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A public-use microdata file should be analytically valid.  For a very small number 
of uses, the microdata should yield analytic results that are approximately the same 
as the original, confidential file that is not distributed.  If the microdata file 
contains a moderate number of variables and is required to meet a single set of 
analytic needs of, say, university researchers, then many more records are likely to 
be re-identified via modern record linkage methods than via the re-identification 
methods typically used in the confidentiality literature.  This paper compares 
several masking methods in terms of their ability to produce analytically valid, 
confidential microdata.  

 
 
1 Introduction 
 
With higher computing power, sophistication of software packages, and increased ability of users to develop their 
own software, researchers are better able to analyze microdata.  These researchers (data users) are no longer 
content with using summary statistics produced by statistical agencies (data providers).  The data users realize 
that, with access to appropriate microdata, they can examine issues and, indeed, find new issues that are beyond 
the purview and resources of the data providers.  The data providers realize that they have a fundamental 
obligation to protect the confidentiality of data of individuals and enterprises.  The data providers also realize that 
provision of analytically valid microdata to legitimate researchers has direct societal benefits due to improved 
analyses for policy purposes. 

Agencies have responded by providing public-use files in which identifiers and information (variables) have 
been suppressed or changed in a variety of ways that the data providers (often statisticians) believe will assure 
confidentiality.  The disclosure-limitation methods have ranged from simple suppression of names, addresses, and 
unique identifiers such as Social Security Number (SSN), to truncation of large values or other outliers,  to data 
swapping (Dalenius and Reiss [4]), to suppression (DeWaal and Willenborg [5]), and finally to sophisticated 
methods of data masking (Kim [12], Sullivan and Fuller [21], Fuller [11], Kim and Winkler [14], Fienberg [9]).  
Rather than just provide publicly released microdata that have the same means and a few other properties of the 
confidential microdata, the sophisticated methods are intended to yield microdata that can be used for regression, 
loglinear modeling, or other statistical analysis even on a few important subdomains. 

The ability of agencies to provide public-use microdata has been hampered by the agencies lack of resources to 
do the extensive extra work needed for producing such files and the view of some that their resources are better 
spent on their primary purpose of publishing summary statistics based on the data or letting individuals --typically 
sworn to abide by agency confidentiality restrictionsC have direct access to microdata.  Some agencies have not 
provided public-use data due to their belief that they cannot protect confidential data.  This is particularly true 
with economic data.  Another important consideration is the need for increased analytic and algorithmic coding 
skills among the computer programmers and analysts that must provide the data.  Agencies have had difficulty 
developing the computer skills needed for sophisticated demographic, economic, and statistical analyses 
necessary for properly collecting, producing, and modeling their main data files.  It is even more difficult doing 
sophisticated modeling and analyses to assure that public-use data produce similar results to what would be 
produced using the original, confidential microdata and to perform time-consuming re-identification experiments. 

Re-identification methods have predominantly involved detection of records that agree on simple combinations 



of keys based on discrete variables in the files (DeWaal and Willenborg [5]) or on outlier-detection techniques.  
When a specific combination of values of keys agree for a small set of records or for one record only, then either 
the specific values of some of the keys may be set to blank  (local suppression) or different values of a key may 
be combined into single values (global recoding).  These methods have the advantages that they are relatively 
easy for most data providers to understand and that they can be implemented in straightforward ways in computer 
code or via application of statistical software.  In a telling experiment, Bethlehem, Keller, and Pannekoek [1] were 
able to use five quantitative income variables from the Internal Revenue Service (IRS) of the Netherlands to re-
identify some individuals.  They also showed how easily the records in a file could be partitioned using discrete 
variables such as geographic identifiers, age, sex, demographic characteristics, and other information.  The key 
point is that, if more information (variables that can be used as identifiers) is added to meet the needs of 
researchers and the files satisfy a number of analytic needs, then it is increasingly more difficult to insure 
confidentiality. 

The methods and software of modern record linkage that can be used in re-identification experiments are very 
powerful.  Newcombe (Newcombe et al. [17]) introduced the basic methods introduced.  Geneticist Newcombe 
used odds ratios and decision rules.  Statisticians Fellegi and Sunter [7] provided the rigorous mathematical 
foundations and the means of estimating probabilities used in likelihood ratios.  Implementation, however, was 
very slow because the means of researching and implementing record linkage have primarily involved difficult 
computer science and mathematical algorithms (Winkler  [23], [24]; Frakes and Baeza-Yates [10]) that are 
unfamiliar to most individuals at statistical agencies.  Record linkage was primarily developed for unduplicating 
name and address lists having significant amounts of typographical variation due to transcription and keying error. 
 Methods were extended to records having combinations of discrete and continuous variables (Winkler  [23], 
Scheuren and Winkler [19]) also having significant amounts of error.  In other words, the normal situation in 
record linkage is that identifiers in pairs of records that are truly matches disagree by small or large amounts and 
that different combinations of the nonunique, error-filled identifiers need to be used in correctly matching 
different pairs of records.  These modern record linkage methods are often in commercially available code that 
can be applied by relatively naive users in re-identification experiments.  With the more sophisticated ways of 
producing public-use microdata (e.g., Kim [12], Fuller  [11], Kim and Winkler [14], DeWaal and Willenborg [6]), 
re-identification is considerably more difficult but possible if the individual performing the work is experienced in 
record linkage and able to write certain types of sophisticated computer code.  At some point in the near future, it 
is likely that very powerful re-identification methods will be readily available in computer code.  These re-
identification methods (Scheuren and Winkler [19]) are primarily intended to provide a large number of analyses 
of sets of administrative files that have heretofore been impossible and to be performed by agencies that can keep 
data confidential by providing access to sworn agents at secure sites. 

