

Attachment 1.—Historical Background of National Fish Hatcheries in Region 1.

Station	Year Established	Final Year	Disposition
McCloud River, CA	1872	1882	Closed
Crooks Creek,CA	1879	1887	Moved to McCloud
			River, CA
Baird (formerly McCloud	1888	1937	Transferred to Bureau
River), CA			Of Reclamation
Clackamas, OR	1888	1943	Transferred to State
			of Oregon
Fort Gaston, CA	1889	1898	Replaced by
			Willamette Falls, OR
Korbel, CA	1893	1896	Closed
Redwood Lake, CA	1893	1898	Closed
Sandy River, OR	1895	1925	Closed
Battle Creek, CA	1896	1946	Closed
Olema (Bear Valley), CA	1897	1898	Closed
Salmon River, OR	1897	1900	Transferred to State
			of Oregon
Upper Clackamas, OR	1897	1931	Transferred to State
			of Oregon
Roque River, OR	1897	1932	Closed
Mill Creek, CA	1898	1948	Transferred to FWS
			Division of Research
Little White Salmon, WA	1898		Operating
Willamette Falls, OR	1899	1942	Closed
Baker Lake, WA	1899	1942	Transferred to US
			Forest Service
Spring Creek, WA	1901		Operating
Grants Pass, OR	1904	1906	Moved to Applegate Creek,
			OR
Phinney Creek, WA	1907	1918	Closed
Applegate, OR	1907	1959	Transferred to FWS
			Division of Research
Cazadero, OR	1908	1913	Closed
Illabot Creek, WA	1909	1927	Closed
Duckabush, WA	1911	1943	Transferred to US
			Forest Service
Quilcene, WA	1911		Operating
Darrington, WA	1912	1919	Closed

Spring Creek National Fish Hatchery - Comprehensive Hatchery Management Plan - August 2002

D: W.	1010	1000	
Brinnon, WA	1913	1923	Closed - egg collection
Sultan, WA	1913	1933	Closed
Birdsview, WA	1913	1947	Transferred to State
D C 1 W1	1011	1010	of Washington
Day Creek, WA	1914	1919	Closed
Quinault (Old), WA	1914	1947	Transferred to US
			Forest Service
St. Helens, OR	1917	1919	Closed
Paris, ID	1918	1921	Closed
Washougal River, WA	1919	1923	Closed
Salmon, ID	1921	1946	Transferred to Bureau
1 25 2 4 1 1 2 2 3 3 4 3 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5			of Land Management
Phalon, WA	1922	*	Authorized, but never
			operated
Snake River, OR	1924	1925	Moved to Salmon, ID
Ozette, WA	1926	1927	Closed
Wind River, WA	1926	1936	Transferred to State
			of Washington
Mt. Rainer, WA	1931	1942	Transferred to
			National Park Service
Hagerman, ID	1931		Operating
Butte Falls, OR	1932	1943	Transferred 1/2 to State
			of Oregon; 1/2 to Bureau
			of Reclamation
Deschutes, OR	1932	*	Authorized, but never
			operated
Spokane, WA	1935	1942	Transferred to State of
			Washington
Yakima Fish Screen, WA	1935	1986	Closed
Delph Creek (Estacada), OR	1936	1954	Transferred to State
			of Oregon
Carson, WA	1937		Operating
Leavenworth, WA	1938		Operating
Clark Fork, ID	1939	1942	Transferred to State
			of Idaho
Sun Valley, ID	1940	1941	Closed
Warm River, ID	1940	1951	Transferred to State of
			Idaho
Entiat, WA	1940		Operating
Winthrop, WA	1940		Operating
Coleman, CA	1942		Operating
Willard, WA	1951		Operating
*			

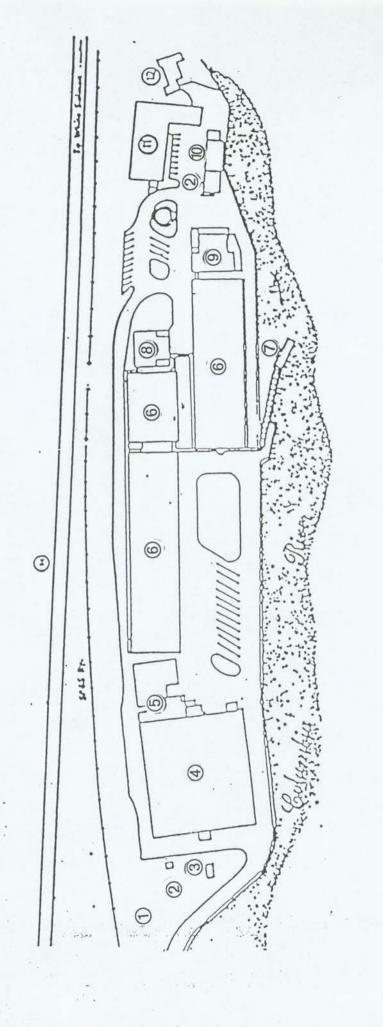
Spring Creek National Fish Hatchery - Comprehensive Hatchery Management Plan - August 2002

1953	der	Operating
1957	1989	Operating
1964		Operating
1967	1989	Caretaker Status
1969		Operating
1969		Operating
1970		Operating
1974	******	Operating
1974		Operating
1981		Operating
1991	*****	Operating
1992		Operating
	1957 1964 1967 1969 1969 1970 1974 1974 1981	1957 1989 1964

Spring Creek National Fish Hatchery - Comprehensive Hatchery Management Plan - August 2002

Attachment 2.—Statutory Mandates and Authorities.

General Authorizations


- Anadromous Fish Conservation Act, as amended (16 U.S.C. 757a-757f).
- Department of Transportation Act (16 U.S.C. 1653f).
- Estuary Protection Act (16 U.S.C. 1221-1226).
- Federal Aid in Sport Fish Restoration Act of August 9, 1950, as amended (16 U.S.C. 777k).
- Federal Water Pollution Control Act Amendments, as amended (33 U.S.C. 1251-1365, 1281-1292, 1311-1328, 1341-1345, 1361-1376).
- Fish and Wildlife Act of 1956, as amended (16 U.S.C. 742a-742j).
- Fish and Wildlife Conservation Act of 1980 (16 U.S.C. 2901-2911).
- Indian Self-Determination and Education Assistance Act of 1976 (25 U.S.C. 450-450n).
- Magnuson Fishery Conservation and Management Act of 1976 (16 U.S.C. 1801-1882).
- National Aquaculture Act of 1980, as amended (16 U.S.C. 2801-2810).
- Reorganization Plan No. 4 of 1970 (5 U.S.C. Appendix).
- Rivers and Harbors Act of 1899, as amended (33 U.S.C. 401 et seq.).
- Recreation Use of Conservation Areas Act (16 U.S.C. 460k-460k-4).
- Sikes Act, as amended (16 U.S.C. 670a-670o).
- Watershed Protection and Flood Prevention Act, as amended (16 U.S.C. 1001-1009).
- · Code of Federal Regulation, Wildlife and Fisheries, Title 50, Parts 1 to 199.
- Endangered Species Act of 1973 (16 U.S.C. 1531-1544, 87 stat. 884) as amended.
- Federal Power Act (16 U.S.C. 791-828c; Chapter 285, June 10, 1920; 41 Stat. 1063) as amended.
- Federal Water Project Recreation Act (16 U.S.C. 460 (L) (12) 460 (L) (21); P.L. 89-72.
- Fish and Wildlife Coordination Act (16 U.S.C. 661-667e; 48 Stat. 401) as amended.
- Fish and Wildlife Improvement Act (16 U.S.C. 7421; 92 Stat. 3110)
- Lacy Act Amendments of 1981 (P.L. 97-79; 95 Stat. 1073, 16 U.S.C. 3371-3378)
- Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990 [Title I of P.L. 101-646 (104 Stat. 4761].
- Oil Pollution Act of 1990 [Public Law 101-380 33 U.S.C. 2701 et seq; 104 Stat. 484].
- Comprehensive Environmental Response Compensation and Liability Act (Superfund) (26 U.S.C. 4611-4682; P.L. 96-510, December 11, 1980; 94 Stat. 2797).
- National Environmental Policy Act of 1969 (P.L. 91-190, 42 U.S.C. 4321-4347, January 1, 1970, 83 Stat. 852) as amended by P.L. 94-52.
- National Wildlife Refuge System Administration Act of 1966 (16 U.S.C. 668dd-668ee) as amended.
- Emergency Relief Appropriations Act (49 Stat. 115).
- Reclamation Laws (54 Stat. 1198, 1199).
- Flood Control Act of 1962 (76 Stat. 1193).
- White Act (46 Stat. 371).
- Flood Control Act of 1944, as amended 1950 (58 Stat. 887).

Spring Creek National Fish Hatchery - Comprehensive Hatchery Management Plan - August 2002

Area-Specific Authorizations

- U. S. v. Oregon, "Belloni Decision" [302 F. Supp. 899 (1969); affirmed, 529 F. 2d 570 (1976)].
- U. S. v. Washington, "Boldt Decision" [384 F. Supp. 312 (1974); affirmed, 520 F. 2d 676 (1975); cert. denied, 423 U.S. 1086 (1976)].
- Water Resources Development Act of 1976 [Lower Snake River Compensation Plan (90 Stat. 2921)].
- Pacific Salmon Treaty Act of 1985, "U.S./Canada Pacific Salmon Treaty" (P.L. 99-5, 16 U.S.C. 3631, 03/15/1985).
- Salmon and Steelhead Conservation and Enhancement Act (16 U.S.C. 3301-3325).
- Yakima Fishery Enhancement Project (P.L. 98-360, P.L. 98-381, P.L. 98-386).
- Grand Coulee Dam Project (49 Stat. 1028).
- Grand Coulee Fish Management Project [Columbia Basin (Grand Coulee Dam) Act] April 3, 1937.
- Chief Joseph Dam Project [Oroville-Tonasket Unit, Washington (76 stat. 761) Section 3 of the Act of October 9, 1962] [Whitestone Coulee Unit, Washington (43 U.S.C. 616uu, 616vv-1-6163; 78 Stat. 704], as amended.
- Columbia Basin Project Act (16 U.S.C. 835 et seq., 57 Stat. 140) as amended.
- Chehalis River Fishery Resources Study and Restoration Act [Public Law 101-454 (104 Stat. 1054].
- Mitchell Act (16 U.S.C. 755-757; 52 Stat. 345).
- Pacific Northwest Electric Power Planning and Conservation (16 U.S.C. 839, P.L. 96-501, 94 Stat. 2697) as amended.
- First Deficiency Appropriation Act, "Central Valley Project" (49 Stat. 1622).
- Reclamation Projects Authorization and Adjustment Act of 1992, "Central Valley Project Improvement Act (106 Stat. 4714-4731).
- Pyramid Lake/Truckee-Carson Water Rights Settlement (P.L. 101-618, 104 Stat. 3289).
- Washoe Project Act (70 Stat. 775-777).



SPRING CREEK NATIONAL FISH HATCHERY

- 1 SEWAGE TREATMENT PLANT AREA
- 2 SERVICE BUILDING
- 3 PUMP PLANT
- 4 FILTER BEDS
- 5 MECHANICAL BUILDING
- 6 REARING PONDS

- 7 FISH LADDER
- 8 FOOD STORAGE BUILDING
- 9 SPAWNING BUILDING, VISITOR CENTER, OFFICES
- 10 STORAGE, GARAGE
- 11 INCUBATION BUILDING
- 12 LOWER COLUMBIA RIVER FISH HEALTH CENTER

SPRING CREEK NATIONAL FISH HATCHERY OPERATIONAL PLAN, GOALS AND STANDARDS May 15, 2000

Written By:

The Spring Creek National Fish Hatchery Staff

and

The Spring Creek National Fish Hatchery Evaluation Team

INDEX

				Pag
I.	Hato	hery Ol	bjectives	3
Π.	Five	Year P	Production Plan and Goals	5
III.	Hato	hery Qu	uality Standards	13
IV.	Hato	hery In	formation Monitoring and Study Design	15
V.	Hatc	hery Pr	rocedural Standards	17
	Α.	Spaw	vning	18
	В.	Incul	bation	20
	C.	Feed	ling and Cleaning	21
	D.	Wate	er Quality and EPA Monitoring	23
	E.	Fish	Health	26
	F.	Fish	Release	28
	G.	Big V	White Substation	30
VI.	Mair	itenance	e Procedural Standards	33
	A.	Oper	rational Procedures	33
		1).	Setting Up Hatchery for Adult Return	33
		2).	Incubation Building	34
		3).	Filterbeds/Backwashing	36
		4).	Alarm System	37
	В.	Main	ntenance Procedures	38
		1).	Pumps and Motors	38
		2).	Heat Pumps	39
		3).	Spawning Equipment	40
		4).	Building Heating and Cooling Systems	41
		5).	Standby Generator	42
		6).	Electrical Equipment	43
		7).	Rotary Compressors	44
		8).	Domestic Water System	45
		9).	Air Compressors	46
		10).	Paint Inventory	47

VII. Hatchery Safety Standards

48

I. HATCHERY OBJECTIVES

Mitigation

The Spring Creek National Fish Hatchery is legally mandated to mitigate for fish losses due to the construction of dams on the Columbia River. The Mitchell Act of 1938 and the Flood Control Act of 1950 provided funding for the reconstruction of the hatchery and for fish cultural operations.

Adult Contribution and Survival

In 1901 the U.S. Bureau of Sports Fisheries (now the U.S. Fish and Wildlife Service) began taking eggs from the Tule strain of fall chinook salmon (Oncorhynchus tshawytscha) that were historically spawned in the Big White Salmon River, a tributary of the Columbia River located one mile from the present location of the Spring Creek NFH. The original population of Tule fall chinook salmon has greatly diminished. Hatchery produced adults now contributing significant numbers of fish to the commercial, tribal and sport fisheries in the ocean and the Columbia River. Spring Creek will continue to provide for these fisheries, as well as maintain a target of 7,000 (including 4,000 female) adult escapement to the hatchery in order to maintain its production goals. Historically Spring Creek stock's survival rate was approximately 1.5% of the smolts released. In recent times the stock's survival rate has dropped below 1.0%. A major objective of the hatchery is to restore the stock to its former abundance.

Production

Spring Creek's maximum design capacity is for the production of 15.1 million smolts and production will be maintained at this level. Based on the assumption that raising healthy smolts will result in healthy adults, fish cultural practices will reflect the importance of monitoring fish health, disinfecting equipment and eliminating fish stress. The present practice of establishing improved fish cultural standards will be maintained. In addition, an investigation of alternative water sources and improved rearing techniques will be made.

Public Relations

The public provides Spring Creek with tax monies in order to produce salmon and keeping the public informed of hatchery programs is beneficial in maintaining these programs. An informed public will be more supportive in the future if our program is in jeopardy of losing funding. Spring Creek is especially interested in educating younger people since they are the future voters and will someday provide the support for environmental concerns.

Environmental Impacts

The U.S. Fish and Wildlife Service is accountable to the Endangered Species Act. Hatchery fish and wild fish interact in the marine and freshwater environments and because some of the wild populations are either threatened or endangered, Spring Creek has a responsibility to minimize the effects of hatchery practices on wild populations. We will continue to think about what we are doing that may impact these fish and modify practices that have adverse affects on the environment wild fish populations.

Genetic Integrity

The Tule fall chinook salmon is a unique stock which is indigenous to this area and it needs to be preserved. Present hatchery procedures mandate that every fish returning to the hatchery deserves the opportunity to contribute to the genetics of the stock. For example: jacks, or two year old precocious males, constitute 2% of the male spawning population. Additional measures will be taken to preserve the genetic integrity of this stock as they are developed.

Team Work

Working together, whether it's amongst ourselves as a hatchery crew or with other agencies, will ultimately result in sound biological management of the resource and its environment. The hatchery crew has been working as a4 team to identify standards for hatchery operations and will continue to improve those and write additional ones until all aspects of the operation have been considered. The recently formed Hatchery Evaluation Team will play a vital role in improving existing relations with other fisheries entities: the National Biological Survey (NBS), state fish and wildlife agencies, federal and tribal organizations, and public groups.

II. FIVE YEAR PRODUCTION PLAN AND GOALS

Goals addressed by the Hatchery Evaluation Team:

Production
Stock Integrity and Genetic Diversity
Interactions with Wild Stocks
Smolt Survival
Adult Contribution
Release Strategies
Defining Stock Quality Standards
Stock and Environmental Concerns
Hatchery Processes (Methods), Operations
Significance of Disease
Escapement
Communication and Public Relations
Monitoring and Evaluation

PRODUCTION

Tule Fall Chinook Salmon

Present	5 Year Goal	
15.1 million smolts released.	15 million smolts released or best numbers based on density study results.	
300,000 smolts in lagoon.	Final evaluation of lagoon reared fish for best capacity.	
1-4 million surplus unfed fry.	Complete unfed fry/otolith mark study.	

Spring Chinook Salmon

Present	5 Year Goal
150,000 yearlings released from Big White Salmon ponds.	Best numbers based on availability of fish and evaluations of fishery needs and rearing capabilities.
500,000 "0" age released from Big White Salmon ponds.	(Goal of U.S. vs Oregon is 1.45 M smolts)

STOCK INTEGRITY AND GENETIC DIVERSITY

Tule Fall Chinook Salmon

Present	5 Year Goal
Original stock from White Salmon River. Input from Toutle River (1974) and AbernathySpring Creek stock.	Implement special studies suggested by the Regional Geneticist and approved by the team. Keep genetic diversity as wide as allowed.
Bonneville SFH (BY87 and BY88), not pure Spring Creek stock. ≤2♀:1♂ for spawning. ≥2% of ♂'s used in spawning are jacks. Fertilize 1♀ with 1♂	Protect stock integrity. Define effective population. Perform genetic evaluation of stock. Maintain standards on spawning ratio and % jacks used.

Spring Chinook Salmon

Present	5 Year Goal
70 - 100% Carson NFH stock. 0 - 30% Little White Salmon NFH stock.	Protect stock integrity.
Fish received as swim-up fry.	Define effective population.
	Implement special studies suggested by the Regional Geneticist and approved by the team.

INTERACTIONS WITH WILD STOCKS

Tule Fall Chinook Salmon

Present	5 Year Goal
Smolt release - no jeopardy with wild stocks (NMFS, 1993).	Acquire more data on interactions between wild stocks and tule fall chinook by reviewing current studies.
Adult returns - some straying, but these fish are indigenous stocks.	Develop solutions to remedy potential adverse impacts.

Spring Chinook Salmon

Present	5 Year Goal
No viable spring chinook wild stock in White Salmon River (WDF, 1993).	Conform to any established wild stock policies and ESA and CRFMP directives.
Releases - no jeopardy with wild stocks (NMFS, 1993).	
Evaluation of residualism of fingerling releases with marking study.	Residualism studies evaluated.

SMOLT SURVIVAL IN THE HATCHERY

Tule Fall Chinook Salmon

Present	5 Year Goal
Egg to eye-up ≥ 94%	Egg to eye-up, maintain index.
Eye-up to ponding = 96-97%	Eye-up to ponding, maintain index.
Panding to palesses of 07 5 gt	Ponding to release > 97.5%
Ponding to release = 96-97.5%	Maintain or improve standards.

Spring Chinook Salmon

Present	5 Year Goal	
Ponding to release = 70-80% (disease and high predation).	Ponding to release ≥ 90%.	

ADULT CONTRIBUTIONS - TOTAL

Tule Fall Chinook Salmon

Present	5 Year Goal	
< 1.0%, varies with tag code.	1.5%, or improving trend.	

Spring Chinook Salmon

Present	5 Year Goal
2 years of CWT's (1991 & 1992) and 1 year of ventral clips (1993).	Ongoing tagging and evaluation incorporated into station program. Increasing contribution to sport and tribal fisheries.
FRO coordination with tagging.	tribal fisheries.

RELEASE STRATEGIES

Tule Fall Chinook Salmon

Present	5 Year Goal
Pond - 3 scheduled releases: mid-March, mid-April, mid-May. Coordinated with OCRC and Fish Passage Center.	Pond - upgrade release equipment/techniques. Factors identified that affect contribution. CWT data used to consider options.
Lagoon - May Unfed fry (swim-up stage) - December. Planning contribution study.	Lagoon - finalize release number strategy. Unfed fry - begin evaluation of releases and contribution.

