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AN INVESTIGATION OF SOME ESTIMATORS OF VARIANCE FOR SYSTEMATIC 

SAMPLING 

by 

Kirk M. Walter* 

1. Introduction 

The method of systematic sampling, first studied by the 

Madows (1944), is used widely in surveys of finite populations. 

When properly applied, the method picks up any obvious or hidden 

stratification in the population, and thus can be more precise 

than random sampling.' In addition, systematic sampling is 

implemented.easily, thus reducing costs. Since a systematic 

'sample can be regarded as a random selection of one cluster, 

however, it is not possible to give an unbiased, or e"ven 

consistent, estimator of the design variance. Riased estimators 

of variance must be sought if we are to estimate the precision of 

our survey estimators from the sample itself. 

The objective of this paper is to provide the survey 

practitioner some guidance about the specific problem of 

estimating the design variance of the systematic sampling 

mean, y . We shall only consider equal probability systematic 

sampling with a single, random start. It is, of course, possible 

to produce an unbiased estimator of variance when we draw two or 

more random starts, though Gautschi (1957) shows that this 

practice may lead to inefficient estimates of the population 

mean. 
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Few guiding principles about variance estimation are 

available in the literature on systematic sampling, particularly 

for household and establishment surveys. In the 1940's several 

authors addressed this issue, including Osborne (1942), Cochran 

(1946), Mate/m (1947), and Yates (1949). Recent references are 

Koop (1971), Heilbron (1978), Zinger (1980), and Wu (1981). One 

of the most comprehensive discussions is given by Cochran 

(1977). The topic may have received little attention because 

systematic sampling is often used at the last stage of sampling, 

where rigorous estimators of the total variance can be given. 

Section 2 contains a description of eight alternative 

estimators of the variance of 7 . Some theoretical results 

regarding the eight estimators are worked out in Section 3 using 

a superpopulation model. In Section 4 some empirical comparisons 

of the estimators are made. Section 5 closes the paper with a 

general summary and recommendations. 

To aid in the reading of this article, it is useful to . 

remember the following procedure for considering variance 

estimation issues. 

(a) Gather as much prior information as possible about the 

nature and ordering of the population. 

(b) If an auxiliary variable, closely related to the 

estimation variable, is available for all units in 

the population, then try several variance estimators on 

this variable. This investigation may provide infor- 

mation about which estimator will have the best 



properties for estimating the variance of the 

estimation variable. 

(c) Use the prior information in (a) to construct a 

simple model for the population. The results in 

Sections 3 and 4 may be used to select an 

appropriate estimator for the chosen model. 

(d) Keep in mind that most surveys are multipurpose and 

it may be important to use different variance estimators 

for different characteristics. 

Steps (a) - (d) essentially suggest that one know the population 

well before choosing a variance estimator, which is exactly the 

advice most authors since the Madows have suggested before using 

systematic sampling. 

2. Description of the Estimators 

To concentrate on essentials, we shall assume N = nk where N 

is the population size, n is the desired sample size, and k is 

the sampling interval. We let Yij denote the value of the _ 

characteristic of interest for the j-th unit in the i-th 

systematic sample, where i = 1, . . . . k and j = 1, . . . . n. We 

adopt the convention of using upper case Y's to denote the values 

of units in the population, and lower case y's to denote the 

values of the units in the sample. The systematic sampling mean 

J and its variance are 

n 
j = C yij/n 
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and 

VarM = (u2/n)[l+(n-l)n], 

respectively, where 

2 
k n 

CJ = c c (Yij- Y..)'/nk 
ij 

denotes the population variance, 

kn n 
P = c c C (Yij- Y..)(Yij.- Y..)/kn(n-1)d2 

i j j'#j 

denotes the intraclass correlation between pairs of units in the 

same sample, and the customary "dot" notation indicates a 

summation. 
. . 

Eight alternative estimators of the variance Var{y} will be 

compared in succeeding sections. They are defined in Table 1 for 

the i-th selected sample. 

(Table 1 goes here) 

There is an abundance of reasonable estimators which may be 

used to estimate Var{j} and these eight estimators represent a 

cross-section of the various general classes of estimators. A 

class of estimators not considered here arises when one 

supplements the systematic sample with either a simple random 

sample or another systematic sample of smaller size. See Zinger 

(1980) or Wu (1981). 



