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The Difficulty of Improving Statistical Synthetic Estimation 

Michael Lee Cohen 
. University of Maryland and Bureau of the Census 

and 

Xiao Di Zhang 
Bureau of the Census 

Abstract: Statistical synthetic estimation, a technique widely suggested as a 
method for carrying down estimates to local levels can be shown to 
be a member of more general classes of estimators. It would then 

w seem to follow that, by using information in the data, there,would 
exist estimators that could select members of these classes based 
on this information, and that these estimators would outperform 

e statistical synthetic estimation. We argue that these estimators 
are sometimes unavailable, and if they were available, would 
provide only modest improvements over the performance of the 
statistical synthetic estimator. 
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1. Definition of Statistical Synthetic Estimator 

Assume we have a parent region composed of n subregions. We are provided 

with the census counts Xi, i=l ,***, n, for each of the subregions and the 

census count X and the true count U, for the parent region, where y x. = x. 
j-l1 ! 

Let ui represent the unobserved true counts for the n subregions. 

The problem is to estimate the ui under the constraint of internal 

consistency, i.e., where the estimates for the subregions sum to U. This 

property is important in census applications where it is expected that 
. 

population counts for subregions add to population counts for parent 

regionsa In this first case where we have no disaggregation for demographic 

subgroups, the statistical synthetic estimate is defined by: 

(1) ji = (U/X) xi . 

Now assume that we are provided with the census counts disaggregated 

demographically. Let US denote Xij as the census count in the i-th subregion 

for the j-th demographic subgroup and we have that Xi = i 

JIxij 

j=l 
xij . Also let 

Xj = be the census count of the parent region for the j-th demographic 

subgroup, and let Uj be the true count of the parent region for the j-th 

demographic subgroup. Let Uj be assumed known. In this case, the procedure 

is to separately apply the computation given above for each demographic 

subgroup and then add the results to arrive at the estimate: 

(2) 9 * = jql(uj/xj) X.. 1J 
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It is clear that these estimates satisfy the constraint of internal 

consistency, i.e., that the estimates for a subregion add to the true count U 

for the pare@ region (where by the true count we might in practice intend 

only an improved count). 

This allocation problem was examined by Deming (1938) with the following 

situation as motivation. Three measurements are taken of the three interior 

angles of a traingle. The three measurements will undoubtedly not add to 

180°, and therefore need to be adjusted to incorporate this knowledge into the 

esdimates. The methods Deming used are extended here to examine more general 

situations'. 

I 

There are other situations which require internal consistency. One 

example arises if one asks respondents to supply probabilities for mutually 

exclusive and exhaustive events. Often, due to mistakes, the probabilities 

supplied will not sum to 100%. Without recontacting the respondent how should 

the observed percentages be modified so that they have the required property? 

2. The Model for Statistical Synthetic Estimation 

A. The case aggregated by demographic group -- the l-dimensional case. 

There are two simple models which result in statistical synthetic 

estimation in the l-dimensional case. First, if we restrict ourselves 

to estimates of pi of the form: 

0 
Pi = KXi , 
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n 0 
and if we require that 7 ui = U , then K must equal U/X , and 

igl 

pp = (U/X) xi . 

Likewise, if we wish to solve the minimization: 

min i (Kxi 
K ill 

- ~i)2/xi 

(where Xi is playing the role of a variance as well as an observed 

. value) we find that K = U/X. In this second model we are fortunate 

that the dependence of K on the individual unknown vi is solely 

through the known sum U. 

Both of these models seem overly simplistic and narrow. It would be 

comforting to users of statistical synthetic estimation if it could be 

shown to be optimal for a wider class of estimates. We now show this 

to be the case. Following Deming (1938), we assume: 

(3) ‘i ‘cd* N(ui , c() , i=l,...,n , 

and furthermore we assume that T ui = U is know. 
ill 

The objective is 

to estimate the n vi’s from the n Xi 's under the constraint that the 

sum of the estimates equals U. 

(A difficulty with this model in the census context is that we have 

little reason to assume that the Xi are unbiased. The bias does, 
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(4) 

however, appear indirectly through the difference between 

; x. .) 
i=l 

pi and 

i=l ' 
i.. 

Constrained maximum likelihood estimation of (3), using the method of 

Lagrange multipliers, results in: 

u 
Eli i + [U-X] (u: 

n 2 
= x / z'j)* 

j=l 

This formula has an interesting interpretation. We distribute the 

. overage, U-X, in proportion to the variability of each subregion. (We 

will avoid the philosophical discussion of what a variance for census 

founts means, except to say that the notion does have a frequentist 

interpretation.) 

The statistical synthetic estimate arises as a special case when we 

set 0: = xi . Then (4) becomes: 

ji = xi + [U-X] (Xi/X) = (U/X) x- . 
1 

This estimate has the interpretation of spreading the overage to 

subregions in proportion to their population size. It is important to 

point out that using a random variable as a variance is at least 

awkward, but j 
i 
can be considered as an approximation to an estimate 

where o 
2 
i 

is unknown but close to xi. One possibility might result 

from the rnodel : 

x ind. 
i- N(ui 9 ui ) l 
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. 