Spring Chinook Salmon

Present	5 Year Goal
August - "0" age Mid-April - yearlings	Factors identified that affect contribution. CWT data used to consider options.
wid-April - yearnigs	Finalize release number and strategy.

QUALITY STANDARDS

Tule Fall Chinook Salmon

Present	5 Year Goal
Hatchery staff has defined quality standards over the past two years.	Maintain, refine, and expand quality standards.
	Integrate LCRFHC in studies.
	Fish feeding standards better defined.

Spring Chinook Salmon

Present	5 Year Goal
None	Standards defined by staff and reviewed and approved through HET.

STOCK AND ENVIRONMENTAL CONCERNS

Tule Fall Chinook Salmon

Present	5 Year Goal
EPA samples taken. Rearing water quality checked weekly. Yearly water analysis of springs and well.	Meet all present and proposed EPA standards. Continue to monitor water quality.
Chemicals used: iodophor, HTH, freon, formalin, salt, MS-222, Pro-polyaqua.	Advance the use of INAD drugs. Have FDA approved/affordable anesthetic.

Spring Chinook Salmon

Present	5 Year Goal
EPA samples taken. No rearing water quality samples taken.	Meet all present and proposed EPA standards.
Chemicals used: Formalin, erythromycin feed.	Reduced dependency on chemicals used.

HATCHERY PROCESSES (METHODS), OPERATIONS

Tule Fall Chinook Salmon

Present	5 Year Goal
Procedures written, changes made. Staff and agency involvement through VISION.	Investigate new water sources. Maintenance standards developed.
	Ozone treatment capabilities of spring water and Columbia River water.
	Maintain, expand, and refine hatchery SOP's.
	Develop best possible rearing techniques to reduce stress and increase survival.
	HET functional and effective. NMFS and Corps participating.

Spring Chinook Salmon

Present	5 Year Goal
Staff and agency involvement through VISION.	Procedures defined by staff and reviewed and approved through HET.
	Maintenance standards developed.
	Maintain, expand, and refine hatchery SOP's.
	Investigate new water sources. HET functional and effective. NMFS and Corps participating.

SIGNIFICANCE OF DISEASE

Tule Fall Chinook Salmon

Present	5 Year Goal
Problems: ERM, coagulated yolk, occasional soft shell. BKD in adults and smolts?	ERM eliminated. Incorporated best disease management techniques and concerns of LCRFHC.
Monthly and pre-release check by LCRFHC. Goede Index done.	Evaluate fish health of smolts to adult survival.

Spring Chinook Salmon

Present	5 Year Goal
Problems: Some BKD, external parasites.	Incorporated best disease management techniques and concerns of LCRFHC.
Monthly and pre-release check by LCRFHC. Goede Index not done.	Initiate Goede Indexing.

ESCAPEMENT

Tule Fall Chinook Salmon

Present	5 Year Goal
Mitigation requirement is for 60,000 adults above Bonneville Dam (Tuss, 1982).	Clarification of accountability to Corps and Mitchell Act.
1989-1993 average return to the mouth of the Columbia is 29,000 adult BPH chinook salmon.	Evaluation completed to get best level of escapement to meet production goals and genetic diversity. North shore trapping eliminated.
To rack: 7,000 adults, of which 4,000 are \mathfrak{P} 's. Occasional trapping at north shore of Bonneville Dam.	The state of the s

Spring Chinook Salmon

Present	5 Year Goal
Terminal fishery, no escapement goals.	Terminal fishery significantly contributing to sport and tribal fisheries. Fishery impacts conforming to wild stock or ESA directives.

COMMUNICATION AND PUBLIC RELATIONS

Tule Fall Chinook Salmon & Spring Chinook Salmon

Present	5 Year Goal
Monthly hatchery team meetings and training.	Continuing hatchery team meetings.
Contacts/Involvement with: Abernathy, NBS, FRO, Tribes, VISION Teams, other hatcheries. Public relations/Outreach:	Continued involvement with other offices and agencies. Improved communications between hatcheries.
3 cooperative agreements, Skamania Fair, educational (school) tours, national fishing week.	Full time position funded to assist in outreach activities.
	Continued outreach and cooperative agreements.
	Annual local fish culturists meeting established.

MONITORING AND EVALUATION

Tule Fall Chinook Salmon & Spring Chinook Salmon

Present	5 Year Goal
Hatchery uses Columbia River Information System (CRIS) database on a limited basis with backup from hatchery generated spreadsheets. Hatchery participates in and reviews ongoing studies conducted on the hatchery stock by either hatchery personnel or researchers from other offices (FRO, NMFS, etc.).	Integrate all data in CRIS database, with confidence in its' efficacy. HET will be active in reviewing ongoing studies of the hatchery stock. If studies are developed for the hatchery stock, study designs will closely follow the format described by the Fisheries Implementation Evaluation Team in its memo of June 4, 1993. A copy of this memo will be on file in the hatchery office.

Literature Cited

National Marine Fisheries Service. 1993. Endangered Species Act - Section 7 Consultation. Biological Opinion, 1993 Hatchery Operations and Juvenile Releases.

Tuss, C.A. 1982. John Day Fall Chinook Mitigation Evaluation, Spring Creek National Fish Hatchery, Broods 1972-1975. Final Report to U.S. Army Corps of Engineers. MOU No. DACW57-73-C-0064. 29p.

U.S. vs Oregon. 1988. Columbia River Fish Management Plan. Appendix B.

Washington Department of Fisheries. 1993. Salmon and Steelhead Stock Inventory.

WDF, 1994. Run Size Forecast of the Return of Columbia River Fall Chinook Salmon Stocks in 1994. Columbia River Laboratory Progress Report 94-07.

III. HATCHERY QUALITY STANDARDS

FEMALE DEAD IN POND's (DIP's) $\leq 2.0 \%$

Since every female that returns to the hatchery has the potential of producing 5,000 eggs, we recognize the importance of keeping them alive and healthy until spawning. Our goal is to keep all fish alive until spawning, but most especially to minimize the loss of females to less than 2.0 % of the total female return. Not including fish given away as food.

TOTAL DIP's ≤ 5.0 %

Once adults return to the hatchery, the staff will do everything feasible to keep them alive to attain our goal of less than 5.0 % die-off in the ponds. DIP's are removed daily in order to decrease the spread of parasites or fungus from a dead or dying fish to another live fish.

GREEN FEMALES < 2.0 %

Spawning of green females will be kept to a minimum through quality evaluation of anaesthetized fish. The fewer number of green females sent to the spawners, the greater the overall spawning success. The goal of sending less than 2.0 % green females to the spawners does not include those females killed on the last day of spawning that are unlikely to ever become ripe. Wait on first spawn, use entry time as part of when to spawn first take.

SPAWNING RATIO OF FEMALES TO MALES < 2:1

In years past a spawning ratio of 5 or 6 females to 1 male was considered the norm. We feel that the number of adults returning can and should support a lower ratio of at least 2 females to 1 male in order to maintain genetic diversity through a larger gene pool. Geneticists agree that by increasing the gene pool a healthier stock will result. The actual fertilization process will be done with one male and one female.

JACKS SPAWNED $\geq 2.0 \%$

Spawning jacks was once taboo-it was believed that jacks produced jacks. Geneticists believe this is untrue and that jacks can actually enhance a gene pool. In keeping with our belief that all fish that return to the hatchery have a right to be spawned, we will attempt to incorporate jacks into the spawning population at a rate of not less than 2.0 % of all spawned males.

EGG EYE-UP > 95%

Percent eye-up is a measurement of how effective our techniques are in spawning the females and males, and their subsequent treatment in the incubation building through egg washing, maintaining adequate flows in the incubators, and prophylactically treating with iodophor for the control of fungus and soft-shell. We are always in the process of improving our techniques which we feel will ultimately influence the quality of the smolts we produce. By maintaining our goal of more than 95% eye-up we feel we have the best opportunity to produce a quality smolt for release. Treat egg take within 24 hours of spawn.

AMMONIA (NH₃) CONCENTRATION ≤ 0.3 ppm

Ammonia production is a problem inherent with fish production in a reuse system; however, ammonia levels and overall water quality do not have to become a limiting factor in quality smolt production at Spring Creek. Through weekly water analysis ammonia levels can be tracked in order to determine if changes are needed in fish cultural techniques. By adjusting feeding levels, cleaning ponds and filterbeds properly, and using beneficial bacteria in the system, ammonia levels can be maintained at or below 0.3 ppm for the entire system, as measured in the early morning before feeding commences.

DENSITY INDEX (D.I.) < 0.28 FOR SYSTEM

The density index is the weight of fish in a pond or system divided by the average length multiplied by the cubic feet of rearing space. In a given pond, too high a density index can result in poor quality fish: eroded fins, stress

from competing for space and a resultant decrease in overall production for that pond. For Spring Creek's ponds it has been determined that maintaining a density index of less than 0.28 for the entire system and a D.I. of 0.30 for any one pond is important in attaining our goal of quality smolt production. We monitor this index on a bimonthly basis. In order to maintain low densities, fish are split after the March release.

FLOW INDEX (F.I.) < 1.50 FOR SYSTEM

The flow index is the weight of fish in a pond or system divided by the average length multiplied by the gallons per minute flow in the rearing space. In a given pond, high flow indexes result in depleted oxygen and increased stress and, as stated before, this negatively influences our goal of producing quality smolts for release. At Spring Creek it has been determined that the flow index should never exceed 1.5 for the system. Throughout the production season, flow indexes are monitored bimonthly and changes are made accordingly: water flow is increased from 400 gpm to 550 gpm when the F.I. reaches 1.1 for the system, and increased to 700 gpm when the F.I. reaches 1.3.

WATER TEMPERATURE ≤ 51 °F

Due to problems observed with Enteric Redmouth Disease when water temperatures exceed $51\,^{\circ}F$, we maintain water temperatures below that level, but not less than $46\,^{\circ}F$. This can be accomplished by turning off the warmwater well in the last week of January and turning it back on if cold weather causes a drop in water temperature.

MORTALITIES FROM PONDING TO RELEASE < 2.5 %

We believe that mortality after ponding is an indicator of fish health and resultant smolt quality at release. Through many actions before, during, and after ponding we can prevent high pond mortalities. All of these techniques are discussed further in the following procedural standards: quality spawning and incubation practices, removing cripples before ponding and incorporating the latest ideas to improve ponding techniques, disinfecting equipment, water supplies and holding facilities, cleaning ponds and filterbeds, monitoring fish health, reducing stress in the fish. By following current standards, and developing new ones, we can maintain our goal of less than 2.5 % mortality in the ponds.

GENETIC STANDARDS Ne > 5000

We believe the Spring Creek Tule stocks genetic material has not been compromised since the hatchery's inception in 1901.

Outside influence has been minimal with only two incidents of outside stocks brought into the hatchery and crossed with Spring Creek stock. In 1974 tule stock from the Toutle River Hatchery and in 1987 & 1988 Tules from Bonneville Hatchery were mixed with our stock. Both of these either originated from the Spring Creek stock, as in the case of Toutle River Hatchery, or have been heavily influenced with strays from the Spring Creek stock, Bonneville Hatchery.

We believe over the years that the Effective Population size spawned each year has been significantly higher than most geneticists recommend. In fact, the Effective Population size, (Ne) has generally exceeded 2000. The Effective Population size will be determined by the following formula:

Ne =
$$\underbrace{(4) (f) (m)}_{f+m}$$

By maintaining a spawning ratio or ≤ 2 to 1, the Effective Population of each brood year should exceed 5000. We have decided to set the hatchery standards goal for Effective Population size to be ≥ 5000 . If by some unforseen circumstance the run size becomes so low that a 5000 of better Ne could not be reached, we will maximize usage of females to get al least an Ne of 1000.

VI. HATCHERY INFORMATION MONITORING AND STUDY DESIGN

HATCHERY INFORMATION MONITORING

Hatchery quality standards, goals, and studies will be monitored and evaluated utilizing the Columbia River Information System (CRIS) database. CRIS reduces reporting requirements and eliminates repetitious data entry. The increased consistency and quality of the data facilitates transfer of information to other agencies and aids in evaluation of general goals and specific studies.

Information maintained by CRIS includes release, return, and production data organized by such parameters as take, pond, release group, and mark group. Other information such as water quality and fish health data will be incorporated into this database. Hatchery personnel and FRO personnel will coordinate data that is needed for

Standards for CRIS data transfer responsibilities are as follows:

Hatchery to Regional Office:

A hardcopy of a run summary within one week after the end of the spawning season. A hardcopy of the hatchery production summary along with the monthly activity report.

Hatchery to FRO:

Fish removal database file within one week after the end of spawning. All records should be verified. Send the distribution data within one week after major distribution and within one week after the end of each quarter.

Egg transfer data within one week after completion of major egg transfers and within one week after the end of each quarter.

The lot history start file within one week after the end of each quarter.

FRO to Regional Office:

Quarterly fish and egg distribution report within three weeks after the end of each quarter.

FRO to Hatchery:

Hardcopy of the age composition data for each species sampled within one week after verification of

Hardcopy or database file listing mark and coded wire tag recoveries at the hatchery within one week of verification of data.

Reports and Responsibilities:

The capabilities of CRIS will be realized in data generated for annual, broodyear and special study reports. Annual production reports will give yearly statistics on adult returns and juvenile releases.

Broodyear reports will evaluate hatchery goals and standards according to their performance for each broodyear.

Confounding factors (water quality, disease, etc.) will be taken into account.

Special studies will be proposed as needed to develop additional and/or reevaluate current hatchery goals and standards to meet management objectives of contribution, stock integrity, and minimizing impacts to wild

Annual reports will be prepared by the hatchery with HET member input. Broodyear reports will be prepared by FRO with HET member input.

Special studies will be prepared by the investigator with HET member and other appropriate entity review.

STUDY DESIGN

Guidelines for study plan development will closely follow those outlined by the Fisheries Implementation Evaluation Team in their memorandum dated June 4, 1993. A copy of this memo will be kept on file in the office of Spring Creek.

New studies that will always receive technical review by the Hatchery Evaluation Team will include: All marking programs.

Release strategy changes which could affect watershed ecosystems.

Interagency/Interjurisdictional efforts.

In-hatchery studies which could result in recommendations for changes in hatchery management practices.

Steps in developing proposal will include:

HET members or other investigators brainstorm the issue. Define the problem or question in simple terms.

Contact "experts" and conduct literature review.
List specific objectives and hypotheses to be tested.
List possible study approaches and assign tasks for proposal development.
Decide on feasibility of study and methods.

List measurements and statistical methods to test hypotheses.

Decide on data which is critical to meeting objectives.

Write proposal, select reviewers, and distribute proposal.

Appendix II and III of the aforementioned memo gives the format for study proposals and guidelines for development, approval, and funding of hatchery evaluations and special studies.

V. HATCHERY PROCEDURAL STANDARDS

A. SPAWNING STANDARDS

Pre-Spawning Preparation

By August 1 have chemicals and supplies on hand:

MS-222 (12 kilograms) Pro-Polyaqua (5 gallons) Iodine (24 gallons) Salt (30 bags)

By the second week of August:

Prep ponds 28-44 for filling
Shovel out debris in the ponds
Remove every other cap from water nozzles
Put ladder in
Set troughs up in incubation building for egg washing
Put jump boards up
Put all pond screens in
Put counting shack in channel
Pull out planting pipe after spring water is flowing into filterbeds

By August 20:

Start filling filterbeds
Start water flow to ponds
Measure all the chemicals:

MS-222 = 30 bags of 400 grams each
Salt = 30 bags of 1.5 lbs each
Check the first aid kit
Move totes to the spawning area
Plug tote drain holes

Maintenance Crew:

Prep spawning building: check cables, grease bearings and run the lifts check the electrical equipment fill the crowder and forklift propane tanks change the compressor oil grease the wheels and bearings on the crowders put the crowders in grease, oil and do general maintenance on the egg cart check the plastic pipes and chutes and other things as discovered URB tube in river

Adult Run

GOAL: Total count should be within 5% of total count at the end of spawning.

Counting: Based on management decision: counting shifts begin and all males, females and jacks are

counted. Counting will continue, if manpower is available and fish are running (>250 fish/day)

even after spawning has begun.

Watchman: The night watchman will begin his shifts on or around September 1, or when the first fish comes

in.

Ponding: Pond #44 should be held empty for a buck pool, unless a larger than normal run is expected, then

fill first.

Pond #43 is to be filled with the first returning adults, and so on down the line.

500-adults per pond; however, if predicted run numbers are high, adults per pond may vary.

Pond numbers will not exceed 800 adults.

Spawning

In previous years spawning has started on September 15 or 16.

Guidelines for checking if fish are ready to spawn should be:

Check before the fish have been disturbed; the fish will be up in the water and not oriented toward the current; compare the oldest fish with other ponds, note that unripe fish normally swim in a circle going into the current.

General Rules:

Communication is the KEY! In order to limit exposure to anesthesia: if 30% or less of the females in the oldest pond are spawned on any given day then the next pond should not be spawned that day; give a pond at least one whole day before it's gone through again; don't overcrowd the channel and don't crowd out a pond right before break.

Specific jobs aside, everyone should be aware that help is needed with:

--morning preparation

-- changing tubes

--moving and cleaning totes

--loading rendering truck

--crowding

-- cleaning up each day, and

-- gathering and accounting for DIP's.

On DIP's:

DIP's should be removed first thing in the morning, as well as whenever needed, and the numbers tallied on the clipboard by the buck table; check for marks; marked fish go to the FRO table; we are responsible for reporting the <u>total daily</u> DIP count to FRO. A person should be designated to relay the information.

Job Roles and Responsibilities

Lift Operator

Crowds fish to spawn building Monitors water flow in channel

Backs crowder to relieve crowding fish during break

Responsible for providing a constant supply of anaesthetized fish for the checker, and for keeping in contact with the spawner so as to not overload the female table

Doesn't overload the lift-tries for 10-15 fish per lift Keeps the fish in the anaesthetic for 2.5 to 3.5 minutes

If the spawner is swamped, delay lifts until space is available on the table

Checker

Responsible for sorting out ripe males and females

Keeps an accurate count of the fish numbers, the origin and destination of unripe fish

Kills ripe fish and sends them to the tailcutter and bucker

Ensures that 2% of male spawning population is comprised of jacks

Sends excess bucks to the other side of the sorting table

Communicates to the bucker the number of males available to him Sends unripe males to pond #44, if being used for excess males

Keeps track of the spawning tubes and makes sure they get changed

Tailcutter

Responsible for cutting the females' tails and orienting the fish in the correct direction for the spawner

Puts the fish under the rinsing jets Puts clothespins on the leaking females

Turns the table so the females are available to the spawner

Sorts the bucks to the bucking table

Periodically sorts the excess males on the checking table so the older fish will be used first making sure that all bucks are dead before putting them on the buck table

Communicates with the bucker to ensure a steady supply of bucks Keeps knives sharp and wears a protective glove at all times

Keeps area clean, avoids spraying water in the direction of the eggs

Bucker

Responsible for spawning 1 male to 1 female in colander using the maximum number of males possible so spawning ratio (M:F) is less than 2:1

Sorts bucks to the bucking table

Drains ovarian fluid from the eggs until there is a slow drip and then adds the eggs to the colander

Adds adequate saline solution to the eggs and stirs

Rotates stocks of bucks and calls for additional fish as needed Keeps count of used and green males, and jacks actually spawned Disinfects, washes and replaces colanders as needed for the spawner Communicates with the checker to ensure that 2% jacks are used

Communicates with the checker for numbers of bucks on the sorting table and communicates with the tailcutter to retrieve those bucks

Bucker Helper

POLICY: If there's an "outside" bucker there should be a member of the crew acting as bucker helper

Responsible for helping the bucker

Drains ovarian fluid until there is a slow drip

Adds the eggs to the colander with the bucker's knowledge

Disinfects, washes, and replaces colanders as needed for the spawner

Tallies green, bad, or bloody females

Places colander with fertilized eggs on saline table, adds 1 cup saline

Maintains accurate count on colanders places on saline table

Keeps time of fertilization 30 to 45 seconds

Communicates to egg driver when it's time to take the eggs over and if there are fewer than 3 females in bucket

Female Spawner

Responsible for spawning females

Communicates with lift operator on lift speed Tries to maintain a timely pattern of spawning

Waits for the fish to bleed out

Points out bloody, green, or bad eggs to bucker or bucker helper

Makes decisions as to whether the eggs should be thrown away, or how much should be shaken

In years of high egg totals, throws out BB-sized eggs and counts the female as "bad" If keeping small eggs, coordinates with bucker and egg washer to separate them into

individual buckets and trays so that during shocking they can be thrown out if there are enough eggs

Changes knife blades

Egg Cart Driver

Responsible for driving eggs to incubation building and maintaining a line of communication between the egg washer and the spawning crew

Takes no more than 3 buckets at a time unless more are present, with no more than a 5 minute delay for additional buckets

After adding saline solution allow 45 seconds for fertilization

Places fertilized eggs from colander to bucket in egg hauling cart. Three colanders to bucket

Helps bucker by adding saline solution and stirring eggs Disenfects colanders and places them on drying table

Takes eggs to hatchery washing troughs and helps unload, if necessary

Helps wash eggs if needed

Communicates with spawning crew if washer is swamped

Keeps the lid latched on egg cart

Adds oil and gas to the tractor at the end of the day

Saline Table Helper**

Moves egg and sperm from bucker table to saline table

Adds saline solution

After 30 to 45 seconds combines 3 colanders into one bucket

Helps egg cart driver load cart

Helps disinfect colanders

Egg Washer

Disinfects buckets

Responsibilities have already been covered in the incubation standards

Keeps the official female count

Communicates with the spawning crew through the egg cart driver

Egg Washer Helper**

Responsibilities will be covered in the incubation standards

Roving Helper**

If available, is responsible to help out where needed, all optional position

Asks if help is needed before jumping in

May rotate to various areas

** = Optional Positions

Post Spawning

Building: Several people should spend some time scrubbing everything down. Drains should be checked

Clean the grate under anesthetic tank in spawning building.

