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into confact with drainage ditch. | Adult Dermal Absorption On-site None | Adult Dermal Absorption On-site None addressed in this risk assessment. Physical barrier (drf mound) prevents industrial Worker (1) | Child Dermal Absorption On-site None | Child Dermal Absorption On-site None addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be Adult Dermal Absorption On-site None addressed in this risk assessment. Physical barrier (dirt mound) prevents |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Point     | -                                                                                                                                      |                                                                                                                     |                                                                                |                                 |                                                                                                                            |                                                                                                              |                                           |                                      |                                                                                                           |                                                                                                             | Ambient air above WP-14 (vapors and particulates)                                           |                                                                               |                                                    | <del></del>                                                                                           | <del>, ,,, ,,,, -</del>       |                                                                                    |                                                                                                                                                                                                     | Eoji                                 |                                                                                                                                     |                                      |                                                                                                                                                                        |                                                                                                                                                                                     |
| Exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Medium    |                                                                                                                                        |                                                                                                                     |                                                                                |                                 |                                                                                                                            |                                                                                                              |                                           |                                      |                                                                                                           |                                                                                                             | į                                                                                           |                                                                               |                                                    |                                                                                                       |                               |                                                                                    | Surface Water                                                                                                                                                                                       |                                      |                                                                                                                                     |                                      |                                                                                                                                                                        |                                                                                                                                                                                     |
| Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                                                                                                                        |                                                                                                                     |                                                                                |                                 |                                                                                                                            |                                                                                                              |                                           |                                      |                                                                                                           |                                                                                                             |                                                                                             |                                                                               |                                                    | -                                                                                                     |                               |                                                                                    | Surface Water                                                                                                                                                                                       |                                      |                                                                                                                                     |                                      |                                                                                                                                                                        |                                                                                                                                                                                     |
| Scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Timeframe |                                                                                                                                        |                                                                                                                     |                                                                                |                                 |                                                                                                                            |                                                                                                              |                                           |                                      |                                                                                                           |                                                                                                             |                                                                                             |                                                                               |                                                    |                                                                                                       | · · · · ·                     |                                                                                    |                                                                                                                                                                                                     |                                      |                                                                                                                                     |                                      |                                                                                                                                                                        |                                                                                                                                                                                     |

| Rationale for Selection or Exclusion | of Exposure Pathway | No fish/shellfish are found in the drainage ditch. | No fish/shellfish are found in the drainage ditch. | No fish/shellfish are found in the drainage ditch. | No fish/shellfish are found in the drainage ditch. | No fish/shellfish are found in the drainage ditch. | No fish/shellfish are found in the drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical bandre (did mound) prevents the addressed in this ratio contact with drainage dish. | receptors from confining into contact with admanage of which the best addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical barrier (dirt mound) prevents | receptors from coming into contact with drainage clich.  Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical barrier (dir mound) prevents addressed in this rom coming into contact with drainage right. | receptors from coming into consect with granted consect. Exposure to drainage dictor was evaluated under LF-10 and will not be addressed to drainage dictor. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | Exposure to drainage ditch was evaluated under LF-10 and will not be addressed in this risk assessment. Physical barrier (dirt mound) prevents | receptors from coming into contact with drainage duct.  Exposure to drainage dict was evaluated under L*10 and will not be addressed in this risk assessment. Physical barrier (dirt mound) prevents receptors from coming into contact with drainage ditch. | The unlikely scenario is assumed where the receptor could be exposed to groundwater if it is used as drinking water. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario. |
|--------------------------------------|---------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of                              | Analysis            | None                                               | None                                               | None                                               | Nane                                               | None                                               | None                                               | None                                                                                                                                                                                                   | None                                                                                                                                                                                                   | None                                                                                                                                                                                                 | None                                                                                                                                                                                                    | None                                                                                                                                           | None                                                                                                                                                                                                                                                            | None                                                                                                                                                                                                         | None                                                                                                                                                                                                                                                        | None                                                                                                                                                                                                   | None                                                                                                                                                                                                   | None                                                                                                                                           | None                                                                                                                                                                                                                                                         | Quant                                                                                                                                                                                                                               |
| On-Site/                             | Off-Site            | On-site                                                                                                                                                                                                | On-site                                                                                                                                                                                                | On-site                                                                                                                                                                                              | On-site                                                                                                                                                                                                 | On-site                                                                                                                                        | On-site                                                                                                                                                                                                                                                         | On-site                                                                                                                                                                                                      | On-site                                                                                                                                                                                                                                                     | On-site                                                                                                                                                                                                | On-site                                                                                                                                                                                                | On-site                                                                                                                                        | On-site                                                                                                                                                                                                                                                      | On-site                                                                                                                                                                                                                             |
| Exposure                             | Route               | Ingestion                                                                                                                                                                                              | Dermal Absorption                                                                                                                                                                                      | Ingestion                                                                                                                                                                                            | Dermal Absorption                                                                                                                                                                                       | Ingestion                                                                                                                                      | Dermal Absorption                                                                                                                                                                                                                                               | Ingestion                                                                                                                                                                                                    | Dermal Absorption                                                                                                                                                                                                                                           | Ingestion                                                                                                                                                                                              | Dermal Absorption                                                                                                                                                                                      | Ingestion                                                                                                                                      | Dermal Absorption                                                                                                                                                                                                                                            | Ingestion                                                                                                                                                                                                                           |
| Receptor                             | Age                 | Adult                                              | Adult                                              | Adult                                              | Child                                              | Child                                              | Adult                                              | Adult                                                                                                                                                                                                  |                                                                                                                                                                                                        | Adult                                                                                                                                                                                                |                                                                                                                                                                                                         | Aduit                                                                                                                                          |                                                                                                                                                                                                                                                                 | Child                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             | Child                                                                                                                                                                                                  |                                                                                                                                                                                                        | Adult                                                                                                                                          |                                                                                                                                                                                                                                                              | Adult                                                                                                                                                                                                                               |
| Receptor                             | Population          | Other Worker                                       | Construction Worker (1)                            | Industrial Worker (1)                              | TrespasserNisitor                                  | Fisher (2)                                         | <b>1</b>                                           | Other Worker                                                                                                                                                                                           |                                                                                                                                                                                                        |                                                                                                                                                                                                      | Construction Worker (1)                                                                                                                                                                                 |                                                                                                                                                | industrial Worker (1)                                                                                                                                                                                                                                           | T-                                                                                                                                                                                                           | respasservisior                                                                                                                                                                                                                                             | Fisher                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                                                                                                              | Other Worker                                                                                                                                                                                                                        |
| Exposure                             | Point               | Fish/Shellfish from<br>Drainage Ditch (2)          | <b></b>                                            |                                                    |                                                    | J                                                  | <del></del>                                        | Sediment from                                                                                                                                                                                          | Drainage Ditch (2)                                                                                                                                                                                     | l                                                                                                                                                                                                    | e - Quantum e endaño e e                                                                                                                                                                                |                                                                                                                                                |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                        |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                                                                                                              | Groundwater beneath WP-14                                                                                                                                                                                                           |
| Exposure                             | Medium              | Animal Tissue                                      |                                                    |                                                    |                                                    |                                                    |                                                    | Sediment                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                        |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                                                                                                              | Groundwater                                                                                                                                                                                                                         |
| Medica                               |                     |                                                    |                                                    |                                                    |                                                    |                                                    | -                                                  | Sediment                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                        |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                                                                                                              | Groundwater                                                                                                                                                                                                                         |
| Openado                              | Timeframe           |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                                                                                                                                                                        |                                                                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                        |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |

| Scenario  | Medium | Exposure | Exposure                          | Receptor                | Receptor | Exposure          | On-Site/ | Type of  | Rationale for Selection or Exclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|--------|----------|-----------------------------------|-------------------------|----------|-------------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Timeframe |        | Medium   | Point                             | Population              | Age      | Route             | Off-Site | Analysis | of Exposure Pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           |        |          |                                   |                         |          | Dermal Absorption | On-site  | Quant    | The unlikely scenario is assumed where the receptor could be exposed to groundwater if it is used as drinking water. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           |        |          |                                   | Construction Worker (1) | Adult    | Ingestion         | On-site  | Quant    | The receptor is assumed to use the groundwater as drinking water. Restrictions will be placed on potable use of groundwater, if necessary, based on the future residential scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           |        |          |                                   |                         |          | Dermal Absorption | On-site  | Quant    | The receptor may come into contact with groundwater while excavating because depth to groundwater is roughly 3 feet. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           |        |          |                                   | Industrial Worker (1)   | Adult    | Ingestion         | On-site  | None     | Utility lines at Langley AFB are assumed to be 2.5 feet bgs whereas groundwater is roughly 3 feet bgs. Therefore, the industrial worker is not likely to incidentally ingest groundwater while digging for utility lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |        |          |                                   |                         |          | Dermal Absorption | On-site  | None     | Utility lines at Langley AFB are assumed to be 2.5 feet bgs whereas groundwater is roughly 3 feet bgs. Therefore, the industrial worker is not likely to come into contact with groundwater while digging for utility lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |        |          |                                   | Trespasser/Visitor      | Child    | Ingestion         | On-site  | None     | Groundwater is not used for domestic purposes. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |        |          |                                   |                         |          | Dermal Absorption | On-site  | None     | Groundwater is not used for domestic purposes. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |        |          |                                   | isher.                  | Child    | Ingestion         | On-site  | None     | Groundwater is not used for domestic purposes. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |        |          |                                   |                         |          | Dermal Absorption | On-site  | None     | Groundwater is not used for domestic purposes. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |        |          |                                   |                         | Adult    | Ingestion         | On-site  | None     | Groundwater is not used for domestic purposes. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |        |          |                                   |                         |          | Dermal Absorption | On-site  | None     | Connected in the control of the cont |
|           |        | Vapors   | Vapors from Contact               | Other Worker            | Adult    | Inhalation        | On-site  | None     | Only ingestion of drinking water from groundwater is being evaluated for this receptor. Exposure to ambient vapors is not a likely scenario for this receptor because the other worker is not involved with excavation activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |        |          | with Groundwater beneath<br>WP-14 | Construction Worker (1) | Adult    | Inhalation        | On-site  | Quant    | The construction worker may inhale ambient vapors from groundwater while excavaling because depth to groundwater is roughly 3 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _         |        |          |                                   | Industrial Worker (1)   | Adult    | Inhalation        | On-site  | None     | Utility lines at Langley AFB are assumed to be 2.5 feet bgs whereas groundwater is roughly 3 feet bgs. Therefore, the industrial worker is not likely to inhale ambient vapors from groundwater white digging for utility lines. Also, the breathing zone is above the level of excavation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Rationale for Selection or Exclusion | of Exposure Pathway | Groundwater is not used for domestic purposes. Receptor is unlikely to shower using groundwater. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario. | Groundwater is not used for domestic purposes. Receptor is unlikely to shower using groundwater. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario. | Groundwater is not used for domestic purposes. Receptor is unlikely to shower using groundwater. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario. | Groundwater is not used for domestic purposes. Receptor is unlikely to shower using groundwater. Restrictions will be placed on polable use of groundwater, if necessary, based on future residential scenario. | Groundwater is not used for domestic purposes. Receptor is unlikely to shower using groundwater. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario. | Groundwater is not used for domestic purposes. Receptor is unlikely to shower using groundwater. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario. | FT41 lies between Tabbs Creek and WP:14. Exposure to Tabbs Creek was<br>equaled under FT41 and will not be addressed in this risk assessment.<br>Physical barners (e.g., thick brush, marshy area, and controlled areas)<br>prevents receptors from coming into contact with Tabbs Creek. | FT-41 lies between Tabbs Creek and WP-14. Exposure to Tabbs Creek was evaluated under FT-41 and will not be addressed in this risk assessment. Physical barriers (e.g., thick brush, marshy area, and controlled areas) prevents receptors from coming into contact with Tabbs Creek. | FT41 lies between Tabbs Creek and WP-14. Exposure to Tabbs Creek was<br>evaluated under FT41 and will not be addressed in this risk assessment.<br>Physical barries (e.g., thick bush, marshy area, and controlled areas)<br>prevents receptors from coming into contact with Tabbs Creek. | FT-41 lies between Tabbs Greek and WP-14. Exposure to Tabbs Greek was evaluated under FT-41 and will not be addressed in this risk assessment. Physical barriers (e.g., thick brush, marshy area, and controlled areas) prevents receptors from coming into contact with Tabbs Greek. | Receptor is indirectly exposed to surface water via fish ingestion pathway. Fish ingestion pathway is more conservative. Receptor is indirectly exposed to surface water via fish ingestion pathway. Fish incestion pathway is more conservative. | Receptor is not likely to consume fish/shelifish from the Tabbs Creek. | Receptor is not likely to consume fish/shellfish from the Tabbs Creek. | Receptor is not likely to consume fish/shellfish from the Tabbs Creek. | Receptor is not likely to consume fish/shellfish from the Tabbs Creek. | Using a dilution factor with groundwater data, fish concentrations will be modeled because this receptor is likely to consume fish/shellfish from Tabbs Creek. | Using a dilution factor with groundwater data, fish concentrations will be modeled because this receptor is likely to consume fish/shelifish from Tabbs Creek. |
|--------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of                              | Analysis            | None                                                                                                                                                                                                                                                                                      | None                                                                                                                                                                                                                                                                                  | None                                                                                                                                                                                                                                                                                       | None                                                                                                                                                                                                                                                                                  | None<br>None                                                                                                                                                                                                                                      | None                                                                   | None                                                                   | None                                                                   | None                                                                   | Quant                                                                                                                                                          | Quant                                                                                                                                                          |
| On-Site/                             | Off-Site            | On-site                                                                                                                                                                                                                                                                                   | On-site                                                                                                                                                                                                                                                                               | On-site                                                                                                                                                                                                                                                                                    | On-site                                                                                                                                                                                                                                                                               | On-site<br>On-site                                                                                                                                                                                                                                | On-site                                                                | On-site                                                                | On-site                                                                | On-site                                                                | On-site                                                                                                                                                        | On-site                                                                                                                                                        |
| Exposure                             | Route               | Inhalation                                                                                                                                                                                                      | Inhalation                                                                                                                                                                                                      | Inhalation                                                                                                                                                                                                      | Inhalation                                                                                                                                                                                                      | Inhalation                                                                                                                                                                                                      | Inhalation                                                                                                                                                                                                      | Dermal Absorption                                                                                                                                                                                                                                                                         | Dermal Absorption                                                                                                                                                                                                                                                                     | Dermal Absorption                                                                                                                                                                                                                                                                          | Dermal Absorption                                                                                                                                                                                                                                                                     | Dermal Absorption                                                                                                                                                                                                                                 | Ingestion                                                              | Ingestion                                                              | Ingestion                                                              | Ingestion                                                              | Ingestion                                                                                                                                                      | Ingestion                                                                                                                                                      |
| Receptor                             | Age                 | Adult                                                                                                                                                                                                           | Adult                                                                                                                                                                                                           | Adult                                                                                                                                                                                                           | Child                                                                                                                                                                                                           | Child                                                                                                                                                                                                           | Adult                                                                                                                                                                                                           | Adult                                                                                                                                                                                                                                                                                     | Adult                                                                                                                                                                                                                                                                                 | Adult                                                                                                                                                                                                                                                                                      | Child                                                                                                                                                                                                                                                                                 | Child                                                                                                                                                                                                                                             | Adult                                                                  | Adult                                                                  | Adult                                                                  | Child                                                                  | Child                                                                                                                                                          | Adult                                                                                                                                                          |
| Receptor                             | Population          | Other Worker                                                                                                                                                                                                    | Construction Worker (1)                                                                                                                                                                                         | Industrial Worker (1)                                                                                                                                                                                           | Trespasser/Visitor                                                                                                                                                                                              | Fisher                                                                                                                                                                                                          | I                                                                                                                                                                                                               | Other Worker                                                                                                                                                                                                                                                                              | Construction Worker (1)                                                                                                                                                                                                                                                               | Industrial Worker (1)                                                                                                                                                                                                                                                                      | Trespasser/Visitor                                                                                                                                                                                                                                                                    | Fisher                                                                                                                                                                                                                                            | Other Worker                                                           | Construction Worker (1)                                                | Industrial Worker (1)                                                  | TrespasserNisitor                                                      | Fisher (2)                                                                                                                                                     |                                                                                                                                                                |
| Exposure                             | Point               | Vapors while Showering                                                                                                                                                                                          | <del></del>                                                                                                                                                                                                     | Į.                                                                                                                                                                                                              | <b>.</b>                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | Surface Water                                                                                                                                                                                                                                                                             | from Tabbs Creek (2)                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   | Fish/Shellfish from Tabbs<br>Creek (2)                                 |                                                                        |                                                                        | •                                                                      | •                                                                                                                                                              | -                                                                                                                                                              |
| Exposure                             | Medium              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | Surface Water                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   | Animal Tissue                                                          |                                                                        |                                                                        |                                                                        |                                                                                                                                                                |                                                                                                                                                                |
| Medium                               |                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |                                                                        |                                                                        |                                                                        |                                                                        |                                                                                                                                                                |                                                                                                                                                                |
| Cranario                             | Timeframe           |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |                                                                        |                                                                        |                                                                        |                                                                        |                                                                                                                                                                |                                                                                                                                                                |

| Type of Rationale for Selection or Exclusion | Analysis of Exposure Pathway | FT-41 lies between Tabbs Creek and WP-14. Exposure to Tabbs Creek was evaluated under FT-41 and will not be addressed in this risk assessment.  Physical barriers (e.g., thick brush, marshy area, and controlled areas)  prevents receptors from coming into contact with Tabbs Creek as ET 41 lies between Tabbs Creek and WD-14. Exposure to Tabbs Creek was | None Physical barriers (e.g., thick brush, marshy area, and controlled areas) prevents receptors from coming into contact with Tabbs Creek. | FT-41 lies between Tabbs Creek and WP-14. Exposure to Tabbs Creek was evaluated under FT-41 and will not be addressed in this risk assessment.  Physical barriers (e.g., thick brush, marshy area, and controlled areas) prevents receptors from coming into contact with Tabbs Creek was ET-41 the between Tabbs Creek and WD-14. Exposure in Tabbs Creek was | evaluated under FT-4 and will not be addressed in this risk assessment.<br>Physical barriers (e.g., thick brush, marshy area, and controlled areas)<br>prevents receptors from corning into contact with Tabbs Creek. | FT-41 lies between Tabbs Creek and WP-14. Exposure to Tabbs Creek was evaluated under FT-41 and will not be addressed in this risk assessment.  None Physical barriers (e.g., thick brush, marshy area, and controlled areas) | prevents receptors from coming into contact with Tabbs Creek.  FT41 lies between Tabbs Creek and WP-14. Exposure to Tabbs Creek was evaluated under FT41 and will not be addressed in this risk assessment. Physical barriers (e.g., thick brush, marshy area, and controlled areas) prevents receptors from coming into contact with Tabbs Creek. | FT-41 lies between Tabbs Creek and WP-14. Exposure to Tabbs Creek was evaluated under FT-41 and will not be addressed in this risk assessment.  None Physical barriers (e.g., thick bursh, marshy area, and controlled areas) prevents recedors from coming into contact with Tabbs Creek. | FT-41 lies between Tabbs Creek and WP-14. Exposure to Tabbs Creek was evaluated under FT-41 and will not be addressed in this risk assessment. Physical barriers (e.g., thick brush, marshy area, and controlled areas) prevents receptors from coming into contact with Tabbs Creek. | None Receptor is indirectly exposed to sediment via the fish ingestion pathway. Fish ingestion pathway is more conservative.  Receptor is indirectly exposed to sediment via the fish ingestion pathway. None Fish ingestion pathway is more conservative. | None Receptor is indirectly exposed to sediment via the fish ingestion pathway.  Fish ingestion pathway is more conservative.  Receptor is indirectly exposed to sediment via the fish ingestion pathway.  Fish ingestion pathway is more conservative. | Quant Resident may incidentally ingest surface soil while living on or near the site.  Resident may come into contact with surface soil while living on or near the cite. | Quant Resident may incidentally ingest surface soil while living on or near the site. | Resident may come into contact with surface soil while living on or near the site. | Quant Resident may incidentally ingest surface soil while living on or near the site. | Resident may come into contact with surface soil while living on or near the site. |
|----------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| On-Site/                                     | Off-Site /                   | On-site                                                                                                                                                                                                                                                                                                                                                         | On-site                                                                                                                                     | On-site                                                                                                                                                                                                                                                                                                                                                        | On-site                                                                                                                                                                                                               | On-site                                                                                                                                                                                                                       | On-site                                                                                                                                                                                                                                                                                                                                            | On-site                                                                                                                                                                                                                                                                                    | On-site                                                                                                                                                                                                                                                                               | On-site<br>On-site                                                                                                                                                                                                                                         | On-site<br>On-site                                                                                                                                                                                                                                      | On-site<br>On-site                                                                                                                                                        | On-site                                                                               | On-site                                                                            | On-site                                                                               | On-site                                                                            |
| Exposure                                     | Route                        | Ingestion                                                                                                                                                                                                                                                                                                                                                       | Dermal Absorption                                                                                                                           | Ingestion                                                                                                                                                                                                                                                                                                                                                      | Dermal Absorption                                                                                                                                                                                                     | Ingestion                                                                                                                                                                                                                     | Dermal Absorption                                                                                                                                                                                                                                                                                                                                  | Ingestion                                                                                                                                                                                                                                                                                  | Dermal Absorption                                                                                                                                                                                                                                                                     | Ingestion<br>Dermal Absorption                                                                                                                                                                                                                             | Ingestion<br>Dermal Absorption                                                                                                                                                                                                                          | Ingestion<br>Dermal Absorption                                                                                                                                            | Ingestion                                                                             | Dermal Absorption                                                                  | Ingestion                                                                             | Dermal Absorption                                                                  |
| Receptor                                     | Age                          | Adult                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             | Adult                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                       | Adult                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | Child                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                       | Child                                                                                                                                                                                                                                                      | Adult                                                                                                                                                                                                                                                   | Child                                                                                                                                                                     | Adult                                                                                 |                                                                                    | Child/Adult (3)                                                                       |                                                                                    |
| Receptor                                     | Population                   | Other Worker                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             | Construction Warker (1)                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                               | Industrial Worker (1)                                                                                                                                                                                                                                                                                                                              | Treenasseer/Visitor                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       | Fisher                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         | Resident                                                                                                                                                                  |                                                                                       |                                                                                    |                                                                                       |                                                                                    |
| Exposure                                     | Point                        | Sediment from Tabbs<br>Creek (2)                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         | Surface Soil at WP-14                                                                                                                                                     |                                                                                       |                                                                                    | -                                                                                     |                                                                                    |
| Exposure                                     | Medium                       | Sediment                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             | 3-,1,1,1                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         | Surface Soil                                                                                                                                                              |                                                                                       |                                                                                    |                                                                                       |                                                                                    |
| Medium                                       |                              |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             | <del>,</del>                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                         | Surface Soil                                                                                                                                                              |                                                                                       |                                                                                    |                                                                                       |                                                                                    |
| Scenario                                     | Timeframe                    |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       | 77 m. 12 le 1 l                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         | Future                                                                                                                                                                    |                                                                                       | <del></del>                                                                        |                                                                                       |                                                                                    |

TABLE 1 SELECTION OF EXPOSURE PATHWAYS WP-14, LANGLEY AFB

| Scenario  | Medium          | Exposure        | Exposure                          | Receptor   | Receptor        | Exposure          | On-Site/ | Type of  | Rationale for Selection or Exclusion                                                                                                                                                                                            |
|-----------|-----------------|-----------------|-----------------------------------|------------|-----------------|-------------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Timeframe |                 | Medium          | Point                             | Population | Age             | Route             | Off-Site | Analysis | of Exposure Pathway                                                                                                                                                                                                             |
|           | Subsurface Soil | Subsurface Soil | Subsurface Soil at WP-14          | Resident   | Child           | Ingestion         | On-site  | Quant    | Receptor may incidentally ingest subsurface soil while living on or near the site. The subsurface soil was brought to the surface from construction of a home at the site.                                                      |
|           |                 |                 |                                   |            |                 | Dermal Absorption | On-site  | Quant    | Receptor may incidentally ingest subsurface soil while living on or near the sile. The subsurface soil was brought to the surface from construction of a home at the sile.                                                      |
|           |                 |                 |                                   |            | Adult           | Ingestion         | On-site  | Quant    | Receptor may incidentally ingest subsurface soil while living on or near the site. The subsurface soil was brought to the surface from construction of a                                                                        |
|           |                 |                 |                                   |            |                 | Dermal Absorption | On-site  | Quant    | norne at the site.  Receptor may incidentally ingest subsurface soil while living on or near the site. The subsurface soil was brought to the surface from construction of a home at the site.                                  |
| -         |                 |                 |                                   |            | Child/Adult (3) | Ingestion         | On-site  | Quant    | Receptor may incidentally ingest subsurface soil while living on or near the site. The subsurface soil was brought to the surface from construction of a                                                                        |
|           |                 |                 |                                   |            |                 | Dermal Absorption | On-site  | Quant    | home at the site.  Receptor may incidentally ingest subsurface soil while living on or near the learning to the subsurface soil was brought to the surface from construction of a home at the site.                             |
|           | Groundwater     | Groundwater     | Groundwater beneath               | Resident   | Child           | Ingestion         | On-site  | Quant    | Current water bearing zones are not used for domestic purposes. Evaluated per EPA and VDEQ recommendations. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.      |
|           |                 |                 | WP-14                             |            |                 | Dermal Absorption | On-site  | Quant    | Current water bearing zones are not used for domestic purposes. Evaluated per EPA and VDEQ recommendations. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.      |
|           |                 |                 |                                   |            | Adult           | Ingestion         | On-site  | Quant    | Current water bearing zones are not used for domestic purposes. Evaluated<br>per EPA and VDEQ recommendations. Restrictions will be placed on poliable<br>use of promovales if necessary. Pased on finite residential scenario. |
|           |                 |                 |                                   |            |                 | Dermal Absorption | On-site  | Quant    | Current water bearing zones are not used for domestic purposes. Evaluated per EPA and VDEQ recommendations. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.      |
|           |                 |                 |                                   |            | Child/Adult (3) | Ingestion         | On-site  | Quant    | Current water bearing zones are not used for domestic purposes. Evaluated per EPA and VDEQ recommendations. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.      |
|           |                 |                 |                                   | ·          |                 | Dermal Absorption | On-site  | Quant    | Current water bearing zones are not used for domestic purposes. Evaluated per EPA and VDEQ recommendations. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.      |
|           |                 | Vapors          | Vapors white Showering            | Resident   | Child           | Inhalation        | On-site  | None     | Receptor is assumed to not shower.                                                                                                                                                                                              |
|           |                 |                 | with Groundwater beneath<br>WP-14 |            | Adult           | Inhalation        | On-site  | Quant    | Current water bearing zones are not used for domestic purposes. Evaluated per EPA and VDEQ recommendations. Restrictions will be placed on potable use of groundwater, if necessary, based on future residential scenario.      |

The following receptor name have been changed from the human health workplan (Radian, 1997) to be consistent with RAGS Part D format:

Other Worker = Groundskeeper Industrial Worker = Utility Worker

Trespasser/Visitor = Trespasser

Fisher = Fish Consumer

TABLE 1
SELECTION OF EXPOSURE PATHWAYS
WP-14, LANGLEY AFB

| =        |                                      | -                   |
|----------|--------------------------------------|---------------------|
|          | Rationale for Selection or Exclusion | of Exposure Pathway |
|          | Type of                              | Analysis            |
|          | On-Site/                             | Off-Site            |
|          | Exposure                             | Route               |
|          | Receptor                             | Age                 |
|          | Receptor                             | Population          |
|          | Exposure                             | Point               |
|          | Exposure                             | Medium              |
|          | Medium                               |                     |
|          | Scenario                             | Timeframe           |
| <u> </u> | =                                    |                     |

(1) The construction worker and industrial worker scenarios are considered subchronic because of the infrequent and short duration of exposure to the receptor.

(2) No surface water or sediment data from the drainage ditch and Tabbs Creek will be used in this risk assessment. These pathways have been evaluated in previous risk assessments associated with LF-10 and FT-41.

However, a dilution factor will be used with groundwater data to model concentrations in fish for the fisher scenario.

(3) For the child/adult resident, the combined risk is calculated for carcinogenic risk only.

Quant = Quantitative

bgs = below ground surface

#### Appendix A.2

RAGS Part D Table 2's Occurrence, Distribution, and Selection of COPCs Selection of Exposure Pathways

TABLE 2.1 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN WP-14, Langley Air Force Base

| <u>ئىگىل</u> | Scenario Timeframe: Current/Future                                                              | urrent/Future         |                     |               |          |              |                             |               |                    |           |                                         |                             |                       |                       |                |                    |
|--------------|-------------------------------------------------------------------------------------------------|-----------------------|---------------------|---------------|----------|--------------|-----------------------------|---------------|--------------------|-----------|-----------------------------------------|-----------------------------|-----------------------|-----------------------|----------------|--------------------|
|              | Medium: Surface Soil<br>Exposure Medium: Surface Soil<br>Exposure Point: Surface Soil at WP-14* | Soil<br>oil at WP-14* |                     |               |          |              |                             |               |                    |           |                                         |                             |                       | ļ                     |                |                    |
|              |                                                                                                 | (1)                   |                     | 9             |          |              |                             |               |                    |           | (9)                                     | (7)                         |                       |                       |                | (8)                |
| CAS          | Chemical                                                                                        | Minimum               | Minimum (2) Maximum |               | (i)      | Units        |                             | Detection (3) | Range of (4)       | (5)       | Background                              | Screening<br>Toxicity Value | Potential<br>ARAR/TBC | Potentiał<br>ARAR/TBC | COPC           | COPC Rationale for |
| Number       |                                                                                                 | Concentration         | Qualifier           | Concentration | Cuaime   |              | or Maximum<br>Concentration | redneucy      | Limits             | Screening | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                             | Value                 | Source                | ,              | Deletion           |
|              |                                                                                                 |                       |                     | 1             |          | 1            |                             |               |                    |           |                                         |                             |                       |                       |                | ionogen o          |
|              | Inorganics                                                                                      |                       |                     |               |          |              |                             |               | 0 4 4 7            | 00691     | 9                                       | N OORY                      | 4/N                   | ۵/۷                   | Yes            | τ                  |
| 7429-90-5    | Aluminum                                                                                        | 7640                  |                     | 16300         |          |              |                             |               | 0.514 - 0.631      | 0000      | 2                                       |                             |                       |                       | 3 5            | ٠ ،                |
| 7440-36-0    | Antimony                                                                                        | 1,43                  | 7                   | 1.43          | <u> </u> |              |                             |               | 0.215-0.264        | 1.43      | Ψ/Z                                     |                             | ď.                    | <b>t</b>              | 2 5            | o (                |
| 7440-38-2    | Arsenic                                                                                         | 2.78                  |                     | 31.7          |          | mg/kg 1      |                             |               | 0.194 - 0.237      | 31.7      | V/A                                     |                             | ď.                    | <b>(</b>              | ß :            | υ.                 |
| 7440-39-3    | Barium                                                                                          | 29.1                  |                     | 176           | 5/5      | mg/kg 1      | 14SS05                      | 9/9           | 0.0152 - 0.0187    | 176       | A/Z                                     |                             | ¥<br>N                | A/N                   | ş              | ۵.                 |
| 7440-41-7    | Beryllium                                                                                       | 0.306                 |                     | 0.867         |          | mg/kg 1      | 14SS08                      | 9/9           | 0.0175 - 0.0214    | 0.867     | A/N                                     |                             | Y/N                   | ΥN                    | g<br>2         | ۵                  |
| 7440-43-9    | Cadmium                                                                                         | 0.073                 |                     | 0.549         |          | mg/kg 1      | 14SS05                      | 9/9           | 0.0154 - 0.0189    | 0.549     | Α̈́Ν                                    | 3.9 N                       | ¥,                    | A/N                   | ટ્ટ            | ۵                  |
|              | Calcium                                                                                         | 1040                  |                     | 65500         |          | mg/kg 1      | 14SS05                      | 9/9           | 1.51 - 7.83        | 65500     | K/N                                     | 4000000                     | ∢<br>Ž                | Ø/Z                   | 2              | υ                  |
|              | Chromium (total)                                                                                | 9.65                  |                     | 34            |          | mg/kg 1      | 14SS08                      | 9/9           | 0.0716 - 0.0878    | 34        | N/A                                     | 23 N                        | Ψ<br>X                | ₹/X                   | Yes            | v                  |
|              | Cobalt                                                                                          | 1.31                  |                     | 3 49          |          | mg/kg 1      | 14SS08                      | 9/9           | 0.0523 - 0.0641    | 3.49      | N/A                                     | 470 N                       | A/N                   | N/A                   | <del>2</del> . | Ω                  |
|              | Copper                                                                                          | 3.17                  |                     | 6:39          |          | mg/kg 1      | 14SS05                      | 9/9           | 0.135 - 0.165      | 6:39      | N/A                                     | 310 N                       | Α/X                   | N/A                   | ĝ              | ۵                  |
|              | lron                                                                                            | 4410                  |                     | 33400         |          | mg/kg 1      | 148804                      | 9/9           | 1.07 - 1.31        | 33400     |                                         | 2300 N                      | Ą<br>Ą                | Ø/N                   | Хes            | q                  |
| 7439-92-1    | Lead                                                                                            | 10.9                  |                     | 21.7          |          | mg/kg 1      | 14SS05                      | 9/9           | 0.120 - 0.147      | 21.7      | N/A                                     | 400 C                       | Ą<br>Ą                | ₹/N                   | ž              | ۵                  |
| 7439-95-4    | Magnesium                                                                                       | 200                   |                     | 1530          |          | mg/kg 1      | 14SS05                      | 9/9           | 0.368 - 0.451      | 1530      | A/N                                     | 1580000                     | Ą/Ŋ                   | Ψ/N                   | £              | v                  |
| 7439-96-5    | Manganese                                                                                       | 36                    |                     | 370           |          | mg/kg 1      | 145505                      | 9/9           | 0.0126 - 0.0155    | 370       |                                         | 160 N                       | √<br>V,Z              | A/N                   | χes            | ψ                  |
| 7440-02-0    | Nickel                                                                                          | 3.52                  |                     | 9.31          |          | mg/kg 1      | 14SS08                      | 9/9           | 0.0517 - 0.0633    | 9.31      | A/A                                     | 160 N                       | A/A                   | A/N                   | Š              | ٩                  |
| 7440-09-7    | Potassium                                                                                       | 307                   |                     | 753           |          | mg/kg 1      | 145504                      | 9/9           | 3.77 - 4.62        | 753       | ΑΝ                                      | 10000000                    | Α/X                   | ď,                    | §              | v                  |
| 7440-23-5    | Sodium                                                                                          | 353                   |                     | 436           |          | mg/kg 1      | 14SS05                      | 2/2           | 14.5 - 15.3        | 436       | N/A                                     | 2500000                     | A/A                   | √/X                   | Š              | o o                |
| 7440-28-0    | Thallium                                                                                        | 0.0544                |                     | 0.152         |          | mg/kg 1      | 14SS09                      | 9/9           | 0.0340 - 0.0523    | 0.152     | N/A                                     | 0.55 N                      | ď,                    | N/A                   | g              | Q                  |
| 7440-62-2    | Vanadium                                                                                        | 14.9                  |                     | 58.3          |          | mg/kg 1      | 14SS08                      | 9/9           | 0.0648 - 0.0795    | 58.3      |                                         |                             | Α/Ά                   | A/N                   | Yes            | ъ                  |
|              | Zinc                                                                                            | 11.8                  |                     | 52            | J/J      | mg/kg 1      | 14SS05                      | 9/9           | 0.125-0.154        | 52        | N/A                                     | 2300 N                      | A/X                   | A/N                   | Š.             | q                  |
|              | Organics                                                                                        |                       |                     |               |          |              |                             |               |                    |           |                                         |                             |                       |                       |                | •                  |
| 93-76-5      | 2,4,5-T                                                                                         | 0.00986               | ->                  | 0.0192        |          |              |                             |               | 0.00137 - 0.00217  | 0.0192    |                                         |                             | ď<br>Z                | ď<br>Ž                | g :            | ، م                |
| 94-82-6      | 2,4-DB                                                                                          | 0.0403                | -,                  | 0.101         |          | mg/kg 1      |                             |               | 0.0159-0.0238      | 0.101     |                                         |                             | ď.                    | ď.                    | g :            | Δ.                 |
| 72-54-8      | 4,4-DDD                                                                                         | 0.00225               |                     | 0.0149        |          | mg/kg 1      |                             |               | 0.000400 - 0.00314 | 0.0149    |                                         |                             | Α/N                   | ď.                    | 2              | . ۵                |
| 72-55-9      | 4,4'-DDE                                                                                        | 0.00982               |                     | 0.0585        |          | mg/kg 1      |                             | 9/9           | 0.000369 - 0.00191 | 0.0585    |                                         |                             | Α/Z                   | ∢<br>Ž                | §.             | ۰                  |
| 50-29-3      | 4,4'-DDT                                                                                        | 0.00458               |                     | 0.0319        | ריר      | mg/kg 1      | 14SS05                      |               | 0.000296 - 0.00319 | 0.0319    |                                         |                             | Α/X                   | A/N                   | ž              | ۵                  |
| 67-64-1      | Acetone                                                                                         | 0.00933               |                     | 0.00933       |          | mg/kg 1      | 14SS09                      | 1/6           | 0.00269 - 0.00289  | 0.00933   |                                         |                             | Α/X                   | Υ<br>Σ                | ટ              | Ω                  |
| 309-00-2     | Aldrin                                                                                          | 0.00704               |                     | 0.00704       |          | mg/kg 1      | 14SS05                      | 1/6           | 0.000178 - 0.00125 | 0.00704   |                                         |                             | A/A                   | Υ<br>Y                | £              | ۵                  |
| 120-12-7     | Anthracene                                                                                      | 0.0222                |                     | 0.0222        |          | mg/kg 1      | 14SS05                      | 1/6           | 0.00877 - 0.00966  | 0.0222    |                                         | 2300 N                      | A/A                   | Ψ<br>Ž                | 2              | ۵                  |
| 56-55-3      | Benz(a)anthracene                                                                               | 0.0398                |                     | 0.148         |          | mg/kg 1      | 14SS05                      | 2/6           | 0.00775 - 0.00853  | 0.148     |                                         |                             | N/A                   | ₹<br>Ž                | 2              | ۵                  |
| 50-32-8      | Benz(a)pyrene                                                                                   | 0.0193                |                     | 0.208         |          | mg/kg 1      |                             | 3/6           | 0.00954 - 0.0105   | 0.208     |                                         |                             | Ϋ́Α                   | ٧<br>٧                | Yes            | Ū                  |
| 205-99-2     | Benzo(b)fluoranthene                                                                            | 0.0142                | ٦                   | 0.437         | L/L      | mg/kg 14SS05 |                             | 5/6           | 0.00870 - 0.00958  | 0.437     | N/A                                     | 0.87 C                      | N/A                   | A/N                   | 욷              | q                  |

|           |                            | (£)           |           | Ξ       | Ć         |               |               | E STORY   | (1) 90 00000       | (a) coileatachach | (9)   | (7)            | Dotorija<br>Icijaa | Potential |     | (8)          |
|-----------|----------------------------|---------------|-----------|---------|-----------|---------------|---------------|-----------|--------------------|-------------------|-------|----------------|--------------------|-----------|-----|--------------|
| CAS       | Cremical                   | Concentration | Qualifier | ţ       | Qualifier | <u>2</u>      | of Maximum    | Frequency | Detection          | Used for          | Value | Toxicity Value | ARAR/TBC           | •         |     | Contaminant  |
|           |                            |               |           |         |           |               | Concentration |           | Limits             | Screening         |       |                | Value              | Source    |     | Deletion     |
|           |                            |               |           |         |           |               |               |           |                    |                   |       |                |                    |           | _   | or Selection |
| 191-24-2  | Benzo(g,h,i)perylene       | 0:0309        |           | 0.115   |           | mg/kg 14SS05  |               | 2/6       | 0.00926 - 0.0102   | 0.115             | N/A   | 230 N          | N/A                | N/A       | Š   | ۵            |
| 207-08-9  | Benzo(k)fluoranthene       | 0.0142        | ,         | 0.437   | <b>-</b>  | mg/kg 14SS05  |               | 9/9       | 0.0108 - 0.0119    | 0.437             | N/A   | 8.7 C          | N/A                | A/N       | g   | ۵            |
| 86-74-8   | Carbazole                  | 0.0203        |           | 0.0203  |           | mg/kg 14SS05  |               | 1/6       | 0.0127 - 0.0140    | 0.0203            | A/A   | 32 C           | N/A                | N/A       | 2   | ۵            |
| 218-01-9  | Chrysene                   | 0.0164        |           | 0.225   |           | mg/kg 14SS05  |               | 9/9       | 0.0109 - 0.0120    | 0.225             | A/A   | 87 C           | Α'N                | N/A       | ž   | ۵            |
| 60-57-1   | Dieldrin                   | 0.00319       |           | 0.0675  |           | mg/kg 14SS06  |               | 9/9       | 0.000278 - 0.00393 | 0.0675            | V.A   | 0.04 C         | ΝΆ                 | A/N       | Yes | 40           |
| 88-85-7   | Dinoseb                    | 0.027         |           | 0.0363  |           | mg/kg 14SS04  |               | 3/6       | 0.0204 - 0.0220    | 0.0363            | A/N   | 7.8 N          | ΑN                 | A/N       | £   | ٥            |
| 206-44-0  | Fluoranthene               | 0.0117        |           | 0.417   |           | mg/kg 14SS05  |               | 9/9       | 0.0110 - 0.0121    | 0.417             | A/A   | 310 N          | ΑN                 | N/A       | g   | ۵            |
| 1024-57-3 | Heptachlor epoxide         | 0.00264       | 7         | 0.00264 | -         | mg/kg 14SS05  | 145505        | 1/6       | 0.000193 - 0.00110 | 0.00264           | N/A   | 0.07 C         | ΑN                 | N/A       | £   | ۵            |
| 193-39-5  | Indeno(1,2,3-cd)pyrene     | 0.0285        |           | 0.116   |           | mg/kg 14SS05  |               | 2/6       | 0.0116 - 0.0128    | 0.116             | N/A   | 0.87 C         | N/A                | Ϋ́        | ž   | Δ            |
| 85-01-8   | Phenanthrene               | 0.0157        |           | 0.158   |           | mg/kg 14SS05  |               | 3/6       | 0.0120 - 0.0132    | 0.158             | N/A   | 230 N          | ΝΆ                 | Α/N       | 욷   | ۵            |
| 129-00-0  | Pyrene                     | 0.014         |           | 0.341   |           | mg/kg 14SS05  |               | 5/6       | 0.0129 - 0.0142    | 0.341             | A/A   | 230 N          | ΝΑ                 | A/N       | ž   | q            |
| 5103-71-9 | alpha-Chlordane            | 0.0029        |           | 0.0107  |           | mg/kg 145'S05 |               | 2/6       | 0.000190 - 0.00159 | 0.0107            | A/A   | 1.8 C          | A/N                | AN<br>N   | ž   | ۵            |
| 117-81-7  | bis(2-Ethylhexyl)phthalate | 0.0452        |           | 0.0452  |           | mg/kg 14SS05  | 14SS05        | 1/6       | 0.0363 - 0.0399    | 0.0452            | N/A   | 46 C           | N/A                | A/N       | 2   | ٥            |
| 5103-74-2 | 5103-74-2 gamma-Chlordane  | 0.00631       | C/C       | 0.00631 | J/J       | mg/kg 14SS05  |               | 1/6       | 0.000185 - 0.00110 | 0.00631           | N/A   | 1.8 C          | ΨN                 | ΑN        | 2   | q            |

• Same data will be used for the following exposure points for both current/future and future scenarios: 1) surface soil at WP-14, and 2) ambient air above WP-14 (vapors and particulates). The surface soil data will be used to model ambient air exposure point concentrations; no additional screening of the modeled air concentrations will be performed.

# (1) Minimum/maximum detected concentration

(2) If minimum/maximum detected concentration comes from average of normal and field duplicate samples, then both qualifiers are presented. In such a case, the format is snormal qualifiers/sfield duplicate qualifiers.

(3) Detection Frequency is defined as the number of samples that are detected and are not B-flagged over the total number of samples.

(4) Range of Detection Limits includes limits associated with any dilution factor. See the analytical results section for more details of detection limits and dilution factors, per sample.

(5) Maximum concentration is used for screening

(6) N/A - Refer to supporting information for background discussion. Background values, derived from statistical analysis, are upper tolerance limits (UTLs).

(7) Risk-Based Concentration Table, U.S. EPA Region III. October 1999. (Cancer benchmark value = 1E-06, HQ = 0.1)

(8) Rationale for Contaminant Deletion or Selection:

a. No measurable results on site.

b. Maximum detected result is less than the RBSL.

c. Maximum detected result is less than the Essential Nutrient intake value.

d. Mean site concentration is not significantly greater than mean background concentration (alpha = 0.20) and maximum detected result is less than background UTL.

e. Maximum detected result exceeds screening toxicity value.

