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An E�cient Formulation of Age Comparisons in the DISCRETE Edit

System�

Bor-Chung Chen and William E. Winkler

Abstract

The DISCRETE edit system, based on the Fellegi and Holt model [1976] of edit-
ing, contains two major components: edit generation and error localization. The

set covering problem (SCP) is formulated with constraint matrices many times in
both components. Therefore, an e�cient set covering algorithm is critical to the
overall performance of the DISCRETE edit system. The design of a set covering
algorithm (Chen [1998]) provides a major performance improvement for the DIS-
CRETE edit system. The size of the constraint matrices is a very important factor
to have an e�cient set covering algorithm. The age comparison approach described
in Chen, Winkler, and Hemmig [2000] creates a huge number of new variables and
edit rules in the set covering algorithm of the edit generation and error localization

of the DISCRETE edit system. The dimension of the constraint matrices created
is an increasing function of the number of variables and the number of edit rules.
In this paper, we will describe an e�cient formulation and simple implementation
of the age comparisons in surveys that have the age �eld.

KEY WORDS: Explicit Edits, Redundant Covers, Subcovers, Integer Program-
ming, Optimization

1 Introduction

The DISCRETE edit system (Winkler and Petkunas [1996]) is designed for general edits of

discrete data. It utilizes the Fellegi-Holt model of editing and contains two major compo-

nents: edit generation and error localization. An edit-generation algorithm, called the EGE

algorithm, for the DISCRETE edit system was described in Winkler [1997]. The EGE algo-

rithm is a much faster alternative to Algorithm 1, called the GKL algorithm, of Gar�nkel,

Kunnathur, and Liepins [1986]. In both of the EGE and GKL algorithms, the set covering

routine is invoked many times to generate new implicit edits. Therefore, an e�cient algo-

rithm for the set covering problem becomes highly desirable to reduce the computation time

of the edit generation. In error localization, the set covering problem, which, in fact, is an

integer linear programming problem, is used to identify the minimum number of �elds in an

erroneous record to change in order to pass all the edits.

�This paper reports the results of research and analysis undertaken by Census Bureau sta�. It has undergone a more limited

review than o�cial Census Bureau publications. This report is released to inform interested parties of research and to encourage

discussion.
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The SCP in the DISCRETE edit system is applied twice, one in edit generation and the

other in error localization. The �rst application in error localization is to �nd the minimal

set of �elds (the optimal solution) of a failed record to be modi�ed to satisfy all explicit and

implicit edits. The SCP is invoked once for each failed record. The second application in

edit generation is to �nd all the minimal sets of edits that are unioned to cover all possible

values of a �eld, called a generating �eld. The second application is NOT to �nd an optimal

solution but to �nd all prime cover solutions to the SCP. In either application, the size of the

constraint matrices that form the SCP is an increasing function of the number of variables

and the number of edit rules. The performance of the set covering algorithm is much better

if the size of the constraint matrices is smaller. In Chen, Winkler, and Hemmig [2000], the

age �eld is used to compare the ages between the household members; such as, the age of

the householder must be at least 15 years older than the children. In this paper, a new

formulation of the age comparisons is described to reduce the size of the constraint matrices

in the set covering problem.

We will use the following notations in this paper: a= (a1; a2; : : : ; an) has n �elds. ai 2 Ai

for each i, 1 � i � n, where Ai is the set of possible values or coded values which may be

recorded in Field i. jAij = ni. If ai 2 A
o

i
� Ai, we also say

a 2 A
o

i
= A1 �A2 � : : :�Ai�1 �A

o

i
�Ai+1 � : : :�An;

in which record a fails edit Ao

i
. The code space is A1 � A2 � : : :� An = A. If edit Ao is

a subset of edit Bo (Ao
� B

o), then edit Ao is dominated by edit Bo and is therefore a

redundant edit.

