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AN INVESTIGATION OF SOME ESTIMATORS OF VARIANCE FOR SYSTEMATIC
SAMPLING
by
Kirk M. Wolter®

1. Introduction

The method of systematic sampling, first studied by the
Madows (1944), is used widely in surveys of finite populations.
When properly applied, the method picks up any obvious or hidden
stratification in the population, and thus can be more precise
than random samp]ing.‘ In addition, systematic sampling is
implemented easily, thus reducing gost;. Since a systematic
‘sample can be regarded as a random selection of one cluster,
however, it is not possible to give an unbiased, or even
consistent, estimator of the design variance. Biased estimators
of variance must be sought if we are to estimate the precision of
our survey estimators from the sample itself,

The objective of this paper is to provide the survey
practitioner some guidance about the specific problem of
estimating the design variance of the systematic sampling
mean, ¥y . We shall only consider equal probability systematic
sampling with a single, random start. It is, of course, possible
to produce an unbiased estimator of variance when we draw two or
more random starts, though Gautschi (1957) shows that this
practice may lead to inefficient estimates of the population

mean,



Few guiding principles about variance estimation are
available in the literature on systematic sampling, particularly
for household and establishment surveys. In the 1940's several
authors addressed this issue, including Osborne (1942), Cochran
(1946), Matérn (1947), and Yates (1949). Recent references are
Koop (1971), Heilbron (1978), Zinger (1980), and Wu (1981). One
of the most comprehensive discussions is given by Cochran
(1977). The topic may have received little attention because
systematic‘sampling is often used at the last stage of sampling,
‘where rigorous estimators of the total variance can be given.

Section 2 contains a description of eight alternative
estimators of the variance of ¥ . Some theoretical results
regarding the eight.éstimators are worked out in Section 3 using
a superpopulation model., In Section 4 some empirical comparisons
of the estimators are made. Section 5 closes the papér with a
general summary and recommendations.

To aid in the reading of this article, it is useful to
remember the foilowing procedure for considering variance
estimation issues,

(a) Gather as much prior information as possible about the

nature and ordering of the population.

(b)Y If an auxiliary variable, closely related to the

estimation variable, is available for all units in
the population, then try several variance estimators on
this variable, This investigation may provide infor-

mation about which estimator will have the best



properties for estimating the variance of the
estimation variable,
(c) Use the prior information in (a) to construct a
simple model for the population. The results in
Sections 3 and 4 may be used to select an
appropriate estimator for the chosen model.
(d) Keep in mind that most surveys are multipurpose and
it may be important to use different variance estimators
for different characteristics.
Steps (a) - (d) essentially suggest that one know the population
well before choosing a variance estimator, which is exactly the
advice most authors since the Madows have suggested before using
systematic sampling.
2. Description of the Estimators
To concentrate on essentials, we shall assume N = nk where N
js the population size, n is the desired sample size, and k is
the sampling interval., We let Yij denote the value of the
characteristic of interest for the j-th unit in the i-th
systematic sample, where i =1, ..., k and j =1, ..., n. We
adopt the convention of using upper case Y's to denote the values
of units in the population, and lower case y's to denote the
values of the units in the sample., The systematic sampling mean

¥ and its variance are



and
var{y} (?/n)[1+(n-1)0],

respectively, where
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denotes the intraclass correlation between pairs of units in the
same sample, and the customary "dot" notation indicates a

summation.

Eight alternative estimators of the variance Var{y} will be
compared in succeeding sections. They are defined in Table 1 for

the i-th selected sample.
(Table 1 goes here)

There is an abundance of reasonable estimators which may be
used to estimate Var{y} and these eight estimators represent a
cross-section of the various general classes of estimators. A
class of estimators not considered here arises when one
supplements the systematic sample with either a simple random
sample or another systematic sample of smaller size. See Zinger

{(1980) or Wu (1981).



Table 1. Eight Estimators of Variance for Systematic Sampling

Form of Estimator Comments

(1-f)sz/n This estimator corresponds to
simple random sampling without
replacement, For systematic
sampling, it tends to over or
underestimate the variance as

p < =1/(N=-1) or p > -1/(N-1) .

V](i)

2
ai./2(n—1) Estimators 2 and 3 are based on

J overlapping and nonoverlapping
differences. v, corresponds to
stratified samp?ing with 2
units in each of n/2 strata.
v, is based on more "degrees of
freedom" than vg.