Take all jumpboards down. Before disinfection, the ponds and channels should be checked to ensure Ponds:

that all fish and eggs are cleaned out. Ponds should be cleaned and then disinfected by introducing

HTH at the 78".

Ladder:

Shut off the water to the ladder and raise it as soon as possible after spawning is over.

B. INCUBATION PROCEDURES

Incubation Room Preparation

Flush main lines.

Block all sunlight.

Keep light off when not working.

Turn water on and adjust all incubators in one day.

Adjust all water with main valve. If not possible, adjust individually. All employees should be knowledgeable of valves in hatchery.

Water Flows

Pre Eye-up

Eye-up to Hatch

5 gpm

Hatch to Button-up

7 gpm (up to 7 gpm)

Water Temperature

If temperature units need to be raised to meet a specific need, do so prior to hatching.

To Hatch

52°F at highest

Hatch to Button-up

50°F at highest

Green Egg Handling

Haul within 5 minutes after spawning.

Wash and tray 5 minutes after entering hatchery.

Wash twice unless excessive blood or foreign matter is present.

Disinfect spawning buckets in Argentyne prior to returning them to the spawning building.

Improve communication between incubation and spawning buildings to eliminate over-burdening egg washers, causing poor quality work.

Put no more than 7,500 eggs per tray (3 females into 2 trays). Divide evenly.

Mark all trays at beginning and end of each take. Tag trays that have only 1 or 2 females, or eggs that might be bad.

First treatment with iodophor within 24 hours of spawn.

Tray-Down to Eye-Up

Treat eggs with iodophor 3 times per week:

15 minute flow-through method using pump injection.

Use Argentyne (or equivalent) at 15 to 20 ppm concentration.

Treat tray stacks individually once hatching begins if there are wide time spreads between egg takes.

Check incubators every A.M. and P.M.

Add temperature units (TU's) daily in the morning. Change thermograph every Monday morning.

Shocking and Salting Eggs

Wait until eggs are strongly eyed (550 TU's are attained or a strong eye can be seen visually). Shock eggs by hand (pouring) or by using a shocking apparatus.

Wait 24 hours after shocking before starting salting process.

Putting Eggs Down

Wait 24 hours after salting.

Use a digital platform scale.

Sample all Takes:

one sample for Takes less than 1,000,000 eggs.

two samples for Takes larger than 1 million eggs.

attempt to sample eggs from each basket in the Take. Sample size will be the "put down" numbers.

Tray down no more than 4,500 eggs per tray, preferably 4000.

Pick all dead and blank eggs, keep an accurate count of pick-off.

Work weekends if necessary to carry out these quality work standards.

Eye-Up to Button-Up

Between putting eyed eggs down and ponding, pick trays one to three times to remove dead eggs, fry, and cripples

Keep an accurate count of all pick-off

Maintain morning and evening checks of incubators

Record TU's daily

Change thermograph every Monday morning

After Ponding

Start washing trays immediately after ponding fish.

Wash all trays by February 15th.

Check all screens in trays for holes or rough areas, repair or replace as necessary.

Scrub all troughs.

Clean and store all equipment.

Paint equipment as necessary.

Power wash water channels.

R&R broken valves and plumbing.

C. FEEDING AND CLEANING

Feeding

At Ponding:

Maintain a conversion factor of .85 (lbs. feed/lbs. growth) throughout production period.

Water Temperature should be maintained at 49-50°F.

Use Biodiet floating feeds: #2 and #3 starter. Feed 12-14 days on #2 and 8-10 days on #3.

Feed eight times per day.

For computer-generated feeding rates:

Target a growth rate of 0.016 inches/month depending on temperatures.

Use a condition factor figure of .28, adjust K-factor monthly to the actual measurement for each

release starting February 1.

Waste feed can cause problems in the filterbed system. Feed ponded fry below calculated levels maximum two days; raise feed once the fish begin to actively feed.

After 3 Weeks:

Fish should be eating at least 1.0mm-sized Biodiet Moist or 1/32 Rangen soft moist pellet feed. Change target growth rate in computer to 0.016 to .018 inches/month, depending on temperatures. Try to maintain temperature between at 48-50°F.

If temperature drops (i.e. well stops functioning or there is unusually cold weather) lower target growth rate to 0.015, or 0.014 depending on temperature drop.

If necessary, raise the growth rate more rapidly than normal once the water temperature rises in order to get the fish up to size before release.

For All Releases:

Increase feeding rates by 10% two weeks prior to release. Keep a close watch on ammonia (NH₃) levels, especially for the March Release. Look for a drop in the condition factor to indicate smolting. Target size for each release: 125 Fish Per Pound (FPP) for March, 65 FPP for April, 35-45 FPP for May.

After March Release:

Use a condition factor figure of 3.2 in the computer feeding formulas. Raise target growth rate in computer to 0.020 and maintain this rate until all fish are released. If there is surplus feed and need to accelerate growth the last two weeks, raise the growth rate to 0.022.

After April Release:

Use a condition factor figure of 3.4 in the computer feeding formulas.

Feed Quality:

Require quality feed and, if inferior feed is delivered, have it evaluated and returned. Demand more stringent standards for nutritional quality, and dust and oil content. Feed should be inspected and certified by a regional fish nutritionist. Feed will not be held on station for longer than 60 days.

Number of Feeds Per Day:

Upon ponding, feed fish eight times per day until fish are on 1.0mm-sized feed. Lower number of feedings based on weight of food per pond and number of fish in pond. Feeding times are closely related to water temperature and flows. The amount of ammonia (NH₃) will influence how many feedings must be used. Increase feed amounts every three days, using the CRIS program. Always feed your smallest fish.

Feeding Chart

Fish Feed	Numb	er of Fe	eds Per	Day		
Size and FPP*	8	7	6	5		4
Biodiet #2 Starter 1100-800	X					
Biodiet #3 Starter 800-550	х					
Biomoist 1.0 mm 550-400		Х				
Abernathy 3/64 400-200		Х	Х			
Abernathy 4/64 200-75			х	Х		
Abernathy 6/64 75-				Х	х	

*FPP = Fish Per Pound, these figures are the feed company's recommended feed sizes for the number of fish per pound

Cleaning

As fish begin to grow and become more active, pond cleaning can begin (usually 3 to 4 weeks). If possible, ponds should be cleaned weekly.

On occasion, a week can be skipped due to fish planting, lack of man power, or if the bacteria are obviously working efficiently.

Take two or three days to clean all the ponds. Avoid cleaning ponds in the middle of the week to circumvent lieu days and backwashing activities.

Pond Cleaning Procedures:

Two people per pond, working in opposite directions.

Open #3 valve and close #2 valve, lower pond no lower than 2/3 normal depth.

Brush along pond walls, including center portion. Brush remainder of pond bottom diagonally.

Move slowly and avoid fish.

Clean screens to prevent overflow.

Clean screens and flush #3 valves as needed.

D. WATER QUALITY AND EPA MONITORING

Spring Creek

Hatchery Water Supply:

There are several water sources available for use at Spring Creek, with accompanying water permits. The following is a list of the sources, the permitted water use and permit numbers:

Unnamed Spring	1.5 CFS	Permit Number	10424
Unnamed Spring	12.0 CFS		6716
Unnamed Spring	12.0 CFS		11343
Unnamed Spring	.01 CFS		8398 (Domestic Use)
Well	2.67 CFS		G2-28217P
Columbia River	11.2 CFS		12045

At present all but the Columbia River permits are used.

Spring and well water are used in lieu of Columbia River water in order to eliminate the introduction of disease pathogens present in river water into the hatchery system.

Although Spring Creek possesses permits for a total of 25.51 CFS spring water, that flow is not available from the springs. In recent years the highest flow available has been 6.91 CFS.

Water Quality Testing:

In 1991 the U.S. Geological Survey conducted testing to determine if septic systems and fertilization of agricultural crops located on the bluff above the hatchery could influence hatchery water quality. The study did determine that water quality at the hatchery could be adversely affected by these practices. It also determined that the age of the spring water (from 4 different springs) was, on average, 312 years old and the well water was 4,543 years old. This age is the number of years since the water was last in contact with the atmosphere.

Annually, a sample of the spring and well water are sent to a certified lab where they are tested for approximately 15 parameters.

A thermograph measures pond water temperatures continually. A member of the staff will conduct the following tests weekly:

Test	Location
Ammonia (NH ₃)	78" Pipeline, #3 Filterbed and Aeration Tower
Nitrite (NO ₂)	78" Pipeline, #3 Filterbed and Aeration Tower
Nitrate (NO ₃)	78" Pipeline, #3 Filterbed and Aeration Tower
pH	78" Pipeline, #3 Filterbed and Aeration Tower
Dissolved Oxygen	78" Pipeline, #3 Filterbed and Aeration Tower

The purpose of measuring these chemicals is twofold: ammonia and nitrite are detrimental to fish health in fairly low concentrations. In a reuse system, the presence of these chemicals is compounded. If levels reach hatchery standards, fish cultural activities will be modified in order to decrease the concentration of these chemicals, i.e. feeding levels will be lowered. Nitrifying bacteria are inoculated in the filterbeds of the reuse system in order to eliminate the majority of the ammonia and nitrite concentrations through oxidation to nitrates, which are not lethal to fish in low to moderate concentrations. These tests can help determine the efficacy of the bacteria.

Records Maintained of Water Quality:

Daily:

TU's in hatchery building during incubation period % Saturation of Total Dissolved Gases in incubators Temperature in ponds included in fish culture log Flows in ponds

Weekly:

Filterbed measurements entered in computer database, graphs generated and held in production records.

Lagoon data entered in computer database, graphs generated and held in production records.

At each Release:

High and low records of water quality measurements are recorded and submitted with the Production Year Report and the Brood Year Report (see page 36).

EPA Requirements:

The EPA permit number for Big White is WA-000022-1. Monitoring is to be done monthly for suspended solids and reported to the EPA quarterly. Suspended solids may not exceed 15.0 mg/l over intake in an instantaneous grab sample.

Big White Substation

Pond Water Supply:

There is a single water source for the Big White Substation: the White Salmon River. Permit number 9029 provides for 30.0 CFS of inflow.

Water Quality Testing:

Thermograph records temperatures daily.

EPA Requirement:

The EPA permit number for Big White is WA-002553-4. Monitoring is to be done monthly for settleable solids and reported to the EPA quarterly. Settleable solids may not exceed 3.3 ml/l over intake in an instantaneous grab sample.

WATED	OTTAL PTV	MONITOPING FOR	RELEASE
WATER	QUALITY	MONITORING FOR	KELEASE

Date of Release			
TEST	SOURCE	FLOW	HIGH
Water Temperature (°F)	Incubators Rearing Ponds Lagoon		
	Columbia River T	emperature at Release	_
Dissolved Oxygen (mg/l O ₂)	78" Pipeline #3 Filterbed Aerator Tower Incubators Lagoon		
Ammonia (ppm NH ₃)	78" Pipeline #3 Filterbed Aerator Tower		
Nitrite (ppm NO ₂)	78" Pipeline #3 Filterbed Aerator Tower		
Nitrate (ppm NO ₃)	78" Pipeline #3 Filterbed Aerator Tower		
рН	78" Pipeline #3 Filterbed Aerator Tower Lagoon		
Phosphates (mg/l PO ₄ ³⁻)	Lagoon		
BOD (mg/l O ₂)	Lagoon		

E. FISH HEALTH

Spring Creek

Spawning Season

Adult fish health sampling performed by the Lower Columbia Fish Health Center (LCRFHC):

66 Males:

kidney, spleen, and gill tested for virus (3 fish pools)

Infectious Hematopoietic Necrosis (IHN) Infectious Pancreatic Necrosis (IPN) Viral Hemorrhagic Septicemia (VHS)

Erythrocytic Inclusion Body Syndrome (EIBS)

150 Females: ovarian fluids tested for virus (3 fish pools) Infectious Hematopoietic Necrosis (IHN) Infectious Pancreatic Necrosis (IPN) Viral Hemorrhagic Septicemia (VHS)

30 of 150 females are then tested for:

Yersina ruckeri (ERM)

Aeromonas salmonicida (furunculosis)

20 of 150 females are then tested for:

Ceratomyxa shasta (whirling disease)

Handling of Adults

No chemical treatment in ponds.

Remove DIP's daily.

Use MS-222 to facilitate handling and thereby reduce stress in fish.

Use Pro-polyaqua in anesthetic tank to reduce handling stress on fish and possibly adult holding ponds.

No individual spawning to isolate BKD positive progeny.

Remove carcasses every other day.

Egg Handling

Fertilized Eggs:

Wash after fertilization to remove blood, body cavity parts and excess sperm that may enhance fungal

Disinfect 3 days/week with iodophor to prevent fungal growth, as described in incubation procedures.

Record TU's daily. Start treatment within 24 hours of spawning.

Disinfect as above with iodophor to prevent fungal growth until 750 TU's are reached. Pick dead eggs to reduce fungal growth.

Sac Fry:

No chemical treatments.

Cripples and dead fry picked to reduce fungal growth before ponding.

Ponded Fry and Fingerlings

Further fish health monitoring is performed by the LCRFHC:

At Ponding:

60 fish are sampled for virus (3 fish pools): Erythrocytic Inclusion Body Syndrome (EIBS) Viral Hemorrhagic Septicemia (VHS) Infectious Hematopoietic Necrosis (IHN) Infectious Pancreatic Necrosis (IPN)

Monthly:

10 fish are sampled for: Virus (EIBS only) Bacterial Diseases Parasites Anything unusual

At Release:

60 fish are sampled (3 fish pools) for:

Virus
Bacterial Diseases
Parasites
200 sampled by organosomatic indexing

Preventative Measures

Post-Spawning Disinfection:

Wash all pond walls and scrub pond bottoms.

Add 6-7 100-pound drums of HTH to filterbeds at the 78" pipeline.

Circulate water in ponds for 24 hours.

Pump water to lagoon and allow to dissipate before release to the Columbia.

Post-Release Disinfection:

Wash all pond walls and scrub pond bottoms.

Clean channels.

In June remove brush from springs and disinfect with HTH using tractor's pump. Divert water to settling basin for neutralization.

Disinfect filterbeds for ICH with 4 55-gallon barrels of formalin; filterbeds should be filled with warm well water (65 °F); allow formalin to circulate for 2-3 hours, then let stand for 5-10 days; drain formalin to lagoon and leave to break down before releasing water to the Columbia River.

In General:

Clean ponds when algae growth builds up.

Pick mortalities daily to prevent the spread of a disease.

Disinfect nets and brushes in Roccal.

Disinfect marking trailer or vehicles from other hatcheries before they come on this hatchery. For disinfecting distribution trucks use 1/2 ounce (dry weight) of HTH (70% available chlorine) per 25 gallons of water for 30 minutes. When using water with a pH higher than 6.0, add 1 fluid ounce of glacial acetic acid per 100 gallons of water.

Treatments

Yersina ruckeri--occasionally Enteric Redmouth disease outbreaks occur at the hatchery. Oxytetracycline is administered in a medicated feed at a rate of 1.75-2.75 grams per pound of feed for 10 days.

Ichthyophthiriasis (ICH)--formalin is injected into the water system at a very low concentration (10-20 ppm) to knock down the protozoan population. Treatments of 55 gallons of formalin are administered three days in one week to the filterbeds and repeated the next week. The intent is not to completely kill the organism as this would result in killing the nitrifying bacteria in the reuse system.

Big White Substation

Ponded Fry and Fingerlings

At Ponding:

Sixty fish are sampled for virus (3 fish pools)
Erythrocytic Inclusion Body Syndrome (EIBS)
Viral Hemorrhagic Septicemia (VHS)
Infectious Hematopoietic Necrosis (IHN)
Infectious Pancreatic Necrosis (IPN)

Monthly:

Ten juvenile fish are sampled for: Virus (EIBS only)

Bacterial Diseases Parasites Anything unusual At Release:

Sixty juvenile fish are sampled (3 fish pools) for:

Virus

Bacterial Diseases

Parasites

Preventative Measures

Post-Release Disinfection:

No disinfection due to poor condition of ponds (small fish can escape between ponds).

In General:

Clean ponds weekly.

Pick mortalities daily to prevent the spread of disease.

Disinfect marking trailer or vehicles from other hatcheries before they come on the property.

Treatments

Renibacterium salmoninarum—due to high outbreaks of BKD in the summer, erythromycin is administered in medicated feed following the protocols of INAD 4333. Fish are fed erythromycin at a concentration of 100 mg/kg of feed for 21 days. ELISA samples for BKD on 60 fish are taken before and after feeding the medication.

External parasites-during periods of high mortalities due to the presence of external parasites, fish health biologists may recommend treating the fish with formalin. A concentration of 1:5000 is used and the formalin is siphoned from a 55-gallon drum set up at the head of the raceway. This flow through treatment is done without reducing the raceway flow. A typical treatment would be 23-24 gallons of formalin with enough water added to fill the 55-gallon drum and siphoned over an hour long period.

F. FISH RELEASE

Six Weeks Prior to Release

Inform Fish Health of upcoming release date so they can plan their sampling schedule.

Week Before Release

Place smolt release tube in first ladder step and secure. Inform public of release dates.

Day Before Release

Get list of pond numbers from computer for that release.

Mark ponds that will be released with engineering tape.

Put long extension bar and chain on Baker forklift. Check and fill propane tanks.

Use forklift to place one adult crowder in channel by Pond 1. Check propane tanks on crowder and test run.

Feed fish in release ponds one-half their daily feed in the morning. After the last morning feed, pull all walkways from the end furthest from the channel.

Remove metal covers from channel over the road (between north and south banks of ponds), and block access with vehicles.

Remove channel walkways.

Lift bird cage.

Check river level.