Table 1. Eight Estimators of Variance for Systematic Sampling 

Form of Estimator Comments 

v1 (1) = (l-f)S2/" This estimator corresponds to 
simple random sampling without 
replacement. For systematic ' 
sampling, it tends to over or 
underestimate the variance as 
P < -l/(N-1) or P > -l/(N-1) . 

n/2 

v3U 1 = (I-f)(l/n) jEl at,2j/n 

= 

v,(i) = (I-f)(l/n) j23 btj/6(n-2) 
= 

Estimators 2 and 3 are based on 
overlapping and nonoverlapping 
differences. v 

1 
corresponds to 

stratified samp ing with 2 
units in each of n/2 strata. 
;~e~;ox+s;~a;nvmore "degrees of 

3. 

Estimators 4, 5, and 6 are 
based on higher order 
differences. v6 was first 
suggested by Yates (1949). 
v4 is based upon second 
differences, which annihilate a 
linear trend in the population 

. values. The divisor is the sum 
of squares of the coeffients 
times the number of differences 
in the sum. 

b(i) = (1-f)(l/n) i 
G 

j=5 

C&/3.5("-4) * 

u-l 

--.-.. -. .-~- -.... _.- 



Table 1. Eight Estimators of Variance for Systematic Sampling continued 

Form of Estimator Comments 

v,(i) = 

v,(i) = 

v8(i) = 

E 

(1-f)(l/n) i d?./7.5(n-8) 
j=g lJ 

P 
(1-f) .& 5 (ia- iI2 Based on splitting the sample 

into p systematic subsamples. 

I When f is negligible, 
Bias {v,} = (Varf&J 

-pVar tY1 )/b-l 1 
implying that v7 is unbiased 
when the variance is inversely 

* proportional to sample size. 
See Koop (1971) regarding the 
case p = 2. 

(l-f)(s2/n)[l+2/a"(pk)+2/(P;ll)], Devised from a superpopulation 

if i;k > o 
model where the correlation 
between two units in the popu- 

(1-f)s2/n 
lation depends only on the 

if ;k < 0 distance between them. See 
e.g., Cochran (1946), Osborne 
(1942), Matgrn (1947). In v8 

'k is an estimator of the 

correlation between units k 
units apart. Heilbron (1978) 
gives three estimtors that are 
similar to v8. 



Table 1. 

NOTE: 

S2 

'k 

aij 

b 
ij 

'ij 

d 
ij 

9, 

f 

Eight Estimators of Variance for Systematic Sampling continued 

n 
' (Yij -j)2/(n-l) 

j=l 
n 
E 

J 2 (y *= 
ij-S)(Yi,j-l-.?)/(n-l)s2 

yij - yi,j-l 

yij - 2Y i,j-1 + yi,j-2 

Yij/' - Yi,j-1 + Yi,j-2 - Yi,j-3 + Yi,j-Ji2 

Yi j/2 - Yi,j-1 + - l ** � Yi,j-8/2 

sample mean of the a-th systematic subsample of size 
n/p (where p and n/p are integers) 
n/N = l/k. 

._ .- I. 
-- ..-- -- 

-.. 
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3. Some Comparisons Based on Simple Models 

In this section, we shall introduce the notion of model bias 

and use it as a criterion for comparing the various estimators of 

variance. We assume the finite population is generated according 

to the superpopulation model 

Y 
ij = 

~ij + eij, (3.1) 

where the ~ij denote fixed constants and the errors eij are 

(0s a') random variables. Our main goal is the determination of 

conditions on Pij and eij under which the eight estimators of 
l 

variance perform well with respect to model bias. 

The expected bias and expected relative bias of an estimator 

vu ((x=1, . . . . 8) are defined by 

Brval = gE{va} - &ar{g} 

and 

k?{val = &va}/CvartY}, 

respectively. In Sections 3.1 - 3.4 we present expressions for 

&‘a) for five useful models of the form (3.1). These results _ 

extend simply to the model with heterogeneous error variances. 

In addition to this analytical work, we describe in Section 

3.5 the results of a small Monte Carlo study that was made to 

investigate properties of the estimators. Seven models were 

chosen for the study and they are described in Table 5. For each 

model, 200 finite populations of size N = 1000 were generated, 

and in each population, the bias and MSE of each estimator were 

computed, as well as the proportion of confidence intervals that 

contained the true population mean. These quantities were 
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averaged over the 200 populations, giving the expected bias, the 

expected MSE, and the expected confidence level for each of the 

eight estimators. The multiplier used in forming the confidence 

intervals was the 0.025 point of the standard normal distri- 

bution. Estimator v7 was studied with p = 2. 

