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EXECUTIVE SUMMARY

The North Atlantic right whale species (Eubalaena glacialis) is severely
endangered with less than 350 animals remaining in the western North Atlantic.
Collisions from large vessels represent the highest source of anthropogenic
mortality for this species and may be impacting their ability to recover. However,
little is known regarding the effects of large ships on whales and the nature of
these collisions.

It is well documented in the shipping world that two ships operating in proximity
induce hydrodynamic forces on each other which can lead to collisions. The
purpose of this research study was to ascertain whether a large vessel in transit
could create hydrodynamic forces which could draw in a right whale resulting in
possible injury or mortality.

A secondary aspect of this research was to evaluate the propeller wounds on a dead
right whale from a known vessel to determine the feasibility of calculating
propeller diameter from measurements of the wounds, and in turn, determining the
size of the vessel involved in the collision.

For this project, an existing computer program, which computes the forces created
by pressure fields as the water moves around the ship’s hull, was extended to
include the calculation of the rigid-body motion of the whale due to the
hydrodynamic forces. This allowed us to simulate the movement of the whale in
relation to a passing ship.

The three forces imposed on a whale by a passing ship which are modeled by the
program are sway, surge and yaw. Sway is the lateral force, surge is the
longitudinal force, and yaw is the horizontal moment. In general, these forces
increase with the square of the ship speed, and increase as water depth decreases.

The force calculations are presented for three vessel types: a 148 meter Mariner
class container ship, a 191 meter Panamax tanker, and a 300 meter SL-7 class
container ship. At a given ship speed, the Panamax, the bluffest ship, induces the
largest forces, and the SL-7, the finest of the three, induces the smallest.
Simulations of whale motion induced by the passing ships are shown using the
Mariner class vessel, a whale of 15 meters length and 3 meter beam, and a water
depth of 12.9 meters. The whale is held fixed at 5.5 meters below the surface at
a position initially parallel to the approaching ship and at varying offsets from the
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side of the vessel. The ship speed is constant. No modeling of whale behavior is
included in these simulations.

The cases simulated are for lateral offsets of -0.5, 1.0, and 7.0 whale beams, the
separation from the side of the whale to the side of the vessel. In all three cases,
the initial positive sway force induced by the passing bow pushes the whale away
from the ship. The subsequent negative sway force draws the whale in towards the
ship’s path but the whale arrives in the path after the ship has passed by. At the
-0.5 offset, the whale is nearly struck by the ship, so we assume that any position
inside of -0.5 whale beam (or 1.5 meters inside of the ship’s beam which is
approximately 21 meters) would result in a collision. A fourth simulation models
a situation where a whale surfaces in proximity to a passing ship and is not
exposed to the initial positive sway force. In this case, at one whale beam from the
ship, the whale is drawn into the ship. The maximum distance at which a whale
could be drawn has not been determined. This probably depends on the water
depth.

The analyses to determine propeller diameter are problematic. The first technique
which measures the length and depth of the cuts results in an inaccurate result from
a known situation. This is because the surface contour of the whale is not known
during the propeller interaction and so the measurements relate to an unknown

geometry.

The second technique uses the characteristics of a particular vessel (speed, propeller
RPM, propeller diameter, and number of blades) to determine whether the spacing
between the propeller cuts corresponds to the ship in question. If the location and
date of the strike is known, it might be possible to identify ship traffic for that
period and use their characteristics to narrow down which ships may have been
involved. Neither technique would allow you to determine the actual vessel
involved with certainty.

Additional modeling efforts could be carried out to simulate other types of vessels,
determine at what distance an "appearing" whale can be drawn in to a passing ship,
and evaluate whether ships are more dangerous to whales in shallow waters. Whale
behavior should be included in any further modeling efforts. Inclusion of whale
behavior might allow us to determine whether slowing vessels would reduce the
chances of hitting a whale.



INTRODUCTION

The North Atlantic right whale (Eubalaena glacialis) is considered the most
endangered large whale in the world. Less than 350 remain in the North Atlantic
and their future is considered tenuous (Knowlton et al. 1994). Right whales are
primarily a coastal species with all five of their presently identified seasonal
habitats lying within 40 miles of the coast. This feature makes them susceptible to
a high incidence of interactions with human activities, such as shipping. Mortalities
and severe injuries from large ships have occurred and represent nearly one third
of all documented mortalities (Kraus 1990; Kenney and Kraus 1993). In order to
maximize the recovery of this severely endangered species, measures to mitigate
these interactions must be addressed. The Final Recovery Plan for the Northern
Right Whale (NMFS 1991) lists the reduction of human-caused mortalities as the
number one priority needed to move the species towards recovery. Objective 1 of
the Recovery Plan specifically outlines the steps necessary for addressing the
problem of ship strikes. For reduction of ship strikes, the Plan states a need to
"educate mariners about northern right whales” as well as to "implement

appropriate controls on ship operation and design.”