Definitions: N/A = Not applicable

SQL = Sample Quantitation Limit

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered

MCL = Federal Maximum Contaminant Level

SMCL = Secondary Maximum Contaminant Level

J = Estimated Value

C = Carcinogenic

N = Non-Carcinogenic

TABLE 2.2 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN WP-14, Langley Air Force Base

| Control   Cont   |           | Scenario Timeframe: Current/Future<br>Medium: Subsurface Soil<br>Exposure Medium: Subsurface Soil<br>Exposure Point: Subsurface Soil at WP-14* | ent/Future<br>ace Soil<br>s Soil at WP-14* |                          |        |   |          |             |             |                    |                   |             |                |               |            |            |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|--------|---|----------|-------------|-------------|--------------------|-------------------|-------------|----------------|---------------|------------|------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                |                                            |                          |        | - |          |             |             |                    |                   |             |                |               |            |            |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                | £                                          | <u> </u>                 | £      |   |          |             | otodion (3) | (A) posses of (A)  | Concentration (5) |             |                | Potential     | Potential  | SOPC       | (8)                      |
| Integration   Control      | CAS       | Chemical                                                                                                                                       |                                            | Minimum (2)<br>Qualifier | rion   |   |          |             | Frequency   | Detection          | Used for          | value       | Toxicity Value | ARAR/TBC      | ARARVIBC   | Flag       | Contaminant              |
| Interparies   1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                                |                                            |                          |        |   | ŏ        |             |             | Limits             | Screening         |             |                | Value         | Source     |            | Deletion<br>or Selection |
| Authority   Color      |           | Inorganics                                                                                                                                     |                                            |                          |        |   | -        |             |             |                    |                   |             |                |               |            |            |                          |
| According   Accodding   According   According   According   According   According   Acco   | 7429-90-5 | Aluminum                                                                                                                                       | 6350                                       |                          | 20900  |   |          |             |             | 1,415 - 0.680      | 20900             | ۸/ <u>۷</u> |                | Ψ/Z           | N/A        | es         | υ.                       |
| Automotion   Control       | 7440-36-0 | Antimony                                                                                                                                       | -                                          | 7                        | 1.42   |   |          |             |             | 1.226 - 0.285      | 1.42              | √Z          |                | ď<br>Ž        | Ψ/Z        | 2<br>2     | ۰ ۵                      |
| Samewine         30.1         1.02         maying 14DPS7         1818         0.0123 0.0201         1.02         NAA         500 N         A         500 N         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7440-38-2 | Arsenic                                                                                                                                        | 3.64                                       |                          | 112    |   |          | <u> </u>    |             | 1,156 - 0.256      | 112               | ď.          |                | ۷ :           | ď :        | , es       | נ עם                     |
| Conference   Co    | 7440-39-3 | Barium                                                                                                                                         | 30.1                                       |                          | 102    |   |          | <del></del> |             | 0.0123 - 0.0201    | 102               | ۷/X         |                | Ψ/N           | ۷ <u>۱</u> | 2 2        | ת מ                      |
| a. Cadmum         0.0464         0.022         mayor         14DPS2         18118         0.01724-0.02044         0.022         NAA         40000           2. Caderium         1.53         4.72         mayor         14DPS2         18118         0.0272-0.0084         150.00         NAA         4.07.0           4. Coball         1.53         4.72         mayor         14DPS2         18118         0.0577-0.0046         4.72         NAA         4.07.0           4. Coball         1.53         6.24         mayor         14DPS2         1818         0.0577-0.0046         4.72         NAA         4.07.0           6. Copal         1.53         0.052         mayor         14DPS2         1818         0.0577-0.0046         4.72         NAA         4.07           6. Copal         1.53         0.052         0.052         1.00         0.052         NAA         4.00         NA         4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7440-41-7 | Beryllium                                                                                                                                      | 0.305                                      |                          | 1.32   |   |          | <u> </u>    |             | 0.0141 - 0.0231    | 1.32              | W/N         |                | <b>4</b> 5 2  | ¥ ;        | 2 2        | י כ                      |
| 2         Capturm         672         1500         Intpg         140PS         140P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-43-9 | Cadmium                                                                                                                                        | 0.0464                                     |                          | 0.322  | _ |          |             |             | 0.0124 - 0.0204    | 0.322             | Ψ/Z         |                | <b>4</b> ∶    | ď :        | 2 :        | <b>o</b> •               |
| Conjust   1.15   2.42   mg/kg   440PSS   1818   0.00270.0846   472   N/A   223 N       | 7440-70-2 | Calcium                                                                                                                                        | 872                                        |                          | 15000  |   |          |             |             | 1.22 - 2.00        | 15000             | N/A         |                | <b>∢</b><br>Ż | ď<br>Ž     | <b>2</b> ; | υ .                      |
| Consist         (173)         9.42         mg/kg         (109-85)         (187)         0.042-0.0681         9.42         N/A         470 N           6 Conspect         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)         (175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7440-47-3 | Chromium (total)                                                                                                                               | 10.5                                       |                          | 47.2   |   |          |             |             | 0.0577 - 0.0946    | 47.2              | ٧/Z         |                | A/N           | Ψ<br>Z     | se ×       | ō                        |
| Copper         175         6.36         L         mg/kg         L4DPS         1916         0.00-0.178         6.38         NA         310         N           Cyande         0.654         L         0.654         L         mg/kg         14DPS         1918         0.00-0.178         6.38         NA         310         N           Cyande         0.654         L         0.654         L         mg/kg         14DPS         1918         0.00-0.159         NA         310         N           Lead         8         22.3         mg/kg         14DPS         1818         0.00-0.159         NA         400         C           Magnesium         356         1720         mg/kg         14DPS         1818         0.046-0.0883         NA         1500         N           Magnesium         226         1427         mg/kg         14DPS         1818         0.046-0.0883         NA         1500         N           Magnesium         169         1427         mg/kg         14DPS         1818         0.046-0.0883         NA         1500         N           Magnesium         169         142         mg/kg         14DPS         1818         0.046-0.0883         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-48-4 | Cobalt                                                                                                                                         | 1.13                                       |                          | 9,42   |   |          |             |             | 0.0422 - 0.0691    | 9.42              | A/N         |                | N/A           | N/N<br>V/N | 2          | q                        |
| Cyanide         0.634         L         mpkg         (440-56)         (118)         0.254-0.307         0.634         NA         160 N           Lead         L         0.6634         L         mpkg         (440-58)         (118)         0.624-0.307         0.634         NA         160 N           L         Lead         2540         223         mpkg         (440-58)         (1818)         0.6096-0.169         223         NA         400 C           Amaganesium         356         1750         mpkg         (440-58)         (1818)         0.6096-0.169         223         NA         400 C           Managanese         203         2.26         1477         mpkg         (440-58)         (1818)         0.604-0.0683         1478         NA         1500 O           Nicket         2.26         1480         mpkg         (440-58)         1818         0.604-0.0683         NA         1500 O           Managanese         2.26         1480         mpkg         (440-58)         1818         0.604-0.0683         NA         1500 O           Managanese         2.26         1480         mpkg         (440-58)         1818         0.604-0.0683         NA         1500 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7440-50-8 | Copper                                                                                                                                         | 1.75                                       |                          | 6.36   |   |          |             |             | 0,109 - 0.178      | 6.36              | N/A         |                | N/A           | N/A        | ş          | ۵                        |
| time         55-40         76800         mg/kg         14DPSS         1918         0.860-141         77800         NA         2230         N           4. Magnesium         38         122.3         mg/kg         14DPSS         1918         0.0860-1159         723         NA         150000           A. Magnesium         385         mg/kg         14DPSS         1918         0.0102-0.0167         53         NA         160 N           A. Magnesium         2.36         1447         mg/kg         14DPSS         1918         0.0102-0.0167         73         NA         160 N           A. Magnesium         2.36         1440         mg/kg         14DPSS         1918         0.0102-0.0167         73         NA         160 N         NA         160 N         160 N         NA         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57-12-5   | Cyanide                                                                                                                                        | 0.634                                      | _                        | 0.634  |   |          |             |             | 1.254 - 0.307      | 0.634             | N/A         |                | N/A           | N/A        | ž          | ٩                        |
| Lead         8         22.3         mgAp         14DPS6         1816         0.0966-0.159         22.3         NA         400         C           A Magnesium         395         17780         mgAp         14DPS6         1818         0.287-0.486         1780         NA         1580000           A Manganesium         23.3         5.38         mgAp         14DPS6         1818         0.0102-0.0167         5.80         NA         160 N           A Manganesium         2.38         147         mgAp         14DPS6         1818         0.0102-0.0167         5.80         NA         10000000           A Manganesium         2.38         1430         mgAp         14DPS6         1818         0.0102-0.0167         5.80         NA         10000000           A Mandanum         1.04         0.15         mgAp         14DPS6         1818         0.044-0.0683         0.15         NA         2500000           A Mandanum         1.05         0.15         mgAp         14DPS6         1818         0.044-0.0683         NA         0.05           A LA-DE         0.023         0.049         mgAp         14DPS6         1818         0.044-0.0683         NA         0.049           A LA-DE<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7439-89-6 | ico                                                                                                                                            | 5540                                       |                          | 76800  |   |          |             |             | 1.860 - 1.41       | 76800             | N/A         |                | ₹<br>Z        | Ψ.         | Ύes        | p                        |
| 4         Magnesium         395         1780         mg/kg         140785         1818         0.297-0.486         1780         NA         150000           5         Manganese         20.3         538         mg/kg         140785         1818         0.0162-0.0167         538         NA         160         N           0         Nickel         22.88         1437         mg/kg         140785         1818         0.0162-0.0167         NA         160         N           1         0         1430         mg/kg         140785         1818         0.0162-0.0683         NA         160         N         1600         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7439-92-1 | Lead                                                                                                                                           | 60                                         |                          | 22.3   |   |          |             |             | 1,0969 - 0.159     | 22.3              | V/A         |                | N/A           | ₹<br>Ž     | ž          | q                        |
| 6. Mangganese         20.3         5.38         mg/kg         44DPS6         161/18         0.0102-0.0167         5.38         N/A         160 N         N/A <th< td=""><td>7439-95-4</td><td>Magnesium</td><td>395</td><td></td><td>1780</td><td></td><td>_</td><td></td><td></td><td>1,297 - 0,486</td><td>1780</td><td>4/2</td><td>1580000</td><td>N/A</td><td>Ψ/X</td><td>ž</td><td>υ</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7439-95-4 | Magnesium                                                                                                                                      | 395                                        |                          | 1780   |   | _        |             |             | 1,297 - 0,486      | 1780              | 4/2         | 1580000        | N/A           | Ψ/X        | ž          | υ                        |
| 0 billioned         2.96         14.7         mg/kg         140788         18/18         0.0416-0.0883         14.7         N/A         160 N         N           7         Polassium         2.35         1480         mg/kg         140782         18/18         3.04-4.86         1480         N/A         10000000           6         Sodium         104         0.15         mg/kg         140PSS         18/18         0.044-0.083         0.15         N/A         200000           All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7439-96-5 | Manganese                                                                                                                                      | 20.3                                       |                          | 538    |   |          |             |             | 0.0102 - 0.0167    | 538               | A/A         |                | N/A           | A/A        | ≺es        | ס                        |
| 5. Sodium         235         1480         mgkg         14DPS2         33         16.182         1480         NA         10000000           5. Sodium         104         159         mgkg         14DPS2         33         16.182         159         NA         2500000           D         Thallium         0.0621         0.15         mgkg         14DPS2         18.18         0.0340-0.0583         0.15         NA         2500000           2. Vanadum         16.9         0.15         mgkg         14DPS2         18.18         0.0340-0.0583         0.15         NA         2500000           2. Vanadum         10.6         0.15         mgkg         14DPS2         18.18         0.0340-0.0583         0.15         NA         2500000           2. Lack         1.0         0.043         mgkg         14DPS8         1818         0.0146         NA         778         NA         250000           2. Lack         0.0233         0.102         0.0249         0.025         0.025         NA         4700         NA         470         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-02-0 | a viz                                                                                                                                          | 2.98                                       |                          | 14.7   |   |          |             |             | 0.0416 - 0.0683    | 14.7              | A/A         |                | N/A           | A/A        | ž          | ۵                        |
| 5. Sodium         104         156         mg/kg         14DPS2         37.3         162-182         159         N/A         2500000           2. Vanadum         16.9         36.8         mg/kg         14DPS7         18/18         0.0340-0.0593         0.15         N/A         55 N           2. Vanadum         16.9         37.1         mg/kg         14DPS8         18/18         0.0531-0.0657         36.8         N/A         55 N           Organics         10.6         36.8         mg/kg         14DPS8         18/18         0.0101-0.166         36.8         N/A         2000           2.4.5-T         0.00323         J         0.049         mg/kg         14DPS8         17/18         0.0102-0.0569         N/A         77.8           2.4.5-T         0.00323         J         0.049         mg/kg         14DPS8         17/18         0.0102-0.0569         N/A         77.8           2.4.5-T         0.00323         J         0.049         mg/kg         14DPS8         17/18         0.0153-0.0256         0.029         N/A         4700         N           2.4.4-DD         0.0043         0.123         mg/kg         14DPS8         17/18         0.0234-0.0259         0.125         N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7440-09-7 | Potassium                                                                                                                                      | 235                                        |                          | 1480   |   |          |             |             | 3.04 - 4.98        | 1480              | Ψ/Z         | 10000000       | A/X           | A/A        | 2          | υ                        |
| 0. Vanishium         0.0521         0.15         mg/kg         14DPS9         18/18         0.0523-0.0657         97.1         N/A         55         N           2. Vanishium         16.9         97.1         mg/kg         14DPS9         18/18         0.0523-0.0657         97.1         N/A         55         N           6 Zinc         Corpanies         10.6         36.8         mg/kg         14DPS9         18/18         0.0101-0.166         36.8         N/A         55         N           Organies         10.6         36.8         mg/kg         14DPS9         18/18         0.0101-0.0667         97.1         N/A         55         N           Coganies         0.00233         0.00233         0.0043         0.0023         0.0105         N/A         778         N/A         778         N           2.4-DB         0.0023         0.0023         0.0023         0.0023         0.0024         0.0023         0.0026         N/A         770         N           2.4-DB         0.0023         0.0023         0.0023         1/18         0.00238         0.0026         0.003         N/A         470         N           4.4-DDE         0.0041         0.0044         0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-23-5 | Engos                                                                                                                                          | 104                                        |                          | 159    |   |          |             |             | 16.2 - 18.2        | 159               | A/A         | 2500000        | N/A           | A/N        | ž          | υ                        |
| 2         Vanadum         16.9         97.1         mg/kg         140PS8         18/18         0.0523 - 0.0867         97.1         N/A         55 N           2         Zinc         10.6         36.8         18/18         18/18         0.101 - 0.166         36.8         N/A         55 N           6         Zinc         10.6         36.8         18/18         18/18         0.101-0.166         36.8         N/A         2300 N           2.4,5-T         0.0233         J         0.049         mg/kg         14DPS8         7/18         0.00141-0.00259         0.049         N/A         78 N         2300 N           2.4-DB         0.0233         0.0307         0.0307         mg/kg         14DPS6         1/18         0.00143-0.0259         0.0307         N/A         4700 N           2.4-DB         0.0233         0.0307         N/A         1.718         0.00238-0.00259         0.0123         N/A         4700 N           4.4-DD         0.00434         0.123         mg/kg         14DPS6         1/18         0.00327-0.0034         N/A         N/A         1/18           Acenaphthene         0.00415         0.0042         0.0242         1/18         0.00327-0.0034         0.0367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-28-0 | Thallium                                                                                                                                       | 0.0521                                     |                          | 0.15   |   |          |             |             | ).0340 - 0.0593    | 0.15              | ∀/Z         |                | N/A           | A/A        | ટ્ટ        | ۵                        |
| 5         Zinc         10.6         36.8         mgkg         14DPS8         18/18         0.101-0.166         36.8         N/A         2300 N           Organics         Organics         0.00323         J         0.049         mgkg         14DPS8         5/18         0.0014-0.00269         0.049         N/A         78 N         78 N           2.4-DB         0.0213         0.102         mgkg         14DPS6         1/18         0.0036         0.049         N/A         4700 N           2.4-DB         0.0213         0.0307         mgkg         14DPS6         1/18         0.00236-0.0269         0.040         N/A         4700 N           2.4-DB         0.0307         0.0337         mgkg         14DPS6         1/18         0.00236-0.00269         0.040         N/A         4700 N           4.4-DDD         0.00434         0.123         mgkg         14DPS6         1/18         0.00236-0.00243         0.123         N/A         1/2           4.4-DDD         0.00434         0.0123         mgkg         14DPS6         1/18         0.00243         0.023         N/A         1/2         N/A           Acenaphthane         0.0521         0.033         1/18         0.0037-0.0034 <th< td=""><td>7440-62-2</td><td>Vanadium</td><td>16.9</td><td></td><td>97.1</td><td></td><td></td><td></td><td></td><td>1.0523 - 0.0857</td><td>1.76</td><td>A/A</td><td></td><td>N/A</td><td>N/A</td><td>Yes</td><td>D</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-62-2 | Vanadium                                                                                                                                       | 16.9                                       |                          | 97.1   |   |          |             |             | 1.0523 - 0.0857    | 1.76              | A/A         |                | N/A           | N/A        | Yes        | D                        |
| Organics         Organics         0.049         mg/kg         14DPS9         6/18         0.00141 - 0.00259         0.049         N/A         78         N           2.4.5-T         0.00323         0.102         mg/kg         14DPS9         7/18         0.0165 - 0.0265         0.102         N/A         4700         N           2.4-DB         0.0233         0.0307         mg/kg         14DPS6         1/18         0.00238 - 0.00299         0.0307         N/A         4700         N           2-bulanone(MEK)         0.0307         0.0307         mg/kg         14DPS6         1/18         0.00238 - 0.00299         0.0307         N/A         4700         N           2-Methylaphtralene         0.739         mg/kg         14DPS6         1/18         0.00216 - 0.00299         0.037         N/A         4700         N           4.4*-DDD         0.00031         0.215         mg/kg         14DPS6         1/18         0.00037 - 0.00394         0.0215         N/A         470         N           4.4*-DDT         0.0017         0.0823         mg/kg         14DPS6         1/18         0.00234         0.035         N/A         470         N           Acelone         0.017         0.0823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7440-66-6 | Zinc                                                                                                                                           | 10.6                                       |                          | 36.8   |   |          |             |             | 1,101 - 0,166      | 36.8              | N/A         |                | A/X           | A/A        | 욷          | Ф                        |
| 2.4.5.T         0.00323         J         0.049         mg/kg         14DPS9         5/18         0.00141 - 0.00259         0.049         N/A         78         N           2.4.DB         0.0213         0.0213         0.0203         0.0307         mg/kg         14DPS8         7/18         0.0165 - 0.0265         0.102         N/A         4700         N           2.4.DB         0.0307         mg/kg         14DPS6         1/18         0.0316 - 0.0395         0.739         N/A         4700         N           4.4.DDE         0.00434         0.123         mg/kg         14DPS6         1/18         0.00419         N/A         1/9         C           4.4.DDE         0.00434         0.123         mg/kg         14DPS6         1/18         0.00377 - 0.00423         0.13         N/A         1/9         C           4.4.DDE         0.00415         0.0251         mg/kg         14DPS6         1/18         0.01877 - 0.00423         0.18         N/A         1/9         C           Acenaphtyane         0.017         0.0857         mg/kg         14DPS6         1/18         0.00374         0.0827         N/A         4/0         N/A           Acenaphtyane         0.017         0.077 <td></td> <td>Organics</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | Organics                                                                                                                                       |                                            |                          |        |   |          |             |             |                    |                   |             |                |               |            |            |                          |
| 2.4-DB         0.0213         0.102         mg/kg         14DPS6         1/18         0.0163-0.0265         0.0307         N/A         4700 N         N           2-Mustanone(MEK)         0.0307         mg/kg         14DPS6         1/18         0.00238-0.00299         0.0307         N/A         4700 N           2-Methylmaphthalene         0.739         mg/kg         14DPS6         1/18         0.00141-0.00458         0.123         N/A         470 N           4,4-DDT         0.00434         0.123         mg/kg         14DPS6         1/18         0.000426         0.123         N/A         1.9         C           4,4-DDT         0.00415         0.0267         0.00627         0.00423         0.0123         N/A         1.9         C           4,4-DDT         0.00415         0.0667         mg/kg         14DPS6         1/18         0.00037-0.00344         0.0877         N/A         1.9         C           4,4-DDT         0.0521         mg/kg         14DPS6         1/18         0.0037-0.00344         0.0877         N/A         1.9         C           4,4-DDT         0.0521         mg/kg         14DPS6         1/18         0.00937-0.0034         0.0521         N/A         470 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93-76-5   | 2,4,5-T                                                                                                                                        | 0.00323                                    |                          | 0.049  |   |          |             |             | 0.00141 - 0.00259  | 0.049             | N/A         |                | A/A           | A/A        | 2          | ρ                        |
| 2-Butanone(MEK)         0.0307         0.0307         mg/kg         14DPS6         1/18         0.00236 - 0.0029         0.0307         N/A         4700 N         N           2-Methylnaphthalene         0.739         0.739         mg/kg         14DPS6         1/18         0.0316 - 0.0395         0.739         N/A         160 N         N           4.4*-DDD         0.00434         0.123         mg/kg         14DPS6         1/116         0.000276 - 0.00423         0.215         N/A         1.9 C         7           4.4*-DDT         0.00415         0.0867         mg/kg         14DPS6         1/16         0.000276 - 0.00423         0.215         N/A         1.9 C           4.4*-DDT         0.00415         0.0867         mg/kg         14DPS6         1/18         0.000274 - 0.0034         0.0867         N/A         1.9 C           Acetaghthylene         0.017         0.0833         mg/kg         14DPS6         1/18         0.00975 - 0.0122         0.0833         N/A         470 N           Addrin         0.17         0.17         mg/kg         14DPS6         1/18         0.00279 - 0.0036         N/A         1/19 C           Addrin         0.00215         0.0025         0.0384         mg/kg         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94-82-6   | 2,4-DB                                                                                                                                         | 0.0213                                     |                          | 0.102  |   |          |             |             | 0.0163 - 0.0265    | 0.102             | A/N         |                | Υ<br>Z        | Α/X        | ĝ          | Ω                        |
| 2-Methylnaphthalene         0.739         mg/kg         14DPS6         1/18         0.0316-0.0395         0.739         N/A         160         N           4,4-DDD         0.00434         0.123         mg/kg         14DPS6         1/16         0.000276-0.00423         0.123         N/A         2.7         C           4,4-DDD         0.00415         0.215         mg/kg         14DPS6         1/16         0.000276-0.00423         0.215         N/A         1.9         C           4,4-DD         0.00415         0.0857         mg/kg         14DPS6         1/16         0.000276-0.0034         0.0867         N/A         1.9         C           4,4-DD         0.00521         mg/kg         14DPS6         1/18         0.00937-0.0034         0.0857         N/A         1.9         C           Aceraghthylene         0.017         0.0833         mg/kg         14DPS6         1/18         0.00975-0.0122         0.0833         N/A         470         N           Addrin         0.17         0.017         0.017         0.017         0.0025         N/A         1/B         0.00975-0.0036         N/A         1/B         0.00992-0.0113         0.0384         N/A         0.00992-0.0113         0.0384         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78-93-3   | 2-Butanone(MEK)                                                                                                                                | 0.0307                                     |                          | 0.0307 |   |          |             |             | 0.00238 - 0.00299  | 0.0307            | N/A         |                | Υ/Z           | Υ<br>Σ     | Ž          | ٩                        |
| 4,4-DDD         0.00434         0.123         mg/kg         140PS6         10/18         0.000441-0.00468         0.123         N/A         2.7 C         C           4,4-DDE         0.00912         0.215         mg/kg         14DPS6         11/16         0.000276-0.00423         0.215         N/A         19 C         7           4,4-DDE         0.00415         0.0867         mg/kg         14DPS6         1/18         0.000327-0.00344         0.0867         N/A         19 C           Acenaphthene         0.0521         mg/kg         14DPS6         1/18         0.0187-0.0234         0.0857         N/A         470 N         N           Acetone         0.017         0.0833         mg/kg         14DPS6         1/18         0.00975-0.0122         0.0833         N/A         470 N         N           Addrin         0.017         0.025         mg/kg         14DPS6         1/18         0.00979-0.00361         N/A         7780 N         N           Addrin         0.00215         J         0.0025         mg/kg         14DPS6         5/18         0.00992-0.0113         0.0384         N/A         780 N         N           Addrin         0.0166         0.0166         0.0166         N/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91-57-6   | 2-Methylnaphthalene                                                                                                                            | 0.739                                      |                          | 0.739  |   |          |             |             | 0.0316 - 0.0395    | 0.739             | N/A         |                | N/A           | Ą<br>Ż     | g<br>2     | ۵                        |
| 4,4*-DDE         0.00912         0.215         mg/kg         14DPS6         11/16         0.000276-0.00433         0.215         N/A         19 C           4,4*-DDT         0.00415         0.0867         mg/kg         14DPS4         9/15         0.000327-0.00344         0.0867         N/A         19 C           Acenaphthene         0.0521         mg/kg         14DPS6         1/18         0.0187-0.0234         0.0857         N/A         470 N           Acetone         0.017         0.0833         mg/kg         14DPS6         1/18         0.00975-0.0122         0.0833         N/A         470 N           Actione         0.17         mg/kg         14DPS6         1/18         0.00279-0.00351         0.17         N/A         780 N           Addrin         0.000708         J         0.0025         mg/kg         14DPS6         5/18         0.00092-0.0113         0.0384         N/A         0.0384           Anthracene         0.0166         0.11         mg/kg         14DPS4         6/18         0.00992-0.0113         0.01         N/A         0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72-54-8   | 4,4'-DDD                                                                                                                                       | 0.00434                                    |                          | 0.123  |   |          |             |             | 0.000441 - 0.00458 | 0.123             | A/A         |                | A/N           | A/A        | ž          | ۵                        |
| 4,4*-DpT         0.00415         0.0867         mg/kg         14DPS6         1/18         0.000327 - 0.00344         0.0867         N/A         1.9 C         1.9 C           Acenaphthene         0.0521         0.0521         mg/kg         14DPS6         1/18         0.0187 - 0.0234         0.0833         N/A         470 N         N           Acetone         0.017         0.0833         mg/kg         14DPS6         1/18         0.00975 - 0.0122         0.0833         N/A         470 N         N           Acetone         0.17         mg/kg         14DPS6         1/18         0.00279 - 0.00351         0.17         N/A         780 N         N           Addin         0.000708         J         0.0025         mg/kg         14DPS6         5/18         0.000197 - 0.00204         0.0025         N/A         780 N         N           Addin         0.0215         J         0.0284         mg/kg         14DPS6         5/18         0.00902 - 0.0113         0.0384         N/A         0.0384         N/A         0.039         N/A         0.038         C           Anthracene         0.0166         J         J         J         Mg/kg         14DPS4         6/18         0.00992 - 0.0113         0.01 <td>72-55-9</td> <td>4,4'-DDE</td> <td>0.00912</td> <td></td> <td>0.215</td> <td></td> <td>-</td> <td></td> <td></td> <td>0.000276 - 0.00423</td> <td>0.215</td> <td>N/A</td> <td></td> <td>N/A</td> <td>A/A</td> <td>ž</td> <td>۵</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72-55-9   | 4,4'-DDE                                                                                                                                       | 0.00912                                    |                          | 0.215  |   | -        |             |             | 0.000276 - 0.00423 | 0.215             | N/A         |                | N/A           | A/A        | ž          | ۵                        |
| Acenaphthene         0.0521         0.0521         mg/kg         1418         0.0187 - 0.0234         0.0521         N/A         470         N           Acenaphthene         0.017         0.0833         mg/kg         14DPS6         3/18         0.00975 - 0.0122         0.0833         N/A         470         N           Acetone         0.17         mg/kg         14DPS6         1/18         0.00279 - 0.00351         0.17         N/A         780         N           Addrin         0.000708         J         0.0025         mg/kg         14DPS6         5/18         0.00092 - 0.0113         0.0384         N/A         2300         N           Anthracene         0.0166         0.11         mg/kg         14DPS4         6/18         0.00995 - 0.0113         0.0384         N/A         2300         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50-29-3   | 4,4'-DDT                                                                                                                                       | 0.00415                                    |                          | 0.0867 |   | _        |             |             | 0.000327 - 0.00344 | 0.0867            | N/A         |                | N/A           | A/A        | ž          | ۵                        |
| B         Acceptability/lene         0.017         0.0833         mg/kg         14DPS6         3/18         0.00575-0.0122         0.0833         N/A         470         N           2         Aldrin         0.025         mg/kg         14DPS6         5/18         0.000197-0.00204         0.0025         N/A         780         N           7         Authracene         0.0215         0.0384         mg/kg         14DPS6         5/18         0.00902-0.0113         0.0384         N/A         2300         N           8 contributione         0.0166         0.11         mg/kg         14DPS4         6/18         0.00797-0.00996         0.11         N/A         0.87 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83-32-9   | Acenaphthene                                                                                                                                   | 0.0521                                     |                          | 0.0521 |   |          |             |             | 1.0187 - 0.0234    | 0.0521            | NA          |                | N/A           | A/N        | ž          | ۵                        |
| Acetone         0.17         0.07         0.025         1/18         0.00279-0.00351         0.17         N/A         780         N           2         Aldrin         0.000208         J         0.0025         mg/kg         14DPS6         5/18         0.000197-0.00204         0.0025         N/A         0.038         C           7         Anthracene         0.0215         0.0384         mg/kg         14DPS4         3/18         0.00902-0.0113         0.0384         N/A         2300         N           Report/Absorbing cone         0.0166         0.11         mg/kg         14DPS4         6/18         0.00797-0.00996         0.11         N/A         0.87         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 208-96-8  | Acenaphthylene                                                                                                                                 | 0.017                                      |                          | 0.0833 |   |          |             |             | 7.00975 - 0.0122   | 0.0833            | N/A         |                | N/A           | A/N        | ž          | ٩                        |
| 2 Aldrin 0.000708 J 0.0025 mg/kg 14DPS6 6/18 0.000197 - 0.00204 0.0025 N/A 0.038 C 7 Anthracene 0.0215 0.0384 mg/kg 14DPS6 3/18 0.00902 - 0.0113 0.0384 N/A 2300 N 8  | 67-64-1   | Acetone                                                                                                                                        | 0.17                                       |                          | 0.17   |   |          |             |             | 0.00279 - 0.00351  | 0.17              | V/A         |                | N/A           | Αχ         | ž          | ٩                        |
| 7 Anthracene 0.0215 0.0384 mg/kg 14DPS6 3/18 0.00902 - 0.0113 0.0384 N/A 2300 N Reny/Jacobine 0.016 0.11 N/A 0.017 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 309-00-2  | Aldrin                                                                                                                                         | 0.000708                                   | 7                        | 0.0025 |   |          |             |             | 0.000197 - 0.00204 | 0.0025            | ΝΆ          |                | N/A           | A/A        | £          | ۵                        |
| Renzyskanthranene 0.016 0.11 mg/kg 14DPS4 6/18 0.00797 - 0.00996 0.11 NVA 0.87 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120-12-7  | Anthracene                                                                                                                                     | 0.0215                                     |                          | 0.0384 | · |          |             |             | 0.00902 - 0.0113   | 0.0384            | ۷/Z         |                | N/A           | ď,         | ટ્ટ        | . م                      |
| Deliziation delication of the state of the s | 56-55-3   | Benz(a)anthracene                                                                                                                              | 0.0166                                     |                          | 0.11   |   | ng/kg 14 |             |             | 96600.0 - 76700.0  | 0.11              | N/A         | - 1            | A/A           | A/A        | 2<br>2     | ۵                        |

|                           |                |               | -,,          |                  |                      | -                    | _                    | -                    |                    |               | _                   |                 |                    |             |                    |                    |               |                 |                    |                        |                  | _               |                 |                 |                    |                    |                            | _                  | _                   |                    |
|---------------------------|----------------|---------------|--------------|------------------|----------------------|----------------------|----------------------|----------------------|--------------------|---------------|---------------------|-----------------|--------------------|-------------|--------------------|--------------------|---------------|-----------------|--------------------|------------------------|------------------|-----------------|-----------------|-----------------|--------------------|--------------------|----------------------------|--------------------|---------------------|--------------------|
| (8)<br>COPC Rationale for | Contaminant    | Deletion      | or Selection | ø                | ۵                    | ٩                    | q                    | ٥                    | ٩                  | q             | ٩                   | ۵               | 0                  | ۵           | ۵                  | ۵                  | ٩             | ۵               | ٥                  | ٩                      | ۵                | ۵               | ۵               | ۵               | ۵                  | ۵                  | م                          | ٩                  | ۵                   | þ                  |
| COPC                      | Flag           |               |              | Yes              | g                    | ĝ                    | ž                    | ž                    | ž                  | g             | ž                   | ž               | Yes                | §           | ž                  | ž                  | ž             | g               | 8                  | Š                      | ž                | ž               | ž               | ž               | g                  | g                  | ş                          | ž                  | ž                   | ž                  |
| Potential                 | ARAR/TBC       | Source        |              | N/A              | N/A                  | ΑX                   | N/A                  | A/N                  | N/A                | N/A           | N/A                 | A/N             | N/A                | N/A         | N/A                | N/A                | N/A           | N/A             | N/A                | N/A                    | N/A              | N/A             | A/A             | N/A             | Α'N                | N/A                | N/A                        | N/A                | N/A                 | N/A                |
| Potential                 | ARAR/TBC       | Value         |              | N/A              | A/N                  | N/A                  | N/A                  | N/A                  | N/A                | A/N           | N/A                 | N/A             | N/A                | N/A         | A/N                | N/A                | N/A           | N/A             | N/A                | N/A                    | N/A              | N/A             | N/A             | N/A             | N/A                | N/A                | A/X                        | K/X                | ΚX                  | N/A                |
| (7)<br>Screening          | Toxicity Value |               |              | 0.087 C          | 0.87 C               | 230 N                | 8.7 C                | 1600 N               | 780 N              | 87 C          | N 087               | 31 N            | 0.04 C             | 4700 N      | A7 N               | 2.3 N              | 310 N         | 310 N           | 0.14 C             | 0.87 C                 | 2 88             | 160 <b>N</b>    | 230 N           | 230 N           | 1.8 C              | 0.35 C             | 46 C                       | 0.35 C             | 0.49 C              | 1.8 C              |
| (6)<br>Background         | Value          |               |              | Ϋ́               | N/A                  | N/A                  | N/A                  | N/A                  | N/A                | ΑX            | V/A                 | Αχ              | N/A                | A/A         | V/Z                | N/A                | N/A           | Ϋ́N             | A/A                | N/A                    | N/A              | A/N             | N/A             | N/A             | N/A                | N/A                | A/A                        | N/A                | N/A                 | N/A                |
| Concentration (5)         | Used for       | Screening     |              | 0.137            | 0.23                 | 0.0864               | 0.23                 | 0.0239               | 0.00309            | 0.139         | 0.0744              | 0.0395          | 0.215              | 3610        | 0.00106            | 0.00174            | 0.269         | 0.127           | 0.000764           | 0.0825                 | 0.00327          | 0.337           | 0.26            | 0.221           | 0.00653            | 0.000449           | 296.0                      | 0.0177             | 0.0135              | 0.00361            |
| Range of (4)              | Detection      | Limits        |              | 0.00982 - 0.0123 | 0.00895 - 0.0112     | 0.00953 - 0.0119     | 0.0112 - 0.0139      | 0.00721 - 0.00901    | 0.000950 - 0.00119 | 0,0112-0.0140 | 0.0118 - 0.0147     | 0.0132 - 0.0165 | 0.000274 - 0.00423 | 1.15 - 63.3 | 0.000303 - 0.00315 | 0.000494 - 0.00502 | 0.0113-0.0141 | 0.0137 - 0.0172 | 0.000117 - 0.00122 | 0.0120 - 0.0149        | 0.00172 - 0.0179 | 0.0154 - 0.0192 | 0.0124 - 0.0154 | 0.0133 - 0.0166 | 0.000209 - 0.00217 | 0.000161 - 0.00178 | 0.0373 - 0.0466            | 0.000115 - 0.00126 | 0.0000793 - 0.00100 | 0.000203 - 0.00214 |
| Detection (3)             | Frequency      |               |              | 6/18             | 8/18                 | 5/18                 | 8/18                 | 1/18                 | 1/18               | 7/18          | 1/18                | 1/18            | 7/18               | 22          | 1/18               | 2/18               | 8/18          | 1/18            | 2/18               | 5/18                   | 1/18             | 2/18            | 5/18            | 8/18            | 3/18               | 3/18               | 9/18                       | 1/12               | 6/18                | 5/18               |
| Location                  | of Maximum     | Concentration |              | 14DPS1           | 14DPS1               | I4DPS1               | 14DPS1               | 14DPS8               | 14DPS6             | 14DPS1        | 14DPS4              | 14DPS6          | 14DPS4             | 14DPS6      | 14DPS6             | 14DPS8             | 14DPS1        | 14DPS6          | 14DPS9             | 14DPS1                 | 14DPS6           | 14DPS6          | 4DPS6           | 4DPS1           | 14DPS1             | 14DPS2             | 4DPS5                      | 4DPS6              | 4DPS4               | 4DPS6              |
| Units                     |                |               |              | mg/kg            | mg/kg .              | mg/kg 14DPS1         | mg/kg /              | mg/kg                | mg/kg              | mg/kg         | mg/kg               | mg/kg           | mg/kg              | mg/kg       | mg/kg              | mg/kg              | mg/kg         | mg/kg           | mg/kg              | mg/kg                  | mg/kg            | mg/kg 1         | mg/kg 14DPS6    | mg/kg 14DPS1    | mg/kg              | mg/kg 14DPS2       | mg/kg 14DPS5               | mg/kg 14DPS6       | mg/kg 14DPS4        | mg/kg 14DPS6       |
| Maximum (2)               | Qualifier      |               |              |                  | -,                   |                      | <del></del>          |                      |                    | ·             |                     |                 |                    | -           |                    |                    |               |                 |                    |                        |                  |                 |                 |                 | •                  |                    |                            |                    |                     |                    |
| (1)<br>Maximum            | Concentration  |               |              | 0.137            | 0.23                 | 0.0864               | 0.23                 | 0.0239               | 0.00309            | 0.139         | 0.0744              | 0.0395          | 0.215              | 3610        | 0.00106            | 0.00174            | 0.269         | 0.127           | 0.000764           | 0.0825                 | 0.00327          | 0.337           | 0.26            | 0.221           | 0.00653            | 0.000449           | 0.957                      | 0.0177             | 0.0135              | 0.00361            |
| Minimum (2) Maximum       | Qualifier      |               |              |                  | 7                    |                      | ~                    |                      |                    |               |                     |                 | ויר                |             |                    |                    |               |                 |                    |                        |                  |                 |                 |                 |                    | <u> </u>           |                            |                    |                     | ſ                  |
| (1)<br>Minimum            | Concentration  |               |              | 0.0243           | 0.0195               | 0.0215               | 0.0195               | 0.0239               | 0.00309            | 0.0191        | 0.0744              | 0.0395          | 0.00748            | 28.7        | 0.00106            | 0.0012             | 0.0149        | 0.127           | 0.000304           | 0.0179                 | 0.00327          | 0.0283          | 0.0176          | 0.0156          | 0.00213            | 0.000197           | 0.0774                     | 0.0177             | 0.000294            | 0.000471           |
| Chemical                  |                |               |              | Benz(a)pyrene    | Benzo(b)fluoranthene | Benzo(g,h,i)perylene | Benzo(k)fluoranthene | Butylbenzylphthalate | Carbon disuffide   | Chrysene      | Di-n-buty/phthalate | Dibenzofuran    | Dieldrin           | Diesel      | Endosulfan II      | Endrin Ketone      | Fluoranthene  | Fluorene        | Heptachlor         | Indeno(1,2,3-cd)pyrene | Methoxychlor     | Naphthalene     | Phenanthrene    | Pyrene          | aipha-Chlordane    | beta-BHC           | bis(2-Ethylhexyl)phthalate | delta-BHC          | gamma-BHC(Lindane)  | gamma-Chlordane    |
| CAS                       | Number         |               |              | 50-32-8          | 205-99-2             | 191-24-2             | 207-08-9             | 85-68-7              | 75-15-0            | 218-01-9      | 84-74-2             | 132-64-9        | 60-57-1            | 68334-30-5  | 33213-65-9         | 53494-70-5         | 206-44-0      | 86-73-7         | 76-44-8            | 193-39-5               | 72-43-5          | 91-20-3         | 85-01-8         | 129-00-0        | 5103-71-9          | 319-85-7           | 117-81-7                   | 319-86-8           | 58-89-9             | 5103-74-2          |

\* Same data will be used for the following exposure points: 1) subsurface soil at WP-14, and 2) ambient air above WP-14 (vapors and particulates). The subsurface soil data will be used to model ambient air exposure point concentrations. No additional screening of the modeled air concentrations will be performed.

## (1) Minimum/maximum detected concentration

(7) Risk-Based Concentration Table, U.S. EPA Region III. October 1999. (Cancer benchmark value = 1E-06, HQ = 0.1)

(8) Rationale for Contaminant Deletion or Selection:

<sup>(2)</sup> If minimum/maximum detected concentration comes from average of normal and field duplicate samples, then both qualifiers are presented. In such a case, the format is known qualifiers/efield duplicate qualifiers.

<sup>(3)</sup> Detection Frequency is defined as the number of samples that are detected and are not B-flagged over the total number of samples.

<sup>(4)</sup> Range of Detection Limits includes limits associated with any dilution factor. See the analytical results section for more details of detection limits and dilution factors, per sample.
(5) Maximum concentration is used for screening

<sup>(6)</sup> N/A - Refer to supporting information for background discussion. Background values, derived from statistical analysis, are upper tolerance limits (UTLs).

a. No measurable results on site.

b. Maximum detected result is less than the RBSL.

c. Maximur 3d result is less than the Essential Nutrient intake value.

d. Mean sit. Intration is not significantly greater than mean background concentration (alpha = 0.20) and maximum detected

| (8) | ationale for                 | Contaminant                                     | Deletion      | or Selection |
|-----|------------------------------|-------------------------------------------------|---------------|--------------|
|     | COPC                         | Flag                                            |               |              |
|     | Potential COPC Rationale for | ARAR/TBC ARAR/TBC Flag                          | Source        |              |
|     | Potential                    | ARAR/TBC                                        | Value         |              |
| (2) | Screening                    | Toxicity Value                                  |               |              |
| (9) | Background                   | Value                                           |               |              |
|     | Concentration (5) Background | Used for                                        | Screening     |              |
|     | Range of (4)                 | Detection                                       | Limits        |              |
|     | Detection (3)                | Frequency                                       |               |              |
|     | Location                     | of Maximum Frequency                            | Concentration |              |
|     | Units                        | •                                               |               |              |
|     | Maximum (2) Units            | Qualifier                                       |               |              |
| (1) | Minimum Minimum (2) Maximum  | Concentration Qualifier Concentration Qualifier |               |              |
|     | Minimum (2)                  | Qualifier                                       |               |              |
| (1) | · Minimum                    | Concentration                                   |               |              |
|     | Chemica!                     |                                                 |               |              |
|     | CAS                          | Number                                          |               |              |

Definitions: N/A = Not applicable

SQL = Sample Quantitation Limit

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered

MCL = Federal Maximum Contaminant Level

SMCL = Secondary Maximum Contaminant Level

J = Estimated Value

L = Biased Low

C = Carcinogenic

N = Non-Carcinogenic

#### Appendix A.3

RAGS Part D Table 3's Medium-Specific Exposure Point Concentration Summary

TABLE 3.1
MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY
WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future Medium: Surface Soil Exposure Medium: Surface Soil Exposure Point: Surface Soil at WP-14\*

| Chemical                 | Units          | Arithmetic | Arithmetic 95% UCL of Maximum | Maximum       | Maximum<br>Qualifier | EPC   | Res                        | Reasonable Maximum Exposure | m Exposure                 | ,                          | Central Tendency           | ency                       |
|--------------------------|----------------|------------|-------------------------------|---------------|----------------------|-------|----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Potential<br>Concern (a) |                |            | Data (b)                      | Concentration |                      |       | Medium<br>EPC<br>Value (c) | Medium<br>EPC<br>Statistic  | Medium<br>EPC<br>Rationale | Medium<br>EPC<br>Value (c) | Medium<br>EPC<br>Statistic | Medium<br>EPC<br>Rationale |
| INORGANICS               |                | 7          | 1 33 0 4 0 4                  | 1 635+04      |                      | ma/ka | 1.33E+04                   | 95% UCL-T                   | W-Test (1)                 | 1.03E+04                   | Mean-T                     | W-Test (1)                 |
| Aluminum                 | mg/kg<br>ma/ka | 1.57E+01   |                               | 3.17E+01      |                      | mg/kg | 2.61E+01                   | N-100 %56                   | W-Test (3)                 | 1.57E+01                   | Mean-N                     | W-Test (3)                 |
| Chromium (total)         | ma/ka          | 2.00E+01   |                               | 3.40E+01      |                      | mg/kg | 2.84E+01                   | 95% UCL-N                   | W-Test (3)                 | 2.00E+01                   | Mean-N                     | W-Test (3)                 |
| tron <sup>T</sup>        | mg/kg          | 1.78E+04   |                               | 3.34E+04      |                      | mg/kg | 2.88E+04                   | 95% UCL-N                   | W-Test (3)                 | 1.78E+04                   | Mean-N                     | W-Test (3)                 |
| Manganese                | mg/kg          | 1.83E+02   | 3.07E+02                      | 3.70E+02      |                      | mg/kg | 3.07E+02                   | 95% UCL-N                   | W-Test (3)                 | 1.83E+02                   | Mean-N                     | W-Test (3)                 |
| Vanadium <sup>r</sup>    | mg/kg          | 3.83E+01   | 5.54E+01                      | 5.83E+01      |                      | mg/kg | 5.54E+01                   | 95% UCL-N                   | W-Test (3)                 | 3.83E+01                   | Mean-N                     | W-Test (3)                 |
| ORGANICS                 |                |            |                               |               |                      |       |                            |                             | ,                          | 1                          | :                          |                            |
| Benz(a)pyrene            | mg/kg          | 4.78E-02   | 1.14E-01                      | 2.08E-01      |                      | mg/kg | 1.14E-01                   | 95% UCL-N                   | W-Test (4)                 | 4.78E-02                   | Mean-N                     | W-lest (4)                 |
| Dieldrin                 | mg/kg          | 2.17E-02   | 1.61E-01                      | 6.75E-02      |                      | mg/kg | 6.75E-02                   | Max                         | W-Test (2)                 | 2.14E-02                   | Mean-T                     | W-Test (1)                 |

\* Surface Soil EPCs will be used for the following exposure points for both current/future and future scenarios: 1) surface soil at WP-14, and 2) ambient air above WP-14 (vapors and particulates). Surface soil EPCs will be used to model ambient air route EPCs.

