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Abstract

Record linkage procedures based on the Fellegi-Sunter theory (JASA
1969) require the estimation of the conditional probabilities of the
agreement patterns. Under the assumption of conditional indepen-
dence, this reduces to the estimation of the conditional probabilities of
the agreement of the individual matching fields. We consider methods
for using value-specific, frequency-based methods to modify the agree-
ment probabilities according to the rate of recurrence of the common
matching field value in the matching set. We compare and analyze the
effects of the methods when applied to Census data sets, and assess
their value and usability.

1 Introduction

A record linkage methodology seeks to identify pairs of records from two files
that both represent the same entity. We consider two sets A, B representing
populations. We may partition the set A x B into the sets

M ={(a,b) € Ax B| a=10}
U={(a,b) € Ax B| a#b}



the set of matched pairs M and unmatched pairs U. For each element of our
sets, we have a corresponding data record. Hence we have data from the sets
A, B based on functions

ay:A— ay(A)
ap: B — ap(B)

where a4 (A) and ap (B) are files containing recorded information about the
two populations. We tacitly assume that the data records contain enough
information so that the functions a4, ap are one-to-one. We suppose that
we have a comparison function

fraa(A)xap(B)—T

where T is a finite comparison space. We may denote f (a4 (a),ap (b)) =
v € Dby~ (aa(a),ap (b)) wherey = (v;) is a comparison vector of dimension
n where each ~; takes on finitely many possible values, depending on the
agreement of the records a4 (a) , ap (b) on a set of matching fields. We wish to
identify which pairs of records (a4 (@) , ap (b)) correspond to a matching pair
(a,b) € M based on their corresponding comparison vector v (a4 (a) , ap (b)).
Usually each comparison field is binary, v; € {0,1}, corresponding to the
record pairs either disagreeing or agreeing on a particular field of comparison.

1.1 The Fellegi and Sunter Approach

We base our record linkage methods on the fundamental theoretical develop-
ment due to Fellegi and Sunter [2|. The basis of record linkage decisions is
the conditional probabilities

P(y| M) and P (v|U)

which represent the probability that a record pair exhibits the comparison
pattern v given that the pair represents a match (resp. nonmatch). From
these pattern probabilities we can compute a pattern weight

P (| M)

w0 =8 B0 T)

and we declare record pairs as links when they have a pattern weight above
a high cutoff value, as nonlinks when they have a pattern weight below a
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low cutoff value, and as a clerical pair when they have a pattern weight
between the cutoff values. Fellegi and Sunter show that for the false match
and false nonmatch error rates for a chosen pair of cutoff values, this linkage
method produces the minimal clerical region among record linkage methods
with these error rates.

Since the number of comparison patterns v grows exponentially with the
number of comparisons made (i.e. the dimension n of v = (v;)), we gen-
erally reduce the probability estimation burden by making the conditional
independence assumption

P (v M) = HP Vil M)

P(~|U) = HP %l U) .

This generally amounts to estimating the conditional probabilities of agree-
ment and disagreement of a record pair on each particular field of com-
parison. That is, for each i = 1,... ,n, we estimate P (7; = 1| M) (and
hence P(v; =0|M)=1—P(y;, =1 M)) and P (v; = 1|U), generally using
the EM algorithm [5]. Then for any binary pattern vector 7, we compute
P (~| M) and P (~|U) using the appropriate product, and thus compute the
weight w (y) to determine our record linkage procedure.

We may question whether we could derive a more accurate record linkage
procedure if we took into account the actual value in the comparison field
in addition to simple agreement/disagreement. If we use more information
from the files, can this result in better linkage decisions?

Under the conditional independence assumption, the agreement weight
of a pattern v is determined by the weights associated to the individual
components ;. For simplicity, we assume that ~; takes on values depending
on the contents of a particular matching field, and let us fix that field and
consequently drop the subscript 7.

2 The Fellegi and Sunter Approach to Value-
Specific Matching

We wish to formulate a model for frequency-based matching. Fellegi and
Sunter develop the following approach to estimating the conditional proba-
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bilities for the comparison fields based on the properties of the population
sets A, B.