Three key ideas are needed to clarify the focus of the presentation in this paper.  We say that a public-use file is 
analytically valid if a user is able to reproduce approximately several statistical analyses that can be produced 
with the original confidential microdata.  We say that a file is proven analytically valid if the statistical agency has 
documented the modeling and analyses in sufficient detail so that data users are assured that the public-use files 
will produce analytic results that are somewhat consistent with the original confidential microdata.  We say that a 
file is analytically interesting if it contains a sufficient number of variables, say five discrete demographic and six 
continuous economic, to provide (minimally) for the needs of serious researchers. 

The overall structure of our presentation is to examine the different methods in terms of their ability to produce 
public-use files that are analytically valid and interesting and to examine whether they yield files that are 
confidential.  In the second section, we provide motivation and background on the methods that have been used 
for creating confidential files and various re-identification methods that have been developed.  The third section 
contains specific details about the empirical data, the analytic methods, and the re-identification methods.  In the 
fourth section, we describe in detail a simulation experiment similar to one done by Fuller [11], describe some 
additional masking methods that can be easily applied to the data, and give the results from several experiments 
regarding analytic validity and re-identification.  We do not intend to reproduce exactly Fuller=s results but to 
show how many re-identifications occur when we use a global comparison of one entire set of pairs and contrast it 
to the individual comparison used by Fuller (and typically others).  The fifth section compares results via a variety 
of methods using the large, public-use database originally analyzed by Kim and Winkler [14].  In our 
presentation, we examine how the different methods allow correct analyses in subdomains (Kim [13]).  Being able 
to perform followup analyses C while not the direct intent of the data providers C is of major concern to data 
users.  The sixth section consists of discussion and the final section is a summary. 
    
 
2 Motivation and Background 
 
Users are concerned with the analytic validity of the public-use files.  To clarify the focus of analytic validity in 
the applications of this paper, we say that a file is analytically valid if it (approximately) preserves means and 
covariances on a small set of subdomains, preserves a few margins, and (crudely) preserves at least one other 



distributional characteristic.  A file will be analytically interesting if it provides at least six variables on important 
subdomains that can be validly analyzed.  In other applications, it may be useful to define analytic validity in 
terms of preserving some ordering characteristics of the variables, a few geometric properties of the set of 
variables, or a large number of terms used in loglinear analyses.  It should be intuitively obvious that it is 
impossible to provide a public-use file satisfying a large number of analytic needs on a large number of 
subdomains and also being confidential.   We observe that it is very straightforward to get transformations that 
preserve means and covariances on a variety of subdomains.  What is not as straightforward is preserving means, 
covariances, and other distributional characteristics.  We note that merely preserving means on an entire public-
use file is not sufficient for demonstrating that the file is analytically valid.   Agencies have an additional concern 
related to the analytic validity of the files that they release.  If a user were to publish an analysis based on statistics 
in a public-use file that are not similar to corresponding statistics in the original, unmasked file, then it is the 
agency that must take steps to correct any erroneous conclusions that would have been reached.  Such correction 
efforts could require substantially greater resources than the resources needed for producing a public-use file that 
meets additional analytic needs.   

Statistical agencies are concerned with their disclosure risk if an intruder were to attack a file.  Following 
Lambert [15], we define the risk of true identification as the fraction of released records that an intruder can 
correctly re-identify.  
 
 
3 Data and Methods 
 
In this section we describe a variety of methods for producing confidential files using two different empirical 
databases.   The first file contains original records generated with eight variables satisfying a multivariate normal 
distribution with mean 0 and covariance matrix the identity matrix.  The second file is a large public-use file 
associated with income variables of individuals that was constructed with demographic and other discrete 
variables.  The basic file-production methods include masking with multivariate normal noise (Kim [12], Fuller 
[11]), local and global suppression of information as performed in µ-Argus (DeWaal and Willenborg [5]), and 
swapping (Kim and Winkler [14]) and various modified versions of the basic methods. 
 
3.1  Generated Multivariate Normal  
 
We generated variables having mulivariate normal distribution with mean 0 and covariance matrix the identity 
matrix I using the Statistical Analysis System (SAS).  As in Fuller [11], we generated multivariate normal noise 
independently with mean 0 and covariance matrix 0.35I in a procedure we refer to as masking 1.  We also 
generated multivariate normal noise independently with mean 0, with covariance matrix 0.35I, and with small 
deviations deleted in a procedure we refer to as masking 2.  An original data file of 1500 records was generated.  
The first 150 records were masked via the two additive-noise procedures, masking 1 and masking 2.  To provide 
comparability with Fuller [11], we matched the two masked files of 150 records against the first 150 records in the 
original file.  To examine re-identification in more detail, we matched the second masked file of 150 against the 
entire set of 1500 original records.  
 