Statistics: Maximum Detected Value (Max); 95% UCL of Normal Data (95% UCL-N); 95% UCL of Log-transformed Data (95% UCL-T); Mean of Log-transformed Data (Mean-T); Mean of Normal Data (Mean-N).

T - Total data set only.

For non-detects, 1/2 sample-specific method detection limit was used as a proxy concentration; for duplicate sample results, the average value was used in the calculation.

W - Test: Developed by Shapiro and Wilk, refer to Supplemental Guidance to RAGS: Calculating the Concentration Term, OSWER Directive 9285.7-081, May 1992.

Options: Maximum Detected Value (Max); 95% UCL of Normal Data (95% UCL-N); 95% UCL of Log-transformed Data (95% UCL-T); Mean of Normal Data (Mean-N), Mean of Log-transformed Data (Mean-T).

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) 95% UCL exceeds maximum detected concentration. Therefore, maximum concentration used for EPC.

(3) Shapiro-Wilk W Test indicates data are normally distributed.

(4) Shapiro-Wilk W Test indicates data are neither log-normally distributed or normally distributed. Therefore, normal distribution equations used as default.

(a) All chemicals are in the site and total data sets unless otherwise footnoted with the letter "T".

(b) 95% UCL of Normal Data defined as the 95% UCL associated with the data's distribution. (c) See Statistics Section of the report for more information on the calculation of the 95% UCL and the mean.

TABLE 3.2
MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY
WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future Medium: Subsurface Soil Exposure Medium: Subsurface Soil Exposure Point: Subsurface Soil at WP-14\*

| Chemical                 | Units | Arithmetic<br>Mean | 95% UCL of<br>Normal | Maximum<br>Detected | Maximum<br>Qualifier | EPC<br>Units | Reason                     | Reasonable Maximum Exposure | xposure                    | )                          | Central Tendency           |                            |
|--------------------------|-------|--------------------|----------------------|---------------------|----------------------|--------------|----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Potential<br>Concern (a) |       |                    | Data (b)             | Concentration       |                      |              | Medium<br>EPC<br>Value (c) | Medium<br>EPC<br>Statistic  | Medium<br>EPC<br>Rationale | Medium<br>EPC<br>Value (c) | Medium<br>EPC<br>Statistic | Medium<br>EPC<br>Rationale |
| INORGANICS               |       |                    |                      |                     |                      |              |                            |                             |                            |                            |                            |                            |
| Aluminum '               | mg/kg | 1.33E+04           | 1.49E+04             | 2.09E+04            |                      | mg/kg        | 1.49E+04                   | 95% UCL-N                   | W-Test (3)                 | 1.33E+04                   | Mean-N                     | W-Test (3)                 |
| Arsenic                  | mg/kg | 3.20E+01           | 6.26E+01             | 1.12E+02            |                      | mg/kg        | 6.26E+01                   | 95% UCL-T                   | W-Test (1)                 | 3.22E+01                   | Mean-T                     | W-Test (1)                 |
| Chromium (total)         | mg/kg | 2.74E+01           | 3.22E+01             | 4.72E+01            |                      | mg/kg        | 3.22E+01                   | 95% UCL-N                   | W-Test (3)                 | 2.74E+01                   | Mean-N                     | W-Test (3)                 |
| Iron '                   | mg/kg | 2.67E+04           | 4.01E+04             | 7.68E+04            |                      | ·mg/kg       | 4.01E+04                   | 95% UCL-T                   | W-Test (1)                 | 2.67E+04                   | Mean-T                     | W-Test (1)                 |
| Manganese '              | mg/kg | 2.29E+02           | 3.02E+02             | 5.38E+02            |                      | mg/kg        | 3.02E+02                   | 95% UCL-N                   | W-Test (3)                 | 2.29E+02                   | Mean-N                     | W-Test (3)                 |
| Vanadium '               | mg/kg | 5.65E+01           | 6.73E+01             | 9.71E+01            |                      | mg/kg        | 6.73E+01                   | 95% UCL-N                   | W-Test (3)                 | 5.65E+01                   | Mean-N                     | W-Test (3)                 |
| ORGANICS                 |       |                    |                      |                     | -                    |              |                            |                             |                            |                            |                            |                            |
| Benz(a)pyrene            | mg/kg | 2.72E-02           | 4.38E-02             | 1.37E-01            |                      | mg/kg        | 4.38E-02                   | 95% UCL-N                   | W-Test (4)                 | 2.72E-02                   | Mean-N                     | W-Test (4)                 |
| Dieldrin                 | mg/kg | 2.48E-02           | 4.81E-02             | 2.15E-01            |                      | mg/kg        | 4.81E-02                   | 95% UCL-N                   | W-Test (4)                 | 2.48E-02                   | Mean-N                     | W-Test (4)                 |

\* Subsurface soil EPCs will be used for the following exposure points: 1) subsurface soil at WP-14, and 2) ambient air above WP-14 (vapors and particulates). Subsurface soil EPCs will be used to model ambient air route

Statistics: Maximum Detected Value (Max), 95% UCL of Normal Data (95% UCL-N); 95% UCL of Log-transformed Data (95% UCL-T); Mean of Log-transformed Data (Mean-T); Mean of Normal Data (Mean-N).

T - Total data set only.

For non-detects, 1/2 sample-specific method detection limit was used as a proxy concentration; for duplicate sample results, the average value was used in the calculation.

W - Test: Developed by Shapiro and Wilk, refer to Supplemental Guidance to RAGS: Calculating the Concentration Term, OSWER Directive 9285.7-081, May 1992.

Options: Maximum Detected Value (Max); 95% UCL of Normal Data (95% UCL-N); 95% UCL of Log-transformed Data (95% UCL-T); Mean of Normal Data (Mean-N); Mean of Log-transformed Data (Mean-T).

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) 95% UCL exceeds maximum detected concentration. Therefore, maximum concentration used for EPC.

(3) Shapiro-Wilk W Test indicates data are normally distributed.

(4) Shapiro-Wilk W Test indicates data are neither log-normally distributed or normally distributed. Therefore, normal distribution equations used as default.

(a) All chemicals are in the site and total data sets unless otherwise footnoted with the letter "T".

(b) 95% UCL of Normal Data defined as the 95% UCL associated with the data's distribution.

(c) See Statistics Section of the report for more information on the calculation of the 95% UCL and the mean.

#### Table 3.3

#### Data Used in Risk Re-Evaluation

#### **EXPOSURE POINT CONCENTRATION SUMMARY**

WP-14, Langley AFB, Virginia

Scenario Timeframe: Future

Medium: Soil\*

Exposure Medium: Soil

| Chemical of | Units  | Maximum<br>Detected | Maximum   |         | sonable Maximum Expo | sure      |
|-------------|--------|---------------------|-----------|---------|----------------------|-----------|
| Potential   | Offics | Concentration       | Qualifier | Medium  | Medium               | Medium    |
| Concern     |        |                     |           | EPC     | EPC                  | EPC       |
|             |        |                     |           | Value   | Statistic            | Rationale |
| Arsenic     | mg/kg  | 1.6E+02             |           | 2.7E+01 | 95%UCL-Axg           | (1)       |
| Manganese   | mg/kg  | 1.1E+03             |           | 4.2E+02 | 97.5%UCL-Ch          | (2)       |

<sup>\*</sup> Surface soil & subsurface soil combined.

Statistical analyses performed using the EPA Software ProUCL, version 3.0.

For duplicate sample results, the maximum value was used in the calculation.

#### (1) Arsenic Data

The Site Investigation, Remedial Investigation, and 2004 data were pooled for the statistical analysis.

For the 3 sampling events, 148 soil samples representing depths from 0 to 4 feet below ground surface were analyzed for arsenic.

Arsenic was detected in all samples. The maximum detection was observed in a sample from the Site Investigation.

Data follow gamma distribution; use approximate gamma UCL (95%UCL-Axg)

#### (2) Manganese Data

The Site Investigation, Remedial Investigation, and 2004 data were pooled for the statistical analysis.

For the 3 sampling events, 138 soil samples representing depths from 0 to 4 feet below ground surface were analyzed for manganese.

Manganese was detected in all samples. The maximum detection was observed in a sample collected in 2004.

Data were non-parametric, use 97.5% Chebyshev (97.5%UCL-Ch)

## Table 3.4 Data Used in Risk Re-Evaluation EXPOSURE POINT CONCENTRATION SUMMARY WP-14, Langley AFB, Virginia

Scenario Timeframe: Future

Medium: Soil\*

Exposure Medium: Air

| Chemical of | Units | Maximum<br>Estimated | Maximum   |         | able Maximum E | xposure   |
|-------------|-------|----------------------|-----------|---------|----------------|-----------|
| Potential   | Ullis | Concentration        | Qualifier | Medium  | Medium         | Medium    |
| Concern     |       |                      |           | EPC     | EPC            | EPC       |
|             |       |                      |           | Value   | Statistic      | Rationale |
| Manganese   | mg/m3 | 1.7E-05              |           | 6.3E-06 | 97.5%UCL-Ch    | (1)       |

Air EPC obtained by multipying manganese EPC for soil (Table 3.3) by 1/PEF. PEF calculated to be  $6.74 \times 10^7 \, \text{m}^3/\text{kg}$ .

(1) Soil data were non-parametric, use 97.5% Chebyshev (97.5%UCL-Ch)

#### Appendix A.4

RAGS Part D Table 4's Values Used for Daily Intake Calculations

TABLE 4.1

Daily Intake Equations for the Other Worker: Ingestion/Dermal Absorption of Soil

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

Exposure Point: Surface Soil at WP-14

Receptor Population: Other Worker

Receptor Age: Adult

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Point: Subsurface Soil at WP-14

Receptor Population: Other Worker

Receptor Age: Adult

| Intake Equation/<br>Mödel Name | CDI-S = CS x IR-S x EE x ED x CF5 x FL-S  BW x AT  CDI-S = CS x SA x ABS x AE x EE x ED x CF5  BW x AT                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| CT<br>Rationale/<br>Reference  | EPA, 1993  ED x 365 days/yr  ED x 365 bays/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>ED x 365 days/yr                               |
| CT<br>Value                    | 1 1 1 1 5 1 1 1 5 2 1 1 1 1 5 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,285                                               |
| RME<br>Rationale/<br>Reference | EPA, 1991 (1) (1) (1) (1) (1) (2) (1) (2) (3) (4) (1) (4) (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (3) (4) (1) (4) (1) (1) (1) (1) (2) (1) (1) (2) (1) (3) (4) (1) (4) (1) (4) (6) (1) (7) (1) (1) (8) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (1) (1) (1) (1) (1) (2) (1) (3) (4) (4) (4) (5) (6) (7) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9                                                                                | 70 x 365 days/yr<br>ED x 365 days/yr                |
| RME<br>Value                   | calculated csv 50 0.5 50 25 70 1.0E-06 25,550 9,125 calculated csv 2,000 50 25 70 0.2 csv 1.0E-06                                                                                                                                                                                                                                                                                                                                                                                               | 25,550                                              |
| Units                          | mg/kg-day mg/kgy unitless days/year years kg kg/mg days days mg/kg-day mg/kg-day mg/kg-day unitless kg                                                                                                                                                                                                                                                                                                                                                                                          | days<br>days                                        |
| Parameter Definition           | Chronic Daily Intake, Soil Chemical Concentration in Soil Ingestion Rate of Soil Fraction of Exposure, Soil Exposure Frequency Exposure Frequency Exposure Frequency Exposure Frequency Exposure Frequency Conversion Factor 5 Averaging Time (Non-Cancer) Averaging Time (Non-Cancer) Chronic Daily Intake, Soil Chemical Concentration in Soil Strin Surface Area Available for Contact Exposure Frequency Exposure Duration Body Weight Adherence Factor Absorption Factor Conversion Factor | Averaging Time (Cancer) Averaging Time (Non-Cancer) |
| Parameter<br>Code              | CDI-S CS CS CS EF EF ED AT-C AT-C CDI-S CS                                                                                                                                                                                                                                                                                                                                                                                                                  | AT-C<br>AT-N                                        |
| Exposure Route Parameter Code  | Dermal Absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |

(1) Professional Judgement (see Appendix F1)

csv = chemical-specific value

TABLE 4.2

Daily Intake Equations for the Other Worker. Inhalation of Vapors and Particulates from Soil

WP-14, Langley Air Force Base

| Scenario Timeframe: Current/Future                                | Scenario Timeframe: Current/Future                                |
|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Medium: Surface Soil                                              | Medium: Subsurface Soil                                           |
| Exposure Medium: Air                                              | Exposure Medium: Air                                              |
| Exposure Point: Ambient air above WP-14 (vapors and particulates) | Exposure Point: Ambient air above WP-14 (vapors and particulates) |
| Receptor Population: Other Worker                                 | Receptor Population: Other Worker                                 |
| Receptor Age: Adult                                               | Receptor Age: Adult                                               |
|                                                                   |                                                                   |

| Exposure Route Parameter | Parameter | Parameter Definition            | Units     | RME        | RME              | ե     | ხ                | Intake Equation/                               |
|--------------------------|-----------|---------------------------------|-----------|------------|------------------|-------|------------------|------------------------------------------------|
|                          | Code      |                                 |           | Value      | Rationale/       | Value | Rationale/       | Model Name                                     |
|                          |           |                                 |           |            | Reference        |       | Reference        |                                                |
| Inhalation               | CDIA      | CDI-A Chronic Daily Intake, Air | mg/kg-day | calculated | I                | ı     | ı                | CDI-A = (CS/(VF or PEF)) x IN-S x ET x EF x ED |
|                          | S         | Chemical Concentration in Soil  | mg/kg     | Ş          | 1                | 1     | ı                | BW×AT                                          |
|                          | S-N       | Inhalation Rate of Soil         | m³/hour   | 2.5        | EPA, 1991        | 1     | ı                |                                                |
|                          | Ħ         | Exposure Frequency              | days/year | જ          | (1)              | ı     | I                |                                                |
|                          | Ē         | Exposure Time                   | hr/day    | 80         | (1)              | 1     | 1                |                                                |
|                          | <u> </u>  | Exposure Duration               | years     | 25         | EPA, 1991        | 6     | EPA, 1993        |                                                |
|                          | BW        | Body Weight                     | kg        | 20         | EPA, 1991        | ı     | i                |                                                |
|                          | AT-C      | Averaging Time (Cancer)         | days      | 25,550     | 70 × 365 days/yr | 1     | ı                |                                                |
|                          | AT-N      | Averaging Time (Non-Cancer)     | days      | 9,125      | ED x 365 days/yr | 3,285 | ED x 365 days/yr |                                                |
|                          | ΥF        | Volatilization Factor           | m³/kg     | calculated | (2)              | 1     | ı                |                                                |
|                          | PEF       | Particulate Emission Factor     | m³/kg     | 1.0E+07    | see Appendix F1  | _     | 1                |                                                |

(1) Professional Judgement (see Appendix F1)

(2) VF is used in equation if the COPC is a VOC, otherwise the PEF is used. Calculated VFs are found in Appendix F3.

csv = chemical-specific value

TABLE 4.3

Daily Intake Equations for the Construction Worker: Ingestion/Dermal Absorption of Soil

WP-14, Langley Air Force Base

| Scenario Timeframe: Current/Future       |  |
|------------------------------------------|--|
| Medium: Surface Soil                     |  |
| Exposure Medium: Surface Soil            |  |
| Exposure Point: Surface Soil at WP-14    |  |
| Receptor Population: Construction Worker |  |
| Receptor Age: Adult                      |  |

Exposure Point: Subsurface Soil at WP-14 Receptor Population: Construction Worker cenario Timeframe: Current/Future Exposure Medium: Subsurface Soil Medium: Subsurface Soil Receptor Age: Adult

| Exposure Route   Parameter | Parameter | Parameter Definition                    | Units           | RME        | RME              | CT     | CT         | Intake Equation/                           |
|----------------------------|-----------|-----------------------------------------|-----------------|------------|------------------|--------|------------|--------------------------------------------|
|                            | Code      |                                         |                 | Value      | Rationale/       | Value  | Rationale/ | Model Name                                 |
|                            |           |                                         |                 |            | Reference        |        | Reference  |                                            |
| Ingestion                  | S-IGO     | Chronic Daily Intake, Soil              | mg/kg-day       | calculated | :                | ·      | ·          | CDI-S = CS x IR-S x EE x ED x CF5 x FL-S   |
|                            | SS        | Chemical Concentration in Soil          | mg/kg           | \csv       | ;                | 1      | ;          | BW×AT                                      |
|                            | IR-S      | Ingestion Rate of Soil                  | mg/day          | 158        | 3                | ;      | ı          |                                            |
|                            | FI-S      | Fraction of Exposure, Soil              | unitless        | 0.5        | (£)              | 1      |            |                                            |
|                            | EF        | Exposure Frequency                      | days/year       | 250        | EPA, 1991        | -<br>I | ı          |                                            |
|                            | ED        | Exposure Duration                       | years           | -          | (£)              | 1      | ı          |                                            |
|                            | ВW        | Body Weight                             | kg              | 02         | EPA, 1991        | :      | 1          |                                            |
|                            | CF5       | Conversion Factor 5                     | кд/тд           | 1.0E-06    | :                | ı      | 1          |                                            |
|                            | AT-C      | Averaging Time (Cancer)                 | days            | 25,550     | 70 x 365 days/yr | :      | ı          |                                            |
|                            | AT-N      | Averaging Time (Non-Cancer)             | days            | 365        | ED x 365 days/yr |        | 1          |                                            |
| Dermal                     | S-IQO     | Chronic Daily Intake, Soil              | mg/kg-day       | calculated | :                | 1      | ı          | CDI-S = CS x SA x ABS x AF x EF x ED x CF5 |
| Absorption                 | cs        | Chemical Concentration in Soil          | mg/kg           | CSV        | ı                | ;      | 1          | BW×AT                                      |
|                            | SA        | Skin Surface Area Available for Contact | cm <sup>2</sup> | 2,000      | EPA, 1992        | 1      | 1          |                                            |
|                            | EF        | Exposure Frequency                      | days/year       | 250        | EPA, 1991        | ı      | 1          |                                            |
|                            | Э         | Exposure Duration                       | years           | -          | ;                | 1      | 1          |                                            |
|                            | ВW        | Body Weight                             | k               | 70         | EPA, 1991        | 1      | :          |                                            |
|                            | AF        | Adherence Factor                        | mg/cm²-day      | 0.2        | EPA, 1992        | ł      | ı          |                                            |
|                            | ABS       | Absorption Factor                       | unitless        | CSV        | ;                | 1      | ı          |                                            |
|                            | CF5       | Conversion Factor 5                     | kg/mg           | 1.0E-06    | i                | ;      | 1          |                                            |
|                            | AT-C      | Averaging Time (Cancer)                 | days            | 25,550     | 70 x 365 days/yr | ;      | ;          |                                            |
|                            | AT-N      | Averaging Time (Non-Cancer)             | days            | 365        | ED x 365 days/yr | ••     | :          |                                            |

(1) Professional Judgement (see Appendix F1) csv = chemical-specific value

TABLE 4.4 Daily Intake Equations for the Construction Worker: Inhalation of Vapors and Particulates from Soil

WP-14, Langley Air Force Base

| Scenario Timeframe: Current/Future | Medium: Subsurface Soil | Exposure Medium: Air | Exposure Point: Ambient air above WP-14 (vapors and particulates) | Receptor Population: Construction Worker | Receptor Age: Adult |
|------------------------------------|-------------------------|----------------------|-------------------------------------------------------------------|------------------------------------------|---------------------|
| Scenario Timeframe: Current/Future | Medium: Surface Soil    | Exposure Medium: Air | Exposure Point: Ambient air above WP-14 (vapors and particulates) | Receptor Population: Construction Worker | Receptor Age: Adult |

| Darameter Darameter | Darameter | Parameter Definition            | Units     | RME        | RME              | C     | CT         | Intake Equation/                               |
|---------------------|-----------|---------------------------------|-----------|------------|------------------|-------|------------|------------------------------------------------|
| Exposure rooms      | apoli de  |                                 |           | Vatue      | Rationale/       | Value | Rationale/ | Model Name                                     |
|                     | 3         |                                 |           |            | Reference        |       | Reference  |                                                |
| Inhalation          | CDI-A     | CDI-A Chronic Daily Intake, Air | mg/kg-day | calculated | 1                |       | -          | CDI-A = (CS/(VF.or PEF)) x IN-S x ET x EF x ED |
|                     | SS        | Chemical Concentration in Soil  | mg/kg     | csv        | 1                | ı     | 1          | BW×AT                                          |
|                     | S-NI      | Inhalation Rate of Soil         | m³/hour   | 2.5        | EPA, 1991        | ı     | ŀ          |                                                |
|                     | ш         | Exposure Frequency              | days/year | 250        | EPA, 1991        | I     | I          |                                                |
|                     | Ē         | Exposure Time                   | hr/day    | 80         | £)               | 1     | 1          |                                                |
| . =                 | 8         | Exposure Duration               | years     | -          | Ē                | ı     | 1          |                                                |
|                     | BW        | Body Weight                     | ķ         | 20         | EPA, 1991        | ı     | 1          |                                                |
|                     | AT-C      | Averaging Time (Cancer)         | sáep      | 25,550     | 70 x 365 days/yr | ı     | 1          |                                                |
|                     | AT-N      | Averaging Time (Non-Cancer)     | days      | 365        | ED x 365 days/yr | 1     | 1          |                                                |
|                     | VF        | Volatilization Factor           | m³/kg     | calculated | (2)              | i     | ı          |                                                |
|                     | PEF       | Particulate Emission Factor     | m³/kg     | 1.7E+06    | see Appendix F1  | -     |            |                                                |
|                     |           |                                 |           |            |                  |       |            |                                                |

(1) Professional Judgement (see Appendix F1)

(2) VF is used in equation if the COPC is a VOC, otherwise the PEF is used. Calculated VFs are found in Appendix F3.

csv = chemical-specific value

TABLE 4.5

Daily Intake Equations for the Industrial Worker: Ingestion/Dermal Absorption of Soil

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future
Medium: Surface Soil
Exposure Medium: Surface Soil
Exposure Point: Surface Soil at WP-14
Receptor Population: Industrial Worker
Receptor Age: Adult

Scenario Timeframe: Current/Future
Medium: Subsurface Soil
Exposure Medium: Subsurface Soil
Exposure Point: Subsurface Soil at WP-14
Receptor Population: Industrial Worker
Receptor Age: Adult

| o constant     | Dometer | Parameter Definition                    | Units           | RME        | RME              | 5     | CT         | Intake Equation/                           |
|----------------|---------|-----------------------------------------|-----------------|------------|------------------|-------|------------|--------------------------------------------|
| Exposure Route | Code    |                                         |                 | Value      | Rationale/       | Value | Rationale/ | Model Name                                 |
|                |         |                                         | ,               |            | Reference        |       | Reference  |                                            |
| Ingestion      | s-iao   | Chronic Daily Intake, Soil              | mg/kg-day       | calculated | 1                | 1     | l          | CDI-S = CS x IR-S x EF x ED x CF5 x FI-S   |
| 1              | S       | Chemical Concentration in Soil          | mg/kg           | SSV        | 1                | ı     | 1          | BW×AT                                      |
|                | R-S     | Ingestion Rate of Soil                  | mg/day          | 100        | EPA, 1997        | :     | 1          |                                            |
|                | FF.S    | Fraction of Exposure, Soil              | unitless        | 9.0        | (3)              | i     | ı          |                                            |
|                | Ħ       | Exposure Frequency                      | days/year       | 70         | £                | ı     | i          |                                            |
|                | 9       | Exposure Duration                       | years           | -          | 3                | 1     | ;          | ,                                          |
|                | BW      | Body Weight                             | ę,              | . 02       | EPA, 1991        | 1     | l          |                                            |
|                | CFS     | Conversion Factor 5                     | kg/mg           | 1.0E-06    | ı                | 1     | l          |                                            |
|                | AT-C    | Averaging Time (Cancer)                 | days            | 25,550     | 70 x 365 days/yr | 1     | 1          |                                            |
|                | AT-N    | Averaging Time (Non-Cancer)             | days            | 365        | ED x 365 days/yr | 1     | 1          |                                            |
| Dermal         | S-IQO   | Chronic Daily Intake, Soil              | mg/kg-day       | calculated | ı                | 1     | 1          | CDI-S = CS x SA x ABS x AF x EF x ED x CF5 |
| Absorption     | క       | Chemical Concentration in Soil          | mg/kg           | csv        | 1                | I     | ı          | BW×AT                                      |
|                | S,      | Skin Surface Area Available for Contact | cm <sub>2</sub> | 2,000      | EPA, 1992        | 1     | ı          |                                            |
|                | Ш       | Exposure Frequency                      | days/year       | 20         | £                | ı     | 1          |                                            |
|                | ED      | Exposure Duration                       | years           | -          | 3                | 1     | ;          |                                            |
|                | BW      | Body Weight                             | kg              | 02         | EPA, 1991        | ı     | 1          |                                            |
|                | AF      | Adherence Factor                        | mg/cm²-day      | 0.2        | EPA, 1992        | 1     | ı          |                                            |
|                | ABS     | Absorption Factor                       | unitless        | csv        | ;                | :     | ı          |                                            |
|                | CF5     | Conversion Factor 5                     | kg/mg           | 1.0E-06    | :                | 1     | 1          |                                            |
|                | AT-C    | Averaging Time (Cancer)                 | days            | 25,550     | 70 x 365 days/yr | ı     | ı          |                                            |
|                | AT-N    | Averaging Time (Non-Cancer)             | days            | 365        | ED x 365 days/yr | 1     | 1          |                                            |

(1) Professional Judgement (see Appendix F1)

csv ≈ chemical-specific value

TABLE 4.6

# Daily Intake Equations for the Industrial Worker: Inhalation of Vapors and Particulates from Soil

WP-14, Langley Air Force Base

| Scenario Timeframe: Current/Future                                | Scenario Timeframe: Current/Future                                |
|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Medium: Surface Soil                                              | Medium: Subsurface Soil                                           |
| Exposure Medium: Air                                              | Exposure Medium: Air                                              |
| Exposure Point: Ambient air above WP-14 (vapors and particulates) | Exposure Point: Ambient air above WP-14 (vapors and particulates) |
| Recentor Population: Industrial Worker                            | Receptor Population: Industrial Worker                            |
| Departer Are: Adult                                               | Receptor Age: Adult                                               |
| Secretary Sec.                                                    |                                                                   |

| Evanceure Route | Parameter | Parameter Definition             | Units     | RME        | RME              | t     | ರ          | Intake Equation/                               |
|-----------------|-----------|----------------------------------|-----------|------------|------------------|-------|------------|------------------------------------------------|
| ansody.         | Code      |                                  |           | Value      | Rationale/       | Value | Rationale/ | Model Name                                     |
|                 |           |                                  |           |            | Reference        |       | Reference  |                                                |
| Inhalation      | S-IQD     | CDI-S Chronic Daily Intake, Soil | mg/kg-day | calculated |                  | ;     | ;          | CDI-S = (CS/(VF or PEF)) x IN-S x ET x EF x ED |
|                 | SS        | Chemical Concentration in Soil   | mg/kg     | SS         | 1                | ,     | i          | BW×AT                                          |
|                 | S-N       | Inhalation Rate of Soil          | m³/hour   | 2.5        | EPA, 1991        | ;     | 1          |                                                |
|                 | ш         | Exposure Frequency               | days/year | 20         | (1)              | :     | ı          |                                                |
|                 | ᆸ         | Exposure Time                    | hr/day    | 80         | (1)              | ;     | 1          |                                                |
|                 | 8         | Exposure Duration                | years     | -          | (3)              | ı     | ;          |                                                |
|                 | BW        | Body Weight                      | ķ         | 20         | EPA, 1991        | ı     | 1          |                                                |
|                 | AT-C      | Averaging Time (Cancer)          | days      | 25,550     | 70 x 365 days/yr | 1     | ı          |                                                |
|                 | N-TA      | Averaging Time (Non-Cancer)      | days      | 365        | ED x 365 days/yr | 1     | 1          |                                                |
|                 | ۸         | Volatilization Factor            | m³/kg     | calculated | (2)              | ı     | ı          |                                                |
|                 | PEF       | Particulate Emission Factor      | m³/kg     | 1.7E+06    | see Appendix F1  | ı     | 1          |                                                |

(1) Professional Judgement (see Appendix F1)

<sup>(2)</sup> VF is used in the equation if COPC is a VOC, otherwise the PEF is used. Calculated VFs are found in Appendix F3. csv = chemical-specific value

TABLE 4.7

Daily Intake Equations for the Trespasser/Visitor: Ingestion/Dermal Absorption of Surface Soil

WP-14, Langley Air Force Base

Receptor Population: Trespasser/Visitor Exposure Point: Surface Soil at WP-14 Scenario Timeframe: Current/Future Exposure Medium: Surface Soil Medium: Surface Soil Receptor Age: Child

| Intake Equation/<br>Model Name | CDI-S = CS x IR-S x EF x ED x CF5 x FI-S | BW×AT                          |                        |                            |                    |                   |             |                     |                         |                             | CDI-S = CS x SA x ABS x AF x EF x ED x CF5 | BW×AT                          |                                         |                    |                   |             |                  |                   |                     |                         |                             |
|--------------------------------|------------------------------------------|--------------------------------|------------------------|----------------------------|--------------------|-------------------|-------------|---------------------|-------------------------|-----------------------------|--------------------------------------------|--------------------------------|-----------------------------------------|--------------------|-------------------|-------------|------------------|-------------------|---------------------|-------------------------|-----------------------------|
| CT<br>Rationale/<br>Reference  | -                                        | ;                              | EPA, 1990              | ı                          | 1                  | EPA, 1993         | 1           | ;                   | ;                       | ED x 365 days/yr            | 1                                          | ;                              | i                                       | ;                  | EPA, 1993         | 1           | :                | :                 | ;                   | :                       | ED x 365 days/yr            |
| CT<br>Value                    | ı                                        | :                              | 50                     | :                          | ;                  | თ                 | ı           | :                   | :                       | 3,285                       | ı                                          | :                              | ;                                       | 1                  | თ                 | :           | :                | :                 | t                   | ŀ                       | 3,285                       |
| RME<br>Rationale/<br>Reference | ı                                        | :                              | EPA, 1991              | ε                          | EPA, 1993          | (Ξ)               | EPA, 1990   | 1                   | 70 x 365 days/yr        | ED x 365 days/yr            | ı                                          | ;                              | EPA, 1992                               | EPA, 1993          | ε                 | EPA, 1990   | EPA, 1992        | ;                 | :                   | 70 x 365 days/yr        | ED x 365 days/yr            |
| RME<br>Value                   | calculated                               | CSV                            | 100                    | 0.17                       | 90                 | 12                | 43          | 1.0E-06             | 25,550                  | 4,380                       | catculated                                 | \S0                            | 3,275                                   | 50                 | 12                | 43          | 0.2              | csv               | 1.0E-06             | 25,550                  | 4,380                       |
| Units                          | mg/kg-day                                | mg/kg                          | mg/day                 | unitless                   | days/year          | years             | ķ           | кв/тв               | days                    | days                        | mg/kg-day                                  | mg/kg                          | cm <sup>2</sup>                         | days/year          | years             | kg          | mg/cm²-day       | unitess           | kg/mg               | days                    | days                        |
| Parameter Definition           | Chronic Daily Intake, Soil               | Chemical Concentration in Soil | Ingestion Rate of Soil | Fraction of Exposure, Soil | Exposure Frequency | Exposure Duration | Body Weight | Conversion Factor 5 | Averaging Time (Cancer) | Averaging Time (Non-Cancer) | Chronic Daily Intake, Soil                 | Chemical Concentration in Soil | Skin Surface Area Available for Contact | Exposure Frequency | Exposure Duration | Body Weight | Adherence Factor | Absorption Factor | Conversion Factor 5 | Averaging Time (Cancer) | Averaging Time (Non-Cancer) |
| Parameter<br>Code              | S-IOO                                    | S                              | R-S                    | FI-S                       | 표                  | <u> </u>          | BW<br>BW    | CFS                 | AT-C                    | AT-N                        | S-100                                      | S                              | SA                                      | 7                  | ED                | BW          | AF /             | ABS /             | CF5 (               | AT-C                    | AT-N                        |
| Exposure Route                 | Ingestion                                |                                |                        |                            |                    |                   |             |                     |                         |                             | Dermal                                     | Absorption                     |                                         |                    |                   |             |                  |                   |                     |                         |                             |

(1) Professional Judgement (see Appendix F1) csv = chemical-specific value

TABLE 4.8

Daily Intake Equations for the Trespasser/Visitor: Inhalation of Vapors and Particulates from Surface Soil

WP-14, Langley Air Force Base

| Scenario Timeframe: Current/Future                                |
|-------------------------------------------------------------------|
| Medium: Surface Soil                                              |
| Exposure Medium: Air                                              |
| Exposure Point: Ambient air above WP-14 (vapors and particulates) |
| Receptor Population: Trespasser/Visitor                           |
| Receptor Age: Child                                               |

|                            |           |                                   |           |            |                  |       |                  | :                                              |
|----------------------------|-----------|-----------------------------------|-----------|------------|------------------|-------|------------------|------------------------------------------------|
| Exposure Boute   Parameter | Parameter | Parameter Definition              | Units     | RME        | RME              | 5     | ا<br>ا           | Intake Equation/                               |
|                            | - Pool    |                                   |           | Value      | Rationale/       | Vafue | Rationale/       | Model Name                                     |
|                            | 3         |                                   |           |            | Reference        |       | Reference        |                                                |
| Inhalation                 | CDI-A     | CDI-A Chronic Daily Intake, Air   | mg/kg-day | calculated | 1                |       |                  | CDI-A = (CS/(VF or PEF)) x IN-S x ET x EF x ED |
|                            | SS        | CS Chemical Concentration in Soil | mg/kg     | \so        | ı                | 1     | ì                | BW×AT                                          |
|                            | S-N       | Inhalation Rate of Soil           | m³/hour   | ო          | EPA, 1990        | 2.1   | EPA, 1990        |                                                |
|                            | Ħ         | Exposure Frequency                | days/year | 20         | £                | 1     | I                |                                                |
|                            | Ы         | Exposure Time                     | hr/day    | 4          | (3)              | ţ     | I                |                                                |
|                            | <u> </u>  | Exposure Duration                 | years     | 12         | (1)              | Ø     | EPA, 1993        |                                                |
|                            | BW        | Body Weight                       | ķ         | 43         | EPA, 1990        | 1     | I                |                                                |
|                            | AT-C      | AT-C Averaging Time (Cancer)      | days      | 25,550     | 70 x 365 days/yr | I     |                  |                                                |
|                            | AT-N      | AT-N Averaging Time (Non-Cancer)  | days      | 4,380      | ED x 365 days/yr | 3,285 | ED x 365 days/yr |                                                |
|                            | VF        | VF Volatilization Factor          | m³/kg     | calculated | (2)              | i     | ı                |                                                |
|                            | PEF       | Particulate Emission Factor       | m³/kg     | 1.0E+07    | see Appendix F1  | -     | -                |                                                |

Professional Judgement (see Appendix F1)
 Ye is used in equation if the COPC is a VOC, otherwise the PEF is used. Calculated VFs are found in Appendix F3.

csv = chemical-specific value

TABLE 4.9

Daily Intake Equations for the Resident (Child): Ingestion/Dermal Absorption of Soil

WP-14, Langley Air Force Base

| Scenario Timeframe: Future            | Scenari |
|---------------------------------------|---------|
| Medium: Surface Soil                  | Medium  |
| Exposure Medium: Surface Soil         | Exposi  |
| Exposure Point: Surface Soil at WP-14 | Exposu  |
| Receptor Population: Resident         | Recept  |
| Receptor Age: Child (2)               | Recept  |
|                                       |         |

| Scenario Timeframe: Future               |
|------------------------------------------|
| Medium: Subsurface Soil                  |
| Exposure Medium: Subsurface Soil         |
| Exposure Point: Subsurface Soil at WP-14 |
| Receptor Population: Resident            |
| Receptor Age: Child (2)                  |

| Exposure Route | Parameter<br>Code | Parameter Definition                    | Units      | RME<br>Value | RME<br>Rationale/<br>Reference | CT<br>Value | CT<br>Rationale/<br>Reference | Intake Equation/<br>Model Name             |
|----------------|-------------------|-----------------------------------------|------------|--------------|--------------------------------|-------------|-------------------------------|--------------------------------------------|
| Ingestion      | S-IQO             | Chronic Daily Intake, Soil              | mg/kg-day  | calculated   | 1                              | ı           | I                             | CDI-S = CS x IR-S x EF x ED x CF5 x FI-S   |
|                | SS                | Chemical Concentration in Soil          | mg/kg      | SS           | 1                              | t.          | ı                             | BW×AT                                      |
|                | IR-S              | Ingestion Rate of Soil                  | mg/day     | 200          | EPA, 1997                      | 100         | EPA, 1997                     |                                            |
|                | FI-S              | Fraction of Exposure, Soil              | unitless   | 0.5          | ε                              | 1           | ı                             |                                            |
|                | Ħ                 | Exposure Frequency                      | days/year  | 350          | EPA, 1991                      | 234         | EPA, 1994                     |                                            |
|                | <b>a</b>          | Exposure Duration                       | years      | 9            | EPA, 1997                      | 1.8         | EPA, 1993                     |                                            |
|                | BW                | Body Weight                             | Ð          | 15           | EPA, 1997                      | ı           | 1                             |                                            |
|                | CF5               | Conversion Factor 5                     | kg/mg      | 1.0E-06      | ,                              | :           | 1                             |                                            |
|                | AT-C              | Averaging Time (Cancer)                 | days       | 25,550       | 70 x 365 days/yr               | :           | ı                             |                                            |
|                | AT-N              | Averaging Time (Non-Cancer)             | days       | 2,190        | ED x 365 days/yr               | 657         | ED x 365 days/yr              |                                            |
| Dermal         | S-IQO             | Chronic Daily Intake, Soil              | mg/kg-day  | calculated   | ı                              | :           | ·                             | CDI-S = CS x SA x ABS x AF x EF x ED x CF5 |
| Absorption     | SS                | Chemical Concentration in Soil          | mg/kg      | SS           | ı                              | 1           | 1                             | BW×AT                                      |
|                | SA                | Skin Surface Area Available for Contact | 7E         | 1,825        | EPA, 1992                      | :           | ı                             |                                            |
|                | H                 | Exposure Frequency                      | days/year  | 350          | EPA, 1991                      | 234         | EPA, 1994                     |                                            |
|                | Œ                 | Exposure Duration                       | years      | ဖ            | EPA, 1997                      | 1.8         | EPA, 1993                     |                                            |
|                | BW                | Body Weight                             | \$         | 15           | EPA, 1997                      | ı           | 1                             |                                            |
|                | AF                | Adherence Factor                        | mg/cm²-day | 0.2          | EPA, 1992                      | ı           | 1                             |                                            |
|                | ABS               | Absorption Factor                       | unitless   | csv          | ı                              | 1           | ł                             |                                            |
|                | CF5               | Conversion Factor 5                     | kg/mg      | 1.0E-06      | ı                              | :           | ı                             |                                            |
|                | AT-C              | Averaging Time (Cancer)                 | days       | 25,550       | 70 x 365 days/yr               | ŀ           | ı                             | -                                          |
|                | AT-N              | Averaging Time (Non-Cancer)             | days       | 2,190        | ED x 365 days/yr               | 657         | ED x 365 days/yr              |                                            |

(1) Professional Judgement (see Appendix F1)

<sup>(2)</sup> Combined child/adult cancer risk for these routes will be addressed by adding cancer risk of the child and adult together. csv = chemical-specific value

TABLE 4.10

Daily Intake Equations for the Resident (Adult): Ingestion/Dermal Absorption of Soil

WP-14, Langley Air Force Base

Exposure Point: Surface Soil at WP-14 Exposure Medium: Surface Soil Receptor Population: Resident Receptor Age: Adult (2) Scenario Timeframe: Future Medium: Surface Soil

Exposure Point: Subsurface Soil at WP-14 Exposure Medium: Subsurface Soil Receptor Population: Resident Scenario Timeframe: Future Aedium: Subsurface Soil Receptor Age: Adult (2)

| Exposure Route | Parameter | Parameter Definition                    | Units           | RME        | RME                     | ե     | 5                       | Intake Equation/                         |
|----------------|-----------|-----------------------------------------|-----------------|------------|-------------------------|-------|-------------------------|------------------------------------------|
|                |           |                                         |                 | Value      | Rationale/<br>Reference | Value | Rationale/<br>Reference | Model Name                               |
| Ingestion      | S-IQD     | Chronic Daily Intake, Soil              | mg/kg-day       | calculated |                         | 1     | -                       | CDI-S = CS x IR-S x EF x ED x CF5 x FI-S |
|                | S         | Chemical Concentration in Soil          | mg/kg           | SS         | ı                       | 1     | 1                       | BW×AT                                    |
|                | IR-S      | Ingestion Rate of Soil                  | mg/day          | 5          | EPA, 1997               | 20    | EPA, 1997               |                                          |
|                | FI-S      | Fraction of Exposure, Soil              | unitless        | 9.5        | Ð                       | t     | ı                       |                                          |
|                | Ш         | Exposure Frequency                      | days/year       | 320        | EPA, 1991               | 234   | EPA, 1994               |                                          |
|                |           | Exposure Duration                       | years           | 24         | EPA, 1991               | တ     | EPA, 1994               |                                          |
|                | ВW        | Body Weight                             | kg              | 2          | EPA, 1991               | 1     | 1                       |                                          |
|                | CF5       | Conversion Factor 5                     | kg/mg           | 1.0E-06    | 1                       | 1     | ı                       |                                          |
|                | AT-C      | Averaging Time (Cancer)                 | days            | 25,550     | 70 x 365 days/yr        | 1     | 1                       |                                          |
|                | AT-N      | Averaging Time (Non-Cancer)             | days            | 8,760      | ED x 365 days/yr        | 3285  | ED x 365 days/yr        |                                          |
| Demal          | S-IQ2     | Chronic Daily Intake, Soil              | mg/kg-day       | calculated | :                       | :     | ı                       | CDI-S = CSxSAxABSxAFxEFxEDxCF5           |
| Absorption     | S         | Chemical Concentration in Soil          | mg/kg           | SS         | 1                       | •     | ı                       | BW×AT                                    |
|                | Ϋ́        | Skin Surface Area Available for Contact | cm <sup>2</sup> | 2,000      | EPA, 1992               | 1     | 1                       |                                          |
| · · ·          | ᇤ         | Exposure Frequency                      | days/year       | 320        | EPA, 1991               | 234   | EPA, 1994               |                                          |
|                | Ш         | Exposure Duration                       | years           | 24         | EPA, 1991               | თ     | EPA, 1994               |                                          |
| ·              | 8W        | Body Weight                             | Ą               | 2          | EPA, 1991               | :     | ł                       |                                          |
|                | AF        | Adherence Factor                        | mg/cm²-day      | 0.2        | EPA, 1992               | 1     | ı                       |                                          |
|                | ABS       | Absorption Factor                       | unitless        | SS         | ı                       | ı     | ı                       |                                          |
|                | CF5       | Conversion Factor 5                     | kg/mg           | 1.0E-06    | ı                       | i     | ı                       |                                          |
|                | AT-C      | Averaging Time (Cancer)                 | days            | 25,550     | 70 x 365 days/yr        | 1     | 1                       |                                          |
|                | AT-N      | Averaging Time (Non-Cancer)             | days            | 8,760      | ED x 365 days/yr        | 3,285 | ED x 365 days/yr        |                                          |

(1) Professional Judgement (see Appendix F1)

(2) Combined child/adult cancer risk for these routes will be addressed by adding cancer risk of the child and adult together. csy = chemical-specific value

### Table 4.11

### VALUES USED FOR DAILY INTAKE CALCULATIONS, RISK RE-EVALUATION

WP-14, Langley AFB, Virginia

Scenario Timeframe: Future

Medium: Soil\*

Exposure Medium: Soil
Exposure Point: Soil at WP-14
Receptor Population: Resident

Receptor Age: Child

|            | Parameter |                                         |                         |          | Rationale/ | Intake Equation/                         |
|------------|-----------|-----------------------------------------|-------------------------|----------|------------|------------------------------------------|
|            | Code      | Parameter Definition                    | Units                   | Value    | Reference  | Model Name                               |
| Ingestion  | CS        | Arsenic Concentration in Soil           | mg/kg                   | 26.9     | Table 3.3  | Chronic Daily Intake (CDI) (mg/kg-day) = |
|            | IR-S      | Ingestion Rate of Soil                  | mg/day                  | 200      | EPA, 2002  | CS x IR-S x EF x ED x CF x 1/BW x 1/AT   |
|            | EF        | Exposure Frequency                      | days/year               | 350      | EPA, 1991  |                                          |
|            | ED        | Exposure Duration                       | years                   | 6        | EPA, 1991  |                                          |
|            | CF        | Conversion Factor                       | kg/mg                   | 0.000001 |            |                                          |
|            | BW        | Body Weight                             | kg                      | 15       | EPA, 1991  |                                          |
|            | AT-N      | Averaging Time (Non-Cancer)             | days                    | 2,190    | EPA, 1989  |                                          |
| Dermal     | CS        | Arsenic Concentration in Soil           | mg/kg                   | 26.9     | Table 3.3  |                                          |
| Absorption |           |                                         |                         |          |            | CDI (mg/kg-day) =                        |
|            | SA        | Skin Surface Area Available for Contact | cm <sup>2</sup>         | 2,800    | EPA, 2004  | CS x SA x SSAF x DABS x CF x EF x        |
|            | SSAF      | Soil to Skin Adherence Factor           | mg/cm <sup>2</sup> -day | 0.2      | EPA, 2004  | ED x 1/BW x 1/AT                         |
|            | DABS      | Arsenic Dermal Absorption Factor Solids |                         | 0.032    | EPA, 2004  |                                          |
|            | CF        | Conversion Factor                       | kg/mg                   | 0.000001 |            |                                          |
|            | EF        | Exposure Frequency                      | days/year               | 350      | EPA, 1991  |                                          |
|            | ED        | Exposure Duration                       | years                   | 6        | EPA, 1991  |                                          |
|            | BW        | Body Weight                             | kg                      | 15       | EPA, 1991  |                                          |
|            | AT-N      | Averaging Time (Non-Cancer)             | days                    | 2,190    | EPA, 1989  |                                          |

### Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA, 2004. Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. OSWER 9285.7-02EP.

