BUREAU OF THE CENSUS
STATISTICAL RESEARCH DIVISION REPORT SERIES

" SRD Research Report Number: CENSUS/SRD/RR-86/15

GENERALIZED DATA STANDARDIZATION PROGRAM GENERATOR (GENSTAN)
PROGRAM GENERATION SYSTEM PART II

by

- William P, LaPlant, Jr.
U.S. Bureau of the Census

This series contains research reports, written by or in cooperation with
staff members of the Statistical Research Division, whose content may be

of interest to the general statistical research community. The views re-
flected in these reports are not necessarily those of the Census Bureau

nor do they necessarily represent Census Bureau statistical policy or prac-
tice. Inquiries may be addressed to the author{s) or the SRD Report Series
Coordinator, Statistical Research Division, Bureau of the Census, Washington,
D.C. 20233.

Recommended hy: Matthew A. Jaro

Report completed: July 10, 1986
Report issued: July 22, 1986

U.S5. EBureau of the Census
Statistical Research Division
Program Generalion System

Part I1I

GENSTAN

Generalized Data Standardization Program Generalor

by William P. LaPlant, Jr.
Record Linkage Research Staff
Statistical Research Division

As of: 07/10/1986

Table of Contents

Section 1. Introduclion to GENSTAN.....:.eceau.. femasa .. 1I-1-1
1.1. A Simple Example..... Ces et asenamas e e ca s I1-1-1
1.2. An 1BRM~-PC GENSTAN Session......; I1-1-2
1.3 COBROL Program Generaled...ieccrsansanscnsnnn fen s caau I1I-1-3
Section 2. GENSTAN Sample Program..csaecsssssassannansas I1-2~-1
2.1. The Sample Program.scecscsacanesas cseasacesasesuon 11-2-1
2.2. Ewnuplanation of Sample GENSTAN érogram W weeaaaa I1-2-3
Section 3. General GENSTAN Language Struclure...... eenselI-3-1

3.1. GENSTAN COmponentlS.eeeeesesecssnasnssanssasannnsnsnal-3=1

.3.1.1. Directivessseaaesnas st et sussesanmeRasec U, I1-3-1
3.1.2. Header Stalemenls..c.csevaancansessasranssanuss «1I1-3-1
3.1.4. Statementis...cieernvssescansnnsssnnsnnsnsnnnnnscs .I11-3-1
3.1.5. GENSTAN Statement Order..c.icescnssncasannanns ceeII-3-1

3.1.4. Parameters, Parameter Lists and Keywords........11-3-2
3.1.7. Coding GENSTAN Statemenls.cciccscnecnnnnsaunsnsun I11-3-2

3-.1-8- Comments-----...-...---...-.--....-.--.-....--..11_3“3

3.1.9. Description Formal...escesnssnasscnnsnsansununs «aa I1-3-3
3.2. Independenl Direclives....cinssruserancnnncaananans I1-3-5%
3.2.1. GENSTAN Identification Direclive.....ccueuv..n .. 1I-3-5
3.2.2. Listing OplionS.csceesacsnncnnnany e e cenelI-3-5

3.2.3. Target Machine for the Generated Program........1I1-3-7

3.2.4. Symbol Table Dump Direclive.icsvsnvsneanann eeane1I-3-7
3.3. INPUT Header Statemenl..c.cscsnnsenanssnnncanas eeasl1-3-8
3.3.17. The File Name Stalementl...cccieanancavsaannnnns .11-3-8
3.3.2. The File SpecificalioN.i..eevsvssnnncannnns cenes II-3-8
32.3.3. Number of Records Per Blotk.ieeernsncencananaanas I1-3-8
3.2.4. Numhber aof Records lto Read for Tesl...cuuwanens e lI-3-8

Page II-1 GENSTAN (07/710/1986)

GENSTAN Table of Contents

3.3.5. The Record Size Statemenl......... ce e cae s I11-3-%
3.3.6. The INPUT File DevitB.isavnanonnsssensnnan cesaaall-3-9
3.3.7. General Data Charateristics of a Fileieesesss... 11-3-9
3.3.8. Define a Dala Fieldiaesenauann C e R s T s w e a . I11-3-9
3.4. OQOUTPUT Header Statemenl......... cesenenan veswwaea 1I-3-12
3.4.1. The Oultoul File Name...:venuss cmaresaEame s «e.11-3-12
3.4.2. The File Specificalion.cserccasunceaans ceesenacell=3-12

3.4.3. Number of Records Per Block..cuveoans

3.4.4. Number of Output Records lo Printl...

3.4.5. A Directive to Suppress Oulpul Generatlion

5.4.5. The Record Size Statementl......cuv.
3.4.4. The OUTPUT Device TyPp@eeevasssunsns
3.4.7. OUTPUT Data CharaclerisliitCSeiessasns
3.4.8. Define a Data Field.vswvearasnannoas
3.4.9. The LINK Direclive.scscusnosannannns
3.5. PROCESS Header Stalemenl..ccoaaceasess

3.5.1. DEFine Statemenl i.cesneccnnesacasnna

3.95.1.1. Address Standardicer..cacusceanans

3.5.1.2. Name Standardizer.icasscensessesss

3.5.1.3. Conglomeration of Dala..csuscuurnn

3.5.1.4. MOVEY v aceaennsannanunsnsoannsessans

3.5.1.9. Concatenalorf.ccascnssecnsascsnsnans

3.5.1.6. General Parsereccasssssasanas . neoa

3.9.1.7. SOUNDEX String Encoder.i.csveacenean

ceerenll-3-1Z

" e 9w -11_3_12

cenes1I-3-12

cneesea1I-3-13

ceeses II-3-13

esenesall-3-13

seenes1I-3-13

ceeaeslI-3-29

saasan II-3-30
e 11-3-31
...... 11-3-32

3.5.1.8. NYSIIS String Encoder..cscssacenvsnenesnsanans 11-3-35
3.5.1.9. Define a Constanl...cussuanus ChrEsEases e 11-3-36
3.5.1.10. Record Sequence Numbering.ui.isssssnesnaaacana I11-3-37

Page 11-2 GENSTAN

(07710717861

Introduction Lo GENSTAN

Section 1. Introducltion to GENSTAN.

GENSTAN stands for GENeralized data SThANdardizer. GENSTAN
is one of a series of Bureau of the Census, Sltalistical Research
Division, COEBOL program code generators wrillen in UNIMAC.
UNIMAC is a high—level-language macro processor language which
itself is implemented in COROL~-74. GENSTAN can be used 1lo
aeneratle programs which perform many kinds of transformations on
segquential, non-hierarchical data files. These lransformalions
include:

*Splitting a field aparlt according to user specified rules.

*Gplitting an address field apart inlo Geography division
specified componenls.

*Reoganizing the order of data fields.
»Combining the content of data fields into a single field.
*Addinyg Segquence numbers and constanl dala.
*Encoding data in various ways (Soundex, NYSISS).
This document describes how to use GENSTAN.

1.1. A Simple Example.

The following is a simple GENSTAN program:

STANDARDIZER

#* BRIANTST.DAT

TEST OF THE MICRO TEST DATA

FROM BRIAN —— DC RELEASED PUBLIC DATA
INPUT

FILENM=MICROS
FIELD=FILE-CODE, 1,1
FIELD=AGE,3,-4,"99"
FIELD=RACE, 6,-7
FIELD=SEX,9?, 1
FIELD=RFI.—-TO-HH, 11,12
FIELD=INCOME, 14,~17
FIELD=HH~-NOD, 19,-22
FIELD=PERSON-NO,24,-25

Page II-1-1 GENSTAN (07710719886

Introduction to GENSTAN

OUTPUT
FIELD=FILE~-CODE
FIELD=INCOME
FIELD=REL~-TO-HH
FIELD=SEX
FIELD=RACE
FIELD=AGE
FIELD=HH-NO
FIELD=PERSON-NO
FILENM=BRIANR
#LINK=TRUE

END

This GENSTAN program reorganizes the data fields. o data
Lransformalions (PROCESS DEF statemenlis) are specified.

1.2. An IBM-PC GENSTAN Session.

Assuming that the program in lthe above paragraph has been
JSlored on the IBM-PC file "SAMPLE.GEN", lhe following session on
an IBM-PC would cause the generation of the COBOL data standard-
ization program shown in the next paragraph as specified in this
GENSTAN user program. Everything actually part of Llhe session is
in upper—case lelters. Whal you would enter is underlined. ARAll
explanations are surrounded by curly brackets ({}).

CrUNIMAC

###% ENTER MACRO LIBRARY NAME #i#

{At this point you must enter the name of the file on your system
that contains your copy of the SRD Program Generator System.>X
PCLIB.DAT

THIS IS5 A TEST
BUREAU OF THE CENSUS
STATISTICAL RESEARCH DIVISION
RECORD LINKAGE RESEARCH STAFF

AUTOMATIC PROGRAM GENERATION SYSTEM
DATE=05/01/86 TIME=10:00:00
PLEASE SELECT ONE OF THE FOLLOWING GENERATORS:

STANDARDIZER

MATCHER

UNDUPLICATOR

##% ENTER ACCEPT FILE NAME (CON: FOR CONSOLE) #*3#+#

{At this point the user may either indicate that he is going to
enter the enlire program from the keyboard by typing "CON:" or
thalt he wanis Lo generate a malcher program from a previously
developed tlexlt file by entering the DOS file specification of the
text file containing his user programi’

SAMPLE . GEN

Page II-1-2 GENSTAN (Q7/7107 15865

Sample QENSTAN Session

GENERALIZED STANDARDIZER MODULE

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
YSER
USER
USER
USER
USER
USER
USER

1.3

Page I1-1-3

FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE

2 % BERIANTST .DAT .
TEST OF THE MICRO TEST DATA

FROM BRIAN —-—- DC RELEASED PUBL.IC DATA

3
4
5 INPUT
6 FILENM=MICROS
7 FIELD=FILE-CODE, 1,1
8 FIELD=AGE,3,-4,"99"
9 FIELD=RACE,&6,-7
10 FIELD=5EX,9,1
11 FIELD=REL-TO-HH, 11,-12
12 FIELD=INCOME, 14,-17
13 FIELD=HH-NO, 19,-22
14 FIELD=PERSON-NO,Z24,-25
15 QUTPUT
16 FIELD=FILE-CODE
17 FIELD=INCOME
18 FIEL.D=REL-TDO~HH
19 FIELD=SEX
20 FIELD=RACE
21 FIELD=AGE
22 FIELD=HH-NO
‘23 FIELD=PERSON-NO
24 FILENM=BRIANR
25 #LINK=TRUE
26 END

COBOL. Program Generaled.