What this argument shows is that statistical synthetic estimation can 

result from a nonparametric model. Also we have now demonstrated 
.rT 

statfstical synthetic estimation as a member of a general class of 

estimates (4) which raises the possibility of using members for 

specific situations which outperform pi . 

B. The case disaggregated by demographic group -- the K-dimensional case. 

. The estimate ~7 = ; [U./X.] Xij 
j=l J J 

tesults from constraining a parametric class of estimates (and not 

optimizing) as was the case for j 
i' 

Consider the class of estimates: 

0 
ui = jilKj �ij l 

We introduce the constraints that the estimates for demographic 

subgroups in subregions should add to the assumed known estimates U. 
J 

for demographic subgroups in the parent region. Thus: 

n 

C Kj 'ij 

i=l 
= Uj which implies that Kj = Uj/Xj 

Nonparametrically, we can derive u 7 from the following generalization 

of the l-dimensional case. Let: 

ind. 
'ij N 

N (pij 9 ':j ) 
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where the 11.. 
1J 

are unknown means for the 

the i-th subregion, and where: 

j-th demographic subgroup in 

iilpij = Uj , for j=l,...,K. 

Just as in the l-dimensional case, a Lagrange multiplier argument can 

be used to solve this problem of constrained maximum likelihood, 

resulting in: 

U 

'ij = 'ij 
+ [u. 

n 2 
J 

- ‘jl (‘~j / C U ') 
m=l ‘J 

3. Genzralization of the l-Dimensional Case 

We now examine the more general model: 

where E' = (xl,...,xn) , k' = (ul 3***aP n) ' 
and 1 is the nxn covariance matrix 

of x . We wish to find the maximum likelihood estimates of ul,...,pn subject 

to the constraint i ui = U . 
i=l 

To accomplish this we use Lagrange multipliers. The maximum likelihood 

criterion reduces to minimizing: 

subject to: k-i-u=o. 
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We have: 

(5) 

-2(x N - !$’ c -1 = x 1' N 

or k' = 5' + (x/2) A' 1 

Multiplying (5) on the right by i gives us: 

which implies that: 

And so: 

Letting UI represent the (i,j-th) element of 1 , we can rewrite (6) as: 

As a check, when aij = 0 for all i#j , we have: 

U 

pi = x i + i”3i / ~ U”) (U-X) ) 
j=l JJ 

as demonstrated before. 
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It is important to mention that in the census application the covariances 

'ij 
are unlikely to be estimable, and it is unclear that even rough estimates 

of the u 
ii 

would be available. Thus it would be comforting to know that the 

cost of using the wrong weights is often not great. 

Consider the case where u.. = 0 for all i#j . Then: 
1J 

. 

Varhy) = E [Xi + (uii / 7 

j il"jj 

) (U-X) - E h;)12 

(7) 

Equation (7) makes it clear that the principal objective of statistical 

synthetic estimation must be internal consistency, since there is no great 

gain in precision. For example, if the variances for the n subregions are 

roughly comparable, we have: 

Var(py} = "iii{1 - $ = C(n-l)/nl Uii . 

Given that it is difficult to beat the census by a large amount, it is 

surprising that one can misguess the aii by quite a bit and still outperform 

the census. Suppose instead of the uii / y u.. , 
i-I1 JJ 

we use weights fi. Then we 

have: 

VarI~f} = 'ii C1 - ilfi + f: ( ~ U.. / Uii)] 
j;l JJ 
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It is easy to show that Var{$l < Var{Xi) whenever 0 < fi 6 2 crii . 

Therefore, if one is able to estimate the variances of the counts for the 

subregions within a factor of 2, one can outperform the census counts, but not 

by a great deal. 

4. Generalization of the K-Dimensional Case 

A similar generalization of the K-dimensional case to the generalization 

given above for the l-dimensional case could be developed. Instead we follow 

a different course. A straightforward approach to take is to choose a loss 

function and a parametric form of an estimate, along with the constraints 

constra ined optimization imposed by internal consistency, and so 

problem: An obvious class of estimates 

K 

lve the 

is: 

c Kj x.. . j=1 ‘J 

The loss function that is probably proposed most often 

Tukey, 1983): 

i (a.j - 
i=l 

Ui12 / Ui 

in this setting is (see 

where ai is some estimate of the population count in the i-th subregion. If 

we were to apply all K constraints at once, namely: 

iilKj 'ij 
= Uj for all j , 

we must have that Kj = (Uj/Xj). It is of interest to see what gains are 

possible if we use (8) with only one constraint (which would likely not 
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satisfy census requirements): 

n K 

' 5 
☺1 jilKj �ij = � l 

Let us examine the case where K=2. We have: 

(9) min i (Klxil + K2 xi2 
Kl,K2 i=l 

such that iiI(Kl Xi1 + K2 Xi2) = U l 

. 

Solving using Lagrange multipliers again, we find: 

I 

(10) “i = ( ; F. Gi /Vi ) / ( ? G?/pi ) 
i=l ' ii1 ' 

where: Fi = ('J/X2) xi2 and Gi = xi1 - (X1/X2) xi2 , 

Also t2 
= (U - R, x1 1 / x2 . 