Page 1 of 1 7/24/2008

## ${\it Table~4.12}$ VALUES USED FOR DAILY INTAKE CALCULATIONS, RISK RE-EVALUATION ${\it WP-14, Langley~AFB, Virginia}$

Scenario Timeframe: Future

Medium: Soil\*

Exposure Medium: Soil

Exposure Point: Soil at WP-14

Receptor Population: Resident

Receptor Age: Child/Adult, Age-adjusted, non-mutagenic chemicals

| Exposure  | Parameter |                                                |                         | ļ        | Rationale/ | Intake Equation/                                |
|-----------|-----------|------------------------------------------------|-------------------------|----------|------------|-------------------------------------------------|
| Routes    | Code      | Parameter Definition                           | Units                   | Value    | Reference  | Model Name                                      |
| Ingestion | CS        | Arsenic Concentration in Soil                  | mg/kg                   | 26.9     | Table 3.3  | Chronic Daily Intake (CDI) (mg/kg-day) =        |
|           | IR-S-A    | Ingestion Rate of Soil, Adult                  | mg/day                  | 100      | EPA, 1991  | CS x IR-S-Adj x EF x CF x 1/AT                  |
|           | IR-S-C    | Ingestion Rate of Soil, Child                  | mg/day                  | 200      | EPA, 2002  |                                                 |
|           | IR-S-Adj  | Ingestion Rate of Soil, Age-adjusted           | mg-year/kg-day          | 114.29   | calculated | IR-S-Adj (mg-year/kg-day) =                     |
|           | EF        | Exposure Frequency                             | days/year               | 350      | EPA, 1991  | (ED-C x IR-S-C / BW-C) + (ED-A x IR-S-A / BW-A) |
|           | ED-A      | Exposure Duration, Adult                       | years                   | 24       | EPA, 1991  |                                                 |
|           | ED-C      | Exposure Duration, Child                       | years                   | 6        | EPA, 1991  |                                                 |
|           | CF        | Conversion Factor                              | kg/mg                   | 0.000001 |            |                                                 |
|           | BW-A      | Body Weight, Adult                             | kg                      | 70       | EPA, 1991  |                                                 |
|           | BW-C      | Body Weight, Child                             | kg                      | 15       | EPA, 1991  |                                                 |
|           | AT        | Averaging Time (Cancer)                        | days                    | 25,550   | EPA, 1989  |                                                 |
| Dermal    | CS        | Arsenic Concentration in Soil                  | mg/kg                   | 26.9     | Table 3.3  | CDI (mg/kg-day) =                               |
|           | SA-A      | Skin Surface Area Available for Contact, Adult | cm <sup>2</sup>         | 5,700    | EPA, 2004  | CS x DA-Adj x DABS x CF x EF x 1/AT             |
|           | SA-C      | Skin Surface Area Available for Contact, Child | cm <sup>2</sup>         | 2,800    | EPA, 2004  |                                                 |
|           | SSAF-A    | Soil to Skin Adherence Factor                  | mg/cm <sup>2</sup> -day | 0.07     | EPA, 2004  | DA-Adj (mg-year/kg-day) =                       |
|           | SSAF-C    | Soil to Skin Adherence Factor                  | mg/cm <sup>2</sup> -day | 0.2      | EPA, 2004  | [(ED-C x SA-C x SSAF-C / BW-C) +                |
|           | DA-Adj    | Dermal Absorption, Age-adjusted                | mg-year/kg-day          | 360.8    | calculated | (ED-A x SA-A x SSAF-A / BW-A)]                  |
|           | DABS      | Arsenic Dermal Absorption Factor Solids        |                         | 0.032    | EPA, 2004  |                                                 |
|           | CF        | Conversion Factor                              | kg/mg                   | 0.000001 |            |                                                 |
|           | EF        | Exposure Frequency                             | days/year               | 350      | EPA, 1991  |                                                 |
|           | ED-A      | Exposure Duration, Adult                       | years                   | 24       | EPA, 1991  |                                                 |
|           | ED-C      | Exposure Duration, Child                       | years                   | 6        | EPA, 1991  |                                                 |
|           | BW-A      | Body Weight , Adult                            | kg                      | 70       | EPA, 1991  |                                                 |
|           | BW-C      | Body Weight, Child                             | kg                      | 15       | EPA, 1991  |                                                 |
|           | AT        | Averaging Time (Cancer)                        | days                    | 25,550   | EPA, 1989  |                                                 |

<sup>\*</sup> Surface and subsurface soil

### Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA, 2004. Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. OSWER 9285.7-02EP.

Page 1 of 1 7/24/2008

#### Table 4.13

#### VALUES USED FOR DAILY INTAKE CALCULATIONS, RISK RE-EVALUATION

WP-14, Langley AFB, Virginia

Scenario Timeframe: Future

Medium: Soil\*

Exposure Medium: Soil
Exposure Point: Soil at WP-14

Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure   | Parameter |                                           |                         | !        | Rationale/                     | Intake Equation/                         |
|------------|-----------|-------------------------------------------|-------------------------|----------|--------------------------------|------------------------------------------|
| Routes     | Code      | Parameter Definition                      | Units                   | Value    | Reference                      | Model Name                               |
| Ingestion  | CS        | Manganese Concentration in Soil           | mg/kg                   | 423      | Table 3.3                      | Chronic Daily Intake (CDI) (mg/kg-day) = |
|            | IR-S      | Ingestion Rate of Soil                    | mg/day                  | 330      | EPA, 2002                      | CS x IR-S x EF x ED x CF x 1/BW x 1/AT   |
|            | EF        | Exposure Frequency                        | days/year               | 250      | EPA, 1991                      |                                          |
|            | ED        | Exposure Duration                         | years                   | 1        | EPA, 1991                      |                                          |
|            | CF        | Conversion Factor                         | kg/mg                   | 0.000001 |                                |                                          |
|            | BW        | Body Weight                               | kg                      | 70       | EPA, 1991                      |                                          |
|            | AT-C      | Averaging Time (Cancer)                   | days                    | 25,550   | EPA, 1989                      |                                          |
|            | AT-N      | Averaging Time (Non-Cancer)               | days                    | 365      | EPA, 1989                      |                                          |
| Dermal     | CS        | Manganese Concentration in Soil           | mg/kg                   | 423      | Table 3.3                      |                                          |
| Absorption |           |                                           |                         |          |                                | CDI (mg/kg-day) =                        |
|            | SA        | Skin Surface Area Available for Contact   | cm <sup>2</sup>         | 3,300    | EPA, 2002                      | CS x SA x SSAF x DABS x CF x EF x        |
|            | SSAF      | Soil to Skin Adherence Factor             | mg/cm <sup>2</sup> -day | 0.3      | EPA, 2002                      | ED x 1/BW x 1/AT                         |
|            |           |                                           |                         |          | EPA Region 3 default value for |                                          |
|            | DABS      | Manganese Dermal Absorption Factor Solids |                         | 0.01     | metals                         |                                          |
|            | CF        | Conversion Factor                         | kg/mg                   | 0.000001 |                                |                                          |
|            | EF        | Exposure Frequency                        | days/year               | 250      | EPA, 1991                      |                                          |
|            | ED        | Exposure Duration                         | years                   | 1        | EPA, 1991                      |                                          |
|            | BW        | Body Weight                               | kg                      | 70       | EPA, 1991                      |                                          |
|            | AT-C      | Averaging Time (Cancer)                   | days                    | 25,550   | EPA, 1989                      |                                          |
|            | AT-N      | Averaging Time (Non-Cancer)               | days                    | 365      | EPA, 1989                      |                                          |

<sup>\*</sup> Surface and subsurface soil

### Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA, 2004. Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. OSWER 9285.7-02EP.

Page 1 of 1 7/24/2008

### Table 4.14

### VALUES USED FOR DAILY INTAKE CALCULATIONS, RISK RE-EVALUATION

WP-14, Langley AFB, Virginia

Scenario Timeframe: Future

Medium: Soil\*

Exposure Medium: Air

Exposure Point: Soil at WP-14

Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure   | Parameter |                                |                     | •        | Rationale/ | Intake Equation/                         |
|------------|-----------|--------------------------------|---------------------|----------|------------|------------------------------------------|
| Routes     | Code      | Parameter Definition           | Units               | Value    | Reference  | Model Name                               |
| Inhalation | CA        | Manganese Concentration in Air | mg/m <sup>3</sup>   | 6.30E-06 | Table 3.4  | Chronic Daily Intake (CDI) (mg/kg-day) = |
|            | IR        | Inhalation Rate                | m <sup>3</sup> /day | 20       | EPA, 1991  | CA x IR x EF x ED x 1/BW x 1/AT          |
|            | EF        | Exposure Frequency             | days/year           | 250      | EPA, 1991  |                                          |
|            | ED        | Exposure Duration              | years               | 1        | EPA, 1991  |                                          |
|            | BW        | Body Weight                    | kg                  | 70       | EPA, 1991  |                                          |
|            | AT-C      | Averaging Time (Cancer)        | days                | 25,550   | EPA, 1989  |                                          |
|            | AT-N      | Averaging Time (Non-Cancer)    | days                | 365      | EPA, 1989  |                                          |

### Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

Appendix A.5

RAGS Part D Table 5's Non-Cancer Toxicity Data

NON-CANCER TOXICITY DATA -- ORAL/DERMAL TABLE 5.1

WP - 14, Langley Air Force Base

| of Potential Subchronic          | Chronic/ Oral RfD | Oral RfD  | Oral to Dermal        | Adjusted | Units       | Primary                          | Combined              | Sources of RfD: | Dates of RrD:     |
|----------------------------------|-------------------|-----------|-----------------------|----------|-------------|----------------------------------|-----------------------|-----------------|-------------------|
| Сопсет                           |                   | Units     | Adjustment Factor (1) | Dermal   |             | Target                           | Uncertainty/Modifying | Target Organ    | Target Organ (3)  |
|                                  |                   |           |                       | RfD (2)  |             | Organ                            | Factors               |                 | (MM/DD/YY)        |
| Abrain P. C                      | 1.05+00           | ma/ka-dav | 27%                   | 2.7E-01  | mg/kg-day   | Dev. NS                          | 100                   | NCEA            | 08/26/96          |
|                                  | -                 | mg/kg-day | %56                   | 2.9E-04  | mg/kg-day   | skin/vascular                    | 3                     | IRIS            | 12/01/98          |
| -                                |                   | mg/kg-day | %56                   | 2.9E-04  | mg/kg-day   | skin/vascular                    | 3                     | HEAST           | 07/31/97          |
| Benz(a) pyrene b                 |                   | Ϋ́Z       | N/A                   | A/N      | N/A         | N/A                              | N/A                   | A/A             | N/A               |
| phthalate                        | ~                 | mg/kg-day | 928                   | 1.1E-02  | mg/kg-day   | liver                            | 1000                  | IRIS            | 01/25/99          |
|                                  |                   | mg/kg-day | %1                    | 1.5E-02  | mg/kg-day   | spleen/liver                     | 1000                  | IRIS            | 12/01/98          |
| Subchronic                       |                   | mg/kg-day | 1%                    | 1.0E-02  | mg/kg-day   | spleen/liver                     | 1000                  | HEAST: NCEA     | 07/31/97:12/10/98 |
| Chromium (total) VI 5. c Chronic | 3.0E-03           | mg/kg-day | %1                    | 3.0E-05  | mg/kg-day   | GI tract/fetus/bone marrow/liver | 006                   | RIS             | 12/01/98          |
| Ó                                | nic 2.0E-02       | mg/kg-day | %-                    | 2.0E-04  | mg/kg-day   | GI tract/fetus/bone marrow/liver | 100                   | HEAST           | 07/31/97          |
| Dieldrin                         |                   | mg/kg-day | %06                   | 4.5E-05  | mg/kg-day   | liver                            | 100                   | RIS             | 12/01/98          |
| Subchronic                       | nic 5.0E-05       | mg/kg-day | %06                   | 4.5E-05  | mg/kg-day   | liver                            | 100                   | HEAST           | 07/31/97          |
| Iron *** Chronic                 | $\vdash$          | mg/kg-day | 100%                  | 3.0E-01  | mg/kg-day   | blood/liver/GI tract             | 1                     | NCEA            | 01/05/99          |
| e (food) e                       | 1.4E-01           | mg/kg-day | W/A                   | A/N      | ۷/ <u>۸</u> | CNS                              | -                     | RIS             | 12/01/98          |
| w                                |                   | mg/kg-day | A/A                   | N/A      | N/A         | CNS                              | 1                     | HEAST           | 07/31/97          |
| Manganese (non-food) * . Chronic | <u> </u>          | mg/kg-day | 2%                    | 1.0E-03  | mg/kg-day   | CNS                              | -                     | IRIS            | 12/01/98          |
| _                                | -                 | mg/kg-day | 2%                    | 1.4E-04  | mg/kg-day   | liver                            | 100                   | HEAST           | 07/31/97          |
| <i>σ</i>                         | nic 7.0E-03       | mg/kg-day | 2%                    | 1.4E-04  | mg/kg-day   | liver                            | 100                   | HEAST           | 07/31/97          |

N/A = Not Available

(1) Refer to RAGS, Part A

(2) Adjusted Dermat RfD<sub>enmeu</sub> = Oral Chronic RfDchemical x G.I Absorption Factof<sub>chumical</sub> (3) The date IRIS was searched.

The date of HEAST.

The date of the article provided by NCEA.

The date of the RBC Region III Tables

(a) This COPC is in the total data set only for groundwater.

(b) This COPC is in the total data set only for surface soil.

(c) This COPC is in the total data set only for subsurface soil.

TABLE 5.2 NON-CANCER TOXICITY DATA – INHALATION WP - 14, Langley Air Force Base

| C         5.0E-03         mg/m³         1.0E-03         mg/kg-day         Dev. NS         300         I Targ           C         5.0E-03         mg/m³         1.0E-03         mg/kg-day         Dev. NS         300         I P           N/A         N/A         N/A         N/A         N/A         N/A         N/A         I N/A           N/A         N/A         N/A         N/A         N/A         N/A         N/A         N/A           c         1.0E-04         mg/m³         2.9E-05         mg/kg-day         lungs         300         I N/A           n/A         N/A         N/A         N/A         N/A         N/A         N/A           n/A         N/A         N/A         N/A         N/A         N/A         N/A           n/A         N/A         N/A         N/A         N/A         N/A         N/A         N/A           n/A         N/A         N/A         N/A         N/A         N/A         N/A         N/A           n/A         N/A         N/A         N/A         N/A         N/A         N/A         N/A           n/A         N/A         N/A         N/A         N/A         N/A         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemical of Potential               | Chronic/<br>Subchronic | Value<br>Inhalation | Units | Adjusted<br>Inhalation | Units     | Primary<br>Target | Combined<br>UncertaintyModifying | Sources of<br>RfC:RfD: | Dates (2)<br>(MM/DD/YY) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|---------------------|-------|------------------------|-----------|-------------------|----------------------------------|------------------------|-------------------------|
| b c         Chronic         5.0E-03         mg/m³         1.0E-03         mg/m³-day         Dev. NS         300           rene b (lotal) II b c (lota                                                                                                              | Сопсет                              |                        | RfC                 |       | RfD (1)                |           | Organ             | Factors                          | Target Organ           |                         |
| rene b         NIA         NIA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aluminum <sup>b. c</sup>            | Chronic                | 5.0E-03             | mg/m³ | 1.0E-03                | mg/kg-day | Dev. NS           | 300                              | NCEA                   | 06/20/97                |
| Trene b         NNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arsenic 1.º                         | N/A                    | N/A                 | N/A   | N/A                    | N/A       | N/A               | N/A                              | N/A                    | N/A                     |
| (total) III b²°         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benz(a)pyrene <sup>b</sup>          | N/A                    | N/A                 | N/A   | ΝΑ                     | N/A       | N/A               | N/A                              | N/A                    | N/A                     |
| (total) III <sup>b.c</sup> N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bis(2-Ethythexyl)phthalate          | N/A                    | N/A                 | ΝΑ    | N/A                    | N/A       | N/A               | N/A                              | N/A                    | N/A                     |
| (lotal) VI b.c         Chronic         1.0E-04         mg/m³         2.9E-05         mg/kg-day         lungs         300           N/A         N/A         N/A         N/A         N/A         N/A         N/A         N/A           se (rood) ***         N/A         N/A         N/A         N/A         N/A         N/A         N/A           b**         N/A         N/A         N/A         N/A         N/A         N/A         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chromium (total) III b.c            | N/A                    | N/A                 | N/A   | N/A                    | N/A       | N/A               | N/A                              | N/A                    | N/A                     |
| NIA   NIA | Chromium (total) VI <sup>b, c</sup> | Chronic                | 1.0E-04             | mg/m³ | 2.9E-05                | mg/kg-day | sbunj             | 300                              | IRIS                   | 12/01/98                |
| NIA         NIA <td>Dieldrin</td> <td>N/A</td> <td>N/A</td> <td>ΝA</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dieldrin                            | N/A                    | N/A                 | ΝA    | N/A                    | N/A       | N/A               | N/A                              | N/A                    | N/A                     |
| Ood) *°         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iron ", b, c                        | N/A                    | N/A                 | N/A   | N/A                    | N/A       | N/A               | N/A                              | N/A                    | N/A                     |
| 100n-food)*** Chronic 5.0E-05 mg/m³ 1.4E-05 mg/kg-day CNS 1000 1000 1000 1000 1000 1000 1000 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manganese (food) * c                | N/A                    | N/A                 | NA    | N/A                    | N/A       | N/A               | N/A                              | N/A                    | N/A                     |
| N/A N/A N/A N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Manganese (non-food) * c            | Chronic                | 5.0E-05             | mg/m³ | 1.4E-05                | mg/kg-day | CNS               | 1000                             | IRIS                   | 12/01/98                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vanadium <sup>b. c</sup>            | N/A                    | N/A                 | N/A   | N/A                    | N/A       | N/A               | N/A                              | N/A                    | N/A                     |

N/A = Not Available

(1) Doses were derived from inhalation reference concentrations ( $mg/m^3$ ) from IRIS and HEAST by multiplying

a conversion factor of 20  $\rm m^3$ /day per 70 kg by the reference concentraions.

(2) The date IRIS was searched.

The date of HEAST.

The date of the article provided by NCEA.

(a) This COPC is in the total data set only for groundwater.

(b) This COPC is in the total data set only for surface soil.

(c) This COPC is in the total data set only for subsurface soil.

## TABLE 5.3 NON-CANCER TOXICITY DATA -- ORAL/DERMAL

Risk Re-Evaluation, WP-14, Langley AFB

| Chemical<br>of Potential<br>Concern | Chronic/<br>Subchronic | Oral RfD<br>Value | Oral RfD<br>Units | Oral to Dermal<br>Adjustment<br>Factor (1) | Adjusted<br>Dermal<br>RfD (2) | Units     | Primary<br>Target<br>Organ | Combined<br>Uncertainty/Modifying<br>Factors | Sources of RfD:<br>Target Organ | Dates of RfD:<br>Target Organ (3)<br>(MM/DD/YY) |
|-------------------------------------|------------------------|-------------------|-------------------|--------------------------------------------|-------------------------------|-----------|----------------------------|----------------------------------------------|---------------------------------|-------------------------------------------------|
| Arsenic                             | Chronic                | 3.E-04            | mg/kg-day         | 1                                          | 3.E-04                        | mg/kg-day | Skin/vascular              |                                              | IRIS                            | 10/21/04                                        |
| Manganese (nonfood)                 | Chronic                | 4.7E-02           | mg/kg-day         | 0.04                                       | 1.9E-03                       | mg/kg-day | CNS                        |                                              | IRIS                            | 10/21/04                                        |

Abbreviations:

CNS = central nervous system

IRIS = Integrated Risk Information System

(1) EPA, 2004: Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final, EPA/540/R/99/005, July 2004.

- (2) Adjusted Dermal RfD = Oral RfD \* Oral to Dermal Adjustment Factor.
- (3) The date that IRIS was searched.

## TABLE 5.4 NON-CANCER TOXICITY DATA -- INHALATION Risk Re-Evaluation, WP-14, Langley AFB

| Chemical<br>of Potential<br>Concern | Chronic/<br>Subchronic | Value<br>Inhalation<br>RfC | Units | Adjusted<br>Inhalation<br>RfD (1) | Units     | Primary<br>Target<br>Organ | Combined<br>Uncertainty/Modifying<br>Factors | Sources of<br>RfC:RfD:<br>Target Organ<br>(2) | Dates (3)<br>(MM/DD/YY) |
|-------------------------------------|------------------------|----------------------------|-------|-----------------------------------|-----------|----------------------------|----------------------------------------------|-----------------------------------------------|-------------------------|
| Manganese                           | Chronic                | 5.0E-05                    | mg/m3 | 1.4E-05                           | mg/kg-day | CNS                        | 1000/1                                       | IRIS                                          | 10/21/04                |

Abbreviations:

CNS = central nervous system

- (1) To convert RfC to RfD, multiply RfC by (20 m3/day)(1/70 kg)
- (2) IRIS = Integrated Risk Information System
- (3) The date IRIS was searched.

Appendix A.6

RAGS Part D Table 6's Cancer Toxicity Data

CANCER TOXICITY DATA -- ORAL/DERMAL WP - 14, Langley Air Force Base TABLE 6.1

| Chemical<br>of Potential<br>Concern | Oral Cancer Slope Factor | Oral to Dermal<br>Adjustment<br>Factor | Adjusted Dermal<br>Cancer Slope Factor (1) | Units                     | Weight of Evidence/<br>Cancer Guideline<br>Description | Source      | Date (2)<br>(MM/DD/YY) |
|-------------------------------------|--------------------------|----------------------------------------|--------------------------------------------|---------------------------|--------------------------------------------------------|-------------|------------------------|
| Aluminum <sup>b. c</sup>            | N/A                      | 27%                                    | N/A                                        | N/A                       | N/A                                                    | N/A         | N/A                    |
| Arsenic *,c                         | 1.5E+00                  | %56                                    | 1.6E+00                                    | (mg/kg-day) <sup>-1</sup> | A                                                      | IRIS        | 12/01/98               |
| Benz(a)pyrene <sup>b</sup>          | 7.3E+00                  | N/A                                    | N/A                                        | N/A                       | B2                                                     | IRIS        | 12/01/98               |
| bis(2-Ethythexyl)phthalate          | 1.4E-02                  | 92%                                    | 2.5E-02                                    | (mg/kg-day) <sup>-1</sup> | B2                                                     | IRIS        | 12/01/98               |
| Chromium (total) III b. c           | N/A                      | 1%                                     | N/A                                        | N/A                       | D                                                      | IRIS        | 01/21/99               |
| Chromium (total) VI b.c             | N/A                      | 1%                                     | N/A                                        | N/A                       | a                                                      | IRIS        | 01/24/99               |
| Dieldrin                            | 1.6E+01                  | %06                                    | 1.8E+01                                    | (mg/kg-day) 1             | 82                                                     | IRIS        | 12/01/98               |
| Iron a, b, c                        | N/A                      | 100%                                   | N/A                                        | N/A                       | N/A                                                    | A/A         | N/A                    |
| Manganese (food) a.c                | N/A                      | N/A                                    | N/A                                        | N/A                       | O                                                      | IRIS        | 01/24/99               |
| Manganese (non-food) *. c           | N/A                      | 2%                                     | N/A                                        | NA                        | O                                                      | IRIS        | 01/24/99               |
| Vanadium <sup>b. c</sup>            | N/A                      | 2%                                     | N/A                                        | N/A                       | O                                                      | Tox Profile | 08/08/00               |

IRIS = Integrated Risk Information System

HEAST= Health Effects Assessment Summary Tables

N/A= Not Available

(1) Adjusted  $SF_d = Sf_o / GI$  Absorption Factor

(2) The date IRIS was searched.

The date of HEAST.

The date of article provided by NCEA.

(a) This COPC is in the total data set only for groundwater.

(c) This COPC is in the total data set only for subsurface soil. (b) This COPC is in the total data set only for surface soil.

EPA Group:

A - Human carcinogen

B1 - Probable human carcinogen - indicates that limited human data are available

B2 - Probable human carcinogen - indicates sufficient evidence in animals and

inadequate or no evidence in humans

C - Possible human carcinogen

D - Not classifiable as a human carcinogen

E - Evidence of noncarcinogenicity

Weight of Evidence:

Known/Likely

Cannot be Determined

Not Likely

CANCER TOXICITY DATA - INHALATION WP - 14, Langley Air Force Base TABLE 6.2

| Chemical<br>of Potential<br>Concern | Unit Risk | Units                              | Adjustment (1) | Inhalation Cancer<br>Slope Factor | Units                     | Weight of Evidence/<br>Cancer Guideline<br>Description | Source      | Date (2)<br>(MM/DD/YY) |
|-------------------------------------|-----------|------------------------------------|----------------|-----------------------------------|---------------------------|--------------------------------------------------------|-------------|------------------------|
| Aluminum b, c                       | N/A       | N/A                                | N/A            | NIA                               | N/A                       | N/A                                                    | N/A         | N/A                    |
| Arsenic * c                         | 4.3E-03   | (ng/m³) -1                         | 3,500          | 1.5E+01                           | (mg/kg-day)               | ٧                                                      | IRIS        | 12/01/98               |
| Benz(a)pyrene b                     | 8.8E-04   | <sub>1-</sub> ( <sub>E</sub> w/6n) | 3,500          | 3.1E+00                           | (mg/kg-day)               | B2                                                     | NCEA, IRIS  | 11/18/94, 12/01/98     |
| bis(2-Ethylhexyl)phthalate          | 4.0E-06   | (m/6n) -1                          | 3,500          | 1.4E-02                           | (mg/kg-day) <sup>-1</sup> | 82                                                     | NCEA, IRIS  | 09/20/95, 12/01/98     |
| Chromium (total) III b. c           | NA        | N/A                                | N/A            | N/A                               | N/A                       | ā                                                      | IRIS        | 01/21/99               |
| Chromium (total) VI b. c            | 1.2E-02   | <sub></sub> (բա/ճո)                | 3,500          | 4.2E+01                           | (mg/kg-day) 1             | ٧                                                      | IRIS        | 12/01/98               |
| Dieldrin                            | 4.6E-03   | <sub>լ-</sub> (բա/ճո)              | 3,500          | 1.6E+01                           | (mg/kg-day)               | 82                                                     | IRIS        | 12/01/98               |
| fron ", b, c                        | NA        | N/A                                | N/A            | N/A                               | N/A                       | N/A                                                    | N/A         | N/A                    |
| Manganese (food) *, c               | NA        | N/A                                | N/A            | N/A                               | V/N                       | a                                                      | IRIS        | 01/24/99               |
| Manganese (non-food) *.º            | NA        | N/A                                | N/A            | N/A                               | N/A                       | ۵                                                      | IRIS        | 01/24/99               |
| Vanadium <sup>b. c</sup>            | N/A       | N/A                                | N/A            | N/A                               | N/A                       | a                                                      | Tox Profile | 08/08/00               |

IRIS = Integrated Risk Information System

HEAST= Health Effects Assessment Summary Tables

N/A= Not Available

Weight of Evidence:

Known/Likely

Cannot be Determined

(1) Adjustment Factor applied to Unit Risk to calculate Inhalation Stope Factor≖ Not Likely

 $70 \text{kg} \times 1/20 \text{m}^3/\text{day} \times 1000 \text{ug/mg}$ 

(2) The date IRIS was searched.

The date of the article provided by NCEA. The date of HEAST.

(a) This COPC is in the total data set only for groundwater.

(b) This COPC is in the total data set only for surface soil.

(c) This COPC is in the total data set only for subsurface soil.

EPA Group:

A - Human carcinogen

B1 - Probable human carcinogen - indicates that limited human data are available

B2 - Probable human carcinogen - indicates sufficient evidence in animals and

inadequate or no evidence in humans

C - Possible human carcinogen

D - Not classifiable as a human carcinogen

E - Evidence of noncarcinogenicity

## TABLE 6.3 CANCER TOXICITY DATA -- ORAL/DERMAL Risk Re-Evaluation, WP-14, Langley AFB

| Chemical<br>of Potential<br>Concern | Oral Cancer Slope Factor | Oral to Dermal<br>Adjustment<br>Factor (1) | Adjusted Dermal<br>Cancer Slope Factor (2) | Units                     | Weight of Evidence/<br>Cancer Guideline<br>Description | Source | Date<br>(MM/DD/YY)<br>[3] |
|-------------------------------------|--------------------------|--------------------------------------------|--------------------------------------------|---------------------------|--------------------------------------------------------|--------|---------------------------|
| Arsenic                             | 1.5E+00                  | 1                                          | 1.5E+00                                    | (mg/kg-day) <sup>-1</sup> | А                                                      | IRIS   | 10/21/04                  |

IRIS = Integrated Risk Information System

Weight of Evidence:

A - Human carcinogen

- (1) EPA 2004. RAGS Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment).
- (2) ORAL CSF/ Oral to Dermal Adjustment Factor = Adjusted Dermal CSF
- (3) For IRIS values, date that IRIS was searched

### Appendix A.7

RAGS Part D Table 7's Calculation of Non-Cancer Hazards Reasonable Maximum Exposure

### TABLE 7.1.RME

### RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE OTHER WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil
Exposure Point: Surface Soil at WP-14
Receptor Population: Other Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient                               |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------------------------------------|
| Ingestion         | INORGANICS                          | -                      |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | <del>                                     </del> |
|                   | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 6.5E-04                | mg/kg-day                       | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.0007                                           |
|                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | t/A                                              | 1.3E-06                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.004                                            |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | M                                                | 1.4E-06                | mg/kg-day                       | 3.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.0005                                           |
|                   | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | M                                                | 1.4E-03                | mg/kg-day                       | 3,0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.005                                            |
|                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 1.5E-05                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.0008                                           |
|                   | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | M                                                | 2.7E-06                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.0004                                           |
|                   | ORGANICS                            |                        | 1                      |                       |                       |                                                  |                        |                                 |                       |                         | , i                        |                                     |                                                  |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                                | 3.3E-09                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.00007                                          |
|                   | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.01                                             |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                                                  |
| Absorption        | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 1.0E-04                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.0004                                           |
|                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 6.5E-07                | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.002                                            |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | M                                                | 2.2E-07                | mg/kg-day                       | 3.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.007                                            |
|                   | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | M                                                | 2.3E-04                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.0008                                           |
|                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 2.4E-05                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.002                                            |
|                   | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | М                                                | 4.3E-07                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.003                                            |
|                   | ORGANICS                            |                        | 1                      |                       |                       | ļ                                                | ]                      |                                 |                       |                         |                            |                                     |                                                  |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                                | 5.3E-09                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.0001                                           |
|                   | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.02                                             |

Total Hazard Index Across All Exposure Routes/Pathways 0.03

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Chronic reference dose.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

### TABLE 7,2.RME

## RME CALCULATION OF NON-CANCER HAZARDS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE OTHER WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Other Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern                                                                          | Medium<br>EPC<br>Value                                                    | Medium<br>EPC<br>Units                             | Route<br>EPC<br>Value (3)                                      | Route<br>EPC<br>Units                                                                     | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer)                                         | Intake<br>(Non-Cancer)<br>Units                                            | Reference<br>Dose (2)                     | Reference<br>Dose Units       | Reference<br>Concentration                | Reference<br>Concentration<br>Units                | Hazard<br>Quotient                |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------|
| Inhalation        | INORGANICS Aluminum Arsenic Chromium (total) V! Iron Manganese (non-food) Vanadium ORGANICS Dieldrin (Total) | 1.3E+04<br>2.6E+01<br>2.8E+01<br>2.9E+04<br>3.1E+02<br>5.5E+01<br>6.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 1.3E-03<br>2.6E-06<br>2.8E-06<br>2.9E-03<br>3.1E-05<br>5.5E-06 | mg/m <sup>3</sup> mg/m <sup>3</sup> mg/m <sup>3</sup> mg/m <sup>3</sup> mg/m <sup>3</sup> | R<br>R<br>R<br>R<br>R                            | 5.2E-05<br>1.0E-07<br>1.1E-07<br>1.1E-04<br>1.2E-06<br>2.2E-07 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.0E-03<br><br>2.9E-05<br><br>1.4E-05<br> | mg/kg-day mg/kg-day mg/kg-day | 5.0E-03<br><br>1.0E-04<br><br>5.0E-05<br> | <br>mg/m <sup>3</sup><br><br>mg/m <sup>3</sup><br> | 0.05<br><br>0.004<br><br>0.08<br> |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Chronic reference dose.

(3) Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

### TABLE 7.3.RME

## RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE OTHER WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil
Exposure Point: Subsurface Soil at WP-14

Receptor Population: Other Worker

Receptor Age: Adult

| Exposure<br>Route    | Chemical<br>of Potential<br>Concern                                                                          | Medium<br>EPC<br>Value                                                    | Medium<br>EPC<br>Units                             | Route<br>EPC<br>Value                                                     | Route<br>EPC<br>Units                              | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer)                                         | Intake<br>(Non-Cancer)<br>Units                                            | Reference<br>Dose (2)                                                     | Reference<br>Dose Units                                                    | Reference<br>Concentration             | Reference<br>Concentration<br>Units     | Hazard<br>Quotient                                                     |
|----------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------------------------------|
| Ingestion            | INORGANICS Aluminum Arsenic Chromium (total) VI Iron Manganese (non-food) Vanadium ORGANICS Dieldrin (Total) | 1.5E+04<br>6.3E+01<br>3.2E+01<br>4.0E+04<br>3.0E+02<br>6.7E+01            | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 1.5E+04<br>6.3E+01<br>3.2E+01<br>4.0E+04<br>3.0E+02<br>6.7E+01            | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | M<br>M<br>M<br>M<br>M<br>M                       | 7.3E-04<br>3.1E-06<br>1.6E-06<br>2.0E-03<br>1.5E-05<br>3.3E-06 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.0E+00<br>3.0E-04<br>3.0E-03<br>3.0E-01<br>2.0E-02<br>7.0E-03            | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A  | C.0007<br>0.01<br>0.0005<br>0.007<br>0.0007<br>0.0005<br>C.00005       |
| Dermal<br>Absorption | INORGANICS Aluminum Arsenic Chromium (total) VI Iron Manganese (non-food) Vanadium ORGANICS Dieldrin (Total) | 1.5E+04<br>6.3E+01<br>3.2E+01<br>4.0E+04<br>3.0E+02<br>6.7E+01<br>4.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 1.5E+04<br>6.3E+01<br>3.2E+01<br>4.0E+04<br>3.0E+02<br>6.7E+01<br>4.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | M<br>M<br>M<br>M<br>M                            | 1.2E-04<br>1.6E-06<br>2.5E-07<br>3.1E-04<br>2.4E-06<br>5.3E-07 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 2.7E-01<br>2.9E-04<br>3.0E-05<br>3.0E-01<br>1.0E-03<br>1.4E-04<br>4.5E-05 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | N/A | 0.0004<br>0.006<br>0.008<br>0.001<br>0.002<br>0.004<br>0.90008<br>0.02 |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

NOTE: Aluminum, Chromium (total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

<sup>(2)</sup> Chronic reference dose.

# TABLE 7.4.RME RME CALCULATION OF NON-CANCER HAZARDS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE OTHER WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil
Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Other Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern                                                                         | Medium<br>EPC<br>Value                                                    | Medium<br>EPC<br>Units                             | Route<br>EPC<br>Value (3)                                      | Route<br>EPC<br>Units                                                                                       | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer)                                         | Intake<br>(Non-Cancer)<br>Units                                            | Reference<br>Dose (2)                     | Reference<br>Dose Units       | Reference<br>Concentration                | Reference<br>Concentration<br>Units                | Hazard<br>Quotient                |
|-------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------|
| Inhalation        | INORGANICS Aluminum Arsenic Chromium (total) VI Iron Manganese (non-food) Vanadium ORGANICS Dieldrin (Total | 1.5E+04<br>6.3E+01<br>3.2E+01<br>4.0E+04<br>3.0E+02<br>6.7E+01<br>4.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 1.5E-03<br>6.3E-06<br>3.2E-06<br>4.0E-03<br>3.0E-05<br>6.7E-06 | mg/m <sup>3</sup> mg/m <sup>3</sup> mg/m <sup>3</sup> mg/m <sup>3</sup> mg/m <sup>3</sup> mg/m <sup>3</sup> | R<br>R<br>R<br>R<br>R                            | 5.8E-05<br>2.5E-07<br>1.3E-07<br>1.6E-04<br>1.2E-06<br>2.6E-07 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.0E-03<br><br>2.9E-05<br><br>1.4E-05<br> | mg/kg-day mg/kg-day mg/kg-day | 5.0E-03<br><br>1.0E-04<br><br>5.0E-05<br> | <br>mg/m <sup>3</sup><br><br>mg/m <sup>3</sup><br> | 0.06<br><br>0.004<br><br>0.08<br> |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Chronic reference dose.

(3) Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table.

NOTE: Aluminum, Chromium (total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

#### TABLE 7.5.RME

## RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE CONSTRUCTION WORKER WP-14. Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil
Exposure Point: Surface Soil at WP-14
Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
|                   | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | M                                                | 1.0E-02                | mg/kg-day                       | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
|                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 2.0E-05                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.07               |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 2.2E-05                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.001              |
|                   | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | М                                                | 2.2E-02                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.07               |
|                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 2.4E-04                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
|                   | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | М                                                | 4.3E-05                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.006              |
|                   | ORGANICS                            |                        |                        |                       |                       |                                                  |                        | l                               |                       |                         |                            |                                     |                    |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                                | 5.2E-08                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.001              |
|                   | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.2                |
| Dermai            | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 | 1                     |                         |                            |                                     |                    |
| Absorption        | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | M                                                | 5.2E-04                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.002              |
| ·                 | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 3.3E-06                | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 1.1E-06                | mg/kg-day                       | 2.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.006              |
|                   | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | М                                                | 1.1E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.004              |
|                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 1.2E-05                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
| J                 | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | M                                                | 2.2E-06                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.02               |
|                   | ORGANICS                            |                        |                        |                       |                       | *                                                |                        |                                 |                       |                         |                            |                                     |                    |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                                | 2.6E-08                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.0006             |
|                   | (Total)                             |                        | 1                      |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.05               |
| <u> </u>          |                                     | <u></u>                |                        |                       |                       |                                                  |                        |                                 | Total Haz             | ard Index Acr           | oss All Exposure           | Routes/Pathways                     | 0.2                |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

Manganese HQs shown on this table reflect the original risk assessment presented in the RI Report. These HQs were replaced with the HQs shown in Table 7.20, which reflect the expanded manganese data set.

<sup>(2)</sup> Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Iron, and Manganese.

#### TABLE 7.6 RME

### RME CALCULATION OF NON-CANCER HAZARDS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE CONSTRUCTION WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value (3) | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|---------------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Inhalation        | INORGANICS                          |                        |                        |                           |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
|                   | Aluminum                            | 1.3E+04                | mg/kg                  | 7.8E-03                   | mg/m³                 | R                                                | 1.5E-03                | mg/kg-day                       | 1.0E-03               | mg/kg-day               |                            |                                     | 2                  |
| Ì                 | Arsenic                             | 2.6E+01                | mg/kg                  | 1.5E-05                   | mg/m³                 | R                                                | 3.0E-06                | mg/kg-day                       |                       |                         |                            |                                     |                    |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 1.7E-05                   | mg/m³                 | R                                                | 3.3E-06                | mg/kg-day                       | 2.9E-05               | mg/kg-day               | 1.0E-04                    | mg/m³                               | 0.1                |
|                   | Iron                                | 2.9E+04                | mg/kg                  | 1.7E-02                   | mg/m³                 | R                                                | 3.3E-03                | mg/kg-day                       |                       |                         |                            |                                     | **                 |
|                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 1.8E-04                   | mg/m³                 | R                                                | 3.5E-05                | mg/kg-day                       | 1.4E-05               | mg/kg-day               | 5.0€-05                    | mg/m³                               | 2                  |
|                   | Vanadium                            | 5.5E+01                | mg/kg                  | 3.3E-05                   | mg/m³                 | R                                                | 6.4E-06                | mg/kg-day                       |                       |                         |                            |                                     |                    |
|                   | ORGANICS                            |                        |                        |                           |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 1                  |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 1.5E-08                   | mg/m³                 | R                                                | 3.0E-09                | mg/kg-day                       |                       |                         |                            |                                     |                    |
| 1                 | (Total)                             |                        |                        |                           |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 4                  |
|                   |                                     |                        |                        |                           |                       |                                                  |                        |                                 | Y-1-111-              | lada A -                | All Franceine              | Routes/Pathways                     | 1                  |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

- (2) Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Chromium VI, and Manganese.
- (3) Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

Manganese HQs shown on this table reflect the original risk assessment presented in the RI Report. These HQs were replaced with the HQs shown in Table 7.20, which reflect the expanded manganese data set.

#### TABLE 7.7.RME

## RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE CONSTRUCTION WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil
Exposure Point: Subsurface Soil at WP-14
Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| 1                 | Aluminum                            | 1.5E+04                | mg/kg                  | 1.5E+04               | mg/kg                 | М                                                | 1.2E-02                | mg/kg-day                       | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
| i                 | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | M                                                | 4.8E-05                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.2                |
| ı                 | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | M                                                | 2.5E-05                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.001              |
| 1                 | Iron .                              | 4.0E+04                | mg/kg                  | 4.0E+04               | mg/kg                 | М                                                | 3.1E-02                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.1                |
| 1                 | Manganese (non-food)                | 3.0E+02                | mg/kg                  | 3.0E+02               | mg/kg                 | М                                                | 2.3E-04                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
| i                 | Vanadium                            | 6.7E+01                | mg/kg                  | 6.7E+01               | mg/kg                 | M                                                | 5.2E-05                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.007              |
| I                 | ORGANICS                            |                        | •                      |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| I                 | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | М                                                | 3.7E-08                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.0007             |
| I                 | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.3                |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 1                  |
| Absorption        | Aluminum                            | 1.5E+04                | mg/kg                  | 1.5E+04               | mg/kg                 | М                                                | 5.8E-04                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.002              |
| I                 | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | М                                                | 7.8E-06                | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.03               |
| i                 | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | М                                                | 1.3E-06                | mg/kg-day                       | 2.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.006              |
| i                 | Iron                                | 4.0E+04                | mg/kg                  | 4.0E+04               | mg/kg                 | М                                                | 1.6E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.005              |
| l                 | Manganese (non-food)                | 3.0E+02                | mg/kg                  | 3.0E+02               | mg/kg                 | М                                                | 1.2E-05                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
| i                 | Vanadium                            | 6.7E+01                | mg/kg                  | 6.7E+01               | mg/kg                 | M                                                | 2.6E-06                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.02               |
| İ                 | ORGANICS                            |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| i<br>I            | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | М                                                | 1.9E-08                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.0004             |
| i                 | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.07               |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Iron, and Manganese.

NOTE: Aluminum, Chromium (total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

Manganese HQs shown on this table reflect the original risk assessment presented in the RI Report. These HQs were replaced with the HQs shown in Table 7.20, which reflect the expanded manganese data set.