In an attempt to understand the effect of large ships on whales more clearly, so as
to move towards developing a policy regarding ship operations in right whale
habitats, a collaborative effort was initiated between the New England Aquarium
and the Ocean Engineering Department at the Massachusetts Institute of
Technology. A goal of the research was to determine through computer modeling
whether a whale can be drawn in to a vessel as a result of hydrodynamic forces,

and, if so, under what circumstances, this might occur. In addition, since it is rarely



known in a ship/whale collision what size vessel was involved, situations where the
length and depth of propeller cuts can be measured on stranded or live whales can
provide insight into the propeller diameter of the vessel thereby providing a rough
estimate of the size of the vessel involved. This technique is applied to an incident
of a ship/wnale collision where all the parameters were known to determine its

potential effectiveness when evaluating future stranding events.

With both these analyses, we hope to provide the reader with more insight into how
ships affect whales. Yet, it is just a starting point and clearly, much more needs to
be done to understand further the ship/whale interactions, and in turn, develop

strategies which could minimize collisions.

SHIP CHARACTERIZATION STUDY

Overview

The report by Hain et al. (1994) describes the resuilts obtained from recording the
shipping traffic accessing ports whose channels transect the only known calving
ground for the North Atlantic right whale. The two channels targeted for the study
were the St. John’s channel---the entrance to the Port of Jacksonville and the
Mayport Naval base, and the St. Mary’s channel---the entrance to the Port of
Fernandina Beach and the Kings Bay Naval Submarine Base. Human observers
situated at land-based locations at the channel entrances recorded data (date, ime.
site, vessel category, vessel type, and direction of travel (inbound or outbound))
during the month of January 1993 for nearly all of the ships entering and exiting
each channel during daylight hours. At night, the data was taken from the log

books of the pilot associations, which are assumed to reflect approximately 60%



of the commercial traffic through each channel.
Vessel Size and Important Vessels

Based on Hain ef al.’s (1994) data, the length of the average piloted vessel is 590
feet with a standard deviation of 145 feet; the smallest being a 144-ft coastal tanker
and the largest, several 950-ft container ships. Vessels worthy of hydrodynamic
investigation are those which pose the greatest threat to the whales. These vessels
might be the ones which are most common in the winter migration grounds. From
Table 2 in the original report, the most common vessel type is recreational. While
they are the most common vessel type the report reasoned that this class of vessel
does not pose as great a threat as the classes of larger vessels. The next largest
class is the container ship and after that, car carriers. The aforementioned study
proved to be very useful in the determination of vessels which should be examined
for their hydrodynamic effects on whales. The vessel types considered are:

Container Ship |

Car Carrier or Tanker

Extreme Size Container Ship or Tanker (Max. Port Capacity)

For the dimensions of the car carrier, tanker, and container ship, the Lloyd’s Ship
Registry has been consulted for the specifications (length, beam, draft) of named

vessels.



The vessels modeled in the simulations are:

Mariner Class: Container Ship
Length: 148.37 m
Beam: 20.76 m
Draft: 6.732 m

Panamax: Tanker
Length: 190.51 m
Beam: 29.27 m
Draft: 11.307 m

SL-7: Extreme Case
Length: 300 m
Beam: 36.0486 m
Draft: 11.592 m

Figures 1 through 3 show the geometry of these ships in wire-frame plots. The

mesh density which is shown is that used in the hydrodynamic computations.
The Coast Guard Cutter Point Francis

The 82-foot Coast Guard Cutter Point Francis might appear to be a candidate for
this hydrodynamic study as it is the one case where a specific ship is known to
have hit a right whale. More specifically, the Point Francis hit a 1-2 month old

calf 3 miles offshore and 7 miles north of St. Augustine, FL in January, 1993. The



vessel was operating at a cruising speed of 10 to 15 knots when it hit the

calf and personnel aboard the vessel did not see the animal before it was struck (as
reported by U.S. Coast Guard). The lesions on the whale are described in the
necropsy report (USFWS 1993):

Two distinct and separate propeller laceration series were evident on the

body. The first extending from the dorsal peduncle and terminating just

behind the cranium and the second entering along the lower left flank and

running down to the ventral throat and head. ... Evidence from the entry

and exit sites of each individual slash indicate that the animal was struck

- from behind as the blades traveled up the body towards the head.

The fact that the whale was overtaken from behind and was approximately equally
lacerated by both propellers suggests that the whale was directly in the path of the
ship. The hydrodynamic aspects of such an encounter would seem to be irrelevant
unless the surge force on the whale were large enough to actually prevent a
collision. Apparently this was not the case. Therefore, no efforts were directed
towards discretizing the Pt. Francis hull. This incident is of value, however, in
confirming equations which could be utilized to determine propeller size when the

dimensions of the cuts on the whale are known. These equations are described in

a later section on propeller analyses.

