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The Discrimination Power of Deuendencv Structures in Record Linkage 

Abstract 

A record-linkage process brings together records from two files into pairs of two 

records, one from each file, for the purpose of comparison. Each record represents 

an individual. The status of the pair is a “matched pair” status if the two records 

in the pair represent the same individual. The status is an “unmatched pair” status 

if the two records do not represent the same individual. The record-linkage process 

is governed by an underlying probabilistic process. A record-linkage rule infers 

the status of each pair of records based on the value of the comparison. The pair 

is declared a “link” if the inferred status is that of a matched pair, and it is 

declared a “non-link” if the inferred status is that of an unmatched pair. The 

discrimination power of a record-linkage rule is the capacity of the rule to 

designate a maximum number of matched pairs as links, while keeping the rate 

of unmatched pairs designated as links to a minimum. In general, to construct a 

discriminatory record-linkage rule, some assumptions must be made on the 

structure of the underlying probabilistic process. In most of the existing literature, 

it is assumed that the underlying probabilistic process is an instance of the 

conditional independence latent class model. However, in many situations, this 

assumption is false. In fact, many underlying probabilistic processes do not exhibit 

key properties associated with conditional independence latent class models. The 

paper introduces more general models. In particular, latent class models with 

dependencies are studied and it is shown how they can improve the discrimination 

power of particular record-linkage rules. 

Key Words: Record-linkage rule; Latent class model; Expectation-Maximization 

procedures. 
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1. Introduction 

The goal of the paper is to show how record-linkage rules can gain in 

discriminatory power when probabilistic models more descriptive of the 

underlying probabilistic processes, are elicited. For this purpose, a particular 

record-linkage situation is chosen and the conditional independence model, 

traditionally used in record linkage, is compared to a more descriptive model, in 

the sense that the new model allows for the expression of more complex relations 

of dependency between some of the variables involved. 

First some terminology must be reviewed. In section 2, the definition of record- 

linkage process is stated and a general formulation of the probabilistic process 

underlying a record-linkage process is given. This formulation leads to the 

expression of two central concepts: the concepts of record-linkage rule and that 

of most discriminatory record-linkage rule. 

In section 3, probabilistic models for record linkage are considered. In the first 

part of section 3, the family of latent class models is introduced and it is shown 

how this family provides natural models for the probabilistic process underlying 

a record-linkage process. In the second part of the section, the focus is on a 

particular model in the family of latent class models: the latent class model with 

conditional independence. This model is of interest because it is easy to handle 

computationally. In the third part, inference techniques adapted to the conditional 

independence model are reviewed. 

In section 4, an application is presented. For this application, truth and falsehood 

are available, that is, it is known which pairs are matched and which aren’t. The 

first part describes how the information on truth and falsehood was obtained. The 

second part shows how dependencies between the comparison fields are generated. 

In the third part of section 4, the knowledge on truth and falsehood is used to 

2 



evaluate the dependencies between the comparison fields. This leads in the fourth 

part to the formulation of a model more descriptive of the underlying probabilistic 

structure of the record-linkage process. The final part is a brief discussion 

regarding the techniques of parameter estimation for generalized latent class 

models. 

In section 5, an alternative technique to increase the discrimination power is 

presented. This strategy calls for subjective adjustments of models whose 

parameters are already estimated. 

In section 6, the performances, in terms of discrimination power, of the various 

record-linkage rules derived in the paper are reported. In section 7, conclusions 

are drawn and guidelines are provided. 

2. The Fellegi-Sunter Model for Record-Linkage. 

2.1 Record-Linkage Processes 

The paper is geared toward building new record-linkage techniques. Before 

expanding on new record-linkage techniques, some background is necessary. The 

concept of record-linkage process first needs to be reviewed. Consider two files; 

file A and file B , both containing records, each record representing an 

individual. A record-linkage process brings together one record from file A with 

one record from file B . The records are compared, producing the comparison 

pattern y . For the purpose of this paper, this comparison pattern is a vector 

Y=[Y1,...,Yq , where N is the dimensionality of the vector. Each dimension 

corresponds to a comparison field recorded for each individual, such as last name, 

age, address, etc.. With no loss of generality, y’ is assigned the value 0 if the 

records disagree over comparison field i and it is assigned 1 if they agree. The 

comparison space r is assumed to be the set of all binary vectors (i.e. whose 

components are 0 or 1) of dimension N . 