# TABLE 7.8.RME RME CALCULATION OF NON-CANCER HAZARDS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE CONSTRUCTION WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil
Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value (3) | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|---------------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Inhalation        | INORGANICS                          |                        |                        |                           |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
|                   | Aluminum                            | 1.5E+04                | mg/kg                  | 8.8E-03                   | mg/m³                 | R                                                | 1.7E-03                | mg/kg-day                       | 1.0E-03               | mg/kg-day               |                            |                                     | 2                  |
| Ĭ                 | Arsenic                             | 6.3E+01                | mg/kg                  | 3.7E-05                   | mg/m³                 | R                                                | 7.2E-06                | mg/kg-day                       | -                     |                         |                            |                                     | -                  |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 1.9E-05                   | mg/m³                 | R                                                | 3.7E-06                | mg/kg-day                       | 2.9E-05               | mg/kg-day               | 1.0E-04                    | mg/m³                               | 0.1                |
|                   | kon                                 | 4.0E+04                | mg/kg                  | 2.4E-02                   | mg/m³                 | R                                                | 4.6E-03                | mg/kg-day                       | - '                   |                         | -                          |                                     |                    |
| <del>l</del> l    | Manganese (non-food)                | 3.0E+02                | mg/kg                  | 1.8E-04                   | mg/m³                 | R                                                | 3.5E-05                | mg/kg-day                       | 1.4E-05               | mg/kg-day               | 5.0 <b>E-</b> 05           | mg/m³                               | 2                  |
|                   | Vanadium                            | 6.7E+01                | mg/kg                  | 4.0E-05                   | mg/m³                 | R                                                | 7.7E-06                | mg/kg-day                       |                       |                         |                            |                                     | -                  |
|                   | ORGANICS                            |                        |                        |                           |                       |                                                  |                        |                                 |                       |                         | [                          |                                     | 1                  |
| 1                 | Dieldrin                            | 4.8E-02                | mg/kg                  | 1.1E-08                   | mg/m³                 | R                                                | 2.1E-09                | mg/kg-day                       |                       |                         |                            | -                                   |                    |
|                   | (Total)                             |                        |                        |                           |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 4                  |
| L                 | <u> </u>                            |                        |                        |                           |                       |                                                  |                        |                                 | 7-4-111-              |                         | All Evenner                | Routes/Pathways                     | 1                  |

- (1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.
- (2) Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Chromium VI, and Manganese.
- (3) Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table.

NOTE: Aluminum, Chromium (total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

Manganese HQs shown on this table reflect the original risk assessment presented in the RI Report. These HQs were replaced with the HQs shown in Table 7.20, which reflect the expanded manganese data set.

### TABLE 7.9.RME

## RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE INDUSTRIAL WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil
Exposure Point: Surface Soil at WP-14
Receptor Population: Industrial Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
|                   | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 5.2E-04                | mg/kg-day                       | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.00               |
|                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 1.0E-06                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.00               |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 1.1E-06                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.000              |
| 1                 | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | М                                                | 1.1E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.00               |
|                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 1.2E-05                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.00               |
|                   | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | M                                                | 2.2E-06                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.000              |
| İ                 | ORGANICS                            |                        |                        |                       | ŀ                     |                                                  |                        |                                 |                       |                         | 1                          |                                     | i 1                |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                                | 2,6E-09                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.000              |
|                   | (Total)                             |                        |                        |                       |                       |                                                  |                        | ļ. <u>.</u>                     |                       |                         |                            |                                     | 0.009              |
| Dermal            | INORGANICS                          |                        |                        |                       |                       | i                                                |                        |                                 |                       |                         |                            |                                     |                    |
| Absorption        | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 4.2E-05                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.000              |
|                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 2.6E-07                | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.00               |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | M                                                | 8.9E-08                | mg/kg-day                       | 2.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.000              |
|                   | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | М                                                | 9.0E-05                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.000              |
| 1                 | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | M                                                | 9.6E-07                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.00               |
|                   | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | M                                                | 1.7E-07                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.00               |
| ľ                 | ORGANICS                            |                        | 1                      |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 1 1                |
| 1                 | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                                | 2.1E-09                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.0000             |
|                   | (Total)                             |                        |                        |                       |                       |                                                  | L                      |                                 |                       |                         |                            |                                     | 0,004              |
|                   |                                     | <del></del>            |                        |                       |                       |                                                  |                        | Total Haz                       | ard Index             | Across All              | Exposure Rou               | tes/Pathways                        | 0.01               |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

<sup>(2)</sup> Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Iron, and Manganese.

# TABLE 7.10.RME RME CALCULATION OF NON-CANCER HAZARDS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE INDUSTRIAL WORKER WP-14. Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Industrial Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern                                                                          | Medium<br>EPC<br>Value                                         | Medium<br>EPC<br>Units                             | Route<br>EPC<br>Value (3)                                      | Route<br>EPC<br>Units                                                            | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer)                                         | Intake<br>(Non-Cancer)<br>Units                                            | Reference<br>Dose (2)                 | Reference<br>Dose Units       | Reference<br>Concentration | Reference<br>Concentration<br>Units                    | Hazard<br>Quotient              |
|-------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|-------------------------------|----------------------------|--------------------------------------------------------|---------------------------------|
|                   | INORGANICS Aluminum Arsenic Chromium (total) VI Iron Manganese (non-food) Vanadium ORGANICS Dieldrin (Total) | 1.3E+04<br>2.6E+01<br>2.8E+01<br>2.9E+04<br>3.1E+02<br>5.5E+01 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 7.8E-03<br>1.5E-05<br>1.7E-05<br>1.7E-02<br>1.8E-04<br>3.3E-05 | mg/m <sup>3</sup><br>mg/m <sup>3</sup><br>mg/m <sup>3</sup><br>mg/m <sup>3</sup> | R<br>R<br>R<br>R<br>R                            | 1.2E-04<br>2.4E-07<br>2.6E-07<br>2.7E-04<br>2.8E-06<br>5.1E-07 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.0E-03<br><br>2.9E-05<br><br>1.4E-05 | mg/kg-day mg/kg-day mg/kg-day | 1.0E-04<br><br>5.0E-05<br> | <br><br>mg/m <sup>3</sup><br><br>mg/m <sup>3</sup><br> | 0.1<br><br>0.009<br><br>0.2<br> |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Chromium VI, and Manganese.

(3) Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

### TABLE 7.11.RME

### RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE INDUSTRIAL WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil
Exposure Point: Subsurface Soil at WP-14
Receptor Population: Industrial Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| _                 | Aluminum                            | 1.5E+04                | mg/kg                  | 1.5E+04               | mg/kg                 | М                                                | 5.8E-04                | mg/kg-day                       | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.0006             |
|                   | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | M                                                | 2.5E-06                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 800.0              |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | M                                                | 1.3E-06                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.00006            |
| 1                 | Iron                                | 4.0E+04                | mg/kg                  | 4.0E+04               | mg/kg                 | М                                                | 1.6E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.005              |
| 1                 | Manganese (non-food)                | 3.0E+02                | mg/kg                  | 3.0E+02               | mg/kg                 | M                                                | 1.2E-05                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.0006             |
|                   | Vanadium                            | 6.7E+01                | mg/kg                  | 6.7E+01               | mg/kg                 | М                                                | 2.6E-06                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.0004             |
|                   | ORGANICS                            |                        |                        |                       |                       | l                                                |                        |                                 |                       |                         |                            |                                     |                    |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | М                                                | 1.9E-09                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.00004            |
|                   | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.02               |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| Absorption        | Aluminum                            | 1.5E+04                | mg/k <b>g</b>          | 1.5E+04               | mg/kg                 | M                                                | 4.7E-05                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.0002             |
| <b>i</b>          | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | M                                                | 6.3 <b>É-</b> 07       | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.0022             |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | М                                                | 1.0E-07                | mg/kg-day                       | 2.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.0005             |
| 1                 | Iron                                | 4.0E+04                | mg/kg                  | 4.0E+04               | mg/kg                 | М                                                | 1.3E-04                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.0004             |
|                   | Manganese (non-food)                | 3.0E+02                | mg/kg                  | 3.0E+02               | mg/kg                 | М                                                | 9.5E-07                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.0009             |
|                   | Vanadium                            | 6.7E+01                | mg/kg                  | 6.7E+01               | mg/kg                 | M                                                | 2.1E-07                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.0015             |
|                   | ORGANICS                            |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| ļ                 | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | M                                                | 1.5E-09                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.00003            |
| l                 | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.006              |
|                   |                                     | ***                    |                        | <del>`</del>          |                       |                                                  | •                      | Total Haz                       | ard Index             | Across All I            | Exposure Rou               | tes/Pathways                        | 0.02               |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

NOTE: Aluminum, Chromium (total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

<sup>(2)</sup> Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Iron, and Manganese.

#### TABLE 7 12 RME

### RME CALCULATION OF NON-CANCER HAZARDS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE INDUSTRIAL WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Industrial Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value (3) | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) |              | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quolient |
|-------------------|-------------------------------------|------------------------|------------------------|---------------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|--------------|----------------------------|-------------------------------------|--------------------|
| Inhalation        | INORGANICS                          |                        |                        |                           |                       |                                                  |                        |                                 |                       |              |                            |                                     |                    |
|                   | Aluminum                            | 1.5E+04                | mg/kg                  | 8.8E-03                   | mg/m³                 | R                                                | 1.4E-04                | mg/kg-day                       | 1.0E-03               | mg/kg-day    |                            |                                     | 0.14               |
|                   | Arsenic                             | 6.3E+01                | mg/kg                  | 3.7E-05                   | mg/m <sup>3</sup>     | R                                                | 5.8E-07                | mg/kg-day                       |                       |              |                            | ,                                   |                    |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 1.9E-05                   | mg/m³                 | R                                                | 3.0E-07                | mg/kg-day                       | 2.9E-05               | mg/kg-day    | 1.0E-04                    | mg/m³                               | 0.01               |
| <u> </u>          | Iron                                | 4.0E+04                | mg/kg                  | 2.4E-02                   | mg/m³                 | R                                                | 3.7E-04                | mg/kg-day                       |                       |              |                            |                                     |                    |
|                   | Manganese (non-food)                | 3,0E+02                | mg/kg                  | 1.8E-04                   | mg/m <sup>3</sup>     | R                                                | 2.8E-06                | mg/kg-day                       | 1.4E-05               | mg/kg-day    | 5.0E-05                    | mg/m³                               | 0.19               |
|                   | Vanadium                            | 6.7E+01                | mg/kg                  | 4.0E-05                   | mg/m³                 | R                                                | 6.2E-07                | mg/kg-day                       |                       |              |                            |                                     |                    |
|                   | ORGANICS                            |                        |                        |                           |                       |                                                  |                        |                                 |                       |              | ļ                          |                                     |                    |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 1.1E-08                   | mg/m <sup>3</sup>     | R                                                | 1.7E-10                | mg/kg-day                       |                       |              |                            |                                     | <u> </u>           |
| Ű.                | (Total)                             |                        |                        |                           |                       |                                                  |                        |                                 |                       |              | l<br>                      | <u> </u>                            | 0.3                |
| L                 | <u> </u>                            |                        |                        |                           |                       |                                                  |                        | Total Haz                       | ard Index             | Across All F | ynosure Rou                | tes/Pathways                        | 0.3                |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Chromium VI, and Manganese.

(3) Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table.

NOTE: Aluminum, Chromium (total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

### TABLE 7.13.RME

## RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE TRESPASSER/VISITOR

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil Exposure Point: Surface Soil at WP-14 Receptor Population: Trespasser/Visitor

Receptor Age: Child

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                                  |                        | ·                               |                       |                         |                            |                                     |                    |
| _                 | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 7.2E-04                | mg/kg-day                       | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.0007             |
|                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | M                                                | 1.4E-06                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.005              |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 1.5E-06                | mg/kg-day                       | 3.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.0005             |
|                   | fron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | M                                                | 1.6E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.005              |
|                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 1.7E-05                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.0008             |
| Va                | Vanadium<br>ORGANICS                | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | М                                                | 3.0E-06                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.0004             |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                                | 3,7E-09                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.00007            |
|                   | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.01               |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| Absorption        | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 2.8E-04                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.001              |
| ·                 | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | M                                                | 1.7E-06                | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.006              |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 5.9E-07                | mg/kg-day                       | 3.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.02               |
|                   | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | М                                                | 6.0E-04                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.002              |
|                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | M                                                | 6.4E-06                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.005              |
|                   | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | М                                                | 1.2E-06                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.008              |
|                   | ORGANICS                            |                        |                        |                       |                       |                                                  | !                      |                                 |                       |                         |                            |                                     |                    |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                                | 1.4E-08                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.0003             |
|                   | (Tetal)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0.04               |
|                   |                                     |                        |                        |                       |                       |                                                  |                        | Total Haz                       | ard Index /           | Across All E            | xposure Rou                | tes/Pathways                        | 0.06               |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Chronic reference dose.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

### TABLE 7.14.RME RME CALCULATION OF NON-CANCER HAZARDS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE TRESPASSER/VISITOR

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Trespasser/Visitor

Receptor Age: Child

| Exposure<br>Route | Chemical<br>of Potential<br>Concern                                                         | Medium<br>EPC<br>Value                                         | Medium<br>EPC<br>Units                    | Route<br>EPC<br>Value (3)                                      | Route<br>EPC<br>Units                                       | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer)                                         | Intake<br>(Non-Cancer)<br>Units                                            | Reference<br>Dose (2)                 | Reference<br>Dose Units       | Reference<br>Concentration            | Reference<br>Concentration<br>Units | Hazard<br>Quotient                |
|-------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|-------------------------------|---------------------------------------|-------------------------------------|-----------------------------------|
| Inhalation        | INORGANICS Aluminum Arsenic Chromium (total) VI Iron Manganese (non-food) Vanadium ORGANICS | 1.3E+04<br>2.6E+01<br>2.8E+01<br>2.9E+04<br>3.1E+02<br>5.5E+01 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 1.3E-03<br>2.6E-06<br>2.8E-06<br>2.9E-03<br>3.1E-05<br>5.5E-06 | mg/m <sup>3</sup><br>mg/m <sup>3</sup><br>mg/m <sup>3</sup> | R<br>R<br>R<br>R<br>R                            | 5.1E-05<br>1.0E-07<br>1.1E-07<br>1.1E-04<br>1.2E-06<br>2.1E-07 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.0E-03<br><br>2.9E-05<br><br>1.4E-05 | mg/kg-day mg/kg-day mg/kg-day | 5.0E-03<br><br>1.0E-04<br><br>5.0E-05 | <br><br>mg/m <sup>3</sup><br><br>   | 0.05<br><br>0.004<br><br>0.08<br> |
|                   | Dieldrin (Total)                                                                            | 6.8E-02                                                        | mg/kg                                     | 1.5E-08                                                        | mg/m                                                        |                                                  | 0.00                                                           |                                                                            | zard Index                            | Across All                    | Exposure Rou                          | ites/Pathways                       | 0.1                               |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Chronic reference dose.

(3) Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

### TABLE 7.15.RME

## RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE CHILD RESIDENT WP-14. Langley Air Force Base

Scenario Timeframe: Future Medium: Surface Soil

Exposure Medium: Surface Soil
Exposure Point: Surface Soil at WP-14

Receptor Population: Resident

Receptor Age: Child

| 1 05:04   mellio   4.25:04   mellio   14.5:03   mellio day   2.75-01   mellio day   N/A   N/A   0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ngestion          | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                 | 1                                   | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 8.5E-02                | mg/kg-day                       | i i                   | mg/kg-day               | l '''                      |                                     |                    |
| Chromium (total) VI   2.8±+01   mg/kg   2.8±+01   mg/kg   2.9±+04   mg/kg   2.9±+04   mg/kg   2.9±+04   mg/kg   2.9±+04   mg/kg   M   1.8±+01   mg/kg-day   3.0±+01   mg/kg-day   N/A   N/A   0.6   Manganese (non-food)   3.1±+02   mg/kg   M   3.5±+04   mg/kg-day   7.0±+03   mg/kg-day   N/A   N/A   0.1   N/A   0.1   N/A   0.1   N/A   0.1   N/A   N/A   0.1   N/A   N/A   0.1   N/A   N   |                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 1.7E-04                | mg/kg-day                       | 3.0E-04               | mg/kg-day               |                            |                                     |                    |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 1.8E-04                | mg/kg-day                       | 3.0E-03               | mg/kg-day               |                            |                                     |                    |
| Manganese (non-food)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | М                                                | 1.8E-01                | mg/kg-day                       | 3.0E-01               | mg/kg-day               |                            |                                     |                    |
| Vanadium ORGANICS ORGANICS ORGITICS OPERMAL Absorption    NORGANICS   Chromium (total) VI   Chromium (total) V |                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 2.0E-03                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | i                          |                                     | 1                  |
| Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin    |                   | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | М                                                | 3.5E-04                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.05               |
| Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin   Dieldrin    |                   | ORGANICS                            |                        |                        |                       |                       |                                                  |                        |                                 | ĺ                     |                         | }                          |                                     |                    |
| NORGANICS   Norganic   |                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | <u> </u>                                         | 4.3E-07                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.009              |
| Absorption Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       | <u></u>                 | ļ                          |                                     | 1                  |
| Absorption Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dermal            | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | l                  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Absorption        | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 3.1E-03                | mg/kg-day                       | I                     | 1                       |                            |                                     | 1                  |
| Chromium (total) VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 1.9E-05                | mg/kg-day                       | 2.9E-04               | mg/kg-day               |                            |                                     | l '                |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 6.6E-06                | mg/kg-day                       | 3.0E-05               | mg/kg-day               |                            |                                     |                    |
| Manganese (non-food) Vanadium S.5E+01 mg/kg 5.5E+01 mg/kg M 1.3E-05 mg/kg-day 1.4E-04 mg/kg-day N/A N/A 0.09  ORGANICS Dieldrin (Total)  Manganese (non-food) Mg/kg 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | М                                                | 6.7E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               |                            | i e                                 | I .                |
| Vanadium 5.5E+01 mg/kg 5.5E+01 mg/kg M 1.3E-05 mg/kg-day 1.4E-04 mg/kg-day N/A N/A 0.09  ORGANICS Dieldrin 6.8E-02 mg/kg 6.8E-02 mg/kg M 1.6E-07 mg/kg-day 4.5E-05 mg/kg-day N/A N/A 0.004  ORGANICS Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 7.2E-05                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | ì                          |                                     | 1                  |
| ORGANICS         6.8E-02         mg/kg         6.8E-02         mg/kg         M         1.6E-07         mg/kg-day         4.5E-05         mg/kg-day         N/A         N/A         0.004           (Total)         (Total)         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5 <td></td> <td>1 -</td> <td>5.5E+01</td> <td>mg/kg</td> <td>5.5E+01</td> <td>mg/kg</td> <td>М</td> <td>1,3E-05</td> <td>mg/kg-day</td> <td>1.4E-04</td> <td>mg/kg-day</td> <td>N/A</td> <td>N/A</td> <td>0.09</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 1 -                                 | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | М                                                | 1,3E-05                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.09               |
| Dieldrin 6.8E-02 mg/kg 6.8E-02 mg/kg M 1.6E-07 mg/kg-day 4.5E-05 mg/kg-day N/A N/A 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                 | <b>I</b>                            |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| (Total) 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                     | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                                | 1.6E-07                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.004              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                     |                        |                        |                       |                       |                                                  | ][                     |                                 |                       |                         |                            |                                     | 0.5                |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Chronic reference dose.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

Arsenic HQs shown on this table reflect the original risk assessment presented in the RI Report. These HQs were replaced with the HQs shown in Table 7.19, which reflect the expanded arsenic data set.

### TABLE 7.16.RME

### RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE ADULT RESIDENT

WP-14, Langley Air Force Base

Scenario Timeframe: Future

Medium: Surface Soil

Exposure Medium: Surface Soil

Exposure Point: Surface Soil at WP-14

Receptor Population: Resident

Receptor Fopulation. IX

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| ;                 | Aluminum                            | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | M                                                | 9.1E-03                | mg/kg-day                       | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.009              |
| ,                 | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 1.8E-05                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | A\N                                 | 0.06               |
| I                 | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 1.9E-05                | mg/kg-day                       | 3.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.006              |
| 1                 | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | M                                                | 2.0E-02                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.07               |
| I                 | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 2.1E-04                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
| ı                 | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | М                                                | 3.8E-05                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.005              |
| İ                 | ORGANICS                            |                        | İ                      |                       |                       |                                                  |                        |                                 | ,                     |                         |                            |                                     | 1                  |
| İ                 | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                                | 4.6E-08                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.0009             |
| 1                 | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | 0,2                |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| Absorption        | Aluminum ·                          | 1.3E+04                | mg/kg                  | 1.3E+04               | mg/kg                 | М                                                | 1.8E-03                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.007              |
| i                 | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                                | 1.1E-05                | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.04               |
| i                 | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                                | 3.9E-06                | mg/kg-day                       | 3.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.1                |
| •                 | Iron                                | 2.9E+04                | mg/kg                  | 2.9E+04               | mg/kg                 | M                                                | 3.9E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
| I                 | Manganese (non-food)                | 3.1E+02                | mg/kg                  | 3.1E+02               | mg/kg                 | М                                                | 4.2E-05                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.04               |
| ı                 | Vanadium                            | 5.5E+01                | mg/kg                  | 5.5E+01               | mg/kg                 | М                                                | 7.6E-06                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.05               |
| i                 | ORGANICS                            |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| i                 | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                                | 9.2E-08                | mg/kg-day_                      | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.002              |
| i                 | (Totai)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            | -                                   | 0.3                |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Chronic reference dose.

NOTE: Aluminum, Chromium (total), Iron, and Vanadium are in the total data set only for surface soil.

#### TABLE 7 17 RME

## RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE RESIDENT (CHILD)

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil

Exposure Point: Subsurface Soil at WP-14

Receptor Population: Resident

Receptor Age: Child

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.1                |
|                   | Aluminum                            | 1.5E+04                | mg/kg                  | 1.5E+04               | 1 1                   | М                                                | 9.5E-02                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 4                  |
|                   | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | 1 1                   | M                                                | 4.0E-04                | mg/kg-day                       | 3.0E-04<br>3.0E-03    | mg/kg-day               | N/A                        | N/A                                 | 0.07               |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | M                                                | 2.1E-04<br>2.6E-01     | mg/kg-day<br>mg/kg-day          | 3.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.9                |
|                   | Iron                                | 4.0E+04                | mg/kg                  | 4.0E+04               | mg/kg                 | M<br>M                                           | 1.9E-03                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.1                |
|                   | Manganese (non-food)                | 3.0E+02                | mg/kg                  | 3.0E+02               | mg/kg                 | M<br>M                                           | 4.3E-03                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.06               |
|                   | Vanadium                            | 6.7E+01                | mg/kg                  | 6.7E+01               | mg/kg                 | 163                                              | 4.56-54                | ing/kg-day                      | , .52 -5              |                         |                            | ļ                                   | 1                  |
| 1                 | ORGANICS                            |                        |                        | 4.05.00               |                       | M                                                | 3.1E-07                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.006              |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | iVI                                              | 1 - 3., 2.31           | mg/kg do/                       |                       | ,                       |                            |                                     | 3                  |
|                   | (Total)                             |                        |                        |                       | <del></del>           |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| Dermal            | INORGANICS                          | 4 55 .04               | mg/kg                  | 1.5E+04               | mg/kg                 | М                                                | 3.5E-03                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
| Absorption        | Aluminum                            | 1.5E+04<br>6.3E+01     | mg/kg                  | 6.3E+01               | mg/kg                 | M                                                | 4.7E-05                | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.2                |
|                   | Arsenic                             | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | M                                                | 7.5E-05                | mg/kg-day                       | 3.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.25               |
|                   | Chromium (total) VI                 | 4.0E+04                | mg/kg                  | 4.0E+04               | mg/kg                 | M                                                | 9.4E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.03               |
|                   | Iron                                | 3.0E+02                | mg/kg                  | 3.0E+02               | mg/kg                 | М                                                | 7.0E-05                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.07               |
|                   | Manganese (non-food)                | 6.7E+01                | mg/kg                  | 6.7E+01               | mg/kg                 | М                                                | 1.6E-05                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.1                |
|                   | Vanadium                            | 0.7 = 101              | ing///g                | 1                     |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
|                   | ORGANICS                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | М                                                | 1.1E-07                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.002              |
|                   | Dieldrin (Totel).                   | 7.02.02                | 9/9                    | 1                     | 1                     |                                                  | 1                      |                                 |                       |                         |                            |                                     | 0.6                |
|                   | (Total)                             |                        |                        | <del></del>           | <del></del>           | <u>.                                    </u>     |                        | Total H                         | azard Index           | Across All              | Exposure Rou               | ites/Pathways                       | 3                  |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

(2) Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Iron, and Manganese.

NOTE: Aluminum, Chromium (total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

Arsenic HQs shown on this table reflect the original risk assessment presented in the RI Report. These HQs were replaced with the HQs shown in Table 7.19, which reflect the expanded arsenic data set.

### TABLE 7.18.RME

## RME CALCULATION OF NON-CANCER HAZARDS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE RESIDENT (ADULT)

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil
Exposure Point: Subsurface Soil at WP-14

Receptor Population: Resident

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Reference<br>Concentration | Reference<br>Concentration<br>Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|----------------------------|-------------------------------------|--------------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
|                   | Aluminum                            | 1.5E+04                | mg/kg                  | 1.5E+04               | mg/kg                 | M                                                | 1.0E-02                | mg/kg-day                       | 1.0E+00               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
| 1                 | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | М                                                | 4.3E-05                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.1                |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | M                                                | 2.2E-05                | mg/kg-day                       | 3.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.007              |
|                   | Iron                                | 4.0E+04                | mg/kg                  | 4.0E+04               | mg/kg                 | М                                                | 2.7E-02                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.09               |
|                   | Manganese (non-food)                | 3.0E+02                | mg/kg                  | 3.0E+02               | mg/kg                 | М                                                | 2.1E-04                | mg/kg-day                       | 2.0E-02               | mg/kg-day               | N/A                        | N/A                                 | 0.01               |
|                   | Vanadium                            | 6.7E+01                | mg/kg                  | 6.7E+01               | mg/kg                 | M                                                | 4.6E-05                | mg/kg-day                       | 7.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.007              |
|                   | ORGANICS                            |                        |                        |                       |                       |                                                  |                        | ţ                               |                       |                         |                            |                                     | ]                  |
| ii .              | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | M                                                | 3.3E-08                | mg/kg-day                       | 5.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.0007             |
|                   | (Total)                             |                        |                        |                       |                       |                                                  |                        |                                 |                       |                         |                            |                                     | .0.3               |
| Dermal            | INORGANICS                          |                        |                        |                       | !                     |                                                  |                        |                                 |                       |                         |                            |                                     |                    |
| Absorption        | Aluminum                            | 1.5E+04                | mg/kg                  | 1.5E+04               | mg/kg                 | М                                                | 2.0E-03                | mg/kg-day                       | 2.7E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.008              |
|                   | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | М                                                | 2.7E-05                | mg/kg-day                       | 2.9E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.1                |
| li                | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | М                                                | 4.4E-06                | mg/kg-day                       | 3.0E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.15               |
|                   | Iron                                | 4.0E+04                | mg/kg                  | 4.0E+04               | mg/kg                 | М                                                | 5.5E-03                | mg/kg-day                       | 3.0E-01               | mg/kg-day               | N/A                        | N/A                                 | 0.02               |
| ]                 | Manganese (non-food)                | 3.0E+02                | mg/kg                  | 3.0E+02               | mg/kg                 | M                                                | 4.1E-05                | mg/kg-day                       | 1.0E-03               | mg/kg-day               | N/A                        | N/A                                 | 0.04               |
| li .              | Vanadium                            | 6.7E+01                | mg/kg                  | 6.7E+01               | mg/kg                 | M                                                | 9.2E-05                | mg/kg-day                       | 1.4E-04               | mg/kg-day               | N/A                        | N/A                                 | 0.07               |
|                   | ORGANICS                            |                        |                        |                       |                       |                                                  | }                      |                                 |                       |                         |                            |                                     |                    |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | M                                                | 6.6E-08                | mg/kg-day                       | 4.5E-05               | mg/kg-day               | N/A                        | N/A                                 | 0.001              |
| ll .              | (Total)                             |                        |                        |                       |                       |                                                  | L                      | <u> </u>                        |                       |                         |                            |                                     | 0.4                |
| <del></del>       |                                     |                        |                        |                       |                       |                                                  | -                      | Total Haz                       | ard Index             | Across All              | Exposure Rou               | tes/Pathwavs                        | 0.6                |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for hazard calculation.

NOTE: Aluminum, Chromium (total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

<sup>(2)</sup> Subchronic reference dose, except for the following analytes which used Chronic reference dose: Aluminum, Iron, and Manganese.

### **Table 7.19**

# Calculation of Arsenic Non-Cancer Hazards Reasonable Maximum Exposure Risk Re-Evaluation for ERP Site WP-14, Langley AFB, VA

Scenario Timeframe: Future Medium: Future Surface Soil

Exposure Media: Combined surface and subsurface soil

Exposure Point: WP-14 Future Surface Soil
Direct Contact Exposure Pathway: Residential use

Receptor Population: Child Resident

Receptor Age: Child

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Exposure<br>Medium<br>EPC<br>Value | Exposure<br>Medium<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|------------------------------------|------------------------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|--------------------|
| Ingestion         | Arsenic                             | 2.69E+01               | mg/kg                  | 2.69E+01                           | mg/kg                              | М                                                | 3.4E-04                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | 1.1                |
|                   | Exposure Route Total                |                        |                        |                                    |                                    |                                                  |                        |                                 |                       |                         | 1.1                |
| Dermal<br>Contact | Arsenic                             | 2.69E+01               | mg/kg                  | 2.69E+01                           | mg/kg                              | М                                                | 3.1E-05                | mg/kg-day                       | 3.0E-04               | mg/kg-day               | 0.10               |
|                   | Exposure Route Total                |                        |                        |                                    |                                    |                                                  | -                      |                                 | -                     |                         | 0.10               |
|                   |                                     |                        |                        |                                    |                                    |                                                  |                        |                                 |                       |                         | 1.2                |

(1) Medium-Specific (M) EPC selected for intake calculation.

(2) Chronic.

### **Table 7.20**

# Calculation of Manganese Non-Cancer Hazards Reasonable Maximum Exposure Risk Re-Evaluation for ERP Site WP-14, Langley AFB, VA

Scenario Timeframe: Future

Medium: Total Soil

Exposure Media: Soil and Air

Exposure Point: Soil and Ambient Air

Direct Contact Exposure Pathway: direct contact and soil-to-air

Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Exposure<br>Medium<br>EPC<br>Value | Exposure<br>Medium<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Non-Cancer) | Intake<br>(Non-Cancer)<br>Units | Reference<br>Dose (2) | Reference<br>Dose Units | Hazard<br>Quotient |
|-------------------|-------------------------------------|------------------------|------------------------|------------------------------------|------------------------------------|--------------------------------------------------|------------------------|---------------------------------|-----------------------|-------------------------|--------------------|
| _                 | Manganese Exposure Route Total      | 4.2E+02                | mg/kg                  | 4.2E+02                            | mg/kg                              | М                                                | 1.4E-03                | mg/kg-day                       | 4.7E-02               | mg/kg-day               | 0.029<br>0.029     |
|                   | Manganese                           | 4.2E+02                | mg/kg                  | 4.2E+02                            | mg/kg                              | М                                                | 4.1E-05                | mg/kg-day                       | 1.9E-03               | mg/kg-day               | 0.022              |
|                   | Exposure Route Total                |                        |                        |                                    |                                    |                                                  |                        |                                 |                       |                         | 0.022              |
| Inhalation        | Manganese  Exposure Route Total     | 4.2E+02                | mg/kg                  | 6.3E-06                            | mg/m3                              | Е                                                | 1.2E-06                | mg/kg-day                       | 1.4E-05               | mg/kg-day               | 0.086<br>0.086     |
| <u>-</u>          | •                                   |                        |                        |                                    |                                    |                                                  |                        |                                 |                       |                         | 0.14               |

(1) Medium-Specific (M) or Exposure Medium-Specific (E) EPC selected for intake calculation.

(2) Subchronic RfD not available for manganese. Therefore, used chronic RfD.

### Appendix A.8

RAGS Part D Table 8's Calculation of Cancer Risks Reasonable Maximum

# TABLE 8.1.RME RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE OTHER WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

Exposure Point: Surface Soil at WP-14 Receptor Population: Other Worker

Receptor Age: Adult

| Exposure<br>Route    | Chemical<br>of Potential<br>Concern                                            | Medium<br>EPC<br>Value                   | Medium<br>EPC<br>Units           | Route<br>EPC<br>Value                    | Route<br>EPC<br>Units            | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer)                       | Intake<br>(Cancer)<br>Units                      | Cancer Slope<br>Factor            | Cancer Slope<br>Factor Units                   | Cancer<br>Risk                             |
|----------------------|--------------------------------------------------------------------------------|------------------------------------------|----------------------------------|------------------------------------------|----------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------------|
| Ingestion            | INORGANICS Arsenic Chromium (total) VI ORGANICS Benz(a)pyrene Dieldrin (Total) | 2.6E+01<br>2.8E+01<br>1.1E-01<br>6.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 2.8E+01<br>2.8E+01<br>1.1E-01<br>6.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | M<br>M<br>M                                 | 4.6E-07<br>5.0E-07<br>2.0E-09<br>1.2E-09 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.5E+00<br><br>7.3E+00<br>1.6E+01 | mg/kg-day 1<br>—<br>mg/kg-day 1<br>mg/kg-day 1 | 6.8E-07<br><br>1.5E-08<br>1.9E-08<br>7E-07 |
| Dermal<br>Absorption | INORGANICS Arsenic Chromium (total) VI ORGANICS Benz(a)pyrene Dieldrin (Total) | 2.6E+01<br>2.8E+01<br>1.1E-01<br>6.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 2.6E+01<br>2.8E+01<br>1.1E-01<br>6.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | M<br>M<br>M                                 | 2.3E-07<br>7.9E-08<br>3.2E-09<br>1.9E-09 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.6E+00<br><br><br>1.8E+01        | mg/kg-day 1                                    | 3.7E-07<br><br>3.4E-08<br>4E-07            |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Benz(a)pyrene and Chromium (total) are in the total data set only for surface soil.

#### TABLE 82 RME

### RME CALCULATION OF CANCER RISKS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE OTHER WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil
Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Other Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern                           | Medium<br>EPC<br>Value        | Medium<br>EPC<br>Units  | Route<br>EPC<br>Value (2)     | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer)            | Intake<br>(Cancer)<br>Units         | Cancer Slope<br>Factor        | Cancer Slope<br>Factor Units                                                  | Cancer<br>Risk                |
|-------------------|---------------------------------------------------------------|-------------------------------|-------------------------|-------------------------------|-----------------------|---------------------------------------------|-------------------------------|-------------------------------------|-------------------------------|-------------------------------------------------------------------------------|-------------------------------|
|                   | INORGANICS Arsenic Chromium (total) VI ORGANICS Benz(a)pyrene | 2.6E+01<br>2.8E+01<br>1.1E-01 | mg/kg<br>mg/kg<br>mg/kg | 2.6E-06<br>2.8E-06<br>3.2E-09 | mg/m³<br>mg/m³        | R<br>R                                      | 3.6E-08<br>4.0E-08<br>4.5E-11 | mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.5E+01<br>4.2E+01<br>3.1E+00 | mg/kg-day <sup>-1</sup><br>mg/kg-day <sup>-1</sup><br>mg/kg-day <sup>-1</sup> | 5.5E-07<br>1.7E-06<br>1.4E-10 |
|                   | Dieldrin (Total)                                              | 6.8E-02                       | mg/kg                   | 1,5E-08                       | mg/m³                 | R                                           | 2.1E-10                       | mg/kg-day                           | 1.6E+01                       | mg/kg-day 1                                                                   | 3.4E-09<br>2E-06              |

Total Risk Across All Exposure Routes/Pathways 2E-06

NOTE: Benz(a)pyrene and Chromium (total) are in the total data set only for surface soil.

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table. EPA Region III calculated cancer risk from vapors and the results ranged from 5E-09 to 4E-08, therefore exposure to vapors is less conservative than exposure to particulates.

## TABLE 8.3.RME RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE OTHER WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil

Exposure Point: Subsurface Soil at WP-14

Receptor Population: Other Worker

Receptor Age: Adult

| Exposure<br>Route    | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk   |
|----------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|------------------|
| Ingestion            | INORGANICS                          | 0.25.04                |                        | 6.3E+01               | mg/kg                 | М                                           | 1.1E-06            | mg/kg-day                   | 1.5E+00                | mg/kg-day -1                 | 1.6E-06          |
|                      | Arsenic<br>Chromium (total) VI      | 6.3E+01<br>3.2E+01     | mg/kg<br>mg/kg         | 3.2E+01               | mg/kg                 | M                                           | 5.6E-07            | mg/kg-day                   |                        |                              |                  |
| i                    | ORGANICS                            | 4.4E-02                | mg/kg                  | 4.4E-02               | mg/kg                 | M                                           | 7.7E-10            | mg/kg-day                   | 7.3E+00                | mg/kg-day                    | 5.6E-09          |
| i)                   | Benz(a)pyrene<br>Dieldrin           | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | М                                           | 8.4E-10            | mg/kg-day                   | 1,6E+01                | mg/kg-day                    | 1.3E-08          |
|                      | (T)                                 | otal)                  |                        |                       |                       |                                             |                    | ļ                           | _                      |                              | 2E-06            |
| Dermal<br>Absorption | INORGANICS<br>Arsenic               | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | М                                           | 5.6E-07            | mg/kg-day                   | 1.6E+00                | mg/kg-day -1                 | 8.8E-07          |
| ,                    | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | М                                           | 9.0E-08            | mg/kg-day                   |                        |                              |                  |
| 11                   | ORGANICS Benz(a)pyrene              | 4.4E-02                | mg/kg                  | 4.4E-02               | mg/kg                 | М                                           | 1.2E-09            | mg/kg-day                   |                        |                              |                  |
|                      | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | M                                           | 1,3E-09            | mg/kg-day                   | 1.8E+01                | mg/kg-day 1                  | 2.4E-08<br>9E-07 |
|                      | (T)                                 | otal)                  | 1                      |                       | <u> </u>              |                                             | <u> </u>           | Total Risk Ad               | ross All Exposure      | Routes/Pathways              |                  |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Chromium (total) is in the total data set only for subsurface soil.

### TABLE 8.4.RME

## RME CALCULATION OF CANCER RISKS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE OTHER WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil
Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Other Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value (2) | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|------------------------|---------------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Inhalation        | INORGANICS                          |                        |                        |                           |                       |                                             |                    |                             |                        |                              |                |
|                   | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E-06                   | mg/m³                 | R                                           | 8.8E-08            | mg/kg-day                   | 1.5E+01                | mg/kg-day '                  | 1.3E-06        |
| •                 | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E-06                   | mg/m³                 | R                                           | 4.5E-08            | mg/kg-day                   | 4.2E+01                | mg/kg-day <sup>-1</sup>      | 1.9E-06        |
|                   | ORGANICS                            |                        |                        |                           |                       |                                             |                    |                             |                        |                              |                |
|                   | Benz(a)pyrene                       | 4.4E-02                | mg/kg                  | 1.2E-09                   | mg/m³                 | R                                           | 1.7E-11            | mg/kg-day                   | 3.1E+00                | mg/kg-day -1                 | 5.4E-11        |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 1.1E-08                   | mg/m³                 | R                                           | 1.5E-10            | mg/kg-day                   | 1.6E+01                | mg/kg-day 1                  | 2.5E-09        |
| ll .              | (Total)                             |                        |                        |                           |                       |                                             |                    |                             |                        |                              | 3E-06          |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table. EPA Region III calculated cancer risk from vapors and the results ranged from 5E-09 to 4E-08, therefore exposure to vapors is less conservative than exposure to particulates.

# TABLE 8.5.RME RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE CONSTRUCTION WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

Exposure Point: Surface Soil at WP-14

Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units                        | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|-----------------------------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Ingestion         | INORGANICS                          |                        |                                               |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Arsenic                             | 2.6E÷01                | mg/kg                                         | 2.6E+01               | mg/kg                 | M                                           | 2.9E-07            | mg/kg-day                   | 1.5E+00                | mg/kg-day <sup>-1</sup>      | 4.3E-07        |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                                         | 2.8E+01               | mg/kg                 | M                                           | 3.1E-07            | mg/kg-day                   |                        | -                            | -              |
|                   | ORGANICS                            |                        |                                               |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Benz(a)pyrene                       | 1.1E-01                | mg/kg                                         | 1,1E-01               | mg/kg                 | M                                           | 1.3E-09            | mg/kg-day                   | 7.3E+00                | mg/kg-day -1                 | 9.2E-09        |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                                         | 6.8E-02               | mg/kg                 | М                                           | 7.5E-10            | mg/kg-day                   | 1.6E+01                | mg/kg-day -1                 | 1.2E-08        |
|                   | (Total                              | )                      |                                               |                       |                       |                                             |                    |                             |                        |                              | 5E-07          |
| Dermal            | INORGANICS                          |                        |                                               |                       |                       |                                             |                    |                             |                        |                              |                |
| Absorption        | Arsenic                             | 2.6E+01                | mg/kg                                         | 2.6E+01               | mg/kg                 | M                                           | 4.7E-08            | mg/kg-day                   | 1.6E+00                | mg/kg-day -1                 | 7.4E-08        |
| ,                 | Chromium (total) VI                 | 2.8E+01                | mg/kg                                         | 2.8E+01               | mg/kg                 | М                                           | 1.6E-08            | mg/kg-day                   |                        | -                            | -              |
|                   | ORGANICS                            |                        |                                               |                       |                       |                                             |                    |                             |                        |                              |                |
| •                 | Benz(a)pyrene                       | 1.1E-01                | mg/kg                                         | 1.1E-01               | mg/kg                 | М                                           | 6.4E-10            | mg/kg-day                   |                        |                              |                |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                                         | 6.8E-02               | mg/kg                 | М                                           | 3.8E-10            | mg/kg-day                   | 1.8E+01                | mg/kg-day -1                 | 6.7E-09        |
|                   | (Total                              |                        | , <u>, , , , , , , , , , , , , , , , , , </u> |                       |                       |                                             |                    |                             |                        |                              | 8E-08          |
|                   | <u> </u>                            |                        | <u> </u>                                      |                       |                       |                                             |                    | Total Risk Acr              | ross All Exposure      | Routes/Pathways              | 5E-07          |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Benz(a)pyrene and Chromium (total) are in the total data set only for surface soil.

#### TABLE 8 6 RME

### RME CALCULATION OF CANCER RISKS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE CONSTRUCTION WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Construction Worker

Receptor Age: Adult

|                                                   |          | Value              | Units          | Value (2)          | Units          | Calculation (1) |                    | Units                  | Factor             |                                                    | Risk                        |
|---------------------------------------------------|----------|--------------------|----------------|--------------------|----------------|-----------------|--------------------|------------------------|--------------------|----------------------------------------------------|-----------------------------|
| Inhalation INORGANICS Arsenic Chromium (total) Vi |          | 2.6E+01<br>2.8E+01 | mg/kg<br>mg/kg | 1.5E-05<br>1.7E-05 | mg/m³<br>mg/m³ | R<br>R          | 4.3E-08<br>4.7E-08 | mg/kg-day<br>mg/kg-day | 1.5E+01<br>4.2E+01 | mg/kg-day <sup>-1</sup><br>mg/kg-day <sup>-1</sup> | 6.5E-07<br>2.0E-06          |
| ORGANICS Benz(a)pyrene Dieldrin                   | <u> </u> | 1.1E-01<br>6.8E-02 | mg/kg<br>mg/kg | 3.2E-09<br>1.5E-08 | mg/m³<br>mg/m³ | R<br>R          | 9.0E-12<br>4.3E-11 | mg/kg-day<br>mg/kg-day | 3.1E+00<br>1.6E+01 | mg/kg-day <sup>-1</sup><br>mg/kg-day <sup>-1</sup> | 2.8E-11<br>6.9E-10<br>3E-06 |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table. EPA Region III calculated cancer risk from vapors and the results ranged from 5E-09 to 4E-08, therefore exposure to vapors is less conservative than exposure to particulates.

### TABLE 8.7.RME

### RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE CONSTRUCTION WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil

Exposure Point: Subsurface Soil at WP-14

Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | intake<br>(Cancer)<br>Units | Cancer Stope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Ingestion         | INORGANICS                          | 2.05.04                |                        | 0.05.04               |                       |                                             | 0.05.07            |                             | 4.55.00                |                              | 4.05.00        |
|                   | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | M                                           | 6.9E-07            | mg/kg-day                   | ,1.5E+00               | mg/kg-day -1                 | 1.0E-06        |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | M                                           | 3.6E-07            | mg/kg-day                   |                        | -                            | -              |
|                   | ORGANICS                            |                        |                        | 1                     |                       |                                             |                    | . ·                         |                        |                              |                |
|                   | Benz(a)pyrene                       | 4.4E-02                | mg/kg                  | 4.4E-02               | mg/kg                 | М                                           | 4.8E-10            | mg/kg-day                   | 7.3E+00                | mg/kg-day 1                  | 3.5E-09        |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | M                                           | 5.3E-10            | mg/kg-day                   | 1.6E+01                | mg/kg-day 1                  | 8.5E-09        |
|                   | (                                   | Total)                 | <u> </u>               |                       |                       |                                             |                    |                             |                        | <u> </u>                     | 1E-06          |
| Dermal            | INORGANICS                          |                        | ]                      |                       |                       |                                             |                    |                             |                        |                              |                |
| Absorption        | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | M                                           | 1.1E-07            | mg/kg-day                   | 1.6E+00                | mg/kg-day -1                 | 1.8E-07        |
| ,                 | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | М                                           | 1.8E-08            | mg/kg-day                   |                        |                              | -              |
|                   | ORGANICS                            |                        |                        |                       |                       |                                             |                    |                             |                        |                              | 1              |
|                   | Benz(a)pyrene                       | 4.4E-02                | mg/kg                  | 4.4E-02               | mg/kg                 | M                                           | 2.4E-10            | mg/kg-day                   |                        | _                            | -              |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | m <b>g</b> /kg        | М                                           | 2.7E-10            | mg/kg-day                   | 1.8E+01                | mg/kg-day -1                 | 4.8E-09        |
|                   |                                     | Total)                 |                        |                       |                       |                                             |                    |                             |                        |                              | 2E-07          |
|                   |                                     |                        |                        |                       |                       |                                             |                    | Total Risk Ac               | ross All Exposure      | Routes/Pathways              | 1E-06          |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Chromium (total) is in the total data set only for subsurface soil.