Track down and set out the following near the pond to be released first (i.e. Pond 44, 1 or 27):

- -- 3 Pond Seines, check for holes and repair (pump room)
- -- 1 Channel Seine, check for holes and repair (pump room)
- -- 1 Wood-Framed Channel Crowder (pump room)
- -- 1 Aluminum Pond Crowder with Center Wall Collar
- -- 1 Extended C-Clamp
- -- 1 Aluminum Brace
- -- 1-Metal-Framed Damboard Puller, the smaller one
- -- 1 Smolt Screen, for channel under road
- -- 3 Aluminum Channel Dam Boards
- -- 1 Metal-Framed Channel Crowder, for Ponds 21-27
- -- 1 Smolt Diverter, place on adult fish crowder
- -- 1 Bucket of Wedges and Hammer

-- 2 Buckets of Wet Sawdust, set up the day before

-- 1 Pickaroon

-- Shotgun and Noise Crackers

-- Several walkways

Release Jobs

6 People on Seines 1 Person in Waders in Pond

1 Person on Crowder

1 Person on Valves 1 Person on Forklift (1 Person in Waders for Ponds 21-27)

Release Ponds 28-44

Make sure walkways are on hand at pond for personnel to use instead of jumping the channel.

Turn on channel water valve in spawning room to red pencil mark.

Place smolt screen in channel crossing the road. Move fish crowder to first pond to be released.

Wedge wooden framed screen in channel behind fish crowder. Remove metal walkway and wooden pond screen from damboard. Move forklift into position and attach hook to aluminum damboard.

Shut off pond valve #2.

Shut off pond valve #1 while collared pond screen is put in place and secured with C-clamp and brace.

Turn pond valve #1 on again.

Pond seines go in the right side of pond, the "crooked leg" seine pole is used on the middle wall, under the walkway. Keep seine poles as close to wall as possible.

Shut off pond valve #1 as the seines approach the far intake.

As the third seine gets to the left side of the pond, the damboard is lifted slightly.

As the first seine reaches the mid-way point the damboard is lifted out.

After the third seine is out of the pond, the damboard is replaced as quickly as possible. The third seine should remain as close to the pond opening as possible.

Move the crowder down to the next pond as soon as possible, following seine #3 closely.

If possible, seal the ponds with sawdust as soon as they fill.

Move the forklift, fish crowder, pond screen, clamp and brace to the next pond to be released.

The seiners should move the fish down the channel past several ponds, as needed. Care should be taken to move fish down the channel only when there is sufficient water present. If the fish ball up, remove the seines. If necessary, don't move on to the next pond until channel is flushed.

Maintenance should be asked about valve settings after a pond has been emptied, in order to maintain the correct flow and water level in the aeration tower.

A short screen needs to be put in the channel to block stragglers from getting in spawning building.

After all ponds on the south bank have been released, flush ponds and seine stragglers out of the channel and place an aluminum channel damboard at the end of the channel. Shut off water valve in spawning room and move equipment to the north bank of ponds.

Release Ponds 1-20

Place smolt diverter screen on adult fish crowder; move crowder to pond 6 or 7.

Wedge small wooden channel screen in channel, directly behind pond 1's damboard.

Turn on channel water valve, near valves at pond 1.

Seining procedure is the same as ponds 28-44, except for using the damboard puller instead of the forklift.

After pond 1 has been released, move adult fish crowder into place.

After ponds 1-20 have been released, crowd and flush out stragglers and put aluminum damboard in channel at end of pond 20.

Adjust channel water valve (near pond 1) to provide sufficient water for stragglers in channel.

Release Ponds 21-27

Procedure is the same as before, except for using an aluminum channel screen with tension lock instead of adult fish crowder. One person will have to get in the channel with the screen to move it down the channel as the ponds are released.

Start at pond 27. There are no water valves for channel here. Shut mud valve in pit and turn off valve #2 and open valve #3 to run water from pond 27 to the channel.

After releasing ponds 21-27, seine and flush out stragglers from channel and put in aluminum damboard in channel at the end of pond 21.

Turn off valve #3 and open valve #2 in pond 27.

Aftermath

Use the buckets of wet sawdust to plug leaks in the aluminum damboards of ponds that have been released. Check with maintenance crew as to which valves should be open or closed and check to make sure they are in the right position.

Check, clean and repair equipment for damage; put away.

Replace channel covers on road the next day.

Safety

Releasing fish is probably the most dangerous task at Spring Creek. Nearly all personnel are required for the task in a small working space. Narrow pond walls, rapid water flow, and a great deal of equipment make this procedure very hazardous. Personnel must be alert for themselves and others at all times. Awareness is the key to a safe release.

- Hazards are: 1. Jumping across channels--don't do it!
 - 2. Moving seines through pond openings. 3. Moving forklift to hook up damboards.
 - 4. Moving adult fish crowder.
 - Replacing damboards.

G. **BIG WHITE SUBSTATION**

Big White Substation (Big White) Facilities

Location:

The Big White substation is located approximately two miles upstream from the confluence of the White Salmon River and the Columbia River. The confluence is one mile upstream from Spring Creek.

Rearing Conditions:

2 Ponds:

10' wide x 250' long x 4' deep

Designed originally to hold adult salmon and can be modified into one pond

Intake:

Located 1/4 mile upstream, piped to ponds

Water Source:

White Salmon River

Water Flow:

30 CFS

Water Temperatures: Winter = 33-40°F

Spring/Fall = 46-53°F Summer = $50-60^{\circ}F$

Operational Concerns:

Intake needs occasional cleaning due to fall leaves, salmon carcasses and fallen limbs.

High water fluctuations can occur due to uneven discharge from Condit Dam, located upstream from Big White. High flows can flood the ponds, low flows can leave the ponds without water. Good communication with dam operators is necessary to prevent loss of fish. Dam operators have been instructed to call when water flow is interrupted.

Silt content is high during spring run-off.

Animal predation may be a problem, especially during the winter.

Due to the age and condition of the ponds, and the isolated location, a lone caretaker must be particularly aware of safety precautions at the site.

Big White Fish-Rearing Program

Program purpose: Big White is a grow-out facility for approximately 500,000 spring chinook salmon spawned at the Little White Salmon (LWS) and Carson National Fish Hatcheries.

Program:

In mid-January, 1/2 million fry are shipped from LWS and/or Carson and ponded in the river-

side pond.

Fry are raised in river-side pond; feed is administered by hand or via automatic feeders. In mid-April, the previous year's 1-age fish are released into the White Salmon River. Once the bank-side pond is empty, 150,000-160,000 fry are split into it from the river-side

-Fish culture continues: feeding as before, mortalities picked daily and cleaning done weekly.

In August, 25,000 fish from each pond are right or left ventral clipped.

In mid-August, all fish from the river-side pond (approx. 350,000), are released into the White Salmon River, leaving 150,000 fish in the bank-side pond to overwinter and be released as 1age fish in mid-April of the next year.

Cooperative Agreement

A cooperative agreement exists between the U.S. Fish and Wildlife Service and the White Salmon Steelheaders Club. Club members feed the fish on the weekends, and during the month of September when hatchery staff is involved in spawning.

H. SAMPLING PROCEDURES

Eggs

Upon egg eye-up, start shocking, wait 24 hours before salting and wait an additional 24 hours before traying. This time frame allows dead eggs to be identified easily, insures a cleaner environment for eggs, and minimizes inventory loss between eye-up and hatching.

Put salt loss in fresh water for 3 hours or overnight before weighing. Drain salt loss basket for 20 minutes. Weigh basket with salt loss on platform scale, weigh empty basket after loss has been discarded, and subtract from original weight. Total weight of salt loss times sample (see below) equals total eggs lost in salting for Take.

> # Eggs +Eggs per pound WT of sample

4000 Eggs +WT per Tray

Takes of 1,000,000 or less = 2 samples or travs Takes of 1 to 2,000,000 = 3 samples or travs Takes of 3 to 4,000,000 = 4 samples or trays Takes of 4 to 5,000,000 = 5 samples or trays Takes of 5 to 6,000,000 = 6 samples or trays

Average weight of samples and start trays down using this figure.

Pick off dead or blanks before putting trays in stacks.

After completing tray-down, between 2 to 4 weeks later, pick all stacks and record loss per stack as 2ne pick off. Clean tray lids and bottom of tray if necessary.

After hatching perform 3rd pick off, recording in the same manner.

After the 3rd pick off subtract losses from the original number and use it for ponding numbers.

Fry Sampling

When fry have "buttoned up" and are ready to be ponded, set up ponding/picking trough. Individuals will each start a stack, remove and count the crippled fry and dead eggs. The total pick off will be subtracted from the pond inventory and become the fry ponded number. In the mid-stack of each individual stack for the pond a spoonful or two of fry will be removed, weighed, and counted. Samples will be minimum of 0.75 lbs in size. Each pond will be sampled once.

Pond Fry Sampling

Fish should first be sampled 1 month after ponding.

Sample bi-weekly 15th and EOM, or as close today as possible. Use sample trailer and digital scale, use lb scale.

Use calibrated square tub on end of pond - three buckets of water.

Fish are dipped into the tub; minimum of 3 dip nets full of fish. Four or five dips from different areas of pond is best. While netting, close mouth of net to keep larger fish from escaping.

Use a small net or metal strainer for sample.

Kick sides of tub to homogenize fish.

Place net or strainer on bottom of square tub and lift straight up catching all the strata fish. Allow 15 seconds drain time before weighing on a tared digital scale. Record weight, count fish, and record

Size of sample will be dependent on the size of the fish. The larger the fish the heavier the sample.

Sample size: 1-2 lbs > 500 FPP - 2-3 lbs > 250 FPP

3 lbs < 250 FPP

Split Ponds Sampling

Allow pond to be crowded.

Fill tub with water to lower line.

Use long handled sample net to get five nets full.

Use long handled sample net to get five nets full. One from each corner and middle. Homogenize fish in tub and place short handled net to bottom of tub and lift straight up. Allow 15 seconds to drain and weigh, count fish and calculate number per pound and pounds of fish to be split to another pond.

Special Studies

The hatchery will attempt to complete special study sampling according to study protocals.

VI. MAINTENANCE PROCEDURAL STANDARDS

OPERATIONAL PROCEDURES A.

1. Setting Up Hatchery For Adult Return

Set up filterbeds for water in the second or third week of August:

Close all drain valves in pipe galley.

Open all inlet water gates.

Close all outlet water gates.

Check backwash panel:

all air lines closed:

all filtered water lines open.

If no water is needed at lagoon, open valve to river at lagoon waste water pit.

Turn all waste water pump controls to "off" in chlorination building.

Set up Ponds 1-27:

Close all valves 1's, 2's, and 3's:

be sure they are tight and do not leak too much;

seal any leakage as well as possible.

Install south dam board in channel on filterbeds. This will save water that leaks and will go to lift pumps located in front of the mechanical building.

Set up Ponds 28-44:

(Two ways to set them up).

Method 1:

close all #1 and #3 valves and open #2's;

as the filterbeds fill, the water will back up the 78" line and into the ponds.

Note: This method takes longer to fill the filterbeds, but is faster when filling ponds.

Method 2:

close all three valves on ponds;

let the filterbeds fill by themselves.

To fill filterbeds:

Start one or two spring water pumps to the aerator tower.

To balance the spring water:

adjust the valves above spring water pumps in mechanical building just before lines enter aerator tower:

watch spring water pit (SWPit) go up or down and adjust accordingly;

after adjusting SWpit, check the spring water box between ponds #20 and #21;

adjust so there is just a trickle over the dam in the spring water box (this is just right).

Filterbeds will fill overnight with water that has:

overflowed to the aerator tower,

gone through the aerator pit,

gone through the bottom of the filterbeds, and

flowed up to the top of the filterbed outlet water gates.

Dam boards are shorter in filterbeds #1 and #2, which allows the excess water to flow to the waste channel through these two filterbeds.

Meanwhile (Spring water is being pumped to aerator tower and ponds are empty):

Pull planting pipe and store.

Install cover over planting pipe that remains in ladder.

Set up ladder.

Close gate valve on the end of the 78" line in S.E. corner of annex.

Fish crew is:

removing every other small fitting from header in ponds to increase flow in ponds 28-44, setting up jump boards, and installing counting shed.

To fill ponds 28-44 (Filterbeds are full):

Start one small (100 hp) aerator pump--this will put about 4,000 gpm in aerator tower;

Close all #2 valves;

Start on pond #44 or #38 and open #1 valves on three ponds.

When the three ponds are full (about 25-30 minutes):

open their #2 valves;

open 2 or 3 more #1 valves on the next ponds.

Repeat until all 17 ponds are full and all #2 valves are open. Be sure all #3 valves are closed as tight as possible (without breaking anything).

While filling ponds:

Check aerator tower for overflow after 7 or 8 ponds are full.

Start additional pumps as needed.

Go from a small 100 hp to a large 150 hp, turning off the 100 hp pump once the larger one has started.

When the demand is more than the 150 hp will handle:

start a 100 hp pump and continue as before until two 150 hp pumps are running.

Two 150 hp pumps will run the 17 ponds wide open.

If 2 large aerator pumps are started be sure selector switch in gray panel is turned to emergency power instead of commercial power.

Once Ponds Are Full:

If the water level in ponds is too high or too low:

Adjust 78" line valve to raise or lower ponds to desired level, about 27-30% open.

Management decides on the pond level.

Seal pond gates:

open mud valve by pond #44;

seal gates with sawdust to stop all leakage possible;

close mud valve.

Ponds 1-27:

open mud valves by ponds 1 and 27;

try to keep ponds not in use dry;

if ponds leak:

check and tightly close all #2 valves,

if still leaking, open #3 valve on leaking pond.

Start Ladder (For the two ponds fish will go in first):

pull dam boards;

install fish weirs;

close #2 valves.

This will run about 2,000 gpm to ladder.

Remember there is a limited amount of water--DO NOT WASTE MORE THAN IS NEEDED TO RUN THE LADDER!

2. Incubation Building

Start on approximately September 10-12

Preparations before starting water to incubation building:

Open valves in spring water pit on pumps not running to let gravity flow water into deaerator pit.

By spring water box, between raceways #20 and 21:

-open valve in roadway;

-close large valve in box under cover marked "gravity feed to hatchery."

Open drain valve at east end of main incubation room (under gripstrut).

In Southwest end of the annex:

close the gate valve to the 78" line (this should already be closed);

open lines to the river.

Start water to incubation building:

Start one large deaerator pump (#3 or 4):

Selector switch in gray cabinet by deaerator pumps should be turned to emergency power instead of commercial power.

This large pump will:

pump about 1250 gpm to deaerator tower,

fill tower and run through the hatchery building,

flow out drain line in Hatchery Building and flush out the lines.

At the same time, turn off a spring water pump. With a deaerator pump running and 2 spring water pumps running the spring water will be depleted fairly rapidly.

Check spring water pit and adjust to desired level (adjustment is described in Section 1 under "to Fill Filterbeds").

Start incubators:

Start in main Hatchery Building first! (One large deaerator pump will run the whole hatchery at 3 gpm per incubator).

Flush out lines.

Remember! There is a limited amount of water; with the ladder running conserve as much water as possible.

To recirculate incubation water:

open valve on end of 78" line in incubation building; close lines to river.

Adjusting water at incubator start-up:

Open and adjust all needed incubators.

Start closing drainline to back water up in deaerator tower, this will take some time.

Adjust drain line until flow meter in tool room of mechanical building reads approximately 1150 gpm.

This will make some overflow in the deaerator tower.

Once adjustments are made, the incubators are ready for eggs.

Adjusting water for maximum capacity:

Two deaerator pumps are running.

Adjust to approximately 1800 gpm on flow meter:

Use two people:

one to open or close drain valve;

one to watch flow meter.

Use a telephone to communicate.

Increasing temperature in incubation building:

Close valve from well to the deaerator pit.

Open valve to filterbeds.

Start well:

set laser control on about #5;

let well run to filterbeds for about 30 minutes to flush out lines;

flow meter will read high, probably 1,000 gpm, but will start to fall as static level in well falls.

Open valve to the deaerator pit.

At this time:

lines and well water should be clean,

flow meter should be reading about 500 gpm.

Open pet-cock on top of well line at the deaerator pit to let out air.

Start closing valve to filterbeds; close until there is just a little water leaking to filterbeds--DO NOT

CLOSE COMPLETELY!

Close pet-cock.

Monitor temperature gauge in mechanical building until desired temperature is reached:

If temperature is too high:

turn laser control down to adjust gpm on flow meter.

If temperature is too low:

turn laser control up to adjust gpm on flow meter.

Adjust spring water as before. When well water is added to the deaerator pit it will raise the level of the spring water pit also. Spring water will have to be conserved. Adjustments should hold through spawning time.

To evacuate water from the system when spawning is over:

install dam boards in ponds with fish traps in them;

open mud valve by pond #44 to run all leaking water away from the ladder;

pull the ladder;

turn off spring water pumps (usually one);

close valve on 78" line in hatchery;

open valves to river;

evacuate system.

3. Filterbeds/Backwashing

Development of operational procedures in progress.

5. Alarm System

Development of operation procedures in progress.

В. MAINTENANCE PROCEDURES

Pumps and Motors

Daily Pump and Motor Maintenance:

Feel for vibrations.

Check bearings for heat.

Listen for strange or different noises:

If bearings are noisy, grease (see below). Check lubrication oil sight glass (if present).

Annual Pump and Motor Maintenance:

Check packing around shaft for excessive leakage:

Tighten packing if needed. It should leak about 16 drops per minute with pump running.

Re-pack when all adjustment is out of packing gland:

(On most vertical pumps):

remove packing gland;

use a packing puller to remove first three rings of packing;

remove brass sleeve with (2) threaded sleeve removers (sleeves are stubborn

sometimes and some lubrication helps);

remove the remaining 2 or 3 rings. Normally there are 6 rings of packing, but it is common to find only 5.

Grease bearings (Remember! Over-greasing can cause more harm than not greasing enough):

Pull plugs.

Give 4 shots of a good quality grease.

Repeat if bearing noise has not stopped.

Once noise has stopped leave plugs out for 2 hours and recheck.

If bearing noise has stopped after 2 hours, re-install plugs. This method of greasing is not in the manual, but is most effective.

Change oil in oil bath bearings. Use turbine oil only.

Wipe down inside pumps with safety solvent.

Periodic Pump and Motor Maintenance:

Outside pumps and motors:

wipe down with safety solvent (test the solvent first for paint and rubber damage);

paint as needed for good appearance.

Inside pumps:

paint every 7 or 8 years, or as needed.

Main water pumps:

keep numbers clear and in place.

Aerator, deaerator and spring water pumps:

visually inspect impellers for tightness and wear;

adjust impeller as necessary;

take amperage reading on all three phases (check amp rating plate on motor); check for balance

and load;

clean sight glass.

Periodic Pump and Motor Maintenance (cont.)

Check for oil leaks:

at sight glass,

at plugs,

around shaft, and

under lower bearing.

Use Megger on all lines.

Pulling Pumps and Motors:

When necessary pull pumps and motors to rebuild:

Large (50, 100 or 150 hp) and hard to reach units must be pulled by a commercial crane.

Small and easily accessible pumps can be pulled with station equipment.

Ensure that company rebuilding the unit knows what work is expected:

Pumps:

check suction bells, impeller(s), bowls, bearings, shafting, discharge bowl and stuffing boxes:

clean piping and housing.

Motors:

check fields for leakage; check bearings and shaft end bells; revarnish.

Check on transportation costs-sometimes the lowest bid is not the best.

Subsequent painting of pumps and motors before installation to be done by maintenance staff.

Refer to the manuals when necessary.

2. Heat Pumps

Daily (on heat pumps that are running):

visually check oil level in sight glass;
check condenser and cooler pressure;
enter data in log (will help determine changes in heat pump operation):
oil pressure,
oil temperature, and
amperage.

Annually:

Change oil and oil filter.

Change filters in capillary tubes.

Pressurize unit with dry nitrogen to 1 to 2 psi (any leak or open line forces freon gas out instead of sucking oxygen into unit).

After oil and freon filters have been changed:

pressurize unit with dry nitrogen to about 10 psi;
test for leaks;
if there are no leaks, evacuate nitrogen to 0 psi;
hook up vacuum pump to unit and run until there is about 1 inch of vacuum on unit;

During the Summer:

Evaporator Tubes:

seal up unit; run unit.

there are about 480 copper evaporator tubes; remove end bells and clean with a brush; remove end drain plugs, water and grime will leak out.