3.1 Linear Trend 

Populations with linear trend may be represented by 

Pij = B. + B,[i+(j-l)k], (3.2) 

where B. and 13, denote fixed (but unknown) constants and the 

errors eij are independent and identically distributed (iid) 

(0s u2) random variables. It is easily seen that the expected 

variance for this model is ' ' 

(3.3) .23artPl l = B2(k2 -1)/12 t (1-f)a2/n. 
. 

The expectations of the eight estimators of variance are given in 

column 2 of Table 2. The expression for &E{v~} was derived by 

approximating the expectation of the function 2 
v8b ¶ ;,s2) by 

the same function of the expectations &{s2] and &!E{iks'} , 

where we have used an expanded notation for v8. In deriving this 

result it was also assumed that > 0 with probability one. 

This assumption guarantees that terms involving the operator 

Xn(*) are well defined. 

From Table 2 and (3.3), we conclude that the value of the 

intercept B. has no effect on the relative biases of the 

variance estimators, while the error variance a2 has only a 

slight effect. Similarly, the value of the slope Bl has little 

- 
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effect on the relative bias, unless B, is extraordinarily 

small. For populations where k is large and B, is not extremely 

close to 0, we have the following useful approximations: 

n 

-(n-6)/n 

-(n-6)/n 

-1 

-1 

-1 

P* 

Thus, from the point of view of relative bias, the estimators v2 

and v3 are preferred. 

The reader will recall that these results differ from 

Cochran (1977), who suggests v4 for populations with linear 

trend. The contrasts defining ~4, v5, and v6 eliminate the 

linear trend, whereas v2, v3, and v8 do not. Eliminating the 

linear trend is not a desirable property here because the 

variance is a function of the trend. 

3.2 Stratification Effects 

We now view the systematic sample as a selection of one unit 

from each of n strata. This situation may be represented by the 

model 

~ij = Pj, (3.4) 

for all i and j, where the errors e ij are iid (0,~') random variables. 

That is, the unit means pij are constant within a stratum of k units. 
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For this class of populations, we note that 

‘j - Y = gi - 6 , . . . l . . 

and it follows that the expected variance of j is 

VarI?} = (l-f)u2/n. (3.5) 

The expectaions of the eight estimators of variance are given in 
* 

column 3 of Table 2. Once again, the expression for the 

expectation of vB is an approximation, and will be valid when n 

is large and Pr{Pk -> 0) = 1. 

From Table 2 and (3.5) we see that each of the first seven 

variance estimators has small and roughly equal relative bias 

when the stratum means u- 
J 

are approximately equal. When the 

stratum mean are not equal, there can be striking differences 

between the estimators and VI and vB often have the largest . 

absolute relative biases. This point is demonstrated in Table 3 

which gives the expected biases for 
. 

Pj = JI an(j) + sin (j) with 

n = 20 and p = 2. 

Based on these simple examples, we conclude that v4, v5, and 

v6 provide the most protection against stratification effects. 

The contrasts used in these estimators tend to eliminate a linear 

trend in the stratum means, which is desirable here because the 

expected variance is not a function of such a trend. Conversely, 

v2, v3, and v7 do not eliminate the trend. Estimators v5 and v6 
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Table 3. Expected Relative Bias Times u2 for Eight 
Estimators of Variance for Populations with Stratification 
Effects 

Estimator 

j %n(j)+sin(j) 

v1 

v2 

v3 

v4 

v5 

v6 

v7 . 

'8 

35.00 0.965 

0.50 0.235 

0.50 0.243 

0.00 0.073 

0.00 0.034 

0.00 0.013 

5.00 0.'206 

-0.67 -0.373 

NOTE: n = 20, p = 2, u2 = 100. 
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will be preferred when there is a nonlinear trend in the stratum 

means. When the means FLj are equal in adjacent nonoverlapping 

pairs of strata, estimator v3 will have smallest expected bias. 

Estimator v7 will have smallest expected bias when the ~j are 

equal in adjacent nonoverlapping groups of p strata. For p = 2, 

v3 and v7 are comparable in terms of bias. 

We note that the random model is a special case of the 

stratifiction effects model with Uij = IJ for all i and j. For 

this special case, the expected bias of the first seven esti- 

mators of variance is zero. 

