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A Comparison of Aggregate and Proportional Loss Function4 
in Adjustment Using Artificial Populations 

Michael Lee Cohen 
University of Maryland and Bureau of the Census 

and 

Xiao Di Zhang 
Bureau of the Census 

Abstract: Aggregate loss functions are loss functions for counts of areas 
where the count itself is of interest. Proportional loss functions 
are loss functions for counts of areas where the count as a 
proportion of a total is of interest. To date, much of the work on 
adjustment has concentrated on aggregate loss functions. A 
question is whether this effort will necessarily produce estimated 
counts whi.ch provide a reduction with respect to the census for 

I proportional loss functions. The importance of this question lies 
in the uses of the census counts for reapportionment of the House 
of Representatives and fund allocation, for which a relative loss 
function is natural. 
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Introduction 

In the context of census counts, there are a substantial number of loss 

functions, i.e., methods for comparing two sets of counts to see which is 

preferred. Certainly, for every well-defined use of census counts there is an 

associated loss function, either implicit or explicit. In a series of recent 

reports, Diffendal, Isaki, Smith, Schultz, and Causey (see e.g., Isaki et al., 

1987) have used as many as 11 different loss functions to compare adjusted 

counts with census counts. 

. Many of these loss functions can be categorized into two groups. The 

first group, referred to here as aggregate loss functions, are loss functions 

for'counts of areas where the closeness of the counts to the true counts is 

key. The second group, referred to here as proportional loss functions, are 

loss functions where the closeness of the proportion of total to the true 

proportion is key. 

To date, as described in various documents, especially Bureau of the 

Census (1987), the research effort examining adjustment at the Bureau of the 

Census has focused on techniques that bring the total population counts closer 

to the truth. Therefore the overall objective is to reduce aggregate loss. 

(For an overview of the likely components of adjustment error see Citro and 

Cohen, 1985 and Bureau of the Census, 1987.) For example, there has'been an 

investigation into the causes of matching error, in order that the input of 

this factor into the dual system estimator will be as close as possible to the 

number of actual matches. Similarly, investigation of empirical Bayes 

regression models for use in adjustment implicitly makes use of aggregate loss 

functions. In fact, it is difficult to conceive of a research effort devoted 

to reducing proportional error. 
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On.the other hand, two of the primary uses of census counts are to 

reapportion the House of Representatives and to distribute federal and state 

monies to local areas. Both of these uses imply a proportional loss function. 

To demonstrate how contrary aggregate and proportional loss functions can 

be, think of a counting process that missed all men and counted women 

berfectly. For purposes of apportionment and fund allocation, such a process 

would very likely be preferred to the census counts. However, for other 

purposes, such as various programs with population threshold requirements, 

such a process would be drastically inferior to the census counts. Less 

* fanciful is an evaluation of the effectiveness of various coverage improvement 

programs in the 1980 decennial census. It is certainly possible that some of 

these programs, though they very likely reduced the aggregate loss of the 

census counts, increased the proportional loss for certain demographic groups, 

and therefore increased the inequity of reapportionment and fund allocation 

with respect to those groups. 

The research effort of the Bureau of the Census is thus targeted towards 

reducing aggregate loss while (at least) two primary uses of census counts are 

associated with proportional loss. It is therefore of interest to determine 

when reductions in aggregate loss coincide with reductions in proportional 

loss. 

We take a first step towards answering this complex question. Consider 

estimates of the form: 

KI cmi + K2 CWi 

where CIIIi and cwi are, respectively, the census counts in area i for the 

minority population and the white and other population. This class of 



-4- 

estimates includes the statistical syn$hetic estimate, 

. 

i, cmi + i, cwi , 

where i, = 1 mi / 1 Cmi , k2 = 1 wi / 1 CWi, and 1 mi and 1 Wi are improved 

counts totalled over all areas for the minority population and the white and 

other population respectively. We will investigate the question of what pairs 

(K1 s K2) produce estimates superior to the census for a proportional and an 

aggregate loss function. 

Rather than investigating what occurs for the multi-dimensional 

collection of population distributions that could be envisioned, we made use 

of irtificial populations which have been developed at the Bureau of the 

Census. These artificial populations are constructed to provide a true count 

and a census count for subregions and demographic groups and are believed to 

approximately exhibit many of the features of undercoverage. Artificial 

populations are fully described in Isaki, et al. (1986). 