Heat Exchangers:

heat exchanger tubes are stainless steel; pull drain plug; pull off end caps; clean tubes with a wire brush; using a new gasket, install end cap.

3. Spawning Equipment

4. Building Heating and Cooling Systems

5. Standby Generator

6. Electrical Equipment

7. Rotary Compressors

8. Domestic Water System

9. Air Compressors

10. Paint Inventory

Development of paint inventory in progress.

VII. HATCHERY SAFETY STANDARDS

Station Safety Plan

A station safety plan is updated annually and posted in every building. Included in the document:

Emergency Action Directory--includes all pertinent telephone numbers for emergency services. Fire Extinguisher Inventory--a complete listing of all fire extinguisher locations. First Aid Equipment Inventory--a complete listing of all first aid kit locations. Locations of other safety equipment, including safety goggles, face masks, gas masks and protective clothing.

Station Action Fire Plan--includes plans in the eventuality of a fire, search and rescue operation, or damage or injury to property or personnel.

Directives for:

a two day response to employee safety hazard reports.

Material Safety Data Sheets (MSDS's) are to be posted for all chemicals used on the station.

Job Hazard Analysis (JHA) written for each job will be critiqued quarterly.

an inspection of hatchery grounds for safety hazards will be performed quarterly.

training for key personnel in health and safety monitoring will be available annually.

maintenance of a log of occupational injuries and illnesses.

an annual summary of injuries, which will be posted and retained 5 years.

Station Safety Officer

A station safety officer is appointed from within the hatchery staff and is responsible for:

updating the hatchery crew on Regional safety issues
informing the crew of reported or observed safety hazards
conducting quarterly safety meetings where safety films are viewed and discussed, and new safety issues
are brought up and discussed by the crew
posting MSDS's and writing JHA's for all jobs
inspecting safety equipment and purchasing replacement parts or new equipment
writing and submitting accident reports
maintaining a log of occupational injuries and illnesses
inspecting fire extinguishers
organizing safety training for personnel as needed
annual hatchery safety inspection
writing and/or editing station safety plans and reports
installs and submits radon monitoring equipment for analysis
other duties as necessary.

Hatchery Crew

The hatchery crew is responsible for:
reporting hazardous working conditions or faulty equipment
participating in quarterly safety meetings
adhering to safety guidelines written in the station safety plan
not risking personal injury.

Attachment 5. List of Listed and Proposed Endangered and Threatened Species, Candidate Species, and Species of Concern Which May Occur within the Vicinity of the Proposed Master Plan Improvements – Spring Creek NFH dated 8/11/1998.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

North Pacific Coast Ecoregion
Western Washington Office
510 Desmond Drive SE, Suite 102
Lacey, Washington 98503

Phone: (360) 753-9440 Fax: (360) 753-9008

August 11, 1998

Michelle Wilson PALSA, L.L.C. 522 SW 5th Avenue, Suite 1003 Portland, OR 97204

FWS Reference: 1-3-98-SP-0416

Dear Ms. Wilson:

This is in response to your letter dated August 3, 1998, and received in this office on August 3, 1998. You have requested a list of listed and proposed threatened and endangered species, candidate species, and species of concern (Attachment A) that may be present within the area of the proposed Master Plan Improvements - Spring Creek National Fish Hatchery Recreational Site Project in Skamania County, Washington. This response fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act of 1973, as amended (Act). We have also enclosed a copy of the requirements for Army Corps of Engineers (COE) compliance under the Act (Attachment B).

Should the COE determine that a listed species is likely to be affected (adversely or beneficially) by the project, you should request section 7 consultation through this office. If the COE determines that the proposed action is "not likely to adversely affect" a listed species, you should request Service concurrence with that determination through the informal consultation process. Even if there is a "no effect" situation, we would appreciate receiving a copy for our information.

Candidate species are included simply as advance notice to Federal agencies of species which may be proposed and listed in the future. Species of concern are those species whose conservation standing is of concern to the Service, but for which further status information is still needed. Conservation measures for candidate species and species of concern are voluntary, but recommended. Protection provided to these species now may preclude possible listing in the future.

There may be other Federally listed species that may occur in the vicinity of your project which are under the jurisdiction of the National Marine Fisheries Service (NMFS). Please contact NMFS at (360) 753-9530 to request a species list.

In addition, please be advised that state regulations may require permits in areas where wetlands are identified. You should contact the Portland District of the U.S. Army Corps of Engineers for Federal permit requirements and the Washington State Department of Ecology for State permit requirements.

Your interest in endangered species is appreciated. If you have additional questions regarding your responsibilities under the Act, please contact Bobbi Barrera at (360) 753-6048, or John Grettenberger of this office, at the letterhead phone/address.

Sincerely,

Nancy J. Gloman

Acting Supervisor

BB/jko Enclosures

SE/COE/1-3-98-SP-0416/Skamania

c: COE, Portland

WDFW, Region 5

WNHP, Olympia

FWS, Spring Creek NFH 4

ATTACHMENT A

LISTED AND PROPOSED ENDANGERED AND THREATENED SPECIES, CANDIDATE SPECIES AND SPECIES OF CONCERN WHICH MAY OCCUR WITHIN THE VICINITY OF THE PROPOSED MASTER PLAN IMPROVEMENTS - SPRING CREEK NATIONAL FISH HATCHERY RECREATION SITE PROJECT IN SKAMANIA COUNTY, WASHINGTON (T03N R10E S28)

FWS REF: 1-3-98-SP-0416

LISTED

Bald eagle (Haliaeetus leucocephalus) - Wintering bald eagles may occur in the vicinity of the project from about October 31 through March 31.

Bull trout (Salvelinus confluentus) - Columbia river population may occur in the vicinity of the project.

Peregrine falcon (Falco peregrinus) -spring and fall migrant peregrine falcon may occur in the vicinity of the project.

Major concerns that should be addressed in your Biological Assessment of the project impacts to listed species are:

- 1. Level of use of the project area by listed species.
- Effect of the project on listed species' primary food stocks, prey species, and foraging areas in all areas influenced by the project.
- Impacts from project construction (i.e., habitat loss, increased noise levels, increased human activity) which may result in disturbance to listed species and/or their avoidance of the project area.

PROPOSED

None

CANDIDATE

The following candidate species may occur in the vicinity of the project:

Oregon spotted frog (Rana pretiosa)

SPECIES OF CONCERN

The following species of concern may occur in the vicinity of the project:

Long-eared myotis (Myotis evotis)
Long-legged myotis (Myotis volans)
Pacific lamprey (Lampetra tridentata)
Pacific Townsend's big-eared bat (Corynorhinus townsendii townsendii)
River lamprey (Lampetra ayresi)

ENTB

FEDERAL AGENCIES' RESPONSIBILITIES UNDER SECTIONS 7(a) AND 7(c) OF THE ENDANGERED SPECIES ACT OF 1973, AS AMENDED

ECTION 7(a) - Consultation/Conference

Requires:

- Federal agencies to utilize their authorities to carry out programs to conserve endangered threatened species;
- 2. Consultation with FWS when a federal action may affect a listed endangered or threate species to ensure that any action authorized, funded, or carried out by a federal agency is likely to jeopardize the continued existence of listed species or result in the destruction adverse modification of critical habitat. The process is initiated by the federal agency after has determined if its action may affect (adversely or beneficially) a listed species; and
- Conference with FWS when a federal action is likely to jeopardize the continued existence
 a proposed species or result in destruction or an adverse modification of proposed crit
 habitat.

SECTION 7(c) - Biological Assessment for Construction Projects *

Requires federal agencies or their designees to prepare a Biological Assessment (BA) for construction project. The purpose of the BA is to identify any proposed and/or listed species which is/are likely to be affected a construction project. The process is initiated by a federal agency in requesting a list of proposed and like the process are construction project. The process is initiated by a federal agency in requesting a list of proposed and like the process are construction (or within 180 days after that in (or within such a time period as is mutually agreeable). If the BA is not initiated within 90 days receipt of the species list, please verify the accuracy of the list with our Service. No irreversible commitment resources is to be made during the BA process which would result in violation of the requirements under Section 7(a) of the Act. Planning, design, and administrative actions may be taken; however, no construction may be

To complete the BA, your agency or its designee should: (1) conduct an onsite inspection of the area to affected by the proposal, which may include a detailed survey of the area to determine if the species is presand whether suitable habitat exists for either expanding the existing population or potential reintroduction of species; (2) review literature and scientific data to determine species distribution, habitat needs, and or biological requirements; (3) interview experts including those within the FWS, National Marine Fisheries Serv state conservation department, universities, and others who may have data not yet published in scient literature; (4) review and analyze the effects of the proposal on the species in terms of individuals populations, including consideration of cumulative effects of the proposal on the species and its habitat; analyze alternative actions that may provide conservation measures; and (6) prepare a report documenting results, including a discussion of study methods used, any problems encountered, and other relevant informat Upon completion, the report should be forwarded to our Endangered Species Division. 510 Desmond Drive Suite 102, Lacey, WA 98503-1273.

^{* &}quot;Construction project" means any major federal action which significantly affects the quality of the human-man environment (requiring an EIS), designed primarily to result in the building or erection of human-made structures as dams, buildings, roads, pipelines, channels, and the like. This includes federal action such as perments, licenses, or other forms of federal authorization or approval which may result in construction.

FALL CHINOOK SALMON SPAWNING AND DISTRIBUTION FROM THE BIG WHITE AND SPRING CREEK STATIONS DURING BROOD YEARS 1901 TO 1937 PRE-BONNEVILLE DAM CONSTRUCTION

BROOD	BIG WHITE EGGS	SPRING CREEK EGGS	TOTAL	EGGS SHIPPED	UNFED & PRE-SMOLT FRY*	LOCATION	FINGERLINGS	LOCATION	TOTAL RELEASED
1901					691,000	\mathbf{BW}			691,000
1902	3,415,000				234,000	\mathbf{BW}			2 259 300
					2,024,390	SC			2,258,390
1903					1 966 000	DW			
1903					1,866,000 2,810,690	BW SC			4,676,690
1904				2 210 000					
1904				2,219,000	1,208,200 4,742,600	BW SC			5,950,800
1005									
1905					1,928,214	SC			1,928,214
1906	7,714,000				6,678,415	$_{ m BW}$			6,878,415
					200,000	SC			
1907	245,000	163,000	4,080,000		500,000	BW			2,169,000
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,669,000	SC			2,102,000
1908			5,654,000		4,304,184	SC	387,337	$_{\mathrm{BW}}$	5 292 225
			5,054,000		4,504,104	50	590,804	SC	5,282,325
1909			3,739,000				an office s		0
									0
1910			1,933,000						0
11			6,681,000		1,350,000	\mathbf{BW}			6,280,600
					4,930,600	SC			
1912			15,261,000		2950,000	BW			13,526,400
					10,576,40	SC			
					0				
1913			10,046,000		2,837,000	BW	477,948	BW	14,905,448
					11,500,50	SC	90,000	SC	
					0				
1914			11,908,000		2,274,500	BW	6,010,700	SC	14,713,500
					6,428,300	SC			
1915			13,209,000		2,490,861	BW	598,465	BW	19,746,110
					8,931,784	SC	8,025,000	SC	
1916			4,322,000		1,597,958	SC	387,290	BW	4,878,248
			,,-		2,713,000	BW	18,000	SC	4,070,240
1917			15,051,000		1,100,000	BW	376,000	BW	18,960,357
27.7			15,051,000		1,100,000	DW	14,100,357	SC	10,900,337
1918			10,687,700		2 000 000	BW			0 102 000
1710	1.00		10,007,700		2,000,000	DW	600,000 6,502,000	BW SC	9,102,000
1919			16,042,000						
ALEXA .									0
20			5,005,000		Ĭ.		6,564,000	SC	6,564,000
1921			12,025,000				12,000,000	SC	12,000,000
1922			6,237,000				6,000,000	SC	600,000
							4		

^{* -} PRE SMOLT FRY THOSE BETWEEN 500 TO 800 PER LB.

FALL CHINOOK SALMON SPAWNING AND DISTRIBUTION FROM THE BIG WHITE AND SPRING CREEK STATIONS DURING BROOD YEARS 1901 TO 1937 PRE-BONNEVILLE DAM CONSTRUCTION

	OOD AR	BIG WHITE EGGS	SPRING CREEK EGGS	TOTAL	EGGS SHIPPED	UNFED & PRE-SMOLT FRY*	LOCATION	FINGERLING S	LOCATION	TOTAL RELEASED
	1923			7,020,500						0
	1924	7,420,000	7,000,000	14,420,000				9,138,800	SC	9138,800
	1925	5,250,000	7,000,000	12,500,000						0
	1926	7,040,000	6,138,000	13,178,000	2,941,000			7,781,000	SC	7,781,000
	1927	14,703,000	5,088,000	19,791,000	8,523,000			7,959,000	SC	7,959,000
	1928	11,216,000	4,356,000	15,572,000	6,886,000			7,860,000	SC	7,860,000
	1929	4,389,000	1,456,000	5,845,000				5,000,000	SC	5,000,000
	1930	8,050,000	4,087,000	12,137,000				1,620,000 6,700,000	BW SC	8,320,000
	1931	11,433,000	6,881,000	18,314,000	8,934,000	450,000	?	7,764,000	?	8,214,000
	1932	10,025,000	7,872,000	17,897,000	6,174,000	2,405,000	?	7,927,000	?	10,332,000
	1933	5,060,000	3,166,000	8,226,000	2,000,000			1,250,000 3,858,000	BW SC	5,108,000
4	1934	3,900,000	1,450,000	5,350,000	202,860	1,000,000	BW	400,000 3,708,000	BW SC	5,108,000
4	1935	13,340,000	3,925,000	17,265,000	4,484,000			10,161,225	?	10,161,225
	1936	15,310,000	2,155,000	17,465,000	7,200,000			8,051,200	?	8,051,200
	1937	6,825,000	2,950,000	9,775,000	25,000	4,570,000	BW	1,662,000 2,750,000	BW SC	8,982,000

^{* -} PRE SMOLT FRY THOSE BETWEEN 500 TO 800 PER LB.

FALL CHINOOK SALMON SPAWNING AND DISTRIBUTION FROM THE BIG WHITE AND SPRING CREEK STATIONS DURING BROOD YEARS 1938 - 1970 POST-BONNEVILLE DAM CONSTRUCTION

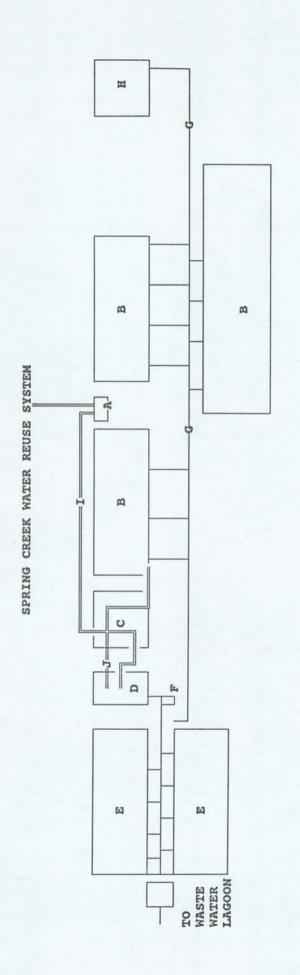
	BIG WHITE	SPRING	TOTAL	EGGS	UNFED & PRE-	LOCATION	FINGERLINGS	LOCATION	TOTAL
	EGGS	CREEK EGGS		SHIPPED	SMOLT FRY*			200122011	RELEASED
1938	14,300,000	3,950,000	18,250,000	25,000	10,597,900	BW	396,800 3,072,000	BW SC	14,066,700
1939	13,768,000	5,812,000	24,580,000	6,318,000	10,522,000	BW	1,180,000 6,325,000	BW SC	18,027,000
1940	19,026,000	6,685,000	25,711,000	7,196,000	8,750,000	BW	2,713,000 5,001,000	BW SC	16,464,000
1941	10,650,000	14,230,000	24,880,000	7,665,755	5,994,000	BW	3,870,550 4,036,480	BW SC	13,901,030
1942	13,664,000	13,870,000	27,534,000	12,186,435	9,390,000	BW	2,041,720 4,130,325	BW SC	15,562,045
1943	24,000	7,369,500	7,393,500	249,480	2,648,000	\mathbf{BW}	4,038,895	SC	6,686,895
1944	6,020,000	6,782,000	12,802,000	451,500	5,205,320 4,088,000	BW SC	1,821,620	SC	11,114,940
1945	10,724,000	6,662,000	17,386,000	1,250,000	9,178,000 3,065,000	BW SC	1,916,780	SC	14,159,780
1946	10,772,000	12,365,000	23,137,000	7,073,000	7,630,000 4,175,000	BW SC	2,008,110	SC	13,813,110
	14,008,200	12,376,890	26,385,090	8,970,100	6,797,000 4,327,000	BW SC	2,029,100	SC	13,153,100
1948	8,302,000	18,222,400	26,524,400	10,459,000	5,872,000 7,312,000	BW SC			13,184,000
1949	3,006,000	25,725,400	28,731,400	10,011,700	14,171,700	SC	1,002,260 957,000	BW SC	16,130,960
1950	5,090,520	30,538,465	35,628,985	20,028,650	5,083,580 4,390,000	BW SC	3,413,790	SC	12,887,370
1951	5,926,396	27,654,498	33,580,894	18,191,820	6,060,000 1,028,000	BW SC	6,241,786	SC	13,329,786
1952	14,574,000	27,509,845	42,083,845	16,143,500	13,468,180 2,501,820	BW SC	6,911,991	SC	22,881,991
1953	1,289,700	27,041,760	28,331,460	11,695,880	4,832,000	SC	1,024,803 7,581,845	SC BW	13,438,648
1954	2,786,000	34,983,000	37,769,000	18,057,500	1,823,850 4,639,635	BW SC	9,523,614	SC	15,987,099
1955	464,000	29,322,906	29,787,306	94,199,20	5,009,160	SC	9,710,852	SC	14,720,012
1056	1,000,000	30,681,000	31,681,000	5,465,000	3,899,850	SC	1,132,156 10,680,941	BW SC	15,712,947
1957	4,953,700	26,904,997	31,858,697	10,498,077	6,955,290	SC	4,399,920 7,962,480	BW SC	19,317,690

^{* -} PRE SMOLT FRY THOSE BETWEEN 500 TO 800 PER LB.