For the purposes of frequency-based matching, we assume that the ac-
tual populations A, B have unique “true” values corresponding to the given
matching field. In other words, our matching field might be surname, and
we suppose that everyone in A and B has a true unique surname which we
attempt to record in a4 (A) and ap (B) respectively. Since our populations
are finite, there are only finitely many, say m, actual values that this field
can take on in AU B. We enumerate the number of times that each of these
values occurs in each population

faus Fass - fans Y fa, = Na

i=1

IB1is [Bos -+ s I B ZfBj = Np
j=1

and on the overlapping population AN B

m

fioforeeo s fmi D fi = Nans

J=1

where N¢ denotes the cardinality of the set C.
Fellegi and Sunter then introduce some error terms. We can think of them
as corresponding to the following events occurring in the set s (A) x ap (B).

E4 = the matching field value from set A is misrecorded in the set a4 (A)
Ep = the matching field value from set B is misrecorded in the set ap (B)
Es,= the matching field value from set A is missing in the set a4 (A)
Ep,= the matching field value from set B is missing in the set ap (B)
Er = the matching field value for a person in AN B changed from A to B

The idea of this last event seems to be to capture the temporal nature of the
sets A, B. If the sets are snapshots of a population at specific times, it is
possible that a person’s actual name or address or phone number may change
over time. In any case, we consider the event

F - _|EA N _|EB N _|EA0 A _'EBO A _‘ET



and assume that the above events are independent so that
P(F)=(1-FP(Es)(1—-P(Ep))(1—-P(Ex))(1—P(Eg))(1—-P(Er)).

Whether or not this formulation covers all errors and inconsistencies or not
may be a matter of interpretation. For instance, does this cover reporting
variations of the true field value, as in variant first name reports for William,
Will, Bill, Billy, Willie, etc? In any case, the idea of the event F' seems to be
that the actual matching field value is correctly and consistently reported in
both files a4 (A) and ap (B), and the probability of event F' may depend on
the matching field but not on the particular pair (a4 (a), ap (b)).
Using the notation, for C' C ay (A) x ap (B),

m(C)=P(C|M) =P ((aa(a),ap (b)) €C| (a,b) € M)
u(C)=P(C|U) =P ((aa(a),ap (b)) € C| (a,b) €U)
if we define the events

G = «aga(a) and ap (b) agree on the matching field value
G; = aand b take on the j™ matching field value

then Fellegi and Sunter state that

Ji
m(GNAG;) = NAOBP(F)

fa, IB;
u(GANG;) = NANB P(F).

In the first equation, the first factor % represents the probability that
given that (a b) € M, so that a = b € AN B, the true value of the matching
field is the ;"' value. The second factor is P (F), the probability that the
matching field value was correctly and consistently recorded in both files.
This formula is under the assumption that these two probabilities represent
independent events and P (F| M) = P (F).

The second equation does seem to be more of an approximation. We are

given that (a,b) € U, so that a € A,b € B, and a # b. To get a and b both

-tl fA fB fa,xB;
taking on the same j'™ matching value, we have probability Ve T N
fa; I, £
but to assure that a # b, we should subtract to get NNy T WANg - In general,

this is a lower order correction, but for rare values it can be significant, as can
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be seen when a matching value is unique in each set. As before, multiplying
by P (F') indicates that these matching field values are correctly recorded in
both files. Again we are ignoring many terms where a and b have different
field values in truth, but they are recorded as identical in both files. The total
probability of such accidentally agreeing matching fields may not be large for
a matching field like surname, but it might be significant for a matching field
like sex, where the number of and difference between field entries is small.