We focus on two artificial populations, AP2 and AP3. AP2 treats the 

undercoverage of Hispanics as identical to that for whites and others. AP3 

treats the undercoverage of Hispanics as identical to that for blacks. For 

the purposes of this paper where we examine the case of two groups and 

estimates of the form (l), we have joined Hispanics with blacks and we call 

the resulti,ng group minorities. For this reason, the approach used is more in 

harmony with AP3. The artificial populations, which can be examined at 

several levels of geographic aggregation, are investigated here at the level 

of states and the level of counties. 
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Proportional and Aggregate Loss 

Probably the most cited aggregate loss function in the context of 

adjustment is the loss function: 

! (ai 
i=l 

- ti)2/ti 

where ti denotes the true count for area i and ai denotes a proposed count for 

area i. This loss function, proposed by Fellegi (1980), Tukey (1983), and 

others before and after, is referred to here as the x2 loss function. 
t 

Probably the most cited proportional loss function in the context of 

adjutment is the loss function: 

1 aj 

,21(: - 2' tj ' 

j j 

again proposed by Tukey (1983), and others, and referred to here as the share 

loss function. 

Let us examine some mathematical equivalences: 

First: 

1 aj 

F (2 - J)2 ti 

i Jtj 

= T Ca:/ti 

1 
- 2ai C a*/C tj + (1 a.)2 ti/(C t.)2] 

j 'j j J j J 

J 

= (5 aj I2 1 b:/(F ajj2 

i 
- 2aiti/l a. 1 tj + t:/(I t.)2]/ti 

j 'j j J 

which may be easier to interpret by some as a share loss function since it 

involves the difference of shares ai/C aj and ti/C tj . 
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Also, we see that: 

(2) 

. 

1 tai 
i 

- ti)2/ti = 1 (ai/ti 
i 

- ti/ti)2 ti 

q ($ 7 a* 1 a* 
2, 2 - 1)2 ti 

i 1 t j  1 t j  

I aj 

= Share Loss + C- - 
1 tj 

II2 1 ti 

A fiw observations can be made from examining (2). First, if 1 tj = 1 aj then 
c a* 

the two loss functions agree. Second, the term [--"L - 112 1 tj can be 
): t. 

rewritten as (1 aj - 1 tj)2 / 1 tj , which is a typeJof global x 2 loss 

function. 

Ellipses of Equal Loss 

Let us first consider which pairs (Kl , K2) have the property where the 

counts: 

K1 Cmi + K2 CWi 

are superior to the census counts for the x2 loss function. This is the 

interior of the region defined by: 

1 (Kl cmi t K2 CWi - ti)2 / ti = 1 (ci - ti)2 / ti 

where ci = Cllli + CWi is the census count for the i-th region. 
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Simplifying, we have: 

Kf 1 uI:/‘i + Ki 1 C$/ti - 2 K1 1 cmi - 2 K2 1 cwi 

t 2 K1 Kp 1 Cmi CWi/ti - 1 C:/ti + 2 1 Ci = 0 l 

By the Cauchy-Schwarz inequality we know that the discriminant of the above 

equation is negative. Therefore this equation describes a rotated ellipse. 

The center of this ellipse can be shown to be equal to: 

. 

K* (1 “i Cmi/ti) (1 “i > 

' = (1 cmi cwi/ti)2 

- C’i: cw:/ti ) (1 Cmi ) 

- (1 cm:/ti) (1 cw:/ti) 

0: Cmi cwi/ti) (1 Cmi) - (1 cm:/ti) (1 CWi) 

Ki = (1 
Cilli Cwi/ti)2 - (1 Cm:/ti) (1 cw:/ti) 

which can also be found by minimizing: 

1 (K 1 cmi + K2 cwi - ti)2/t. 1 

with respect to K1 and K2. 

This point (K; , Kz) is, of course, different from the point obtained 

when the single constraint 

is applied along with the minimizat ion, which in turn is different from the 

point obtained when the two constra ints 

+ K2 cwi) = 1 ti 
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1 Kl cmi = 1 mi and 1 K2 cwi = 1 wi 

are applied, the later resulting in the statistical synthetic estimate. It is 

-interesting to point out that these three points are quite close to one 

another for AP2 and AP3 at the state and county levels. This is not 

surprising when comparing the estimate obtained through optimization with the 

single constraint and the statistical synthetic estimate, as pointed out in 

Cohen and Zhang (1987). These three estimates for the four artificial 

* population situations are given in Table 1. 

Table 1. Comparison of Center of Ellipse to Statistical Synthetic 
Estimate for Artificial Populations 

Population Level Center of Ellipse One Constraint Point Stat. Syn. Est. 