Hm3
~N

Vz(i)

(1-1) (3 /n)
‘ J

vyi) = (-H) (/)

b?./s(n-Z) Estimators 4, 5, and 6 are
J based on higher order

differences. vg was first
suggested by Yates (1949).
va is based upon second
differences, which annihilate a
linear trend in the population
values. The divisor is the sum
of squares of the coeffients
times the number of differences
in the sum.

v, () (1-£)(1/n) 3

n
ve (1) = (1-f)(1/n)




Table 1, Eight Estimators of Variance for Systematic Sampling continued

Form of Estimator

Comments

ve(1) = (1-f)(1/n) j:zgdfjn.s(n-a)
P -
V7(1) = (1-f) FTH%TT L (Y- Y)Z
vg(i) = (1-F)(s?/m)[1+2/an(p )42/ (p;11)],
if p >0
= (1-f)s?/n if b <0

Based on splitting the sample
into p systematic subsamples.
When f is neg]ig1b]e,
Bias {v b= (var{y }

-pVar{ P/p-1) ,

implying that vy is unbiased
when the variance is inversely
proportional to sample size.
See Koop (1971) regarding the
case p = 2.

Devised from a superpopulation
model where the correlation

between two units in the popu-
lation depends only on the

distance between them. See
e.g., Cochran (1946), Osborne

(1942), Matérn (1947). In vg
pk is an estimator of the

correlation between units k
units apart. Heilbron (1978)
gives three estimtors that are
similar to Vg.




Table 1. Eight Estimators of Variance for Systematic Sampling continued

NOTE:
n
s =1 (yyy-D) ¥ n-)
j=1
. _ n - _ 2
Py = sz (‘yij-‘y)(‘yi,j-]-‘y)/(n-])s
g7 Yig T Vi,
Pig T Yig ot it Vi
Ci3 T Vg% - Yigar tYiL5e2 t YiLia3 t Vi, 5-a/2
dij = yij/2 -yi,j-] + = ¢ o +yi,j-8/2
ya = sample mean of the «a-th systematic subsample of size

n/p (where p and n/p are integers)
= n/N = 1/k.




3. Some Comparisons Based on Simple Models
In this section, we shall introduce the notion of model bias
and use it as a criterion for comparing the various estimators of
variance. We assume the finite population is generated according

to the superpopulation model

Yig T Mgt eyje (3.1)
where the Mg j denote fixed constants and the errors ejj are
(0, 02) random variables. Our main goal is the determination of

conditions on and €5 j under which the eight estimators of

“ij
variance perform well with respect to model bias.

The expected bias and expected relative bias of an estimator

Vg (a=1, ..., 8) are defined by

Alv ) = £Elv,} - &arly)

and

Pled = B igvarls),

respectively. 1In Sections 3.1 - 3.4 we present expressions for

ééqva} for five useful mcdels of the form (3.1). These results
extend simply to the model with heterogeneous error variances.
In addition to this analytical work, we describe in Section
3.5 the results of a small Monte Carlo study that was made to
investigate properties of the estimators. Seven models were

chosen for the study and they are described in Table 5. For each

1]

model, 200 finite populations of size N 1000 were generated,
and in each population, the bias and MSE of each estimator were
computed, as well as the proportion of confidence intervals that

contained the true population mean. These quantities were



averaged over the 200 populations, giving the expected bias, the
expected MSE, and the expected confidence level for each of the
eight estimators. The multiplier used in forming the confidence
intervals was the 0.025 point of the standard normal distri-

bution. Estimator vy was studied with p = 2,

3.1 Linear Trend
Populations with linear trend may be represented by
Kyj = Bt B][i+(j-1)k], (3.2)
where BO and 81 denote fixed (but unkncwn) constants and the
errors ejj are independent and identically distributed (iid)
(0, 02) random variables, It is easily seen that the expected
variahce for this model is
Svar{zl = s2(x2-1)/12 + (1-f)a?/n. . (3.3)
The expectations of the eight estimators of variance are given in
column 2 of Table 2. The expression for<?E{v8} was derived by
approximating the expectation of the function v8(52, ;ksz) by
the same function of the expectations £E{s?} and éfE{;ksz} ,
where we have used an expanded notation for vg. In deriving this
result iﬁ was also assumed that ;k > 0 with probability one,
This assumption guarantees that terms involving the operator
an(+) are well defined.
From Table 2 and (3.3), we conclude that the value of the
intercept 80 has no effect on the relative biases of the
variance estimators, while the error variance o2 has only a

slight effect., Similarly, the value of the slope 81 has 1ittle
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effect on the relative bias, unless B is extraordinarily
small., For populations where k is large and s] is not extremely

close to 0, we have the following useful approximations:

rZL N
Llv,b & -(n-6)/n
£lval = -(n-6)/n
Liv,d & 1
Llvel = -
Flvgl =+ -1
folvat 2 b