3 File-Based Frequency Modification

A slightly different point of view for modeling frequency-based agreement
probabilities, based on [4], is to replace P (F'), which is based on file error
probabilities that are likely difficult to estimate accurately, and instead base
all of our probability estimates on the contents of the files a4 (A), ap (B).
Thus as above, we can let

G={(aa(a),ap (b)) | aa(a),ap(b) agree on matching field value}
(except that we have changed to set notation), but now we will define
G; = {(aa(a),ap ()| as(a),ap (b) both take on the ;™ matching field value}

where the set of possible matching field values has been determined by the
contents of the data files a4 (a),ap (b). Now when we consider

m(GNG;)=P(GNG;|M)=P(G,;|G,M)P (G| M),

This probability calculus identity serves to shift the frequency emphasis from
the population to the data files. The quantity P (G| M) functions somewhat
similarly as the above P (F') in the sense of translating from what is true
about the actual population to what is actually reflected in the files, in that
if the files held completely accurate data from the population, we would
expect both P (F') and P (G| M) to be nearly equal to 1. However, in the
previous model, the frequencies such as fy;, fB;, f; indicated frequencies of
occurrence in the actual population sets A, B, AN B, whereas by being given
G, the probability P (G,| G, M) indicates that we are considering the cases
of record pairs that both have the ;' value given that they both have the
same value (and they represent a match). From this viewpoint, however, the
second factor is different for the nonmatch case, namely

w(GNGy) =P(GNG,|U)=P(G,|G,U)P(G|U).
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In the case where P (G| M) and P (G| U) have been estimated separately, as
with the EM algorithm (3|, we can compute a frequency-based adjustment
by estimating P (G;| G, M) and P (G,|G,U).
By definition we have
P(G;NnGNM) P(G;NM)
PLoj|G M) = P(GNM) — P(GNM)
(G;NnGNU) P(G;nU)

P
PGl G U) = P(GNU)  P(GND)

since G; C G. For a given blocking subset S C a4 (A) X ap (B), we can try
to estimate the counts

# (G, N M) # (G;NU)
Z(GnM) CHGND)

as subsets of S.

Remark 1 Since we will now only be using the data files ap (A), ap (B) and
not be referring to the original population sets A, B, in the remainder of the
paper we drop the a notation and think of our files as sets A and B.

We may denote the blocking set S is of the form

S:OAZXBZCAXB

i=1

where the A; are pairwise disjoint subsets of A and the B; are pairwise disjoint
subsets of B. Let s1,s9,...,5, be a list of all possible values of the given
matching field and let

A;j = {z € A;| z has matching field value s,}
B;j = {z € B;|z has matching field value s,}
a;; = # (Aij)

bij = # (Bj;)
m;; = min (a5, bij) -

We can say that

#(G;NM) < imy

i=1



and

#(GNM) <D N my.

=1 i=1

One possibility is to estimate the extent of overlap in the sets and assume
that a fixed proportion of the records in one set can be correctly assigned a
match from the other set. That is, suppose there is a constant 0 < p <1
such that the number of matches brought together by the blocking criterion
is a fixed proportion p of the maximum possible number of matches, so that
the number of matches in A;; x B;; is pm,;. For example, if we assume that
A C B, we would expect p to be near 1 (and m;; = a;;). In this case we
would have

# (G, N M) D pmy o D my

#(GNM) B E?=1 D iy P a E?=1 D iy M

and
#(G;NU) > ey (aibiy — pmij)

A(GENU) Y (aibiy — pmig)”

4 Tempered File-Based Frequency Modifica-
tion
If we allow the binary agreement weight
P(GIM)
P(G|U)
to be modified by value-specific factors

P(G;|M) _ P(G;|G,M) P (G| M)

P(G;|U)  P(G4|G,U) P(G|U)
where we estimate
. # (G N M) D iy M
P(G;|G,M) = = — — 1
( J| ) #(Gﬂ]\/[) Ejzl Zizl mij ( )
. #(G;N0) > iy (@ijhij — pmij)
P(G;|G,U) = = 2
(&]6.0) #(GNU) 3000 (aigbiy — pmag) @




then the adjusted weight

P(G,| M)
P(G,|U)

can vary over a wide range. For the most common matching field values
G, this adjusted weight can be less than 1. This leads to the somewhat
counterintuitive result that two records can have their total matching weight
reduced by agreeing on a certain field value. However, if the two records have
a number of fields of agreement, the total agreement weight should still be
fairly high even after such a downweighting.