AP2 State (1.065, 1.005) (1.068, 1.005) (1.051, 1.009 
AP2 County (1.065, 1.006) (1.064, 1.006) (1.051, 1.009 
AP3 State (1.085, 1.002) (1.085, 1.002) (1.067, 1.005 
AP3 County (1.085, 1.002) (1.083, 1.002) (1.067, 1.005 

Now let us consider which pairs (Kl, K2) have the property where the 

counts 

K1 Cmi + K2 Cwi 

are preferred to the census counts for the share loss function. This is the 

interior of the region defined by: 

Kl cmi + Kp CWi r (Kl cm* 

r c--T---- 
-J 

J 
+ K2 cwj > 

1 i C tj 

I2 ti 

= 1 C(ci/ti) - f 'j/i tj12 ti 
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Simplifying, we have: 

Kf (1 -i/t i - (1 Cmi12/I ti) + Kz (1 CW:/ti - (1 CWi)2/~ ti) 

+ 2 K1 K2 (1 Cmi CWi/ti - (1 Cmi 1 CWi) / 1 ti) 

- 1 +ti + (1 ci )2 / 1 ti = 0 . 

Again, by the Cauchy-Schwarz inequality we know that the discriminant of the 

above equation is negative and therefore the equation describes a rotated 

ellipse, centered at (0, 0). 

Pictures of these two ellipses and their intersection for artificial 

population AP3 at the state level are included as Figures 1 through 3. (The 

pictures of the ellipses for AP3 at the county level and for AP2 at both the 

*state and county levels are similar.) In general, the ellipse corresponding 

to the x2 loss function is negatively sloped, centered near the statistical 

synthetic estimate, and fairly concentrated. The ellipse corresponding to the 

share loss function is positively sloped, and much longer than the ellipse for 

the x2 loss function. 

Figure 1. Ellipse Corresponding to x2 Loss Function for 
Artificial Population 3 at the State Level 
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1.01 

1.00 

NOTE : 454 005 IIAD MISSING ‘Ix.“ES 

Figure 3. Intersection of El 
Loss Functions for 

1 ipses Corresponding to x2 and Share 
Artificial Population 3 at the State Level 
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Intersectinq the Ellipses 

A first question we might ask now, since we would likely determine K1 and 

K2 by milllmizing an aggregate loss function, is what percentage of the ellipse 

is included in the intersection of the x2 ellipse and the share ellipse. In 

other words, given that our adjusted counts are preferred to the census counts 

for the x2 loss function, what is 'the probability that our adjusted counts are 
1 

preferred to the census counts for the share loss function. 

Rather than proceed analytically to determine the areas involved, 2000 

pairs (K1, K2) were randomly generated, KI uniformly distributed on (a, b) and 

* K2 uniformly distributed on (c, d) where the four points (a, c), (a, d), 

(b, c), and (b, d) form the verties of a rectangle tightly enclosing the x2 
I 

ellipse. Then for each (KI, K2), inclusion in each of the two ellipses was 

ascertained. The bounds (a, b) and (c, d) are provided in Table 2. The 

conditional probabilities of inclusion in the share ellipse given inclusion in 

the x2 ellipse are provided in Table 3. 

Table 2. Limits of Rectangles Generating KI, K2 

Population Level (c,d) (a,b) 

AP2 
AP3 
AP2 
AP3 

State (.92, 1.21) (.97, 1.04) 
State 
County 
County 

Table 3. Conditional Probabilities of Incsusion in the Share 
Ellipse Given Inclusion in the x Ellipse 

Population Level Conditional Probability 

AP2 State .41 (.016) 
AP3 State .52 (.017) 
AP2 County .64 (.013) 
AP3 County .74 (.012) 
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Another way to examine this issue is to assume that we have estimated K1 

and K2 to some degree of accuracy and then to determine the probabilities of 

inclusiolD;*in the x2 ellipse, the share ellipse 9 and simultaneous inclusion in 
- 

both ellipses. 

It is only possible at present to hypothesize the accuracy of the 

estimation of KI and K2. But assuming that the objective would be to choose 

KI and K2 so that the adjusted counts are preferable to the census counts for 

the x2 loss function, it seems reasonable to hypothesize inaccuracies 

increasing up to but not exceeding the bounds determined by the rectangles 

tightly enclosing the x2 ellipses. To be precise, we used intervals of 

various widths, centered at the x or y- coordinate of the center of the 
I 

x2 ellipse, with the largest intervals corresponding to the limits given in 

Table 2. Then Kl and K2 were generated according to independent uniform 

distributions over the two given intervals, and for each pair (KI, K2)r 

inclusion in the x2 and share ellipses were determined. For each population 

and level of geography, for 6 different widths, 1000 points (KI, K2) were 

generated to estimate the inclusion probabilities. The results are given in 

Table 4. 