3.2 Data of Kim and Winkler - Large Public-Use File 
 
The original unmasked file of 59,315 records is obtained by matching IRS income data to a file of the 1991 
March CPS data.  The fields from the matched file originating in the IRS file are as follows: 
 
       i)  Total income;                             ix)  Return type;      
      ii)  Adjusted gross income;              x)  Number of child exemptions; 
     iii)  Wage and salary income;          xi)  Number of total exemptions; 
     iv)  Taxable interest income;          xii)  Aged exemption flag; 
      v)  Dividend income;                    xiii)  Schedule D flag; 
     vi)  Rental income;                         xiv)  Schedule E flag; 
    vii)  Nontaxable interest income;     xv)  Schedule C flag; and 
   viii)  Social security income;            xvi)  Schedule F flag. 
 
 

The file also has match code and a variety of identifiers and data from the public-use CPS file.  Because CPS 
quantitative data are already masked, we do not need to mask them.  We do need to assure that the IRS 
quantitative data are sufficiently well masked so that they cannot easily be used in re-identifications either by 
themselves or when used with identifiers such as age, race, and sex that are not masked in the CPS file.  Because 
the CPS file consists of a 1/1600 sample of the population, it is straightforward to minimize the chance of re-



identification except in situations where a record may be a type of outlier in the population.  For re-identification, 
we primarily need be concerned with higher income individuals or those with distinct characteristics that might be 
easily identified even when sampling rates are low.  

The public-use file is used in examining tax policy and supplemental income payments. The file must allow 
analyses in subdomains in which the data providers did not specifically assure that key statistics are preserved.  
We note that it is theoretically impossible for the data provider to produce public-use data that yield a moderate 
number of accurate analyses in a moderate number of subdomains and maintain the confidentiality of the files. 
 
3.3  Fellegi-Sunter Model of Record Linkage 
 
A record linkage process attempts to classify pairs in a product space A × B from two files A and B into M, the 
set of true links, and U, the set of true nonlinks.  Making rigorous concepts introduced by Newcombe (e.g., 
Newcombe et al. [17]), Fellegi and Sunter [7] considered ratios R of probabilities of the form 
 

R =  Pr (γγγγ∈  ΓΓΓΓ | M) / Pr (γγγγ∈ΓΓΓΓ | U)   (1) 
    

where γγγγ  is an arbitrary agreement pattern in a comparison space  ΓΓΓΓ.  For instance, ΓΓΓΓ might consist of eight 
patterns representing simple agreement or not on surname, first name, and age.  Alternatively, each γγγγ ∈  ΓΓΓΓ might 
additionally account for the relative frequency with which specific surnames, such as Scheuren or Winkler, occur 
or deal with different types of comparisons of quantitative data.  The fields compared (surname, first name, age) 
are called matching variables.  The numerator in (1) agrees with the probability given by equation (2.11) in Fuller 
[11]. 

The decision rule is given by 
 

If  R  >  Upper, then designate pair as a link. 
 

If  Lower ≤≤≤≤ R ≤≤≤≤ Upper, then designate pair as a possible link and hold for clerical review.   
   

If  R < Lower, then designate pair as a nonlink. 
 

Fellegi and Sunter [7] showed that this decision rule is optimal in the sense that for any pair of fixed bounds on 
R, the middle region is minimized over all decision rules on the same comparison space ΓΓΓΓ.  The cutoff thresholds, 
Upper and Lower, are determined by the error bounds.  We call the ratio R or any monotonely increasing 
transformation of it (typically a logarithm) a matching weight or total agreement weight.  Likely re-
identifications, called matches, are given higher weights, and other pairs, called nonmatches, are given lower 
weights.   

In practice, the numerator and denominator in (1) are not always easily estimated.  The deviations of the 
estimated probabilities from the true probabilities can make applications of the decision rule suboptimal.  Fellegi 
and Sunter [7] were the first to observe that  
 
     Pr (γγγγ∈  ΓΓΓΓ) = Pr (γγγγ∈  ΓΓΓΓ | M) Pr (M)  +  Pr (γγγγ∈  ΓΓΓΓ | U) Pr (U) 
 (2) 
could be used in determining the numerator and denominator in (1) when the agreement pattern γγγγ  consists of 
simple agreements and disagreements of three variables and a conditional independence assumption is made.  The 
left hand side is observed and the solution involves seven equations with seven unknowns.  In general, we use the 
Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin [3]) to estimate the probabilities on the 
right hand side of (2).  To best separate the pairs into matches and nonmatches, our version of the EM algorithm 
for latent classes (Winkler [23]) determines the best set of matching parameters under certain model assumptions 
which are valid with the generated data and not seriously violated with the real data.  In computing partial 
agreement probabilities for quantitative data, we make simple univariate adjustments to the matching weights such 
as are done in commercial record linkage software.  When two quantitative items a and b do not agree exactly, we 
use a linear downward adjustment from the agreement matching weight to the disagreement weight according to a 
tolerance.  Specifically, the adjustment is  
 