NORMALIZATION OF WHALE MEASUREMENTS TO CREATE THE
AVERAGE RIGHT WHALE

In order to perform simulations involving a right whale, an accurate geometnc
representation of the whale was developed. The data used to describe a typical

right whale (Eubalaena glacialis) were obtained from measurement data collected



by Omura er al. (1969) of North Pacific right whales. This data set was chosen as
it contains consistently collected measurements for numerous right whales. A whale
length of 15 meters was chosen for the simulations in this report. This represents

a North Atlantic right whale of adult age.

The following data were normalized with respect to the total length of the whale:

Tail flukes, total spread

Flipper, greatest width

Circumferences at: front of flipper, umbilicus, anus, and caudal terminus
Depths of Body: middle insertion of flipper, anterior insertion of flipper and

umbilicus.

A linear least squares approximation was then fit to the data providing equations
for each of the geometric parameters as a function of the whale length. The raw

data were also averaged to find the geometric description of the average whale:

Whale: Eubalaena glacialis
Length: 15 m
Beam: 3.08 m
Draft: 3 m

The averaged data were then used with a CAD program to produce a geometric
data file for the right whale which conforms to the hydrodynamic code input
format. This geometric model is shown in Figures 4 through 7. Note that the

model does not have fins or flukes. The lifting effects of such surfaces are not
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included in the hydrodynamic model as their contribution to the non-lifting flow

is negligible, so their inclusion is not warranted.

Appendix 1 describes the equations of linear least-squares fits.

SHIP/WHALE HYDRODYNAMICS

Introduction

Two ships operating in proximity induce hydrodynamic forces (we use the term
"forces" in a generalized sense which includes moments) on each other which can
have serious consequences. In unrestricted waters these forces can lead to
collisions and in restricted waters they can also lead to groundings and damage to

shore-based structures. The forces under consideration here are not due to
free-surface waves, but rather the pressure fields produced by the fluid having to

move around the ship hull under a waveless free surface. This is an approximation
which becomes exact in the zero-speed limit. For cases of interest, in water of
restricted width and/or depth where speeds are low, these forces are more important
than the free-surface wave forces and this model is appropriate. Traditionally, the
computation of these forces was done with strip theory or slender-body theory.
Recently, however, the development of a fully three-dimensional theory and
implementation on high-performance workstations has

been completed (Korsmeyer et al. 1993).

This project makes use of this capability, intended for ship interactions, to analyze
the hydrodynamic effects induced on right whales by passing ships. In addition,

this project extends the computational capability to include the calculation of the
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rigid-body motion of the whale due to the hydrodynamic forces.

A key feature in this extension is the method for the computation of the forces in
the general case that both bodies may be moving. This method combines the use
of Bernoulli’s equation with Lagrangian analysis and uses the concept of virtual
motion. A derivation of the expression for the forces is found in Appendix 1. The
inclusion of the force due to the flow induced by the ship propeller is provided by

actuator disk theory as outlined in Appendix 2.

Forces are usually reported in the form of nondimensional coefficients, as defined
in Appendix 2. This is because for this model the forces depend on the physical
parameters of the problem in a straightforward manner. Given a ship hull form,
a whale form, and a water depth, the forces as a function of relative ship and whale
position may be reduced to a single curve for each force if the forces are
normalized by: water density; a representative length, which we take to be the ship
length raised to an appropriate power; and the square of the ship speed. This
means that when considering a plot of the coefficient of the force on a whale as it
is passed by a ship, the actual value of the force may be computed for any ship

speed simply by multiplying the coefficient by the normalizing parameters in
consistent units. When considering the simulations of a whale moving under the
hydrodynamic forces induced by a passing ship, there is no need to dimensionalize,

as the relative positions of the ship and whale will not change.

The forces on the whale are reported in a reference frame fixed to the whale, for
which the x-axis points in the direction of the nose, the y-axis points to port, and

the z-axis points upward. The surge force is in the x-direction, the sway force is
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in the y-direction, and the yaw moment is about the z-axis as shown in Figure 8.

Convergence Studies

The computer program used in this project was developed to study the interaction
of ships. Convergence studies which establish the fineness of the spatial and
temporal discretizations required for accurate results for ship interactions may be

reviewed in Korsmeyer et al. (1993). In this case, where we are interested in the

analysis of the interaction of a ship with a whale, the disparate sizes of the two
bodies suggests that the spatial convergence be established for this specific case.