Table 4. Inclusion Probabi 1 i ties Assuming K1 and K;! Measured to 
Various Levels of Accuracy 

AP2 State 

(K1- , Kl+la (K2- , K2+lb Prob. x2 Prob. in Share Prob. in Both Prob. Agree 

(1.05, 1.08) (1.002, 1.009) 1.00 1.00 1 .oo 1.00 
(1.04, 1.10) (0.998, 1.013) 1.00 1.00 1.00 1.00 
(1.01, 1.13) (0.99, 1.02) 0.94 0.95 0.89 0.89 
(0.98, 1.15) (0.983, 1.027) 0.76 0.73 0.55 0.61 
(0.95, 1.18) (0.976, 1.035) 0.60 0.54 0.32 0.49 
(0.92, 1.21) (0.97, 1.04) 0.46 0.42 0.20 0.51 



AP3 State 

(K1' a Kl+j W2- 9 K2+) 

(1.07, 1.10) 1.00, 1.005) 
(1.05, 1.12) 

I! 
.993, 1.009) 

(1.02, 1.15) 8.986, 1.017) 
(0.99, 1.18) (0.978, 1.025) 
(0.96, 1.21) (0.971, 1.032) 
(0.93, 1.24) (0.963, 1.040) 

AP2 Countv 

(K1- a K1+) (K2- 9 K2+) Prob. x2 Prob. in Share Prob. in Both Prob. Agree 

(i.05, 1.07) (1.003, 1.009) 1.00 1.00 1.00 1.00 
(1.04, 1.08) (1.000, 1.012) 1.00 1.00 1 .oo 1.00 
(1.03, 1.10) (0.995, 1.018) 1.00 1.00 1.00 1.00 
(1.01, 1.12) (0.989, 1.023) 0.94 0.95 0.89 0.89 
(0.99, 1.14) (0.983, 1.029) 0.79 0.78 0.59 0.62 
(0.97, 1.16) (0.978, 1.035) 0.66 0.63 0.41 0.52 

AP3 County . 

(K1' 9 K1+) W2- s K2+) 

(1.07, 1.09) (0.999, 1.005) 
(1.06, 1.10) (0.996, 1.008) 
(1.04, 1.12) (0.989, 1.015) 
(1.02, 1.15) (0.983, 1.021) 
(1.00, 1.17) (0.977, 1.027) 
(0.98, 1.19) (0.971, 1.034) 
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Prob. x2 

1.00 
1.00 
0.95 
0.72 
0.60 
0.47 

Prob. in Share Prob. in Both Prob. Agree 

1.00 1.00 1.00 

1.00 1.00 1.00 0.95 i*: 
0.86 0.59 0:60 
0.64 0.37 0.49 
0.55 0.26 0.49 

Prob. x 
2 

Prob. in Share Prob. in Both Prob. Agree 

1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1 .oo 
1.00 1.00 1.00 1.00 
0.96 0.99 0.96 0.96 
0.82 0.92 0.74 0.74 
0.64 0.80 0.48 0.53 

g Lower bound of adjustment factors for minority population. 
Upper bound of adjustment factors for white and other population. 

Conclusions 

The objective of producing adjusted counts which are preferable to census 

counts for aggregate loss functions may not coincide to a substantial degree 

with the objective of producing adjusted counts which are preferable for 

proportional loss functions. Certainly, for artificial populations AP2 and 

AP3 at the state level, conditional probabilities of .41 and .52 for 

preferability for proportional loss given preferability for an aggregate loss 

function are not comforting. 
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On the other hand, when one examines situations where both of the 

. 

parameters Kl and K2 are measured to reasonable degrees of accuracy, which we 
. 

think are well-represented by the situations given in the third line of each 

section of Table 4, agreements of 89% and above are realized. 

It is difficult to generalize beyond the artificial populations 

studied. However, the research effort of the Bureau of the Census has as its 

goal the estimation of each component of adjustment as precisely as possible, 

and not that the resulting adjusted counts be preferred to census counts for 

aggregate loss functions. Though the current adjustment procedures are far 

more complex than that considered here, it is not unreasonable to suspect that 

this-goal will result in corresponding benefits for both aggregate and 

proportional loss' functions. However, to be able to make more precise 

statements, more research needs to be done. 
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