Thus, from the point of view of relative bias, the estimatpr; Vo
and vy are preferred.

The readéﬁ will recall that these results differ from
Cochran (1977), who suggests v4 for populations with linear
trend. The contrasts defining v4, vg, and vg eliminate the
Yinear‘trend, whereas vo, v3, and vg do not. Eliminating the
linear trend is not a desirable property here because the

variance is a function of the trend.

3.2 Stratification Effects

We now view the systematic sample as a selection of one unit
from each of n strata. This situation may be represented by the
model

u.'J = uj, (3.4)

for all i and j, where the errors eij are iid (0,02) random variables,

That is, the unit means “ij are constant within a stratum of k units,.



Table 2.

Expected Values of Eight Estimators of Variance

Estimator

Population Type

Linear Trend

Stratification Effects

Autocorrelated

i

V2

V3

Va

Vg

Ve

vy

(1 -f) (82 (ns1) /12402 /]

(1-f)[8%%/2n+0%/n)
(1-£)[8%2/2n+0%/n)
(1-f)al/n

(1-f)o2/n

(1-f)o2/n

(1-£)[85k2(p+1)/12 + o2/n]

(1-f)[
(1-f)[
(1-f)[

()

-0 2 (ug/2-ug,% -...

(1) [2(s ) 2/n(n-1) +a2/n]?

J

n-1

)

(uj-uj+])2/2n(n-1)+uz/n]

/

™3~

2
(“zj_1'“zj)2/"2+°z/"]

=

o pg | G pg 1 &
~N

(uj~2uj+]+uj+2)2/6n(n-2)+02/n]

>
>

2
g/ 2-mg g4y o=y 3%hy,4/2)

/3.5n(n—4)+02/n}]
n-8
2
; +uj+8/2)
/7.5n(n-8)+02/n)

p
(-~ (p-1)' T (i -i) Beo?yn]

(1-F) (02/n) (1-0%)
(1-£) (a2/n) (1-0%)

(1-f)(a2/n)[1-20%/3402K/3]

(1-£) (a2/n)[1-120% /74802 /7-253K 1 740% /7]

(1-F)(a2/n)[1-280%/15+240%% 115-2003% /1541604 /15

- 120%%15480%% 15407 /15408 /1 5)

(1-F) (o2/m){1+[27(p-1)1[p (oP*-pM) 7 (1-0PK)
(XM 7 (1-e%)1-[2/(p-1) 1 [ (pZ/n} [ (pP¥-0 1)

7(1-0P¥) 2 (n7p-1)oM/ (126K}

- (n-1)0"7 (126511}

koo (12052

L



Table 2. Expected Values of Fight Estimators of Variance continued

Population Type
Estimator

e e R s e - . v v ————

Linear Trend Stratification Effects Autocorrelation
vg (=) [1(0)/n][1+ g5t 2 - (V-f)n~t (c(0)+02) [14 ___321_): (1-f)(o%/n)[1+2/2n (o¥)+20%/ (1 -p¥) 40 (n"2) 9
Ln
<(0)+a?
2 a e
vy Ty +—-—————7—2 }
k(0)+o
—LT%T— -1
K
a . ~ 2y L 2,2 2 ¢ - . ,
Y(1) = E{ka } = B]k (n-3)(n+1)/712 - ¢“/n u, = mean of a systematic subsample of size n/p of the My
{0} = E{SZ} = ngzﬂ(n+1)/12 + o? 4 The approximation follows from elementary properties of the
estimated autocorrelation function for stationary time
series and requires bounded sixth moments.
n n
b Po= I /n ¢ <o) = (n-l)’l);(uj-ﬁ)z
i J
-1 n-1 - -
k(1) = (n-1) JE (ug-m) (uy oy -m)e

A



For this class of populations, we note that

and it follows that the expected variance of ¥ is
var{3} = (1-f)d?/n. (3.5)

The expectaions of the eight estimators of variance are given in
column 3 of Table 2. Once again, the expression for the
expectation of vg is an approximation, and will be valid when n
is large and Pr{ak'> o} = 1.