3 



2.2 Underlying Probabilistic Processes 

A record-linkage process is governed by an underlying probabilistic process. A 

good knowledge of the probabilistic process is needed to extract information from 

the record-linkage process. The formulation of the underlying probabilistic process 

is presented here in general terms. It is made more specific in the next section. 

Consider a particular comparison pattern y , define m(u) as the probability of 

observing y , given that the two records producing y , when brought together, 

represent the same individual. Similarly, define u(y) as the probability of 

observing y , given that the two records producing y , when brought together, 

do not represent the same individual. These two conditional probabilities, along 

with the probability of a match, define the underlying probabilistic process. The 

probabilistic process drives the record-linkage process. m(u) and u(v) are 

fundamental in the construction of record linkage rules; in particular most 

discriminatory rules. Record-linkage rules are devices to retrieve matches. They 

are defined next. 

2.3 Record-Linkage Rules 

In practice, a record-linkage rule classifies the pairs generated by a record-linkage 

process in one of three possible categories: a link, a non-link or a possible link. 

A link is an inferred matched pair and a non-link is an inferred unmatched pair. 

The pairs classified as possible links are set aside for further examination and 

eventually they are reclassified as links or non-links. The rule is based only on the 

value of the comparison vectors corresponding to each pair. The errors induced 

by a record-linkage rule are of two types: the type I error measuring the 

proportion of unmatched pairs among the pairs classified as links under the 

linkage rule, and the type II error measuring the proportion of matches among the 

pairs classified as non-links. 
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The objective of record-linkage, from the standpoint of the paper, is to construct 

a most discriminatory record-linkage rule; that is one that will retrieve a maximum 

number of links while keeping the type I error under control. To accomplish this, 

let the comparison patterns be indexed according to decreasing value of 

m(y)/u(y) to obtain the sequence (yl, yz, ,.., yM) , where A4 is the total number 

of pairs. Fellegi and Sunter (1969) show that the rule declaring the pairs whose 

index is smaller than some upper bound K “links” is the most discriminatory 

record linkage rule. The upper bound K is a function of the maximum type I 

error tolerated. The rule is most discriminatory in the sense that for the same 

tolerance on the type I error, it is impossible to find another rule which, in the 

long run, will retrieve more matched pairs. This fact is a direct application of the 

Neyman-Pearson Lemma (De-Groot, 1986, pp. 444-445). Two uses of the Fellegi- 

Sunter rule are illustrated in section 6. 

The Fellegi-Sunter record-linkage rule is articulated around the ratio m(y)/u(y) . 

Usually this ratio is estimated from the data through a model of the underlying 

probabilistic process. It is assumed that the model is a genuine representation of 

the probabilistic process. If the representation is not genuine, then substituting 

m(v)/u(y) in the Fellegi-Sunter rule may not yield a most discriminatory record- 

linkage rule. Therefore, particular care must be taken in the choice of the model. 

The next section introduces models designed to describe the underlying 

probabilistic process in given situations. 

3 Models for Record-Linkage 

Two models formulating underlying probabilistic processes are presented in this 

section. The first model is a general formulation of any underlying process. The 

second model is an application of the first. In some situations, the second model 

is a good representation of the underlying probabilistic process and the Fellegi- 

Sunter rule based on this model is most discriminatory. Parameter estimation is 
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discussed so that the expressions involved in the Fellegi-Sunter rule can be 

evaluated. 

3.1 Latent Class Models 

Because of the particular nature of a record-linkage process, the underlying 

probabilistic process can always be represented by a latent class model. A latent 

class model is built around latent variables. Generally speaking, a latent variable 

is a variable not observable, characterizing any observation generated by the 

probabilistic process. Latent variables classify the observations into latent classes. 

