
BUREAU OF THE CENSUS

STATISTICAL RESEARCH DIVISION REPORT SERIES

SRD Research Report Number: CENSUS/SRD/RR-86/15

GENERALIZED DATA STANDARDIZATION PROGRAM GENERATOR (GENsTAN)

PROGRAM GENERATION SYSTEM PART II

bY

William P. LaPlant, Jr.
U.S. Bureau of the Census

This series contains research reports , written by or in cooperation with
staff members of the Statistical Research Division, whose content may be
of interest to the general statistical research community. The views re-
flected in these reports are not necessarily those of the Census Bureau
nor do they necessarily represent Census Bureau statistical policy orprac-
tice. Inquiries may be addressed to the author(s) or the SRD Report Series
Coordinator, Statistical Research Division, Bureau of the Census, Washington,
D.C. 20233.

Recommended by: Matthew A. Jaro

Report completed: July 10, 1986

Report issued: July 22, 1986

U.S. Bureau of the Census

Statistical Research Division

Program Generation System

Part II

GENSTAN

Generalized Data Standardization Program Generator

LY William P. LaPlant, Jr.
Record Linkage Research Staff
Statistical Research Division

As of: 07/~10/~1986

Table of Contents

Section .l. Introduction to GENSTAN.....................II-‘l-4

,l . .l . A Simple Example.. .X1- 1-A

,1.2. An IBM-PC GENSTAN Session.........................II-A- 2

1.3 COBOL Program Generated............................II-.l- 3

Section- 2. GENSTAN Sample Program.......................II-2- “I

2:l. The Sample Program11-2-A
- .

2.2. Explanation of Sample GENSTAN ProgramII-2-3

Section 3. General GENSTAN Language Structure...........II-3- 1

.
3. A. GENSTAN Components................................II-3- ‘l

*3. .l . ,l . Directives 11-3-A

3.A.2. Header Statements...............................II-3- .l
,

3:1.4. Statements 11-3-A

3:1.5. GENSTAN Statement OrderII-3- j

3:1.6. Parameters, Parameter Lists and Keywords........II-3- 2

3.A.7. Coding GENSTAN Statements.......................II-3- 2

3:l.a. Comments~~.................................. 11-3-3

3:1.9. Description Format 11-3-3

3.2. Independent Directives.............................II-3- 5

3.2.A. GENSTAN Identification Directive................II-3- 5

3.2.2. Listing Options.................................II-3- 5

3.2.3. Target Machine for the Generated ProgramII-3-7

3.2.4. Symbol Table Dump Directive.....................II-3- 7

3.3. INPUT Header Statement u-3-a

3.3:l. The File Name Statement.........................II-3- 8

3.3.2. The File Specification.........................II-3- 8

3.3.3. Number of Records Per Block:.....................II-3- 8

3.3.4. Number of Records to Read for Test..............II-3- ti

Paqe II--l GENSTAN (07/AOiA9Bbi

GENSTAN Table of Contents

3.3.5. The Record Size Statement.......................II-3- 9

3.3.6. The INPUT File Device...........................II-3- 9

3.3.7: General Data Charateristics of a File...........II-3- 9

3.3.6. Define a Data Field.............................II-3- 9

3.4. OUTPUT Header Statement..........................II-3-q 2

3.4:l. The Outout File NameII-3-,12

3.4.2. The File Specification.. II-3-A2

3.4.3. Number of Records Per Block....................II-3-12

. 3.4.4. Number of Output Records to Print..............II-3-A 2

3.4.5. 4 Directive to Suppress Output Generation......II-3-q 2

:.4.x The Record Size Statement......................II-3-13

3.4.6. The OUTPUT Device TypeII-3-.13

3.4.7. OUTPUT Data Characteristics....................II-3-j 3

3.4.8. Define a Data Field II-3-.I3

3.4.9. The LINK Directive..............................II-3-q 5

3.5. PROCESS Header Statement 11-3-17

3.5.A. DEFine Statement................,.......~......Il-3-q7

3.5:l.A. Address Standardizer.........................II-3-2 0

3.5:1.2. Name Standardizer 11-3-23

3.5.A.3. Conglomeration of Data.......................II-3-2 9

3.5:1.4. Mover .. 11-3-30

3.5.l.5. Concatenator..............................~..II-3-3 .

3.5.A.6. General Parser 11-3-32

3.5.1.7. SOUNDEX String Encoder.......................II-3-3 4

3.5. d .a. NYSIIS String Encoder........................II-3-3 5

3.5:1.9. Define a Constant 11-3-36

3.5. .l. -10. Record Sequence NumLering...................II-Z-37

Page II-2 GENSTC\N (07/ .lO/ ,1986)

Introduct.ton to GENSTAN

Section ,l. Introduction to GENSTAlj.

GENSTAN stands for GENeralized data STANdardizer. GENSTAN
is one of a series of Bureau of the Census, Statistical Research
Division, COBOL program code generators written in UNIMAC.
UNIMAC is a high-level-language macro processor language which
itself is implemented in COBOL-74. GENSTAN can be used to
generate programs which perform many kinds of transformations on
sequential, non-hierarchical data files. These transformations

include:

::>Splitting a field apart according to user specit”led rul.es.
- .

“<Splitting an address field apart into Geography division ..’
specified components.

>Reoyanizing the order of data fields.

Xombining the content of data fields into a single field.

hkiding Sequence nunrbers and Constant data.

ZbEncodiny dat’a in various ways (Soundex, NYSISS).

This document describes how to use GENSTQN.

,l . ,l . e Simple Example.

The following is a simple GENSTAN program:

STANDARDIZER
Y BRIANTST.DAT
* TEST OF THE MICRO TEST DATA
* FROM BRIAN -- DC RELEASED PUBLIC DATA
INPUT
FILENM=MICROS
FIELD=FILE-CODE, .l, .l
FIELD=AGE,3,-4,“99”
FIELD=RACE,6,-7
FIELD=SEX,SJ
FIELD=:%-TO-HH, .l .1, --12
FIELD=INCOME;l4,-.17
FIELD=HH-NO, .19, -22
FIELD=PERSON-N0,24,-25

Page II-.l-.l GENSTAN i 0 7 .I .‘I 0 / I 9 a 6 i

Introduction to GENSTAN

.

OUTPUT
FIELD=FILE-CODE
FIELD=INCOME
FIELD=REL-TO-HH
FIELD=SEX
FIELD=RACE
FIELD=AGE
FIELD=HH-NO
FIELD=PERSON-NO
FILENM=ERIANR
*LINK=TRUE
END

This GENSTAN program reorganizes the data fields. No data
transformations (PROCESS DEF statements) are specified.

.1.2. An IBM-PC GENSTAN Session.

Assuming that the program in the above paragraph has been

I stored on the IBM-PC file “SAMPLE.GEN”, the following session on
an IBM-PC would cause the generation of the COBOL data standard-
ization program shown in the next paragraph as specified in this
GENSTAN user prog’ram. Everything actually part of the session is
in upper-case letters. What you would enter is underlined. All
explanations are surrounded by curly brackets (.:I).

C ::dJNIMAC
u ENTER MACRO LIBRARY NAME U*U
.:At this point you must enter the name of the file on your system
that contains your copy of the SRD Program Generator System.1
PCLIB.DAT

THIS IS A TEST
BUREAU OF THE CENSUS

STGTISTICAL RESEARCH DIVISION
RECORD LINKAGE RESEARCH STAFF

AUTOMATIC PROGRAM GENERATION SYSTEM
DATE=05/0.1/86 TIME=~lO:OO:OO
PLEASE SELECT ONE OF THE FOLLOWING GENERATORS:

STANDARDIZER
MATCHER
UNDUPLICATOR
a** ENTER ACCEPT FILE NAME (CON: FOR CONSOLE) ***
Xclt ti-lis point the user may either indicate that he is going to
enter the entire program from the keyboard by typing “CON:” or
that he wants to generate a matcher program from a previously
developed text file by entering the DOS file specification of the
text file containing his user program:>
z.MPLE . GEN

Page II-d-2 GENSTAN

SdlT~L+ie GENSTAN Session

GENERALIZED STANDARDIZER MODULE

USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE

. USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE
USER FILE

29 BRIANTST.DAT.
3 v TEST OF THE MICRO TEST DATA
4 u FROM BRIAN -- DC RELEASED PUBLIC DATA
5 INPUT
6 FILENM=MICROS
7 FIELD=FILE-CODE, .l , .l
8 FIELD=AGE,3,-4,“99”
9 FIELD=RACE,6,-7

,lO FIELD=SEX,S;l
.l .l F IELD=REL-TO-HH , .l .l , - .12
.12 FIELD=INCOME, ,14,-.17
.13 FIELD=HH-N0;19,-22
q4 FIELD=PERSON-N0,24,-25
.15 OUTPUT
.16 FIELD=FILE-CODE
.17 FIELD=INCOME
,18 FIELD=REL-TO-HH
,19 FIELD=SEX
20 FIELD=RACE
2.1 FIELD=AGE
22 FIELD=HH-NO

‘23 FIELD=PERSON-NO
24 FILENM=BRIANR

‘25 *LINK=TRUE
26 END

.I .3 COBOL Program Generated.

Based on the GENSTAN User Program entered above the fol-
lowing simple COBOL program is generated.

0 GENGEN
IDENTIFICATION DIVISION.
PROGRAM-ID. GENSTAN.

. AUTHOR. W-LAPLANT VIA UNIMAC.
DATE-WRITTEN. 07/“10/86. .1.1:42:39.
DATE-COMPILED.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-PC.
OBJECT-COMPUTER. IBM-PC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-FILE ASSIGN TO DISC.
SELECT OUT-FILE ASSrGN TO DISC.