3.3 Correlated Populathons 

Another important class of populations occurs where the unit 

values are correlated. We may study such populations by assuming 

the y-variable has the time series specification 

Yt'P = C Qj 't-j 
J -=-OD 

(3.6) 

for t = 1, . . . . kn, where the sequence {ajl is absolutely 

summable, and the ct are uncorrelated (0,~~) random variables. 

The expected variance for this model is 

kn-1 
EVar{y} = (I-f)(l/n){v(O) - k&&- h$ (kn-h)y(h) 

= 

n-l 
+ ,& hf, (n-wf(wl~ (3.7) 

where 
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OD 

r(h) = ~(yt-~)(yt-h-v)} = -2 ajaj-hu2* 

By assuming that (3.6) arises from a low order autoregressive, 

moving average process, we may construct estimators of Var{gsy} 

and study their properties. 

For example, we consider the model that motivates v8. A 

representation for this model is the first order autoregressive 

process 

Yp = P(yt,l -11) + “t, (3.8) 

where p is the first order autocorrelation coefficient (to be 

distinguished from the intraclass correlation coefficient) and 

O<P<l. By (3.7) the expected variance for this model is 

2k (pk-pkn) 

+ (k-l) (lepk) 
2k C'P -P 

k kn) 

- n 
u-p > 

2 - (n-l) 

(3.9) 

Letting n index a sequence with k fixed we obtain the following 

approximation to the expected variance: 

&ar{Tj = (1-f)(u'/n){l 2 2k 
- i & + (k-TJ 

Pk 1 + O(n 
-2 

(lwpk)' 
). 

(3.10) 
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The expectations of the eight estimators of variance are 

presented in column 4 of Table 2. The expression for v8 iS a 

large-n approximation, as in (3.10), whereas the other ex- 

pressions 

of vl and 

&EIvsy, 1 

b 1 sY7 
G!E 

= (1-f)u2/n t O(nm2) (3.11) 

= (l-f)(u2/n){l+[2/(p-l)][p~Pk/(l-~pk)-~k/(l-pk)]] + O(n-2). 

(3.12) 

The expectations of the remaining estimators (v2 to v6) do-not 

involve terms of lower order than O(n-'). 

From Tabl'e 2 and (3.10) - (3.12), it’is apparent that each of. 

the eight estimators has small bias for P near zero. If k is 

reasonably large, then vl is only slightly biased regardless of 

the value of P , provided P is not very close to 1. This is 

also true of estimators v2 through v8. The expectation of the -. 

first estimator tends to be larger than those of the other 

estimators since, e.g., 

l?EIvy,l -&Ivy41 g (1-f)(u2/n){(4/3)pk - (1/3)~~~} > 0. 

are exact. Large-n approximations to the expectations 

v7 are given by 
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As Cochran (1946) noticed, a good approximation to 

-2 p/k(l-p) is given by 2/nn(pk). On this basis, v8 should 

be a very good estimator since the expectation cE{v8} is nearly 

identical with the expected variance in (3.10). 

Exact statements about the comparative biases of the various 

estimators depend on the values of P and k. In Table 4 we see 

that differences between the estimator biases are negligible for 

small P , and increase as P increases. For a given value of P , 

the differences decline with increasing sampling interval k. 

Estimator v8 tends to underestimate the variance, while the 

remaining estimators (most notably vl) tend towards'an 

overestimate. Further, v8 tends to have the smallest absolute 

bias, except when P’ is small. When p is small, the a 

!2n(pk) approximation is evidently not very satisfactory. 

3.4 Periodic Populations 

A simple periodic population is given by 

'ij = 8, sin&[i+(j-l)k]}, (3.13) 

with eij iid (0, ~~1. As is well known, such populations are the 

nemesis of systematic sampling, and we study them here only to 

display that fact. When the sampling interval is equal to a 

multiple of the period, the variance of J tends to be enormous 

while all of the estimators of variance tend to be very small. 

Conversely, when the sampling interval is equal to an odd 

multiple of the half period, Var(y} tends to be extremely small 

while the estimators of variance tend to be large. 
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3.5 Monte Carlo Results 

The Monte Carlo results for the random population are 

presented in the row labeled Al of Tables 6, 7, and 8. On the 

basis of this investigation, estimator vl seems the best choice 

in terms of both minimum MSE and the ability to produce 95 

percent confidence intervals. Estimator vB is the only estimator 

that is seriously biased. The variance of the variance 

estimators is related to the number of "degrees of freedom", and 

on this basis v1 is the preferred estimator. The actual 

confidence levels are lower than the nominal rate in all cases. 