In this problem, the observations are the comparison vectors (i.e. comparison 

patterns). An obvious latent variable categorizing the observations into two latent 

classes is the status of the pair associated with each comparison vector. This status 

is that of a matched pair status or of an unmatched pair status. The corresponding 

latent classes are the class of matched pairs and the class of unmatched pairs. A 

mathematical representation is given next to enable development of specific latent 

class models. 

I&t vk,il,..J represent the count of pairs with the following attributes: if 

k = 0 the” corresponding pairs have an unmatched pair status and if k = 1 

they have a matched pair status. Furthermore, whenever is = 0 , the 

corresponding pairs do not exhibit record agreement over the comparison field 

s and whenever is = 1 , the pairs do exhibit record agreement over the 

comparison field s . Note that s = l,...JV , where N is the number of 

comparison fields. It is important to keep in mind that the counts vu ,J cannot 
I’” N 

be observed. Rather, what is observed are the counts aggregated over the latent 

classes. The aggregated counts are denoted by v~,,..,~ , where 
N 

vi ,‘... iN = vo#p...~N + vl$, ,... #iN (3) 
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While only the aggregated counts are observable in record-linkage situations, 

models are usually expressed in terms of the basic counts. This is done only for 

convenience. The following subsection is more specific and a simple latent class 

model for record linkage is introduced. 

3.2 Conditional Independence 

The conditional independence models are the simplest latent class models. Despite 

their simplicity, these models are an accurate representation of the underlying 

probabilistic process in some situations. Goodman (1974) gives a thorough 

analysis of several conditional independence models. Haberman (1979) gives a 

presentation of several conditional independence models, along with appropriate 

techniques of parameter estimation. 

In this section, the conditional independence model for record linkage is 

introduced and its implications in terms of the underlying probabilistic process are 

exposed. The model is best described in its log-linear representation: 

lqvk&...,in) = iJ + h, + k d, + 5 CL, 
j-1 j-1 

(4) 

Naturally, there are constraints attached to the parameters of the model given in 

(4): 

Al =-A,; 4 = -a$ c’,, = -(io; &= -6, I 

k=O,l; j=l,..., n; $=O,l 
(5) 

The expression on the right-hand side of (4) includes one term for the latent 

variable ( A, ) and one term for each comparison field ( 4, ). It also includes 

interaction terms ( c& ). Each interaction is between a field and the latent 
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variable. There are no direct interaction between the comparison fields. In other 

words, conditional on each latent class, agreements and disagreements over the 

comparison fields occur independently. 

The assumption that the comparison variables are independent given the value of 

the latent variable is implicit when deriving inference through a conditional 

independence model. In practice, however, the underlying probabilistic process 

often conflicts with this assumption. Then the Fellegi-Sunter record-linkage rule 

constructed assuming model (4) may not be most discriminatory. In that situation, 

the discriminatory power can be raised through a better elicitation of the model. 

In fact, more elaborate latent class models integrate a higher degree of complexity 

in the relationships between the comparison fields themselves and between the 

comparison fields and the latent variable. These models can take a large number 

of forms according to the nature of a particular record-linkage situation. An 

instance of such models is presented in Section 4. 

3.3 Parameter Estimation For The Conditional Independence Model 

Once a model has been formulated, the values of its parameters must be evaluated. 

Then the Fellegi-Sunter rule is constructed from the model using the 

corresponding estimated values for m(y) and u(y) . The parameter estimation 

process shall be reliable enough to prevent a significant loss of discriminatory 

power by way of the estimation error. 

One feature of the latent class models makes them prone to estimation error: 

unidentifiability. Latent class models typically are unidentifiable in the sense that 

the equations maximizing the likelihood admit more than one solution. Parameter 

estimation with unidentifiable models remains difficult and confusing. However, 

from experience, the author found that for the conditional independence models, 

unidentifiability is usually not a determinant factor in the estimation error. A 
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larger part of the error typically comes from the inadequacy of the model as a 

genuine representation of the underlying probabilistic process. 