     wadj = max ({wadj - (wagr - wdis)  | a - b | / (τ  min ( a, b))}, wdis), 
 
where wadj, wagr, wdis are the adjusted weight, full agreement weight, and full disagreement weights, respectively  



and τ is the proportional tolerance for the deviation (0 ≤ τ ≤ 1).  The full agreement weights wagr and disagreement 
weights wdis are the natural logarithms of (1) that are obtained via the EM algorithm.  The tolerance τ is estimated 
using experience and looking at matching results.  For the empirical examples of this paper τ is taken to be 0.2.  
For re-identification experiments in which noise levels are relatively lower than those in this paper, τ might be set 
to 0.1.  The approximation will not generally yield accurate match probabilities but works well in the matching 
decision rules as we show later in this paper.  Because we do not accurately account for the probability 
distribution with the generated multivariate normal data, our probabilities will not necessarily perform as well as 
the true probabilities used by Fuller when we consider single pairs.  To force 1-1 matching as an efficient global 
approach to matching the entire original data sets with the entire masked data sets, we apply an assignment 
algorithm due to (Winkler [23]).  Specifically, we use pairs (i,j) ∈  I0 where I0 minimizes 
 
         {∑ (i, j) ∈ I wi j | I ∈  J }, 
 
where wi j  is the comparison weight for record pair (i, j), and J is the set of index sets I in which at most one 
column and at most one row are present.  That is, if (i, j) ∈  I and (k, l) ∈  I, then either i ≠ k or j ≠ l.  The 
algorithm of Winkler is similar to the classic algorithm of Burkard and Derigs (see e.g., Winkler [23]) in that it 
uses Dijkstra=s shortest augmenting path for many computations and has equivalent computational speed.  It 
differs because it contains compression/decompression routines that can reduce storage requirements for the array 
of weights wi j by a factor of 500 in some matching situations.  When a few matching pairs in a set can be 
reasonably identified, many other pairs can be easily identified via the assignment algorithm.  The assignment 
algorithm has the effect of drastically improving matching efficacy, particularly in re-identification experiments of 
the type given in this paper.   For instance, if a moderate number of pairs associated with true re-identifications 
have probability greater than 0.5 when looked at in isolation, the assignment algorithm effectively sets their match 
probabilities to 1.0 because there are no other suitable records with which the truly matching record should be 
combined.   
 
3.4   Additive Noise 
 
Kim [12] introduced independent additive noise with the same covariance as the original data X so that Y = X + ε 
is the resultant masked data.  He showed that the covariance of Y is a multiple of the covariance of X and gave a 
transformation to another variable Z that is masked and has the same covariance as X.  He also showed how 
regression coefficients could be computed and how estimates could be obtained on subdomains.  Sullivan and 
Fuller ([20], [21]) and Fuller [11] extended Kim’s work.  In this paper, we will consider the basic additive noise Y 
= X + ε as was also considered by Fuller.  Masking via additive noise has the key advantage that it can preserve 
means and covariances.  Additive noise has the disadvantage that files may not be as confidential as with some of 
the other masking procedures.  Kim has shown that means and covariances from the original data can be 
reconstructed on all subdomains using the observed means and covariances from the masked data and a few 
additional parameters that the data provider must produce.  Fuller [11] has shown that higher order moments such 
as the regression coefficients of interaction terms can be recovered provided that additional covariance 
information is available. 
 
3.5  Suppression 
 
DeWaal and Willenborg ([5], [6]) describe the suppression (or masking) methodology of µ-Argus.  In global 
recoding, several categories of a variable are combined to form new categories.  For instance a geographic code 
such as State abbreviation may have a subset of code values replaced by different code such as NorthEast U.S.  In 
this way, the number of variables agreeing on the code (or variable) is increased.   Local suppression sets certain 
values of individual variables to missing.   The purpose of local suppression is to increase the set of records that 
agree on a combination of code (or key) values.  The software µ-Argus (van Gemerden, Wessels, and Hundepool 
[22]) contains facilities to allow a user to determine combinations of key variables that place a record at risk of re-
identification, give the user tools so that the user can quickly globally recode a file and analyze the results, and to 
locally suppress a file automatically.  We note that the risk of re-identification used by µ-Argus is the risk when 
simple combinations of key variables are used in matching.  The risk does not refer to re-identification via 
arbitrary means. 
 
3.6  Fuller=s Hybrid Masking Technique 
 
Because quite a high proportion of the records could be easily re-identified with the additive noise procedure and 
simulated data of his main example, Fuller [11] added two procedures to improve confidentiality protection.  In 
the first, he only used noise vectors in a modified ε that had caused deviations in norm above a certain bound.  



This assures that fewer masked records are close to the corresponding unmasked records in norm.  In a second 
procedure, Fuller adjusted the ε associated with the first and second best matches in situations where there was a 
high probability of re-identification.  In our simulations, we also used Fuller=s first adjustment for small 
deviations.  It does not seriously affect covariances.  The deviations over successive realizations of the random 
number generation process exceed the deviations caused by the adjustment from removing small deviations.   
 