Based on the GENSTAN User Program entered above the fol-
lowing simple COBOL program is generated.

3*

GENGEN

IDENTIFICATION DIVISION.
PROGRAM—-ID. GENSTAN.

AUTHOR. W-LAPLANT VIA UNIMAC.
DATE-WRITTEN. 07/10/86. 11:42:39.
DATE-COMP ILED.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-PC.
OBJECT-COMPUTER. IBM-PC.
INPUT-0OUTPUT SECTION.
FILE-CONTROL .

SELECT IN-FILE ASSIGN TO DISC.
SELECT QUT-FILE ASSIGN TO DISC.

DATA DIVISION.
FILE SECTION.

FD

01

IN~FILE

LABEL RECORDS STANDARD

RECORD CONTAINS 25 CHARACTERS.
INPUT-RECORD.

05 WHOLE-INPUT PIC X(Z25).

GENSTAN

{07/ 10/1986&)

Sample GENSTAN Session

05 INREC-FILE-CODE REDEFINES WHOLE-INPUT.
10 FILE-CODE PIC X(1).
10 FILLER PIC X(24).

05 INREC—-AGE REDEFINES WHOLE-INPUT.
10 FILLER PIC X(2).
10 AGE PIC 99.
10 FILLER PIC X(Z21).

05 INREC—-RACE REDEFINES WHOLE-INPUT.
10 FILLER PIC X(3).
10 RACE PIC X(2).
10 FILLER PIC X(18).

0% INREC-SEX REDEFINES WHOLE-INPUT.
10 FILLER PIC X(8).
10 SEX PIC X(1). -
10 FILLER PIC X(16).

05 INREC—REL-TO-HH REDEFINES WHOLE-INPUT.
10 FILLER PIC X(10).
10 REL-TO-HH PIC X(2).
10 FILLER PIC X(13).

05 INREC-INCOME REDEFINES WHOLE-INPUT.
10 FILLER PIC X(13).
10 INCOME PIC X(4).
10 FILLER PIC X(8).

05 INREC-HH-NO REDEFINES WHOLE—~INPUT.

- 10 FILLER PIC X(18).

10 HH-NO PIC X(4).
10 FILLER PIC X(3).

05 INREC—-PERSON~NO REDEFINES WHOLE-INPUT.
10 FILLER PIC X(23).
10 PERSON-NO PIC X(Z).

FD OUT-FILE
LABEL RECORDS STANDARD
RECORD CONTAINS 18 CHARACTERS.
01 QOUTPUT-RECORD.

05 WHOLE-OQUTPUT PIC X(18).

05 DQUT-REC—-FILE-CODE REDEFINES WHOLE-QOUTPUT.
10 FILE-CODE-QUT PIC X(1).
10 FILLER PIC X(17).

05 OUT-REC-INCOME REDEFINES WHOLE-OUTPUT.
10 FILLER PIC X(1).
10 INCOME-QOUT PIC X(4).
10 FILLER PIC X(13).

0% DUT-REC-REL~TO-HH REDEFINES WHOLE-QUTPUT.
10 FILLER PIC X{(5).
10 REL-TO-HH-0UT PIC X(Z).
10 FILLER PIC X(11).

05 QUT-REC-SEX REDEFINES WHOLE-QUTPUT.
10 FILLER PIC X(7).
10 SEX-OUT PIC X(1).
10 FILLER PIC X(10).

05 OUT-REC-RACE REDEFINES WHOLE-QUTPUT.
10 FILLER PIC X(8).
10 RACE-DUT PIC X(2).
10 FILLER PIC X(8).

Page I1I-1-4 GENSTAN (07710715784

Sample GENSTAN Sescion

05 QUT—~REC-AGE REDEFINES WHOLE-QUTPUT.
10 FILLER PIC X({10).
10 AGE~-OUT PIC X(2).
10 FILLER PIC X(6).
05 QUT-REC-HH-NO REDEFINES WHOLE-QUTPUT.
10 FILLER PIC X(12).
10 HH—-NO-0UT PIC X{4).
10 FILLER PIC X(2).
05 OUT-REC-PERSON-NO REDEFINES WHOLE-QUTPUT.
10 FILLER PIC X(16).
10 PERSON-NO-QUT PIC X(2).
WORKING-STORAGE SECTION.
#* WSPGEN
PDIVSET -
PROCEDURE DIVISION.
BEGIN-GENSTAN.
OPEN INPUT IN-FILE.
OPEN OQUTPUT OUT-FILE.
#* RDINPUT
READ-GENSTAN-INPUT.
READ IN-~FILE
AT END GO TO GENSTAN-CLOSE-DOWN.
#* DOPROCS
GENSTAN-PROC-WORK SECTION.
#* WTOTPUT
BUILD~OUTPUT-RECORD.
MOVE FILE-CODE TO FILE-CODE-QUT.
MOVE INCOME TO INCOME-QUT.
MOVE REL-TO-HH TO REL-TO-HH-0OUT.
MOVE SEX TO SEX-0UT.
MOVE RACE TO RACE-QUT.
MOVE AGE TO AGE-0OUT.
MOVE HH-NO TO HH-NO-OUT.
MOVE PERSON-NO TO PERSON-NO-OUT.
CAUSE-COBOL-0OUTPUT.
WRITE OUTPUT-RECORD.
GO TO READ-GENSTAN-INPUT.
GENSTAN-CLOSE-DOWN.
CLOSE IN-FILE.
CLOSE OUT-FILE.
STOP RUN.

On the IBM-PC, the generaled program will be wrillen on Lhe
file "MACOUT.DAT". Change or copy lhis file immedialely because
it will be overwritten by UNIMAC the nexl time il is used on your
compuler.

The generated program is basically a very simple read and
write loop. A more complex example wilh an explanalion of key
lines is given in Section 2, while a detailed, semi-formal des-—
cription GENSTAN statements is given in Seclion 3.

Page II-1-5 GENSTAN (07/10/198&

GQENSTAN Sample Program

Section 2. GENSTAN Sample Proagram.

In the following sample user program, only lhe information
Lhe user enters is shown, nolt lthe response of the GENSTAN program
generator. How the SRD UNIMAC program generaltion system 1is
accessed and how lhe user's compuler syslem accesses data are notl
discussed here. However, a complele sample interactive session
for the IBM-PC is shown in Secliogn 1. The program shown here has
Jenerated a successfully compiled data preparation program Lthat
was used in a real case.

~

Z.1. The Sample Program.

Each statement of this sample program is preceded by a
number and "» Y. The user statemenl follows. For example, Lhe
first line of the user program is "STAN" wilh the "L" coded in
position 1 of the line. Line numbers preceeded by a plus sign
(+) are explained in the followinyg paragraph. The user enters
each statemenl shown direcltly into the UNIMAC GENSTAN processor

Jl'interactively') or from a text file. The latter melhod is re-
commende .., Each system on which the generalor is implemented has
1ils own mechanism for accomplishing such entry of a precoded file
(for example tLhe "redirected standard input file," "x,'" of PC-DOS
or MS-DOS on the IBM-PC and compalible families of computers, and
the ADD runsiream command on the Sperry, Inc. UNIVAC 1100 series
processors) so each mechanism is documented seperately.

Line no. Statement

STAN

JURMANDS . GEN

- GENERATES A DATA STANDARDIZATION PROGRAM FOR
* NEW JERSEY DEPARTMENT OF MOTOR VEHICLES DATA FILES
INPUT

LISTOPT=PROGRAM

RECSIZE=140

FIELD=V-D-CODE, 1,1

FIELD=RRN,Z2,-7

FIELD=NAME-FORMATTED, 8, 30

FIELD=DMV-ST-ADDRESS,51,30

12 FIELD=CITY-STATE-ZIP,83,30

13> FIELD=DOR, 113,6,"2(6)"

14 FIELD=VOTEID,119,6,"2(&6)"

15> FIELD=DMV, 125, 15

16 FIELD=TAG-CODE, 140, 1

LNV RN

=
e

o A et s
W NS N, o’ e

Page I1I1-2-1 GENSTAN (07/01/158&)

QENSTAN Sample Program

17 = PROCESS

18 DEF=NM, PARSE , NAME-FORMATTEL, 2, "
19 DEF=SUFNM, MOVER , NM-TOKEN4

20 DEF=LAST-NAME, MOVER , NM-TOKEN3
21z DEF=LAST—-NAMEZ, MOVER , NM-TOKENZ
22 DEF=MID-INIT,MOVER, NM-TOKENZ
23 DEF=FIRST-NAME, MOVER, NM-TOKEN
24 DEF=AD,PARSE,CITY-STATE-ZIP,Z2,", N.J.",",N.J.", " "
25 DEF=STATE,CONSTANT,NJ, 2

26 DEF=CITY,MOVER,AD-TOKEN1, 36
27 DEF=ZIP,MOVER,AD-TOKENZ, 5

28 DEF=DADDR, ADSTAN, DMV-ST-ADDRESS,CITY,STATE, Z1IP
29 QUTPUT

30 FILENM=JURMAD)

31= RECSIZE=320

32 #L INK=TRUE

33 FI1ELD=V-D~CODE, 1,1

34 FIELD=RRN, 2,6

35% FIELD=NAME-FORMATTED, &, 30

36 FIELD=DMV-S5T-ADDRESS, 38, 30

37 FIELD=CITY-STATE-Z1P,&8,30

38 FIELD=DOR, 98,6

39 FIELD=VOTEID, 104, 6

407 FIELD=DMV, 110,13

41 FIELD=TAG-CODE, 125, 1

42 FIELD=LAST-NAME, 126,20

43 FIELD=FIRST-NAME, 146,20

44 FIELD=MID-INIT, 166, 1

45 FIELD=DADDR, 167,99

46 FIELD=CITY

47 FIELD=STATE

48 FIELD=ZIP

49 #DUMP

50 END

Page 11-2-2 GENSTAN (07/01/1286&)

GENSTAN Sample Program

2.2. Euxplanation of Sample GENSTAN Program?

Line no. Explanation

1 This line specifies which SRD UNIMAC Program Generation
System Processor is lto be used. The current choice, STAN, speci-
fies the GENSTAN Data Standardization Program Generator.