2 Background

The objective of error localization is to �nd the minimum number of �elds to change if

a record fails some of the edits. It can be formulated as a set covering problem. Let
�E = fE

1
; E

2
; � � � ; E

m
g be a set of edits failed by a record y with n �elds, consider the set

covering problem:

Minimize
P

n

j=1 cjxj

subject to
P

n

j=1 aijxj � 1; i = 1; 2; � � � ;m (1)

xj =

�
1; if �eld j is to be changed;
0; otherwise,

where

aij =

�
1; if �eld j enters Ei;
0; otherwise,

and cj is a measure of \con�dence" in �eld j. We need to get �E from a complete set of edits

to obtain a meaningful solution to (1). A complete set of edits is the set of explicit (initially

speci�ed) edits and all essentially new implied edits derived from them. The dimension of

the constraint matrix (aij) of 0s and 1s associated with (1) is m�n. The size of the preorder
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forest of the set covering algorithm described in Chen [1998] is 2n�1. The preorder forest is

a collection of tree data structures that provide a sequence, called ranking, of the n column

vectors in the constraint matrix (aij) to be included in a possible cover solution to (1). The

size of a preorder forest is the number of nodes in its collection of tree data structures and is

therefore one of the important factors that a�ect the e�ciency of a set covering algorithm.

If x is a prime cover solution to (1) and K = fr j xr = 1g � f1; 2; � � � ; ng, then for each

k 2 K we may change the value of �eld fk to a value from

B
�

k
=
[
j2J

A
j

k
=
\
j2J

A
j
k;

where J = fj j 1 � j � m; fk is an entering �eld of Ejg. The new imputed record y1,

which has di�erent value of fk 8 k 2 K from the record y, will pass all edits. Note that

B�

k 6= ;. If B�

k were a empty set, then
S
j2J A

j
k would be equal to Ak and an essentially new

implicit edit would have been generated and included in the set of �E.

To obtain a complete set of edits, implicit edits are needed. Implicit edits may be implied

logically from the initially speci�ed edits (or explicit edits). Implicit edits give information

about explicit edits that do not originally fail but may fail when a �eld in a record with an

originally failing explicit edit is changed. Lemma 1 gives a formulation on how to generate

implicit edits.

Lemma 1 (Fellegi and Holt [1976]): If Er are edits 8 r 2 S, where S is any index set,

Er
:

n\
j=1

A
r
j = F; 8 r 2 S:

Then, for each i (1 � i � n), the expression

E� :

n\
j=1

A
�

j = F (2)

is an implied edit, where

A
�

j =
\
r2S

A
r
j 6= ; j = 1; � � � ; i� 1; i+ 1; � � � ; n

A
�

i =
[
r2S

A
r
i 6= ;:

If all the sets Ar
i are proper subsets of Ai, i.e., A

r
i 6= Ai (�eld i is an entering �eld of edit

Er) 8 r 2 S, but A�

i = Ai, then the implied edit (2) is called an essentially new edit. Field

i, which has ni possible values, is referred to as the generating �eld of the implied edit. The

edits Er 8 r 2 S from which the new implied edit E� is derived are called contributing edits.

Therefore, in order to generate an essentially new implicit edit, we must have the following

three conditions:

1. A�

j 6= ;, 8 j, 1 � j � n;

2. Ar
i 6= Ai, 8 r 2 S, where Ar

i 6= ;;

3. A�

i = Ai.
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Conditions 2 and 3 indicate that the set fAr
i j r 2 Sg is a cover of Ai and are the foundations

of the following set covering formulation in (3).

Let fEr j r 2 Sg be the set of the s edits with �eld i entering, then the set covering

problem related to the generating �eld i is

Minimize
P

r2S xr

subject to
P

r2S g
i
jrxr � 1; j = 1; 2; � � � ; ni (3)

xr =

�
1; if Er is in the cover;

0; otherwise,

r 2 S

where

gijr =

�
1; if Er contains the jth element in �eld i;

0; otherwise,

is the jth element in �eld i of edit Er (r 2 S). If x is a prime cover solution to (3) and

K = fr j xr = 1g � S, then [k2KA
k
i = Ai. A prime cover solution is a nonredundant set of

the edits whose ith components cover all possible values of the entering �eld, which is the

generating �eld to yield an essentially new implicit edit. The dimension of the constraint

matrix G= (gijr)ni�s is ni � s. The size of the preorder forest of the set covering algorithm

described in Chen [1998] is 2s � 1.