### TABLE 8 8 RMF RME CALCULATION OF CANCER RISKS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE CONSTRUCTION WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Construction Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern                                    | Medium<br>EPC<br>Value                   | Medium<br>EPC<br>Units           | Route<br>EPC<br>Value (2)                | Route<br>EPC<br>Units            | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer)                       | Intake<br>(Cancer)<br>Units                      | Cancer Slope<br>Factor                   | Cancer Slope<br>Factor Units                                 | Cancer<br>Risk                                    |
|-------------------|------------------------------------------------------------------------|------------------------------------------|----------------------------------|------------------------------------------|----------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|
| Inhalation        | INORGANICS Arsenic Chromium (total) VI ORGANICS Benz(a)pyrene Dieldrin | 6 3E+01<br>3.2E+01<br>4.4E-02<br>4.8E-02 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 3.7E-05<br>1.9E-05<br>1.2E-09<br>1.1E-08 | mg/m³<br>mg/m³<br>mg/m³<br>mg/m² | R<br>R<br>R                                 | 1.0E-07<br>5.3E-08<br>3.5E-12<br>3.1E-11 | mg/kg-day<br>mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.5E+01<br>4.2E+01<br>3.1E+00<br>1.6E+01 | mg/kg-day -1<br>mg/kg-day -1<br>mg/kg-day -1<br>mg/kg-day -1 | 1.6E-06<br>2.2E-06<br>1.1E-11<br>4.9E-10<br>4E-06 |
|                   | (Total)                                                                | <del></del> :                            |                                  |                                          | <u> </u>                         | <u> </u>                                    | <u> </u>                                 | Total Risk Acro                                  | oss All Exposure                         | Routes/Pathways                                              |                                                   |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table. EPA Region III calculated cancer risk from vapors and the results ranged from 5E-09 to 4E-08, therefore exposure to vapors is less conservative than exposure to particulates.

### TABLE 8.9.RME

## RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE INDUSTRIAL WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

Exposure Point: Surface Soil at WP-14

Receptor Population: Industrial Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Ingestion         | INORGANICS                          |                        |                        | = 0                   | -                     |                                             |                    |                             |                        |                              |                |
| d .               | Arsenic .                           | 2.6E÷01                | mg/kg                  | 2.6E+01               | mg/kg                 | M                                           | 1.5E-08            | mg/kg-day                   | 1.5E+00                | mg/kg-day -1                 | 2.2E-08        |
| ı                 | Chromium (total) VI                 | 2.8E+01                | m <b>g</b> /kg         | 2.8E+01               | mg/kg                 | M                                           | 1.6E-08            | mg/kg-day                   |                        | -                            |                |
| A                 | ORGANICS                            |                        |                        |                       |                       |                                             |                    |                             |                        |                              | i 1            |
|                   | Benz(a)pyrene                       | 1.1E-01                | mg/kg                  | 1.1E-01               | mg/kg                 | M                                           | 6.4E-11            | mg/kg-day                   | 7.3E+00                | mg/kg-day -1                 | 4.7E-10        |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                           | 3.8E-11            | mg/kg-day                   | 1.6E+01                | mg/kg-day -1                 | 6.0E-10        |
| ł                 | (Total)                             |                        |                        |                       |                       |                                             |                    |                             |                        |                              | 2E-08          |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              | i              |
| Absorption        | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                           | 3.7E-09            | mg/kg-day                   | 1.6E+00                | mg/kg-day <sup>-1</sup>      | 5.9E-09        |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | M                                           | 1.3E-09            | mg/kg-day                   |                        | -                            |                |
| l                 | ORGANICS                            |                        |                        |                       |                       |                                             |                    |                             |                        |                              | i l            |
|                   | Benz(a)pyrene                       | 1.1E-01                | mg/kg                  | 1.1E-01               | mg/kg                 | M                                           | 5.1E-11            | mg/kg-day                   |                        | -                            | -              |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                           | 3.0E-11            | mg/kg-day                   | 1.8E+01                | mg/kg-day -1                 | 5.4E-10        |
|                   | (Total)                             |                        |                        |                       |                       |                                             |                    |                             |                        |                              | 6E-09          |
|                   |                                     |                        |                        |                       |                       |                                             |                    | Total Risk Acr              | oss All Exposure       | Routes/Pathways              | 3E-08          |

<sup>(1)</sup> Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Benz(a)pyrene and Chromium (total) are in the total data set only for surface soil.

### TABLE 8.10.RME RME CALCULATION OF CANCER RISKS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE INDUSTRIAL WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Industrial Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern     | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value (2) | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units                       | Cancer<br>Risk              |
|-------------------|-----------------------------------------|------------------------|------------------------|---------------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|----------------------------------------------------|-----------------------------|
| Inhalation        | INORGANICS Arsenic Chromium (total) VI  | 2.6E+01<br>2.8E+01     | mg/kg<br>mg/kg         | 1.5E-05<br>1.7E-05        | mg/m³<br>mg/m³        | R<br>R                                      | 3.4E-09<br>3.7E-09 | mg/kg-day<br>mg/kg-day      | 1,5E+01<br>4,2E+01     | mg/kg-day <sup>-1</sup><br>mg/kg-day <sup>-1</sup> | 5.2E-08<br>1.6E-07          |
|                   | ORGANICS Benz(a)pyrene Dieldrin (Total) | 1.1E-01<br>6.8E-02     | mg/kg<br>mg/kg         | 3.2E-09<br>1.5E-08        | mg/m³<br>mg/m³        | R<br>R                                      | 7.2E-13<br>3.4E-12 | mg/kg-day<br>mg/kg-day      | 3.1E+00<br>1.6E+01     | mg/kg-day -1<br>mg/kg-day -1                       | 2.2E-12<br>5.5E-11<br>2E-07 |
| L                 | (Total)                                 |                        | <u> </u>               | <u> </u>                  | L                     | <u> </u>                                    | <u> </u>           | Total Risk Acre             | oss All Exposure       | Routes/Pathways                                    | 2E-07                       |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

<sup>(2)</sup> Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table. EPA Region III calculated cancer risk from vapors and the results ranged from 5E-09 to 4E-08, therefore exposure to vapors is less conservative than exposure to particulates.

# TABLE 8.11.RME RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE INDUSTRIAL WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil

Exposure Point: Subsurface Soil at WP-14

Receptor Population: Industrial Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        | 1                            |                |
|                   | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | M                                           | 3.5E-08            | mg/kg-day                   | 1.5E+00                | mg/kg-day -1                 | 5.3E-08        |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | M                                           | 1.8E-08            | mg/kg-day                   |                        | -                            | -              |
|                   | ORGANICS                            |                        |                        |                       |                       | -                                           |                    |                             |                        |                              |                |
| l                 | Benz(a)pyrene                       | 4.4E-02                | mg/kg                  | 4.4E-02               | mg/kg                 | М                                           | 2.4E-11            | mg/kg-day                   | 7.3E+00                | mg/kg-day <sup>-1</sup>      | 1.8E-10        |
| Á                 | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | М                                           | 2.7E-11            | mg/kg-day                   | 1.6E+01                | mg/kg-day -1                 | 4.3E-10        |
| i                 | (Total)                             |                        |                        |                       |                       |                                             |                    |                             |                        |                              | 5E-08          |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
| Absorption        | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | М                                           | 9.0E-09            | mg/kg-day                   | 1.6E+00                | mg/kg-day ·1                 | 1.4E-08        |
| i i               | Chromium (total) VI                 | 3.2E+01                | rng/kg                 | 3.2E+01               | mg/kg                 | М                                           | 1.4E-09            | mg/kg-day                   |                        | -                            |                |
| J                 | ORGANICS                            |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
| 1                 | Benz(a)pyrene                       | 4.4E-02                | mg/kg                  | 4.4E-02               | mg/kg                 | М                                           | 2.0E-11            | mg/kg-day                   |                        | _                            |                |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | м                                           | 2.2E-11            | mg/kg-day                   | 1.8E+01                | mg/kg-day 1                  | 3.8E-10        |
| ı                 | (Totai)                             |                        |                        |                       |                       |                                             |                    |                             |                        |                              | 1E-08          |
|                   |                                     |                        | <del></del>            |                       |                       |                                             |                    | Total Risk Ac               | ross All Exposure      | Routes/Pathways              | 7E-08          |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Chromium (total) is in the total data set only for subsurface soil.

### TABLE 8.12.RME RME CALCULATION OF CANCER RISKS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE INDUSTRIAL WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Industrial Worker

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern                           | Medium<br>EPC<br>Value        | Medium<br>EPC<br>Units  | Route<br>EPC<br>Value (2)     | Route<br>EPC<br>Units   | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer)            | Intake<br>(Cancer)<br>Units         | Cancer Slope<br>Factor        | Cancer Slope<br>Factor Units                 | Cancer<br>Risk                |
|-------------------|---------------------------------------------------------------|-------------------------------|-------------------------|-------------------------------|-------------------------|---------------------------------------------|-------------------------------|-------------------------------------|-------------------------------|----------------------------------------------|-------------------------------|
| Inhalation        | INORGANICS Arsenic Chromium (total) VI ORGANICS Benz(a)pyrene | 6 3E+01<br>3.2E+01<br>4.4E-02 | mg/kg<br>mg/kg<br>mg/kg | 3.7E-05<br>1.9E-05<br>1.2E-09 | mg/m³<br>mg/m³<br>mg/m³ | R<br>R<br>R                                 | 8.2E-09<br>4.2E-09<br>2.8E-13 | mg/kg-day<br>mg/kg-day<br>mg/kg-day | 1.5E+01<br>4.2E+01<br>3.1E+00 | mg/kg-day -1<br>mg/kg-day -1<br>mg/kg-day -1 | 1.2E-07<br>1.8E-07<br>8.6E-13 |
|                   | Dieldrin (Total)                                              | 4.8E-02                       | mg/kg                   | 1.1E-08                       | mg/m³                   | R                                           | 2.5E-12                       | mg/kg-day                           | 1.6E+01                       | mg/kg-day 1 Routes/Pathways                  | 3.9E-11<br>3E-07<br>3E-07     |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

<sup>(2)</sup> Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table. EPA Region III calculated cancer risk from vapors and the results ranged from 5E-09 to 4E-08, therefore exposure to vapors is less conservative than exposure to particulates.

### TABLE 8.13.RME

## RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE TRESPASSER/VISITOR WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil

Exposure Point: Surface Soil at WP-14

Receptor Population: Trespasser/Visitor

Receptor Age: Child

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | M                                           | 2.4E-07            | mg/kg-day                   | 1.5E+00                | mg/kg-day <sup>-1</sup>      | 3.6E-07        |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | M                                           | 2.6E-07            | mg/kg-day                   |                        |                              |                |
|                   | ORGANICS                            |                        |                        |                       |                       |                                             | ł                  |                             |                        |                              |                |
|                   | Benz(a)pyrene                       | 1,1E-01                | mg/kg                  | 1.1E-01               | mg/kg                 | M                                           | 1.1E-09            | mg/kg-day                   | 7.3E+00                | mg/kg-day -1                 | 7.7E-09        |
| ļ                 | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                           | 6.3E-10            | mg/kg-day                   | 1.6E+01                | mg/kg-day 1                  | 1.0E-08        |
|                   | (Total)                             |                        |                        |                       |                       |                                             |                    |                             |                        |                              | 4E-07          |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
| Absorption        | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | M                                           | 3.0E-07            | mg/kg-day                   | 1.6E+00                | mg/kg-day 1                  | 4.7E-07        |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | M                                           | 1.0E-07            | mg/kg-day                   |                        | -                            |                |
|                   | ORGANICS                            |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Benz(a)pyrene                       | 1.1E-01                | mg/kg                  | 1.1E-01               | mg/kg                 | M                                           | 4.1E-09            | mg/kg-day                   |                        | -                            | - :            |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                           | 2.4E-09            | mg/kg-day                   | 1.8E+01                | mg/kg-day -1                 | 4.3E-08        |
|                   | (Total)                             |                        |                        |                       |                       |                                             |                    |                             |                        |                              | 5E-07          |
| <del></del>       |                                     |                        |                        |                       |                       |                                             |                    | Total Risk Ac               | ross All Exposure      | Routes/Pathways              | 9E-07          |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation. NOTE: Benz(a)pyrene and Chromium (total) are in the total data set only for surface soil.

### TABLE 8.14.RME RME CALCULATION OF CANCER RISKS: INHALATION OF AMBIENT AIR ABOVE WP-14 (PARTICULATES) FOR THE TRESPASSER/VISITOR WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Surface Soil Exposure Medium: Air

Exposure Point: Ambient air above WP-14 (particulates)

Receptor Population: Trespasser/Visitor

Receptor Age: Child

| Exposure<br>Route | Chemical<br>of Potential<br>Concern     | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value (2) | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units                       | Cancer<br>Risk              |
|-------------------|-----------------------------------------|------------------------|------------------------|---------------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|----------------------------------------------------|-----------------------------|
| Inhalation        | INORGANICS Arsenic Chromium (total) VI  | 2.6E+01<br>2.8E+01     | mg/kg<br>mg/kg         | 2.6E-06<br>2.8E-06        | mg/m³<br>mg/m³        | R<br>R                                      | 1.7E-08<br>1.9E-08 | mg/kg-day<br>mg/kg-day      | 1.5E+01<br>4.2E+01     | mg/kg-day <sup>-1</sup><br>mg/kg-day <sup>-3</sup> | 2.6E-07<br>7.8E-07          |
|                   | ORGANICS Benz(a)pyrene Dieldrin (Total) | 1 1E-01<br>6.8E-02     | mg/kg<br>mg/kg         | 3.2E-09<br>1.5E-08        | mg/m³<br>mg/m³        | R<br>R                                      | 2.1E-11<br>1.0E-10 | mg/kg-day<br>mg/kg-day      | 3.1E+00<br>1.6E+01     | mg/kg-day <sup>-1</sup><br>mg/kg-day <sup>-1</sup> | 6.6E-11<br>1.6E-09<br>1E-06 |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

(2) Particulate emission factor was used to calculate the route EPC. None of the COPCs are considered volatiles according to Region III RBC table. EPA Region III calculated cancer risk from vapors and the results ranged from 5E-09 to 4E-08, therefore exposure to vapors is less conservative than exposure to particulates.

### TABLE 8.15.RME RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE CHILD RESIDENT WP-14, Langley Air Force Base

Scenario Timeframe: Future Medium: Surface Soil

Exposure Medium: Surface Soil Exposure Point: Surface Soil at WP-14

Receptor Population: Resident

Receptor Age: Child

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Arsenic                             | 2.6E÷01                | mg/kg                  | 2.6E+01               | mg/kg                 | М                                           | 1.4E-05            | mg/kg-day                   | 1.5E+00                | mg/kg-day 1                  | 2.1E-05        |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | M                                           | 1.6E-05            | mg/kg-day                   | -                      | -                            |                |
|                   | ORGANICS                            |                        |                        |                       |                       |                                             |                    | ]                           |                        |                              |                |
|                   | Benz(a)pyrene                       | 1.1E-01                | mg/kg                  | 1.1E-01               | mg/kg                 | M                                           | 6.2E-08            | mg/kg-day                   | 7.3E+00                | mg/kg-day -1                 | 4.6E-07        |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                           | 3.7E-08            | mg/kg-day                   | 1,6E+01                | mg/kg-day -1                 | 5.9E-07        |
|                   | (Tot                                | al)                    |                        |                       |                       |                                             |                    |                             |                        |                              | 2E-05          |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
| Absorption        | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | M                                           | 1.7E-06            | mg/kg-day                   | 1.6E+00                | mg/kg-day 11                 | 2.6E-06        |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                           | 5.7E-07            | mg/kg-day                   |                        | _                            | -              |
|                   | ORGANICS                            |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Benz(a)pyrene                       | 1.1E-01                | mg/kg                  | 1.1E-01               | mg/kg                 | M                                           | 2.3E-08            | mg/kg-day                   |                        |                              |                |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | M                                           | 1.4E-08            | mg/kg-day                   | 1.8E+01                | mg/kg-day <sup>-1</sup>      | 2.4E-07        |
|                   | (Tota                               | al)                    |                        |                       |                       |                                             |                    |                             |                        |                              | 3E-06          |
|                   | <u> </u>                            |                        |                        |                       |                       |                                             |                    | Total Diels Ass             | ross All Evonsura      | Davida a (Dadhuusu a         | 3E.05          |

Total Risk Across All Exposure Routes/Pathways 3E-05

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation. NOTE: Benz(a)pyrene and Chromium (total) are in the total data set only for surface soil.

Arsenic risks shown on this table reflect the original risk assessment presented in the RI Report. These risks were replaced with the risks shown in Table 8.19, which reflect the expanded arsenic data set.

## TABLE 8.16.RME RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SURFACE SOIL AT WP-14 FOR THE ADULT RESIDENT WP-14, Langley Air Force Base

Scenario Timeframe: Future Medium: Surface Soil

Exposure Medium: Surface Soil
Exposure Point: Surface Soil at WP-14
Receptor Population: Resident

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | M                                           | 6.1E-06            | mg/kg-day                   | 1.5E+00                | mg/kg-day <sup>-1</sup>      | 9.2E-06        |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | M                                           | 6.7E-06            | mg/kg-day                   |                        | _                            | -              |
|                   | ORGANICS                            |                        |                        |                       |                       |                                             | t                  |                             |                        |                              | ĺ              |
|                   | Benz(a)pyrene                       | 1.1E-01                | mg/kg                  | 1.1E-01               | mg/kg                 | M                                           | 2.7E-08            | mg/kg-day                   | 7.3E+00                | mg/kg-day 1                  | 2.0E-07        |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                           | 1.6E-08            | mg/kg-day                   | 1.6E+01                | mg/kg-day 1                  | 2.5E-07        |
|                   |                                     | otal)                  |                        |                       |                       |                                             |                    | <u> </u>                    |                        |                              | 1E-05          |
| Dermal            | INORGANICS                          |                        |                        | 1                     |                       | İ                                           |                    |                             |                        | i                            |                |
| Absorption        | Arsenic                             | 2.6E+01                | mg/kg                  | 2.6E+01               | mg/kg                 | M                                           | 3.9E-06            | mg/kg-day                   | 1.6E+00                | mg/kg-day <sup>-1</sup>      | 6.2E-06        |
|                   | Chromium (total) VI                 | 2.8E+01                | mg/kg                  | 2.8E+01               | mg/kg                 | М                                           | 1.3E-06            | mg/kg-day                   |                        | -                            | -              |
|                   | ORGANICS                            |                        |                        |                       |                       | ]                                           |                    |                             |                        |                              | ĺ              |
|                   | Benz(a)pyrene                       | 1.1E-01                | mg/kg                  | 1.1E-01               | mg/kg                 | . М                                         | 5.4E-08            | mg/kg-day                   |                        | -                            |                |
|                   | Dieldrin                            | 6.8E-02                | mg/kg                  | 6.8E-02               | mg/kg                 | М                                           | 3.2E-08            | mg/kg-day                   | 1.8E+01                | mg/kg-day -1                 | 5.6E-07        |
|                   | T)                                  | otal)                  |                        |                       |                       |                                             |                    |                             |                        |                              | 7E-06          |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Benz(a)pyrene and Chromium (total) are in the total data set only for surface soil.

Arsenic risks shown on this table reflect the original risk assessment presented in the RI Report. These risks were replaced with the risks shown in Table 8.19, which reflect the expanded arsenic data set.

# TABLE 8.17.RME RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE RESIDENT (CHILD) WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil
Exposure Point: Subsurface Soil at WP-14

Receptor Population: Resident

Receptor Age: Child

| Exposure<br>Route    | Chemical<br>of Potential<br>Concern             | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units                       | Cancer<br>Risk              |
|----------------------|-------------------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|----------------------------------------------------|-----------------------------|
| Ingestion            | INORGANICS Arsenic Chromium (total) VI          | 6.3E+01<br>3.2E+01     | mg/kg<br>mg/kg         | 6.3E+01<br>3.2E+01    | mg/kg<br>mg/kg        | M<br>M                                      | 3.4E-05<br>1.8E-05 | mg/kg-day<br>mg/kg-day      | 1.5E+00<br>            | mg/kg-day <sup>-</sup> '<br>—                      | 5.1E-05                     |
|                      | ORGANICS Benz(a)pyrene Dieldrin (Total          | 4.4E-02<br>4.8E-02     | mg/kg<br>mg/kg         | 4.4E-02<br>4.8E-02    | mg/kg<br>mg/kg        | M<br>M                                      | 2.4E-08<br>2.6E-08 | mg/kg-day<br>mg/kg-day      | 7.3E+00<br>1.6E+01     | mg/kg-day <sup>-1</sup><br>mg/kg-day <sup>-1</sup> | 1.8E-07<br>4 2E-07<br>5E-05 |
| Dermal<br>Absorption | INORGANICS Arsenic Chromium (total) VI ORGANICS | 6.3E+01<br>3.2E+01     | mg/kg<br>mg/kg         | 6.3E+01<br>3.2E+01    | mg/kg<br>mg/kg        | M<br>M                                      | 4.0E-06<br>6.4E-07 | mg/kg-day<br>mg/kg-day      | 1.6E+00<br>            | mg/kg-day ·1<br>—                                  | 6.3E-06                     |
|                      | Benz(a)pyrene Dieldrin (Total                   | 4.4E-02<br>4.8E-02     | mg/kg<br>mg/kg         | 4.4E-02<br>4.8E-02    | mg/kg<br>mg/kg        | M<br>M                                      | 8.8E-09<br>9.6E-09 | mg/kg-day<br>mg/kg-day      | 1.8E+01                | mg/kg-day -1 Routes/Pathways                       | 1.7E-07<br>6E-06<br>6E-05   |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Chromium (total) is in the total data set only for subsurface soil.

Arsenic risks shown on this table reflect the original risk assessment presented in the RI Report. These risks were replaced with the risks shown in Table 8.19, which reflect the expanded arsenic data set.

## TABLE 8.18.RME RME CALCULATION OF CANCER RISKS: INGESTION/DERMAL ABSORPTION OF SUBSURFACE SOIL AT WP-14 FOR THE RESIDENT (ADULT) WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil

Exposure Point: Subsurface Soil at WP-14

Receptor Population: Resident

Receptor Age: Adult

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Route<br>EPC<br>Value | Route<br>EPC<br>Units | EPC Selected<br>for Risk<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Cancer Slope<br>Factor | Cancer Slope<br>Factor Units | Cancer<br>Risk |
|-------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------|---------------------------------------------|--------------------|-----------------------------|------------------------|------------------------------|----------------|
| Ingestion         | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | М                                           | 1.5E-05            | mg/kg-day                   | 1.5E+00                | mg/kg-day <sup>-1</sup>      | 2.2E-05        |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | М                                           | 7.6E-06            | mg/kg-day                   |                        | -                            |                |
|                   | ORGANICS                            |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Benz(a)pyrene                       | 4.4E-02                | mg/kg                  | 4.4E-02               | mg/kg                 | М                                           | 1.0E-08            | mg/kg-day                   | 7.3E+00                | mg/kg-day -1                 | 7.5E-08        |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | M                                           | 1.1E-08            | mg/kg-day                   | 1.6E+01                | mg/kg-day -1                 | 1.8E-07        |
|                   |                                     | otal)                  |                        |                       |                       |                                             |                    |                             |                        |                              | 2E-05          |
| Dermal            | INORGANICS                          |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
| Absorption        | Arsenic                             | 6.3E+01                | mg/kg                  | 6.3E+01               | mg/kg                 | М                                           | 9.4E-06            | mg/kg-day                   | 1.6E+00                | mg/kg-day -1                 | 1.5E-05        |
|                   | Chromium (total) VI                 | 3.2E+01                | mg/kg                  | 3.2E+01               | mg/kg                 | M                                           | 1.5E-06            | mg/kg-day                   |                        | -                            |                |
|                   | ORGANICS                            |                        |                        |                       |                       |                                             |                    |                             |                        |                              |                |
|                   | Benz(a)pyrene                       | 4.4E-02                | mg/kg                  | 4.4E-02               | mg/kg                 | . м                                         | 2.1E-08            | mg/kg-day                   |                        |                              |                |
|                   | Dieldrin                            | 4.8E-02                | mg/kg                  | 4.8E-02               | mg/kg                 | M                                           | 2.3E-08            | mg/kg-day                   | 1.8E+01                | mg/kg-day <sup>-1</sup>      | 4.0E-07        |
|                   |                                     | otal)                  |                        |                       |                       |                                             |                    |                             |                        |                              | 2E-05          |
|                   |                                     |                        |                        |                       |                       |                                             |                    | Total Risk Acr              | oss All Exposure       | Routes/Pathways              | 4E-05          |

(1) Specify Medium-Specific (M) or Route-Specific (R) EPC selected for risk calculation.

NOTE: Chromium (total) is in the total data set only for subsurface soil.

Arsenic risks shown on this table reflect the original risk assessment presented in the RI Report. These risks were replaced with the risks shown in Table 8.19, which reflect the expanded arsenic data set.

### **Table 8.19**

# Calculation of Arsenic Cancer Risks Reasonable Maximum Exposure Risk Re-Evaluation for ERP Site WP-14, Langley AFB, VA

Scenario Timeframe: Future Medium: Future Surface Soil

Exposure Media: Combined surface and subsurface soil

Exposure Point: WP-14 Future Surface Soil
Direct Contact Exposure Pathway: Residential use
Receptor Population: Adult/Child Resident

Receptor Age: Age-Adjusted Adult/child

| Exposure<br>Route | Chemical<br>of Potential<br>Concern | Medium<br>EPC<br>Value | Medium<br>EPC<br>Units | Exposure<br>Medium<br>EPC<br>Value | Exposure<br>Medium<br>EPC<br>Units | EPC<br>Selected<br>for Hazard<br>Calculation (1) | Intake<br>(Cancer) | Intake<br>(Cancer)<br>Units | Slope<br>Factor | Slope<br>FactorUnits      | ILCR    |
|-------------------|-------------------------------------|------------------------|------------------------|------------------------------------|------------------------------------|--------------------------------------------------|--------------------|-----------------------------|-----------------|---------------------------|---------|
| Ingestion         | Arsenic                             | 2.69E+01               | mg/kg                  | 2.69E+01                           | mg/kg                              | М                                                | 4.2E-05            | mg/kg-day                   | 1.5E+00         | (mg/kg-day) <sup>-1</sup> | 6.3E-05 |
|                   | Exposure Route Total                |                        | 1                      | ı                                  |                                    |                                                  |                    | ı                           | 1               |                           |         |
| Dermal<br>Contact | Arsenic                             | 2.69E+01               | mg/kg                  | 2.69E+01                           | mg/kg                              | M                                                | 4.3E-06            | mg/kg-day                   | 1.5E+00         | (mg/kg-day) <sup>-1</sup> | 6.4E-06 |
|                   | Exposure Route Total                | •                      |                        |                                    |                                    |                                                  |                    | •                           | -               | -                         |         |
|                   |                                     |                        |                        |                                    |                                    |                                                  |                    |                             |                 |                           | 7.0E-05 |

<sup>(1)</sup> Medium-Specific (M) EPC selected for intake calculation.

### Appendix A.9

RAGS Part D Table 9's Summary of Receptor Risks and Hazards for COPCs Reasonable Maximum Exposure

### TABLE 9.1.RME RME SUMMARY OF CANCER RISKS AND NON-CANCER HAZARDS FOR COPCs: OTHER WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future Receptor Population: Other Worker Receptor Age: Adult

| Medium          | Exposure        | Exposure<br>Point        | Chemical            |           | Carcin     | nogenic Risk |              | Chemical             |         | No                               | n-Cardinoger | nic Hazard Q | uotient  |                |
|-----------------|-----------------|--------------------------|---------------------|-----------|------------|--------------|--------------|----------------------|---------|----------------------------------|--------------|--------------|----------|----------------|
|                 | Medium          | Point                    |                     | ingestion | Inhalation | Dermal       | Exposure     |                      |         | Primary                          | Ingestion    | Inhalation   | Dermal   | Exposure       |
|                 |                 |                          |                     |           |            |              | Routes Total |                      |         | Target Organ                     |              |              |          | Routes Total   |
| Surface Soil    | Surface Soil    | Surface Soil at WP-14    | INORGANICS          |           |            |              |              | INORGANICS           | ļ       |                                  | 1            |              |          |                |
| Surface Sur     | 33/1253         |                          | Arsenic             | 6.8E-07   | -          | 3.7E-07      | 1E-06        | Aluminum             |         | Dev. NS                          | 0.00065      | -            | 0.00039  | 0.001          |
| Ų į             |                 |                          | Chromium (total) VI | -         |            |              | -            | Arsenic              |         | skin/vascular                    | 0.0043       | -            | 0.0023   | 0.007          |
| ]               |                 |                          | ORGANICS            |           |            |              |              | Chromium (total) VI  | - 1     | GI tract/fetus/bone marrow/liver | 0.00046      | -            | 0.0074   | 0.008          |
| 1               | :               |                          | Benz(a)pyrene       | 1.5E-08   | - 1        | -            | 1E-08        | Iron                 |         | blood/liver/G1 tract             | 0.0047       |              | 0.00075  | 0.005          |
|                 |                 |                          | Dieldrin            | 1.9E-08   | -          | 3.4E-08      | 5E-08        | Manganese (non-food) | 1       | CNS                              | 0.00075      | -            | 0.0024   | 0.003          |
|                 |                 |                          | _                   | -         | -          | -            | -            | Vanadium             | 1       | liver                            | 0.00039      | -            | 0.0031   | 0.003          |
| ]               |                 |                          | _                   | -         | -          | -            | -            | ORGANICS             |         | i                                |              |              |          |                |
| 1               |                 |                          | _                   | - I       |            |              | -            | Dieldrin             | 1       | liver                            | 0.000066     |              | 0.00012  | 0 0002         |
|                 |                 |                          | (То                 | at) 7E-07 |            | 4E-07        | 1E-06        | (1                   | Total)  |                                  | 0.01         |              | 0.02     | 0.03           |
| 1               | Air             | Ambient air above WP-14  | INORGANICS          |           |            |              |              | INORGANICS           |         |                                  |              |              |          | i              |
|                 |                 | (particulates)           | Arsenic             | -         | 5.5E-07    | -            | 6E-07        | Aluminum             |         | Dev. NS                          | -            | 0.052        | -        | 0.05           |
|                 |                 |                          | Chromium (total) VI | -         | 1.7E-06    |              | 2E-06        | Arsenic              | - 1     | =                                | -            | - 1          | -        | -              |
|                 |                 |                          | ORGANICS            | 1         |            |              |              | Chromium (total) VI  | - 1     | lungs                            | -            | 0.0039       | -        | 0.004          |
|                 |                 |                          | Benz(a)pyrene       | -         | 1.4E-10    |              | 1E-10        | Iron                 | - 1     | -                                | -            | -            | -        | -              |
|                 |                 |                          | Dieldrin            | -         | 3.4E-09    | -            | 3E-09        | Manganese (non-food) | - 1     | CNS                              | -            | 0.084        | - 1      | 0.08           |
|                 |                 |                          | -                   | -         |            | -            | -            | Vanadium             | 1       | ***                              | -            | -            | ~        | -              |
|                 |                 |                          | _                   | -         | -          | -            | -            | ORGANICS             | 1       |                                  |              |              |          |                |
|                 |                 |                          | -                   |           | <u> </u>   |              |              | Dieldrin             | -       |                                  |              |              |          | <u>-</u>       |
| ļ               |                 |                          | (To                 | al) -     | 2E-06      |              | 2E-06        |                      | (Total) |                                  | -            | 0.1          |          | 0.1            |
| Subsurface Soil | Subsurface Soil | Subsurface Soil at WP-14 | INORGANICS          |           |            |              |              | INORGANICS           | 1       |                                  |              |              |          |                |
|                 |                 |                          | Arsenic             | 1.6E-06   | -          | 8.8E-07      | 3E-06        | Aluminum             | - {     | Dev. NS                          | 0.00073      | -            | 0.00043  | 0.001          |
|                 |                 |                          | Chromium (total) VI | -         |            | -            | -            | Arsenic              |         | skin/vascular                    | 0.010        | -            | 0.0055   | 0.02           |
|                 |                 |                          | ORGANICS            |           |            |              |              | Chromium (total) VI  | l       | GI tract/fetus/bone marrow/liver | 0.00053      |              | 0.0084   | 0.009          |
|                 |                 |                          | Benz(a)pyrene       | 5.6E-09   |            | -            | 6E-09        | tron                 |         | blood/liver/GI tract             | 0.0065       | -            | 0.0010   | 0.008          |
|                 |                 |                          | Dieldrin            | 1.3E-08   | -          | 2.4E-08      | 4E-08        | Manganese (non-food) |         | CNS                              | 0.00074      | -            | 0.0024   | 0.003          |
|                 |                 |                          | -                   | -         | -          | -            | -            | Vanadium             |         | liver                            | 0.00047      | -            | 0.0038   | 0.004          |
|                 |                 |                          | -                   | -         | -          | -            | -            | ORGANICS             | 1       |                                  |              | 1            |          |                |
|                 |                 |                          | -                   |           | -          |              |              | Dieldrin             | -       | liver                            | 0.000047     |              | 0.000084 | 0.0001         |
|                 |                 | l                        | (То                 | al) 2E-06 |            | 9E-07        | 3E-06        | <u> </u>             | (Total) |                                  | 0.02         |              | 0.02     | 0.04           |
| \               | Aîr             | Ambient air above WP-14  | INORGANICS          |           | 1          | 1            | 1            | INORGANICS           | - 1     |                                  |              |              |          | 0.00           |
|                 |                 | (particulates)           | Arsenic             | -         | 1.3E-06    | -            | 1E-06        | Aluminum             |         | Dev. NS                          | -            | 0.058        | -        | 0.06           |
| 1               |                 | 1                        | Chromium (total) VI | -         | 1.9E-06    | -            | 2E-06        | Arsenic              |         | -                                | -            | -            | -        | -              |
|                 |                 |                          | ORGANICS            |           |            |              |              | Chromium (total) VI  |         | lungs                            | -            | 0.0044       | _        | 0.004          |
|                 |                 |                          | Benz(a)pyrene       |           | 5.4E-11    | <u> </u>     | 5E-11        | Iron                 | 1       |                                  |              |              |          | l <del>-</del> |

### TABLE 9.1.RME RME SUMMARY OF CANCER RISKS AND NON-CANCER HAZARDS FOR COPCs: OTHER WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future Receptor Population: Other Worker Receptor Age: Adult

| Medium      | Exposure<br>Medium | Exposure<br>Point    | Chemical                   |         |           | Carci         | nogenic Risk    |              | Chemical                   | No                   | on-Carcinoge                      | nic Hazard Q | luotient |              |  |  |
|-------------|--------------------|----------------------|----------------------------|---------|-----------|---------------|-----------------|--------------|----------------------------|----------------------|-----------------------------------|--------------|----------|--------------|--|--|
|             |                    |                      |                            |         | Ingestion | Inhalation    | Dermal          | Exposure     |                            | Primary              | Ingestion                         | Inhalation   | Dermal   | Exposure     |  |  |
|             |                    |                      |                            |         |           |               |                 | Routes Total |                            | Target Organ         |                                   |              |          | Routes Total |  |  |
|             |                    |                      | Dieldrin                   | l l     | -         | 2.5E-09       | -               | 2E-09        | Manganese (non-food)       | CNS                  | -                                 | 0.083        | -        | 0.08         |  |  |
| 1           |                    | 1                    | -                          | - 1     | _         | -             | -               | _            | Vanadium                   | _                    | - 1                               | -            | 1        | ~            |  |  |
|             |                    |                      | -                          | }       | _         | _             | -               | _            | ORGANICS                   | 1                    | j                                 |              |          |              |  |  |
| 1           |                    |                      | -                          |         | _         |               |                 | _            | Dieldrin                   | _                    | ] _                               | _            | -        | _            |  |  |
|             |                    | 1                    |                            | (Total) | -         | 3E-06         |                 | 3E-06        | (Total)                    |                      |                                   | 0.1          | -        | 0.1          |  |  |
| Groundwater | Groundwater        | Groundwater at WP-14 | INORGANICS                 |         |           |               |                 |              | INORGANICS                 |                      |                                   |              |          |              |  |  |
|             |                    | }                    | Arsenic                    | 1       | 9.5E-06   | _             | 4.1E-08         | 1E-05        | Arsenic                    | skin/vascular        | 0.059                             | -            | 0.00026  | 0,06         |  |  |
| 1           |                    |                      | ORGANICS                   | - 1     |           |               |                 |              | Iron                       | blood/liver/GI tract | 0.013                             | _            | 0.000054 | 0.01         |  |  |
| ļ           |                    | ĺ                    | bis(2-Ethylhexyl)phthalate | ĺ       | 4.6E-08   | _             | 1.4E-07         | 2E-07        | Manganese (non-food)       | CNS                  | 0.031                             |              | 0.0025   | 0.03         |  |  |
|             |                    |                      | Dieldrin                   | l       | 7.6E-08   | _             | 6.5E-08         | 1E-07        | ORGANICS                   |                      |                                   | 1            |          |              |  |  |
|             |                    |                      | -                          |         | _         | _             | -               | -            | bis(2-Ethylhexyl)phthalate | liver                | 0.00046                           |              | 0.0014   | 0.002        |  |  |
|             |                    |                      | _                          | - 1     | -         | _             |                 | _            | Dieldrin                   | liver                | 0.00027                           | _            | 0.00023  | 0.0005       |  |  |
|             |                    | 1                    |                            | (Total) | 1E-05     | -             | 3E-07           | 1E-05        | (Total)                    |                      | 0.1                               | -            | 0.005    | 0.1          |  |  |
| <u> </u>    | <del></del>        |                      | ·                          |         | Tot       | al Risk Acro  | ss Surface Soil | 3E-06        |                            |                      | Total Hazard Index Across Surface |              |          |              |  |  |
|             |                    |                      |                            |         | Total F   | lisk Across S | Subsurface Soil | 6E-06        |                            |                      | ss Subsurface Soil                | 0.2          |          |              |  |  |

Total Risk Across Subsurface Soil 6E-06 Total Risk Across Groundwater 1E-05

2E-05

Total Risk Across All Media and All Exposure Routes

Total Hazard Index Across All Media and All Exposure Routes 0.5

Total Hazard Index Across Groundwater

NOTE: Arsenic, Iron, and Manganese are in the total data set only for groundwater.

Aluminum, Benz(a)pyrene, Chromium (Total), Iron, and Vanadium are in the total data set only for surface soil.