For the linear trend populati'on (see row labeled A2), all of 

the estimators are seriously biased. v2, v3, and particularly vB 

seem to be more acceptable than the remaining estimators, 

although each is downward biased and actual confidence levels are 

lower than the nominal rate of 95 percent. The good performance. 

of vB is surprising because this estimator was constructed 

specific,ally for autocorrelated populations. Because of large 

bias, VT and v7 are particularly unattractive for populations . 

with linear trend. 

The Monte Carlo results for the stratification effects 

populations are presented in rows labled A3 and A4. Population 

A4 is essentially the same as A3, except truncated so as not to 

permit negative values. Estimators v2, v3, and v4 are clearly 

preferred here; they have smaller absolute bias and MSE than the 

remaining estimators. v5 and v6 have equally small bias but 
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larger variance, presumably because of a deficiency in the 

“degrees of freedom." Primarily because of large bias, 

estimators vl, v7, and v8 are unattractive for populations with 

stratification effects. 

Results for the autocorrelated populations are in rows A5 and 

A6. Estimator v8 p erforms well in the highly autocorrelated 

population (A5), but not as well in the moderately autocorrelated 

population (A6). Even in the presence of high autocorrelation, 

the actual confidence level associated with v8 is low. Any one 

of the first four estimators could be recommended for low auto- 

correlation. 

Row A7 gives the results of the Monte Carlo study of the 

periodic population. As was anticipated (because the sampli-ng 

interval k = 50.is equal to the period) all of the eight 

estimators are badly biased downward, and the associated 
0 

confidence intervals are completely unusable. 

All simulations presented here were performed on UNIVAC 1100 

series computers, using the EXEC 8 operating system. The 

programming language was FORTRAN V. All random numbers were 

generated by IMSL subroutines. Computations were made in single 

precision, giving about 8-9 decimal place accuracy. 

4. Some Numerical Comparisons 

We now compare the eight estimators of variance using eight 

real populations. The first six populations were taken from the 

Income Supplement to the March, 1981 Current Population Survey 

(CPS). The populations consisted of all persons age 14+, in the 
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U.S. civilian labor force, and living in one of the ten largest 

Standard Metropolitan Statistical Areas (SMSA). For three of the 

populations, EMPINC, EMPRSA, and EMPNOO, the y-variable was the 

unemployment indicator 

Y = 1, if unemployed 

= 0, if employed 

while for the remaining three populations, INCINC, INCRSA, and 

INCNOO, the y-variable was total income. EMPINC and INCINC were 

ordered by the median income of the census tract in which the 

person resided. EMPRSA and INCRSA were ordered by the person's 

race by sex by age (white before black before other, male before 

female, age in natural ascending order). EMPNOO and INCNOO were 

in the customary CPS file order, essentially a geographic 

ordering. These CPS populations were each of size N = lj,OOO‘. 

The last two populations, FUELID and FUELAP, were comprised 

of 6,500 fuel oil dealers from the 1972 Economic Censuses. The 

y-variable was 1972 annual sales in both cases. FUELID was 

ordered by State by identification number. The nature of the - 

identification number was such that within a given State, the 

order was essentially random. FUELAP was ordered by 1972 annual 

payroll. 

The populations INCINC, INCRSA, and INCNOO are depicted in 

Figures A, B, and C (these figures actually depict a 51-term 

centered moving average of the data). The ordering by median 

income (INCINC) results in an upward trend, possibly linear at 

first and then sharply increasing at the upper tail of the income 

distribution. There are rather distinct stratification effects 
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for the population INCRSA, where the ordering is by race by sex 

by age. The geographical ordering displays characteristics of a 

random population. 

The unemployment populations EMPINC, EMPRSA, and EMPNOO are 

similar in appearance to INCINC, INCRSA, and INCNOO, 

respectively, except that they display negative relationships 

between the y variable and the sequence number whenever the 

income populations display positive relationships, and vice- 

versa. 

The fuel oil population FUELAP is similar in appearance to 

INCINC, except the trend is much stronger in FUELAP than in 

INCINC, FUELID appears to be a random population, or possibly. a 

population with weak stratification effects (due to a State or 

regional effect). 

The results of our investigation of bias are presented in 

Tables 6, 7, and 8, where the sampling fraction is f = 0.02 for 

all eight populations. In general, the results for these real 

populations are similar to the Monte Carlo results presented in 

the last section. 