DATA DIVISION.
FILE SECTION.
FD IN-FILE

LABEL RECORDS STANDARD
RECORD CONTAINS 25 CHARACTERS.

0 .l INPUT-RECORD.
05 WHOLE-INPUT PIC X(25).

Page II-,l-3 GENSTAN

Sample GENSTAN Session

05 INREC-FILE-CODE REDEFINES WHOLE-INPUT.
A0 FILE-CODE PI2 X(1 1.
A0 FILLER PIC X(24).

05 INREC-AGE REDEFINES WHOLE-INPUT.
.lO FILLER PIC X(2).
A0 AGE PIC 99.
,lO FILLER PIC X(2.1).

05 INREC-RACE REDEFINES WHOLE-INPUT.
A0 FILLER PIC X(5).
A0 RACE PIC X(2).
,lO FILLER PIC X(.18).

05 INREC-SEX REDEFINES WHOLE-INPUT.
,lO FILLER PIC X(8).
A0 SEX PIC X(A). - .
.lO FILLER PIG Xt.16).

05 INREC-REL-TO-HH REDEFINES WHOLE-INPUT.
.lO FILLER PIC X (,101.
,lO REL-TO-HH PIC X(2).
A0 FILLER PIC X(.13).

OS INREC-INCOME REDEFINES WHOLE-INPUT.
A0 FILLER PIC X(.13).
,lO INCOME PIC X(4).
.lO FILLER PIC X(8).

05 INREC-HH-NO REDEFINES WHOLE-INPUT.
,lO FILLER PIC X(.18).
A0 HH-NO PIC X(4).
,lO FILLER PIC X(3).

05 INREC-PERSON-NO REDEFINES WHOLE-INPUT.
,jO FILLER PIG X(23).
,lO PERSON-NO PIC X(2).

FD OUT-FILE
LABEL RECORDS STANDARD
RECORD CONTAINS A8 CHARACTERS.

0 ,l OUTPUT-RECORD.
05 WHOLE-OUTPUT PIC X(A8j.
05 OUT-REC-FILE-CODE REDEFINES WHOLE-OUTPUT.

10 FILE-CODE-OUT PIC X(A) .
.lO FILLER PIC X(17i.

05 OUT-REC-INCOME REDEFINES WHOLE-OUTPUT.
.lO FILLER PIC X(A).
.lO INCOME-OUT PIC X(4).
.lO FILLER PIC X(.13).

05 OUT-REC-REL-TO-HH REDEFINES WHOLE-OUTPUT.
.lO FILLER PIC X(5).
A0 REL-TO-HH-OUT PIG X (2).
A0 FILLER PIC X(AA).

05 OUT-REC-SEX REDEFINES WHOLE-OUTPUT.
,lO FILLER PIC X(7).
.lO SEX-OUT PIC X(A).
.lO FILLER PIC X(.10).

05 OUT-REC-RACE REDEFINES WHOLE-OUTPUT.
A0 FILLER PIC X(8).
,lO RACE-QUT PIC X(2).
,lO FILLER PIC X(8).

Page II-:I-4 GENSTAN

Sample GENSTAN Session

05 OUT-REC-AGE REDEFINES WHOLE-OUTPUT.
.lO FILLER PIC X(,10).
,lO AGE-OUT PIC X(2).
10 FILLER PIC X(6).

05 OUT-REC-HH-NO REDEFINES WHOLE-OUTPUT.
,lO FILLER PIC X(.12).
.lO HH-NO-OUT PIC Xi4).
.lO FILLER PIC X(2).

05 OUT-REC-PERSON-NO REDEFINES WHOLE-OUTPUT.
.lO FILLER PIC X(,161.
,lO PERSON-NO-OUT PIC X (2).

WORKING-STORAGE SECTION.
* WSPGEN
0 PDIVSET - _

PROCEDURE DIVISION.
BEGIN-GENSTAN.

OPEN INPUT IN-FILE.
OPEN OUTPUT OUT-FILE.

0 RDINPUT
READ-GENSTAN-INPUT.

READ IN-FILE
AT END GO TO GENSTAN-CLOSE-DOWN.

9 DOPROCS
GENSTAN-PROC-WORK SECTION.

* WTOTPUT
BUILD-OUTPUT-RECORD.

MOVE FILE-CODE TO FILE-CODE-OUT.
MOVE INCOME TO INCOME-OUT.
MOVE REL-TO-HH TO REL-TO-HH-OUT.
MOVE SEX TO SEX-OUT.
MOVE RACE TO RACE-OUT.
MOVE AGE TO AGE-OUT.
MOVE HH-NO TO HH-NO-OUT.
MOVE PERSON-NO TO PERSON-NO-OUT.

CAUSE-COBOL-OUTPUT.
WRITE OUTPUT-RECORD.
GO TO READ-GENSTAN-INPUT.

GENSTAN-CLOSE-DOWN.
CLOSE IN-FILE.
CLOSE OUT-FILE.
STOP RUN.

On the IBM-PC, the generated program will be written on the
file “MACOUT. DAT” . Change or copy this file immediately because
it will be overwritten by UNIMAC the next time it is used on your
computer.

The generated program is basically a very simple read and
write loop. A more complex example with an explanation of key
lines is given in Section 2, while a detailed, semi-formal des-
cription GENSTAN statements is given in Section 3.

Paye II-.l-5 GENSTAN (07i 10; 15’?36’!

Section 2. GENSTAN Sample Proqram.

In the following sample user program, only the information
the gser enters is shown, not ‘the response of the GENSTAN program
generator. How the SRD UNIMAC program generation system is
accessed and how the user’s computer system accesses data are not
discussed here. However, a complete sample interactive session
for the IBM-PC is shown in Section 1. The program shown here has
generated a successfully compiled data preparation program that
was used in a real case.

2. ,l . The Sample Program.
- .

Each statement of this sample program is preceded by a
number and “3 “. The user statement follows. F 0 r e i: am p 1 e , t h e
first line of the user program is “STAN” with the “L” coded in
position .l of the line. Line numbers preceeded by a plus sign
(+) are explained in the following paragraph. The user enters
each statement shown directly into the UNIMAC GENSTAN processor

~(“interactively”) or from a text file. The latter method is re-
commendo,. Each system on which the generator is implemented has
its own mechanism for accomplishing such entry of a preceded file
(for example the ‘“redirected standard input file,” “>,” of PC-DOS
or MS-DOS on the IBM-PC and compatible families of computers, and
the @ADD runstream command on the Sperry, Inc. UNIVAC ,lAOO series
processors) so each mechanism is documented seperately.

Line no.

.l ;:.

2 ::.
3 ;c.
4 ;:.
5 >

+ ::)

;;

9 >
q 0 >
q q ;:.

A2 >
.l 3 >
l4>
I 5 >
.l 6 1::.

Statement

STAN
* JURMANDS.GEN
* - GENERATES A DATA STANDARDIZATION PROGRAM FOR
* NEW JERSEY DEPARTMENT OF MOTOR VEHICLES DATA FILES
INPUT
LISTOPT=PROGRAM
RECSIZE=?40
FIELD=V-D-CODE, A, 1
FIELD=RRN,E,-7
FIELD=NAME-FORMATTED,8,30
FIELD=DMV-ST-ADDRESS,51,30
FIELD=CITY-STATE-ZIP,83,30
FIELD=DOE,1~13,6,“9(6)”
FIELD=VOTEID, .1.19,6, “9(6)”
FIELD=DMV , ,125, A5
FIELD=TAG-CODE, ,140, .l

Page II-2- 1 GENSTAN (07iO.l /' i 5'86)

I 7 1::.

1 8 ::>
.l 9 1::.

2 0 1::.
2 ,l 1::.

22 ::i.
mm ._
Cd ..>
2 4 ::.,
25 :I:.
2 6 :::.
2 7 1:’

2 8 :::.
2 9 :I:.
3 0 ::..
3 .l ::>
3 2 1::.
33 :i.
3 4 :::.
3 5 :::.
36 1:.
37 :::.

I 38 :>
39 >
40 :>

4 I :>
42 :::.
43 y>
44 1:.
45 ::h
4 6 :::.
47 ;:.

4 8 :::.
49 :>
50 ::*

PROCESS
DEF=NM, PARSE, NAME-FORMATTEL, n. 7 ” ”
DEF=SUFNM,MOVER,NM-TOKEN4
DEF=LAST-NAME,MOVER,NM-TOKEN3
DEF=LAST-NAME2,MOVER,NM-TOKEN2
DEF=MID-INIT,MOVER,NM-TOKEN2
DEF=FIRST-NAME,MOVER,NM-TOKENA
DEF=AD,PARSE,CITY-STATE-ZIP ,2, ‘I, N. J . ‘I, ” ,N. J . ‘I, ” ”
DEF=STATE,CONSTANT,NJ,2
DEF=CITY, MOVER, AD-TOKEN,1,36
DEF=ZIP,MOVER,AD-TOKEN2,S
DEF=DADDR,ADSTAN,DMV-ST-ADDRESS,CITYySTfiTE,ZIP
OUTPUT
FILENM=JURMhD - ,
RECSIZE=320
uLINK=TRUE
FIELD=V-D-CODE, ,l, ,l
FIELD=RRN,2,6
FIELD=NAME-FORMATTED,8,30
FIELD=DMV-ST-ADDRESS,38,30
FIELD=CITY-STATE-ZIP,68,30
FIELD=DOE,98,6
FIELD=VOTEID, ,104,6
FIELD=DMV, .l .lO, ,15
FIELD=TAG-CODE, ,125, .l
FIELD=LAST-NAME,q26,20
FIELD=FIRST-NAME,q46,20
FIELD=MID-INIT, ,166, .l
FIELD=DADDR , .167,99
FIELD=CITY
FIELD=STATE
FIELD=ZIP
*DUMP
END

Page 12-2-2 GENSTAN (07/O?; 19Bbj

GENSTAN S~ITI p 1 e P r o q r.am

2.2. Exulanation of Sample GENSTAN Program:

no. Line Explanation

,l 1::. This line specifies which SRD UNIMAC Program Generation
System Processor is to be used. The current choice, STAN, speci-
fies the GENSTAN Data Standardization Program Generator.