A suitable parameter-estimation technique for conditional independence models 

stems from approaching the problem as one of finding a maximum likelihood 

estimator in the presence of “missing observations”. The missing observation in 

this case is the latent variable, the status of each pair. In the general context of 

parameter estimation with missing observations, Expectation-Maximization (E.M.) 

algorithms are quite popular. In fact, the E.M. algorithm is implemented without 

difficulty in the estimation of the parameters of the conditional independence 

model given in (4) (Winkler 1988). But if there is considerable departure from the 

independence assumption, the value of the estimates becomes difficult to interpret 

(An example of this is given in section 4). 

4 The St. Louis Data: 

An Example of A Complex Record-Linkage Process 

This section introduces a particular example of a record-linkage process. A model 

is developed specifically to represent the underlying probabilistic process 

supporting this record-linkage process. It is expected that this model will induce 

more discrimination power in the application of the Fellegi-Sunter rule than the 

conditional independence model would. 

4.1 Observable Latent Variable 

The example is based on data collected in 1988 during a dress rehearsal in 

preparation for the Decennial Census Operations. Basically, there are two separate 

and presumably exhaustive surveys of all the individuals living in a defined 

geographical area within the city of St. Louis, Missouri. For each survey and for 

each individual available at the time of the survey, a record is created and various 

characteristics of the individual are recorded. These characteristics are: house 
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number, phone number, street name, first name, last name, middle initial, marital 

status, age, race, sex, relationship with the respondent. The records of the two 

surveys are linked together. 

For this particular application, the latent variable is made observable through an 

extensive follow-up study for the purpose of this and other researches. In the 

present situation, the information extracted from the latent variable leads to the 

construction of a model representative of the probabilistic process underlying the 

record-linkage process. Ultimately the discrimination power of this model is 

compared with that of the conditional independence model. The motivations 

leading to the construction of the model are presented in the following 

subsections. 

4.2 Blocking and Dependencies 

The goal of record-linkage is to retrieve as many matched pairs as possible given 

an upper bound on the type I error. The first obstacle is often the size of the files. 

The files may be quite large, making it impossible to examine all the pairs 

consisting of one record of file A and one record of file B. Blocking is considered 

whenever an exhaustive review of all the pairs is too costly and/or too time 

consuming. 

The principle of blocking is as follows: To bring down the number of comparisons 

and other associated operations, the records of each file are assigned to blocks 

according to the value of a few key characteristics. These characteristics are called 

the blocking variables. Only the records whose blocking variables take the same 

values may be brought into pairs. Since the records forming a matched pair tend 

to agree on the blocking characteristics, it is natural to expect the vast majority 

of the pairs discarded to be unmatched, as a result of the blocking scheme. 
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In the St. Louis example, the census file has 15048 records, while the PES file 

contains 12072 records. Blocking must be used to keep the size of the problem 

manageable. Records are blocked on the first character of the surname and on a 

geographical unit called geocode. The geographical area encompassed by a given 

value of the geocode may consist of several street blocks, or two or more nearby 

perpendicular or parallel streets. This scheme yields blocks of reasonable sixes. 

Unfortunately, while it brings down the size of the problem, blocking on geocode 

also has undesirable side effects: it induces strong dependencies between the 

household variables among the unmatched pairs. The household variables are the 

last name, house number, street name and telephone number. For instance, 

consider two individuals forming an unmatched pair but who are part of the same 

block. Now, suppose these two individuals agree on the last name. Intuitively, 

given this information, chances are higher that the two individuals are from the 

same household. Therefore, the probabilities of agreement over the other 

household fields, given the information of agreement on the last name, are higher 

than the marginal probabilities. The nature of the dependencies between the 

household variables is studied next. 

4.3 Measuring The Dependencies 

To construct a model representative of the St. Louis record-linkage process, the 

dependencies between the household variables must be assessed. The information 

on the latent variable allows this. Table 1 gives the correlations of the responses 

of record comparisons over the comparison fields for the matched pairs. Table 2 

gives the correlations of the responses of the record comparisons over the 

comparison fields for the unmatched pairs. For both matrices, all the correlations 

greater or equal to .Ol are given. A correlation is not shown only if it is smaller 

than .Ol. 
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The correlations in Table 1, are rather small and overall do not suggest a 

significant pattern of dependency among the comparison variables restricted to the 

matched pairs. Note in particular that the correlations between the household 

variables are small among the matched pairs, suggesting little or no dependency. 