2% This a comment line. A comment line is any line that
starts with an asterisk in the first posilion of the line.

3% This GENSTAN header statement indicates thalt the fol-
lowing GENSTAN stalemenls are associated with INPUT data.

4 DUMP 1is a special direcilive which causes GENSTAN to
list the content of all internal tables (nol recommended). This
directive has been made into a comment by lhe inserlion of an
aslerisk in this example.

5% The FILENM statement defines one of the two files
needed for a matcher program input. This name is used internally
=hy Lhe generator.

b The FILESPC statement defines the actual file name for
IBM-PC users.

7 The FIELD statement defines a single field in the file
name whose FILENM preceeded. The FIELD statemenlt shown here has
the name "CBNABLOCK', starts in record position 1, and is 9 char-
aclters long.

8% The FIELD statement name ('"SOUNDEX-STREETN'") may be up
to 15 characters long and may be given in any order wilhout
rejard to position in the record. Nole that this field slatement
falls at the end of the record although it is the second one
defined since it startls in character position 179 of the record
(i.e. 11 has the highestl FIELD beginning position of any of the
fields defined for the record). This illustrate that the order
of the FIELD statements is unimportant, bul one such statement is
required for each field referenced on each file.

15 The third paramelter of the FIELD statement may represent
an ending position by being preceded by & hyphen ("-"). This
FIELD statement is two characters long since il starls in char-
acter position 176 and ends in 177.

Draft Page 11-2-3 GENSTAN (03/30/ 19846

i_ine no. Explanalion

18> The first PROCESS DEF= statemenl causes the INPUT field

NAME-FORMATTED (the third parameter) to be splil -— or PARSEd
(second parameter) —- into 4 (the fourtlh parameler} components or
tokens usinyg a space (" ") —-— the fifth parameler —— to determine

where one component ends and the next begins. Upon completion of
the process, the four caomponenils are available in COBOL data
items named NM—-TOKEN1, NM-TOKENZ, NM-TOKEN3, and NM-TOKEN4. The
prefix of the data items, NM is the DEF ID from the firsl par-—
ameler of the statement. The ID allows unigue reference Lo be
made to the lokens resulting from Llhis particular process.

30 FILENM is Optional when following an INPUT header
statement. The FILENM statemenl is used in generating tlhe
"internal' CORBOL file name. - -

33 A GENSTAN program does not require a PROCESS header
statement. When one is present, data transformation DEFinition

statemenlis are exspeclted lo follow.

LTao be completed.]

Draft Page 11I-2-4 GENSTAN (03/30/1986&)

General GENSTAN Language Struclure

Section 3. General GENSTAN Language Slructure

3.1. GENSTAN Componentls.

The GENSTAN user langjuage consists of 'directives', 'heade
statements', "statemenls', and "paramelers". Direclives, header
statements, and statements musl each sltart a new line. Each
statement, including paramelters, musl be coded in uppercase when
letters of the alphabel are used.

3.7.1a Directives.

Directives are user instructions to the GENSTAN UNIMAC pro-
cessor aboul how the processor is to function while lhe user
statemenls are being evalualed. GENSTAN direclives may or may
nol be associated with specific header statemenis.

3.1.2. Header Statementls.

Header Statements set the '"state' of the UNIMAC GENSTAN
processor. There are four GENSTAN header statements:

INPUT describes the characteristics of the file contain—
ing data to be preprared for further processing.

PROCESS describes tLhe nature and charaterisltics of the
tranformations to be made, field by field, by the
Jenerated data standardizalion program.

OUTPUT describes the standarizer program oulpul file.
END indicates Lo the GENSTAN processor lthat the user’s

GENSTAN program is finished and Lthal code gener—
ation can begin.

3.1.4. Statements.

Each header statement has specific statemenls thal are coded
with it. Statements are GENSTAN user program statementls which
provide the GENSTAN processor with information il needs to gen—
erale a file matching program.

3.1.5. GENSTAN Statement Order.

Each header statement (except END) and each statemenl may be
repeated as oflen as necessary. The grder of header staltemenls
and statementls is unimportant exceplt that some paramelers asso-
ciated with certain header statement/statemenl or header slale-
ment/direcltive combinations may require that cerlain informalion
have bLeen provided earlier.

Draft Page 1I-3-1 GENSTAN (77107 1986)

General GENSTAN ianguage Structure

3.1.6. Parametlers, Parameter Lisls and Kevwords.

A parameter is lhe way specific informalion aboul conltent or
choice is programmed by the user. All slatements and some direc-
tives have paramelers which always must be entered on the same
line as their associaled statement or directive. Statemenls and
direclives which have paramelers are called keywords., There may
be more than one parameler associated wilh a keyword. This set
of parameters is called a parameter list.

3.1.7. Coding GENSTAN Statements.

In coding, a GENSTAN keyword is followed by, and a parameter
or parametler lisl is prereded by an -egual sign ("=") in a GENSTAN
statement,.

Example:
FIELD=SOUNDEX, 1,4

For readabilily, you may use spaces on either side of tlhe
equal sign and of the commas separalting the parameters in a
parameter list. The following example has exaclly the same
paramelers as Lhe above example, because the spaces are ignored.

Example:
FIELD = SDUNDEX , 1, 4

Any parameler can be surrounded by juole marks. Bul if a
parameler contains or consists of a space, a comma, ot & Juote
mark ('), the parameter musl be surrounded by jguole marks. To
leave out a parameler or 1o enter a nul paramelter in a parameler
list, use an additional comma. The following example has six
parameters: "WHOLE-NAME', "CONGLOM", a comma, "LASTNAME',
"FIRSTNAME', and "MIDINIT".

Example:
DEF=WHOLE~NAME, CONGLOM, ",", LASTNAME, FIRSTNAME, MIDINIT

A gquole mark can be represented in a parameter by using lwo
quote marks. Remember the parameter must then be surrounded by
quole marks. In lhe following example, lLhe six paramelers are
all the same as Lhe previous example excepl the third, which is
one Jquole mark.

Example:
DEF=WHOLE~-NAME, CONGLOM, """", LASTNAME, FIRSTNAME, MIDINIT
See Appendix A for a formal descriplion (using a modified

Backus—Naur Form or BNF) of this and other GENSTAN user lanjgjuage
statements.

Draft Page 11-3-2 GENSTAN (771071986

General GENSTAN Language Struclure

3.1.8. Commenls.

An asterisk (#) in the firstl position of a line means lhe
line is & comment and the line will be ignored by the GENSTAN
processor. Commenl lines may be used any place excepl before lhe
initial directive (which is actually not part of the Gei.T“TAN
processor but is, rather, a directive for the SRD Program Gener-
ation System as a whole). See the Sample Program, section 2,
lines 2 and 4, for example.

3.1.9; Description Format.

In the following paragraphs, each lype of GENSTAN statement
or directive is illustrated by a format. This paragraph de-—
scribes how that format is constructed to illustrate the coding
of each type of GENSTAN statemenl or direcltive. The formals
gjiven are either general formals or examples. Those formatls
preceded by an "Ex? " are examples conltaining illustlrative
coding. All others are general formats. For formals that illus-
trate keyword expressions, the keyword precedes an equal sign
("=") and the listl of formal paramelers or an example of aclual
parameler(s), which might be entered to complele lhe expression,
follows.

In general formals, each possible parameler type is called a
"formal parametler." In this system, all keyword expression para—
meters are posiltional. This means thalt the program generatlor
knows how to treal each parameler by lthe position of Lhe para-
meter in the keyword expression. A formal parameler is repre-—
sented by the name of the parameler, preceeded by "<" and
followed by ">", in il's relative posiltion in lthe keyword
expression. A required formal parameter will be underlined in
the general format. A required formal parameler is one for which
the user must code something. The meaning of each formal
paramelter in a general formal is given in the "explanation"
column. In cases where Lhe jJeneral formal has a parameler
position that may contain one of several choices, lhe possible
alternalives are shown in lthe appropriale posilion and are
separated by bars (i) in the general formal in the expession
column, Note that a formal parameter is nol actually coded but
rather represents what kind of information might be coded in a
Jiven parameler location.

For example, the following is a gJgeneral formal for a keyword
expressions:

FIELD = <NAME>, <BEG», <LNG» ! <END», <PIC», <REP3
f—a~i 1 d-—~b=31 f—g—31 <{—e-» 1 {-f=»1 <-g-i1 <—h—3
i J J k J J

§mmm

Draft Page II-3-3 GENSTAN (771671984

General GENSTAN Language Struclure

This is a general formal for the FIELD statement. The FIELD
statement is a statemenlt type available under both INPUT and
QUTPUT header statements. It is coded by enlering the keyward
FIELD (marked a above) separaled from its paramelers by an equal
sign_(marked i). This statemenl can bhe coded wilh as many as %
acltual parameters, represented by & formal paramelters (marked b,
¢, e, f, g9, and h). The formal parameters marked e and f are
separated by a bar (i, marked kJ) indicating that they represent a
choice in the third actual parameler (marked d). Thus, either an
“ENDY parameler or a “LNG: parameler would be coded. The commas
{marked J) are oplional when actually coding butl indicale here
the separation between aclual paramelers. Only those formal
parameters which are underlined must be provided.

If a group of paramelers may be repeated as a group, tlhey
will be surrounded by square brackels (LJ) and followed an
ellipsis, i.e. 3 periods (...). Square brackels without an
ellipsis may also be used to indicate thal one or more paramelers
are optional.