Populations with a Trend 

Any of the five estimators v2, . . . . v6 may be recommended for 

INCINC. For FUELAP, (which has stronger trend than INCINC) v2 

and VS are the least biased estimators and also provide 

confidence levels closest to the nominal rate. The estimator vl 

was shatteringly bad for both of these populations. For EHPINC 

(which has much weaker trend than INCINC), however, the first 

estimator vl peformed as We?1 as any Of the estimators v2, . . . . v6. 
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Populations with Stratification Effects 

Any of the three estimators ~2, v3, v4 may be recommended for 

the populations INCRSA and EMPRSA. The absolute bias of v1 tends 

to be somewhat larger than the biases of these preferred 

estimators. All of the preferred estimators are downward biased 

for INCRSA and, thus, actual confidence levels are too low. 

Estimator v6 has larger MSE than the preferred estimators. 

Random Populations 

Any of the first six estimators may be recommended for 

INCNOO, EMPNOO, and FUELID. The last estimator also performs 

quite well for these populations, except for FUELID where it has 

a larger downward bias and corresponding confidence levels are 

too low. 
# . 
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5. Summary 

In this article we have studied some of the theoretical and 

empirical properties of eight reasonable estimators of the 

variance of the sample mean, attempting to gain some 

understanding of their range of applicability. Based on this 

work we offer the practicing statistician the following general 

advice: 

Reiterating our introduction, acquire as much prior 

information as oossible about the oooulation of interest. 

Use the information to construct plausible models of the 
* 

population and to try out different reasonable variance 

estimators. Subsequently, choose a variance estimator(s) 

for implementation. Intelligent use of prior information 

provides the best hope for finding a variance estimator with 

good statistical properties. If all else fails, we like ~7% 

v?, and possibly v4. Based upon the work in Sections 3 and 

4, these estimators seem to be broadly useful for a variety 

of kinds of populations. 

The specific findings of our investigation are as follows: 

(1) The bias and MSE of the simple random sampling estimator 

vl are reasonably small for all populations which have 

approximately constant mean Pij l This excludes popu- 

lations with a strong trend in the mean or 

stratification effects. Confidence intervals formed 

from vl are relatively good overall, though are often 
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(2) 

too wide and lead to true confidence levels exceeding 

the nominal level. 

In relation to vl, the estimators v4, v5, v6 based on 

higher order differences provide protection against a 

trend, autocorrelation, and stratification effects. 

They are often good for the approximate random 

populations as well: v4 often has the smallest MSE of 

these three, because the variances of v5 and v6 are 

large when the sample size (and thus the number of 

differences) is small. In larger samples and in 

samples with nonlinear trend or complex stratification 

effects, these estimators should perform relatively 

better than they did in this study. Confidence 

intervals are basically good, except. when th,ere is'a 

pure linear trend in the mean. 

(3) The bias of Koop's estimator v7 is unpredictable, and 

its variance is generally too large to be useful. This 

estimator cannot be recommended on the basis of the _ 

work done here. An issue for further work, however, 

concerns the possibility of increasing p (cf. Section 

2.1). This may reduce the variance of v7 enough to 

make it useful in real applications. 

(4) Estimator v8 has remarkably good properties for the 

artificial populations with linear trend or auto- 

correlation, otherwise it is quite mediocre. Its bias 

is usually negative, and consequently, confidence 

intervals formed from VS can fail to cover the true 
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population mean a sufficient proportion of the time. 

This estimator seems too sensitive to the form of the 

model to be broadly useful in real applications. 

(5) The estimators v2 and v3 based on simple differences 

afford the user considerable protection against most 

model forms studied in this article. They are 

susceptible to bias for populations with strong 

stratification effects. They are also biased for the 

linear trend population, but even then the other 

estimators are more biased. Stratification effects and 

trend did occur in the real populations, but they were 

'not su?ficiently strong to defeat the good properties of 

v2 and v3. In the real populations these estimators 

performed, on average, as well as any of the 

estimators. Estimators v2 and v3 (more degrees of 

freedom) often have smaller variance than estimators v4, 

v5' and v6 (fewer degrees of freedom). In very small _ 

samples, v2 might be the preferred estimator. 

Finally, we note that the findings presented in this 

article apply primarily to surveys of establishments and 

people. Stronger correlation patterns are likely to exist in 

surveys of land use, forestry, geology and the like, and the 

properties of the estimators may be somewhat different in these 

applications. 
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