3 Formulation of Age Comparisons

We will describe the age comparisons with the study given in Chen, Thibaudeau, and Winkler

[2002], in which the 1999 ACS (American Community Surveys) data set and the 1999 ACS

Edit and Allocation Speci�cations are used. Suppose we have a survey with 4 questions of

sex, age, household relationship, and marital status in each household. We also assume that

each household contains at most three persons, in which the �rst person is the householder,

the second person is the spouse if there is one. For the conversions of households with more

than three persons, see Chen, Winkler, and Hemmig [2000].

To identify the explicit edits of DISCRETE system for this paper, we de�ne the �rst nine

�elds (or variables) that are sex, household relationship, and marital status for the three

members in a household: SEXU11 (meaning the �rst person's sex), RELANU11, MARSTU11,

SEXU22, RELANU22, MARSTU22, SEXU33, RELANU33, and MARSTU33, Table 1 lists the variable

names and their possible coded values. The other �elds are for the age comparison condition

variables.

In the age comparison, each time when a new age restriction appears in one of the if-then-

else rules in the 1999 ACS Edit and Allocation Speci�cations, an age comparison condition

variable is de�ned as described in Chen, Winkler, and Hemmig [2000]. An age comparison

condition variable is an inequality of the form:

a1x1 + a2x2 + a3x3 > b; (4)

4



Table 1: All Possible Values for sex, hhr, and ms with DISCRETE.

sex household relationship (hhr) marital status (ms)

SEXU11, SEXU22, SEXU33 RELANU11, RELANU22, RELANU33 MARSTU11, MARSTU22, MARSTU33

1 = Male

2 = Female

3 = Unknown

1 = Householder

2 = Husband/wife

3 = Son/daughter

4 = Brother/sister

5 = Father/mother

6 = Grandchild

7 = In-law

8 = Other relative

9 = Roomer/boarder

10 = Housemate/roommate

11 = Unmarried partner

12 = Foster child

13 = Other nonrelative

14 = Unknown

1 = Now married

2 = Widowed

3 = Divorced

4 = Separated

5 = Never married

6 = Unknown

where ai (i = 1; 2; 3) is one of the three values: �1, 0, and 1, and xi is the ith person's age.

There are two possible values for each of the age comparison condition variables: 1 if (4) is

true; 2 if false. This type of variables is called Boolean age comparison condition variables.

Table 2 lists the 41 Boolean age comparison condition variables of (4) described in Chen,

Thibaudeau, Winkler [2002]. For example, one of the 41 Boolean age comparison condition

Table 2: The 41 Boolean Age Comparison Condition Variables.

Field

ID
a1 a2 a3 b

Field

ID
a1 a2 a3 b

Field

ID
a1 a2 a3 b

VAR10 �1 0 0 �15 VAR24 1 0 �1 �12 VAR38 1 0 �1 �15

VAR11 0 �1 0 �15 VAR25 �1 1 0 �30 VAR39 0 �1 0 �30

VAR12 0 0 �1 �15 VAR26 �1 0 1 �30 VAR40 0 0 �1 �30

VAR13 1 0 0 115 VAR27 0 �1 0 �18 VAR41 0 1 0 59

VAR14 0 1 0 115 VAR28 0 0 �1 �18 VAR42 0 0 1 59

VAR15 �1 1 0 �12 VAR29 1 �1 0 0 VAR43 �1 0 1 �20

VAR16 1 �1 0 49 VAR30 0 1 �1 14 VAR44 0 �1 1 �20

VAR17 �1 0 1 �12 VAR31 1 0 �1 14 VAR45 0 �1 1 �12

VAR18 1 0 �1 49 VAR32 0 1 0 74 VAR46 0 1 0 89

VAR19 1 �1 0 34 VAR33 �1 1 0 �15 VAR47 0 0 1 89

VAR20 �1 1 0 34 VAR34 0 0 1 74 VAR48 �1 0 0 �30

VAR21 1 0 �1 34 VAR35 �1 0 1 �4 VAR49 �1 0 1 �25

VAR22 �1 0 1 34 VAR36 0 �1 1 �4 VAR50 0 �1 1 �25

VAR23 1 �1 0 �12 VAR37 0 1 �1 �15

variables is x1 � x2 > �12 (VAR23), where a1 = 1, a2 = �1, and a3 = 0. If the �rst person's