In examples, the keyword expression (direclive or statementl)
in the "Expression' column is the way a the directive or state-
ment might actually be coded. The meaning of each example is
given in the "explanation' column surrounded by parentheses.
Notes on the general use of the type of statement illustraled by
the example would not surrounded by parentheses.

Draft Page 11-3-4 GENSTAN (7/10/1986&

GENSTAN

3.2. Indegendenl Direclives.

The GENSTAN program generalor directives which are indepen-
dent of header statement slale are delailed below. These GENSTAN
statemenls can appear any place in ihe program excepl as notled.

Expression Explanation

2.2.1. GENSTAN Identification Direclive.

TAN {This directive or
"STANDARDIZER" must be lhe
first statement in a GENSTAN

- user program.)
This direclive is actually given in response io Lhe SRD
UNIMAC Program Generator System question about which generator is
required. The choices currently are:

“"STAN" or “STANDARDIZER'" for this program, GENSTAN

"LINK" ar "MATCHER" for the record linkage program
jenerator, GENLINK

"UNDUP" or "UNDUPLICATOR" for the file unduplication
program, UNDUPGEN

One of these directives musl appear first in the GENSTAN

program or be the reponse to the initial SRD Program Generalion
System guestion if the system is being used inleractively.

3.2.2. Listing Qptions.

The LISTOPT directive enables the user to control where his
program is listed (on the console, on the generated program,
neither or both) and whether the generated COBOL program will be
listed on the console or not.

LISTOPT = PROGRAM ! NOW PROGRAM = The GENLINK user pro

i OUTPUT | BOTH gram 1s gJenerated as

{ ALL ¢ QFF COBROL commenls at
the beginning of Lhe
jenerated COBOL file
matcher program
starting with the
statement following
this direclive.

Draft Page 1I1-3-5 GENSTAN (7/10/1986:

Expression Evplanation

A GENLINK user program commenlt will be shifted to column 7 so
that the asterisk becomes the COBOL comment indicater. All other
GENLINK user statements will be shifted to the right 9 positions
and the characters #* and » will be put in positions 7 and 8. The
asterisk will make this record a COBOL commenl and lhe grealer
than sign will direntiate it from a GENLINK user program commentl.

NOW = The GENLINK user pro
gram is displayed as
it is processed.

QUTRUT The ngeneracted COBOL

file malcher program

- is displayed Lo lhe
user as il is being

generated.

ALL or

BOTH = All of the above
opltions are
acltivated.

OFF = Deactivales tlhe
: currently acivated
options for GENSTAN
user program state-
ments following this
directive.

Ex: LISTOPT

PROGRAM (Generate a listing of this
user program as commenls on
the jenerated COBOL program.)

Ex: LISTOPT QUTPUT , NOW (List the COBOL program on the
tonsole screen as it is gen—
erated. Also list the GENSTAN
user program on the console

screen as il is read in.)

Note that the LISTOPT directive must have one and can have
two keyword paramelters. These keywords may be given in any order.
No check is made for the inconsistent use of keywords, i.e., OFF
and ALL may be provided but will produce undefined resultls.

The directive may be coded anywhere in a GENSTAN user proyg-
ram. Thus you may oulpul only part of the GENSTAN code Lo the
generated COBOL program or to the console screen by using
LISTOPT=NOW or PROGRAM where you want to starl the oulpul and
LISTOPT=0FF where you want il to stop.

Draft Page II1-3-6 GENSTAN (7/10/1984)

Expression Explanation

You cannot, however, similarly control outpul of the COROL
program, because there is no direclt order correspondence between
the GENSTAN user program and the generated COBOL program. Fur-
ther, exceplt for the optional generalion of the GENSTAN user
program code as prefix commentls, the COBOL program is nol gener-—
ated until after the END statemenl header (the last GENSTAN user
program code by definition) is encountered in the user program.

3.2.3. Tarngetl Machine for the Generated Program.

The TARGET directive idicates the machine upon which the
COBOL program will be compiled and run. This does nolt have lo be
the machine on which SRD Program Generator is being run. If Lhis
directive is not provided, the machine on which the SRD Program
Generator is operating will be considered Lhe TARGET for tlhe
generated program.

TARGET = IBM-PC
i UNIVAC—-1100-80 This directive defines tlhe
tagrel systlem of lhe UNIMAC
SRD Program Generalor System.

As stated earlier, this directive is used to indicate which
computer system will be used to run the data standardizer program
being generalted by GENSTAN. This is important because each COBOL
implementation and each computer operating system i1s slighltly dif-
ferent and the jJenerator has to generale different code for each.
In addition, some GENSTAN user statemenls are inlterpreted dif-—
ferently for different computer targel systems. For example, Llhe
FILESPC statement of the INPUT and QUTPUT header statementl is
meaningful, at present only for the IBM-PC and TARGET=IBM-PC will
be assumed if TARGET is not specified and FILESPC is coded.

3.2.4. Symbol Table Dump Directive.

Ex: DUMP (The internal GENSTAN program
generator tables will be DUMPed
after the END header statement
but before the malch program is
generated.)

The DUMP directive is used to ensure that the GENSTAN user sltate-
ment processor is interpretling the GENSTAN program correctly. ItT
is not needed for a "production'" match program generalion run and
since it is time consuming il is nol recommended.

Draft Page 11-3-7 GENSTAN (771071986

GENSTAN

3.3. INPUT Header Statement.

An INPUT header statemenl places the GENSTAN processor in a
state Lo accept staltementls and direclives associated with the
jJeneration of the inpul file by the data standardization pro-
gram. The INPUT header statemenlt statements and directives are
detailed below:

Expression Explanation

3.3.1. The File Name Statement.

The input file name is specified by this statement. It must
nol be the same as lhe oulpul file name and cannot be a COBOL

reserved word.

Ex: FILENM = ABCD (The COBOL name by which this
: file is known is "ABCD'.)

An input file name (FILENM) may be up to & characters long,
must start with an alphabetic character and may have numeric

® characters and hyphens (-). FILENM paramelers longer Lhan 6

characlers will be truncated with a warning. This statement is
oplional. ’

3.3.2. The File Specification.

The implementor defined, system specific file specification
is provided by this statement.

Ex: FILESPC = "ABCDEFG.XYZ'" (The IBM-PC file specificaltion
is "ABCDEFG.XYZ".)

The FILESPC statemenil is used to provide additional "exter-—
nal"” file access information needed by the "TARGET" system. For
now, Lhis statement only applies to the IEM-PC.

3.3.3. Number of Records Per Elock.

Ex: NRECS = 10 {There are 10 records per
block for the INPUT file.)

3.3.4. Number of Records to Read for Test.

Ex: TEST = 100 (Stop afler reading 100
records of this file.)

Drafl Page I11I-3-8 GENSTAN (7710715840

ExMpression . Explanation

3.3.5. The Record Size Statementl.

Ex: RECSIZE = 500 (The record size of this file
is 3500 characters.)

"The RECSIZE statement will be overriden wilh an appropriatle
warning if the record size parameler associaled wilh this slale-—
ment is found Lo be exceeded by FIELD statemenls associaled witlh
the INPUT header statement.

3.3.6. The INPUT File Device.

Ex: DEVICE = TAPE DEVICE = TAPE | CARD | DISC
. (The INPUT file device 1is
tape.)

If no DEVICE is specified, DISC is assumed.

3.3.7. General Data Charateristics of a File.
Ex: DATA = ASCII DATA = CENIO | ASCII !
EBCDIC | FIELDATA 1 XG83
(The characlter set of lhis
file is ASCII.)

ASCII is the only parameter oplion currently fully implemen-—
ted for this statement. ASCII is an acronym for the American
Standard Code for Information Interchange. EBCDIC stands for Ex-—
tended Binary Coded Decimal Information Code and is a characler
code developed in the late 1950's for use on IBM main—-frame
computer systems. EBCDIC is currentlly only available if Lhe
targel system is the UNIVAC-1100-80. FIELDATA is a characler sel
implemented on the UNIVAC-1100-80 to maintain compatiblitly wilh
ealier versions of Sperry UNIVAC computers. X83 stands for tlhe
eXceSs—3 character code, a code sel which was developed 1o sup-—
port paper tape and data communications applications.

"The CENIO parametler will generate all the code necessary lo
read or write CENIO (Census Compacted) files containing (for now)
ASCII data, but buffer and record sizes may nol be correclt. Notle
that for now, CENIOD only applies Lo the UNIVAC-1100-80.

When the CENIO parameter is used, an external UNIVAC-1100-80
COBOL file name of “10." will be used for the INPUT file.

3.3.8. Define a Dala Field.

FIELD = <NAME!, <BEG>, <END> | <LNG», <PICXx, <REP:

This statement is used to define data fields for each record
of the files being malched. Under INPUT, the FIELD statement may
be coded with three, four, or five paramelers.

Draft Page II-3-9 GENSTAN (7710719867

Expression Explanaltion

TNAME>» = Field Name

This parameter 1s the name of a field being defined in the
current INPUT File. It may be from 1 to 15 characlters in length,
must start with a letter of the alphabel (A to Z) and can contain
numbers (O to 9) and hyphens (-). A hyphen sign can't follow
iltself. The paramelter should nol be a COBOL reserved word. This
last restriclion is nolt checked by the GENSTAN processor butl will
cause errors in the generated program when il is compiled.

Occurances of NAME must be unigque for each file. Thus, the
NAME parameters must each be unique for all FIELD statements
under all INPUT header statemenls in any given GENSTAN user
program. ..

“BEGX = BReginning Position
from Lhe leflmost
characler position in
Lhe record (position
1)

The INPUT FIELD statement must have a beginning position.