3.7  Swapping 
 
Swapping is a method in which certain fields in a record are switched with the corresponding fields in another 
record.  While it is a good way to assure confidentiality, it typically distorts distributions and key statistics 
severely (Little [16]).  Kim and Winkler [14] used a modified swapping procedure that was restricted so that 
means and covariances were preserved in certain subdomains.  They applied their swapping procedure to a small 
percentage (<1%) of the records that the additive noise procedure could not effectively protect from disclosure.  
On a few important subdomains, the means and covariances were often only slightly distorted because the 
percentage of swapping was very low.  If we analyze variables in a subdomain with significantly different 
properties than other subdomains, then we need to be careful that the swapping does not seriously distort statistics 
in the subdomain.  We refer to the combination of a small percentage of swapping with additive noise as the 
second hybrid additive-noise masking technique. 
 
 
4 Results from a Simulation 
 
Table 1 is analogous to Table 1 in Fuller [11].  The first two columns of numbers are taken from Fuller=s paper.  
The last three are produced via the procedures of this paper in which we generate multivariate normal data with 
zero mean and identity matrix for covariance.  The probability  (2.11) of Fuller [11] is used for the first two 
columns of numbers and is optimal when matching single records in isolation.  The results of the last three 
columns use estimated probabilities (crude general approximations) such as might be computed in commercial 
record linkage software and are quite suboptimal.  The means of forcing 1-1 matching are what account for the 
dramatic improvement in the results exhibited in the last three columns of quantitative data.  For instance when 
Fuller used eight variables, 65% of the match probabilities were above 0.5. The assignment algorithm effectively 
changes the match probabilities to 1.0 for the 65%.  Because so many potential false matching pairs are in the 
65% and effectively eliminated for the remaining 35%, the ability to correctly re-identify in the remaining 35% 
increases to certainty as shown in the table.  If the analyst were to model and use probabilities as in Fuller, then it 
is likely that the 4-variable-Winkler column would have almost as high match rates as the 6-variable-Winkler 
column. 
  Table 2 takes its first two columns from Table 3 of Fuller [11].  To mask variables further, Fuller removed small 
deviation noise and adjusted the noise associated with the first and second best matches until the two match 
probabilities were approximately the same.  From examination of the two columns, Fuller  [11] concluded that the 
data were effectively masked.  He also noted the correlations in the observed data differed by less than one 
standard deviation from the correlations in the unmasked data.  Our examination of the two columns of numbers 
produced by Fuller cause us to believe that the data are not effectively masked if record linkage procedures such 
as forcing 1-1 matching are used.  The last four columns of Table 2 present our results from generating masked 
data in which no small deviation noise was used as in Fuller.  Unlike Fuller, however, we did not adjust the match 
probabilities of the best two matches for each record.  The primary reason that we did not is that the 1-1 matching 
procedure will easily overcome adjustments of the first few of the highest probability matches for a record.  The 
secondary reason was that we were unsure exactly how Fuller adjusted the match probabilities to minimize the 
distortions in the correlations.  The >?= indicate situations where I was not able to exactly compute matching 
probabilities because of the 1-1 matching.  The most revealing results are in the next-to-last column of numbers in 
which we use six matching variables and match a file of 150 records against a file of 1500 records.  Even in that 
situation, the 1-1 matching procedure yields a reasonably high correct match rate.  For the 64% of the records that 
were associated with truly matching pairs with probabilities above 0.5 when looked at in isolation, the 
assignmentalgorithm effectively sets their match probabilities to 1.0.  The remaining 36% of the records are 
associated with truly matching records that are generally farther away than the closest records that are not true 
matches.  With only small deviation noise removed, covariances were preserved up to a small multiplicative 
adjustment factor as used by Kim [12].  The deviations between the covariances in the masked data and the 
covariances in the unmasked were less than 0.1 of the standard deviation. 



 
                  Table 1. 
            Distribution of our match 
        probabilities for known vectors of  
        different dimensions in a released  
             data set of size 150.   
          (Entries are percentages). 
                                            
                Dimension of known vector 
   Match        - Fuller -   -- Winkler  -- 
   Probability  Four Eight   Four Six Eight 
                                 
                                            
   0.0-0.1       49    9      42    3    0 
   0.1-0.2       23    8       0    0    0 
   0.2-0.3        9    6       0    0    0  
   0.3-0.4        4    6       0    0    0 
   0.4-0.5        3    6       0    0    0 
   0.5-0.6        2    8       0    0    0 
   0.6-0.7        1    9       0    0    0 
   0.7-0.8        0    8       0    0    0 
   0.8-0.9        4    7       0    0    0 
   0.9-0.99       5   22       0    0    0 
   0.99-1.0       0   11      58   97  100 
                                            
 
 
 
                Table 2. 
          Distribution of our match  
     probabilities for known vectors of  
     different dimensions in a modified 
     masked released data set of size 150. 
         (Entries are percentages). 
                                                             