Ffom Table 2 and (3.5) we see that each of the first seven
variance estimators has small and roughly equal relative bias
when the stratum means M3 are approximately equal. When the
stratum mean are not equal, there can be striking differences
between the estimators and vy and vg often have the largest
absolute relative biases. This point is demonstrated in Table 3
which gives the expected biases for My = j,_zn(j) + sin (j) with
n = 20 and p = 2.

Based on these simple examples, we conclude that v,, Vg, and
vg provide the most protection against stratification effects.
The contrasts used in these estimators tend to eliminate a linear
trend in the stratum means, which is desirable here because the

expected variance is not a function of such a trend. Conversely,

v, V35 and vy do not eliminate the trend, Estimators vg and vg

13



Table 3. Expected Relative Bias Times o2 for Eight
Estimators of Variance for Populations with Stratification
Effects

%3
Estimator
J en(J)+sin(j)
vy 35.00 0.965
Vo 0.50 0.235
V3 0.50 0.243
Vg 0.00 0.073
Vg 0.00 0.034
Vg | 0.00 0.013
vy 5.00 0.206
vg -0.67 -0.373

NOTE: n = 20, p = 2, o¢“ = 100.
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will be preferred when there is a nonlinear trend in the stratum

J
pairs of strata, estimator vq will have smallest expected bias.

means. When the means wu. are equal in adjacent nonoverlapping

Estimator vy will have smallest expected bias when the M3 are
equal in adjacent nonoverlapping groups of p strata. For p = 2,
vy and vy are comparable in terms of bias.

We note that the random model is a special case of the

stratifiction effects model with Mij = M for all i and j. For
this special case, the expected bias of the first seven esti-

mators of variance is zero.

3.3 Correlated Populations
Another important class of populations occurs where the unit

values are correlated. We may study such populations by assuming

‘the y-variable has the time series specification

(3.6)

for t =1, ..., kn, where the sequence {aj} is absolutely
summable, and the €, are uncorrelated (0,02) random variables.
The expected variance for this model is

- 2 kn-1
Evar{sl = (1-1)(1/M{N(0) - rrerT

1

(kn-h)y(h)
h=1

+‘rT('k‘-‘TT hz (n-h)v(kh)}, (3.7)

where
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()= A (Y] = E g o

By assuming that (3.6) arises from a low order autoregressive,
moving average process, we may construct estimators of Var{ysy}
and study théir properties.

For example, we consider the model that motivates vg, A

representation for this model is the first order autoregressive

process
Yt-u = p(Yt_]'U) + Et’ (3'8)
where p is the first order autocorrelation coefficient (to be

distinguished from the intraclass correlation coefficient) and

0 ¢ p < 1. By (3.7) the expected variance for this model is

kn kn
= 2 2 - 2 -
é?var{y} = (1‘f)(° /n){]‘ (k=T) (€pr)) + kn(k-l)[(?]fp)% = (kn")T

2k (o*-p%M) 2k _ [ (oK-0"") -—Eiiz
FTETT oy ATy ez - (D ]
(3.9)

Letting n index a sequence with k fixed we obtain the following

approximation to the expected variance:
k
2 2 P 2k P 1 -2
(-0/m - ey sy * oty o) o)

(3.19)

” -
Evari{yl
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The expectations of the eight estimators of variance are
presented in column 4 of Table 2. The expression for vg is a
large-n approximation, as in (3.10), whereas the other ex-
pressions are exact. Large-n approximations to the expectations

of vy and vy are given by

2elve ) - (1-f)o2/n + 0(n-2) | . (3.11)
ZE{ve b = (=) (eP/m){1e27(p-1) 1 [peP*/ (1-0PK) 08/ (1-65) T} + 0(n72),
(3.12)

The expectations of the remaining estimators (v, to v5) do-not
involve terms of lower order than O(n']).