2 ;:. This a comment line. A comment line is any line that
starts with an asterisk in the first position of the line.

3 ;:. This GENSTAN header statement indicates that the fol-
lowing GENSTAN statements are associated with INPUT data.

4 ;:. DUMP is a special direcitive which causes GENSTGN to
list the content of all internal tables (not recommended). T II i s
directive has been made into a comment by the insertion of an
asterisk: in this example.

5 ;a The FILENM statement defines one of the two files
needed for a matcher program input. This name is used internally

*by the generator.

6 ::i The FILESPC statement defines the actual file name for
IBM-PC users.

7 > The FIELD statement defines a single field in the file
name whose FILENM preceeded. The FIELD statement shown here has
the name “C BNAELOCK ” , starts in record position ‘1, and is 9 char-
acters long.

8 ::. The FIELD statement name (“SOUNDEX-STREETN”) may be up
to A5 characters long and may be given in any order without
regard to position in the record. Note that this field statement
falls at the end of the record although it is the second one
defined since it starts in character position ,179 of the record
(i.e. it has the highest FIELD beginning position of any of the
fields defined for the record). This illustrate that the order
of the FIELD statements is unimportant, but one such statement is
required for each field referenced on each file.

.15 ‘;r The third parameter of the FIELD statement may represent
an ending position by being preceded by a hyphen (‘I-‘I). This
FIELD statement is two characters long since it starts in char-
acter position ,176 and ends in ,177.

Draft Page 11-2-3 GENSTAN (03/30/1986)

Line no. Explanation,

,1 8 ::> The first PROCESS DEF= statement causes the INPUT field
NAME-FORMATTED (the third parameter) to be split -- or PARSEd

(second parameter) -- into 4 (the fourth parameter) components or
tokens using a space (” “) -- the fifth parameter -- to determine
where one component ends and the next begins. Upon completion of
the process, the four components are availatile in COBOL data
items named NM-TOKEN.1, NM-TOKEN2, NM-TOKEN3, and NM-TOKEN4. The
prefix of the data items, NM is the DEF ID from the first par-
ameter of the statement. The ID allows unique reference to be
made t.o the tol::ens resulting from this particular process.

30 ;;. FILENM is Optional when following an INPUT header
statement. The FILENM statement is used in generating the
“internal” COBOL file name. - _

33 1:. A GENSTAN program does not require a PROCESS header
statement. When one is present, data transformation DEFinition
statements are exspected to follow.

CTo be completed.3

Draft Page 11-2-4 GENSTCIN (03/30/ .1986)

General GENSTAN Language Structure

Section 3. General GENSTAN Lanquaoe Structure

3. .l. GENSTAN Components.

The GENSTAN user language consists of “directives”, “heade
statements”, “statements”, and “parameters”. Directives, headet-

statements, and statements must each start a new line. Each

statement, including parameters, must be coded in uppercase when
letters of the alphabet are used.

3 . ,1 . .l . Directives.

Directives are user instructions to the GENSTAN UNIMGC pro-
cessor about how the processor is ‘to function while the user
statements are being evaluated. GENSTAN directives may or may
not be associated with specific header statements.

.

3.1.2. Header Statements.

I Header Statements set the “state” of the UNIMAC GENSTAN
processor. There are four GENSTAN header statements:

INPUT describes the characteristics of the file contain-
ing data to be preprared for further processing.

PROCESS describes the nature and charateristics of the
tranformations to be made, field by field, by ‘the
generated data standardization program.

OUTPUT describes the standarizer program output file.

END indicates to the GENSTCIN processor that the user’s
GENSTAN program is finished and that code gener-
ation can begin.

3.1.4. Statements.

Each header statement has specific statements that are coded
with it. Statements are GENSTAN user program statements which
provide the GENSTAN processor with information it needs to Iqen-
erate a file matching program.

3:l.S. GENSTAN Statement Order.

Each header statement iexcept END) and each statement may be
repeated as often as necessary. The order of header statements
and statements is unimportant except that some parameters asso-
ciated with certain header statement/statement or header statr-
ment/directive combinations may require that certain information
have been provided earlier.

Draft Page 11-3-l GENSTAN c 7i lo/ 1986 j

Generai GENSTFtN ianguage Strcccture

3. .1.6. Parameters, Parameter Lists and Keywords.

A parameter is the way specific information about content or

choice is programmed by the user. All statements and some direc-
tives have parameters which always must be entered on the same
line as their associated statement or directive. Statements and
directives which have parameters are called k:eywords. There may
be more than one parameter associated with a k:eyword. This set
of parameters is called a parameter list.

3:1.7. Coding GENSTAN Statements.

In coding, a GENSTAN keyword is followed by, and a parameter
or parameter list is prereded by an -equal sign (“=“) in a GENSTAN
statement.

E x am p 1 e :

FIELD=SOUNDEX , .1 ,4

I For readability, you may use spaces on either side of the
equal sign and of the commas separating the parameters in a
parameter list. The following example has exactly the same
parameters as the’ above example, because the spaces are ignored.

E:tampl e :

FIELD = SOUNDEX , ,l, 4

Any parameter can be surrounded by quote mark:s. But if a
parameter contains G-consists of a space, a comma, or a quote
mark: (“), the parameter must be surrounded by ‘quote mark:s. T 0
leave out a parameter or to enter a nul parameter in a parameter
list, use an additional comma. The following example has six
parameters: “WHOLE-NAME”, “CONGLOM”, a comma, “LASTNAME”,
“FIRSTNAME”, and “MIDINIT” .

E:<aKtF'le :

DEF=WHOLE-NAME, CONGLOM, ‘I,‘, LASTNAME, FIRSTNAME, MIDINIT

Cs quote mark can be represented in a parameter by using two
quote marks. Remember the parameter must then be surrounded by
‘quote marks. In the following example, the six parameters are
all the same as the previous example except the third, which is
one ‘quote mark:.

Example:

DEF=WHOLE-NAME, CONGLOM, ““““, LASTNAME, FIRSTNAME, MIDINIT

See Appendix A for a formal description (using a modified
Backus-Naur Form or BNFj of this and other GENSTAN user languiiqe
statements.

Draft Page 11-3-2 GENSTAN (7/.10/198&j

General GENSTAN Language Structure

3:1.a. Comments.

An asterisk (*) in the first position of a line means the
iine is a comment and the line will be ignored Ly the GENSTAN
processor. Comment lines may be used any place except before the
initial directive (which is actually not part of the Gti.i?TAN
processor but is, rather, a directive for the SRD Program Gener-
ation System as a whole). See the Sample Program, section 2,
1 ines 2 and 4, for example.

3.A.9. Description Format.

In the following paragraphs, each type of GENSTAN statement
or directive is illustrated by a -format. Th i s paragraph de-
scribes how that format is constructed to illustrate ‘the coding
of each type of GENSTAN statement or directive. The formats
given are either general formats or examples. Those formats
preceded by an “Ex: ” are examples containing illustrative
coding. All others are general formats. For formats that illus-
trate keyword expressions, the keyword precedes an equal sign

a(“=“) and the list of formal parameters or an example of actual
parameter(s), which might be entered to complete the expression,
follows. ,

In general formats, each possible parameter type is called a
“formal parameter. ” In this system, all keyword expression para-
meters are positional. This means that the program generator
knows how to treat each parameter by the position of the para-
meter in the keyword expression. FI formal parameter is repre-
sented by the name of the parameter, preceeded by “~1” and
followed by “I?“, in it’s relative position in the keyword
expression. 6 required formal parameter will be underlined in
the general format. A required formal parameter is one for which
the user must code something. The meaning of each formal
parameter in a general format is given in the “explanation”
column. In cases where the general format has a parameter
position that may contain one of several choices, the possible
alternatives are shown in the appropriate position and are
separated by bars (I 1 in the general format in the expession
column. Note that a formal parameter is not actually coded but
rather represents what k:ind of information might be coded in a
given parameter location.

For example, the following is a general format for a keyword
expression :

FIELD = <::N&ME>, .<BEG;>, .:;LNG> ; .:::END>, .(pIC;:., .:::REp;:.

.:x-a-:;:. : .:x--b-): .<:-c-::;.: .(-e-z:. 7 .(-f->: .::I-y-z:.: .<:-h-:1:.

i j j k j j
.:.-----J---e-‘>

Draft Page 11-3-3 GENSTQN

General GENSTAN Language Structure

This is a general format for the FIELD statement. The FIELD
statement is a statement type available under both INPUT and
OUTPUT header statements. It is coded by entering the L:eyworii
FIELD (marked a above) separated from its parameters by an equai
sign. (marked i 1. This statement can be coded with as many as 5
actual parameters, represented by 6 formal parameters (mar1::ed b,

cI e, f, g, and h). The formal parameters marked e and f are
separated by a bar (I, marked kj indicating that they represent a
choice in the third actual parameter (marked d). Thus, either an
CENDZ> parameter or a XLNGZz parameter would be coded. The commas
imarked j> are optional when actually coding but indicate here
the separation between actual parameters. Only those formal
parameters which are underlined must be provided.

If a group of parameters may be repeated as a group, they
will be surrounded by square brackets (C3) and followed an
ellipsis, i.e. 3 periods (...I. Square brackets without an
ellipsis may also be used to indicate that one or more parameters
are optional.