               Dimension of known vector 
   Match       - Fuller -    ---  Winkler  --- 
   Probability Four Eight   Four Six  Six* Eight 
                                       ? 
                                                 
   0.0-0.1       51    2     42    4   12    0 
   0.1-0.2       21    5      0    0    8    0 
   0.2-0.3       13    2      0    0   10    0  
   0.3-0.4        4    3      0    0    6    0 
   0.4-0.5        1    7      0    0    0    0 
   0.5-0.6        2   20      0    0    0    0  
   0.6-0.7        1   23      0    0    0    0 
   0.7-0.8        3   27      0    0    0    0 
   0.8-0.9        3   11      0    0    0    0 
   0.9-1.0        1    0     58   96   64  100 
                                                 
   */ Match against 1500 instead of 150. 
 
 
 



We close this section by quoting two sentences from Fuller ( [11], p. 393).  AThe analysis rested on the 
assumption that the intruder had information on a single target and used only this information in constructing a 
prediction.@  A The match probabilities are no longer valid if the intruder is able to use the information on a 
number of individuals to increase the probability of correctly matching a target to a released record.A  Our results 
show that forcing 1-1 matching can significantly improve matching efficacy just as Fuller suggested might be 
possible.  With the ready availability of credit files and other files and the possible availability of certain types of 
files containing health information, we can no longer assume that the knowledgeable intruder will look at records 
in isolation.  Fellegi [8] has already noted the lack of control on privately held credit files and the ready access to 
them. 
 
 
5 Results with a Large Public-use File 
 
In this section, we examine various additional masking methods using a large public-use file created by Kim and 
Winkler [14].  We begin by masking the file in two different ways suggested by the current version of µ-Argus 
software (van Gemerden, Wessels, and Hundepool [22]).  We then proceed to a more detailed examination of 
matching and analytic results than the one produced by Kim and Winkler using procedures that are almost the 
same as Kim-Winkler. 
 
5.1  Naïve application of µ-Argus 
 
We used a subset of the variables in the database of 59315 records used by Kim and Winkler.  The discrete 
variables are IRS form type, State code, age, race, and sex.  The continuous variables are total income, adjusted 
gross income, wage, taxable interest, nontaxable income, rental income, social security income, dividends, and 
CPS wage.   

We applied µ-Argus as a naive user might.   We used µ-Argus on a file containing only the five discrete 
variables.  It suggested collapsing on the age variable.  We did this in two ways: (1) global recode of age to 999 
and (2) global recode on age to ranges 1: 1-30, 2: 31-60, and 3: 61- followed by a pass to allow µ-Argus locally 
suppress (set to missing) certain values of variables.  With each suppressed file, we were able to re-identify 59315 
records when we used all five discrete and all nine continuous variables during matching.  Because of the high re-
identification rate, we did not examine analytic properties of the files.  Due to many local suppressions in the 
second type of recoding, it is likely that the analytic validity of the masked file is compromised. 
 
5.2 More advanced masking procedures 
 
In this section, we compare results from using two procedures.  The first uses a file in which additive noise has 
been used to mask the quantitative income variables according to the procedures of Kim [12].  In the second, we 
perform a swapping of quantitative data in a manner similar to Kim and Winkler [14] but use software that gives 
more control of the swapping rates applied in different portions of the files.  Since we did not have the resources 
to perform matching against several source files containing more than 100 million records, we make simplifying 
assumptions that allow us to compute absolute re-identification probabilities as is done in other papers.  We begin 
by determining the probability of matching a record in the masked file of sample records against the original 
unmasked file of sampled records.  Our assumptions allow us to compute the absolute probability of matching the 
masked sample file against an unmasked file of more than 100 million records.  If a record has a total income less 
than 60000, we assume that the record has 1/1000 chance of being in a sample for a source file containing all 
records.  If a record has a total income above 60000 and less than 80000, we assume that the record has 1/10 
chance of being in a sample for a source file containing all records.  If a record has a total income above 80000, 
we assume that the record has 1/1 chance of being in a sample for a source file containing all records.   The 
assumptions are reasonable because (1) we are only using a subset of the variables that can be used for matching 
and (2) records having total incomes above 80000 are often associated with characteristics that make them 
outliers in the entire population, not just in the sample. 

In Tables 3 and 4, we describe re-identification rates from two matching passes.  In the first, we match a file 
that has only been masked according to the additive noise procedure of Kim against the original unmasked file.  
Prior to the second pass, we swap all of the quantitative income data in records having total income above80000 
and a 0.05 proportion of records having total income below 80000.  We only swap in a subset of records that 
agree on keys consisting generally of IRS form type, age, race, sex, and State code.  In situations where there are 
not a sufficient number of items agreeing on a set of keys (less than 50 items), we collapse some of the 
combinations of keys.  In the second matching pass, we match the masked/swapped file against the original 
unmasked file. 
   The results in Table 3 show that we can accurately match a high proportion of masked records having total 
income above 80000.  Due to the facts that records having total income above 80000 have a few identifying 



