Fermentation Biotechnology Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Cost-Effective Bioprocess Technologies for Production of Biofuels from Lignocellulosic Biomass

Location: Fermentation Biotechnology Research

Title: Evaluation of engineered xylose-fermenting industrial strains of Saccharomyces cerevisiae for improved ethanol production from lignocellulosic feedstocks

Authors

Submitted to: Meeting Abstract
Publication Type: Abstract
Publication Acceptance Date: May 6, 2009
Publication Date: N/A

Technical Abstract: Saccharomyces cerevisiae is currently used to produce ethanol from glucose, but it cannot utilize five-carbon sugars contained in the hemicellulose component of biomass feedstocks. Hemicellulose can make up to 20-30% of biomass and is primarily composed of xylose. Enzymes from native xylose-assimilating organisms have been transferred to S. cerevisiae, allowing fermentation of xylose. However, efficient conversion of xylose to ethanol is limited, putatively by cellular redox imbalance, low flux of xylose into the pentose phosphate pathway, and lack of efficient xylose transport into the cell. Genetic background has been demonstrated to play a vital role in the fermentation capacity and stress tolerance of laboratory and industrial yeast strains. The goal of this study was to compare xylose fermentation properties of several industrial yeast strains in order to identify a genetic background conferring improved xylose fermentation. Six industrial strains of S. cerevisiae from the Agricultural Research Service (ARS) culture collection were engineered to express the Pichia stipitis genes encoding xylose reductase and xylitol dehydrogenase, as well as the S. cerevisiae xylulokinase gene. Each gene was expressed from a different constitutive, high-level promoter. The three genes were stably integrated at the HO endonuclease site on chromosome IV. The resulting strains were analyzed to determine xylose consumption rates and ethanol productivities. One of the strains showed superior xylose growth and consumption compared to our haploid lab strain and other engineered industrial strains. Xylose fermentation data for the different strains will be presented.

   

 
Project Team
Saha, Badal
Qureshi, Nasib
Hector, Ronald - Ron
Bowman, Michael
Cotta, Michael - Mike
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House