FALL CHINOOK SALMON SPAWNING AND DISTRIBUTION FROM THE BIG WHITE AND SPRING CREEK STATIONS DURING BROOD YEARS 1938 - 1970 POST-BONNEVILLE DAM CONSTRUCTION

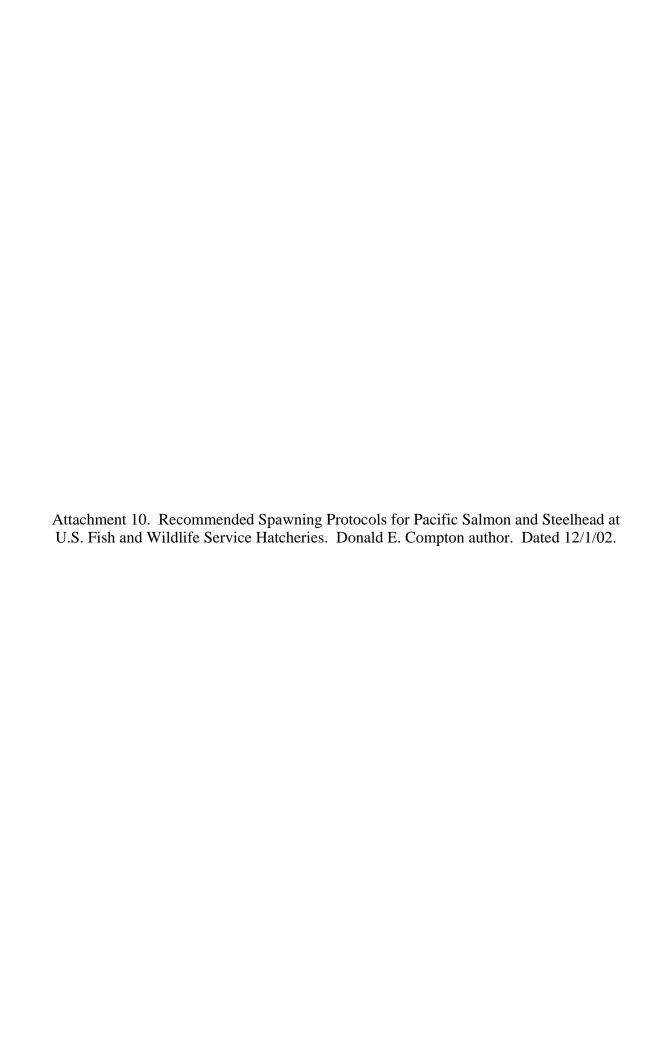
	BIG WHITE EGGS	SPRING CREEK EGGS	TOTAL	EGGS SHIPPED	UNFED & PRE-SMOLT FRY*	LOCATION	FINGERLINGS	LOCATION	TOTAL RELEASED
1958	9,336,989	80,991,486	90,328,475	64,795,110	8,027,800	SC	3,982,473 7,891,692	BW SC	19,901,965
1959	7,193,208	70,320,478	77,513,686	55,149,040	5,832,145	SC	3,352,775	BW SC	16,952,280
1960	1,493,160	33,043,210	34,536,370	11,523,635	3,773,000	BW	7,767,360 3,352,775	BW	15,045,394
1961	980,606	30,232,434	31,213,040	14,487,818			7,917,619 3,455,780	SC BW	13,188,052
		30,232,434	31,213,040	14,407,010			9,732,272	SC	13,166,032
1962	2,405,800	30,934,356	33,340,176	17,715,000			2,420,436 9,897,506	BW SC	12,317,942
1963	284,400	36,413,800	36,698,200	22,082,500			2,472,147 7,658,902	BW SC	10,131,049
1964	2,782,550	36,701,144	39,483,694	22,571,584			2,041,438 6,608,427	BW SC	8,649,865
1965		16,715,600	16,715,600	4,066,380			1,062,670	BW	9,302,945
		33,730,320	33,730,320	13,076,260	3,404,000	SC	8,240,275 1,076,660	SC BW	13,407,174
100		-02<.000	10.724.000	4 552 000			8,926,514	SC	
1967 1968		18,736,000 28,937,000	18,736,000 28,937,000	1,553,000 16,304,000	536,700	SC	9,033,720 9,966,100	SC SC	9,570,420 9,966,100
1969		37,129,588	37,129,588	16,677,640			17,585,632	SC	17,585,632
1970		13,051,144	13,051,144	12,000			11,022,958	SC	11,022,958

^{* -} PRE SMOLT FRY THOSE BETWEEN 500 TO 800 PER LB.



FALL CHINOOK SALMON SPAWNING AND DISTRIBUTION FROM THE BIG WHITE AND SPRING CREEK STATIONS DURING BROOD YEARS 1971-2002 - REUSE SYSTEM

BROOD	BIG WHITE EGGS	SPRING CREEK EGGS	TOTAL	EGGS SHIPPED	UNFED & PRE-SMOLT FRY*	LOCATION	FINGERLINGS	LOCATION	TOTAL RELEASED	
1971		25,065,965	25,065,965	1,500			18,390,250	SC	18,390,250	
1972*		15,495,049	27,605,049	37,500			20,287,536	SC	20,287,536	
1973		25,646,079	256,46,029				16,726,972	SC	16,726,972	
1974		28,794,000	28,794,000	9,000			1,898,616 18,074,429	BW SC	19,973,045	
1975		52,893,456	52,893,456	20,109,600			1,960,400 17,551,649	BW SC	19,512,049	
1976		41,504,265	41,504,265	11,949,494			2,899,422 18,351,122	BW SC	21,250,544	
1977		33,285,000	33,285,000	2,457,460			3,138,958 19,510,044	BW SC	22,649,002	
1978		31,764,965	31,764,965	6,673,594			3,028,687 20,720,985	BW SC	23,749,672	
1979		29,390,574	29,390,574	5,894,700			2,199,000 15,817,893	BW SC	18,016,893	
1980		42,880,042	42,880,042	11,725,159	3,349,198	SC	16,689,525	SC	20,038,723	
81		39,783,503	39,783,503	19,970,555			13,677,175	SC	13,677,175	
1982		41,795,400	41,795,400	16,848,042			1,202,881 14,594,463	BW SC	15,797,344	
1983		22,866,314	22,866,314	4,139,360			2,869,174 11,043,010	BW SC	13,912,184	
1984*		20,040,000	20,040,000				13,905,414	SC	13,905,414	
1985		13,547,590	13,547,590				10,594,893	SC	10,594,893	
1986*	438,279	3,681,801	11,050,332				10,649,406	SC	10,649,406	
1987*	475,584	1,310,646	11,605,988				8,850,899	SC	8,850,899	
1988*		2,445,190	21,715,038				15,307,411	SC	15,307,411	
1989*		7,876,632	12,201,380				10,200,000	SC	10,200,000	
1990		20,720,416	20,720,416				12,591,188	SC	12,591,188	
1991		33,304,686	33,304,686	8,786,637	5,350,704	SC	13,826,943	SC	19,177,647	
1992		24,135,622	24,135,622		7,663,086	SC	14,311,420	SC	21,974,506	
1993		20,383,826	20,383,826				15,607,896	SC	15,607,896	
394		26,197,875	26,197,875	7,732,033			15,990,014	SC	15,990,014	
95		23,309,109	23,309,109	4,397,734			15,653,081	SC	15,653,081	
1996		16,220,012	16,220,012				14,316,616	SC	14,316,616	
1997		24,247,737	24,247,737		6,928,619	SC	15,619,626	SC	22,548,245	


1998		11,886,708	11,886,708				SC	10,592,076
1999		26,517,894	26,517,894	3,116,006	SC	15,807,262	SC	18,917,268
2000		11,755,238	11,755,238			10,569,810	SC	10,569,810
001		30,975,272	30,975,272	3,041,402	SC	15,302,863	SC	18,344,262
2002		24,690,676	EST					
							2	
1972*	-	EGGS TRANSFERRI	ED FROM TUTTLE	E RIVER HATCHERY	Y			
1984*		MAJOR OUTBREA	K OF BACTERIAL	GILL DISEASE ALI	FISH R	ELEASED IN FE	BRUARY	
1986*							EVILLE I	DAM & 1.1
1987*	3				ABERN	NATHY NFH & 6	.1 MILLIO	ON EGGS
1988*		5.7 MILLION EGGS	FROM NST; 13.6 M	IILLION EGGS FRO	M BONN	EVILLE STATE	HATCHE	CRY
1989*		4.3 MILLION EGGS	FROM NST					
	1999 2000 001 2002 1972* 1984* 1986* 1987*	1999 2000 001 2002 1972* - 1984* - 1986* - 1987* -	1999 26,517,894 2000 11,755,238 001 30,975,272 2002 24,690,676 1972* - EGGS TRANSFERRI 1984* - MAJOR OUTBREAD 1986* - 5.8 MILLION EGGS MILLION EGGS IMP 1987* - 2.3 MILLION EGGS IMP 1987* - 2.3 MILLION EGGS IMP 1988* - 5.7 MILLION EGGS IMP	1999 26,517,894 26,517,894 2000 11,755,238 11,755,238 001 30,975,272 30,975,272 2002 24,690,676 EST 1972* EGGS TRANSFERRED FROM TUTTLE 1984* MAJOR OUTBREAK OF BACTERIAL 1986* 5.8 MILLION EGGS COLLECTED FROM MILLION EGGS IMPORTED FROM LITTLE 1987* 2.3 MILLION EGGS FROM NST; 1.4 MILLION EGGS FROM NST; 1.4 MILLION EGGS FROM NST; 13.6 MILL	1999 26,517,894 26,517,894 3,116,006 2000 11,755,238 11,755,238 001 30,975,272 30,975,272 3,041,402 2002 24,690,676 EST 1972* EGGS TRANSFERRED FROM TUTTLE RIVER HATCHERY 1984* MAJOR OUTBREAK OF BACTERIAL GILL DISEASE ALI 1986* 5.8 MILLION EGGS COLLECTED FROM FISH TRAP AT N MILLION EGGS IMPORTED FROM LITTLE WHITE SALM 1987* 2.3 MILLION EGGS FROM NST; 1.4 MILLION EGGS FROM FROM BONNEVILLE STATE HATCHERY. 1988* 5.7 MILLION EGGS FROM NST; 13.6 MILLION EGGS FROM	1999 26,517,894 26,517,894 3,116,006 SC 2000 11,755,238 11,755,238 001 30,975,272 30,975,272 3,041,402 SC 2002 24,690,676 EST 1972* - EGGS TRANSFERRED FROM TUTTLE RIVER HATCHERY 1984* - MAJOR OUTBREAK OF BACTERIAL GILL DISEASE ALL FISH R 1986* - 5.8 MILLION EGGS COLLECTED FROM FISH TRAP AT NORTH SI MILLION EGGS IMPORTED FROM LITTLE WHITE SALMON NFH 1987* - 2.3 MILLION EGGS FROM NST; 1.4 MILLION EGGS FROM ABERN FROM BONNEVILLE STATE HATCHERY. 1988* - 5.7 MILLION EGGS FROM NST; 13.6 MILLION EGGS FROM BONN	1999 26,517,894 26,517,894 3,116,006 SC 15,807,262 2000 11,755,238 10,569,810 001 30,975,272 30,975,272 3,041,402 SC 15,302,863 2002 24,690,676 EST 1972* EGGS TRANSFERRED FROM TUTTLE RIVER HATCHERY 1984* MAJOR OUTBREAK OF BACTERIAL GILL DISEASE ALL FISH RELEASED IN FE 1986* 5.8 MILLION EGGS COLLECTED FROM FISH TRAP AT NORTH SHORE OF BONN MILLION EGGS IMPORTED FROM LITTLE WHITE SALMON NFH 1987* 2.3 MILLION EGGS FROM NST; 1.4 MILLION EGGS FROM ABERNATHY NFH & 6 FROM BONNEVILLE STATE HATCHERY. 1988* 5.7 MILLION EGGS FROM NST; 13.6 MILLION EGGS FROM BONNEVILLE STATE	1999 26,517,894 26,517,894 3,116,006 SC 15,807,262 SC 2000 11,755,238 11,755,238 10,569,810 SC 001 30,975,272 30,975,272 3,041,402 SC 15,302,863 SC 2002 24,690,676 EST 1972* EGGS TRANSFERRED FROM TUTTLE RIVER HATCHERY 1984* MAJOR OUTBREAK OF BACTERIAL GILL DISEASE ALL FISH RELEASED IN FEBRUARY 1986* 5.8 MILLION EGGS COLLECTED FROM FISH TRAP AT NORTH SHORE OF BONNEVILLE IS MILLION EGGS IMPORTED FROM LITTLE WHITE SALMON NFH 1987* 2.3 MILLION EGGS FROM NST; 1.4 MILLION EGGS FROM ABERNATHY NFH & 6.1 MILLION FROM BONNEVILLE STATE HATCHERY. 1988* 5.7 MILLION EGGS FROM NST; 13.6 MILLION EGGS FROM BONNEVILLE STATE HATCHERY.

- Water is supplied from six springs across Highway 14. Flow fluxuates from 1800 to 3000 G.P.M. 1:)
- Spring water (A) is diverted to Mechanical Building where it is pumped into the Aeration Tower (D). 2.)
- Filter Beds (E) and Rearing Ponds (B) are filled with million gallons. Aerator Pumps (F) are started. 3.)
- Aeration Tower (D) where water is mechanically re-aerated The Aerator Pumps (F) pump the filtered water into and flows by gravity to Rearing Ponds (B). 4.)
- From the ponds, water moves by gravity through the 78" line (G) to the Filter Beds. 2.)
- through the Filter Beds and is collected into the Aeration Water flows down Filter Beds work on a down flow system. Pit (F). (. 9

- SPRING WATER DISTRIBUTION BOX
 - MECHANICAL BUILDING REARING PONDS
- AERATION TOWER
- BIOLOGICAL FILTER HED.
- UNDERGROUND AERATION PIT AND AERATOR PUMPS
 - 78" WATER RETURN LINE ç,
 - INCUBATION BUILDING
- SPRING WATER SUPPLY LINE
- POND WATER SUPPLY LINE HH.

Recommended Spawning Protocols for Pacific Salmon and Steelhead at U.S. Fish & Wildlife Service Hatcheries

Donald E. Campton, Geneticist
U.S. Fish & Wildlife Service
Abernathy Fish Technology Center
1440 Abernathy Creek Road
Longview, WA 98632

(Updated December 1, 2002)

The mating of hatchery fish should strive to achieve two principal objectives: (1) maximize the effective number of breeders and (2) prevent natural selection for reproductive fitness in the artificial spawning environment. These objectives can be achieved if steps are taken to ensure that every selected adult has an equal probability of producing progeny. To achieve this goal, male and female hatchery fish can be mated in one of three, principal ways: pairwise (1 male:1 female), nested (e.g. 1 male to 2 or more females), or factorial (e.g. 2 x 2 spawning matrix).

Each of the spawning protocols described below represents a potential trade-off between maximizing the genetic/genotypic diversity of the progeny and ease of implementation. For example, simple pairwise mating between males and females is relatively easy to implement, but poor quality gametes from a particular male or female will result in a lost genetic contribution from two adults and not just the adult with poor gametes. Such pairwise spawning protocols should thus be implemented only in relatively large hatchery programs where hundreds, and perhaps at least 1,000, adults are spawned each year. Conversely, factorial mating designs (a.k.a. matrix spawning) will maximize the genetic contribution of each parent and the genotypic diversity of their progeny, but such protocols are very difficult to implement on large scales. Factorial spawning protocols are, thus, best reserved for small programs, particularly captive broodstock programs or similar programs where genetic conservation is the principal goal of the program. The various protocols are described briefly below.

Pairwise spawning: Pairwise mating of males and females is a production-oriented method that strives for equal genetic contribution by each parent to the progeny gene pool. This relatively straightforward method is recommended for large

broodstock programs where the number of males and female parents available for spawning each exceeds more than one-half of the desired effective number of breeders each year. These production types of programs typically spawn at least 500 males and 500 females each year. These programs are considered large enough such that losses of fertilized eggs (i.e. progeny) from single-pair matings (i.e. due to poor egg or sperm quality from a particular parent) are not considered a significant loss from a genetic management perspective. Under this spawning protocol, the genetic contribution from both parents will be loss if either parent has poor quality gametes. Hence, programs implementing strict pairwise spawning must be of sufficient size to absorb at least a 10-20% egg loss (or more) without dropping below the desired effective number of breeders.

Overlapping pairwise spawning: One variation of pairwise spawning is overlapping pairwise spawning. Under this protocol, milt from each of two males is added sequentially to the eggs of two females in an overlapping fashion. Approximately 30 seconds after the milt and eggs from a "primary" male and one female are combined, the milt from a second male is added to the first female's eggs as "back-up" in case the primary male has poor sperm quality. This second male then becomes the primary male for the next female spawner. The process is repeated until all males and females are spawned. At least 30 seconds should be allowed for the sequential addition of sperm between the primary and secondary males to minimize the potential effects of sperm competition (see below). This protocol is also recommended for "production" programs but where the total number of spawners may be less than 1,000 adults and the sex ratio is approximately equal.

Nested spawning: A nested design, or modified nested design, may be required if a shortage of one sex (or skewed sex ratio) precludes the use of strict pairwise mating or overlapping pairwise mating for achieving the desired effective number of breeders. Primary and secondary males may be implemented as described above for overlapping pairwise mating, but some modification may be necessary if the sex ratio is skewed (e.g. 40% males, 60% females). In such situations, some individuals from the least abundant sex are mated with two or more individuals of the more abundant sex. The general guideline is that the number of male and female spawners should be maximized, and individuals of the more abundant sex NOT excluded from spawning because of a lower number of adults of the other sex. Surpluses of one sex can compensate genetically for shortages of the other sex for achieving the desired effective number of breeders. However, as the sex ratio becomes more skewed, the total number of spawners necessary for achieving the desired effective number of breeders (Ne) will increase proportionately according to the formula: Ne = 4NmNf/(Nm+Nf) where Nm = number of male spawners and Nf = number of female spawners. If Nm = Nf, then Ne = Nm + Nf.

Factorial spawning: Factorial spawning, commonly referred to as matrix spawning, will maximize the number of family groups and the genotypic diversity of the resulting progeny. The basic protocol is to first split the eggs from each of 2 to 5 females into 2 to 5 aliquots of approximately equal size, and then use 2-5 males to

fertilize the eggs of each female in a "checkerboard" or *matrix* fashion (e.g. 2x2, 3x3, etc.) This type of mating protocol can be very labor intensive and is usually impractical for large broodstock programs. Consequently, it is usually reserved for comparatively small, conservation broodstock programs where maximizing genotypic diversity among progeny is a high priority goal. In such situations, factorial mating can increase the effective population size above the total number of parents by reducing the variance in family size that results from variation in egg quality or sperm potency among individual parents.

Modified matrix spawning: The overall genetic objectives of matrix spawning (as described above) can be achieved by a modified version that substantially reduces the labor involved. In modified matrix spawning, eggs from 2 to 5 females are first pooled, mixed, and then apportioned into 2 to 5 aliquots, each with approximately equal numbers of eggs. Each aliquot is then fertilized by a different male. This spawning protocol can potentially maximize the number of pairwise spawning combinations with only a small amount of extra effort compared to pairwise or modified pairwise spawning.

This approach has two drawbacks, though: (1) potential vertical transmission of pathogenic organisms from female parents to their progeny may preclude modified matrix spawning where fertilized eggs from female spawners must be segregated prior to pathogenic tests of female spawners (e.g. ELISA tests of adult, female spring chinook salmon for *Renibacterium* sp. prior to mixing of progeny), and (2) pedigrees of individual families cannot be maintained where such information is necessary (or highly desired) in conservation broodstock programs.

Sperm competition: Regardless of which mating protocol is used, milt from two or more males should not be combined in a single container of eggs except as described above for overlapping pairwise mating. Mixing milt from two or more males can substantially reduce the genetic contribution of one or more males due to sperm competition. Several studies have shown that when milt from two or more males are mixed simultaneously with unfertilized eggs, the eggs are often fertilized predominantly by one male (Gharrett and Shirley 1985; Withler 1988; Withler and Beacham 1994). Such sperm competition is common among internally fertilized animals where multiple males may mate with a single female (e.g. insects). Such sperm competition under hatchery conditions contrasts with male-dominance competition under natural conditions where males physically compete for female mates (e.g. fishes, mammals). Sperm competition under hatchery conditions not only reduces the effective number of breeders, but it can also impose an unknown amount of domestication or artificial selection in the hatchery environment for traits that may be correlated with sperm viability. For example, sperm competition resulting from pooling milt from two or more males can indirectly select for younger age at maturity (or smaller adult size) if sperm viability is negatively correlated with age at reproduction (e.g. as occurs in mammals and birds). Sperm competition can thus change the genetic composition of a hatchery population in unknown and potentially undesirable ways after several generations (i.e. if the milt of multiple males is pooled during spawning). The pooling of gametes from multiple males and females simultaneously in a single container (bucket) is the historical (or traditional) method of spawning salmonid fishes but is now recognized as

highly undesirable. Alternatively, one of the methods described above is now recommended. The exact method chosen will depend on the size of the program (i.e. total number of adult spawners) and the goals of the hatchery program.

Literature cited

Gharrett, A.J., and S.M. Shirley. 1985. A genetic examination of spawning methodology in a salmon hatchery. Aquaculture 47: 245-256.

Withler, R.E. 1988. Genetic consequences of fertilizing chinook salmon (*Oncorhynchus tshawytscha*) eggs with pooled milt. Aquaculture 68: 15-25.