F;om Tabfe 2 and (3.10) - (3.12), it is appafent that each of.
the eight estimators has small bias for »p near zero. If k is
reasonably large, then vy is only slightly biased regardiess of
the value of p , provided op is not very close to 1. This is
also true of estimators v, through vg. The expectation of the
first estimator tends to be larger than those of the other

estimators since, e.g.,

elvy b - Lelv,,b = (-0 (e2m){(4/3)0% - (173)6%%} > 0.



As Cochran (1946) noticed, a good approximation to
-2 p/k(1-p) is given by 2/1n(pk). On this basis, vg should
be a very good estimator since the expectationng{ve} is nearly
identical with the expected variance in (3.10).

Exact statements about the comparative biases of the various
estimators depend on the values of p and k. In Table 4 we see
that differences between the estimator biases are negligible for
small p , and increase as p increases. For a given value of p ,
the differences decline with increasing sampling interval k.
Estimator vg tends to underestimate the variance, while the
remaining estimators (most notably Vi) tend towards an
overestimate. Further, vg tends to have the smallest absolute
bias, except when p° is smq]1. When »p is small, the

2n (oK) approximation is evidently not very satisfactory.

3.4 Periodic Populations
A simple periodic population is given by
Bi; = B, sin{B][H(j-l)k]}, (3.13)

with e;; iid (0, 02). As is well known, such populations are the

J
nemesis of systematic sampling, and we study them here only to
display that fact. When the sampling interval is equal to a
multiple of the period, the variance of ¥y tends to be enormous
while all of the estimators of variance tend to be very small.
Conversely, when the sampling interval is equal to an odd

multiple of the half period, Var{y} tends to be extremely small

while the estimators of variance tend to be large.



Tabla 4. Expacted Relative Biases of Eight Estimators for Autocorrelnted Popu]ations
First Order Sampling e »'Estimit'or. RIS
Autocorrelation Interval s - : ——
- Coefficient ¢ k V) vy vy vy P Vg Ye_. Cvg Vg

0.00 4. . 0,678-02 0,678-02  0,678-02 .. 0,678-02 - 0,678-02 ., 0,678-02 . 0.678-02. -0.103-00
10 10.225-02 - 0.225-02 © 0.225-02-.0,226-02 - 0,225-02 ' 0,225-02 " 0,225-02  -0.413.01
30 - 0.697-03° 0,697-03. 0.697-03":: 0,697-03 - 0,697~ 03" 0. 597-03_,,30.597;03 © -0.138-01
0.10 4 - 0.797-01 . 0.796-01 . 0.796-01..0,795-00  0,795-01 - 0,795-01. " 0,795-01 . -0.155-00
| | © 107 0,253-01 0.253-01  0,253-017%% 0,253-00 5 0.253-017:%0.253-01 - "”n 253-01 . ~0.637-01
ST 30 0.772-02 - 0,772-02 . 0,772-02_ 5 0.772-02 . 0.772-02 &ﬁ,n 772-02 . 0,772-02 ... -0.215-01
0.50 4 "ojmwofOJMmo_oswmo'mdwmuﬁo7%wo - 0.740400 " oanmm‘kmwum
10 0.282400  0.281400 bmmwwuwmﬁommyommmqmmmymmMI
3 30 0.741-01 . 0.741-01 . 0,741-017:1 0,701-01 ' 0.741-m ' 0.741-01 7{§o.741-01 . =0,292-01
© 0.90 4 0.104402  0.293401  0.293+01 7"0 207401  0.165401" ﬁffo 150*01 | 0.590+01.:4 -07200+00
10 10427401 © 0.243:01 - 0. 243401 7 0, 204401 " 0, 174101_§;f 163101 0.291461  -0,907-01
| 300112400 0.103401  0.103+01 . 1o 100401 - 0.374400 ' 0.961400 . 0,104401-  -0,321-01
©0.99 4 . 0.18403  0.370401 © 0,370401 $0.220401 *' 0174401 7 0.186401° 1 0599402 -0.200400
10 0.533402  0.419401 . 0, 4]0+0] o 263401 0.217401 ' 0.19040) ~ = 0,276402 . -0,909-01
30 0.183+02  0.402401 O, 402*0\ o 27s+01’,Lvo.zzs+ul§ﬁ*,o.2os+ol . 0.J01402  -0.323-01

NOTE:

Results ignore terms of order n™°,

61
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3.5 Monte Carlo Results

The Monte Carlo results for the random population are
presented in the row labeled Al of Tables 6, 7, and 8. On the
basis of this investigation, estimator vy seems the best choice
in terms of both minimum MSE and the ability to produce 95
percent confidence intervals. Estimator vg is the only estimator
that is seriously biased. The variance of the variance
estimators is related to the number of "degrees of freedom", and
on this basis vy is the preferred estimator. The actual
confidence levels are lower than the nominal rate in all cases.