<END> = Ending Position
Use a Negative Number
“LNG>» = Length
Use an Unsigned In-
teger

Note thal END and LNG are mutually exclusive (if you use ane
in a given FIELD statement expression, you can'il use the otlher:.
You must use eilher one or the olher for an INPUT FIELD state-—
ment,

<PIC» = Standard COBOL
DISPLAY PICTURE
Clause (ogptional)

WARNING -- <PIC>TURE clause parameters are currenlly nol eval-
uated in any way. Thus, the contenlt of a <PTCH parameter will
nol be checked against the <BEG> and <ENDX> or <LNGQ> parameters or
for validily excepl when lhe program is compiled. Thus an olLher-—
wise valid program may result in compilation or run—time errors
because of an inconsistenl PICTURE clause.

Ex: FIELD = NAME, 15,-30 A FIELD name for the current
input file is "NAME" and is
defined to be character
positions 15 to 30.

Draft Page II1-3-10 GENSTAN (771071986

Expression Explanation

Ex: FIELD

NAME, 15, 16 This is the egquivalenl FIELD
statement definition Lo Lhe
previous example, 2xceplt lhatl
the length oplion was used,.

“Ex: FIELD NAME , 15, 16, "X (16)"

(This is Lhe eguivalent FIELD
statement definilion Lo the
previous examples, except that
Lhe COBOL PICTURE clause
"X(16)" was explicitlly
provided.)

i

Draft Page I1-3—-11 GENSTAN (7/10/ 1784

GENSTAN

3.4. QUTPUT Header Statement

An OQUTPUT header stalement places the GENSTAN processor in a
state to accept statemenls and directives associaled wilh Uhe
generation of the outpul file by Lhe dala standardization pro-
gram. OUTPUT header stalemenl related statemenls and direclives
are detailed below:

Expression Explanation

3.4.1. The Qutout File Name.

The oulput file name is specified by tlhis statemenl. L.
must not be the same as the inpul file name and cannol be a COEBOL
reserved word.

Exs: FILENM = ABCD (The COBOL name by which this
file is known is "ABCD".)

An outpult file name (FILENM) may be up lto & characters long,
must start with an alphabetlic character and may have numeric
characters and hyphens (-). FILENM parameters longer than é
characters will be truncated with a warning. This statemenl must
be present if the LINK directive is used.

3.4.2. The File Specification.

The implementor defined, system specific file specificalion
is provided by lthis stalement.

Ex: FILESPC = "ABCDEFG.XYZ'" (The IBM-PC file specification
is "ABCDEFG.XYZ".)

The FILESPC statemenlt is used to provide addilional "exler-—
nal” file access information needed by the "TARGET' system.
Presently, this statement only applies to the IEM-PC.

3.4.3. Number of Records Per Block.

Ex: NRECS = 10 (There are 10 records per
block for the current file.)

3.4.4. Number of QOutput Records lo Print.

Ex: PRINT = 100 (Print 100 records of lhis
file on the defaull printer.’

3.4.5. A Direclive to Suppress Qutpul Generation.

Ex: NULL = TRUE (Do not create an QUTPUT
file.}

An DUTPUT file will be crealed for any value for the direc—
tive exceplt 'TRUE®.

Draft Page I11-3-12 GENSTAN {7710/ 17286

Expression explanation

3.4.5. The Record Size Statementl.

Ex: RECSIZE = 500 {The record size of lhis file
is 500 charactlers.)

" The RECSIZE statement will be overriden wilh an appropriate
warning if the record size parameler associaled wilh this stale-—
ment is found to be exceeded by FIELD statements associaled wilh
the OQUTPUT header statement.

3.4.6, The OUTPUT Device Type.

Ex: DEVICE = TAPE DEVICE = TAPE CARD | DISC
- (The OUTPUT file device 1is
Lape.

If no DEVICE is specified, DISC 1s assumed.

3.4.7. QUTPUT Data Characleristics.

Ex: DATA = ASCII DATA = CENIO i ASCII .
FIELDATA | XS3

(The character set of this
file is ASCII.)

ASCII is the only paramelter option currently implemented for
this statement. ASCII is an acronym for the American Standard
Code for Informalion Interchange.

The CENIO parameter will generate all the code necessary lo
read or write CENIO (Census Compacted) files containing ASCII
data, but buffer and record sizes may nol be correct. Note thatl
presently, CENIO only applies to the UNIVAC-1100-80.

When the CENIO parameter is used, an external UNIVAC-1100-80
COBOL file name of "20.'" will be used for the QUTPUT file.

3.4.8. Define a Data Field.
FIELD = <NAME:>, <BEG», <ENDX> | <LNG>, <PICX, <“REP>
This statement is used to define data fields for each record
of the files being matched. The FIELD statemenl may be coded

with three or four parameters. Al least the FIELD <NAME>» musl be
provided.

Draft Page 1I-3-13 GENSTAN (771071984

i

Espression splanation

£ NAME »

Field Name

This parameter is Lhe name of a field being defined in the
current INPUT File. Il may be from 1 to 1% characlters in lenqgth,
must start with a letter of the alphabel (A Lo Z) and can contain
numbers (O to 9) and hyphens (—=) in addition to letters. A
hyphen can't follow itself. The parameler should nol be a COBOL
reserved word., This last restriclion is nol checked by the
GENSTAN processor bul will cause errors in lhe generalted program
when 1l is compiled.

Occurances of <“NAME> musl be unique for each file, INPUT and
QUTPUT. Thus, there may be no more lhan two <NAME:* parametlers
the same under an enlire GENSTAN -user program, one each for all
INPUT and all OQUTPUT header slalemenls in any given GENSTAN user
program. Using the same <NAME> belween INPUT and OUTPUT FIELDs
is how FIELDs unchanged by PROCESS DEFinitions are generaled in
the DUTPUT file. GSee Secltion Z for an example.

<{BEG» = Beginning Position
from Lhe left—mostl
characler positlion in
the record (posilion
1),

~END> = Ending Position
Use a Negalive Number
“LNG> = Lenglh
Use an Unsigned Inte-
jer

Note that END and LNG are mutually exclusive (if you use one
in a given FIELD statemenl expression, you can'lt use the other).
They are bolh coded as the third parameter of the FIELD state-
ment.

“PIC» = Standard COBOL DISPLAY
PICTURE Clause (op
tional)
WARNING —-- <PIC>TURE clause paramelers are currenlly nol eval-

uated in any way. Thus, the content of a <PIC) parameter will
not be checked against the <BEG:> and <END> or <LNG> paramelers or
for validily excepl when the program is compiled. Thus an olher-—
wise valid program may result in compilation or run—-lime errors
resulting from an inconsistent PICTURE clause.

That information provided with the QUTPUT FIELD statement
will be used in generalting the oulputl file description. If in-
formation is nol provided, that informaltion provided with tlhe
INPUT FIELD statement or generated for a PROCESS DEFinition will
used instead.

Draft Page 11-3-14 GENSTAN (7/10/1986)

Expression Explanaltion

Examples:

NAME , 15, -30 A FIELD name for the curvrent
input file is "NAME" and is
defined to be characler
positions 15 to 30.

Ex: FIELD

NAME , 13, 16 This is the eguivalent FIELD
statement definition lo Lhe
previous example, excepl that
the length opltion was used.

Exs FIELD

NAME , 15, 16, "X (16} "

- (This is the equivalent FIELD
statement definitlion to Lhe
previous examples, excepl thatl
the COBOL PICTURE clause
"X(16)" was explicitly
provided.)

Ex: FIELD

NOTE: The following examples assume thal the following appears
® under an INPUT header statement:

FIELD = NAME, 15,16

Ex: FIELD = NAME,Z0 (This statemenl causes an oul-
put field to be generaled wilh
starting at character position
20 of the output file.)

Ex: FIELD = NAME,, 10 (This slatement causes an oul-

pul field to start al the nextl
available character position
in the outpul record and to
have a length of 10 char-
acters. The data will still
be from the INPUT FIELD with
the <NAME>: of NAME.

3.4.9. The LINK Directive.

The LINK causes GENSTAN to generate 3 UNIMAC macros as oul-
put instead of a COBOL Data Standardization program. These lhree
macros contain all the informalion needed by a subseqguent GENLINK
or UNDUPGEN user program to use the currenl GENSTAN DUTPUT file
as an INPUT file. Because some of the OQUTPUT FIELD paramentlers
may be based on earlier INPUT or PROCESS statemenls, lhe entlire
GENSTAN program must be provided, even though the LINK direclive
is only associated with the OUTPUT header statemenl. Use of a
LINK directive requires that a FILENM statemenl bLe provided.

Draft Page I1I-3-13 GENSTAN (7710719863

Explanation

Expression

(This direclive indicates to
GENSTAN the entire definition
assoclialted with the current
FILENM statement is to be used
in a subsequent GENLINK or
UNDUPGEN program generaltion.)

Ex: LINK = TRUE

See GENLINK or UNDUPGEN documentation seclion on the INPUT
statement LINK direclive for a detailed discussion of how Lhe
resulting generated UNIMAC macro subprograms are used in the
generalion of a record linkage or unduplication program. When
Lhis INPUT directive is provided, no additional statemenls need
be coded for the associated Matcher input file. Typically, only
MAXEBLK and possibly FILESPC would be coded. However, additional
FIELD elemenls would be coded if the user wanted to subdivide

already defined fields on the file.

Draft Page II-3-16 GENSTAN (7/710/198&)

GENSTAN

3.5. PROCESS Header Statement.

The PROCESS header staltemenl enables the user to define
transformations needed in the prepartiion of the data on the file
described by statements associated wilh the INPUT header state-—
ment into standardized data writlen to the file described by
statements associated with the QUTPUT header slatement.

Expression Explanation

2.5 1° neg
[R 4 O =

1
.« 1w [

3
m

Qtatamant
VR LSS v

DEF = <1D», “TYPE>, <“Inpul_Field_1%, ..., “Inpul_Field_n=
“ID* is a user provided process
definition name.

The PROCESS DEFinition ID name is the required first para-
meter of the DEF statemenl. It may be fraom 1 1o 15 characters in
length, must starl with a letter of the alphabet (A Lo Z) and can
contain numbers (0 to 9) and hyphens (-). A hyphen can't follow
itself. The parameter should not be a COBOL reserved word. This
last restriction is not checked by the GENSTAN processor but will
cause errors in .the generated COBOL program. The ID name must hLe
unigue over all occurances of the PROCESS DEFiniltion statement in
any given GENSTAN user program.