Withler, R.E., and T.D. Beacham. 1994. Genetic consequences of the simultaneous or sequential addition of semen from multiple males during hatchery spawning of chinook salmon (*Oncorhynchus tshawytscha*). Aquaculture 126: 11-23.

SPRING CREEK NATIONAL FISH HATCHERY QUALITY GOALS DATED May 20th 2000

5	TO TO TO	FEMALE	TOTAL	GREEN	F:M SPAWN	JACK	EFFECTIVE	EGG %	%	%	NH3		
	CAPLORE	% AIO	% AIO	FEMALE %	RATIO	SPAWN %	POPULATION	TAKE	EYE-UP	PONDED	(mdd)	D.I.*	F.1.•
	(>7,000)	(<= 2.0 %)	(<= 5.0%)	(<= 2.0%)	(<= 2)	(=> 2.0%)	SIZE (=> 5,000)	(MILLION) (>17.8)	(= >95.0%)		(<= 0.30)	(<= 0.28)	(<= 1.50)
1980	27021	15.10	15.60	29 10	8 58	00 0		44.74	20 22				
1981	30524	22.60	19.10	16.00	3.23	00.0			07.70		0.460	0,35	1.
1982	27447	32.10	35.90	19.40	4.14	00.0			81.70		0.295	0.26	7
1983	10408	15.40	15.20	4 70	2 2 2 2	00.0			79.70	100000	0.616	0.32	7
1984	9507	1 10	3.80	01.40	0.00	0.00			85.70	84.90	0.533	0.33	1.
1985	5481	2.10	4 60	6.30	00.4	0.00	3392	20.47	80.10	79.27	0.428	0.22	1.19
1986	3389	3.80	7 10	3.30	000	00.0			85.90	84.89	0.325	0.29	-
1987	3741	5.20	8 70	200.2	3.32 A O.F.	00.0		11.05	91.80	88.86	0.330	0.27	÷
1988	7448	4.80	7.90	2 90	Co Y	00.00			81.96	77.69	0.412	0.27	
1989	4893	180	0000	230	0000	00.0	2378		80.16	77.89	0.162	0.26	+
1990	11434	22.10	00.4	2.30	67.73	0.40	2821		93.00	86.50	0.269	0.31	÷
1991	13955	2 60	4 50	00.	3.53	N/A	3586		91.70	85.80	0.286	0.34	÷
1992	9169	2 30	00.4	0.90	1.58	9.00	9499		95,50	90.10	0.309	0.30	1.
1993	8408	2,00	0 0	0.40	1./4	NA			96.30	93.30	0.310	0.27	+
1004	0000	2.10	4.90	1.20	1.47	2.50			96.11	87.00	0.320	0.28	1.
1995	1000	00.1	2.03	0.94	1,35	3.30	9064		95,43	91,10	0.250	0.31	ř
1996	40201	2, 4	7.52	1.60	1.93	2.90	6730		93.10	90.90	0.34	0.29	+
0000	4587	5.74	11,62	0.97	1.55	4.02	5727		93.18	90.50	0.26	0.28	-
1000	8/92	0.80	2.09	0.91	1.88	2.82	7451		96.63	94.30	0.17	0.31	
0000	6/101	2.14	2.28	0.90	1.55	5.87	4396		95.73	92.60	0.30	0.29	,
5555	14640	0.56	1.53	0.63	1.96	1,80	8228	26.52	97.35	94.80	0.41	0.31	
2000	11347	11.15	12.00	0.29	1.48	4.84	3878	11.76	94.42	92 40	0.00	0.30	•
2002	48702	4.65	6.54	0.02	1.51	3.38	8266	30.98	91.94	88.10	0.55	0.30	4
AVE.=	13443	7.45	9.04	4.90	2.97	2.34	5487	22.63	27.00	10.10	100		
Avg 1980-90	12845	11.46	12.63	9.00	4 31	0.64	2787	25.22	07.00	40.70	0.30	67.0	-
Avg 1991-presen		3.43	5,46	0.80	1.64	4.04	7447	24.77	04.40	83.23	0.37	0.29	1.50
Avg last 5 yr	Avg last 5 yr 18732 3.86 4.89 0.55	3.86	4.89	0.55	1.68	2.74	2000	24.04	90.00	15.18	0.32	0.29	1.4

MILLIONS UNFED FRY (#ILB) MARCH (#ILB) MAY MILL RGRPS March April RELEASED RELEASED (<125) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (<90) (Goedes Goedes Index Number Index Number		Goedes Index Number			SIZE AT RELEASE	SIZE AT RELEASE	SIZE AT RELEASE	TOTAL	01	Total Survival	Total Survival	
16.70 3349198 92 72 65 0.1883 0.1156 0.2443 13.70 13.60 110 78 49 0.3716 0.2425 0.3743 13.90 13.90 74 64 0.0465 0.0465 0.1462 13.90 12.90 124 69 39 0.0465 0.0465 0.1462 10.60 83 61 37 0.0465 0.0465 0.1462 10.60 83 61 37 0.1462 0.0806 10.60 83 61 37 0.1462 0.0467 10.60 83 61 37 0.157 0.1460 0.1462 10.23 168 63 36 0.157 0.4677 0.1467 10.23 122 63 36 0.154 0.121 0.1134 14.30 766306 137 42 0.154 0.124 0.124 15.44 124 0.146 0.064	April (<=20) (May (<=20)	MILLIONS	UNFED FRY RELEASED	(#/LB) MARCH (<125)		(#/LB) MAY (<60)	ALL REL GRP: (0.5%)	Mar	April 1.5700	May 1.5080	Ave 72-79
13.70 110 78 49 0.3716 0.2425 0.3743 13.90 13.90 74 64 0.0465 0.0465 0.1462 13.90 12.90 39 0.1282 0.1383 0.1462 10.60 83 61 35 0.1283 0.1860 0.1462 10.60 83 61 37 0.4283 0.1462 0.1462 10.60 83 61 37 0.4283 0.0806 0.1462 10.60 88 61 37 0.4322 0.1462 0.1462 10.23 116 68 37 0.4322 0.1462 0.1462 10.23 123 67 42 0.5157 0.1467 0.1467 10.23 123 67 42 0.1372 0.1467 0.1219 14.30 7663086 114 77 45 0.2612 0.1394 15.40 1144 77 45 0.144 0.157 <td></td> <td></td> <td></td> <td>16.70</td> <td>3349198</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.2443</td> <td>0.2535</td> <td></td>				16.70	3349198						0.2443	0.2535	
15.80 12.80 87 74 64 0.1462 0.0475 13.90 13.90 74 64 0.1462 0.0465 0.1462 13.90 10.60 83 61 37 0.1292 0.0283 0.0806 10.60 83 61 37 0.4333 0.4616 0.7361 10.60 83 61 37 0.4517 0.4506 0.7361 10.23 116 68 37 0.5157 0.5865 0.5467 10.23 116 68 37 0.5157 0.5865 0.5467 10.23 10.8 63 67 42 0.1372 0.1040 0.1299 15.90 12.2 63 67 42 0.1372 0.1399 0.1341 15.40 12.4 76 42 0.1462 0.1342 0.1341 15.40 12.4 76 42 0.1462 0.1342 0.1342 16.44 12.4				13.70		110					0.3743	0.6963	
13.90 74 64 0.1462 0.1462 10.60 0.0465 0.0465 0.0465 0.0465 10.60 83 61 39 0.1292 0.2833 0.0806 10.60 83 61 37 0.4365 0.2833 0.0806 10.60 83 67 35 0.3093 0.4616 0.7361 10.23 116 68 37 0.5167 0.5865 0.7561 10.23 10.8 63 36 0.5167 0.4667 0.7467 10.23 10.8 63 42 0.1372 0.1040 0.1297 14.35 112 63 60 0.1544 0.1294 0.1134 15.65 114 78 42 0.2455 0.1351 0.1134 15.65 114 78 45 0.0743 0.0890 0.0030 16.74 112 12 68 39 0.2157 0.0346 16.57				15.80			87				0.9775		
13.90 12.4 69 39 0.0465 0.0465 0.0465 0.0806 10.60 8.3 61.7292 0.2833 0.0806 0.0366 0.0366 0.0366 0.0366 0.0366 0.0466 0.0466 0.05615 0.0806 0.0761 0.0467 0.05615 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.01134 0.0467 0.0467 0.01134 0.01134 0.01134 0.01144 0.0444 0.0677 0.0136 0.0367 0.0464 0.0464				13.90			7.4				0.1462		
10.60 124 69 39 0.1292 0.2583 0.0806 10.60 83 61 37 0.1292 0.2583 0.0806 10.60 8.30 61 37 0.4333 0.4616 0.7361 16.31 116 68 37 0.5157 0.5865 0.5467 10.23 10.23 10.8 63 36 0.5120 0.4328 0.5467 10.23 10.23 10.8 63 36 0.5120 0.4328 0.647 10.23 12.2 112 53 36 0.1514 0.1221 0.1399 15.65 12.4 77 42 0.1514 0.1221 0.1394 16.44 12.4 77 45 0.044 0.0820 0.0303 16.44 12.2 61 45 0.044 0.082 0.0304 16.55 11.6 75 60 0.281 0.157 0.034 16.57 3041402<				13.90					0.0465				
10.60 83 61 37 0,4333 0,4616 0,7361 8.80 8.80 67 35 0,3093 0,4607 0,4607 16.31 116 68 37 0,5157 0,5865 0,5615 10.23 10.88 67 42 0,5157 0,4328 0,6477 15.90 3292304 112 53 36 0,1514 0,1221 0,1399 15.90 7663086 137 91 50 0,1606 0,2351 0,1391 15.62 128 83 6 0,1606 0,2551 0,1391 16.44 76 69 42 0,2612 0,1575 0,1357 16.44 77 45 0,0443 0,0692 0,0350 16.44 77 45 0,0443 0,0692 0,036 16.52 6928619 112 61 43 0,4655 0,044 0,0692 16.57 31606 122 6				10.60		124					0.0806	0.0512	
8.80 67 35 0.3093 0.4607 15.31 116 68 37 0.5157 0.5865 0.5615 10.23 10.8 63 36 0.5157 0.5865 0.5615 14.35 12.3 67 42 0.1322 0.1400 0.1599 15.90 3292304 112 63 36 0.1514 0.1221 0.1399 15.90 7663086 137 91 50 0.1606 0.2551 0.1319 15.40 7653086 137 91 76 0.2612 0.1575 0.1357 16.44 77 42 0.2612 0.1575 0.1357 0.1357 16.44 124 77 45 0.0444 0.0690 0.0630 16.44 120 61 43 0.4655 0.346 0.0304 16.56 3116 75 66 39 0.2787 0.0157 0.034 16.12 3041402 <	24.53 72.00	0	55.09	10.60		83					0.7361	0.0879	
15.31 116 68 37 0.5157 0.5865 0.5615 10.23 108 63 36 0.5120 0.4328 0.6477 10.23 108 63 36 0.5120 0.4328 0.6477 14.30 3292304 112 53 36 0.1514 0.1299 0.1299 15.40 7653086 137 91 50 0.1606 0.2551 0.1134 15.65 128 83 42 0.2612 0.1575 0.1351 15.65 114 76 45 0.0743 0.0890 0.0630 16.44 124 77 45 0.0444 0.0692 0.0305 16.56 6928619 112 61 40 0.0677 0.0736 0.0904 16.07 3116006 122 68 39 0.2787 0.2157 0.3460 16.07 314402 118 101 49 0.2787 0.2157 0.346 <	35.53	3	46.08	8.80							0.4607	0.2046	
10.23 108 63 36 0.5120 0.4328 0.6477 14.35 123 67 42 0.1572 0.1040 0.1299 14.30 7663086 137 91 50 0.1606 0.1521 0.3191 15.40 128 83 42 0.2612 0.1575 0.3191 15.40 128 83 42 0.2612 0.1575 0.3191 15.40 114 78 45 0.2612 0.1575 0.3527 16.44 124 77 45 0.0444 0.0690 0.0500 16.44 120 69 43 0.4655 0.3413 0.5022 15.62 6928619 116 75 60 0.2787 0.034 16.74 10.59 116 75 60 0.2787 0.2157 0.3460 16.75 3041402 118 101 49 0.286 0.2810 0.2810 13.08 45	33,77 20.63	m	41.90	15.31		116	68				0.5615	0.4343	
14.35 123 67 42 0.1372 0.1040 0.1299 15.90 3292304 112 53 36 0.1514 0.1221 0.3191 15.90 7663086 137 91 50 0.1606 0.2551 0.3191 15.40 7663086 137 91 50 0.1606 0.2551 0.3191 15.65 928619 114 78 45 0.0444 0.0890 0.0305 15.62 6928619 112 61 40 0.0677 0.0376 0.0305 16.07 3116006 122 68 39 0.2157 0.3460 16.07 316006 122 68 39 0.2157 0.3460 16.12 3041402 118 101 49 0.2810 0.2810 0.3460 13.08 4,565,103 116 73 47 0.2810 0.4359 0.2302 14.66 0.77 0.77 0.77 0.78 </td <td>45.44 50.00</td> <td>0</td> <td>91.56</td> <td>10.23</td> <td></td> <td>108</td> <td>63</td> <td></td> <td></td> <td></td> <td>0.6477</td> <td>0.4538</td> <td></td>	45.44 50.00	0	91.56	10.23		108	63				0.6477	0.4538	
15.90 3292304 112 53 36 0.1514 0.1221 0.3191 14.30 7663086 137 91 50 0.1606 0.2551 0.1134 15.40 128 83 42 0.2612 0.1575 0.0135 15.65 112 63 45 0.0743 0.0830 0.0630 16.44 124 77 45 0.0744 0.0692 0.0305 15.62 6928619 112 61 40 0.0677 0.0692 0.0305 16.07 3116006 122 68 39 0.2157 0.3460 16.05 120 68 39 0.2157 0.3460 16.12 3041402 118 101 49 0.224 0.2157 0.3460 13.08 4,565,103 116 73 47 0.2810 0.4359 14.66 0.1724 0.1724 0.2302 0.2302 14.66 0.1724 0.1724 </td <td></td> <td>-</td> <td>44.38</td> <td>14.35</td> <td></td> <td>123</td> <td>29</td> <td></td> <td></td> <td></td> <td>0.1299</td> <td>0.1781</td> <td></td>		-	44.38	14.35		123	29				0.1299	0.1781	
14.30 7663086 137 91 50 0.1606 0.2551 0.1134 15.40 128 83 42 0.2612 0.1575 0.3527 15.65 114 78 45 0.0743 0.0890 0.0350 16.44 124 77 45 0.0444 0.0890 0.0305 15.62 6928619 112 61 40 0.0677 0.0736 0.0305 16.07 3116006 122 68 39 0.2787 0.2157 0.3460 16.12 3041402 122 68 39 0.2787 0.2157 0.3460 16.12 3041402 118 101 49 0.2187 0.2157 0.3460 13.87 4,565,103 116 73 47 0.2810 0.4359 14.66 120 120 120 0.4359 0.1724 0.2302	37,45 43,41		49.31	15.90							0.3191	0.0057	
15.40 128 83 42 0.2612 0.1575 0.3327 15.65 114 78 45 0.0743 0.0890 0.0630 16.44 124 77 45 0.0743 0.0890 0.0630 16.45 120 69 43 0.4655 0.0343 0.0305 16.52 112 61 40 0.0677 0.0736 0.0904 16.07 3116006 122 68 39 0.2187 0.2157 0.3460 16.05 316 68 39 0.2787 0.2157 0.3460 16.12 68 39 0.2787 0.2157 0.3460 16.12 120 68 39 0.2157 0.3460 16.12 118 101 49 0.2157 0.3460 13.08 4,565,103 116 71 48 0.3424 0.2810 0.4359 14.66 120 120 75 45 0.1929 <td></td> <td>4</td> <td>52.07</td> <td>14.30</td> <td>7663086</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1134</td> <td>0.2819</td> <td></td>		4	52.07	14.30	7663086						0.1134	0.2819	
15.65 114 78 45 0.0743 0.0890 0.0630 16.44 124 77 45 0.0444 0.0692 0.0305 14.55 120 69 43 0.4655 0.03413 0.0305 16.52 112 61 40 0.0677 0.0736 0.0904 16.07 3116006 122 68 39 0.2187 0.03460 16.12 3041402 118 101 49 0.2187 0.03460 13.87 4,565,103 116 73 47 0.28 0.22 0.34 14.66 120 75 45 0.1929 0.1724 0.2302		6	24.21	15.40		128					0.3527	0.1302	140-
16.44 124 77 45 0.0444 0.0692 0.0305 14.55 120 69 43 0.4655 0.3413 0.5022 15.62 6928619 112 61 40 0.0677 0.0736 0.0904 10.59 116 75 60 0.2787 0.0157 0.0904 10.57 120 68 39 0.2157 0.3460 10.57 120 68 39 0.2157 0.3460 16.12 3041402 118 101 49 0.2157 0.3460 13.87 4,565,103 116 73 47 0.28 0.22 0.34 13.08 120 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47 0.1929 0.1724 0.2302		7	22.14	15.65		114					0.0630	0.0888	
14.55 120 69 43 0.4655 0.3413 0.5022 15.62 6928619 112 61 40 0.0677 0.0736 0.0904 10.59 116 75 60 0.2787 0.2157 0.0904 10.57 3116006 122 68 39 0.2157 0.3460 10.57 120 68 39 0.2157 0.3460 16.12 3041402 118 101 49 0.2157 0.3460 13.87 4,565,103 116 73 47 0.28 0.22 0.34 13.08 13.08 71 48 0.3424 0.2810 0.4359 14.66 120 75 45 0.1724 0.2302 13.79 4362009 118 75 47 0.1724 0.2302	43.22 27.96	9	28.93	16.44		124					0.0305	0.0323	
15.62 6928619 112 61 40 0.0677 0.0736 0.0904 10.59 116 75 60 0.2787 0.2157 0.3460 16.07 3116006 122 68 39 0.2157 0.3460 10.57 120 68 39 0.2157 0.3460 16.12 3041402 118 101 49 0.2810 0.22 0.34 13.87 4,565,103 116 73 47 0.284 0.2810 0.4359 14.66 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47 0.1929 0.1724 0.2302		9	21.11	14.55		120					0.5022	0.5557	
10.59 116 75 60 0.2787 0.2157 0.3460 16.07 3116006 122 68 39 0.2157 0.3460 10.57 120 68 39 0.2157 0.3460 16.12 3041402 118 101 49 0.22 0.34 13.87 4,565,103 116 73 47 0.28 0.22 0.34 13.08 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47 0.1929 0.1724 0.2302		0	20.00	15.62	6928619	112					0.0004	0.0395	
16.07 3116006 122 68 39 10.57 120 68 39 16.12 3041402 118 101 49 13.87 4,565,103 116 73 47 0.28 0.22 0.34 13.08 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47 0.1929 0.1724 0.2302	28.20 31.04	4	32.99	10.59		116					0.3460	0.2747	
10.57 120 68 49 16.12 3041402 118 101 49 13.87 4,565,103 116 73 47 0.28 0.22 0.34 13.08 120 75 48 0.3424 0.2810 0.4359 14.66 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47 0.1929 0.1724 0.2302		2	19.82	16.07	3116006	122			39				
16.12 3041402 118 101 49 13.87 4,565,103 116 73 47 0.28 0.22 0.34 13.08 13.08 71 48 0.3424 0.2810 0.4359 14.66 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47 0.1929 0.1724 0.2302		0		10.57		120	68						
13.87 4,565,103 116 73 47 0.28 0.22 0.34 13.08 13.08 120 71 48 0.3424 0.2810 0.4359 14.66 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47 0.1929 0.1724 0.2302	49.60 63.10	0	33.19	16.12	3041402		101		49				
13.08 108 71 48 0.3424 0.2810 0.4359 14.66 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47 0.1929 0.1724 0.2302	.78 39.44	4	38.85	13.87	4.565.103						0.34	0.24	Avo
14.66 120 75 45 0.1929 0.1724 0.2302 13.79 4362009 118 75 47		ıc	55.80	13.08					C	C	0.4350	0.2050	Av. 1980.90
14,66 120 75 45 0,1929 0,1724 0,2302 13.79 4362009 118 75 47	21.77	> -	20.00	00.00		001					0.4008	0.4000	00 1000 BAN
13.79 4362009 118 75	75.04		00.00	14,00							0.2302	0.1824	4Vg 1881-90
		7	76.50	13.79	4362009				47				

. .