I In examples, the keyword expression (directive or statement)
in the “Expression” column is the way a the directive or state-
ment might actually be coded. The meaning of each example is
given in the “exblanat ion” column surrounded by parentheses.
Notes on the general use of the type of statement illustrated by
the example would not surrounded by parentheses.

Draft Page 11-3-4 GENSTAN (7/ lO/-l?B6,

GENSTAN

3.2. Independent Directives.

The GENSTAN program generator directives which are indepen-

dent of header statement state are detailed below. These GENSTAN

statements can appear any place in the program except as noted.

Expression Explanation

3.2:1. GENSTAN Identification Directive.

E :.: : STAN (This directive or
“STANDARDIZER” must be the
first statement in a GENSTAN

- user program.)

This directive is actually given in response to the SRD
UNIMAC Program Generator System question about which generator is
required. The choices currently are:

“STAN” or “STANDARDIZER” for this program, GENSTAN

“LINK ” o r “MATCHER ” for the record linkage program
generator, GENLINK

,

“UNDUP ” o r “UNDUPLICATOR” for the file unduplication
program, UNDUPGEN

One of these directives must appear first in the GENSTAN
program or be the reponse to the initial SRD Program Generation
System question if the system is being used interactively.

3.2.2. Listino Options.

The LISTOPT directive enables the user to control where his
program is listed (on the console, on the generated program,
neit,her or both) and whether the generated CObOL program will be
listed on the console or not.

LISTOPT = PROGRAM : NOW PROGRAM = The GENLINK user pro
I OUTPUT : BOTH gram is generated as
I ALL I OFF COBOL comments at

the beginning of the
generated COBOL file
matcher program
starting with the
statement following
this directive.

Draft Page 11-3-5 GENSTAN

Expression

A GENLINK user program comment will be shifted ‘to column 7 so
that the asterisk becomes the COBOL comment indicator. Gil other

GENLINK user statements will be shifted to the right 9 positions
and the characters * and I:> will be put in positions 7 and 8. The

asterisk will make this record a COBOL comment and the greater
than-sign will direntiate it from a GENLINK user program comment.

NOW =

Ex : LISTOPT = PROGRAM

OUTPUT =

- .

ALL or
EOTH =

OFF =

The GENLINK user pro
gram is displayed as
it is processed.

The generaiej COBOL
file matcher program
is displayed to the
user as it is being
generated.

All of the above
options are
activated.

Deactivates the
currently acivated
options for GENSTAN
user program state-
ments following this
directive.

(Generate a listing of this
user program as comments on
the generated COBOL program. i

Ex : LISTOPT = OUTPUT,NOW (List the COBOL program on the
console screen as it is gen-
erated. Also list the GENSTAN
user program on the console
screen as it is read in.)

Note that the LISTOPT directive must have one and can have
two keyword parameters. These keywords may be given in any order.
No check is made for the inconsistent use of keywords, i.e., OFF
and ALL may be provided but will produce undefined results.

The directive may be coded anywhere in a GENSTAN user proq-
ram. Thus you may output only part of the GENSTAN code to the
generated COBOL program or to the console screen by using
LISTOPT=NOW or PROGRAM where you want to start the output and
LISTOPT=OFF where you want it to stop.

Draft Page 11-3-6 GENSTAN i7/.10/ 19Bbj

Expression

You cannot, however, similarly control output of the COEOL
program, because there is no direct order correspondence between
the GENSTAN user program and the generated COBOL program. Fur-
ther, except for the optional generation of the GENSTAN user
program code as prefix comments, the COBOL program is not yener-
ated until after the END statement header (the last GENSTAN user
program code by definition) is encountered in the user program.

3.2.3. Taruet Machine for the Generated Program. --

The TARGET directive idicates the machine upon which the
COBOL program will be compiled and run. This does not have to be
the machine on which SRD Program Generator is being run. If this
directive is not provided, the machine on which the SRD Program
Generator is operating will be considered the TARGET for the
generated program.

TARGET = IBM-PC
: UNIVAC-,1 .lOO-80 This directive defines the

tagret system of the UN,IMAC
SRD Program Generator System.

As stated earlier, this directive is used to indicate which
computer system will be used to run the data standardizer program
being generated by GENSTAN. This is important because each COBOL
implementation and each computer operating system is slightly dif-
ferent and the generator has to generate different code for each.
In addition, some GENSTAN user statements are interpreted dif-
ferently for different computer target systems. For example, the
FILESPC statement of the INPUT and OUTPUT header statement is
meaningful, at present only for the IBM-PC and TARGET=IBM-PC will
be assumed if TARGET is not specified and FILESPC is coded.

3.2.4. Symbol Table Dump Directive.

Ex : DUMP (The internal GENSTAN program
generator tables will be DUMPed
after the END header statement
but before the match program is
generated. 1

The DUMP directive is used to ensure that the GENSTAN user state-
ment processor is interpreting the GENSTAN program correctly. I t
is not needed for a “production” match program generation run and
since it is time consuming it is not recommended.

Draft Page 11-3-7 GENSTAN i7i lO/ 1986 1

GENSTAN

3.3. INPUT Header Statement.

An INPUT header statement places the GENSTAN processor in a
state to accept statements and directives associated with the
generation of the input file by the data standardization pro-
gram; The INPUT header statement statements and directives are
detailed below:

Expression Explanation

3.3. .1: The File Name Statement. ---

The input file name is specified by this statement. It must

not be the same as the output file name and cannot be a COBOL
reserved word.

Ex : FILENM = ABCD (The COBOL name by which this
file is known is “ABCD”. 1

An input file name (FILENM) may be up to 6 characters long,
must start with an alphabetic character and may have numeric

* characters and hyphens (-1. FILENM parameters longer than 6
characters will be truncated with a warning. This statement is
optional.

3.3.2. ,The File Specification.

The implementor defined, system specific file specification
is provided by this statement.

Ex : FILESPC = “ABCDEFG. XYZ” (The IBM-PC file specification
is “ABCDEFG. XY Z ‘I. 1

The FILESPC statement is used to provide additional “exter-
nal” file access information needed by the “TARGET” system. For
now, this statement only applies to the IBM-PC.

3.3.3. Number of Records Per Block. -

Ex : NRECS = .lO (There are .lO records per
block for the INPUT file.)

3.3.4. Number of Records a Read for Test. -

Ex : TEST = .lOO (Stop after reading ,100
records of this file.)

Draft Page II-3-8 GENSTAN (7/ lO/“I986~

E;tplanatlon ---.

3.3.5. - The Record Size Statement.

E:< : RECSIZE = 500 (The record sire of this file
is 500 characters. 1

-The RECSIZE statement will be overriden with an appropriate
warning if the record size parameter associated with this state-
ment is found to be exceeded by FIELD statements associated with
the INPUT header statement.

3.3.6: The INPUT File Device. ---

Ex : DEVICE = TAPE DEVICE = TAPE I CARD 1 DISC
_ CThe INPUT file device is

tape.)

If no DEVICE is specified, DISC is assumed.

3.3.7. General Data Charateristics of 4 File.

Ex : DATA = ASCII DATA = CENIO t ASCII I
I EBCDIC I FIELDATA ! XS3

(The character set of this
, file is ASCII.)

ASCII is the only parameter option currently fully implemen-
ted for this statement. ASCII is an acronym for the American
Standard Code for Information Interchange. EBCDIC stands for Ex-
tended Binary Coded Decimal Information Code and is a character
code developed in the late ,1950’s for use on IBM main-frame
computer systems. EBCDIC is currently only available if the
target system is the UNIVAC-,l.lOO-80. FIELDATA is a character set
implemented on the UNIVAC-1.100-80 to maintain compatibl i ty with
ealier versions of Sperry UNIVAC computers. XS3 stands for the
excess-3 character code, a code set which was developed to sup-
port paper tape and data communications applications.

‘The CENIO parameter will generate all the code necessary to
read or write CENIO (Census Compacted) files containing (for nowi
ASCII data, but buffer and record sizes may not be correct. Note
that for now, CENIO only applies to the UNIVAC-.l,lOO-80.

When the CENIO parameter is used, an external UNIVAC-1100-80
COBOL file name of “,lO.” will be used for the INPUT file.

3.3.8. Define a Data Field - - -------

FIELD = .<NAME;:. , .<:BEG;:. , .:::m> ; .:::E;:. , .:;pIC ::. , .:::REp ;:.

This statement is used to define data fields for each record
of the files being matched. Under INPUT, the FIELD statement may
be coded with three, four, or five parameters.

Draft Page 11-3-9 GENSTAN

XNAME::, = F i e 1 cl Name

This parameter is the name of a field being defined in the
current INPUT File. It may Le from A to .15 characters in length,
must start with a letter of the alphabet (A to Z) and can contain
numbers (0 to 9) and hyphens (-). A hyphen sign can’t follow
itself. The parameter should not be a COBOL reserved word. This
last restriction is not checked Ly the GENSTAN processor but will
cause errors in the generated program when it is compiled.

Occurances of NAME must be unique for each file. Thus, the
NAME parameters must each be unique for all FIELD statements
under all INPUT header statements in any given GENSTAN user
program. - .

.::: E(EG 1::. = Eeginning Position
from the leftmost
character position in
the record (position
.l) .

The INPUT FIELD statement must have a beginning position.

, (END;> = Ending Position
Use a Negative Number

.:;LNG::p = Length
Use an Unsigned In-
teger

Note that END and LNG are mutually exclusive (if you use one
in a given FIELD statement expression, you can’t use the other).
You must use either one or the other for an INPUT FIELD state-
men t .