This can be explained by the fact that among the matched pairs, the agreement 

rate over any household field is very high and has a behavior close to that of a 

constant. 

But in Table 2, the effects of blocking are evident in the high values of the 

correlations associated with the household variables restricted to the unmatched 

pairs. A sensible design for the model of the underlying probabilistic process 

should account for these high correlations by incorporating dependency 

components. 

4.4 A Model Tailored for the St. Louis data 

In order to make valid inference on the status of the pairs, a model descriptive of 

the underlying probabilistic process must be elicited. The conditional independence 

model presented in (4) is attractive because of its simplicity. However, it is clear 

at this point that this model does not correctly represent the probabilistic process 

underlying the St. Louis record-linkage process. An educated model is introduced, 

motivated by the information made available on the dependencies between the 

household variables. 

To appreciate the more general structure of the educated model, some conventions 

must be set regarding the indexing of the comparison fields: comparison field 1 

is the last name, comparison field 2 is the house number, comparison field 3 is the 

street name, and comparison field 4 is the phone number. The seven remaining 
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comparison fields are indexed arbitrarily by the values 5-11. The educated model 

accounts for all possible interaction effects between fields 1 through 4 among the 

unmatched pairs. The log-linear representation of the educated model is as 

follows: 

(6) 

Note the coefficient (l-k) multiplying the household interaction terms, 

indicating that the dependency relation between the household variables is only 

among the unmatched pairs. This contrasts with the symmetry of the conditional 

independence model in (4). 

The restrictions in (5) apply here as well. In addition, more constraints must be 

satisfied. The following constraints are imposed on the interaction terms of the 

second order: 

(7) 

The range of the indices is 1 s j < I ~4 . The constraints on the interaction 

terms of the third order are: 

(8) 

The range of the indices in this case is: 1 s j < I < m .S 4 . Finally, the 

constraints on the fourth order interaction terms are: 
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It is natural to expect the educated model (6) to be more discriminatory since it 

accounts for interactions between the household variables. In section 6, the 

performances of the two models are presented. 

4.5 Parameter Estimation for Models with Dependencies 

Parameter estimation for models with dependencies is far more difficult than for 

conditional independence models. For the St. Louis example, the scoring algorithm 

given by Haberman (1979 p. 547) was used to estimate the parameters of the 

educated model (6). This technique can be regarded as an E.M. algorithm where 

the maximization part (M. step) is an application of the Newton-Ralphson 

algorithm. 

The most important difficulty when using this technique is the choice of a starting 

point. The following strategy is adopted to choose a starting point. First, the 

parameters of the conditional independence model (4) are estimated via the E.M. 

algorithm presented in subsection 3.3. Then an intermediate model is constructed. 

The intermediate model, in this case, embeds all the second and lower order 

interaction terms of the educated model (6). The estimated parameters of the 

conditional independence model can serve to construct the starting point to 

estimate the parameters of the intermediate model through the scoring algorithm. 

Finally, the estimates of the parameters of the intermediate model are used as a 

starting point to estimate the parameters of the educated model (6), via the scoring 

algorithm. 
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5 The Ad-Hoc Approach 

In the last section, a complex model representing an underlying probabilistic 

process was elicited for the St. Louis data. In this situation, the elicitation is easy 

since follow-up information is available. Of course in practice, follow-up 

information is not available. It is often too difficult and/or too expensive to go 

through the elicitation and estimation procedures to determine the structure of the 

underlying process and the values of the parameters. In those cases, an ad-hoc 

approach might be appropriate. In the St. Louis example, the ad-hoc approach 

consists of adjusting the parameters of the process derived from the conditional 

independence model (4) to obtain a more discriminatory model. 

Note that under both model (4) and model (6), for the matched pair, the agreement 

or disagreements over the comparison fields are independent. This means that the 

following formula applies in both situations. 

m(y) = j-J;, m,X1(l-mj)l-X~ 

m, is the probability of agreement over field i of two records forming a 

matched pair. Furthermore, xi = 0 if the pattern y calls for a disagreement 

over field i and xi = 1 if it calls for an agreement. The idea behind the ad- 

hoc method is to keep the conditional independence structure in (4), but to adjust 

the values of the mi ‘s. 