For the linear trend population (see row labeled A2), all of
the estimators are seriously biased. Vo, V3, and particularly Vg
seem to be more acceptable than the remaining estimators,
although eaéh is downward biased and actual confidence levels are
lower than the nominal rate of 95 percent. The good performance
of vg is surprising because this estimator was constructed
specifically for autocorrelated populations. Because of large
bias, vy and vy are particularly unattractive for populations
with linear trend.

The Monte Carlo results for the stratification effects
populations are presented in rows labled A3 and A4, Population
A4 is essentially the same as A3, except truncated so as not to
permit negative values. Estimators Vo, V3, and v, are clearly
preferred here; they have smaller absolute bias and MSE than the

remaining estimators. v and v, have equally small bias but
5 6
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larger variance, presumably because of a deficiency in the
“degrees of freedom." Primarily because of large bias,
estimators vy, vy, and vg are unattractive for populations with
stratification effects.

Results for the autocorrelated populations are in rows A5 and
A6. Estimator vg performs well in the highly autocorrelated
population (A5), but not as well in the moderately autocorrelated
population (A6). Even in the presence of high autocorrelation,
the actual confidence level associated with vg is low. Any one
of the first four estimators could be recommended for low auto-
correlation.

Row A7 gives the results of the Monte Carlo study of the
periodic population. As was anticipated (because the sampling
interval k = 50 is equal to the period) all of the eight
estimanrs are badly biased downward, and the associated
-confidence intervals are completely unusable.

A1l simulations presented here were performed on UNIVAC 1100
series computers, using the EXEC 8 operating system. The
programming language was FORTRAN V. A1l random numbers were
generated by IMSL subroutines. Computations were made in single

precision, giving about 8-9 decimal place accuracy.

4, Some Numerical Comparisons
We now compare the eight estimators c¢f variance using eight
real populations. The first six populations were taken from the
Income Supplement to the March, 1981 Current Population Survey

(CPS). The popuiations consisted of all persons age 14+, in the
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U.S. civilian labor force, and living in one of the ten largest
Standard Metropolitan Statistical Areas (SMSA). For three of the
populations, EMPINC, EMPRSA, and EMPNOO, the y-variable was the
unemployment indicator

y = 1, if unemployed

= 0, if employed

while for the remaining three populations, INCINC, INCRSA, and
INCNOO, the y-variable was total income. EMPINC and INCINC were
ordered by the median income of the census tract in which the
person resided., EMPRSA and INCRSA were ordered by the person's
race by sex by age (white before black before other, male before
female, age in natural ascending order). EMPNOO and INCNOO were
in the customary CPSAfi]g order, essentially a geographic
ordering, These CPS populations were each of size N = 13,000l

The last two populations, FUELID and FUELAP, were comprised
of 6,500 fuel o0il dealers from the 1972 Economic Censuses. The
y-variable was 1972 annual sales in both cases. FUELID was
ordered by State by identification number. The nature of the
identification number was such that within a given State, the
order was essentially random. FUELAP was ordered by 1972 annual
payroll.,

The populations INCINC, INCRSA, and INCNOO are depicted in
Figures A, B, and C (these figures actually depict a 51-term
centered moving average of the data). The ordering by median
income (INCINC) results in an upward trend, possibly linear at
first and then sharply increasing at the upper tail of the income

distribution., There are rather distinct stratification effects
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for the population INCRSA, where the ordering is by race by sex
by age. The geographical ordering displays characteristics of a
random population.

The unemployment populations EMPINC, EMPRSA, and EMPNOO are
similar in appearance to INCINC, INCRSA, and INCNOO,
respectively, except that they display negative relationships
between the y variable and the sequence number whenever the
income populations display positive relationships, and vice-
versa,

The fuel oil population FUELAP is similar in appearance to
INCINC, except the trend is much stronger in FUELAP than in
INCINC. FUELID appears to be a random population, or possibly a
population with weak stratification effects (due to a State or
regional effect).