(p I C > = Standard COBOL
DISPLAY PICTURE
Clause (optional)

WARNING -- XPIC>TURE clause parameters are currently not eval-
uated in any way. Thus, the content of a .:::PJG::> parameter will
not be checked against the .:::EEG:> and (END> or .:::LNGz:. parameters or

for validity except when the program is compiled. Thus an other-
wise valid program may result in compilation or run-time errors
because of an inconsistent PICTURE clause.

E x am p 1 e s :

E :.: : FIELD = NAME, .15,-30 A FIELD name for the current
input file is “NAME” and is
defined to be character
positions d5 to 30.

Draft Page II-340 GENSTAN (i’/AO/ ‘l9Bbi

Expression

E>: : FIELD = NAME, .15, .1.6 This is the equivalent FIELD
statement definition to the
previous example, except that
the length option was used.

E :.: : FIELD = N~ME;l5;16,“X~~16~”
(This is the equivalent FIELD
statement definition to the
previous examples, except that
the COBOL PICTURE clause
“X (,16) ” was explicitly
provided.)

Draft Page 11-3-A 9 GENSTCIN

GENSTAN

3.4. OUTPUT Header Statement

An OUTPUT header statement places the GENSTAN processor in a
state to accept statements and directives associated with t’he
generation of the output file by the data standardization pro-
4 ram-. OUTPUT header statement related statements and directives
are detailed below:

Expression Explanation

3.4:l: The Outout File Name. --

The ou’tput file name is specified by this statement. ;I,
must not be the same as the input file name and cannot be a COBOL
reserved word.

Ex: FILENM = AECD (The COBOL name by which this
file is known is “ABCD”. 1

An output file name (FILENM) may be up to 6 characters long,
must start with an alphabetic character and may have numeric

* characters and hyphens (-). FILENM parameters longer than 6
characters will be truncated with a warning. This statement must
be present if the LINK directive is used.

3.4.2. The File Specification.

The implementor clef ined, system specific file specification
is provided by this statement.

Ex : FILESPC = “ABCDEFG . XY Z ” (The IBM-PC file specification
is “ABCDEFG.XYZ”. 1 ’

The FILESPC statement is used to provide additional “exter-
nal” file access information needed by the “TARGET” system.
Presently, this statement only applies to the IBM-PC.

3.4.3. Number of Records Per Block. - --

E:< : NRECS = A0 (There are A0 records per
block for the current file.)

3.4.4. Number of Output Records to Print.

Ex : PRINT = A00 (Print ,100 records of this
file on the default printer.!

3.4.5. fi Directive to Suppress Output Generation. -

E:< : NULL = TRUE (Do not create an OUTPUT
file.)

An OUTPUT file will be created for any value for the direc-
tive except ‘TRUE’.

Draft Page II-3-.I2 GENSTAN i7/.1Oi 1786i

.

_Expression

3.4.5. - The Record Size Statement.

Ex : RECSIZE = 500 iThe record size of this flie

is 500 characters.)

The RECSIZE statement will be overriden with an appropriate
warning if the record size parameter associated with this state-
ment is found to be exceeded by FIELD statements associated with
the OUTPUT header statement.

3.4.6: - The OUTPUT Device Type.

E:c : DEVICE = TAPE DEVICE = TAPE I CARD I DISC
- (The OUTPUT file device is

tape. j

If no DEVICE is specified, DISC is assumed.

3.4.7. OUTPUT Data Characteristics.

Ex: DATA = ASCII DATA = CENIO I ASCII I
I FIELDATA : XS3

(The character set of this
file is ASCII.)

ASCII is the only parameter option currently implemented for
this statement. ASCII is an acronym for the American Standard
Code for Information Interchange.

The CENIO parameter will generate all the code necessary to
read or write CENIO (Census Compacted) files containing ASCII
data, but buffer and record sites may not be correct. Note that
presently, CENIO only applies to the UNIVK-1100-80.

When the CENIO parameter is used, an external UNIVAC-MOO-80
COBOL f i le name of “20. ” will be used for the OUTPUT file.

3.4.8. Define a Data Field. --P

FIELD = (NAME:), .(EEG>, (END;> : .<LNG>, .::pIC:,, .:::REf’:::.

This statement is used to define data fields for each record

of the files being matched. The FIELD statement may be coded
with three or four parameters. At least the FIELD f:NAME;> KIUSt be

provided.

Draft Page II-3-.13 GENSTAN

Expression

.::I NAME:::. = F i e 1 d NaKle

.

This parameter is the name of a field being defined in the
current INPUT File. It may be from ,l to .15 characters in length,
must start with a letter of the alphabet (4 to Z) and can contain
numbers (0 to 9) and hyphens (-1 in addition to letters. A
hyphen can’t follow itself. The parameter should not be a COBOL
reserved word. This last restriction is not checC::ed by the
GENSTQN processor but will cause errors in the generated program
when it is compiled.

Occurances of c::NAME> must be unique for each file, INPUT and
OUTPUT. Thus, there may be no more than two XNFIME::? parameters
the same under an entire GENSTAN -user program, one each for all
INPUT and all OUTPUT header statements in any given GENSTAN user
program. Using the same .:::NAME:> between INPUT and OUTPUT FIELDS
is how FIELDS unchanged by PROCESS DEFinitions are generated in
the OUTPUT file. See Section 2 for an example.

.::lEJEG;> =: Beginning Position
from the left-most
character position in
the record (position
A 1 .

.;I END > = Ending Position
Use a Negative Number

.:::LNG) = Length
Use an Unsigned Inte-
13 e r

Note that END and LNG are Klutually exclusive (if you use one
in a given FIELD statement expression, you can’t use the other j .
They are both coded as the third parameter of the FIELD state-
lT1el-l t .

.::: p I C 1::. = Standard COBOL DISPLAY
PICTURE Clause (op
tional)

WARNING -- XPIC>TURE clause parameters are currently not eval-
uated in any way. Thus, the content of a XPIC:; parameter will
not be checked against the XBEG::, and XEND:> or XLNG3:* parameters or
for validity except when the program is compiled. Thus an other-
wise valid program may result in compilation or run-time errors
resulting from an inconsistent PICTURE clause.

That information provided with the OUTPUT FIELD statement
will be used in generating the output file description. If in-
formation is not provided, that information provided with the
INPUT FIELD statement or generated for a PROCESS DEFinition will
used instead.

Draft Page II-3-,14 GENSTAN (7/.10/198&J)

Expression

E:.:a~~pl es:

Expianat 1 on

Ex : FIELD = NAME, ,15, -30 A FIELD name for the current
input file is “NAME” and is
defined to be character
positions A5 to 30.

E ;.: : FIELD - NAME;15;16 This is the equivalent FIELD
statement definition to the
previous example, except that
the length option was useci.

E :.: : FIELD = NAME,l5;16,“X(l6~”
- (This is the equivalent FIELD

statement definition to the
previous examples, except that
the COEiOL PICTURE clause
“X (,16) ” was explicitly
provided.)

NOTE : The following esamples assume that the following appears
*under an INPUT header statement:

FIELD = NAME, l5, lb

Ex : FIELD = NAME,20

E:< : FIELD = NAME,, l0

(This statement causes an out-
put field to be generated with
starting at character position
20 of the output file.)

(This statement causes an out-
put field to start at the next
available character position
in the output record and to
have a length of ,I0 char-
acters. The data will still
be from the INPUT FIELD with
the (NAME::> of NAME.

3.4.9. The LINK Directive. --

The LINK causes GENSTAN to generate 3 UNIMAC macros as out-
put instead of a COBOL Data Standardization program. These three
macros contain all the information needed by a subsequent GENLINK
or UNDUPGEN user program to use the current GENST&N OUTPUT file
as an INPUT file. Because some of the OUTPUT FIELD paramenters
may be based on earlier INPUT or PROCESS statements, the entire
GENSTAN program must be provided, even though the LINK directive
is only associated with the OUTPUT header statement. ilse of a

LINK directive requires that a FILENM statement be provided.

Draft Page II-3-,l5 GENSTAN i 7/’ ,101 I986 1

_E2pression -

Ex : LINK = TRUE

.E x p 1 an a t 1 o n ----

(This directive indicates to
GENSTAN the entire definition
associated with the current
FILENM statement is to be used
in a subs,equent GENLINK or
UNDUPGEN program generation. j

See GENLINK or UNDUPGEN documentation section on the INPUT
statement LINK directive for a detailed discussion of how the
resulting generated UNIMAC macro subprograms are used in the
qenerdtion of a record linkage or unduplication program. When
this INPUT directive is provided, no additional statements need
be coded for the associated Matcher input file. Typically, only
MAXBLK and possibly FILESPC would be coded. However, additional
FIELD elements would be coded if the user wanted to subdivide
already defined fields on the file.

Draft Page II-3-,16 GENSTAN (7/.1Oi 1986i

GENSTAN

3.5. PROCESS Header Statement.

The PROCESS header statement enables the user to define
transformations needed in the prepartion of the data on the file
described by statements associated with the INPUT header state-
ment into standardized data written to the file described by
statements associated with the OUTPUT header statement.

Expression Explanation

3 . 5 . ,l *. DEFine Statement.

DEF = XID>., .<TYPE>, .:::InFlut_Field_.l:::., . . . , .:::Input-Field-n:.:, -
- .

<::ID> is a user provided process
definition name.

The PROCESS DEFinition ID name is the required first para-
.

meter of the DEF statement. It may be from ,l to ,15 characters in
length, must start with a letter of the alphabet (A to Z) and can
contain numbers (0 to 9) and hyphens t-j. A hyphen can’t follow

* itself. The parameter should not be a COBOL reserved word. This
last restriction is not checked by the GENSTAN processor but will
cause errors in the generated COBOL program. The ID name must be
unique over all occurances of the PROCESS DEFinition statement in
any given GENSTAN user program.