“TYPEZ may be any one of Lhe
GENSTAN data transformation DEFini-—
tion types that have been imple-—
menlted.

The “TYPE» parameter is the second parameler of the DEF
stalement and is required. There currently are 10 GENSTAN data
transformation TYPEs defined of which 7 have been implemented.
All of the ltypes are described below breifly and in more detail
in succeeding paragraphs in this section. Those nol yel imple-
mented are described to provide interim specifications for on-
going work.:

ADSTAN — the Bureau of the Census Geography Division's ADdress
STANdardizer. (Implementled.)

NMSTAN - a generalized NaMe STANdardizer. (Defined.)

CONGLOM - combines fields with intervening characlers
(CONGLOMerates fields). Leading and trailing spaces of the inpul
fields are ignored. (Implemented.)

MOVER - moves fields. (Implemented.)

CONCAT - combines (CONCATenates) fields withoul maodification.
(Defined.)

Draft Page I1I-3-17 GENSTAN (771071986}

Cxpression Explanalion

PARSE - PARSEs fields inlo tokens (splits a field into
component pieces). (Implemented.)

SOUNDEX — encodes a field using the SOUNDEX algorithm.
(Imglemented.)

NYSIIS - encodes a field using the NYSIIS algorithm.
(Defined.)

CONSTANT — provides a field containing & CONSTANT value.
(Implemented.)

SEQUENCE - generates a field containing a SEQUENCE number.
(Implemented.) - -

Input_Field_1, ..., Input_Field_n
are the inpul parameters lo Lhe
data transformtation definition
being invoked by this DEF state-
ment. '

Excepl for the SEQUENCE DEF <TYPE, lhere mustl always be at
least one Input_Field parameler in the DEF statement. Some
Input_Fields are-opltional but since the position of Input_Fields
determine how lhey are used, lhose nol provided muslt he expli-
citly null when followed by non-null Input_Fields. Input_Fields
are either previously defined data names, or parameters for
controlling the generation or execution of the data transforma-—
tion being DEFined. The previously defined data musl have been
either INPUT FIELD statemenlt names or PROCESS DEF statement
jeneraled oulpul names ar IDs. These are also "inputl data
fields" or "previously defined input data fields" in tlhe fol-
lowing discussions.

Each DEF TYPE generales one or more potential oulpul fields
Lhat can be referenced by using the ID as a prefix and one or
more predefined transformation resull fields as suffixes, sepa-—
rated by a hyphen. For example:

DEF = ADDRESS, ADSTAN, ADR-FLD, CITY, STATE, ZIP

results in the following potential data transformation definition
oulpul field names:

ADDRESS~HOUSEN, ADDRESS-PREDIR, ADDRESS-ADNAME,
ADDRESS~ADTYPE, ADDRESS-TYPFL, ADDRESS-SUFDIR,
ADDRESS~-ADCODE, ADDRESS-PSA, ADDRESS~-HNSUF, ADDRESS-LOCATN,
ADDRESS-WSA, ADDRESS-SECCODE, ADDRESS-SECADNM, ADDRESS-SS5A,
ADDRESS~-EXDESC, ADDRESS-EXINFO, ADDRESS-EXSA,
ADDRESS-ADSTAN, ADDRESS.

Draft Page I1II-3-18 GENSTAN (771071986}

GENSTAN

The last two potential names reference lhe entire outputl data
structure generated by lhe ADSTAN transformaltion. These are
constructed by prefixing the DEF <ID» paramelter lo the DEF TYPE
parameler separalted by & hyphen in the first case and by using

just the DEF «<ID» in the second. The first option is provided for
documentation purposes. Nole lhat using the <ID> alone always
returns the complele oulpul data slruclture resulting from tlhe
tranformation (DEF) <TYPEX. These names can be used as OUTPUT FIELD
statement names or PROCESS DEF statlement Inpul_Field_n names.

For example:

DEF = COMB, CONCAT, ADDRESS-HOUSEN, ADDRESS-PREDIR, CITY

Here the first two Input_Fields (the lhird and fourlh paramelers!
have been generated by the previous PROCESS DEF example. The
output field will be named "COMB" (no suffixes are necessary since
there is only one oulpul field from the PROCESS transformation DEF
type, CONCAT, although COMBCONCAT is legal), and will contain

more than 12 characters, a 10 characler house number, a two
characlter prefix streetl direction, plus whatever the length of

the INPUT FIELD statement named "CITY" was defined as.

The following paragraphs describe the funclioning, para-
meters, and potential oulput fields of each DEF type. Each
paragraph is divided into 3 subseclions:

1} A general descriplion of the transformation, with itls
TYPE parameler,

2) A description of each of the input fields, and

3) A descriplion of each potential outpul field suffixes,
meaning, maximum size, and data lype.

Draft Page II-3-19 GENSTAN (771671986

GENSTAN

3.5.1.1. Address Standardizer.

This process is a product of lhe US Bureau of Lhe Census
Geography Division. Il provides a standardized address, in the
form of 18 outpul fields given an arbitrary inpul address, US
Post Office, state, and Zip Code.

3.3.1.1.1. TYPE = ADSTAN.
The second DEF paramelter is ADSTAN.
3.5.1.1.2. Inpul Fields.

1) Address. The third DEF. parameler 1is a previously de-
fined data name containing the complete address excepl for ilhe
cily (Post Office), state, and Zip Code. The first 36 characters
of this field will be used, if il is longer than 3& characters
and blank filled if less.

2) Post Office Name. Any US Posltal Service Office may be
the content of the fourth DEF parameter. The field may contain a
maximum of 20 characters long and will be truncated by GENSTAN if
necessary. Post Office Name is oplional.

3) State. The standard (FIPS) 2 characlter US stale abbrev—
iation code 1s inpul 1o this field and is optional.

4) Zip Code. This field contains the first 5 digils of the
zip code. It is used lo resolve addresses in certain hlgh den-
sily populaltion areas and is optinnal.

3.5.1.1.3. Qutpul Fields.

Suffix Meaning Size Type
1 HOUSEN House Number 10 Numeric
Z2) ' PREDIR Primary Prefix Direction 2 Alphabetic

Indicates a compass direction prior to ADNAME.
Ex: N Randolph Street
where N is the PREDIR.
3) ADNAME Primary Address Name 20 Alphanumeric

This is typically the stireel name. The above example would
have an ADNAME of "Randolgph."

45 ADTYPE Primary Address Type 4 Alphanumeric

Draft Page 11-3-20 GENSTAN (77107 1986)

Suffix Meaning Size Uy L
3) TYPEFL Type Flag 1 Alphanumeric

Indicates whelther the ADTYPE succeeded the ADNAME: space =

no.
6) - SUFDIR Primary Suffix Direction 2 Alphabetlic
Indicates a compass direclion following the ADNAME.
7) ADCODE Primary Address Code 1 Alphabelic
Indicates the primary address delermination:
Content -Means
v o e e e e e e e e e e e st e e e
S = Blreet with & house number
T = Btreet withoul a house number
P = Post Office Box
B = Building, Shopping Center, etc.
I = Intersection
R = Rural Route, Star Route, etc.
0 = QOutside or Location ("4 Miles Oulside of Smallville')
C = Care of
N = Blank
U = Unidentified
8) PSA Primary Structure Address 30 Alphanumeric

This is a concatenation of PREDIR, ADNAME, ADTYPE, TYPEFL,
SUFDIR, and ADCODE in that order. :

Ex: An inpul address field containing:
323 N Randolph Street NW

would resultl in outpul fields with the following suffixes
containing:

HOUSEN- = "'323",
PREDIR = '"N",
ADNAME = "Randolph",
ADTYPE = "8T",
TYPEFL = "vy",
SUFDIR = "NW",
ADCODE = "S'", and
PSA = 323N RANDOLPH ST YNWS".
) HNSUF House Number Suffix 4 Al phanumeric

A suffix associated with the primary address house number.
Ex: 323A N Randolph

would resultl in an HNSUF = "A',

Draft Page II-3-21 GENSTAN (779071986)

Suffisx Meaning Size Type

10) LOCATN Primary Address Location 12 Alphanumeric

Indicatles thalt the primary address 1s an apartment, floor,
suite, room, etlc.

11) - WSA - Within Structure Address 16 Alphanumeric
Concatenaltion of HNSUF and LOCATN in thal order.
12) SECCODE Secondary Address Code 1 Alphabetic
See ADCODE above for conlent and meaning.
13) SECADNM Secondary Address .Name 20 Alphanumeric
14) S5A Secondary Stucture Address 21 Alphanumeric
Concatenation of SECCODE and SECADNM in thalt order.
15) EXDESC Extra Description 2 Alphanumeric
16) EXINFO Extra Information 20 Alphanumeric
Exlra Information contained in the address beyond that de-
Ltermined to be in the primary or secondary addresses. No expli-
cil parsing 1s provided. This potential oulpul contains the
residual data resulting from the address standardization process.
17) EXSA Extra Structure Address 22 Al phanumeric
Concatenation of EXDESC and EXINFO in that order. |
18) ADSTANS or null
Address Standardizer Structure

9 Alphanumeric

Contains everylhing defined above. In effect Lhis is a
concatenation of HOUSEN, PSA, WSA, 55A, and EXSA in thal order.

Draft Page 1I1-3-22 GENSTAN (7/10/1986

GENSTAN

3.5.1.2. Name Standardizer.

This PROCESS type defines a specialized person name
standardizer. The nature of lhe standardization process is
specifically tailored for each data standaizaltion program based
on information provided here. This PROCESS DEF <TYPE* can only
be used once in a GENSTAN program. :

3.5.1.2.1. <TYPE*> (lthe second DEF parameler) = NMSTAN.

This actually a collecltion of lransformations providing a
standardized name output from the name of a person. The user
codes as much information as he knows about the incoming name
field in multiple input fields. .This causes GENSTAN fo generate
one or more specialized person name parsers. If you do nol have
adegquale information look at the data file Lo see if you can spol
things that will help in separating the name parlts. The more
information that 1s provided, lhe betler lhe resulling name

parser will be. {(Not yel implemented.)