Thelresu1ts of our investigation of bias are presented in
Tables 6, 7, and 8, where the sampling fraction is f = 0.02 for
all eight populations. 1In general, the results for these real
populations are similar to the Monte Carlo results presented in
the last section.

Populations with a Trend

Any of the five estimators Vo, seas Vg may be recommended for
INCINC. For FUELAP, (which has stronger trend than INCINC) v,
and v3 are the least biased estimators and also provide
confidence levels closest to the nominal rate. The estimator Vi
was shatteringly bad for both of these populations. For EMPINC
(which has much weaker trend than INCINC), however, the first

estimator vy peformed as well as any of the estimators Vo, eess Vgo



Populations with Stratification Effects

Any of the three estimators v,, vy, V4 may be recommended for
the populations INCRSA and EMPRSA. The absolute bias of vy tends
to be somewhat larger than the biases of these preferred
estimators. All of the preferred estimators are downward biased
for INCRSA and, thus, actual confidence levels are too low.
Estimator vg has larger MSE than the preferred estimators.

Random Populations

Any of the first six estimators may be recommended for
INCNOO, EMPNOO, and FUELID. The last estimator also performs
quite well for these populations, except for FUELID where it has
a larger downward bias and corresponding confidence levels are

too low,
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5. Summary
In this article we have studied some of the theoretical and
empirical properties of eight reasonablie estimators of the
variance of the sample mean, attempting to gain some
understanding of their range of applicability. Based on this
work we offer the practicing statistician the following general
advice:

Reiterating our introduction, acquire as much prior

information as possible about the population of interest.

Use the information to construct plausible models of the

.

population and to try out different reasonable variance

estimators., Subsequently, choose a variance estimator(s)

for implementation. Intelligent use of prior information

provides the best hope for finding a variance estimatortwith

good statistical properties. If all else fails, we like v,

v, and possibly vs, Based upon the work in Sections 3 and

4, these estimators seem to be broadly useful for a variety

of kinds of populations.

The specific findings of our investigation are as follows:
(1) The bias and MSE of the simple random sampling estimator
vy are reasonably small for all populations which have

approximately constant mean This excludes popu-

uij -
lations with a strong trend in the mean or
stratification effects., Confidence intervals formed

from vy are relatively good overall, though are often



(2)

(4)

too wide and lead to true confidence levels exceeding
the nominal level.

In relation to Vi, the estimators vy, Vg, Vg based on
higher order differences provide protection against a
trend, autocorrelation, and stratification effects.
They are often good for the approximate random
populations as well. v, often has the smallest MSE of
these three, because the variances of Vg and vg are
large when the sample size (and thus the number of
differences) is small. In larger samples and in
samp]es'with nonlinear trend or complex stratification
effects, these estimators should perform relatively
better than they did in this study. Confidence
intervals are basicél]y good, except when there is a
pure linear trend 1ﬁ the mean.

The bias of Koop's estimator vy is unpredictable, and

its variance is generally too large to be useful. This

estimator cannot be recommended on the basis of the
work done here. An issue for further work, however,
concerns the possibility of increasing p (cf. Section
2.1). This may reduce the variance of vy enough to
make it useful in real applications.

Estimator vg has remarkably good properties for the
artificial populations with linear trend or auto-
correlation, otherwise it is quite mediocre. Its bias
is usually negative, and consequently, confidence

intervals formed from vg can fail to cover the true

33



(5)

population mean a sufficient proportion of the time.
This estimator seems too sensitive to the form of the

model to be broadly useful in real applications.

The estimators Vo and Vi based on simple differences
afford the user considerable protection against most
model forms studied in this article. They are
susceptible to bias for populations with strong
stratification effects. They are also biased for the
linear trend population, but even then the other
estimators are more biased. Stratification effects and

trend did occur in the real populations, but they were

‘not sufficiently strong to defeat the good properties of

Vo and v3. In the real populations these estimators
performed, on average, as well as any of the
estimators. Estimators Vo and v3 (more degrees of

freedom) often have smaller variance than estimators Va

Vgy and vg (fewer degrees of freedom). In very small

samples, v, might be the preferred estimator,

Finally, we note that the findings presented in this

article apply primarily to surveys of establishments and

people.

Stronger correlation patterns are likely to exist in

surveys of land use, forestry, geology and the like, and the

properties of the estimators may be somewhat different in these

applications.
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