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Let Df denote the median of x: (chi-square with f degrees of freedom); 

we here determine E(/xF - Dfl). Let Df denote this quantity. Note that 

E( Ix: - cl) is minimal for c = Df. 

We first need Df. One easily obtains D1 = Z2 with Q(Z) = .75 and 

D2 = 2 log 2; for f>3 one may base an approximation to Df on the approxima- 

tion to 1(: of Peizer and Pratt (1968): Df = f - 2/3 + .08/f. To obtain Df 

exactly, in essence, as well as to obtain Ef, we make use of the following, 

familiar results (obtainable from Kennedy and Gentle 1980). For k>l: 

‘(x;k+l>c) = P(xzk l>C) + ak 

(1) 

P(x;k+2>c) = P(x;~>~) + bk 

P(x:,c) = 2(1 - @(JF)), ak = ak-lC/(zk-1) (k>l) 

P(xzX) = eXp(-C/2), bk = bk+/2k (2) 

a1 = +@c/n exp(-c/2), b0 = exp(-c/2). 

Using (1) and (2), we do a binary search of the interval <O,f> (successively 

2 
cut this interval in half) to determine c such that P(xf>c) = .5; this gives 

us Df. 

Let 

SfW = 
1 f/2 - 1 

X expW2L 
2f/2r(f/2) 

3 
the density for xi. The value of Ef is 

Df 
/ (Df-x)gf(x)dx + 7 (x-Df)gf(x)dx 
0 Df 

Df co 

= DfC/ gf(x)dx - J gf(x)dxl + 7 xgf(x)dx 
Df 

- I xgf(x)dx. 
u Df Df 0 

(3) 

(4) 

(5) 
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We have 

X!Jfb) = 
2f/2+lr(f/2+1) 

gft2(x) = fYft2W 
2f/2r(f/2) 

Thus, using the definition of Df, we obtain 

Df(.5 = .5) + f[P(X:,2>Df) - P(x:,2<Df 

= f[2P(x;t2>Df) - 11. 

If f = 2k + 1 (k>O), we have from (1) 

Ef = 

)I (7) 

(8) 

Ef = f{2[P(x: >Df) + q-+11 - 11; (9) 

(6) 

ak+l is obtained from (2) with Df substituted for c. By definition of Df, 

again, we are left with Ef = 2fak+l. Likewise, if f = 2k + 2 (k>O) we 

have Ef = 2fbktl. 

Thus, we have: Dl = 0.4549 and El = 0.8573, D2 = E2 = 1.386, 

D3 = 2.366 and E3 = 1.779, D4 = 3.357 and E4 = 2.103. 

Note correspondences between the formulas for Ef and the formula 

(Blyth 1980) for Poisson expected absolute departure from the mean: for x 

with Poisson mean ~1, E(]x - ~1) becomes 2kP(x=k) with k = [PI + 1. 
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