3.5.1.2.2. Input Fields.

1) Inpult Name. The first input field (third DEF parametler)
would contain a previpusly defined data name of any size contain-
ing the name to be parsed.

2) Content of Name Field. This is a characler string that
indicaltes the content (name parts and order possible) of the
above input Field. PBecause il contains spaces and, possibly,
olther special characlers (see below), il must be surrounded by
quotation marks (see Lhe general descriplion of parameters,
above). The string is constructed by putting the following
characlers together, wilh known separalor or field marking char—
acters, in the order in which they will occur in lhe incoming
name field (specified in The previous parameler):

Character Means

v e e e e e e e e e e e e e e e e e e T o e i o o

P = Prefix Title (one only).

X = Mandatory Prefix Title (one only).

F = First (one only, alway mandatory if present).

M = Middle MNMame (may have mulltiples — "M M" - indicates may
have more than one).

R = Mandatory Middle Name (if multiples — "R R" — only one is
mandatory).

L = Last Name (must have one, always mandaltory, may have
multiples - "L L" - only one is mandatlory).

5 = Buffix Name (one only).

T = Suffix Title (may have multiples - "T T" - indicaltes may

have more lhan one).

The most usual separator characters are space and comma. If
Lhe name parls are always separated by spaces, then each char-
acter from the above list in the string would be separated by a
space. Somelimes, in last name first field organization the last

Draft Page 11-3-23 GENSTAN {7/10/71986)

GENSTAN

name is always followed immedialely by a comma, lhen a space.
The string would then look like:

IIL’ F Mll

meaning "last name, always followed by a comma and space, lhen
first name, followed by space, lthen middle name." Sometimes a
special characler is used to mark a name paril. For example, an
asterisk is somelimes used to mark a suffix name. If Lhe suffix
name then would be placed after lhe last name in lastl name first
organization, the following would be coded:

"L#5, F M"
meaning "last name, followed by an aslerisk, followed by a suffix
name, followed by a comma, followed by a space, followed by firstl
then middle names separated by space.'" Note that since the
suffix name is never mandatory, and the last name is always
mandalory, lhere is no way for lhe name standardizer generalor Lo
determine whether the aslterisk is mandatory (always following the
last name) or not mandatory (always preceeding lhe always
optional suffix name)., If the latlter case is true the following
", " would be mandatory.

-

The following are lypical slrings used for lhis parameler:

String Meaning
"FoMoL First Name, Middle Name, Last Name, all sepa-

rated by spaces.
Ex: "William K Smith'.

"FRRLL" First Name, Multliple Mandatory Middle Names,
Multiple Last Names, all separated by
spaces.

Ex: “Jane NMI Smith Jones'.
UX.oL" Mandatory Prefix Title, Last Name (often

seen in mailing lists).
Ex: '"Ms. Jones'.

"L, F M" Last Name, First Name, Middle Name (i.e.,
last name first order, freguenlly used
on forms to be stored in lasl name

order).

Ex: "Smith, William K',
"PFMMLLSTT" aor
"X FRRLLSTT"

Possible or Mandatory Prefix Title, Firstl
Name, Possible or Mandatory Multiple
Middle Names, Mulliple Last Names,
Suffix Name, Multiple Suffix Titles.
Ex: "Dr William K G Smith PhD LLD".

3) Type of Aid Indicator. This is number indicaling one of

several possible name parsing aids have been provided in lhe name
field or data file:

Draft Page 1I1-3-Z24 GENSTAN (7/1G/71986)

Content
vV .

Content
V) -——

v

GENSTAN

1 = grder of multiple field(s) (indicated in the Field(s)
Applied To parameter) is in lhe order indicated by lhe
data field.

Content of Data Field

v

R

put multiple name parts into the oulpul field in re-—
verse order of occurance.

put the last multiple name part into the oulpul
field.

pul multiple name partls into the oulpul field in
normal order (as in the inpul name field). This is
the default for multiple name parl parsing and is
provided for documentation only.

put the first multliple name part in the output

field.

In all cases additional or overflow name parls are pul into
the —EXNM outpul field.

e o s oo o S i — ———" " i — S oS 0% T Mo e A 4SSk P defee S e B S S e S S M e Yo . v toure S Selin eses e etee beene Saems domas tomew aoman 0

2 = beginning of name part(s) pointed to by inpul file

field.

3 = end of name parl(s) pointed to by inpul file field.

4 = length of name parlt(s) provided in input file field.

Draft

5 = name part(s) prefixed (flagged) by special charactler

string (instead of the single character specifiable 1in
the content of name field siring —-— the Library of
Congress '"MARK" svsiem does this).

6 = name part(s) suffirved (delimited) by special characler

string (instead of the single character specifiable in
the content of name field siring).

7 = multiple name part(s) (eg. mulliple lasl names) are sep—

arated (delimited) by a special charater string {(instead
of the single characlter specifiable in the content of
name field strings.

Page 1I1-3-25 GENSTAN (7/10/1984)

Content Means

8 = multiple name part(s) are to be separated by special
character slring on oulput. The parser aid data field
contains special characler string. This string will
replace the delimiler or flag character or string.

"9 = use special lexicon (if available). The name of the
lexicon is provided in the parser aid data parameter.

10 = use predefined lexicons. This only applies to last,
middle and/or first names. Predefined lexicons deve-
loped by the Population Division of the Bureau of the
Census will be used. The parser aid data parametler
should point to a field indicating sex.

NOTE: Lexicons can be dangerous to use. Failure here
may cause & name parl lo be mis-assigned. Even success here may
cause problems. For example, if a person has a surname that .
appears lo be a first name and a given name thal appears Lo be a
surname, use of a lexicon could, conceivably cause a mis-assign-—
ment of the individual's firsl and last names.

If this parameter is coded, lhe following two parameters
(i.e., field(s) applied to and parser aid data) must also he
provided. This parameter together with the following parametlers
may be repeated as a sel up to five times including this one.

4) Field(s) Applied To.

This field contains & number which indicales the field
or fields to which this aid applies. The number entered is the
sum of any of the following:

Factor Means
vV A it e b T T ———— -

1 last name.

2 = first name.

4 = middle name.
8 = suffix name.
16 = prefix title.
32 = suffix title.

For example, if this parameter contained a 9, il would
indicate that the aid specified in the previous parameter applied
to last name and suffix name (the sum of 1 and 8). And if the
parameler contained a 7 (the sum of 1, Z, and 4), the aid would
apply to the last, first and middle names. A zero (0) can be
enlered to mean lhat the aid applies to all name parts. This is
the egquivalent of a 63 in this parameter (the sum of 1, 2, 4, 8,
16, and 32).

Draft Page 11I-3-26 GENSTAN (7710719846

GENSTAN

If a given name part has multiple occurances possible, then
il is assumed that the aid applies 1o all of them. Thus, if a
length field applies lo lasl name and mulliple lasl names are
possible, il is assumed lhe that lenglh applies over all last
names including intervening characlers.

5) Data Field.

This parameter (the sevenlh DEF parameter) provides either
control informalion, & previously defined field name, or the
special characler sequence as specified in the Type of Aid Indi-
cator field (Paragraph 3) above. This parameler would be contlrol
information if the type of aid indicalor were a 1, a previously
defined FIELD name or PROCESS DEF. statemenl generated outlpul name
or ID if the type of aid indicator were a 2, 3, or 4; and would a
character sequence if the lype of aid indicalor were a 5, 6,
or 7.

The next four sels of three paramlers (i.e., NMSTAN Type DEF
parameters &, 9, and 10; 11, 12, and 13; 14, 15, and 163 and 17,
18, and 19) would each consist of, respeclively, Type of Aid

*Indicators, paramelers containing Field(s) Applied To, and Data
Fields.

3.5.1.2.3. Qulpul Fields.

Suffix Meaning Size Type
1 LASTNM Last Name 30 Alphabetic or

Al phanumeric
(see discussion)

If multiple Last Names have been specified in the Content of
Name Field Inpul Field, each will be provided in the LASTNM
suffired output field separaled by spaces. This order may be
modified by using the field order lype of aid indicator (a "1"),
a "1" (Last Name) as a faclor of the field(s) applied to para-
meler, and an "R'" for reverse order of last names or "L for
normal order for all but last last name which would appear first
in the field.

2) FIRSTNM First Name 20 Alphabetlic
Only one First Name can be defined or will be provided.

3) MIDNM Middle MName 30 Alphabetic or
Alphanumeric

Initials are trealed as single character middle names.
Multiple Middle Mames are handled like multiple Last Names. (See
Lhe notes under LASTNM, above, for a discussion of how multiple
Lasl Names or 1initials are handled).

4 SUFNM Suffix Name 10 Alphanumeric

Draft Page 11-3-27 GENSTAN {(7/10/1986)

HY

uffi Meaning Size Type

For example, "Jr.", "Sr.', "I1", or "II1" are all Suffix
Names. Only a single Suffix Name is looked for if specified
(i.e. if multiple "S'"s are coded in Lhe inpul field, content of
field name, all but one will be ignored.

5) PRETITL Prefix Title 10 Alphanumeric

For example, '"Mr', "Mrs", "Dr.", and "Rev.'" are all Prefix
Titles. Only one prefix title is expeclted if specified.

& SUFTITL Suffix Title 20 Alphanumeric

For example, "PRD.', "“CPA", "Esq.", and "CDP'" are all Suffix
Tilles. Mulliple Suffix Titles are-permitted.

7) EXNM Extra Names 20 Alphanumeric

If only one name parlt is permitted in an oulpul field either
by explicilt or implicil coding (i.e. by coding of inpul fields
3), type of aid indicator, 4) field(s) applied to, and 5) data
field or by coding input field 2), content of name field) and
more than one is found, the addiltional name paril(s) are placed in
this oulputl field.

a8) NMSTAN or just the PROCESS ID (from the first DEF parametler
for this PROCESS)
Name Standardizer Structure
130 Aphanumeric

Contains all of the above fields as a single struclure.