The probabilities of agreement, conditional on a matched pair, evaluated under the 

conditional independence model and the educated model are given in table 3. The 

difference between the probability corresponding to the educated model with the 

probability corresponding to the conditional independence model can be quite 

substantial for some fields. In particular, the difference is important in the case of 
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the first name field. 

_._...__........1.....-.... TABLE 3 GOES HERE 1_1___1_1__1.................. 

In general, experience shows that the conditional probability of agreement over 

first name, conditional on a matched pair, is around .99, closer to the .91 value 

obtained under the educated model. Therefore, after estimating the parameters of 

the conditional independence model through the E.M. algorithm, the probability 

of agreement over the first name given a match status is replaced by the value .99. 

The probability of agreement over the last name given a matched pair is also 

replaced by the value .99. This procedure increases the discriminatory power 

associated with the conditional independence model in the application of the 

Fellegi-Sunter rule. 

6 Applying The Fellegi-Sunter Rule 

6.1 St.Louis 

This subsection evaluates the discrimination power of the Fellegi-Sunter rule when 

applied to the St-Louis record-linkage data and assuming, in turn, three different 

underlying probabilistic processes. The three underlying probabilistic processes 

assumed are derived directly from the conditional model (4), directly from the 

educated model (6), and finally, from the conditional model (4), through the ad- 

hoc procedure. The following table gives a comparative measure of the 

performance of the Fellegi-Sunter rule under each of the 3 assumptions regarding 

the underlying process. The performance is evaluated making use of the privileged 

information available on the latent variable. 

----------------------TABLE 4 GOES ABOUT HERE---------------------. 

Each cell of table 4 contains three entries. The first of these entries is the number 

of matched pairs that were designated links through the Fellegi-Sunter record- 
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linkage rule, assuming each of the three underlying processes, and under four 

different controlled Type I errors. The total number of matched pairs that could 

theoretically be recovered is 9823. The second entry of each cell is the total 

number of pairs designated link through the Fellegi-Sunter rule in order to recover 

the matched pairs counted in the first entry. Finally, the third entry of the cell is 

the upper bound on the Type I error. Recall that the Fellegi-Sunter rule maximizes 

the number of links under a fixed type I error provided it is based on the correct 

underlying process. The first column of table 4 gives the counts assuming an 

underlying process derived from the conditional independence model (4). The 

second column gives the same quantities assuming an underlying process derived 

from the educated model (6). Finally, the third column gives the same numbers 

assuming an underlying process derived from the conditional independence model 

and adjusted through the ad-hoc procedure. 

There are two important facts that can be deduced from this table. First, the rule 

based on an underlying process derived from the educated model (6) does 

consistently better than the rule based on an underlying process derived from the 

conditional independence model in terms of matches retrieved. Secondly, the 

performances of the rules differ most when the bound on the type I error is small 

and at that level (.005), the rule based on an underlying probability process 

derived from the educated model is clearly superior. When the bound is larger 

(.03), the underlying probabilistic models are more or less equivalent in terms of 

induced discrimination power. 
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6.2 Columbia 

The same type of data were collected throughout the area of Columbia, Missouri. 

The data are slightly different because some of the records have a rural format, 

that is the street name is replaced by the rural route number and the house number 

by the box number. Nevertheless, the same relations of dependencies emerge and 

the same model is appropriate. Table 5 gives a summary of the discrimination 

achieved at 2 levels of tolerance on the type I error. Taking into account the 

blocking scheme, there are 6780 retrievable pairs. 

In the case of Columbia, it is clear again than the educated model does better than 

the conditional independence model. It should be noted that in practice, the ad-hoc 

approach built on the conditional independence model performs as well as the 

educated model. The educated model however, is preferred because of its sound 

theoretical basis. 