So i, (and K,) has the interpretation of being a weighted regression 

coefficient, regressing Fi on Gi . Fi can be interpreted as an estimate for 

pi given the data xi2, and Gi can be interpreted as the component of Xi1 

unexplained by Xi2. (Note: similar calculations result from the case K=3.) 

Kl cannot be used in practice because it is a function of the unknown Pi ' At 

first glance this does not seem crucial since the pi appear in (10) simply as 

weights and one could seemingly substitute Xi or p: in for 1-1. with little loss 
1 

in performance. However, this turns out not to be the case. If one 
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substitutes Xi for pi in (lo), k1 and I?, turn out to be equal, obviously 

rarely optimal. .Furthermore, if one substitutes p; in for pi in (10) il and 

k2 turn out to be (U1/X1) and (U,/X,) respectively. 

An interesting question is if the pi were available for use as weights, how 

much would (10) outperform ~7 . To answer this question we used four 

artificial data sets the Bureau of the Census has developed which are believed 

to approximate many of the features of undercoverage and which provide a true 

count and a census count for subregions and demographic subgroups. These are 

fully described in Isaki, Schultz, et al. (1987). 

We comprted the estimate in (10) and p 7 for artificial populations II and III, 

at the ‘levels of states and counties, for 2 and 3 demographic subgroups. When 

we used 2 demographic subgroups Blacks and Hispanics were combined into one 

group, otherwise the three demographic subgroups were defined as (i) Blacks, 

(ii) Hispanics, and (iii) White and Others. The results are presented in 

Table 1. 
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Table 1. Comparison of Optimal Estimate with Statistical Synthetic Estimate 

Using Artificial Populations - Comparison Made Using Loss Function 

1 (ai - l☺i ☺2/vi a l 

A. 2 Demographic Groups I = Black + Hispanic II = White + Other 

Loss Efficiency of Stat. Synth. 
Optimal Stat. Synth. Est. 

(1) (2) 

Estimator 
(W(2) 

Level Data Set 
State AP2 9754.7 10666.5 .91 

AP3 8235.4 9176.5 .90 

County AP2 38343.3 39825 .O .96 
AP3 39420.8 41384.3 .95 

B. 3 Demographic Groups I = Black II = Hispanic III = White + Other 
. 

Loss Efficiency of Stat. Synth. 
Optimal Stat. Synth. Est. Estimator 

1 (1) (2) W/(2) 
Level Data Set . 

State AP2 7847.3 9245.8 .85 
AP3 8234.9 9249.7 .89 

County AP2 34871.8 36890.9 .95 
AP3 39402.6 41564.8 .95 

a For K=2, optimal estimate is given in (9). For K=3, similar calculations 
yield a more complicated expression. 

Table 1 indicates that the efficiency of statistical synthetic estimation will 

often be very acceptable, especially given that the extra constraints are 

likely necessary for the census application of these methods, as well as the 

fact that the vi are unknown. The efficiencies are usually above .90. The 

difference between AP2 and AP3 is that in AP3 the undercoverage for Hispanics 

is assumed to be identical to that for Blacks, while in AP2 the undercoverage 

for Hispanics is assumed to be identical to that for Whites and Others. Thus, 

it is expected that the AP3 results would be essentially identical for 2 and 3 
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demographic groups. Finally, there is a hint that the efficiencies will fall 

with a rise in the number of demographic groups used. 

5. Conclusion 

Statistical synthetic estimation will likely play an important role in 

any adjustment of the 1990 Census. It has been suggested as the method by 

which estimates derived from the Post-Enumeration Survey will be "carried 

down" to small geographic areas. Also, should a timely adjustment be decided 

upon (and the Post-Enumeration Survey-based adjustment turns out not to be 

timely) statistical synthetic estimation based on national estimates of . 

undercoverage derived from demographic analysis could be calculated in time to 

meet thp existing statutory deadlines. 

We have shown that this simple but important estimator is surprisingly 

hardy. In the case for K=l, if one tries to better estimate the weights to 

use it is unlikely that the resulting estimator will outperform statistical 

synthetic estimaton by much. In the case for K>l, if one relaxes some of the 

constraints the defficiency of statistical synthetic estimation is unlikely to 

be more than 15%. If one tries to substitute known quantities in as weights 

one merely recreates the statistical synthetic estimate or worse. These 

results should provide some comfort to prospective users of this methodology. 

References 

Deming, W. Edwards (1938), "Statisti cal Ad justment of Data," Dover 

Publications, Inc., New York. 



, 
-15- . 

Isaki, C.T., Schultz, L.K., Smith, P.J.,’ and Diffendal, G.J. (1987), "Small 

Area Estimation Research for Census Undercount-Progress Report," pp. 21% 

238 in Small Area Statistics: An International Symposium, John Wiley and 

Sons, New York, NY. 

Tukey, John W. (1983), Affidavit Presented to District Court, Southern 

District of New York, Mario Cuomo, et al., Plaintiffs(s), Malcolm Baldrige, 

et al., Defendants, 80 CIV. 4550 (JES). 

. 