XTYPE> may be any one of the
GENSTAN data transformation DEFini-
tion types that have been imple-
mented.

The XTYPE3> parameter is the second parameter of the DEF
statement and is required. There currently are .lO GENSTAN data
transformation TYPES defined of which 7 have been implemented.
All of the types are described below breifly and in more detail
in succeeding paragraphs in this section. Those not yet imple-
mented are described to provide interim specifications for on-
going work.:.

ADSTAN - the Bureau of the Census Geography Division’s ADdress
SThNdardizer. (Implemented. 1

NMSTAN - a generalized NaMe STANdardizer. (Defined.)

CONGLOM - combines fields with intervening characters
(CONGLOMerates fields). Leading and trailing spaces of the input
fields are ignored. (Implemented.)

MOVER - moves fields. (IKlpleKlented. J

CONCAT - combines (CONCATenates) fields without modification.
iDef ined.)

Draft Page II-3-.17 GENSTCIN i7/10/.1986)

PARSE - PARSES fields into tokens <splits a field into
component pieces1. (IK~pleK~ented.)

SOUNDEX - encodes a field using the SOUNDEX algorithm.
(Implemented.)

NYSIIS - encodes .a field using the NYSIIS algorithm.
(Defined.)

CONSTANT - provides a field containing a CONSTANT value.
(Implemented.)

SEQUENCE - generates a field containing a SEQUENCE nurrlber.
(IKlpleKlented.) - _

Input-Field-l, Input-Field-n
are the input parameters to the
data transformtation definition
being invoked by this DEF state-
ment.

Except for the SEQUENCE DEF .<TYPE>, there must always be at
least one Input-Field parameter in the DEF statement. Some
Input-Fields are’ optional but since the position of Input-Fields
determine how they are used, those not provided must be expli-
citly null when followed by non-null Input-Fields. Input-Fields
are either previously defined data names, or parameters for
controlling the generation or execution of the data transforma-
tion being DEFined. The previously defined data Klust have been
either INPUT FIELD statement names or PROCESS DEF statement
generated output names or IDS. These are also “input data
fields” or “previously defined input data fields” in the fol-
lowing discussions.

Each DEF TYPE generates one or more potential output fields
that can be referenced by using the ID as a prefix and one or
more predefined transformation result fields as suffixes, sepa-
rate’d by a hyphen. For example:

DEF = ADDRESS, ADSTAN, ADR-FLD, CITY, STATE, ZIP

results in the following potential data transformation definition
output field names:

ADDRESS-HOUSEN, ADDRESS-PREDIR, ADDRESS-ADNAME,
ADDRESS-ADTYPE, ADDRESS-TYPFL, ADDRESS-SUFDIR,
ADDRESS-ADCODE, ADDRESS-PSA, ADDRESS-HNSUF, ADDRESS-LOCATN,
ADDRESS-W!%, ADDRESS-SECCODE, ADDRESS-SECADNM, ADDRESS-S!%,
ADDRESS-EXDESC, ADDRESS-EXINFO, ADDRESS-EXSA,
ADDRESS-ADSTAN, ADDRESS.

Draft Page II-3-A8 GENSTAN (7/,10/1986)

GENSTAN

The last two potential names reference the entire output data
structure generated by the ADSTAN transformation. These are
constructed by prefixing the DEF .:::ID? parameter to the DEF TYPE
parameter separated by a hyphen in the first case and by using
just the DEF .:::ID::* in the second. The first option is provided for
documentation purposes. Note that using the .<ID> alone always
returns the complete output data structure resulting from the
tranformation (DEF) XTYPEZ>. These names can be used as OUTPUT FIEi
statement names or PROCESS DEF statement Input-Field-n names.
For example:

DEF = COMB, CONCAT, ADDRESS-HOUSEN, ADDRESS-PREDIR, CITY

.

Here the first two Input-Fields Jtt!e third and fourth parametersj
have been generated by the previous PROCESS DEF example. The
output field will be named “COME” (no suffixes are necessary since
there is only one output field from the PROCESS transformation DEF
type r CONCAT, although COMECONCAT is legal), and will contain
more than d2 characters, a 10 character house number, a two
character prefix street direction, plus whatever the length of
the INPUT FIELD statement named “CITY” was defined as.

The following paragraphs describe the functioning, para-
meters, and pote,ntial output fields of each DEF type. Each
paragraph is divided into 3 subsections:

4) A general description of the transformation, with its
TYPE parameter,

2) A description of each of the input fields, and

3) A description of each potential output field suffixes,
meaning, rrkximum size, and data type.

Draft Page II-349 GENSTAN

.D

GENSTAN

3.5:l.A. Address Standardizer.

This process is a product of the US Bureau of the Census

Geography Division. It provides a standardized address, in the
form of .18 output fields given an arbitrary input address, US
Post Office, state, and Zip Code.

3.5. .l. ,l. ,l. TYPE = ADSTAN.

The second DEF parameter is ADSTAN.

3.5. .l. .1.2. Input Fields.

.

A) Address. The third DEF- parameter is a previously de-
fined data name containing the complete address except for the
city (Post Office), state, and Zip Code. The first 36 characters
of this field will be used, if it is longer than 36 characters
and blank filled if less.

2) Post Office Name. Any US Postal Service Office may be
the content of the fourth DEF parameter. The field may contain a

* maximum of 20 characters long and will be truncated by GENSTAN if
necessary. Post Office Name is optional.

3) State. The standard (FIPS) 2 character US state abbrev-
iation code is input to this field and is optional.

4) Zip Code. This field contains the first 5 digits of the
zip code. It is used to resolve addresses in certain high den-
sity population areas and is optional.

3.5. .l. A .3. Output Fields.

Suffix Meaninq Site Type

,1) HOUSEN House Number ? 0 Numeric

2) ’ PREDIR Primary Prefix Direction 2 Alphabetic

Indicates a compass direction prior to ADNAME.

Ex : N Randolph Street

where N is the PREDIR.

3) ADNAME Primary Address Name 20 Al phanume r i c

This is typically the street name. The above example would
have an ADNAME of “Randolph.”

4i ADTYPE Primary Address Type 4 Al phdnume r i c

Draft Page 11-3-20 GENSTAN

5) TYPEFL Type Flag .l Al phanumer i c

Indicates whether the ADTYPE succeeded the ADNAME: space =
“no. ”

6) SUFDIR Primary Suffix Direction 2 Al phabe t i c

Indicates a compass direction following the ADNAME.

7) ADCODE Primary Address Code .l Al phabe t i c

Indicates the primary address determination:

Content Means --
v .~~~--~.,.

S = Street with a house number
T = Street withOUt a hOUSe number
P = Post Office Box
EC = Building, Shopping Center, etc.
I = Intersection
R = Rural Route, Star Route, etc.
0 = Outside or Location (“4 Miles Outside of Smallville”)
C = Care of
N = Blank ,
U = Unidentified

a) PSA Primary Structure Addres; 30 alphanumeric

This is a concatenation of PREDIR, ADNAME, ADTYPE, TYPEFL,
SUFDIR, and ADCODE in that order.

E>: : An input address field containing:

323 N Randolph Street NW

would result in output fields with the following suffixes
containing:

HOUSEN = “323”,
PREDIR = “N”,
ADNAME = “Rand01 ph”,
ADTYPE = “ST”,
TYPEFL = “Y” ,
SUFDIR = “NW”,
ADCODE = “S”, and
PSA = ” 323N RANDOLPH ST YNWS”.

9i HNSUF House Number Suffix 4 Al phanumer i c

A suffix associated with the primary address house number.

Ex : 323A N Randolph

would result in an HNSUF = “A”.

Draft Page 11-3-2.1 GENSTAN

Suf f 1 :.: ---_I Meaninq Size pe T’y

lo) LOCATN Primary Address Location l2 Al phanume r i c

Indicates that the primary address is an apartment, floor,
suite, room, etc.

,l .l)

.12 1

,l 3 1

.14)

.

,15 1

- .16)

WSA Within Structure Address l b Al phanume r i c

Concatenation of HNSUF and LOCATN in that order.

SECCODE Secondary Address Code l Al phabe t i c

See ADCODE above for content and meaning.

SECADNM Secondary Address -Name 20 Al phanumer i c

SSA Secondary Stucture Address 2 ,l Al phanume r i c

Concatenation of SECCODE and SECADNM in that order.

EXDESC Extra Description 2 Al phanume r i c

EXINFO Extra Information 20 Alphanumeric

Extra Information contained iti the address beyond that de-
termined to be in the primary or secondary addresses. No ex pl i-
tit parsing is provided. This potential output contains the
residual data resulting from the address standardization process.

l7) EXSA Extra Structure Address 22 Alphanumeric

Concatenation of EXDESC and EXINFO in that order.

l8) ADSTANS or null
Address Standardizer Structure

99 Alphanumeric

Contains everything defined above. In effect this is a
concatenation of HOUSEN, PSA, WSA, SSA, and EXSA in that order.

Draft Page 11-3-22 GENSTAN (7/.10/ 19863

GENSTAN

3.5:1.2. Name Standardizer.

This PROCESS type defines a specialized person name
standardizer. The nature of the standardization process is
specifically tailored for each data standaization program based
on information provided here. This PROCESS DEF XTYPE> can only
be used once in a GENSTAN program.

3.5. .1.2. .I. XTYPE::> (the second DEF parameter) = NMSTAN.

.

This actually a collection of transformations providiny a
standardized name output from the name of a person. The user
codes as much information as he know5 about the inCOKling name
field in multiple input fields. -This causes GENSTAN to generate
one or more specialized person name parsers. If you do not have
adequate information look at the data file to see if you can spot
things that will help in separating the name parts. The more
information that is provided, the better the resulting name
parser will be. (Not yet implemented.)