7 Conclusions 

The stated goal of the research was to show how models more descriptive of the 

probabilistic process supporting a record-linkage process can induce accrued 

discriminatory power in the Fellegi-Sunter record-linkage rule. In the cases of the 

St. Louis and Columbia examples, this goal was certainly achieved. The educated 

model given in (6) is indeed more descriptive of the underlying probabilistic 

process and it induces a good deal more discrimination power in the Fellegi- 

Sunter rule than the conditional independence model (4). 

The techniques used for the St. Louis and Columbia data can also be used for the 

analysis of other data set generated by record-linkage processes supported by a 

probabilistic process with a similar dependency structure. This dependency 

structure is certain to surface in any record-linkage application involving the 

matching of records of individuals on a set of houseold variables (last name, street 
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name, house number, phone, rural adress etc.). It is also likely to occur when 

matching records of businesses on houseold variables. 

There are two major difficulties on the way toward an improved discriminatory 

power by model elicitation. First, since the probability structure underlying the 

process is usually unknown, to elicit the structure or the corresponding statistical 

model involves a considerable investigative effort and the cost involved may be 

prohibitive. Second, even assuming that the correct model is available, the 

estimation procedures available for the parameter estimation are difficult to handle 

and poorly understood. More research and work are needed to understand and, to 

a degree, overcome these two difficulties. 

It must also be pointed out that methods based on ad-hoc adjustments of the type 

described in section 5, also increase the discriminatory power of the Fellegi-Sunter 

rule substantially in situations of the type of St. Louis or Columbia. Techniques 

of this type are serious competitors. Their advantage is that they do not require the 

elicitation of a new model and the estimation of new parameters. However, the 

assumptions at the base of these techniques are flawed and the resulting Fellegi- 

Sunter rule may not have maximum discrimination power. A model with 

parameters estimated naturally is preferable. The ad-hoc techniques are 

recommended when the elicitation of an educated model seems not possible, or 

the estimation of the parameters of the educated model appears excessively 

difficult. 

Finally, a word should be said about the St. Louis and Columbia data. These data 

are of very high quality. This explains in part the very successful rate of matching 

exhibited in both the St. Louis and Columbia examples. It is also reasonable to 

expect a less clear-cut difference between the various linkage techniques had the 

data been lower quality. 
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Table 1 

Correlations Between Selected Comparison Fields over the Set of 

Links 

I Middle In. 

II First Name .123 

II Middle In. 1 

Marital 

Street Phone Marital 
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Table 2 

Correlations Between Selected Comparison Fields over the Set of 

Non-Links 

Last N. 

House # 

Street 

Age 

Rel 

House # Street Phone Marital Race 

.748 .326 .642 .099 .lOl 

1 .400 .699 .lll .105 

.400 1 .292 .043 .086 

.104 .054 .086 .165 .024 

.121 .068 .084 .394 .049 
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Table 3 

Probabilities of Agreement Conditional on a Matched Pair 

Street Name 
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Table 4 

St. Louis: Links Recovered via Three Approaches Under Four Error 

Levels 

Links 

Pairs 

Error Bound 

Links 

Pairs 

Error Bound 

Links 

Pairs 

Error Bound 

Links 

Pairs 

Error Bound 

Independence Household 

Assumption Interactions 

6404 9012 

6436 9056 

.005 .005 

7273 9712 

7346 9808 

.Ol .Ol 

9636 9758 

9824 9952 

.02 .02 

9740 9776 

10038 10062 

.03 .03 

Ad-hoc Procedure 

6476 

6508 

.005 

9562 

9659 

.Ol 

9765 

9960 

.02 

9783 

10097 

.03 
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Table 5 

Columbia: Links Recovered via Three Approaches under Two Error 

Levels 

Links Links 

Pairs Pairs 

Type I Error Type I Error 

Links Links 

Pairs Pairs 

Type I Error Type I Error 

Independence Independence Household Household Ad-hoc Ad-hoc 

Assumption Assumption Interactions Interactions Procedure Procedure 

700 700 1268 1268 2035 2035 

704 704 1276 1276 2046 2046 

.005 .005 .005 .005 .005 .005 

5954 5954 6607 6607 6545 6545 

6016 6016 6675 6675 6612 6612 

.Ol .Ol .Ol .Ol .Ol .Ol 
I I 
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