On the other hand, the above formula can result in a large upweighting
if the value-specific factor is very large. This can be bad if it dominates
mediocre agreement weight factors from other matching fields, resulting in a
high agreement rate based mostly on one field value. This is also a problem
because the value-specific factor will be large when the matching field value
is rare in the set of record pairs. This means that the probability estimates
will be based on a small number of sample values, making the estimate more
statistically suspect. Also, for a specific j* value, the factor is determined
by the ratio

D iy T
> ey (aijbi; — pmij)

which for

>y aijbij
D iy i

xTr =

is basically of the form
1
z—p
which changes most rapidly for small z. For example, an extreme case is for
a rare field value to have either a;; = 0 or b;; = 0 or both a;; =1 and b;; =1
for all 1 < i < m. That is, we have a rare field value such that whenever

it appears in both files, it appears just once in each. In this case, we would
have

m

m
> mi =Y aiby
i=1

i=1
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and thus x = 1, the minimum value. Especially when the match proportion
p is near 1, the resulting upweighting factor can be quite large. If a few
of the a;; or b;; values change slightly, the upweighting factor can decrease
substantially. Thus the value-specific factor estimate is more sensitive to
errors when the value is rare in the file. For these reasons, it may be preferable
to average the value-specific factors for the rate values to try to reduce the
error variance and to moderate the size of the upweighting.

The value-specific conditional probabilities partition the binary condi-
tional probabilities in the sense that

ZP(GjIM)=P(G|M)
ZP(Gj|U)=P(G|U).

We can impose a cap on the value-specific factor effect by specifying a factor

a > 0 such that we only individually compute value-specific effects where
P (G,;| M)
P(G,[0)

P (G| M)
P(GIU)

<o

that is,

P(G,| G, M)

< .
PGy o) =“

Let us denote

mj = Z mij

i=1
(ab); = > aijby;

i=1

N=22 my
j=1 i=1

P = z Z aijbij

=1 i=1
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so that our frequency-based estimates for the value-based probabilities are

PGy G M) =24

N
(ab); — pm;
P (G, = -
Then our estimates will satisfy
P(G;|G, M)
— < 3
P(Glc.0) =° )
when
m; P —pN
4
@), —pm; N &
So if we let

(a’b)j — pm; N

m; >aP—pN}

then we can estimate the probabilities of the rare values by the average, for
jerT

1 m;
P(G;|G,M il
(GG, M) = #<T>36T
1 (ab) — pm;

so that we would still have
Y P(GiIM) =) _P(G|M)+> P(G;|M)=P(G|M)
J Jgr JET

D_P(GlU) = P(Gi|U)+ ) P(Gs|U) = P(G|U)

j¢T jJET
and the averaged value-specific weight factor wr for j € T is estimated by

P(G;|G, M) . 2 jer My P —pN
TR G e 1°g(zﬂ<ab>j—pmj v ) ?
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4.1 Tempered Frequency-Based Tables

At the Census Bureau, we have some pairs of population survey files that
have been extensively reviewed to determine the record pairs that represent
true matches. We can use these to evaluate record linkage method results
against the truth. We experimented with this frequency-based modification
for some matching fields in our Census test files. For the test files 2021, 3031,
and STL, we considered the matching fields last name, first name, and street
name, and values of o = 1,2, 3. For each field value for each file, we used the
binary matching weight

P (G| M)

wZIOg—P(G|U)

based on the EM algorithm estimates. We printed out the matching field
values and their frequency-based estimated value-specific weights

P (G, M)
P(G;|U)

w; = log

where j ¢ T and computed the averaged estimated weight for rare values
j €T. When a = 1, we are printing out those common names which result
in a downweighting factor, but the default weight wr for names not in the
list, corresponding to j € T, will have a higher weight than w. As we increase
a, we include more names and produce a higher default weight wy.