Aluminum, Chromium (Total), Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

Total blood HI = 0.03 Total bone marrow HI = 0.02 Total CNS HI = 0.2 Total Dev. NS HI = 0.1 Total fetus HI = 0.02 Total Gl tract HI = 0.04 Total liver H! = 0.05 Total lungs Hi = 0.008

0.1

### TABLE 9.2.RME

### RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

Combined RI and Risk Re-Evaluation Results ERP Site WP-14, Langley Air Force Base

Scenario Timeframe: Future

Receptor Population: Construction Worker Receptor Age: Adult

| Medium                                          | Exposure<br>Medium | Exposure<br>Point | Chemical            |                  | Carcin       | ogenic Risk |                  | Chemical                              |                                     | Non-Carcino    | genic Hazard Quotio                       | ent           |              |
|-------------------------------------------------|--------------------|-------------------|---------------------|------------------|--------------|-------------|------------------|---------------------------------------|-------------------------------------|----------------|-------------------------------------------|---------------|--------------|
|                                                 | modium             | · omi             |                     | Ingestion        | Inhalation   | Dermal      | Exposure         |                                       | Primary                             | Ingestion      | Inhalation                                | Dermal        | Exposure     |
| Soil Analysis                                   | Surface soil and   | WP-14             |                     |                  |              |             | Routes Total     |                                       | Target Organ                        |                |                                           |               | Routes Total |
| from the RI                                     | Ambient Air        | WP-14             | Arsenic             | 4.3E-07          | 6.5E-07      | 7.4E-08     | 1E-06            | Aluminum                              | Dev NS                              |                | Background Conditio                       | 1             |              |
| Report                                          |                    |                   | Chromium            |                  | 2.0E-06      |             | 2.E-06           | Arsenic                               | skin/vascular                       | 0.067          |                                           | 0.011         | 0.08         |
|                                                 |                    |                   | Benzo(a)pyrene      | 9.2E-09          | 2.8E-11      |             | 9.E-09           | Chromium                              | GI tract/fetus/bone<br>marrow/liver | E              | Background Conditio                       | ns            |              |
|                                                 |                    |                   | Dieldrin            | 1.2E-08          | 6.9E-10      | 6.7E-09     | 2.E-08           | Iron                                  | blood/liver/GI tract                | E              | Background Conditio                       | ns            |              |
|                                                 |                    |                   |                     |                  |              |             |                  | Manganese                             | CNS                                 | Replaced v     | vith 2005 risk re-eval<br>pooled data set | uation using  |              |
|                                                 |                    |                   |                     |                  |              |             |                  | Vanadium                              | Liver                               | E              | Background Conditio                       | ns            |              |
|                                                 |                    |                   |                     |                  |              |             |                  | Dieldrin                              | Liver                               | 0.001 0.00     |                                           | 0.0006        | 0.002        |
|                                                 |                    |                   | Chemical Total      | 5.E-07           | 3.E-06       | 8.E-08      | 3.E-06           | Chemical Total                        |                                     |                |                                           | 0.01          | 0.08         |
|                                                 | Subsurface Soil    | WP-14             | Arsenic             | 1.0E-06          | 1.6E-06      | 1.8E-07     | 3E-06            | Aluminum                              | Dev NS                              | Е              | Background Conditio                       | ns            |              |
|                                                 | and Ambient Air    |                   | Chromium            |                  | 2.2E-06      |             | 2.E-06           | Arsenic                               | skin/vascular                       | 0.16           |                                           | 0.03          | 0.19         |
|                                                 |                    |                   | Benzo(a)pyrene      | 3.5E-09          | 1.1E-11      |             | 4.E-09           | Chromium                              | GI tract/fetus/bone<br>marrow/liver | E              | Background Conditio                       | ns            |              |
|                                                 |                    |                   | Dieldrin            | 8.5E-09          | 4.9E-10      | 4.8E-09     | 1.E-08           | Iron                                  | blood/liver/GI tract                | E              | Background Conditio                       | ns            |              |
|                                                 |                    |                   |                     |                  |              |             |                  | Manganese                             | CNS                                 | Replaced v     | vith 2005 risk re-eval<br>pooled data set | uation using  |              |
|                                                 |                    |                   |                     |                  |              |             |                  | Vanadium                              | Liver                               | E              | Background Conditio                       | ns            |              |
|                                                 |                    |                   |                     |                  |              |             | -                | Dieldrin                              | Liver                               | 0.0007         |                                           | 0.0004        | 0.001        |
|                                                 |                    |                   | Chemical Total      | 1.0E-06          | 3.8E-06      | 1.8E-07     | 5.0E-06          | Chemical Total                        |                                     | 0.2            |                                           | 0.03          | 0.2          |
| Soil Analysis<br>from the Risk<br>Re-Evaluation | Total Soil and     |                   |                     |                  |              |             |                  |                                       |                                     |                |                                           |               |              |
| Report                                          | Ambient Air        | WP-14             | Additional Analysis | not performed b  | oecause RI s | howed no un | acceptable risks | risks Manganese CNS 0.029 0.086 0.022 |                                     |                |                                           | 0.022         | 0.1          |
|                                                 |                    |                   | Total Cancer Risk a | across all expos | sure pathway | s and media | 8.E-06           |                                       | Total Non-Ca                        | ncer HI across | all exposure pathwa                       | ays and media | 0.4          |

| Total Skin/Vascular HI = | 0.3   |
|--------------------------|-------|
| Total CNS HI =           | 0.1   |
| Total Liver HI =         | 0.003 |

### TABLE 9.3.RME RME SUMMARY OF CANCER RISKS AND NON-CANCER HAZARDS FOR COPCs: INDUSTRIAL WORKER WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future Receptor Population: Industrial Worker Receptor Age: Adult

| Medium             | Exposure        | Exposure<br>Point        | Chemical            |           | Carcin     | ogenic Risk |              | Chemical             | Non-Ca                           | rcinogenic h   | lazard Quoti | ent      |              |
|--------------------|-----------------|--------------------------|---------------------|-----------|------------|-------------|--------------|----------------------|----------------------------------|----------------|--------------|----------|--------------|
|                    | Medium          | 1000                     |                     | Ingestion | inhalation | Dermai      | Exposure     |                      | Primary                          | Ingestion      | Inhalation   | Dermal   | Exposure     |
| ļ                  |                 |                          |                     |           |            |             | Routes Total |                      | Target Organ                     |                |              |          | Routes Total |
|                    | Surface Soil    | Surface Soil at WP-14    | INORGANICS          |           |            | 1           | 7            | INORGANICS           | 1                                |                |              |          |              |
| Surface Soil       | Surface Soil    | Suitace boards 111       | Arsenic             | 2.2E-08   | _          | 5.9E-09     | 3E-08        | Aluminum             | Dev. NS                          | 0.0005         | -            | 0.0002   | 0.0007       |
|                    |                 |                          | Chromium (total) VI | _         | -          |             | -            | Arsenic              | skin/vascular                    | 0.003          | -            | 0.0009   | 0.004        |
|                    |                 |                          | ORGANICS            |           |            |             | Ì            | Chromium (total) VI  | GI tract/fetus/bone marrow/liver | 0.00006        | -            | 0.0004   | 0.0005       |
|                    |                 |                          | Benz(a)pyrene       | 4.7E-10   | -          | -           | 5E-10        | Iron                 | blood/liver/GI tract             | 0,004          | -            | 0.0003   | 0.004        |
|                    |                 | İ                        | Diektrin            | 6.0E-10   | -          | 5.4E-10     | 1E-09        | Manganese (non-food) | CNS                              | 0.0006         | -            | 0.001    | 0.002        |
|                    |                 |                          | _                   | _         | -          |             | -            | Vanadium             | liver                            | 0.0003         | -            | 0.001    | 0.002        |
|                    |                 |                          | _                   | -         | -          | _           | -            | ORGANICS             |                                  |                |              |          |              |
|                    |                 |                          | _                   | -         |            | _           |              | Dieldrin             | liver                            | 0.0001         |              | 0.00005  | 0.0001       |
|                    |                 | Į                        | (Yotal)             | 2E-08     | -          | 6E-09       | 3E-08        | (Total)              |                                  | 0,009          |              | 0.004    | 0.01         |
|                    | Air             | Ambient air above WP-14  | INORGANICS          |           |            |             |              | INORGANICS           |                                  |                |              |          |              |
|                    | 1               | (particulates)           | Arsenic             | -         | 5.2E-08    | -           | 5E-08        | Aluminum             | Dev. NS                          | -              | 0.1          | -        | 0.1          |
|                    |                 |                          | Chromium (total) VI |           | 1.6E-07    | -           | 2E-07        | Arsenic              | -                                | -              | -            | -        | -            |
|                    |                 |                          | ORGANICS            |           |            |             |              | Chromium (total) VI  | lungs                            | -              | 0.01         | -        | 0.01         |
|                    |                 |                          | Benz(a)pyrene       |           | 2.2E-12    | -           | 2E-12        | Iron                 | -                                | -              | -            | -        | -            |
|                    | 1               |                          | Dieldrin            | - ا       | 5.5E-11    | -           | 6E-11        | Manganese (non-food) | CNS                              | -              | 0.2          | -        | 0.2          |
| į                  |                 |                          |                     |           | -          |             | -            | Vanadium             | -                                | -              | -            | -        | -            |
|                    |                 |                          | _                   | -         | -          | -           | -            | ORGANICS             |                                  |                |              |          |              |
|                    |                 |                          | -                   |           | L          |             |              | Dieldrin             |                                  | <del> </del> - | ļ —          |          |              |
|                    |                 |                          | (Total)             |           | 2E-07      |             | 2E-07        | (Total)              |                                  | <del>  -</del> | 0.3          |          | 0.3          |
| Subsurface Soil    | Subsurface Soil | Subsurface Soil at WP-14 | INORGANICS          |           |            |             |              | INORGANICS           |                                  |                |              |          |              |
| Odbaci i doc od ii |                 |                          | Arsenic             | 5.3E-08   | -          | 1.4E-08     | 7E-08        | Aluminum             | Dev. NS                          | 0,0006         | -            | 0.0002   | 0,0008       |
|                    |                 |                          | Chromium (total) VI |           | -          | -           | -            | Arsenic              | skin/vascular                    | 0.008          | -            | 0.002    | 0.01         |
|                    |                 |                          | ORGANICS            |           |            |             | 1            | Chromium (total) VI  | GI tract/fetus/bone marrow/liver | 0.0001         | -            | 0.0005   | 0.0006       |
| H                  |                 |                          | Benz(a)pyrene       | 1.8E-10   | -          | -           | 2E-10        | Iron                 | blood/liver/GI tract             | 0.005          | -            | 0.0004   | 0,006        |
|                    |                 | 1                        | Dieldrin            | 4.3E-10   | -          | 3.8E-10     | 8E-10        | Manganese (non-food) | CNS                              | 0.0006         | -            | 0,001    | 0.002        |
|                    |                 | •                        | -                   | -         | -          | -           | -            | Vanadium             | liver                            | 0.0004         | -            | 0.002    | 0.002        |
|                    |                 | 1                        | -                   | -         | -          | -           | -            | ORGANICS             |                                  | -              | 1            |          |              |
|                    |                 |                          | -                   | -         |            |             |              | Dieldrin             | liver                            | 0.00004        | -            | 0.000033 | 0.0001       |
|                    |                 |                          | (Total)             | 5E-08     |            | 1E-08       | 7E-08        | (Total)              |                                  | 0.02           | <del> </del> | 0.006    | 0.02         |
| l l                | Air             | Ambient air above WP-14  | INORGANICS          | 1         | 1          |             |              | INORGANICS           | 1                                | 1              | 1            | ]        |              |
| H                  |                 | (particulates)           | Arsenic             | -         | 1.2E-07    | -           | 1E-07        | Aluminum             | Dev. NS                          | -              | 0.1          | -        | 0.1          |
| l                  |                 |                          | Chromium (total) VI | -         | 1.8E-07    | -           | 2E-07        | Arsenic              | -                                | -              |              | -        | -            |
|                    |                 |                          | ORGANICS            |           | ļ          |             |              | Chromium (total) VI  | lungs                            | -              | 0.01         | -        | 0.01         |
|                    |                 |                          | Benz(a)pyrene       | -         | 8.6E-13    | 1 -         | 9E-13        | Iron                 | -                                | -              |              |          |              |
|                    |                 |                          | Dieldrin            | -         | 3.9E-11    | -           | 4E-11        | Manganese (non-food) | CNS                              | -              | 0.2          | -        | 0.2          |
|                    | İ               |                          |                     |           | -          |             | L            | Vanadium             | <u> </u>                         | <u> </u>       |              |          | <del></del>  |

#### TABLE 9.3.RME

#### RME SUMMARY OF CANCER RISKS AND NON-CANCER HAZARDS FOR COPCS: INDUSTRIAL WORKER

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future Receptor Population: Industrial Worker Receptor Age: Adult

| Medium | Exposure<br>Medium                | Exposure<br>Point | Chemical | Carcinogenic Risk |           |            |        | Chemical                 | Non-Carcinogenic Hazard Quotient |                         |             |                |        |                          |
|--------|-----------------------------------|-------------------|----------|-------------------|-----------|------------|--------|--------------------------|----------------------------------|-------------------------|-------------|----------------|--------|--------------------------|
|        |                                   |                   |          |                   | ingestion | Inhalation | Dermal | Exposure<br>Routes Total |                                  | Primary<br>Target Organ | Ingestion   | Inhalation     | Dermal | Exposure<br>Routes Total |
|        |                                   |                   | -        | -                 | -         | _          | _      | ORGANICS                 |                                  |                         |             |                |        |                          |
|        |                                   |                   | _        |                   | <u> </u>  |            |        | Dieldrin                 |                                  |                         | -           |                |        |                          |
|        |                                   |                   | (Tota    | n                 | 3E-07     |            | 3E-07  | (Total)                  |                                  |                         | 0.3         |                | 0.3    |                          |
|        | Total Risk Across Surface         |                   |          |                   |           |            |        |                          |                                  | Total Hazan             | Index Acros | s Surface Soil | 0.3    |                          |
|        | Total Risk Acress Subsurface Soil |                   |          |                   |           |            |        |                          |                                  |                         |             |                |        |                          |

Total Risk Across All Media and All Exposure Routes

Total Hazard Index Across All Media and All Exposure Routes 0.7

NOTE: Aluminum, Benz(a)pyrene, Chromium (Total), Iron, and Vanadium are in the total data set only for surface soil.

Aluminum, Chromium (Total). Iron, Manganese, and Vanadium are in the total data set only for subsurface soil.

Total blood HI = 0.01 Total bone marrow HI = 0.001 Total CNS HI = 0.4 Total Dev. NS HI = 0.3 Total fetus HI = 0.001 Total GI tract HI = 0.01 Total liver HI = 0.01 Total lungs HI = 0.02

#### TABLE 9.4.RME

### RME SUMMARY OF CANCER RISKS AND NON-CANCER HAZARDS FOR COPCs: TRESPASSER/VISITOR

WP-14, Langley Air Force Base

Scenario Timeframe: Current/Future Receptor Population: Trespasser/Visitor Receptor Age: Child

| Medium       | Exposure<br>Medium                 | Exposure<br>Point       | Chemical            | Carcinogenic Risk |            |         |              | Chemical             | Non-Carcinogenic Hazard Quotient |             |              |               |              |
|--------------|------------------------------------|-------------------------|---------------------|-------------------|------------|---------|--------------|----------------------|----------------------------------|-------------|--------------|---------------|--------------|
|              | Medium                             | 1000                    |                     | Ingestion         | Inhalation | Dermal  | Exposure     |                      | Primary                          | Ingestion   | Inhalation   | Dermal        | Exposure     |
|              |                                    |                         | ł                   |                   |            |         | Routes Total |                      | Target Organ                     |             |              |               | Routes Total |
| Surface Soil | Surface Soil                       | Surface Soil at WP-14   | INORGANICS          | 1                 |            | 1       |              | INORGANICS           |                                  |             |              |               |              |
| Surface Son  |                                    |                         | Arsenic             | 3.6E-07           | -          | 4.7E-07 | 8E-07        | Aluminum             | Dev. NS                          | 0.00072     | -            | 0.0010        | 0.002        |
|              |                                    |                         | Chromium (total) VI | _                 | _          | -       |              | Arsenic              | skin/vascular                    | 0.0047      | -            | 0.0061        | 0.01         |
|              |                                    |                         | ORGANICS            |                   |            |         | 1            | Chromium (total) VI  | GI tract/fetus/bone marrow/liver | 0.00051     | -            | 0.0198        | 0.02         |
|              |                                    |                         | Benz(a)pyrene       | 7.7E-09           |            | i -     | 8E-09        | Iron                 | blood/liver/GI tract             | 0.0052      | - :          | 0.0020        | 0.007        |
|              |                                    |                         | Diektrin            | 1.0E-08           |            | 4.3E-08 | 5E-08        | Manganese (non-food) | CNS                              | 0.00083     | -            | 0.0064        | 0.007        |
|              |                                    |                         |                     |                   | -          |         | _            | Vanadium             | liver                            | 0.00043     | -            | 0.0083        | 0.009        |
| i i          |                                    |                         | 1                   |                   | _          | _       | _            | ORGANICS             |                                  |             |              |               |              |
| {            |                                    |                         | _                   |                   | _          |         | _            | Dieldrin             | liver                            | 0.000073    |              | 0.00031       | 0.0004       |
|              |                                    |                         | (Total)             | 4E-07             | 1          | 5E-07   | 9E-07        | (Total)              |                                  | 0.01        |              | 0.04          | 0.08         |
|              | Air                                | Ambient air above WP-14 | INORGANICS          |                   | 1          |         |              | INORGANICS           |                                  |             |              |               |              |
|              | Air                                | (particulates)          | Arsenic             | _                 | 2.6E-07    | _       | 3E-07        | Aluminum             | Dev. NS                          | -           | 0.051        | -             | 0.05         |
|              |                                    | (particulates)          | Chromium (total) Vi |                   | 7.8E-07    | _       | 8E-07        | Arsenic              | -                                | -           | -            | -             | _            |
| 1            |                                    |                         | ORGANICS            |                   |            |         |              | Chromium (total) VI  | lungs                            | -           | 0.0038       | ***           | 0.004        |
|              |                                    |                         | Benz(a)pyrene       | _                 | 6.6E-11    | _       | 7E-11        | lron                 | -                                | -           | -            | -             | -            |
|              |                                    |                         | Dieldrin            | _                 | 1.6E-09    | _       | 2E-09        | Manganese (non-food) | CNS                              | 4 -         | 0.082        | -             | 80.0         |
|              |                                    |                         | Diedini _           | _                 | _          | _       | _            | Vanadium             | _                                | -           | -            | -             | -            |
|              |                                    |                         | _                   |                   | _          |         | _            | ORGANICS             |                                  |             |              |               | 1            |
|              |                                    |                         | 1 _                 | _                 | _          |         | _            | Dieldrin             |                                  |             | -            |               |              |
|              |                                    |                         | (Total)             |                   | 1E-06      | -       | 1E-06        | (Total)              |                                  |             | 0.1          | -             | 0.1          |
|              | Total Risk Across Surface Soil 2E- |                         |                     |                   |            |         |              |                      | ·                                | Total Hazar | d Index Acro | ss Surface So | it 0.2       |

Total Risk Across All Media and All Exposure Route

2E-06

Total Hazard Index Across All Media and All Exposure Routes

0.2

NOTE: Aluminum, Benz(a)pyrene, Chromium (Total), Iron, and Vanadium are in the total data set only for surface soil.

Total blood HI = 0.007 Total bone marrow Hi = 0.02 Total Dev. NS HI = 0.05 Total fetus HI = 0.02 Total GI tract HI = 0.03 Total liver HI = 0.04 Total lungs HI = 0.004 Total skin HI = 0.01 0.01 Total vascular HI =

### TABLE 9.5.RME

### RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

Combined RI and Risk Re-Evaluation Results ERP Site WP-14, Langley Air Force Base

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: age-adjusted

| Medium                                          | Exposure<br>Medium                 | Exposure<br>Point | Chemical          |                     | Carcin                      | ogenic Risk |              | Chemical       |                                     | Non-Carcino    | ogenic Hazard Quotie                               | ent           |              |
|-------------------------------------------------|------------------------------------|-------------------|-------------------|---------------------|-----------------------------|-------------|--------------|----------------|-------------------------------------|----------------|----------------------------------------------------|---------------|--------------|
|                                                 | oaia                               | . 5               |                   | Ingestion           | Inhalation                  | Dermal      | Exposure     |                | Primary                             | Ingestion      | Inhalation                                         | Dermal        | Exposure     |
|                                                 |                                    |                   |                   |                     |                             |             | Routes Total |                | Target Organ                        |                |                                                    |               | Routes Total |
| Soil Analysis<br>from the RI<br>Report          | Surface soil and<br>Ambient Air    | WP-14             | Arsenic           | Replaced with using | 2005 risk re<br>pooled data |             | 0E+00        | Aluminum       | Dev NS                              |                |                                                    |               |              |
| report                                          |                                    |                   | Chromium          |                     |                             |             | 0.E+00       | Arsenic        | skin/vascular                       |                |                                                    |               |              |
|                                                 |                                    |                   | Benzo(a)pyrene    | 6.5E-07             |                             |             | 7.E-07       | Chromium       | GI tract/fetus/bone<br>marrow/liver |                | ·<br>on-cancer hazard and<br>on age-adjusted resid |               |              |
|                                                 |                                    |                   | Dieldrin          | 8.5E-07             |                             | 8.0E-07     | 2.E-06       | Iron           | blood/liver/GI tract                | penomea c      | on age-adjusted resid                              | dent receptor |              |
|                                                 |                                    |                   |                   |                     |                             |             |              | Manganese      | CNS                                 |                |                                                    |               |              |
|                                                 |                                    |                   |                   |                     |                             |             |              | Vanadium       | Liver                               |                |                                                    |               |              |
|                                                 |                                    |                   |                   |                     |                             |             |              | Dieldrin       | Liver                               |                |                                                    |               |              |
|                                                 |                                    |                   | Chemical Total    | 2.E-06              | 0.E+00                      | 8.E-07      | 2.E-06       | Chemical Total |                                     |                |                                                    |               |              |
|                                                 | Subsurface Soil<br>and Ambient Air | WP-14             | Arsenic           | Replaced with using | 2005 risk re<br>pooled data |             | 0E+00        | Aluminum       | Dev NS                              |                |                                                    |               |              |
|                                                 |                                    |                   | Chromium          |                     |                             |             | 0.E+00       | Arsenic        | skin/vascular                       |                |                                                    |               |              |
|                                                 |                                    |                   | Benzo(a)pyrene    | 2.5E-07             |                             |             | 3.E-07       | Chromium       | GI tract/fetus/bone<br>marrow/liver |                | on-cancer hazard and<br>on age-adjusted resid      |               |              |
|                                                 |                                    |                   | Dieldrin          | 6.0E-07             |                             | 5.7E-07     | 1.E-06       | Iron           | blood/liver/GI tract                | periorinea     | on age-adjusted resid                              | dent receptor |              |
|                                                 |                                    |                   |                   |                     |                             |             |              | Manganese      | CNS                                 |                |                                                    |               |              |
|                                                 |                                    |                   |                   |                     |                             |             |              | Vanadium       | Liver                               |                | 1                                                  |               |              |
|                                                 |                                    |                   |                   |                     |                             | -           |              | Dieldrin       | Liver                               |                |                                                    |               |              |
|                                                 |                                    |                   | Chemical Total    | 8.5E-07             | 0.0E+00                     | 5.7E-07     | 1.4E-06      | Chemical Total |                                     | <u> </u>       |                                                    |               |              |
| Soil Analysis<br>from the Risk<br>Re-Evaluation | Total Soil and                     |                   |                   |                     |                             |             |              |                |                                     | NA - No        | on-cancer hazard and                               | alysis not    |              |
| Report                                          | Ambient Air                        | WP-14             | Arsenic           | 6.3E-05             |                             | 6.4E-06     | 7.E-05       |                |                                     | performed of   | on age-adjusted resid                              | dent receptor |              |
|                                                 |                                    |                   | Total Cancer Risk | across all expos    | ure pathway:                | s and media | 7.E-05       |                | Total Non-Ca                        | ncer HI across | s all exposure pathwa                              | ays and media |              |

| Total Skin/Vascular HI = |  |
|--------------------------|--|
| Total CNS HI =           |  |
| Total Liver HI =         |  |

### TABLE 9.6.RME

### RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

Combined RI and Risk Re-Evaluation Results ERP Site WP-14, Langley Air Force Base

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child

| Medium                                          | Exposure<br>Medium                                              | Exposure<br>Point | Chemical               |                                                                                    | Carcin          | ogenic Risk  |                   | Chemical       |                                     | Non-Carcino                                                 | ogenic Hazard Quotio                     | ent           |              |
|-------------------------------------------------|-----------------------------------------------------------------|-------------------|------------------------|------------------------------------------------------------------------------------|-----------------|--------------|-------------------|----------------|-------------------------------------|-------------------------------------------------------------|------------------------------------------|---------------|--------------|
|                                                 |                                                                 |                   |                        | Ingestion                                                                          | Inhalation      | Dermal       | Exposure          |                | Primary                             | Ingestion                                                   | Inhalation                               | Dermal        | Exposure     |
|                                                 |                                                                 |                   |                        |                                                                                    |                 |              | Routes Total      |                | Target Organ                        |                                                             |                                          |               | Routes Total |
| Soil Analysis<br>from the RI                    | Surface soil and<br>Ambient Air                                 | WP-14             | Arsenic                |                                                                                    |                 |              | 0E+00             | Aluminum       | Dev NS                              | E                                                           | Background Conditio                      | ns            |              |
| Report                                          | Ambient Air                                                     |                   | Chromium               | Cancer risk a                                                                      |                 |              | 0.E+00            | Arsenic        | skin/vascular                       | Replaced v                                                  | vith 2005 risk re-eva<br>pooled data set | uation using  |              |
|                                                 |                                                                 |                   | Benzo(a)pyrene         |                                                                                    | adjusted res    |              | 0.E+00            | Chromium       | GI tract/fetus/bone marrow/liver    | Background Conditions                                       |                                          |               |              |
|                                                 |                                                                 |                   | Dieldrin               |                                                                                    |                 |              | 0.E+00            | Iron           | blood/liver/GI tract                | E                                                           | Background Conditio                      | ns            |              |
|                                                 |                                                                 |                   |                        |                                                                                    |                 |              |                   | Manganese      | CNS                                 | 0.10                                                        |                                          | 0.07          | 0.2          |
|                                                 |                                                                 |                   |                        |                                                                                    |                 |              | Vanadium          | Liver          | Background Conditions               |                                                             |                                          |               |              |
|                                                 |                                                                 |                   |                        |                                                                                    |                 |              |                   | Dieldrin       | Liver                               | 0.009                                                       |                                          | 0.0035        | 0.01         |
|                                                 |                                                                 |                   | Chemical Total         | 0.E+00                                                                             | 0.E+00          | 0.E+00       | 0.E+00            | Chemical Total |                                     | 0.1                                                         |                                          | 0.08          | 0.2          |
|                                                 | Subsurface Soil<br>and Ambient Air                              | WP-14             | Arsenic                |                                                                                    |                 |              | 0E+00             | Aluminum       | Dev NS                              | E                                                           | Background Conditio                      | ns            |              |
|                                                 | and Ambient All                                                 |                   | Chromium               | Chromium Cancer risk analysis not revised for child resident because risks bounded |                 |              | 0.E+00            | Arsenic        | skin/vascular                       | Replaced with 2005 risk re-evaluation using pooled data set |                                          |               |              |
|                                                 |                                                                 |                   | Benzo(a)pyrene         |                                                                                    | adjusted resi   |              | 0.E+00            | Chromium       | GI tract/fetus/bone<br>marrow/liver | E                                                           | Background Conditio                      | ns            |              |
|                                                 |                                                                 |                   | Dieldrin               |                                                                                    |                 |              | 0.E+00            | Iron           | blood/liver/GI tract                | E                                                           | Background Conditio                      | ns            |              |
|                                                 |                                                                 |                   |                        |                                                                                    |                 |              |                   | Manganese      | CNS                                 | 0.10                                                        |                                          | 0.07          | 0.2          |
|                                                 |                                                                 |                   |                        |                                                                                    |                 |              |                   | Vanadium       | Liver                               | E                                                           | Background Conditio                      | ns            |              |
|                                                 |                                                                 |                   |                        |                                                                                    |                 |              |                   | Dieldrin       | Liver                               | 0.0061                                                      |                                          | 0.0025        | 0.009        |
|                                                 |                                                                 |                   | Chemical Total         | 0.0E+00                                                                            | 0.0E+00         | 0.0E+00      | 0.0E+00           | Chemical Total |                                     | 0.1                                                         |                                          | 0.07          | 0.2          |
| Soil Analysis<br>from the Risk<br>Re-Evaluation | Total Soil and                                                  |                   | Cancer risk analysis r | not revised for ch                                                                 | nild resident l | pecause risk | s bounded by age- |                | _                                   |                                                             |                                          |               |              |
| Report                                          | Ambient Air                                                     | WP-14             | Cancer Halvalor        |                                                                                    | ted resident    |              |                   | Arsenic        | skin/vascular                       | 1.1                                                         |                                          | 0.1           | 1.2          |
|                                                 | Total Cancer Risk across all exposure pathways and media 0.E+00 |                   |                        |                                                                                    |                 |              |                   |                | Total Non-Car                       | ncer HI across                                              | all exposure pathwa                      | ays and media | 1.6          |

| Total Skin/Vascular HI = | 1.2  |
|--------------------------|------|
| Total CNS HI =           | 0.3  |
| Total Liver HI =         | 0.02 |

### Appendix A.10

**Ecological Risk Assessment Data** 

**Table 10.1** Constituents of Interest—ERP Site WP-14

|                          | Total Soil Con      | centration                                                     | Total Water Co                                                                              | angem ragion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|---------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                | Maximum             | Mean                                                           | Maximum                                                                                     | Mgau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Inorganic Analytes (mg/L | or mg/kg)           | and and a strainer, at the government on the administration of | en in in in in re <del>alistation in Park</del> tino <u>a data and alle ay</u> en accession | alle de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya |
| Aluminum                 | 20900               | 12600                                                          | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Antimony                 | 1.43                | 0.692                                                          | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Arsenic                  | 112                 | 27.9                                                           | 0.00978                                                                                     | 0.00586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Barium                   | 176                 | 57.8                                                           | 0.0484                                                                                      | 0.0404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Beryllium                | 1.32                | 0.719                                                          | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cadmium                  | 0.549               | 0.183                                                          | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Calcium                  | 65500               | 8150                                                           | 232                                                                                         | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chromium (total)         | 47.2                | 25.5                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cobalt                   | 9.42                | 3.16                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Copper                   | 6.39                | 4.27                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cyanide                  | 0.634               | 0.157                                                          | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Iron                     | 76800               | 24400                                                          | 2.03                                                                                        | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lead                     | 22.3                | 14.2                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Magnesium                | 1780                | 1020                                                           | 12                                                                                          | 6.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Manganese                | 538                 | 218                                                            | 0.314                                                                                       | 0.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nickel                   | 14.7                | 7.71                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Potassium                | 1480                | 589                                                            | 2.32                                                                                        | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sodium                   | 436                 | 241                                                            | 39.3                                                                                        | 26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thallium                 | 0.152               | 0.104                                                          | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vanadium                 | 97.1                | 52.0                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Zinc                     | 52.0                | 21.3                                                           | 0.00357                                                                                     | 0.00218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Volatile Organic Compou  | nds (µg/L or µg/kg) |                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2-Butanone (MEK)         | 30.7                | 2.53                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Acetone                  | 170                 | 8.87                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzene                  | NA                  | NA                                                             | 0.134                                                                                       | 0.0607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Carbon disulfide         | 3.09                | 0.625                                                          | 0.318                                                                                       | 0.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Toluene                  | NA                  | NA                                                             | 3.7                                                                                         | 2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Semivolatile Organic Con | npounds (µg/L or µ  | g/kg)                                                          | · · · · · · · · · · · · · · · · · · ·                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2-Methylnaphthalene      | 739                 | 47.4                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Acenaphthene             | 52.1                | 12.0                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Acenaphthylene           | 83.3                | 9.71                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Anthracene               | 38.4                | 8.74                                                           | 0.664                                                                                       | 0.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benz(a)anthracene        | 148                 | 24.5                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benz(a)pyrene            | 208                 | 32.4                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzo(b)fluoranthene     | 437                 | 56.0                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzo(g,h,i)perylene     | 115                 | 21.3                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzo(k)fluoranthene     | 437                 | 56.6                                                           | NA                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 10.1 Constituents of Interest—ERP Site WP-14 (continued)

|                            | Total Soil Co. | centration | Total Water ( | loucentration |  |
|----------------------------|----------------|------------|---------------|---------------|--|
| Parameter                  | Maximum        | Mean       | Maximum       | Mean          |  |
| Butylbenzylphthalate       | 23.9           | 4.79       | NA            | NA            |  |
| Carbazole                  | 20.3           | 7.71       | NA            | ŅA            |  |
| Chrysene                   | 225            | 36.0       | NA            | NA            |  |
| Di-n-butylphthalate        | 74.4           | 9.28       | NA            | NA            |  |
| Dibenzofuran               | 39.5           | 8.59       | NA            | NA            |  |
| Fluoranthene               | 417            | 56.4       | 1.29          | 0.427         |  |
| Fluorene                   | 127            | 12.5       | NA            | NA            |  |
| Indeno(1,2,3-cd)pyrene     | 116            | 20.2       | NA            | NA            |  |
| Naphthalene                | 337            | 23.0       | NA            | NA            |  |
| Phenanthrene               | 260            | 37.6       | 2.77          | 0.802         |  |
| Pyrene                     | 341            | 51.9       | 1.73          | 0.546         |  |
| bis(2-Ethylhexyl)phthalate | 957            | 125        | 5.45          | 1.96          |  |
| Pesticides (µg/L or µg/kg) |                |            |               |               |  |
| 4,4'-DDD                   | 123            | 16.6       | NA            | NA            |  |
| 4,4'-DDE                   | 215            | 44.6       | NA            | NA            |  |
| 4,4'-DDT                   | 86.7           | 16.4       | NA            | NA            |  |
| Aldrin                     | 7.04           | 0.835      | NA            | NA            |  |
| Dieldrin                   | 215            | 24.0       | 0.00757       | 0.00341       |  |
| Endosulfan II              | 1.06           | 0.591      | NA            | NA            |  |
| Endrin ketone              | 1.74           | 0.983      | NA            | NA            |  |
| Heptachlor                 | 0.764          | 0.228      | NA            | NA            |  |
| Heptachlor epoxide         | 2.64           | 0.402      | NA            | NA            |  |
| Methoxychlor               | 3.27           | 2.92       | NA            | NA            |  |
| alpha-Chlordane            | 10.7           | 1.38       | NA            | NA            |  |
| beta-BHC                   | 0.449          | 0.284      | NA            | NA            |  |
| delta-BHC                  | 17.7           | 1.18       | NA            | NA            |  |
| gamma-BHC (Lindane)        | 13.5           | 0.874      | NA            | NA            |  |
| gamma-Chlordane            | 6.31           | 0.844      | NA            | NA            |  |
| Herbicides (μg/L or μg/kg) |                |            |               |               |  |
| 2,4,5-T                    | 49.0           | 6.03       | NA            | NA            |  |
| 2,4-DB                     | 102            | 38.4       | NA            | NA            |  |
| Dinoseb                    | 36.3           | 13.9       | NA            | NA            |  |
| Hydrocarbons (µg/L or µg/  | kg)            |            |               |               |  |
| Diesel                     | 3610000        | 1820000    | NA            | NA            |  |

Table 10.2 Constituents of Interest Eliminated from Further Evaluation—ERP Site WP-14

| Inorganic Analytes | Organic Compounds |
|--------------------|-------------------|
| Arsenic            | Benzene           |
| Barium             | Toluene           |
| Cadmium            | Acenaphthene      |
| Cobalt             | Acenaphthylene    |
| Copper             | Anthracene        |

Table 10.3 Constituents of Potential Ecological Concern—ERP Site WP-14

|                       | Total Soil C | oncentration : | Total Water Co | ncentration |
|-----------------------|--------------|----------------|----------------|-------------|
| Parameter             | Maximum      | Mean           | Maximum        | Mean        |
| Inorganic Analytes (m | g/L or mg/kg | g)             |                |             |
| Aluminum              | 20900        | 12600          | NA             | NA          |
| Antimony              | 1.43         | 0.692          | NA             | NA          |
| Beryllium             | 1.32         | 0.719          | NA             | NA          |
| Calcium               | 65500        | 8150           | 232            | 160         |
| Chromium (total)      | 47.2         | 25.5           | NA             | NA          |
| Cyanide               | 0.634        | 0.157          | NA             | NA .        |
| Iron                  | 76800        | 24400          | 2.03           | 1.81        |
| Lead                  | 22.3         | 14.2           | NA             | NA          |
| Magnesium             | 1780         | 1020           | 12             | 6.97        |
| Manganese             | 538          | 218            | 0.314          | 0.186       |
| Nickel                | 14.7         | 7.71           | NA             | NA          |
| Potassium             | 1480         | 589            | 2.32           | 1.78        |
| Sodium                | 436          | 241            | 39.3           | 26.3        |
| Thallium              | 0.152        | 0.104          | NA             | NA          |
| Vanadium              | 97.1         | 52.0           | NA             | NA          |
| Zinc                  | 52.0         | 21.3           | 0.00357        | 0.00218     |
| Volatile Organic Com  | pounds (μg/l | L or μg/kg)    |                |             |
| 2-Butanone (MEK)      | 30.7         | 2.53           | NA             | NA          |
| Acetone               | 170          | 8.87           | NA             | NA          |
| Carbon disulfide      | 3.09         | 0.625          | 0.318          | 0.134       |
| Semivolatile Organic  | Compounds    | (μg/L or μg/kg | g)             | ,           |
| 2-Methylnaphthalene   | 739          | 47.4           | NA             | NA          |
| Benz(a)anthracene     | 148          | 24.5           | NA             | NA          |
| Benz(a)pyrene         | 208          | 32.4           | NA             | NA          |
| Benzo(b)fluoranthene  | 437          | 56.0           | NA             | NA          |
| Benzo(g,h,i)perylene  | 115          | 21.3           | NA             | NA          |
| Benzo(k)fluoranthene  | 437          | 56.6           | NA             | NA          |
| Butylbenzylphthalate  | 23.9         | 4.79           | NA             | NA          |
| Carbazole             | 20.3         | 7.71           | NA             | NA          |
| Chrysene              | 225          | 36.0           | NA             | NA          |
| Di-n-butylphthalate   | 74.4         | 9.28           | NA             | NA          |
| Dibenzofuran          | 39.5         | 8.59           | NA             | NA          |
| Fluoranthene          | 417          | 56.4           | 1.29           | 0.427       |
| Fluorene              | 127          | 12.5           | NA             | NA          |
| Indeno(1,2,3-cd)pyren |              | 20.2           | NA             | NA          |

Table 10.3 Constituents of Potential Ecological Concern—ERP Site WP-14 (continued)

|                         | Total Soil C | oncentration | Total Water Concentration |         |  |  |
|-------------------------|--------------|--------------|---------------------------|---------|--|--|
| Parameter               | Maximum      | Mean         | Maximem                   | Mean    |  |  |
| Naphthalene             | 337          | 23.0         | NA                        | NA      |  |  |
| Phenanthrene            | 260          | 37.6         | 2.77                      | 0.802   |  |  |
| Pyrene                  | 341          | 51.9         | 1.73                      | 0.546   |  |  |
| bis(2-Ethylhexyl)phth   | 957          | 125          | 5.45                      | 1.96    |  |  |
| Pesticides (µg/L or µg/ | /kg)         |              |                           |         |  |  |
| 4,4'-DDD                | 123          | 16.6         | NA                        | NA      |  |  |
| 4,4'-DDE                | 215          | 44.6         | . NA                      | NA      |  |  |
| 4,4'-DDT                | 86.7         | 16.4         | NA                        | NA      |  |  |
| Aldrin                  | 7.04         | 0.835        | NA                        | NA      |  |  |
| Dieldrin                | 215          | 24.0         | 0.00757                   | 0.00341 |  |  |
| Endosulfan II           | 1.06         | 0.591        | NA                        | NA      |  |  |
| Endrin ketone           | 1.74         | 0.983        | NA                        | NA      |  |  |
| Heptachlor              | 0.764        | 0.228        | NA                        | NA      |  |  |
| Heptachlor epoxide      | 2.64         | 0.402        | NA                        | NA      |  |  |
| Methoxychlor            | 3.27         | 2.92         | NA                        | NA      |  |  |
| alpha-Chlordane         | 10.7         | 1.38         | NA                        | NA      |  |  |
| beta-BHC                | 0.449        | 0.284        | NA                        | NA      |  |  |
| delta-BHC               | 17.7         | 1.18         | NA                        | NA      |  |  |
| gamma-BHC (Lindane      | 13.5         | 0.874        | NA                        | NA      |  |  |
| gamma-Chlordane         | 6.31         | 0.844        | NA                        | NA      |  |  |
| Herbicides (μg/L or μ   | g/kg)        |              |                           |         |  |  |
| 2,4,5-T                 | 49.0         | 6.03         | NA                        | NA      |  |  |
| 2,4-DB                  | 102          | 38.4         | NA                        | NA      |  |  |
| Dinoseb                 | 36.3         | 13.9         | NA                        | NA      |  |  |
| Hydrocarbons (μg/L o    | r μg/kg)     |              |                           |         |  |  |
| Diesel                  | 3610000      | 1820000      | NA                        | NA      |  |  |

NA = Not applicable

Table 10.4 Summary of Screening Assessment NOAEL-Based Hazard Quotients—ERP Site WP-14

|                    |           |            | NOA      | Loftared Haza | rd Onosepi | •        |            |          |
|--------------------|-----------|------------|----------|---------------|------------|----------|------------|----------|
|                    |           |            | American |               | Referation | Affantic | Belled     |          |
| GOPEC 1            | Earthworm | Deer Mouse | Robin    | Red Fox       | Hevik      | Crosker  | Kinglisher | Siinis   |
| Inorganic Analytes |           |            | -        |               |            |          |            |          |
| Aluminum-max       | 2.46E+00  | 4.97E+03   | 4.48E+01 | 2.22E+02      | 7.97E+01   | NEP      | NEP        | NEP      |
| Aluminum-mean      | 1.48E+00  | 2.99E+03   | 2.70E+01 | 1.34E+02      | 4.81E+01   | NEP      | NEP        | NEP      |
| Antimony-max       | 4.77E+00  | 5.25E+00   | 2.70E+02 | 7.84E-03      | 4.80E+02   | NEP      | NEP        | NEP      |
| Antimony-mean      | 2.31E+00  | 2.54E+00   | 1.30E+02 | 3.79E-03      | 2.32E+02   | NEP      | NEP        | NEP      |
| Beryllium-max      | 2.49E+00  | 9.17E-01   | 5.18E+01 | 3.29E-01      | 9.23E+01   | NEP      | NEP        | NEP      |
| Beryllium-mean     | 1.36E+00  | 5.00E-01   | 2.82E+01 | 1.79E-01      | 5.03E+01   | NEP      | NEP        | NEP      |
| Calcium-max        | 2.43E+00  | 4.10E+01   | 5.46E+00 | 9.47E+00      | 9.72E+00   | 1.36E+00 | 4.69E-02   | 8.93E-02 |
| Calcium-mean       | 3.02E-01  | 5.14E+00   | 6.87E-01 | 1.19E+00      | 1.21E+00   | 9.41E-01 | 3.23E-02   | 6.16E-02 |
| Chromium-max       | 6.05E+00  | 6.60E+00   | 1.11E+01 | 2.37E+00      | 1.98E+01   | NEP      | NEP        | NEP      |
| Chromium-mean      | 3.27E+00  | 3.56E+00   | 6.01E+00 | 1.28E+00      | 1.07E+01   | NEP      | NEP        | NEP      |
| Cyanide-max        | 1.02E+01  | 4.23E-03   | 2.17E-01 | 1.52E-03      | 3.87E-01   | NEP      | NEP        | NEP      |
| Cyanide-mean       | 2.53E+00  | 1.05E-03   | 5.38E-02 | 3.76E-04      | 9.59E-02   | NEP      | NEP        | NEP      |
| Iron-max           | 9.48E+00  | 9.39E-01   | 6.39E+00 | 3.37E-01      | 1.14E+01   | 5.08E-01 | 4.10E-04   | 1.71E-05 |
| Iron-mean          | 3.01E+00  | 2.98E-01   | 2.03E+00 | 1.07E-01      | 3.62E+00   | 4.53E-01 | 3.66E-04   | 1.53E-05 |
| Lead-max           | 1.72E-01  | 1.28E+00   | 1.36E+00 | 4.58E-01      | 2.43E+00   | NEP      | NEP        | NEP      |
| Lead-mean          | 1.09E-01  | 8.14E-01   | 8.69E-01 | 2.92E-01      | 1.55E+00   | NEP      | NEP        | NEP      |
| Magnesium-max      | 5.74E-01  | 8.90E+00   | 7.43E+00 | 3.21E+00      | 1.32E+01   | 2.45E-02 | 1.21E-01   | 6.33E-02 |
| Magnesium-mean     | 3.29E-01  | 5.10E+00   | 4.26E+00 | 1.84E+00      | 7.56E+00   | 1.42E-02 | 7.03E-02   | 3.68E-02 |
| Manganese-max      | 6.90E+00  | 2.80E+00   | 1.30E-01 | 1.01E+00      | 2.31E-01   | 3.49E+00 | 1.84E-04   | 1.13E-03 |
| Manganese-mean     | 2.79E+00  | 1.14E+00   | 5.26E-02 | 4.08E-01      | 9.36E-02   | 2.07E+00 | 1.09E-04   | 6.69E-04 |
| Nickel-max         | 1.34E+00  | 1.69E-01   | 4.47E-02 | 6.04E-02      | 7.97E-02   | NEP      | NEP        | NEP      |
| Nickel-mean        | 7.01E-01  | 8.84E-02   | 2.35E-02 | 3.17E-02      | 4.18E-02   | NEP      | NEP        | NEP      |
| Potassium-max      | 1.14E+00  | 1.85E+00   | 7.70E-01 | 2.96E-01      | 1.37E+00   | 1.22E-02 | 2.93E-03   | 1.79E-03 |
| Potassium-mean     | 4.53E-01  | 7.37E-01   | 3.07E-01 | 1.18E-01      | 5.46E-01   | 9.37E-03 | 1.87E-03   | 1.37E-03 |
| Sodium-max         | 1.82E-01  | 5.65E-01   | 6.38E-01 | 2.05E-01      | 1.09E+00   | 8.73E-03 | 1.32E-01   | 3.39E-02 |
| Sodium-mean        | 1.00E-01  | 3.15E-01   | 3.57E-01 | 1.14E-01      | 6.04E-01   | 5.84E-03 | 8.84E-02   | 2.27E-02 |
| Thallium-max       | cnba      | 9.42E+00   | 4.84E+02 | 3.38E+00      | 8.62E+02   | NEP      | NEP        | NEP      |
| Thallium-mean      | cnba      | 6.44E+00   | 3.31E+02 | 2.31E+00      | 5.90E+02   | NEP      | NEP        | NEP      |
| Vanadium-max       | 1.49E+00  | 2.12E+02   | 2.01E+00 | 7.60E+01      | 3.57E+00   | NEP      | NEP        | NEP      |
| Vanadium-mean      | 8.00E-01  | 1.14E+02   | 1.07E+00 | 4.07E+01      | 1.91E+00   | NEP      | NEP        | NEP      |
| Zinc-max           | 3.25E+00  | 1.49E-01   | 8.45E-01 | 5.35E-02      | 1.50E+00   | 1.98E-01 | 1.41E-04   | 7.06E-06 |
| Zinc-mean          | 1.33E+00  | 6.10E-02   | 3.46E-01 | 2.19E-02      | 6.16E-01   | 1.21E-01 | 8.59E-05   | 4.31E-06 |