1,203,950 R

A

153

570 B7000

300

Spring Creek NFH

WA

03

13255.1995003

63

650

Spring Creek NFH

WA

1,203,950

P

214 9350

4085

670

Spring Creek NFH

WA

13255.1999005

60

1,203,950

æ

104 | 76000

9999

700

Spring Creek NFH

WA

03

13255.1999004

72

1,203.950

780

22000

FAX

13255.1999002

999

490

Spring Creek NFH

WA

03

Resurface 1/2 mile entrance road. Entrance road in disrepair with large

pathogens. New pressure tank needed to provide proper pressure in springs open to bird droppings, amphibians, or human transmitted health of employees and their families. Half open collection box leaves domestic water supply. System needs to be updated to protect the "COMPLETED" Rehabilitate spring water collection system for

inspired visitation is expected to increase use. Vehicle accidents may wrong side of the road to avoid sections of road. Lewis and Clark of visitors for river access and hatchery entrance. Vehicles drive on potholes, cracks and asphalt breaking up. Road is used by thousands

1,203,950

Z

320 94000

Proj. National Fish Hatchery System, U. S. Fish and Wildlife Service, Department of the Interior Score 100 Region Facility or Unit Name | State | Cong.

DEFENSED MAIN LENANCE - FIVE YEAR PLAN (HISCAI Years 2003 - 2007)

ENERGY

FISCAL YEAR ALL

Page 1

GO2entr

designed protections. The old underground diesel tank is still in diesel tank on hand but not on line, needs pad, day tank, properly

in place-needs barrier wall to protect river. Above ground generator tanks are out of compliance, with imminent deadline violation. Gas tank "COMPLETED" Remove/replace w/ above ground tanks. Underground 0 0 : 0 | 0 | 100 : 9999,999 CURRENT PREVIOUS CHG? 57,000

CHS CRP CM C&O

Ranking Category | Total \$

50 : 0 2004.087 CURRENT 0 PREVIOUS CHG? 50 9,350

9350

57000

0

0 9999,999 CURRENT 30 0 70 PREVIOUS CHG? 0 0 94000 94,000 22,000

0

CI 50 9999,999 CURRENT PREVIOUS CHG? 22000

0 2004.085 CURRENT 90 10 PREVIOUS CHG? 76,000

76000

0 0 2007.048 CURRENT 50 50 PREVIOUS CHG? 176,000

176000

File: FIS

WED

11:23

13255.1999006

124

,203,950

440 17600

cause catastrophic fish losses

Deteriorating water quality in 90% reuse system puts stress on fish may critical to water quality and the environment in hatchery's reuse system. drought hatchery water supply drops - water leaking through gates is "COMPLETED" Replace gaskets on 18 rotating gates - during years of salmon, important resource to Tribes that aided Lewis and Clark on

High winds, heavy rains take toll on building. Station rears chinook

schedule. Roof leaks and contributes to further damage to facility rain), leaking roof in office/visitors complex. Currently past replacement

"NO LONGER NEEDED" Rehab flat, non-draining (accumulates up to 3"

0

around. Lift is used to unload fish feed and move large loads of

down. This equipment is not safe for employees who operate and work

the hydraulics do not hold and the load will actually began to come become unreliable with heavy loads. Occasionally, if the load is heavy, "COMPLETED" Replace deteriorated 25 year old forklift which has

7048

550

Spring Creek NFH

WA

03

-31-02

.fp5 (4/19/02,1047am) Rank. Categories: CHS=Critical Health.

ce&Other

ky/CRP=Crit. Resource Protection/CM=Crit. Mission/C&O=Con

UEFERKED MAIN I ENANCE - HIVE YEAR PLAN (Fiscal Years 2003 - 2007) ENERGY

CURRENT PREVIOUS CHG7 9999.999 2000 20 0 0 80 21,000 CI	Replace 1994 Ford Asrostar Van Wagon with over 72,000 miles.	03	WA	13255.2000003 9 603 1,203,950 E 777 Z0000 9999 440 1 Spring Creek NFH 13255.2000004 10 999 1,203,950 E 1,203,950 E	12 8 12
0 50 50 0 20,00 CI	"COMPLETED" Replace 1989 pickup with over 90,000 miles. Vehicle essential to hauling fish cultural supplies, moving fish, and general maintenance task. Constant repairs becoming expensive and vehicle is not always usable when it is needed. Restoration of Pacific salmon program impacted. "COMPLETED" Replace 1991 Dodge Van Wagon with over 80,000 miles.	03	WA WA	9999 550 1 Spring Creek NFH 13255.2000002 5 149:	9 7 9
0 60 40 0 22,000 CI	Replace existing radio alarm system to meet new Service standards. System is used to alert off duty employee about potential problems ocurring in the reuse system. If alarm system fails the loss of fish production could occur.	03	WA	7028 580 1 Spring Creek NFH 13255.2000001 8 602 1,203,950 R 218 22000	
0 100 0 0 351,000 CI PREVIOUS CHG7 2003.062 351000	Enclose biological filter beds for water supply reuse system that is partial water supply essential for salmon production. This will allow for more efficient operation by retaining heat and promoting bacteria growth. Thus improving water quality, health and growth of salmon smolts. Restoration and management of interjurisdictional salmon	03	WA	3062 700 1 Spring Creek NFH 13255.1999011 11 603 1,203,950 R 440 35100	
0 0 100 0 81,00 CI PREVIOUS CHG? 2006.126 81000	Rehab Big White substation of hatchery complex - Phase 1 (design). Age Iwear of facilities dictate rehab of substation, incorporating proper sized ponds, water delivery systems, electrical systems, etc. Worn systems affect ability of crew to properly propagate Pacific salmon. Because of changes in river geomorphology, ponds are under water	03	WA	6126 400 1 Spring Creek NFH 13255.1999009 12 143 1,203,950 R 444 81000	
Ranking Category Total \$	National Fish Hatchery System, U. S. Fish and Wildlife Service, Department of the Interior DOI	State Cong.	ne St	Proj. DOI Region Facility or Unit Name	

ince&Other

13255.2001006

666 666

1,203,950 785 6000

National Fish Hatchery System, U. S. Fish and Wildlife Service, Depart	DEFENSED MAIN LENANCE - FIVE YEAR PLAN (Fiscal Years 2003 - 200
tment of the Interior) ENERGY

9999 375 1 Spring Creek NFH 03 COMPLETED: Replace twelve year old	1,203,950 Q 105 8000	-	1,203,950 Q 105 8000	13255.2001004 999 999	9999 350 1 Spring Creek NFH WA 03 "COMPLETED" Old roof in need of replacement. Last replaced in 1986.	1,203,950 R	999 999	3031 820 1 Spring Creek NFH WA 03 The electrical panel has been abandoned except for one breaker. The remainder of the panel is a home for mice. Efforts to eliminate the mice	where mice breed. Space needs to be filled with concrete	1,203,950 R floor needs to be replaced with a solid floor thus eliminating this area	1 Spring Creek NFH WA 03	440 10300 makara baska whan aparating white		1,203,950 R restoration). Failure to rehab/replace w	11 8 R	1 Spring Creek NFH WA 03	Score Region Facility or Unit Name State Cong 760 1 Spring Creek NFH WA 03 1,200,950 R	Score Region Facility or Unit Name State Cong 760 1 Spring Creek NFH WA 03
all and the same of the same o	CURRENT 9999,999	relacement. Last replaced in 1986. 0: 0: 50: 50: 800	2	CUBRENT PREVIOUS CHOS		260	-	foned except for one breaker. The 70 0 30 0 26,000 r mice. Efforts to eliminate the mice		olid floor thus eliminating this area 2007 072	ce. This area has been inhabitated by CI 94,000	103000	e will result in great risk to program 2002.028	CHRRENT PREVIOUS	2	8" pond 20 80 0 0 1	Ranking Calegory CHS CRP CM C&O 8" pond 20 80 0 0 reases pond CI	Ranking Calegory CHS CRP CM C&O 20 80 0 0

0

9999,999

8000

CURRENT PREVIOUS CHG?

1,203,950 E

999 999

Spring Creek NFH

X A

03

disrepair

2

9999.999

CURRENT

PREVIOUS CHG?

9,000

0 0

0

0

18,000

780

18000

05/05 9999 9999 Proj. DOI 13255.2001007 13255.2002001 UETEKKEU MAINIENANCE - HIVE YEAR PLAN (Fiscal Years 2003 - 2007) ENERGY National Fish Hatchery System, U. S. Fish and Wildlife Service, Department of the Interior Score Region Facility or Unit Name State Cong. 1,203,950 a 1,203,950 a 300 300 321 105 6000 18000 999 999 999 999 Spring Creek NFH Spring Creek NFH WA 03 03 Paint interior of residence. Last painted in 1989. G02entr

FISCAL YEAR ALL

Page 4

Replace 1983 Hyster forklift - 2 to 4 ton capacity-unit is in constant Asphalt access road to quarters is in disrepair and needs to be repaved. 0 2 0 0 CHS CRP CM C&O Ranking Category 9999,999 9999,999 CURRENT CURRENT PREVIOUS CHG? 0 0 100 0 PREVIOUS CHG? 100 18000 6000 Total \$ 18,000 6,000

13255.2003002 999 999 13255.2003001 1,203,950 1,203,950 105 | 9000 105 3000 Ø 999 999 999 999 D Spring Creek NFH Spring Creek NFH WA WA 03 03 replaced in 1986 Replace existing shingle roof with metal roof on residence #5. Last Replace existing shingled roof with metal roof. Last replaced in 1986. 0 0 CURRENT PREVIOUS CHG? CURRENT 0 0 0 0 PREVIOUS CHG? 0 0

9,000

File: FIS

l.fp5 (4/19/02,1047am) Rank. Categories: CHS=Critical Health hty/CRP=Crit. Resource Protection/CM=Crit. Mission/C8O=Co

nce& Other

Attachment 13. Memorandum to Fishery Project Leaders – Subject: Occupancy of Government Quarters at Spring Creek NFH.

Memorandum

To:

Employees

Spring Creek NFH

From:

Project Leader

Spring Creek NFH

Subject:

Occupancy of Government Quarters at Spring Creek National Fish Hatchery

The intent of having hatchery personnel in government quarters is for security and operations of the hatchery during non-working hours. Quick response time to emergency situations and the knowledge to respond to those emergencies is needed. Employees living in government quarters allows for the quickest response time.

The policy for the hatchery will be to have at least three of the four residences in required occupancy status. The preferred positions for required occupancy will be the Lead Maintenance position, the Lead Fish Culturist and the Assistant Manager. Other employees may request residence, if vacant quarters are available, and may request required status. The required occupancy will be included on position descriptions. These preferred positions will always have priority for housing and other employees living in station housing may be asked to vacate.

Employees must request to be removed from required status and follow procedures outlined in the U.S. Fish and Wildlife Policy on Required Occupancy in Government Furnished Quarters. This procedure requires approval of Project Leader and Regional Director. These decisions will be decided on a case by case basis.

Attachment 14. Memorandum to Employees of Spring Creek NFH – Subject: Surplus Fish as Government Property. Dated 7/10/2001.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

911 NE. 11th Avenue Portland, Oregon 97232-4181

JLL 10 2001

ane Badgley

Memorandum

To:

AFR

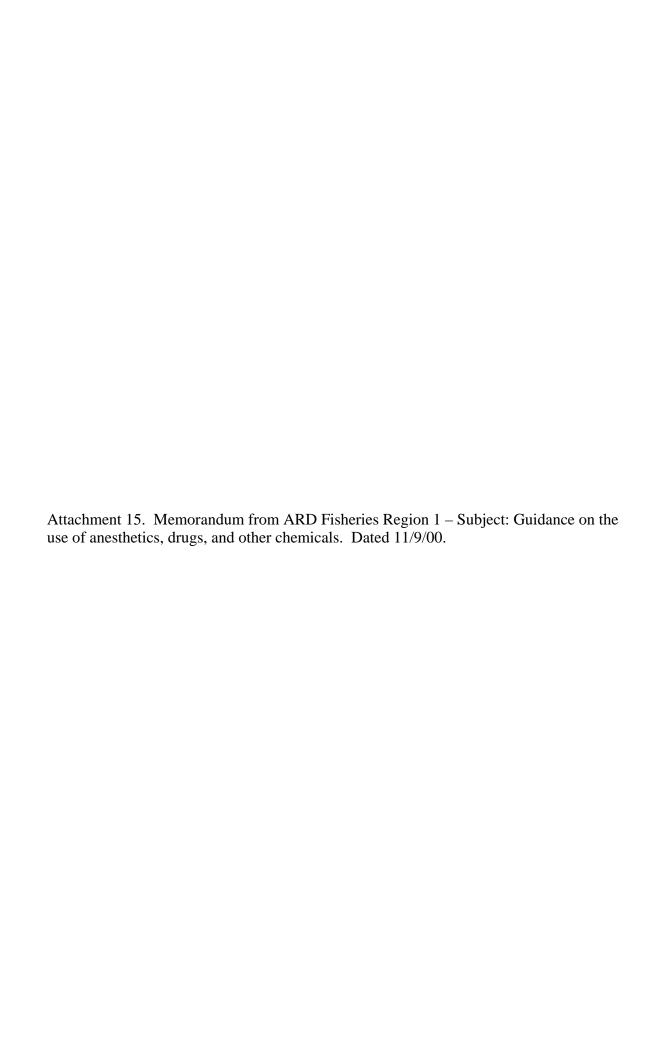
Fishery Project Leaders

From:

Regional Director, Region 1

Portland, Oregon

Subject:


Surplus Fish as Government Property

The Hatchery system in Region 1 is currently enjoying success with increasing returns of adult fish. This success is due in no small part to the dedication of Service Fisherics employees who have worked tirelessly to ensure the Hatchery system produces quality fish. However, it is important that all Service employees honor the public trust placed in them as stewards of the Nation's resources and administrators of public property.

With this memorandum I want to emphasize that live fish entering a National Fish Hatchery (Hatchery), whole fish carcasses or their parts, are Government property and cannot be converted for personal use, even temporarily on loan. Misuse of Government property may result in disciplinary action ranging from a written reprimand to removal from the Service. The attached Standards of Ethical Conduct for Employees of the Executive Branch, contained in 5 CFR 2635,704, specifically address use of Government property. Please review and be acquainted with these standards. Also, please ensure that all your employees read and understand this memorandum.

It is important that you first consider all possible uses of hatchery fish that are consistent with the Service Mission. Surplus fish must be disposed of using prescribed government contracting procedures. Furthermore, you must comply with other Service and FDA policies related to the disposition of carcasses and parts that have been treated with chemicals making them unfit for human consumption. Should you have any questions regarding this policy, please contact the Assistant Regional Director, Fishery Resources, through your supervisor.

Attachment

United States Department of the Interior

FISH AND WILDLIFE SERVICE

911 NE. 11th Avenue Portland, Oregon 97232-4181

No. - 9 2000

Memorandum

To:

Region 1 Fisheries Project Leaders

From:

Assistant Regional Director, Fishery Resources

Subject:

Guidance on Clove Oil and Other Fisheries Use Drugs and Chemicals

Hatcheries and other Fisheries offices within Region 1 may at times have legitimate and necessary reasons to use certain drugs and chemicals to achieve their goals and complete the mission and objectives of the Service. During the capture, rearing, or monitoring of fish species, several drugs and chemicals are used for anesthesia, disease treatments, or to increase the survival of the animals. Some of these compounds are already registered and labeled for fisheries use. Others may be legally used under the prescription and supervision of a veterinarian, or within the protocols of an existing Investigational New Animal Drug (INAD) exemption permit issued by the Food and Drug Administration (FDA). The Service has existing correspondence (see attached copy) from the FDA concerning the use of compounds in the recovery of threatened and endangered species, but there are certain restrictions even in those situations.

This document is intended to review the use of aquatic animal drugs for Fisheries Projects and provide guidance on their proper use in food animals. Attached are summaries of drugs and chemicals that are approved for aquatic animal use, considered Low Regulatory Priority for use in aquiculture, on the deferred regulatory list for aquiculture, and INAD permitted chemicals. Also attached are the FDA criteria for veterinary extra label use of approved human and animal drugs and a glossary of terms commonly used by FDA and others involved with the use of drugs and chemicals.

Region 1, working closely with the National INAD Office (NIO) and through appropriate consultation with FDA, will fully comply with all regulations and agreements for the use of aquatic drugs and chemicals. The inappropriate use of compounds on fish or aquatic animals intended for human or animal consumption is prohibited.

The use of clove oil as an anesthetic in <u>food fish</u> has been declared illegal by the Center for Veterinary Medicine (CVM) of the FDA. Until notified otherwise by the CVM, a fish is a food fish if it is reasonably likely that it will be consumed directly or indirectly by humans for food. Non-food fish salmon, steelhead, or trout are those to be rendered, buried, or released to the wild where they are not subject to harvest in legal fisheries. If a fish to be treated is not a food fish, then clove oil can be used as an anesthetic. However, juvenile fish cannot be anesthetized using

clove oil because of possible residual effects¹ (this excludes listed fish which are not harvested in legal fisheries as adults). If fish anesthetized with clove oil are rendered, the rendering plant operator who receives the fish must be notified in writing of this treatment; the same is true for MS-222 if its established 21-day withdrawal period is not observed. If the fish is outplanted, the Service must be assured that it will not be harvested in a legal fishery. These situations will be treated on a case-by-case basis and will need written approval from the Assistant Regional Director, Fishery Resources. Please notify your supervisor if you feel you have a non-food fish that would be appropriate for clove oil treatment.

The Service believes that its mission and goals can be achieved within the existing framework of allowable drug and chemical use, but recognizes the pressing needs for additional safe and effective drugs to facilitate recovery and restoration efforts. The Service continues to support the efforts of the National INAD Office, fisheries professionals, and the FDA by supplying data and working towards the registration and labeling of new chemotherapeutic compounds.

Attachment 1: Letter from FDA on the use of drugs in Threatened and Endangered Species Attachment 2: Form TE-1, "Guide for Reporting Shipment/Receipt of Unapproved Drugs for Use on Threatened and Endangered Fish Species," and Form TE-2, "Chemical Use Log for the Use of Unapproved Drugs on Threatened and Endangered Fish Species."

Attachment 3: List of FDA Approved Compounds for Use in Aquatic Animals

Attachment 4: FDA Compliance Policy Guide 1240.4200: Drug use in Aquiculture Enforcement Priorities. Includes the lists of compounds FDA considers to be of Low Regulatory Priority,

Deferred Regulatory Priority, and High Regulatory Priority for enforcement

Attachment 5: List of FDA INAD Permitted compounds and their sponsors

Attachment 6: FDA Compliance Policy Guide 1240.4210 Extralabel Use of Approved Drugs in Aquiculture

Attachment 7: Glossary of terms frequently encountered in chemotherapeutic compound registration and use.

Attachment 8: Clove oil fact sheet

Attachment 9: FDA Compliance Policy Guide 1240-4260: Classification of Aquaculture Species/Population as Food or Nonfood Animal

Attachment 10: Use of Unapproved Drugs in Culturing Endangered and Threatened Fish Species (02/06/96)

Attachment 11: Use of Unapproved Drugs in Culturing Endangered and Threatened Fish Species (03/04/96)

If a drug is not covered by an INAD exemption permit it has no established withdrawal period, or more precisely, the drug must be considered to be present in a residual form into adulthood when it is subject to harvest in a legal fishery. On the other hand, juvenile fish exposed to MS-222 or drugs under an INAD exemption permit that have an FDA-specified withdrawal time could be stocked immediately following treatment, as this period of time would elapse before the fish could be legally harvested.

cc: Fisheries Line Supervisors (Dunn, Johnson, Hillwig, Zylstra) Ed Forner, Chief, Hatcheries Dave Erdahl, USFWS, Bozeman, Montana Joy Evered, USFWS, Olympia FHC