age is 35 and the second is 32, then the value of the variable of x1 � x2 > �12 is 1 because

it is true that 35 � 32 > �12. Another example is that the �rst person's age is less than or

equal to 14: x1 � 14, that is converted to the normalized form of �x1 > �15 in (4) with

a1 = �1, a2 = a3 = 0, and b = �15 (VAR10).

With the 41 Boolean age comparison condition variables combined with the �rst nine

variables, we identi�ed 83 explicit edits from the 1999 ACS Edit and Allocation Sepci�cations.
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The following example illustrates how the Boolean age comparison variables are used to

identify the edit rule of a householder's age being less than 15: A
o

2
= f1g (RELANU11) and

A
o

10
= f1g (VAR10). The normal form of the edit is

A1 � f1g �A3 � � � � �A9 � f1g �A11 � � � � �A50 = F (5)

Another example is A
o

5
= f3g (RELANU22), A

o

32
= f1g (VAR32), and A

o

33
= f1g (VAR33), in

which the second person's household relationship (RELANU22) is child, the age (VAR32) is

greater than 74, and the �rst person is less than 15 years older than the second person. In

this example, the if-then-else edit rules in the 1999 ACS Edit and Allocation Speci�cations

are given in Table 3. The normal form of the edit is

Table 3: Example of If-Then-Else Rules.

Universe Child with Age is greater than or equal to 75;

If: : :

Age of Reference person � Age is less than 15 and

Marital status = Never married or SAS missing;

Then: : : Blank Age; tally Z(12); set allocation 
ag.

Universe Child with Age is greater than or equal to 75;

If: : :

Age of Reference person � Age is less than 15

and Marital status = Ever married;

Then: : : Blank Relationship; tally Z(13); set allocation 
ag.

A1 � � � � �A4 � f3g �A6 � � � � �A31 � f1g � f1g �A34 � � � � �A50 = F (6)

The third example is is Ao

5
= f3g (RELANU22), Ao

15
= f1g (VAR15), and Ao

46
= f1g (VAR46),

in which the second person's household relationship (RELANU22) is child, the age (VAR46) is

greater than 89, and the �rst person is less than 12 years older than the second person. The

normal form of the edit is

A1 � � � � �A4 � f3g �A6 � � � � �A14 � f1g �A16

� � � � �A45 � f1g �A47 � � � � �A50 = F (7)

This example is a redundant edit because if a record failing (7) must fail (6). However, edits

(6) and (7) are two separate edits and are not dominated by each other with the 41 Boolean

age comparison condition variables because one of them is not a subset of the other.

The age comparison also identi�es 695 explicit edits, each of which is a contradiction

condition within a subset of the 41 Boolean age comparison condition variables. For example,

the normal form of the explicit edit

A1 � � � � �A9 � f2g � f1g �A12 � � � � �A19 � f1g

�A21 � � � � �A50 = F (8)

with Ao

10
= f2g (VAR10), Ao

11
= f1g (VAR11), and Ao

20
= f1g (VAR20) de�nes a contradiction

situation among the variables VAR10, VAR11, and VAR20. If this edit is rewritten as the
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following inequalities:

VAR10: � x1 � � 15

VAR11: � x2 > � 15

VAR20: � x1 + x2 > 34
(9)

it is clear that there are no values for x1 (the �rst person's age) and x2 (the second person's

age) to satisfy the above three inequalities.

The implementation of the Boolean age comparison condition variables is very ine�cient

because the values of m, n in (1) and ni
, s in (3) are much larger than necessary. These

large values provide a major contribution to the ine�cient operations of the set covering

algorithm to solve (1) and (3). The alternative approach we are going to describe below will

reduce signi�cantly the sizes of the constraint matrices in (1) and (3) and therefore reduce

a great amount of computation e�ort to solve (1) and (3).