3.5. .I .2.2. Fields. Input
I

,l) Input Name. The first input field (third DEF parameter)
would contain a previously defined data name of any size contain-
ing the name to be parsed.

2) Content of Name Field. This is a character string that
indicates the content (name parts and order possible) of the
above input Field. Because it contains spaces and, possibly,
other special characters (see below), it must be surrounded by
quotation marks (see the general description of parameters,
above). The string is constructed by putting the following
characters together, with known separator or field marking char-
acters, in the order in which they will occur in the incoming
name field (specified in the previous parameter) :

Character Means

;

~;:--~~

= Prefix Title (one only).
X = Mandatory Prefix Title (one only).
F = First (one only, alway mandatory if present).
M= Middle Name (may have multiples - “M M” - indicates Klay

have more than one).
R = Mandatory Middle Name (if multiples - “R R” - only one is

mandatory).
L = Last Name (must have one, always nrandatory, may have

multiples - “L L” - only one is mandatory).
S = Suffix Name (one Only).
T = Suffix Title (nay have multiples - “T T” - indicates may

have more than one).

The most Usual separator characters are space and com~~a. If
the name parts are always separated by spaces, then each char-
acter from the above list in the string would be separated by a
space. Sometimes, in last name first field organization the ia,st

Draft Page II-3-23 GENSTAN (7/,1Oi 1966)

GENSTAN

name is always followed iKlKlediately by a comnla, then a space.
The string would then look: 1ib:e:

“L , F M”

Kleani ng “la5 t name, always followed by a comma and space, then
first name, followed by space, then middle name.” Somet iKies a
special character is used to mark a name part. For example, an
asterisk: is sometimes used to mark: a suffix name. If the suff I:.;
name then would be placed after the last name in last name first
organ;zation, the following would be coded:

“L*S, F M”

meaning “last name, followed by an asterisk, followed by a suffi):
name, followed by a comma, followed by a space, followed by first
then middle names separated by space.” Note that since the

. suffix name is never mandatory, and the last name is always
mandatory, there is no way for the name standardizer generator to
determine whether the asterisk: is mandatory (always following the

*last name) or not mandatory (always preceeding the always
optional suffix name). If the latter case is true the following
II I ” would be mandatory.

The following are typical strings used for this pararrleter:

Strinq Mean inq

“X. L”

“L, F M”

“F M L” First Name, Middle Name, Last NaKle, all sepa-
rated by spaces.
Ex : “William K Smith”.

“F R R L L” First Name, Multiple Mandatory Middle Names,
Multiple Last NaKles, all separated by
spaces.
Ex : “Jane NM1 SKlith Jones”.

Mandatory Prefix Title, Last Name (often
seen in mailing lists).
Ex: “Ms. Jones”.

Last Name, First Name, Middle Name (i.e.,
last name first order, frequently used
on forms to be stored in last name
order).
Ex : "Smi tti , Willianl K”.

“P F M M L L S T T” or
“X F R R L L S T T”

Possible or Mandatory Prefix Title, First
Name, Possible or Mandatory Multiple
Middle Names, Multiple Last Names,
Suffix Name, Multiple Suffix Titles.
Ex : “Dr Wi 11 iaKl K G Smith PhD LLD”.

3) Type of Aid Indicator. This is number indicating one of
several possible naKle parsing aids have been provided in the name
field or data file:

Draft Page II-s-24 GENSTAN (7/-liii 19861

GENSTAN

Content Means --
vv .~;~--;.~.

.l = order of multiple field(s) (indicated in the Field(s)
Applied To parameter) is in the order indicated by the
data field.

Content of Data Field ---
I Meaning
4 .;: ___-- ---------- _________----------_~~-~-~-~~~~~~~~~~~.

R = put multiple name Flarts into the output field in re-
verse order of occurance.

- .

L = Fkut the last multiple name Ffart into the 0utFlut
field.

N = put multiple name parts into the output field in
normal order (as in the input name field). This is
the default for multiple name part parsing and is
provided for documentation only.

F = put the first multiple name part in the output
field.

In all cases additional or overflow name parts are Flut into
t h e -EXNM output field.

Content Means
vv (--~;,.

2 = beginning of name part(s) pointed to by inFlut file

field.

3 = end of name F@rt(s) pointed to by input file field.

4 = length of name part(s) provided in input file field.

5 = name part(s) prefixed (flagged) by special character
string (instead of the single character specifiable in
the content of name field string -- the Library of
Congress “MARK” svscem does this).

6 = name part(s) suffixed (delimited) by special character
string (instead of the single character specifiable in
the content of name field string).

7 = multiple name part(s) (eg. multiple last names) are seF*-
arated (delimited) by a special charater string iinsteacl
of the single character specifiable in the Content of
name field string).

Graft Page 11-3-25 GENSTAN

:Iontent ----- ileans --

a = multiple name part(s) are to be separated by special
character string on output. The parser aid data field
contains special character string. This string will
replace the delimiter or flag character or string.

9 = use special lexicon (if available). The name of the
lexicon is provided in the parser aid data parameter.

,I0 = use predef ined lexicons. This only applies to last,
middle and/or first names. Predef ined lexicons deve-
loped by the Population Division of the bureau of the
Census will be used. The parser aid data parameter
should point to a field indicating sex.

- .
NOTE : Lexicons can be dangerous to use. Failure here

may cause a name part to be mis-assigned. Even success here may
cause problems. For example , if a person has a surname that
appears to be a first name and a given name that appears to be a
surname, use of a lexicon could, conceivably cause a mis-assign-
ment of the individual’s first and last names.

* If this parameter is coded, the following two parameters
(i.e., field(s) applied to and parser aid data) must also be
provided. This parameter together with the following parameters
may be repeated as a set up to five times including this one.

4) Field(s) Applied To.

This field contains a number which indicates the fieid
or fields to which this aid applies. The number entered is the
sum of any of the following:

Factor Means
vv ,:~--~;;

,j = last name.
2 = first name.
4 = middle name.

.a= suffix name.
,16 = prefix title.
32 = suffix title.

For example, if this parameter contained a 9, it would
indicate that the aid specified in the previous parameter applied
to last name and -suffix name (the sum of A and 8). hnd if the

parameter contained a 7 (the sum of ‘1, 2, and 4j, the aid would
aF’F’ly to the last, first and middle names. A zero (0) can be
entered to mean that the aid applies to all name parts. This 15
the equivalent of a 63 in this parameter (the sum of ‘1, 2, 4, 8,
d6, and 32).

Draft Page 11-3-26 GENSTAN

GENSTc?N

If a given name part has ITlUltiple OCCUranCeS possible. then
it is assumed that the aid applies to all of them. Thus, if a
length field applies to last name and multiple last names are

possible, it is assumed the that length applies over all last
names including intervening characters.

5) Data Field.

This parameter (the seventh DEF parameter 1 provides either
control information, a previously defined field name, or the
special character sequence as specified in the Type of Aid Indi-
cator field (Paragraph 3) above. This parameter would be control
information if the type of aid indicator were a ‘1, a previously
defined FIELD name or PROCESS DEF- statement generated output name
or ID if the type of aid indicator were a 2, 3, or 4; and would a
character sequence if the type of aid indicator were a 5, 6,
or 7.

The next four sets of three paramters (i.e., NMSTAN Type DEF
parameters 8, 9, and AG: .l,l, .12, and A3; ,14, 15, and .16; and ,17,
.18, and .19) would each consist of, respectively, Type of #Aid

*Indicators, parameters containing Field(s) Applied To, and Data
Fields.

3.5:1.2.3. Output Fields.

Suffix Meaninq Size Type

.l 1 LASTNM Last Name 30 Alphabetic or
Al phanume r i c

(see discussion)

If multiple Last Names have been specified in the Content of
Name Field Input Field, each will be provided in the LkSTNM
suffixed output field separated by spaces. This order may be
modified by using the field order type of aid indicator (a “,l”j,
a “.l” (Last Name) as a factor of the field(s) applied to para-
metef , and an “R” for reverse order of last names or “L” for
normal order for all but last last name which would appear first
in the field.

2) FIRSTNM First Name 20 Alphabetic

Only one First Name can be defined or will be provided.

3) MIDNM Middle Name 30 Alphabetic or
Al phanume r i c

Initials are treated as single character middle names.
Multiple Middle Names are handled like multiple Last Names. (See
the notes under LASTNM, above, for a discussion of how multiple
Last Names or initials are handled).

4) SUFNM Suffix Name 40 Al phal~ulrlt? r 1 i

Draft Page 11-3-27 GENSTAN (7/AO/.l9863

s u i f 1 2

For example, “Jr.“, “Sr.“, “II”, or “111” are all Suffix
Names . Only a single Suffix Name is looked for if specified
(i.e. if multiple “S”s are coded in the input field, content of

field name, all but one will be ignored.

51 PRETITL Prefix Title .lO Al phanumer i c

For example, “Mr”, “Mrs”r “Dr.“, and “Rev.” are all Prefix
Titles. Only one prefix title is expected if specified.

61 S-UFTITL Suffix Title 20 Al phanumer i c

For example, “PhD.“, “CPA”, “Esq.“, and “CDP” are all Suffix
Titles. Multiple Suffix Titles are-permitted.

7) EXNM Extra Names 20 Al phanume r i c

If only one name part is permitted in an output field either
by explicit or implicit coding (i.e. by coding of input fields
3j, type of aid indicator, 4) field(s) applied to, and 5) data
field or by coding input field 21, content of name field) and

* more than one is found, the additional name part(s) are placed in
this output field.