characteristics somewhat different from other records having income above 80000 and that we have many 
matching variables, additive noise allows more than 1000 re-identifications.  When higher levels of additive noise 
were used, Kim and Winkler [14] observed a significant deterioration in the accuracy of correspondences of 
correlations of pairs of variables.  The combination of swapping and additive-noise procedures used in creating 
the file used in the second pass has the advantage that easily re-identified records in the masked-only file are 
generally non-re-identifiable and that means and covariances are approximately preserved on the entire set of 
pairs and on important subdomains. We observe (Table 4) that the re-identification rate is effectively negligible in 
the file used in the second pass.  
   Use of the additive noise procedure of Kim [13] allows us to recover means and correlations of important 
statistics.  Swapping, on the other hand, can only assure that means and correlations are preserved in domains 
specified (controlled) by the individual doing the swapping.  Table 5 illustrates that correlations are accurately 
 
 
 
                       Table 3. 
         Matching Counts and Truth Probabilities 
               By Total Income Category 
          Identification Pass, Masked File  
                                                       
  Match      80k+         60k-80k           60k-      
   Wgt  True Fal Prob  True Fal Prob  True Fal Prob 
                                                      
 
   -5    0    1 0.00     0   15 0.00      0  578 0.00 
   -4   66    9 0.88   208   20 0.91   16E3 1901 0.90 
   -3   73    1 0.99   111   19 0.85   3095  694 0.82 
   -2   74    6 0.93   150   19 0.89   1780  766 0.70 
   -1   68   10 0.87   109   28 0.80   1500 1055 0.59 
    0   77    5 0.94    96   41 0.70    949 1072 0.47 
    1   71    5 0.93    68   41 0.62    605  976 0.38 
    2   79    7 0.92    96   41 0.70    594 1045 0.36 
    3   81    9 0.90    95   40 0.70    665 1213 0.35 
    4   91    8 0.92    91   49 0.65    693 1041 0.40 
    5   99   15 0.87   110   53 0.67    708 1115 0.39 
    6  109   11 0.91   125   64 0.66    744 1255 0.37 
    7  122    4 0.97   142   62 0.70    783 1309 0.37 
    8  149    9 0.94   131   54 0.71    846  930 0.48 
    9  181   12 0.94   155   58 0.73    836  649 0.56 
   10  195    6 0.97   153   53 0.74    886  478 0.65 
   11  213    7 0.97   187   36 0.84    847  297 0.74 
   12  221    5 0.98   159   11 0.94    609  110 0.85 
   13  222    6 0.97   171    8 0.96    496   66 0.88 
   14  223    0 1.00   112    4 0.97    292   24 0.92 
   15  147    0 1.00    50    1 0.98    106    5 0.95 
   16   67    0 1.00     3    0 1.00      8    0 1.00 
   17   24    0 1.00     2    0 1.00      0    0  .   
   18    8    0 1.00     0    0  .        0    0  .   
   19    1    0 1.00     0    0  .        0    0  .   
                                                           



 
                      Table 4. 
          Matching Counts and Truth Probabilities  
               By Total Income Category 
      Re-Identification Pass, Masked/Swapped File  
                                                   
                                                      
  Match      80k+         60k-80k          60k-      
   Wgt  True Fal Prob  True Fal Prob  True Fal Prob 
                                                     
   -5    0    4 0.00    0    2 0.00      0  763 0.00 
   -4   11    8 0.58   16   15 0.52   2470 3252 0.43 
   -3   20    8 0.71   15    7 0.68    394  697 0.36 
   -2   22   11 0.67   23   16 0.59    244  903 0.21 
   -1   18   15 0.55   21   27 0.44    286 1642 0.15 
    0   25   23 0.52   20   35 0.36    197 1706 0.10 
    1   10   36 0.22    9   43 0.17     96 1274 0.07 
    2    4   62 0.06    8   61 0.12    106 1992 0.05 
    3    8   81 0.09   16   79 0.17    140 2966 0.05 
    4    8   96 0.08   17  108 0.14    160 2246 0.07 
    5    8  115 0.07   26  107 0.20    177 2484 0.07 
    6    8  130 0.06   31  149 0.17    240 3386 0.07 
    7    8  156 0.05   34  186 0.15    262 4993 0.05 
    8   13  178 0.07   47  216 0.18    338 4329 0.07 
    9   11  215 0.05   56  288 0.16    390 3185 0.11 
   10    9  251 0.03   64  323 0.17    434 3257 0.12 
   11   10  244 0.04   81  334 0.20    471 2527 0.16 
   12    5  242 0.02   74  232 0.24    329 1294 0.20 
   13    7  247 0.03   91  177 0.34    290  964 0.23 
   14    3  223 0.01   60  101 0.37    187  423 0.31 
   15    5  143 0.03   36   28 0.56     65  110 0.37 
   16    0   68 0.00    1    2 0.33      6    4 0.60 
   17    0   24 0.00    1    1 0.50      0    0  .   
   18    0    8 0.00    0    0  .        0    0  .   
   19    0    1 0.00    0    0  .        0    0  .   
                                                           
 
 