Instead of using the Boolean age comparison condition variables, we will use the categor-

ical age comparison variables. For three-person households, there are at most 6 age compar-

isons: 3 within person age comparisons and 3 between persons age comparisons. They are

AGEU10, AGEU11, AGEU12, AGEU13, AGEU14, and AGEU15. If x
i
is the ith person's age, then

the 6 variables have the form:

a1x1 + a2x2 + a3x3; (10)

where (a1, a2, a3) is one of the following triples: (0, 0, 1), (0, 1, 0), (0, 1, �1), (1, 0, 0), (1,

0, �1), and (1, �1, 0). The six variables are then �t to the Fellgi-Holt model described in

Section 2. For example, the eight Boolean variables, VAR15, VAR16, VAR19, VAR20, VAR23,

VAR25, VAR29, and VAR33 in Table 2 can be combined into the form of (10) with (a1, a2, a3)

= (1, �1, 0). The new created categorical variable x1 � x2 (AGEU15) will take nine coded

values as its valid values. Tables 4 and 5 illustrate how the 9 coded values are obtained for

the categorical variable x1 � x2. First, the 8 inequalities are revised such that the leading

Table 4: The Categorical Variable x1 � x2 (A).

Variable Original Inequality Revised Inequality

VAR15 �x1 + x2 > �12 x1 � x2 < 12

VAR16 x1 � x2 > 49 x1 � x2 > 49

VAR19 x1 � x2 > 34 x1 � x2 > 34

VAR20 �x1 + x2 > 34 x1 � x2 < �34

VAR23 x1 � x2 > �12 x1 � x2 > �12

VAR25 �x1 + x2 > �30 x1 � x2 < 30

VAR29 x1 � x2 > 0 x1 � x2 > 0

VAR33 �x1 + x2 > �15 x1 � x2 < 15

coe�cient of the left hand side, a1, is equal to 1 as given in Table 4. Then, the 8 revised

inequalities are sorted in increasing order according to the values of the right hand side,

b, as given in Table 5. Each of the 8 Boolean variables has two Boolean values, true or

false. The Boolean values are represented by integer intervals. For example, in the �rst

Boolean variable VAR20 in Table 5, the integer values of x1 � x2 in L20 = [�999;�35] make
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Table 5: The Categorical Variable x1 � x2 (B).

Boolean Revised Boolean Values Closed Coded

Variable Inequality True False Interval Value

VAR20 x1 � x2 < �34
L20 =

[�999;�35]

U20 =

[�34; 999]

L20 =

[�999;�35]
1

VAR23 x1 � x2 > �12
U23 =

[�11; 999]

L23 =

[�999;�12]

U20 \ L23 =

[�34;�12]
2

VAR29 x1 � x2 > 0
U29 =

[1; 999]

L29 =

[�999; 0]

U23 \ L29 =

[�11; 0]
3

VAR15 x1 � x2 < 12
L15 =

[�999; 11]

U15 =

[12; 999]

U29 \ L15 =

[1; 11]
4

VAR33 x1 � x2 < 15
L33 =

[�999; 14]

U33 =

[15; 999]

U15 \ L33 =

[12; 14]
5

VAR25 x1 � x2 < 30
L25 =

[�999; 29]

U25 =

[30; 999]

U33 \ L25 =

[15; 29]
6

VAR19 x1 � x2 > 34
U19 =

[35; 999]

L19 =

[�999; 34]

U25 \ L19 =

[30; 34]
7

VAR16 x1 � x2 > 49
U16 =

[50; 999]

L16 =

[�999; 49]

U19 \ L16 =

[35; 49]
8

U16 =

[50; 999]
9

the inequality x1 � x2 < �34 true and the values in U20 = [�34; 999] make it false. Note

that L20 \ U20 = ;. The numbers �999 and 999 represent an open end of intervals. The

coded value 1 represents the interval L20 because every integer in L20 is less than that in

U20, L20 is called the lower interval and U20 the upper interval. Coded value 2 represents

U20\L23 = [�34;�12], which is the intersection of VAR20's upper interval and VAR23's lower

interval. Similarly, coded values 3 to 8 represent their respective intersections. Coded value

9 represents the last Boolean variable VAR16's upper interval. In other words, the number

of coded values is one more than the number of Boolean variables with the same form of

a1x1 + a2x2 + a3x3.