Table 10.4 Summary of Screening Assessment NOAEL-Based Hazard Quotients—ERP Site WP-14 (continued)

|                                 |            | NOAEL-Based Hazard Quotimb |                   |          |            |          |               |          |
|---------------------------------|------------|----------------------------|-------------------|----------|------------|----------|---------------|----------|
|                                 |            |                            | etti illika       |          | Residence  | Atlantic | Pielteri      |          |
| COPEC                           | Earthworm. | Decr Mission               | Rosin             | Red Fox  | - Sisteria | Conter   | olainatii ter | Mais     |
| Volatile Organic Compounds      |            |                            |                   |          |            |          |               |          |
| 2-Butanone(MEK)-max             | cnba       | 7.95E-06                   | 4.09E-04          | 2.85E-06 | 7.28E-04   | NEP      | NEP           | NEP      |
| 2-Butanone(MEK)-mean            | cnba       | 6.55E-07                   | 3.37E-05          | 2.35E-07 | 6.00E-05   | NEP      | NEP           | NEP      |
| Acetone-max                     | cnba       | 7.80E-03                   | 1.00E-04          | 2.80E-03 | 1.78E-04   | NEP      | NEP           | NEP      |
| Acetone-mean                    | cnba       | 4.07E-04                   | 5.22E-06          | 1.46E-04 | 9.30E-06   | NEP      | NEP           | NEP      |
| Carbon disulfide-max            | cnba       | 4.92E-06                   | 2.58E-04          | 1.79E-06 | 4.38E-04   | 1.59E-03 | 6.06E-05      | 1.01E-05 |
| Carbon disulfide-mean           | cnba       | 1.04E-06                   | 5.56E-05          | 3.81E-07 | 9.00E-05   | 6.70E-04 | 2.55E-05      | 4.24E-06 |
| Semivolatile Organic Compounds  |            |                            |                   |          |            |          |               |          |
| 2-Methylnapthalene-max          | cnba       | 3.39E-01                   | 2.06E+00          | 1.22E-01 | 3.66E+00   | NEP      | NEP           | NEP      |
| 2-Methylnapthalene-mean         | cnba       | 2.17E-02                   | 1.32E-01          | 7.80E-03 | 2.35E-01   | NEP      | NEP           | NEP      |
| Benzo(a)anthracene-max          | 3.08E-01   | 4.71E-02                   | 4.12E-01          | 1.69E-02 | 7.33E-01   | NEP      | NEP           | NEP      |
| Benzo(a)anthracene-mean         | 5.10E-02   | 7.80E-03                   | 6.81E-02          | 2.80E-03 | 1.21E-01   | NEP      | NEP           | NEP      |
| Benzo(a)pyrene-max              | 1.49E+00   | 9.54E-02                   | 5.79E-01          | 3.42E-02 | 1.03E+00   | NEP      | NEP           | NEP      |
| Benzo(a)pyrene-mean             | 2.31E-01   | 1.49E-02                   | 9.01E-02          | 5.33E-03 | 1.61E-01   | NEP      | NEP           | NEP      |
| Benzo(b)fluoranthene-max        | 1.75E+00   | 6.26E-01                   | 9.71E-01          | 2.25E-01 | 1.73E+00   | NEP      | NEP           | NEP      |
| Benzo(b)fluoranthene-mean       | 2.24E-01   | 8.02E-02                   | 1.24E-01          | 2.88E-02 | 2.22E-01   | NEP      | NEP           | NEP      |
| Benzo(g,h,i)perylene-max        | 3.11E-01   | 5.27E-02                   | 3.20E-01          | 1.89E-02 | 5.70E-01   | NEP      | NEP           | NEP      |
| Benzo(g,h,i)perylene-mean       | 5.76E-02   | 9.77E-03                   | 5.92E-02          | 3.50E-03 | 1.06E-01   | NEP      | NEP           | NEP      |
| benzo(k)fluoranthene-max        | 2.73E+01   | 3.45E-01                   | 1.22E+00          | 1.24E-01 | 2.16E+00   | NEP      | NEP           | NEP      |
| Benzo(k)fluoranthene-mean       | 3.54E-01   | 4.47E-02                   | 1.57E-01          | 1.60E-02 | 2.80E-01   | NEP      | NEP           | NEP      |
| Bis(2-ethylhexyl)phthalate-max  | 3.68E+00   | 2.40E-02                   | 2.06E-01          | 6.31E-03 | 3.65E-01   | 8.65E-05 | 2.83E-03      | 6.90E-05 |
| Bis(2-ethylhexyl)phthalate-mean | 4.81E-01   | 3.15E-03                   | 2.70E-02          | 8.29E-04 | 4.78E-02   | 3.11E-05 | 1.32E-02      | 6.20E-04 |
| Butylbenzylphthalate-max        | cnba       | 1.43E-03                   | 7.36 <b>E</b> -01 | 5.14E-04 | 1.31E+00   | NEP      | NEP           | NEP      |
| Butylbenzylphthalate-mean       | cnba       | 2.87E-04                   | 1.48E-01          | 1.03E-04 | 2.63E-01   | NEP      | NEP           | NEP      |
| Carbazole-max                   | 4.81E-01   | 9.31E-03                   | 5.65E-02          | 3.34E-03 | 1.01E-01   | NEP      | NEP           | NEP      |
| Carbazole-mean                  | 1.83E-01   | 3.54E-03                   | 2.14E-02          | 1.27E-03 | 3.82E-02   | NEP      | NEP           | NEP      |
| Chrysene-max                    | 4.02E-01   | 1.30E-01                   | 6.26E-01          | 4.67E-02 | 1.11E+00   | NEP      | NEP           | NEP      |
| Chrysene-mean                   | 6.43E-02   | 2.08E-02                   | 1.00E-01          | 7.48E-03 | 1.78E-01   | NEP      | NEP           | NEP      |
| Di-n-butylphthalate-max         | cnba       | 6.20E-05                   | 1.59E-01          | 2.22E-05 | 2.84E-01   | NEP      | NEP           | NEP      |
| Di-n-butylphthalate-mean        | cnba       | 7.74E-06                   | 1.99E-02          | 2.78E-06 | 3.54E-02   | NEP      | NEP           | NEP      |
| Dibenzofuran-max                | cnba       | 1.13E+03                   | 9.31E+03          | 4.06E+02 | 1.66E+04   | NEP      | NEP           | NEP      |
| Dibenzofuran-mean               | cnba       | 2.46E+02                   | 2.02E+03          | 8.83E+01 | 3.60E+03   | NEP      | NEP           | NEP      |
| Fluoranthene-max                | 2.09E+00   | 1.53E-03                   | 1.16E+00          | 5.50E-04 | 2.07E+00   | 1.54E+00 | 8.71E-03      | 3.27E-06 |
| Fluoranthene-mean               | 2.82E-01   | 2.08E-04                   | 1.58E-01          | 7.45E-05 | 2.80E-01   | 5.11E-01 | 2.88E-03      | 1.08E-06 |

Table 10.4 Summary of Screening Assessment NOAEL-Based Hazard Quotients—ERP Site WP-14 (continued)

|                             |           | NOAEL-Band Hazard Quotients |          |          |            |          |            |          |
|-----------------------------|-----------|-----------------------------|----------|----------|------------|----------|------------|----------|
| 100                         |           |                             | Approxim |          | Reditatied | Atlantic | Reffed     |          |
| COPEC                       | Farthworm | Deer Monse                  | Robin    | Red Fox  | Hawk       | Croaker  | Kingfisher | Make     |
| Fluorene-max                | 4.23E-03  | 4.66E-04                    | 3.53E-01 | 2.09E-02 | 6.29E-01   | NEP      | NEP        | NEP      |
| Fluorene-mean               | 4.17E-04  | 4.59E-05                    | 3.48E-02 | 2.06E-03 | 6.19E-02   | NEP      | NEP        | NEP      |
| Indeno(1,2,3-cd)pyrene-max  | 3.63E-01  | 3.55E-03                    | 3.23E-01 | 1.27E-03 | 5.75E-01   | NEP      | NEP        | NEP      |
| Indeno(1,2,3-cd)pyrene-mean | 6.31E-02  | 6.18E-04                    | 5.62E-02 | 2.21E-04 | 1.00E-01   | NEP      | NEP        | NEP      |
| Naphthalene-max             | cnba      | 1.55E-01                    | 9.37E-01 | 5.54E-02 | 1.67E+00   | NEP      | NEP        | NEP      |
| Naphthalene-mean            | cnba      | 1.05E-02                    | 6.40E-02 | 3.78E-03 | 1.14E-01   | NEP      | NEP        | NEP      |
| Phenanthrene-max            | 4.64E-01  | 1.20E-01                    | 1.61E-03 | 4.30E-02 | 2.86E-03   | 2.77E+01 | 4.83E-05   | 8.77E-04 |
| Phenanthrene-mean           | 6.71E-02  | 1.74E-02                    | 2.35E-04 | 6.25E-03 | 4.14E-04   | 8.02E+00 | 1.40E-05   | 2.54E-04 |
| Pyrene-max                  | 2.84E+00  | 2.09E-03                    | 9.51E-01 | 7.50E-04 | 1.69E+00   | 2.66E+01 | 1.17E-02   | 7.30E-06 |
| Pyrene-mean                 | 4.33E-01  | 3.19E-04                    | 1.45E-01 | 1.14E-04 | 2.57E-01   | 8.40E+00 | 3.69E-03   | 2.30E-06 |
| Pesticides                  |           |                             |          |          |            |          |            |          |
| 4,4'-DDD-max                | 4.56E+01  | 7.05E-02                    | 6.31E-03 | 2.53E-02 | 1.12E-02   | NEP      | NEP        | NEP      |
| 4,4'-DDD-mean               | 6.15E+00  | 9.51E-03                    | 8.52E-04 | 3.41E-03 | 1.52E-03   | NEP      | NEP        | NEP      |
| 4,4'-DDE-max                | 9.35E+01  | 5.19E-02                    | 1.07E-02 | 1.86E-02 | 2.65E-02   | NEP      | NEP        | NEP      |
| 4,4'-DDE-mean               | 1.94E+01  | 1.08E-02                    | 2.21E-03 | 3.86E-03 | 5.49E-03   | NEP      | NEP        | NEP      |
| 4,4'-DDT-max                | 3.33E+01  | 4.97E-02                    | 3.52E-02 | 1.78E-02 | 1.30E+01   | NEP      | NEP        | NEP      |
| 4,4'-DDT-mean               | 6.31E+00  | 9.40E-03                    | 6.65E-03 | 3.37E-03 | 2.46E+00   | NEP      | NEP        | NEP      |
| Aldrin-max                  | 5.03E+00  | 1.61E-02                    | 3.75E-02 | 5.79E-03 | 3.84E-02   | NEP      | NEP        | NEP      |
| Aldrin-mean                 | 5.96E-01  | 1.91E-03                    | 4.45E-03 | 6.87E-04 | 4.55E-03   | NEP      | NEP        | NEP      |
| Dieldrin-max                | 1.43E+02  | 1.52E+00                    | 4.26E-01 | 1.77E+00 | 1.17E+00   | 9.35E-01 | 5.62E-05   | 1.20E-04 |
| Dieldrin-mean               | 1.60E+01  | 1.69E-01                    | 4.75E-02 | 1.97E-01 | 1.31E-01   | 4.21E-01 | 2.53E-05   | 5.40E-05 |
| Endosulfan II-max           | 1.06E+01  | 3.24E-03                    | 2.50E-05 | 1.16E-03 | 4.45E-05   | NEP      | NEP        | NEP      |
| Endosulfan II-mean          | 5.91E+00  | 1.81E-03                    | 1.39E-05 | 6.48E-04 | 2.48E-05   | NEP      | NEP        | NEP      |
| Endrin ketone-max           | 6.21E-01  | 8.67E-03                    | 1.37E-03 | 3.11E-03 | 7.30E-02   | NEP      | NEP        | NEP      |
| Endrin ketone-mean          | 3.51E-01  | 4.90E-03                    | 7.72E-04 | 1.76E-03 | 4.12E-02   | NEP      | NEP        | NEP      |
| Heptachlor-max              | 7.64E-03  | 5.39E-04                    | 1.83E-04 | 1.26E-03 | 4.16E-03   | NEP      | NEP        | NEP      |
| Heptachlor-mean             | 2.28E-03  | 1.61E-04                    | 5.47E-05 | 3.75E-04 | 1.24E-03   | NEP      | NEP        | NEP      |
| Heptachlor epoxide-max      | 4.40E+01  | 1.86E-03                    | 6.33E-04 | 4.34E-03 | 1.44E-02   | NEP      | NEP        | NEP      |
| Heptachlor epoxide-mean     | 6.70E+00  | 2.84E-04                    | 9.64E-05 | 6.61E-04 | 2.19E-03   | NEP      | NEP        | NEP      |
| Methoxychlor-max            | 3.99E-01  | 3.75E-04                    | 2.75E-01 | 1.34E-04 | 4.90E-01   | NEP      | NEP        | NEP      |
| Methoxychlor-mean           | 3.56E-01  | 3.35E-04                    | 2.46E-01 | 1.20E-04 | 4.38E-01   | NEP      | NEP        | NEP      |
| alpha-Chlordane-max         | 1.14E+01  | 1.07E-03                    | 1.18E-03 | 3.83E-04 | 2.10E-03   | NEP      | NEP        | NEP      |
| alpha-Chlordane-mean        | 1.47E+00  | 1.38E-04                    | 1.52E-04 | 4.93E-05 | 2.71E-04   | NEP      | NEP        | NEP      |
| beta-BHC-max                | 4.99E+00  | 5.28E-05                    | 1.88E-04 | 1.89E-05 | 3.35E-04   | NEP      | NEP        | NEP      |
| beta-BHC-mean               | 3.16E+00  | 3.34E-05                    | 1.19E-04 | 1.20E-05 | 2.12E-04   | NEP      | NEP        | NEP      |

Table 10.4 Summary of Screening Assessment NOAEL-Based Hazard Quotients—ERP Site WP-14 (continued)

|                         | MGAEL-Basel Hazari Gentient |            |          |          |            |           |            |      |
|-------------------------|-----------------------------|------------|----------|----------|------------|-----------|------------|------|
|                         |                             |            | American |          | Reporation | erinitie. | Relied     |      |
| COFEC                   | <b>Farthmore</b>            | Dece Mouse | Rohin    | Red Fes  | Hawk       | Crosser   | Kingfluner | Mink |
| delta-BHC-max           | 1.97E+02                    | 5.07E-03   | 7.41E-03 | 2.08E-01 | 1.32E-02   | NEP       | NEP        | NEP  |
| delta-BHC-mean          | 1.31E+01                    | 3.38E-04   | 4.94E-04 | 1.39E-02 | 8.79E-04   | NEP       | NEP        | NEP  |
| gamma-BHC(Lindane)-max  | 4.35E-02                    | 7.74E-04   | 6.64E-03 | 2.78E-04 | 2.83E-03   | NEP       | NEP -      | NEP  |
| gamma-BHC(Lindane)-mean | 2.82E-03                    | 5.01E-05   | 4.30E-04 | 1.80E-05 | 1.83E-04   | NEP       | NEP        | NEP  |
| gamma-Chlordane-max     | 6.93E-03                    | 6.29E-04   | 6.95E-04 | 2.26E-04 | 1.24E-03   | NEP       | NEP        | NEP  |
| gamma-Chlordane-mean    | 9.27E-04                    | 8.41E-05   | 9.29E-05 | 3.02E-05 | 1.65E-04   | NEP       | NEP        | NEP  |
| Herbicides              |                             |            |          |          |            |           |            |      |
| 2,4,5-T-max             | cnba                        | 2.25E-03   | 3.72E-02 | 8.06E-04 | 6.63E-02   | NEP       | NEP        | NEP  |
| 2,4,5-T-mean            | cnba                        | 2.77E-04   | 4.58E-03 | 9.92E-05 | 8.16E-03   | NEP       | NEP        | NEP  |
| 2,4-DB-max              | 1.36E+00                    | 8.22E-02   | 4.22E+00 | 2.95E-02 | 7.52E+00   | NEP       | NEP        | NEP  |
| 2,4-DB-mean             | 5.12E-01                    | 3.09E-02   | 1.59E+00 | 1.11E-02 | 2.83E+00   | NEP       | NEP        | NEP  |
| Dinoseb-max             | cnba                        | 5.94E-02   | 1.66E-03 | 2.13E-02 | 2.96E-03   | NEP       | NEP        | NEP  |
| Dinoseb-mean            | cnba                        | 2.28E-02   | 6.36E-04 | 8.16E-03 | 1.13E-03   | NEP       | NEP        | NEP  |
| Hydrocarbons            |                             |            |          |          |            |           |            |      |
| Diesel-max              | cnba                        | cnba       | cnba     | cnba     | cnba       | NEP       | NEP        | NEP  |
| Diesel-mean             | cnba                        | cnba       | cnba     | cnba     | cnba       | NEP       | NEP        | NEP  |

max - COPEC evaluated using maximum media concentrations

mean - COPEC evaluated using mean media concentrations

Bold values indicate that the NOAEL-Based hazard quotient is greater than or equal to 1.

NEP = No exposure pathway.

Table 10.5 Summary of Screening Assessment LOAEL-Based Hazard Quotients—ERP Site WP-14

|                       |           |            | LO                | AFL-Based Ha | zard Quodent       |                    |                     |            |
|-----------------------|-----------|------------|-------------------|--------------|--------------------|--------------------|---------------------|------------|
| COPEC                 | Eurshworm | Deer Mouse | American<br>Robin | Rad Fox      | Red-tailed<br>Hawk | Adiable<br>Grosker | Betrol<br>Kingfüher | Mink       |
| Inorganic Analytes    |           |            |                   |              |                    | ) IED              | NEP                 | NEP        |
| Aluminum-max          | 1.10E+00  | 4.97E+02   | 4.48E+00          | 2.22E+01     | 7.97E+00           | NEP                | NEP                 | NEP        |
| Aluminum-mean         | 6.63E-01  | 2.99E+02   | 2.70E+00          | 1.34E+01     | 4.81E+00           | NEP                | NEP                 | NEP        |
| Antimony-max          | 4.61E+00  | 5.25E-01   | 2.70E+01          | 7.84E-04     | 4.80E+01           | NEP                | NEP                 | NEP        |
| Antimony-mean         | 2.23E+00  | 2.54E-01   | 1.30E+01          | 3.79E-04     | 2.32E+01           | NEP                | NEP                 | NEP        |
| Beryllium-max         | 1.36E+00  | 9.17E-02   | 5.18E+00          | 3.29E-02     | 9.23E+00           | NEP                |                     | NEP        |
| Beryllium-mean        | 7.41E-01  | 5.00E-02   | 2.82E+00          | 1.79E-02     | 5.03E+00           | NEP                | NEP                 | 8.93E-03   |
| Calcium-max           | 2.18E-01  | 4.10E+00   | 5.46E-01          | 9.47E-01     | 9.72E-01           | 1.16E-01           | 4.69E-03            | 6.16E-03   |
| Calcium-mean          | 2.72E-02  | 5.14E-01   | 6.87E-02          | 1.19E-01     | 1.21E-01           | 8.00E-02           | 3.23E-03            |            |
| Chromium-max          | 1.21E+00  | 6.60E-01   | 1.11E+00          | 2.37E-01     | 1.98E+00           | NEP                | NEP                 | NEP        |
| Chromium-mean         | 6.54E-01  | 3.56E-01   | 6.01E-01          | 1.28E-01     | 1.07E+00           | NEP                | NEP                 | NEP<br>NEP |
| Cvanide-max           | 2.05E+00  | 4.23E-04   | 2.17E-02          | 1.52E-04     | 3.87E-02           | NEP                | NEP                 |            |
| Cyanide-mean          | 5.06E-01  | 1.05E-04   | 5.38E-03          | 3.76E-05     | 9.59E-03           | NEP                | NEP                 | NEP        |
| Iron-max              | 3.20E+00  | 9.39E-02   | 6.39E-01          | 3.37E-02     | 1.14E+00           | 5.08E-02           | 4.10E-05            | 1.71E-06   |
| Iron-mean             | 1.02E+00  | 2.98E-02   | 2.03E-01          | 1.07E-02     | 3.62E-01           | 4.53E-02           | 3.66E-05            | 1.53E-06   |
| Lead-max              | 2.23E-02  | 1.28E-01   | 1.36E-01          | 4.58E-02     | 2.43E-01           | NEP                | NEP                 | NEP        |
| Lead-mean             | 1.42E-02  | 8.14E-02   | 8.69E-02          | 2.92E-02     | 1.55E-01           | NEP                | NEP                 | NEP        |
| Magnesium-max         | 5.93E-02  | 8.90E-01   | 7.43E-01          | 3.21E-01     | 1.32E+00           | 2.40E-03           | 1.21E-02            | 6.33E-03   |
| Magnesium-mean        | 3.40E-02  | 5.10E-01   | 4.26E-01          | 1.84E-01     | 7.56E-01           | 1.39E-03           | 7.03E-03            | 3.68E-03   |
| Manganese-max         | 1.99E+00  | 2.80E-01   | 1.30E-02          | 1.01E-01     | 2.31E-02           | 1.43E+00           | 1.84E-05            | 1.13E-04   |
| Manganese-mean        | 8.07E-01  | 1.14E-01   | 5.26E-03          | 4.08E-02     | 9.36E-03           | 8.45E-01           | 1.09E-05            | 6.69E-05   |
| Nickel-max            | 1.47E-01  | 1.69E-02   | 4.47E-03          | 6.04E-03     | 7.97E-03           | NEP                | NEP                 | NEP        |
| Nickel-mean           | 7.71E-02  | 8.84E-03   | 2.35E-03          | 3.17E-03     | 4.18E-03           | NEP                | NEP                 | NEP        |
| Potassium-max         | 1.48E-01  | 1.85E-01   | 7.70E-02          | 2.96E-02     | 1.37E-01           | 1.16E-03           | 2.93E-04            | 1.79E-04   |
| Potassium-mean        | 5.89E-02  | 7.37E-02   | 3.07E-02          | 1.18E-02     | 5.46E-02           | 8.90E-04           | 2.25E-04            | 1.37E-04   |
| Sodium-max            | 2.18E-02  | 5.65E-02   | 6.38E-02          | 2.05E-02     | 1.09E-01           | 7.86E-04           | 1.32E-02            | 3.39E-03   |
| Sodium-mean           | 1.21E-02  | 3.15E-02   | 3.57E-02          | 1.14E-02     | 6.04E-02           | 5.26E-04           | 8.84E-03            | 2.27E-03   |
| Thallium-max          | cnba      | 9.42E-01   | 4.84E+01          | 3.38E-01     | 8.62E+01           | NEP                | NEP                 | NEP        |
| Thallium-mean         | cnba      | 6.44E-01   | 3.31E+01          | 2.31E-01     | 5.90E+01           | NEP                | NEP                 | NEP        |
| Vanadium-max          | 1.62E-01  | 2.12E+01   | 2.01E-01          | 7.60E+00     | 3.57E-01           | NEP                | NEP                 | NEP        |
| Vanadium-mean         | 8.67E-02  | 1.14E+01   | 1.07E-01          | 4.07E+00     | 1.91E-01           | NEP                | NEP                 | NEP        |
| Zinc-max              | 3.25E-01  | 1.49E-02   | 8.45E-02          | 5.35E-03     | 1.50E-01           | 1.79E-02           | 1.41E-05            | 7.06E-07   |
| Zinc-max<br>Zinc-mean | 1.33E-01  | 6.10E-03   | 3.46E-02          | 2.19E-03     | 6.16E-02           | 1.09E-02           | 8.59E-06            | 4.31E-07   |

Table 10.5 Summary of Screening Assessment LOAEL-Based Hazard Quotients—ERP Site WP-14 (continued)

|                                   |            |              | 14       | AEL-Based III | zard Opetleni |          |             |          |
|-----------------------------------|------------|--------------|----------|---------------|---------------|----------|-------------|----------|
| COPEC                             | Forthworn: | Deer Mouse : | Apertent | Red Fex       | Redefailed    | Atlantic | Belled      | Mink     |
| 300                               |            |              | Robin    |               | Havis         | Crosker  | Sing faller | 32334    |
| <b>Volatile Organic Compounds</b> |            |              |          |               |               |          |             |          |
| 2-Butanone(MEK)-max               | cnba       | 7.95E-07     | 4.09E-05 | 2.85E-07      | 7.28E-05      | NEP      | NEP         | NEP      |
| 2-Butanone(MEK)-mean              | cnba       | 6.55E-08     | 3.37E-06 | 2.35E-08      | 6.00E-06      | NEP      | NEP         | NEP      |
| Acetone-max                       | cnba       | 7.80E-04     | 1.00E-05 | 2.80E-04      | 1.78E-05      | NEP      | NEP         | NEP      |
| Acetone-mean                      | cnba       | 4.07E-05     | 5.22E-07 | 1.46E-05      | 9.30E-07      | NEP      | NEP         | NEP      |
| Carbon disulfide-max              | cnba       | 4.92E-07     | 2.58E-05 | 1.79E-07      | 4.38E-05      | 1.59E-04 | 6.06E-06    | 1.01E-06 |
| Carbon disulfide-mean             | cnba       | 1.04E-07     | 5.56E-06 | 3.81E-08      | 9.00E-06      | 6.70E-05 | 2.55E-06    | 4.24E-07 |
| Semivolatile Organic Compo        | unds       |              |          |               |               |          |             |          |
| 2-Methylnapthalene-max            | cnba .     | 3.39E-02     | 2.06E-01 | 1.22E-02      | 3.66E-01      | NEP      | NEP         | NEP      |
| 2-Methylnapthalene-mean           | cnba       | 2.17E-03     | 1.32E-02 | 7.80E-04      | 2.35E-02      | NEP      | NEP         | NEP      |
| Benzo(a)anthracene-max            | 1.23E-01   | 4.71E-03     | 4.12E-02 | 1.69E-03      | 7.33E-02      | NEP      | NEP         | NEP      |
| Benzo(a)anthracene-mean           | 2.04E-02   | 7.80E-04     | 6.81E-03 | 2.80E-04      | 1.21E-02      | NEP      | NEP         | NEP      |
| Benzo(a)pyrene-max                | 1.49E-01   | 9.54E-03     | 5.79E-02 | 3.42E-03      | 1.03E-01      | NEP      | NEP         | NEP      |
| Benzo(a)pyrene-mean               | 2.31E-02   | 1.49E-03     | 9.01E-03 | 5.33E-04      | 1.61E-02      | NEP      | NEP         | NEP      |
| Benzo(b)fluoranthene-max          | 3.97E-01   | 6.26E-02     | 9.71E-02 | 2.25E-02      | 1.73E-01      | NEP      | NEP         | NEP      |
| Benzo(b)fluoranthene-mean         | 5.09E-02   | 8.02E-03     | 1.24E-02 | 2.88E-03      | 2.22E-02      | NEP      | NEP         | NEP      |
| Benzo(g,h,i)perylene-max          | 6.05E-02   | 5.27E-03     | 3.20E-02 | 1.89E-03      | 5.70E-02      | NEP      | NEP         | NEP      |
| Benzo(g,h,i)perylene-mean         | 1.12E-02   | 9.77E-04     | 5.92E-03 | 3.50E-04      | 1.06E-02      | NEP      | NEP         | NEP      |
| benzo(k)fluoranthene-max          | 4.37E-01   | 3.45E-02     | 1.22E-01 | 1.24E-02      | 2.16E-01      | NEP      | NEP         | NEP      |
| Benzo(k)fluoranthene-mean         | 5.66E-02   | 4.47E-03     | 1.57E-02 | 1.60E-03      | 2.80E-02      | NEP      | NEP         | NEP      |
| Bis(2-ethylhexyl)phthalate-m      | 3.19E-01   | 2.40E-03     | 2.06E-02 | 6.31E-04      | 3.65E-02      | 8.65E-06 | 2.83E-04    | 6.90E-06 |
| Bis(2-ethylhexyl)phthalate-m      | 4.17E-02   | 3.15E-04     | 2.70E-03 | 8.29E-05      | 4.78E-03      | 3.11E-06 | 1.32E-03    | 6.20E-05 |
| Butylbenzylphthalate-max          | cnba       | 1.43E-04     | 7.36E-02 | 5.14E-05      | 1.31E-01      | NEP      | NEP         | NEP      |
| Butylbenzylphthalate-mean         | cnba       | 2.87E-05     | 1.48E-02 | 1.03E-05      | 2.63E-02      | NEP      | NEP         | NEP      |
| Carbazole-max                     | 4.81E-02   | 9.31E-04     | 5.65E-03 | 3.34E-04      | 1.01E-02      | NEP      | NEP         | NEP      |
| Carbazole-mean                    | 1.83E-02   | 3.54E-04     | 2.14E-03 | 1.27E-04      | 3.82E-03      | NEP      | NEP         | NEP      |
| Chrysene-max                      | 1.73E-01   | 1.30E-02     | 6.26E-02 | 4.67E-03      | 1.11E-01      | NEP      | NEP         | NEP      |
| Chrysene-mean                     | 2.77E-02   | 2.08E-03     | 1.00E-02 | 7.48E-04      | 1.78E-02      | NEP      | NEP         | NEP      |
| Di-n-butylphthalate-max           | cnba       | 6.20E-06     | 1.59E-02 | 2.22E-06      | 2.84E-02      | NEP      | NEP         | NEP      |
| Di-n-butylphthalate-mean          | cnba       | 7.74E-07     | 1.99E-03 | 2.78E-07      | 3.54E-03      | NEP      | NEP         | NEP      |
| Dibenzofuran-max                  | cnba       | 1.13E+02     | 9.31E+02 | 4.06E+01      | 1.66E+03      | NEP      | NEP         | NEP      |
| Dibenzofuran-mean                 | cnba       | 2.46E+01     | 2.02E+02 | 8.83E+00      | 3.60E+02      | NEP      | NEP         | NEP      |

Table 10.5 Summary of Screening Assessment LOAEL-Based Hazard Quotients—ERP Site WP-14 (continued)

| 11.22                       |           |            | 1.0               | AEI-Dased Ha | zard Quetient      |                     |                      |          |
|-----------------------------|-----------|------------|-------------------|--------------|--------------------|---------------------|----------------------|----------|
| COPEC                       | Earthworm | Beer Mouse | American<br>Robin | Red For      | Red-railed<br>Hawk | Atlantic<br>Crocker | Belfod<br>Kingfisher | Mink     |
| Fluoranthene-max            | 1.99E-01  | 1.53E-04   | 1.16E-01          | 5.50E-05     | 2.07E-01           | 1.54E-01            | 8.71E-04             | 3.27E-07 |
| Fluoranthene-mean           | 2.69E-02  | 2.08E-05   | 1.58E-02          | 7.45E-06     | 2.80E-02           | 5.11E-02            | 2.88E-04             | 1.08E-07 |
| Fluorene-max                | 4.23E-04  | 4.66E-05   | 3.53E-02          | 2.09E-03     | 6.29E-02           | NEP                 | NEP                  | NEP      |
| Fluorene-mean               | 4.17E-05  | 4.59E-06   | 3.48E-03          | 2.06E-04     | 6.19E-03           | NEP                 | NEP                  | NEP      |
| Indeno(1,2,3-cd)pyrene-max  | 1.05E-01  | 3.55E-04   | 3.23E-02          | 1.27E-04     | 5.75E-02           | NEP                 | NEP                  | NEP      |
| Indeno(1,2,3-cd)pyrene-mean | 1.84E-02  | 6.18E-05   | 5.62E-03          | 2.21E-05     | 1.00E-02           | NEP                 | NEP                  | NEP      |
| Naphthalene-max             | cnba      | 1.55E-02   | 9.37E-02          | 5.54E-03     | 1.67E-01           | NEP                 | NEP                  | NEP      |
| Naphthalene-mean            | cnba      | 1.05E-03   | 6.40E-03          | 3.78E-04     | 1.14E-02           | NEP                 | NEP                  | NEP      |
| Phenanthrene-max            | 1.86E-01  | 1.20E-02   | 1.61E-04          | 4.30E-03     | 2.86E-04           | 2.77E+00            | 4.83E-06             | 8.77E-05 |
| Phenanthrene-mean           | 2.69E-02  | 1.74E-03   | 2.35E-05          | 6.25E-04     | 4.14E-05           | 8.02E-01            | 1.40E-06             | 2.54E-05 |
| Pyrene-max                  | 1.48E-01  | 2.09E-04   | 9.51E-02          | 7.50E-05     | 1.69E-01           | 2.66E+00            | 1.17E-03             | 7.30E-07 |
| Pyrene-mean                 | 2.26E-02  | 3.19E-05   | 1.45E-02          | 1.14E-05     | 2.57E-02           | 8.40E-01            | 3.69E-04             | 2.30E-07 |
| Pesticides                  |           |            |                   |              |                    |                     |                      |          |
| 4.4'-DDD-max                | 2.62E-01  | 7.05E-03   | 6.31E-04          | 2.53E-03     | 1.12E-03           | NEP                 | NEP                  | NEP      |
| 4,4'-DDD-mean               | 3.53E-02  | 9.51E-04   | 8.52E-05          | 3.41E-04     | 1.52E-04           | NEP                 | NEP                  | NEP      |
| 4.4'-DDE-max                | 4.67E-01  | 5.19E-03   | 1.07E-03          | 1.86E-03     | 2.65E-03           | NEP                 | NEP                  | NEP      |
| 4,4'-DDE-mean               | 9.70E-02  | 1.08E-03   | 2.21E-04          | 3.86E-04     | 5.49E-04           | NEP                 | NEP                  | NEP      |
| 4,4'-DDT-max                | 9.42E-02  | 4.97E-03   | 3.52E-03          | 1.78E-03     | 1.30E+00           | NEP                 | NEP                  | NEP      |
| 4,4'-DDT-mean               | 1.78E-02  | 9.40E-04   | 6.65E-04          | 3.37E-04     | 2.46E-01           | NEP                 | NEP                  | NEP      |
| Aldrin-max                  | 7.04E-01  | 1.61E-03   | 3.75E-03          | 5.79E-04     | 3.84E-03           | NEP                 | NEP                  | NEP      |
| Aldrin-mean                 | 8.35E-02  | 1.91E-04   | 4.45E-04          | 6.87E-05     | 4.55E-04           | NEP                 | NEP                  | NEP      |
| Dieldrin-max                | 1.95E+00  | 1.52E-01   | 4.26E-02          | 1.77E-01     | 1.17E-01           | 4.21E-01            | 5.62E-06             | 1.20E-05 |
| Dieldrin-mean               | 2.18E-01  | 1.69E-02   | 4.75E-03          | 1.97E-02     | 1.31E-02           | 1.89E-01            | 2.53E-06             | 5.40E-06 |
| Endosulfan II-max           | 7.57E-01  | 3.24E-04   | 2.50E-06          | 1.16E-04     | 4.45E-06           | NEP                 | NEP                  | NEP      |
| Endosulfan II-mean          | 4.22E-01  | 1.81E-04   | 1.39E-06          | 6.48E-05     | 2.48E-06           | NEP                 | NEP                  | NEP      |
| Endrin ketone-max           | 5.80E-02  | 8.67E-04   | 1.37E-04          | 3.11E-04     | 7.30E-03           | NEP                 | NEP                  | NEP      |
| Endrin ketone-mean          | 3.28E-02  | 4.90E-04   | 7.72E-05          | 1.76E-04     | 4.12E-03           | NEP                 | NEP                  | NEP      |
| Heptachlor-max              | 7.64E-04  | 5.39E-05   | 1.83E-05          | 1.26E-04     | 4.16E-04           | NEP                 | NEP                  | NEP      |
| Heptachlor-mean             | 2.28E-04  | 1.61E-05   | 5.47E-06          | 3.75E-05     | 1.24E-04           | NEP                 | NEP                  | NEP      |
| Heptachlor epoxide-max      | 4.40E+00  | 1.86E-04   | 6.33E-05          | 4.34E-04     | 1.44E-03           | NEP                 | NEP                  | NEP      |
| Heptachlor epoxide-mean     | 6.70E-01  | 2.84E-05   | 9.64E-06          | 6.61E-05     | 2.19E-04           | NEP                 | NEP                  | NEP      |
| Methoxychlor-max            | 4.09E-02  | 3.75E-05   | 2.75E-02          | 1.34E-05     | 4.90E-02           | NEP                 | NEP                  | NEP      |
| Methoxychlor-mean           | 3.65E-02  | 3.35E-05   | 2.46E-02          | 1.20E-05     | 4.38E-02           | NEP                 | NEP                  | NEP      |

Table 10.5 Summary of Screening Assessment LOAEL-Based Hazard Quotients—ERP Site WP-14 (continued)

|                         | EOAEL-Rused Hazard Opotlehi (1997) |            |                   |          |                      |                     |                       |      |
|-------------------------|------------------------------------|------------|-------------------|----------|----------------------|---------------------|-----------------------|------|
| corre                   | Earthworm                          | Deer Mouse | American<br>Robbs | Red Fox  | Redstalled<br>Harrie | Atlantic<br>Creaker | Balled<br>Estagnisher | Mink |
| alpha-Chlordane-max     | 8.23E-03                           | 1.07E-04   | 1.18E-04          | 3.83E-05 | 2.10E-04             | NEP                 | NEP                   | NEP  |
| alpha-Chlordane-mean    | 1.06E-03                           | 1.38E-05   | 1.52E-05          | 4.93E-06 | 2.71E-05             | NEP                 | NEP                   | NEP  |
| beta-BHC-max            | 4.83E-01                           | 5.28E-06   | 1.88E-05          | 1.89E-06 | 3.35E-05             | NEP                 | NEP                   | NEP  |
| beta-BHC-mean           | 3.05E-01                           | 3.34E-06   | 1.19E-05          | 1.20E-06 | 2.12E-05             | NEP                 | NEP                   | NEP  |
| delta-BHC-max           | 1.90E+01                           | 5.07E-04   | 7.41E-04          | 2.08E-02 | 1.32E-03             | NEP                 | NEP                   | NEP  |
| delta-BHC-mean          | 1.27E+00                           | 3.38E-05   | 4.94E-05          | 1.39E-03 | 8.79E-05             | NEP                 | NEP                   | NEP  |
| gamma-BHC(Lindane)-max  | 6.14E-03                           | 7.74E-05   | 6.64E-04          | 2.78E-05 | 2.83E-04             | NEP                 | NEP                   | NEP  |
| gamma-BHC(Lindane)-mean | 3.97E-04                           | 5.01E-06   | 4.30E-05          | 1.80E-06 | 1.83E-05             | NEP                 | NEP                   | NEP  |
| gamma-Chlordane-max     | 4.85E-06                           | 6.29E-05   | 6.95E-05          | 2.26E-05 | 1.24E-04             | NEP                 | NEP                   | NEP  |
| gamma-Chlordane-mean    | 6.49E-07                           | 8.41E-06   | 9.29E-06          | 3.02E-06 | 1.65E-05             | NEP                 | NEP                   | NEP  |
| Herbicides              |                                    |            |                   |          |                      |                     |                       |      |
| 2,4,5-T-max             | cnba                               | 2.25E-04   | 3.72E-03          | 8.06E-05 | 6.63E-03             | NEP                 | NEP                   | NEP  |
| 2,4,5-T-mean            | cnba                               | 2.77E-05   | 4.58E-04          | 9.92E-06 | 8.16E-04             | NEP                 | NEP                   | NEP  |
| 2,4-DB-max              | 1.46E-01                           | 8.22E-03   | 4.22E-01          | 2.95E-03 | 7.52E-01             | NEP                 | NEP                   | NEP  |
| 2,4-DB-mean             | 5.49E-02                           | 3.09E-03   | 1.59E-01          | 1.11E-03 | 2.83E-01             | NEP                 | NEP                   | NEP  |
| Dinoseb-max             | cnba                               | 5.94E-03   | 1.66E-04          | 2.13E-03 | 2.96E-04             | NEP                 | NEP                   | NEP  |
| Dinoseb-mean            | cnba                               | 2.28E-03   | 6.36E-05          | 8.16E-04 | 1.13E-04             | NEP                 | NEP                   | NEP  |
| Hydrocarbons            |                                    |            |                   |          |                      |                     |                       |      |
| Diesel-max              | cnba                               | cnba       | cnba              | cnba     | cnba                 | NEP                 | NEP                   | NEP  |
| Diesel-mean             | cnba                               | cnba       | cnba              | cnba     | cnba                 | NEP                 | NEP                   | NEP  |

max - COPEC evaluated using maximum media concentrations

mean - COPEC evaluated using mean media concentrations

Bold values indicate that the LOAEL-Based hazard quotient is greater than or equal to 1.

NEP = No exposure pathway.

Table 10.6 Constituents of Potential Ecological Concern Eliminated from Further Evaluation—ERP Site WP-14

| Inorganie<br>Analytes                                                 | Volatile Organic<br>Compounds             | Semivolatile Organic<br>Compounds                                                                                                                                                                                                                                                                     | Herbicides                   | Pesticides                                                                                                                                                                                          | Hydrocar-<br>bons |
|-----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Calcium Cyanide Lead Magnesium Manganese Nickel Potassium Sodium Zinc | 2-Butanone (MEK) Acetone Carbon disulfide | 2-Methylnaphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene Di-n-butylphthalate Dibenzofuran Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene | 2,4,5-T<br>2,4-DB<br>Dinoseb | 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Dieldrin Endosulfan II Endrin ketone Heptachlor Heptachlor Heptachlor epoxide Methoxychlor alpha-Chlordane beta-BHC delta-BHC gamma-BHC (Lindane) gamma-Chlordane | Diesel            |

Note: Delta-BHC, diesel, and dibenzofuran were removed because they were detected only in subsurface soil and not surface soil.

Table 10.7 Constituents of Concern—ERP Site WP-14

| Parameter          | Surface Sull<br>Maximum | Concentration<br>Mean |
|--------------------|-------------------------|-----------------------|
| Inorganic Analytes |                         |                       |
| Aluminum           | 16300                   | 10400                 |
| Antimony           | 1.43                    | 0.446                 |
| Beryllium          | 0.867                   | 0.528                 |
| Chromium (total)   | 34.0                    | 20.0                  |
| Iron               | 33400                   | 17800                 |
| Thallium           | 0.152                   | 0.0974                |
| Vanadium           | 58.3                    | 38.3                  |

Note: Surface water and sediment data are not available for WP-14.

Table 10.8 Summary of Baseline Assessment NOAEL-Based Hazard Quotients—ERP Site WP-14

|                    |           | NOA      | Elistased Planard ( | bootiest |                 |
|--------------------|-----------|----------|---------------------|----------|-----------------|
| COC                | Earthworm |          | American Robin      | Red For  | Red-tailed Hawk |
| Inorganic Analytes | }         |          |                     |          |                 |
| Aluminum-max       | 1.92E+00  | 9.46E+02 | 6.81E+00            | 3.91E-01 | 1.46E-02        |
| Aluminum-mean      | 1.22E+00  | 6.04E+02 | 4.34E+00            | 2.49E-01 | 9.34E-03        |
| Antimony-max       | 4.77E+00  | 3.24E+01 | 1.02E+03            | 4.33E-04 | 3.00E+00        |
| Antimony-mean      | 1.49E+00  | 1.01E+01 | 3.17E+02            | 1.35E-04 | 9.35E-01        |
| Beryllium-max      | 1.64E+00  | 3.03E+00 | 1.05E+02            | 9.70E-03 | 3.07E-01        |
| Beryllium-mean     | 9.96E-01  | 1.84E+00 | 6.37E+01            | 5.91E-03 | 1.87E-01        |
| Chromium-max       | 4.36E+00  | 2.79E+00 | 3.22E+00            | 9.07E-03 | 8.32E-03        |
| Chromium-mean      | 2.56E+00  | 1.64E+00 | 1.89E+00            | 5.34E-03 | 4.89E-03        |
| Iron-max           | 4.12E+00  | 2.12E-01 | 1.00E+00            | 6.90E-04 | 2.54E-03        |
| Iron-mean          | 2.20E+00  | 1.13E-01 | 5.34E-01            | 3.68E-04 | 1.35E-03        |
| Thallium-max       | cnba      | 9.42E+00 | 3.15E+02            | 4.46E-03 | 1.11E-01        |
| Thallium-mean      | cnba      | 6.04E+00 | 2.02E+02            | 2.85E-03 | 7.11E-02        |
| Vanadium-max       | 8.97E-01  | 4.98E+01 | 3.42E-01            | 1.63E-01 | 8.25E-04        |
| Vanadium-mean      | 5.89E-01  | 3.27E+01 | 2.24E-01            | 1.07E-01 | 5.42E-04        |

max - COC evaluated using maximum media concentrations

mean - COC evaluated using mean media concentrations

Bold values indicate that the NOAEL-Based hazard quotient is greater than or equal to 1.

Table 10.9 Summary of Baseline Assessment LOAEL-Based Hazard
Quotients—ERP Site WP-14

|                    |           | LOAF       | lahased Hazard () | Boticat                                 |                 |
|--------------------|-----------|------------|-------------------|-----------------------------------------|-----------------|
| COC                | Earth@orm | Deer Mouse | American Kohin    | Red Fox                                 | Red-tailed Hawk |
| Inorganic Analytes |           |            |                   | *************************************** |                 |
| Aluminum-max       | 8.58E-01  | 9.46E+01   | 6.81E-01          | 3.91E-02                                | 1.46E-03        |
| Aluminum-mean      | 5.47E-01  | 6.04E+01   | 4.34E-01          | 2.49E-02                                | 9.34E-04        |
| Antimony-max       | 4.61E+00  | 3.24E+00   | 1.02E+02          | 4.33E-05                                | 3.00E-01        |
| Antimony-mean      | 1.44E+00  | 1.01E+00   | 3.17E+01          | 1.35E-05                                | 9.35E-02        |
| Beryllium-max      | 8.94E-01  | 3.03E-01   | 1.05E+01          | 9.70E-04                                | 3.07E-02        |
| Beryllium-mean     | 5.44E-01  | 1.84E-01   | 6.37E+00          | 5.91E-04                                | 1.87E-02        |
| Chromium-max       | 8.72E-01  | 2.79E-01   | 3.22E-01          | 9.07E-04                                | 8.32E-04        |
| Chromium-mean      | 5.13E-01  | 1.64E-01   | 1.89E-01          | 5.34E-04                                | 4.89E-04        |
| Iron-max           | 1.39E+00  | 2.12E-02   | 1.00E-01          | 6.90E-05                                | 2.54E-04        |
| Iron-mean          | 7.42E-01  | 1.13E-02   | 5.34E-02          | 3.68E-05                                | 1.35E-04        |
| Thallium-max       | cnba      | 9.42E-01   | 3.15E+01          | 4.46E-04                                | 1.11E-02        |
| Thallium-mean      | cnba      | 6.04E-01   | 2.02E+01          | 2.85E-04                                | 7.11E-03        |
| Vanadium-max       | 9.72E-02  | 4.98E+00   | 3.42E-02          | 1.63E-02                                | 8.25E-05        |
| Vanadium-mean      | 6.38E-02  | 3.27E+00   | 2.24E-02          | 1.07E-02                                | 5.42E-05        |

max - COC evaluated using maximum media concentrations

mean - COC evaluated using mean media concentrations

Bold values indicate the LOAEL-Based hazard quotient is greater than or equal to 1.

Table 10.10 Mean LOAEL Hazard Quotients >1 for Ecological Receptors Operational Unit 32 (WP-14) Langley Air Force Base, Virginia

| Receptor<br>Name | Exposure<br>Medium | Analyte   | Hazard<br>Quotient <sup>1</sup> | COC? | Rationale                                                                                                |
|------------------|--------------------|-----------|---------------------------------|------|----------------------------------------------------------------------------------------------------------|
| Earth Worm       | Surface Soil       | Antimony  | 1.44E+00                        | No   | Concentrations consistent with background conditions; HQ only slightly greater than 1                    |
| Deer Mouse       | Surface Soil       | Aluminum  | 6.04E+01                        | No   | Concentrations consistent with background conditions; bioavailability assumption was overly conservative |
|                  |                    | Antimony  | 1.01E+00                        | No   | Concentrations consistent with background conditions; HQ only slightly greater than 1                    |
|                  |                    | Vanadium  | 3.27E+00                        | No   | Consistent with background conditions                                                                    |
| American Robin   | Surface Soil       | Antimony  | 3.17E+01                        | No   | Consistent with background conditions; highly conservative analysis                                      |
|                  |                    | Beryllium | 6.37E+00                        | No   | Consistent with background conditions; highly conservative analysis                                      |
|                  |                    | Thallium  | 2.02E+01                        | No   | Consistent with background conditions; highly conservative analysis                                      |

Note - toxicity testing performed as part of the overall Langley AFB toxicity study, not as part of the RI for WP-14

Notes:

1 Hazard quotients presented are based on mean COC concentrations and LOAEL values, using Langley site-specific toxicological data