8) NMSTAN or. just the PROCESS ID (from the first DEF parameter
for this PROCESS)

Name Standardizer Structure
,130 Aphanume r i c

Contains all of the above fields as a single structure.

Draft Paye Ix-3-2a GENSTFSN

GENSTAN

3.5:1.3. Conglomeration of Data.

This PROCESS combines the data of many previously defined
fields with zero or more intervening characters between the
content of each data field. The PROCESS eliminates leading and
trailing blanks from each input data field.

3.5.4.3.1. TYPE = CONGLOM.

3.5. .1.3.2. Input Fields.

q) Intervening Characters.

May be any sequence of chararters including a null char-
acter. A null character is represented by two quotation mark:s
(“‘I 1. Any string containing special characters should be sur-
rounded by quotation mark:s.

2) Input Field Name(s).

Any number (up to ,171 of previously defined field names may
*“conglomerated” by CONGLOM.

3.5:1.3.3. Output Field.

The output field is either the PROCESS ID (the first para-
meter of this DEF statement) or the PROCESS ID followed by
“-CONGLOM”. This field will contain the conglomerated data of
the input data fields left justified, blank filled. The

CONGLOMeration PROCESS consists of stripping leading and trailing
blanks from the content of the first input data field, moving the
result into the output field, appending the intervening character
string on the output field, stripping the leading and trailing
blanks from the content of the next input data field, appending
that result to the output field, appending the intervening char-
acter string to the output field, etc., through the remaining
input data fields.

Draft Page X1-3-29 GENSTAN

GENSTAN

3.5.A.4. Mover.

This PROCESS performs an edited COBOL MOVE from the input

data field to the OUtpUt field. If a picture clause is not
provided, PICTURE X is assumed. If a field size is not provided,
the field size of the input data field is assumed. MOVER is %he
way to resize an output field of a predecessor PROCESS DEF which
is being used as an input data field for a succeeding PROCESS DEF
which has a maximum input data field size (PARSER TOKEN.1 being
used as input to the Post Office name input data field of the
ADSTAN’ PROCESS DEF Type as an example).

3.5. l.4. .l. TYPE = MOVER.

3.5J.4.2. Input Fields.

.l 1 The “From” Field.

This is any previous defined input data field.

21 Length.
I

This field is used to specify the size of the “mover” output
data field. If i,t is larger than the “From” Field length above,
the constant character string will be repeated until the constant
output data field is filled. If this parameter is 0, null or
missing the size of the “from” field will be used as the “mover”
output data field length.

3) Picture Clause.

This is any legal COBOL PICTURE clause. See the description
of the INPUT FIELD statement for further discussion. This field
is optional. If not present, the output field will be assumed to
have the PICTURE clause of the “from” field if there is one. If
t I-I e “f r OKI" field has none it will be assumed to be a character
field having the length specified above: and in the absence of a
“length” field, the length of the “from” field will be used. If
this Input-Field is provided, the length field is ignored
(treated as a comment) except for calculating the output record
length.

3.5.1.4.3. Output Field.

The “to” field. Use either the PROCESS DEFinition ID or the
ID with “-MOVER” to use the result.

Draft Page 11-3-30 GENSTAN

GENSTAN

3.5:l.S. Concatenator.

This process concatenates two or more previously defined input
data fields without any modification of internal content. Inter-
nal spaces are left “as is”, while the content of the input data
fields are abutted end-to-end to form the output field.

3.5. ,1.5. .l. TYPE = CONCAT.

3.5:1.5.2. Input Fields.

Any number (up to ,18) previously defined input data fields.

3.5. .I .5.3. Output Field. - .

Use either the PROCESS DEFinition ID or the ID with
“-CONCAT” to use the result. The maximum useful output field
size from this PROCESS DEFinition is equal to the SUKI of the

. input data field sizes (but this can be specified differently in
an OUTPUT FIELD description.

Draft Paye 11-3-3.1 GENSTAN iii.lOi 19%)

GENSTAN

3.5.4.6. General Parser.

This PROCESS DEFinition PARSES the content of a previously
defined input data field providing a specified nurrlber of tokens
determined by provided delimiters, output fields for the deli-
rrli teis determining these tokens, and output fields for the re-
spective lengths for these tokens.

Parsing is the process of separating a string of characters
into tokens based on some rule or set of rules. TI-le most usuai
(and SiKlpleSt) rule is that every token iS separated frOKl the
next toL:en in this string of characters by a delimiter.

A token is a string of characters that has some meaning or
use (which Kiay be limited to the particular prograrrl or system
being developed). For example, a “First NaKle” is a token in an
individual name data field: and a verb is a token in an English
sentence.

A delimiter is a string of characters that separates tokens
I from each other. In the above examples, the delimiter for both

tokens would probably be a space.

3.5:1.6:1. TYPE = PARSE.

3.5. .I .6.2. Input Fields.

.l 1 Input String.

The previously defined data field containing a character
string to be parsed.

2) Maximum Number of Tokens.

The maximum number of tokens to be generated by this PARSEr.
This field is optional, and if null, only one token will be
provided.

3) Delimiters.

Any number of delimiters can be provided. A delimiter may

consist of one or more characters. If no delimiter is specified,
space is assumed.

3.5. .1.6.3. Output Fields.

There are three possible output fields for each token re-
quested. The “n” in each case is a number from “,l” to the number
in the maximum number of tokens input parameter.

Draft Page 11-3-32 GENSTAN

GENSTAN

Suffix Meaninq Size Type

.l) TOKEN Contains the th token. 30 AlphanUK~eriC

n n
Will be blank if less than tok:ens are found.

n
2) DELIMn Contains the n%h de1 imi ter.

II! Al phanumer i c

The n’th delimiter contains the delimiter character or string
by which the nth token was determined. The size (“rr~“) of the
output field is equal to the size of the delimiter it contains.
This field will contain a space if less than tokens are found.

- . n
3) TLENGTHn Contains .the length of the nth toC::en found.

3 Numeric

The -TLENGTHn field will contain a zero (0) if less than n
tokens are found in the input character string.

4) PARSE or just the PROCESS ID (from the first DEF parameter
* for this PROCESS)

General Parser Structure Size and Content
, dependent on

number of tokens
requested

The size of this field can be determined by adding 30, the
size of the largest delimiter specified, and 3 and multiplying
the result by the maximum number of tokens parameter.

Draft Page 11-3-33 GENSTAN

GENSTAN

3.5:1.7. SOUNDEX String Encoder.

This PROCESS DEF encodes the content of a previously defined
data field using the SOUNDEX algorithm as defined in Johnson, J.
Howard: Formal Models for Strinq Similarity; PhD Dissertation,
University of Waterloo, Waterloo, Ontario, Canada, ,i983, pg. 87.

3.5.1.7.1. TYPE =SOUNDEX.

3.5:1.7.2. Input Field.

A previously defined input data field containing the char-
acter string to be encoded.

_ .

3.5:1.7.3. Output Field.

.
Use either the PROCESS DEFinition ID or the ID with the

s u f f i x “-SOUNDEX ” to access the result.

Draft Page 11-3-34 GENSTAN

GENSTAN

3.5:i.a. NYSIIS String Encoder.

This PROCESS DEF encodes the content of a previously defined -
data field using the NYSIIS algorithm as defined in Johnson, op.
cit.: pg. 99.

3.5. A .a. .l. TYPE =NYSIIS.

3.v1.8.2. Input Field.

A- previously defined input data field containing the cl-har-
acter string to he encoded.

3.5.1.8.3. Output Field.

Use either the PROCESS DEFinition ID or the ID with the
s u f f i x “-NYSIIS” to use the result.

Draft Page 11-3-35 GENSTAN (T/.10/ 1986)

GENSTAN

3.5:1.9. Define 2 Constant.

This PROCESS DEF provides constant data for tests (see
below) or for insertion in the output data.

3.5.A.9.A. TYPE = CONSTaNT.

3.5. 1.9.2. Input Fields.

,l 1 Constant Character String.

This field contains a character string that is to used as a
constant.

- .
2) Length .

This field is used to specify the size of the constant
output data field. If it is larger than the constant character
string, above, the constant character string will he repeated
until the constant output data field is filled. If this para-
meter is 0, null or missing the size of the constant field will

*be used as the constant output data field length.

3) Picture Glause.

This is any legal COBOL PICTURE clause. See the description
of the INPUT FIELD statement for further discussion. This field
is optional. If not present, the contant field will be assumed
to be the character, display data type of COBOL. If this
Input-Field is provided, the length field is ignored (treated as
a comment) .

3.5. ,I .9.3. Output Field.

Use either the PROCESS DEFinition ID or the ID with the
suffix “-CONSTANT” to use the result.

Draft Page 11-3-36 GENSTAN (7/ ‘IOi l9Bt,!

GENSTAN

3.5:l:lO. Record Seauence Numberinq.

This PROCESS DEF provides a method of generating a unique
sequnence number for every record processed by the data
standardization program generated by GENSTAN. This PROCESS DEF
.f:TYPE:> can only be used once in a GENSTAN program.

3.5:1:10:1. .::I Typ E ::. = SEQUENCE.

3 . 5 . .l . ‘1-O. 2 . Fields. Input

.l) Starting Number.

The value from which sequence- numbering starts. (Optional j .

2) Increment.

The value which is added to the starting number to get the
next sequence number. (Optional).

3) Picture Clause. i

CI legal COBOL PICTURE clause for a numeric display data
item. If none is’provided “9(8)” is assumed.
(Optional).

3.5. .l. lO.3. Output Field.

Use either the PROCESS DEFinition ID or the ID with the
suffix “-SEQUENCE” to use the result.

Draft Page 11-3-37 GENSTAN (7tioi 1936)