Table 6 lists the six categorical valiables and their possible coded values converted from

the 41 Boolean age comparison condition variables of (4) listed in Table 2. Each coded value

represent a closed interval with integers. This formulation signi�cantly reduced the size of

the set covering problem of the edit generation and the error localization.

If the six categorical age comparison variables are used, the normal form of the edit (5)

becomes

A1 � f1g �A3 � � � � �A12 � f1g �A14 �A15 = F (11)

with A
o

2
= f1g (RELANU11, the �rst person is the householder) and A

o

13
= f1g (VAR10, the

�rst person's age is less than 15), in which VAR10 becomes part of AGEU13. The normal form

of edit (6) becomes

A1 � � � � �A4 � f3g �A6 � � � � �A10 � f6; 7; 8g �A12

�A13 �A14 � f1; 2; 3; 4; 5g = F (12)

with Ao

5
= f3g (RELANU22, the second person is a child), Ao

11
= f6; 7; 8g (AGEU11, the second

person's age is greater than 74), and Ao

15
= f1; 2; 3; 4; 5g (AGEU15, the �rst person is at most
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Table 6: The Six Categorical Variables De�ned for Age Comparisons.

Variable Form (10) Coded Variable Form (10) Coded

Name (a1; a2; a3) Values Name (a1; a2; a3) Values

AGEU10
x3

(0,0,1)

1 = [0, 14]

2 = [15, 17]

3 = [18, 29]

4 = [30, 59]

5 = [60, 74]

6 = [75, 89]

7 = [90, 999]

8 = unknown*

AGEU13
x1

(1,0,0)

1 = [0, 14]

2 = [15, 29]

3 = [30, 115]

4 = [116, 999]

5 = unknown*

AGEU11
x2

(0,1,0)

1 = [0, 14]

2 = [15, 17]

3 = [18, 29]

4 = [30, 59]

5 = [60, 74]

6 = [75, 89]

7 = [90, 115]

8 = [116, 999]

9 = unknown*

AGEU14
x1 � x3

(1,0,�1)

1 = [�999;�35]

2 = [�34;�15]

3 = [�14;�12]

4 = [�11, 3]

5 = [4, 11]

6 = [12, 14]

7 = [15, 19]

8 = [20, 24]

9 = [25, 29]

10 = [30, 34]

11 = [35, 49]

12 = [50, 999]

13 = unknown*

AGEU12
x2 � x3

(0,1,�1)

1 = [�999;�15]

2 = [�14, 3]

3 = [4, 11]

4 = [12, 14]

5 = [15, 19]

6 = [20, 24]

7 = [25, 999]

8 = unknown*

AGEU15
x1 � x2

(1,�1,0)

1 = [�999;�35]

2 = [�34;�12]

3 = [�11, 0]

4 = [1, 11]

5 = [12, 14]

6 = [15, 29]

7 = [30, 34]

8 = [35, 49]

9 = [50, 999]

10 = unknown*

* if the age of at least one of the involved person(s) is unknown or invalid

14 years older than the second person). The normal form of edit (7) becomes

A1 � � � � �A4 � f3g �A6 � � � � �A10 � f7; 8g �A12

�A13 �A14 � f1; 2; 3; 4g = F (13)

with A
o

5
= f3g (RELANU22, the second person is a child), Ao

11
= f7; 8g (AGEU11, the second

person's age is greater than 89), and A
o

15
= f1; 2; 3; 4g (AGEU15, the �rst person is at most

11 years older than the second person). It is very clear that (13) is a subset of (12) and

therefore is a redundant edit. It will not be included in the input edit table. The normal

form of edit (8) becomes

A1 � � � � �A10 � f1g �A12 � f2; 3; 4g �A14 � f1g = F (14)

which is one (or subset of one) of the 67 identi�ed explicit edits, each of which is a contra-

diction condition within a subset of the six categorical age comparison variables.
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4 The Performance Measurement

The performance of the two formulations of age comparisons: Boolean variables and cat-

egorical variables are illustrated with the 1999 ACS data set and the 1999 ACS Edit and

Allocation Speci�cations. We ran both formulations to solve the integer programming of (3)

using the set covering algorithm of Chen [1998] to generate all the implicit edits. The per-

formance is given in Table 7. The processing time (measured on a Sun Ultra machine) of the

generation of the implicit edits is signi�cantly reduced with the categorical age comparison

variables.