                   Table 5. 
         Correlations in a Subdomain 
         Where Swapping is Controlled 
                                           
                                Masked & 
                      Masked    Swapped 
                  Raw  Only                 
                               (5%)   (5%) 
                                   Large 
                                           
   wage-divid    .027  .030   .030   .030 
   wage-tax int  .108  .100   .100   .100 
   divid-ss      .155  .162   .162   .162 
   tax int-rent  .172  .156   .156   .156 
   divid-rent    .040  .044   .044   .044 
   ntax-ss       .056  .056   .056   .056 
                                           
 
 



preserved in a subdomain determined by Form Type.  In the second-to-the-last column, 5% of all records are 
swapped as in Kim and Winkler [14].  In the last column, 5% of records with incomes below $80000 and all 
records with incomes above $80000 are swapped.  The more complete set of swapping assures that the more 
easily identified large income individuals are not likely to be re-identified as is shown in Table 4.  In Table 6, we 
show how correlations may not be preserved in the subdomain of records having some of their information taken 
from IRS Schedule C.  Since we did not control record swapping in that subdomain and the individuals in the 
 
 
                  Table 6. 
         Correlations in a Subdomain  
         Swapping is Not Controlled 
                Form Type C 
                                           
                                Masked & 
                      Masked    Swapped 
                  Raw  Only                 
                               (5%)   (5%) 
                                     Large 
                                           
   wage-divid    .631  .634   .080   .060 
   wage-tax int  .190  .190   .188   .122 
   divid-ss      .153  .151   .125   .136 
   tax int-rent  .198  .199   .124   .121 
   divid-rent    .129  .127   .061   .052 
   ntax-ss       .106  .103   .086   .051 
                                                                                     
 
subdomain have characteristics that are distinctly different from the population as a whole, we see that certain key 
statistics are severely distorted.  For instance, the swapping procedure severely distorts the correlation between 
wage and dividend.  The reason is that the subdomain determined by IRS Schedule C corresponds to (partially) 
self-employed individuals having higher incomes and much higher dividend income than the entire population.   
In a similar manner, we see that, if we restrict to a subdomain consisting of a single State, then correlations may 
also be distorted (Table 7).  Swapping was not controlled at the State level.  The size of the subdomain associated 
with Table 7 is 600 while the sizes of the subdomains associated with Tables 5 and 6 are 5900 and 7800, 
respectively. 
 
     
                     Table 7. 
           Correlations in a Subdomain  
           Swapping is Not Controlled 
               State Code = 46 
                                           
                                Masked & 
                      Masked    Swapped 
                  Raw  Only                 
                               (5%)   (5%) 
                                     Large 
                                           
   wage-divid    .057   .061   .061   .074 
   wage-tax int -.088  -.082  -.082  -.012 
   divid-ss      .144   .150   .149   .088 
   tax int-rent  .181   .154   .151   .130 
   divid-rent    .033   .033   .033   .029 
   ntax-ss       .139   .130   .125   .172 
                                           
 
 



6 Discussion 
 
The reason that we prefer additive noise as the starting point for a masking methodology is that authors (Kim [12], 
Sullivan and Fuller [20], Kim [13], Sullivan and Fuller [21], and Fuller [11]) have taken care to demonstrate that 
it provides a few recoverable analytic properties on subdomains.  As the analysis of Kim and Winkler [14] and 
this paper show, moderate amounts of additive noise do not yield files that are completely free of disclosures.  
Both Fuller [11] and Kim and Winkler [14] have observed that large amounts of additive noise destroy the 
analytic validity of files.  The empirical results of Fuller [11], Kim and Winkler [14], and this paper strongly 
suggest that only a very few analytic properties of the original files may be recoverable at the costs of using 
specialized software and much larger variances for higher order statistics.   Although the results of section 5 are 
for files in which more than twenty variables were used, the analytic variations observed on certain subdomains 
and re-identification probabilities would not have changed if as few as ten variables were used.  These ten 
variables are age, race, sex, State code, and any six quantitative variables.   With only seven, eight or nine 
variables, obtaining re-identification probabilities as high as the probabilities in this paper is dependent on the 
specific variables and the specific subdomains that are used.  With six or fewer variables, it should be possible to 
produce files that are both analytically valid and allow a negligible percentage of re-identifications in most 
situations.    
 
 
7 Summary 
 
This paper examines a variety of methods for masking files that are intended to provide analytically valid public-
use files in which disclosures are limited.  It corroborates that the additive-noise methods of Kim [12] and Fuller 
[11] can produce masked files that allow a few analyses that approximately reproduce a few analyses on the 
original, unmasked data. It also shows that, if additional masking procedures such a probability adjustment (Fuller 
[11]) and very limited swapping (Kim and Winkler [14]) are applied, then disclosure risk is significantly reduced 
and analytic properties are somewhat compromised.   
 
*This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has undergone a 
more limited review than official Census Bureau publications.  This report is released to inform interested parties 
of research and to encourage discussion.  The author thanks an anonymous referee for comments on an earlier 
version of this paper.  This paper originally appeared in Research in Official Statistics, 1, 87-104 in 1998. 
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