We summarize the results in some tables. For our initial inputs, we
computed the conditional independence agree/disagree weights for each of
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the fields using the EM algorithm.

Table 1: EM Estimates for Field Agreement

2021
last name 0.9604
first name 0.9279
street name 0.9566
3031
last name 0.9431
first name 0.9318
street name 0.7326
STL
last name 0.9579
first name 0.9265

P(GIM) P(G|U) w
0.2170  1.488
0.0105 4.482
0.5620  0.530
0.2304  1.409
0.0110 4.439
0.3877  0.636
0.2496  1.345
0.0109 4.443
0.5770  0.534

street name 0.9843

For each of the files and each of the selected fields, we printed out a
table of all of the common names with value-based weight w; < w + log o
as well as the default rate weight w;. As one would expect, the number of
individual common names and the tempered default weight ws both increase
with increasing o, with wr exceeding the overall average weight w from Table

1.
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Table 2: Average weight wy and number of common names for varying «

a=1 a=2 a=3
last name
2021
#common names 63 183 389
wr 2.4122 2.7901 3.2569
3031
#common names 56 144 260
wr 2.4463 2.8205 3.0914
STL
#common names 26 66 131
wr 2.7456 3.1590 3.4725
first name
2021
#common names 38 99 202
wr 5.3798 5.8252 6.2729
3031
#common names 41 114 223
Wy 5.3876 5.8276 6.2641
STL
#common names 43 150 228
wr 5.3651 5.9536 6.2545
street name
2021
#common names 20 47 68
wr 1.1903 1.6732 2.0336
3031
#common names 28 64 84
wr 1.2532 1.8190 2.1789
STL
#common names 42 121 157
wr 1.0609 1.7253 2.0599

4.2 Frequency-Based Matching Results

We performed several runs on the sample files using various combinations of
value-specific, frequency-based matching. We provide some summary table
results of some of the more extreme runs. We consider as a baseline the re-
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sults of using no frequency-based matching, using frequency-based matching
in all three fields only for downweighting with no tempered upweight adjust-
ment, and using frequency-based matching in all three fields using tempered
adjustment with o = 3. The general result is that the frequency-based tech-
niques do not make much difference overall. Using only downweighting tends
to lower the total weights, using tempered adjustment increases the spread by
raising the weights, but there does not appear to be a great amount of move-
ment. Somewhat arbitrarily, we grouped matcher output pairs by those with
matching weight w > 3, —2 < w < 3, and w < —2. It seemed fairly consis-
tent across all the data sets and all the runs that almost all pairs with w > 3
were true matches, almost all pairs with w < —2 were true nonmatches, and
there were substantial numbers of both in the intermediate group, according
to the clerical review records. It would appear that some of the exceptional
cases are clerically mislabled. In any case, we see slight drifts across these
arbitrary barriers. The examined pairs have been truncated by an output
low cutoff of —5. It might be interesting to examine differences in the results
of the different methods in terms of individual cases. Can we draw any con-
clusions about which if any pairs were matched differently, or were the same
pairs just given different weight values? If pairs were given different weight
values, which pairs had the most dramatic weight reevaluations? By per-
forming multiple matching runs with and without frequency-based matching
for different fields and reviewing record pairs that either are inconsistently
output or which have large agreement weight changes, we may be able to
detect some additional matches or false matches.
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Table 3: Comparison of Matching Results With and Without Frequency Data

No Frequency
2021

3031

STL

Downweighting
2021

3031

STL

Tempered
2021

3031

STL

w>3 2<w<3 w< -2 Total
3347 45 1 3393
54 45 74 173
98.41 50.00 1.33 3566
3470 58 3 3531
33 66 86 185
99.06 46.77 3.37 3716
9691 102 6 9799
80 109 125 314
99.18 48.34 4.58 10113
3346 47 2 3395
51 41 65 157
98.50 53.41 2.99 3552
3466 61 4 3531
33 61 85 179
99.06 50 4.49 3710
9681 112 7 9800
79 100 126 305
99.19 52.83 5.26 10105
3354 37 2 3393
57 40 H& 155
98.33 48.05 3.33 3548
3492 37 2 3531
34 65 86 185
99.04 36.27 2.27 3716
3732 65 2 9799
99 16 98 120 317
98.99 39.88 1.64 10116