Draft Page 11-3-28 GENSTAN (771071986

GENSTAN

3.5.1.3. Conglomeration of Dala.

This PROCESS combines the dalta of many previously defined
fields with zero or more interveninng characlers between Lhe
content of each data field. The PROCESS eliminates leading and
trailing blanks from each inpul data field.

3.5.1.3.1. TYPE = CONGLOM.
3.5.1.3.2. Input Fields.
1) Intervening Charactlers.

May be any sequence of characlers including a null char-—
acler. A null character is represenled by two gquotalion marks
("")., Any string containing special characlters should be sur—
rounded by gquotation marks.

2) Input Field Name(s).

Any number (up to 17) of previously defined field names may
*'"coanglomerated" by CONGLOM.

3.5.1.3.3. QOutlput Field.

The output field is either the PROCESS ID (the first para-
meler of lhis DEF statemenl) or the PROCESS ID followed by
"-CONGLOM". This field will contain the conglomerated data of
the inpul data fields leflt justified, blank filled. The
CONGLOMeration PROCESS consisls of sltripping leading and trailing
blanks from the content of the firsl input data field, moving the
result into the output field, appending the intervening characler
string on the outpul field, silripping the leading and trailing
bilanks from the content of the next inpul data field, appending
that resull to the oulpul field, appending the intervening char—
aclter string to the oulpul field, elc., through the remaining
input data fields.

3

Draft Page 1I1-3-29 GENSTAN (77107 . 786&)

~

GENSTAN

3.5.1.4. Mover.

This PROCESS performs an edited COBOL MOVE from the input
data field to the output field. If a piclure clause is not
provided, PICTURE X is assumed. If a field size is nol provided,
the field size of the input data field is assumed. MOVER is the
way lo resize an oulpul field of a predecessor PROCESS DEF which
is beinyg used as an input data field for a succeeding PROCESS DEF
which has a maximum input data field size (PARSER TOKEN1 being
used as inpul to the Post Office name inpul data field of the
ADSTAN PROCESS DEF Type as an example).

3.3.1.4.1. TYPE = MOVER.

3.5.1.4.2. Inputl Fields.

1) The "From'" Field.
This is any previous defined inpul data field.
2) Length.

This field is used lo specify the size of lhe '"mover" oulput
data field. If il is larger than the "From'" Field length above,
the consltlant character string will be repeated until the constant
outpul data field is filled. If this parameter is O, null or
missing the size of the "from" field will be used as lthe '"mover"
oulput data field length.

3) Picture Clause.

This is any legal COBOL PICTURE clause. See lhe descriplion
of the INPUT FIELD statement for further discussion. This field
is oplional. If nol present, the oulpul field will be assumed lo
hhave the PICTURE clause of the "from' field if Lhere is one. It
the "from'" field has none il will be assumed to be a character
field having the length specified above; and in the absence of a
“"length'" field, the length of the '"from' field will be used. If
this Input_Field is provided, the length field is ignored
(lreated as a comment) excepl for calculating The outpul record
length.

3.5.1.4.3. Qutpul Field.

The "to" field. Use either the PROCESS DEFinition ID or Ulhe
ID with "-MOVER'" to use the result.

Draft Page II-3-30 GENSTAN (771071986}

GENSTAN

3.5.1.5. Concatenalor.

This process concatenates two or more previously defined input
data fields without any modificaltion of inlernal contenl. Inter-
nal spaces are lefl '"as is', while Lhe content of the input data
fields are abutted end—-to—-end to form the outpul field.

3.5.1.5.1. TYPE = CONCAT.

3.5.1.5.2. Input Fields.

Any number (up lo 18) previously defined inpul data fields.

3.5.1.5.3. Qulpul Field. -

Use either the PROCESS DEFinition ID or the 1D wilh
"—CONCAT' to use the result. The maximum useful oulpul field
size from lLhis PROCESS DEFinilion is equal lto the sum of the
inpul data field sizes (but this can be specified differentlly in
an QUTPUT FIELD description.

Draft Page I11-3-31 GENSTAN (771071984

GENSTAN

3.5.1.6. General Parser.

This PROCESS DEFinition PARSEs the content of a previously
defined input data field providing a specified number of lokens
determined by provided delimiters, oulpul fields for the deli-
miters delermining Lthese tokens, and outpul fields for the re-
spective lengths for lthese lokens.

Parsing is the process of separaling a string of characters
into tokens based on some rule or sel of rules. The mosl usual
(and simplest) rule is that every token is separated from tLhe
nexl token in lhis string of characters by a delimiter.

A token is & string of characlters lhal has some meaning or
use (which may be limited to the particular program or syslem
being developed). For example, a '"First Name'" is a loken in an
individual name data field:; and a verb is a token in an English
senlence.

A delimiter is a siring of characlers thal separates tokens
from each other. In the above examples, Lhe delimiter for Lotlh
tokens would probably be a space.

3.5.1.6.1. TYPE = PARSE.

3.3.1.6.2. Input Fields.

1) Input String.

The previously defined data field conltaining a character
string to be parsed.

2) Maximum Number of Tokens.

The maximum number of tokens to be generated by this PARSEr.
This field is optional, and if null, only one token will be
provided.

3) Delimiters.

Any number of delimiters can be provided. A delimiler may
consisl of one or more characters. If no delimiter is specified,
space is assumed.
3.2.1.6.3. 0Outpul Fields.

There are three possible output fields for each token re-

quested. The '"n" in each case is a number from "1" to the number
in the maximum number of tokens inpul parametler.

Drafl Page I11-3-32 GENSTAN {7710/ 1584

GENSTAN

Suffix Meaning Size Type

1) TOKEN Contains the tLh token. 30 Alphanumeric
n n
Will be blank if less than tokens are found.
‘ n
2) DEL IMn Contains the nith delimiler.

m Alphanumeric

The nth delimiter contains the delimiter character or string
by which the nth token was determined. The size ("m'") of tlhe
oulput field is equal to the size of tLhe delimiter il contains.
This field will contain a space if less Llhan tokens are found.

- . n
3) TLENGTHRN Contains the length of the nth token found.
3 Numeric

The —-TLENGTHn field will contain a zero (0} if less than n
tokens are found in the inpul character string.

4) PARSE or just the PROCESS ID (from the first DEF parametler
- for this PROCESS)

General Parser Structure Size and Content
dependent on
number of tokens
regjuested

The size of this field can be determined by adding 30, the

size of tlhe largest delimitler specified, and 3 and multiplying
ithe resull by the maximum number of tokens parameter.

Draft Page I1I-3-33 GENSTAN (7/10/1986)

GENSTAN

3.5.1.7. GSOUNDEX String Encoder.

This PROCESS DEF encodes the contenl of a previously defined
data field using the SOUNDEX algorilhm as defined in Johnson, J.
Howard; Formal Models for String Similarity; PhD Dissertation,
Universily of Waterloo, Waterloo, Ontaria, Canada, 1983, p3. 87.

3.3.1.7.1. TYPE =50UNDEX.

3.3.1.7.2. Inputl Field.

A previously defined inpul data field containing the char—
aclter string to be encoded.

3.5.1.7.3. Butlpul Field.

Use either the PROCESS DEFinition ID or the ID witlh the
suffix "—-SOUNDEX" to access Lhe result.

Draft Page I1I1-3-34 GENSTAN (771071586

GENSTAN

3.5.1.8. NYSIIS String Encoder.

This PROCESS DEF encodes Lhe content of a previously defined
data field using the NYSIIS algorilhm as defined in Johnson, op.
cil.; pg. 99.

3.3.1.8.1. TYPE =NYSI11S.

3.5.1.8.2. Input Field.

A previously defined inpul data field containing the char-
acler string to be encoded.

3.5.1.8.3. Qutput Field. .

Use either the PROCESS DEFinition ID or the ID wilh the
suffix "-NYSIIS" to use the resultl.

Draft Page I1I-3-35 GENSTAN (7/10/1986)

GENSTAN

3.5.1.9. Define a Constant.

This PROCESS DEF provides constant data for lesls (see
below) or for inserlion in the oulpul data.

3.5.1.9.1. TYPE = CONSTANT.

3.5.1.9.2. Inpul Fields.

1) Constant Character String.

This field contains a characlter string Lhatl is lo used as a
constantl.

2) Length.

This field is used to specify the size of The constant
outputl data field. If it is larger than the constant character
string, above, the constanl character string will be repeated
until the constant oulput data field i1s filled. If this para-
meLer is 0O, null or missing the size of lhe constant field will

#he used as lhe constant oultputl data field length.

3) Picture .Clause.

This is any legal COBOL PICTURE clause. See the description
of the INPUT FIELD statemenl for furlher discussion. This field
is optional. If notl present, the contant field will be assumed
to be the characler, display data Lype of COROL. If Lhis
Input_Field is provided, the length field is ignored (lrealed as
a commentl).

3.5.1.9.3. Qutput Field.

Use either the PROCESS DEFinition ID or the ID wilth ULhe
suffix "-CONSTANT" to use Lhe result.

Draft Page 11-3-36 GENSTAN (7/10/ 1786

GENSTAN

3.5.1.10. Record Seguence Numberinig.

This PROCESS DEF provides & method of generating a unigue
sequnence number for every record processed by lhe data
standardization program generated by GENSTAN. This PROCESS DEF
<TYPE» can anly be used once in a GENSTAN program.

3.5.1.10.1. <TYPE:> = SEQUENCE.

3.5.1.10.2. Inpul Fields.

1) Starting Number.
The value from which sequence- numbering starls. {(Oplional’.
2) Increment.

The value which is added to the starting number to gel lhe
next sequence number. (Qptional).

3) Picture Clause.

A legal COBOL PICTURE clause for a numeric display data
item. If none is'provided "9(8)'" is assumed.
(Optional).
3.5.1.10.3. Dutputl Field.

Use either the PROCESS DEFinition ID or the 1D wilh the
suffix "—-SEQUENCE" to use the result.

Draft Page 1I1-3-37 GENSTAN (7/10/7/1986)