Table 7: The Perfromance of Boolean and Categorical Variables in Edit Generation.

Boolean Variables Categorical Variables

number of

age comparison variables
41 6

number of

other variables
9 9

number of identi�ed

explicit edits
83 74

number of age only

explicit edits
695 67

total number of

explicit edits
778 141

total number of explicit

and implicit edits
9948 437

processing time

(elapsed time, hr:mn:sc)
26:49:45 00:01:18

Another measurement of the performance is the size of the contraint matrix given in

(1), which is to solve the error localization. The comparison of the sizes of the contraint

matrices for 22 households of the 1999 data set is given in Table 8. The actual sizes are

larger than those given in Table 8, which are after the reduction of the matrices and before

the construction of the preorder forest for the set covering algorithm given in Chen [1998].

Also included in Table 8 are the sizes, 2n � 1, of the preorder forests to repeatedly solve the

integer programming problem of (1).

5 Discussion and Summary

The formulation with Boolean variables is simple and all the Boolean age comparison condi-

tion variables have only two values (the value of \unknown" is excluded). However, we will

pay a huge price of running the edit generation of (3) and the error localization of (1). For

example, it will take forever for the set covering algorithm to complete a preorder forest of

size 228�1 as illustrated in Table 8. The formulation with categorical variables simpli�es the

number of �elds (variables) needed and the number of explicit and implicit edits required to

solve the error localization. Although the categorical variables have more value states, the

number of value states has nothing to do with the performance of running the edit generation

10



Table 8: The Sizes of the Constraint Matrices of (1).

household Boolean Variables Categorical Variables

record # nrows (m) ncols (n) 2n � 1 nrows (m) ncols (n) 2n � 1

1 98 28 228 � 1 6 7 27 � 1

2 104 29 229 � 1 6 7 27 � 1

3 110 30 230 � 1 6 7 27 � 1

4 85 28 228 � 1 6 7 27 � 1

5 85 28 228 � 1 6 7 27 � 1

6 66 27 227 � 1 6 7 27 � 1

7 47 24 224 � 1 6 7 27 � 1

8 82 28 228 � 1 6 6 26 � 1

9 85 28 228 � 1 6 7 27 � 1

10 85 28 228 � 1 6 7 27 � 1

11 85 28 228 � 1 6 7 27 � 1

12 20 13 213 � 1 9 8 28 � 1

13 44 28 228 � 1 10 9 29 � 1

14 93 28 228 � 1 8 8 28 � 1

15 59 26 226 � 1 6 6 26 � 1

16 65 27 227 � 1 6 6 26 � 1

17 98 28 228 � 1 6 7 27 � 1

18 36 24 224 � 1 6 6 26 � 1

19 36 24 224 � 1 6 6 26 � 1

20 36 24 224 � 1 6 6 26 � 1

21 52 24 224 � 1 6 7 27 � 1

22 52 24 224 � 1 6 7 27 � 1

and error localization because the implementaion used in the set covering algorithm is the

bitwise operations on a 32-bit word.

In the age comparisons between members of a household, the number of Boolean variables,

b, may grow as large as the number of age restrictions in the edit speci�cations. When

the number of age restrictions becomes very large, it is impractical to use the Boolean

age comparison condition variables. In contrast, the number of categorical age comparison

variables has an upper bound. For k-person households, the upper bound, c, is

c =

 
k

1

!
+

 
k

2

!
=

 
k + 1
2

!
=

k(k + 1)

2
: (15)

Therefore, the performance improvement of using the categorical age comparison variables

becomes enormous when b becomes very large. The new formulation of age comparisons

makes the DISCRETE edit system applicable to a wider range of surveys that require age

comparisons for statistical editing.
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