To give some sense of the numerical effects on the total matching weights
from the use of frequency-based matching, we list some quantile data for
the total matching weights of the output pairs. For matching runs using
no frequency adjustments, only downweighting adjustments (o« = 1), and
tempered frequency adjustments (o = 3) respectively, we show the computed
cutoff weights for each of the following quantiles of the clerically reviewed
truth values for the reported record pairs. For example, for the set 2021,
when no frequency data was used in the computation, when we compare
the computed weights of all of the reported record pairs that have been
determined to be true matches by clerical review, 75% of these true matches
had matching weights of 13.58 or less.
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Table 4: Comparison of Truth Value Quantile Weights
No Frequency Downweighting  Tempered

T F T F T F
2021
Max 14.75 14.75 14.75 14.75 19.81 18.39
90% 14.75 8.80 14.34 10.16 17.33 12.05
75% 13.58 4.29 13.40 5.16 16.03 6.77
50% 12.75 —0.91 12.01 —0.20 14.22 0.24
25% 10.61 —3.51 10.03 —-3.06 11.94 —-2281
10% 8.03 —4.42 737 —4.38 898 —4.34
1% 223 —-493 1.60 —4.98 270 —4.80
3031
Max 14.79 14.79 14.79 14.79 19.84 18.12
90% 14.52 8.57 13.88 7.89 16.95 9.46
75% 13.53 1.37 13.01 1.15 15.53 1.79
50% 12.06 —1.89 11.53 —1.98 13.70 —-1.91
25% 10.22 —=3.57 9.61 -3.90 11.40 -—-3.77
10% 7.62 —4.34 7.07 —4.46 870 —4.42
1% 203 —497 1.82 —4.96 254 —4.96
STL

Max 14.54 14.54 14.55 14.55 20.02 19.26
90% 14.54 11.36 14.21 11.06 17.77 1291
5% 13.43 3.41 13.28 3.11 16.38 3.88
50% 12.66 —0.82 11.82 —0.88 14.41 —-0.34
25% 10.71 —3.08 9.92 —-3.32 12.04 -3.23
10% 822 —4.31 7.50 —4.42 943 —4.44
1% 275 —499 241 —-499 3.71 —-4.93

5 Summary and Discussion

We have seen that in the context of our record linkage examples, adding the
extra refinement of value-specific modifications does not significantly affect
the matching results. Frequency-based calculations may improve record link-
age results in other data or methodology contexts. We should note that our
test examples are pairs of modest sized, relatively clean personal data files
which represent substantially overlapping populations from a fairly small ge-
ographic region. Our frequency-based adjustments are applied within the
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methodology context which computes agreement weights for record pairs un-
der the conditional independence model where the individual field agreement
conditional probabilities are estimated to represent the average agreement
probabilities over all field values.

When matching these kinds of files, some of the matching fields help to
distinguish between households and some fields help to individuate persons
within households. Fields such as last name and street name along with house
number tend to determine household agreement. Adding value-specific ad-
justments to last name or street name fields may not significantly enhance
common household identifiability. The first name field has strong distinguish-
ing power between individuals within a household, but again the employment
of statistics about specific first name distributions in the entire population at
hand may not have much added effect on distinguishing individuals within a
household.

The conditional independence model usually produces a poor fit to the
data, but it nevertheless usually produces an effective classification algorithm
for record linkage. Enhancements to the conditional independence model can
provide a better data fit, but often do not improve matching performance. On
the other hand, improved model fit might lead to more accurate error rate
estimates. For example, by using the extended tempered frequency-based
matching, we get a greater range of weight values. This might help with
modeling error estimates by producing a more separated bimodal distribution

1].
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