This is because panel-method experience indicates that nearby panels not be
markedly different in size, and the ship and whale panels may indeed be close, yet
accurate geometric modeling of the bodies leads to panels which are considerably
smaller for the whale than for the ship. Correcting this by using similarly small
panels on the ship leads to computational burdens which are beyond the resources
of this project. Some convergence studies are required then to find acceptable

discretizations, balancing accuracy with efficiency.

We are interested in modeling a finite-depth environment of effectively infinite
width, so another convergence study is done to pick a finite computational width

which accurately models the effectively infinite width of interest.

All of the convergence studies are done with the ship moving in a prescribed
manner (constant velocity) while the whale is held at a constant position. This
simplification does not affect the conclusions of the convergence studies while it

reduces the required computational effort. A further simplification is that the ship
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is replaced by an ovoid (see Figure 9) so that the discretization may be changed
easily. We are not interested in the forces on ship 1, as its motion is prescribed

a priori so we report only the forces on the whale.

The forces on the whale considering various parameters are explained in the
following sections and depicted visually in Figures 11 through 34. In these figures
the x-axis, Offset, represents the longitudinal offset of the whale from the
mid-length of the ship (Figure 10). At 0 longitudinal offset, the mid-length of the
whale coincides with the mid-length of the ship. The ships length equals 1,
therefore the ships bow is at 0.5 and the ships stern is at -0.5. The surge, sway, and
yaw coefficients or forces on the whale at the given parameters are displayed in
these figures. For example, in Figure 11, a strong surge coefficient pushing the
whale in a forward direction is apparent at a longitudinal offset of approximately
0.4, as the bow of the ship is passing the whale. At offset -0.4, this coefficient 1s
negative. Therefore the whale is being pulled backwards as the stern of the ship
passes by. Likewise, in Figure 12, the sway coefficient representing the forces
pushing the whale towards or away from the side of the vessel is positively highest
as the bow and stern of the vessel pass. The negative coefficient, which would
draw the whale towards the ship is the highest at approximately 0.2 and -0.2
longitudinal offset, or near the middle of the passing ship. In Figure 13 which
represents the yaw coefficient, at approximately 0.2 longitudinal offset, forces
imposed would tend to angle the nose of the whale towards the ship and at -0.2 the
forces would angle the whale away from the ship. The significance of these figures

is explained in the following sections.
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Convergence Study For Spatial Discretization

Figures 11 through 13 show the convergence study for spatial discretization for the
surge and sway forces and the yaw moment. In this study the ship is moved with
constant velocity past a fixed whale with a separation between them of one whale
beam (side of the whale to side of the ship)(Figure 10). A small separation
distance tends to make convergence more difficult. We can probably pick a
separation distance small enough for any discretization such that convergence is too
computationally burdensome to demonstrate. A one whale beam separation is a
practical choice for this study. The number of panels on the ovoid and on the whale
is doubled twice for each body. It is apparent that for all three quantities
convergence to graphical accuracy is achieved with as few as 400 panels on the

ship and 100 panels on the whale.

Since we can afford the added computational effort, and we know that it will
provide convergence at still smaller separation distances, we actually use 400
panels on the ships and 196 panels on the whale in all cases in this study. Figures

1 through 9 show all of the discretizations used in the hydrodynamic analyses.

Convergence Study For Channel Width

This convergence study is required because the area we are modeling where right
whales and ships interact is of finite depth but not width. The rectangular channel
Green function subroutine which is used in the computer code requires a finite
width to the restricted water. This width may indeed be large, so long as it is

finite. The point of this study is to select a finite width which is effectively
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infinite. The study is conducted with a 300 meter SL-7 hull in a channel of depth
12.9 meters, and a channel width varying from 5 to 125 ship beams (one ship beam
equals 36 meters), with data points at 5, 10, 25, 50, and 125 ship beams. The ship
is placed in the center of the channel for each simulation; the whale is placed 15
meters from the ship. Figures 14 through 16 show how the forces and moments are
reduced as the width of the channel is increased, but beyond about 25 ship beams
the increase no longer has any effect as the channel is effectively infinitely wide.
From these results we select a channel width of 50 ship beams for all of the cases

in this study.

Forces induced on a whale by a passing ship with the whale held fixed

Figures 17 through 40 present results from simulations in which each of the three
ships is passing the whale while it is held fixed at 5.5 meters below the surface
(surface to top of whale). The point of these simulations is to show how the
hydrodynamic forces and moments on the whale vary as a function of water depth.
ship type, and proximity. The forces and moments are usually presented in the
form of non-dimensional coefficients. These coefficients are defined in Equations
8 though 34 in Appendix 2. Note that part of the non-dimensionalization is the
square of the ship speed. Hence the plots of the coefficients are independent of ship
speed and the actual forces and moments scale like the speed squared (that is. a
doubling of the ship speed yields a four-fold increase in the dimensional force or

moment).

These results show that the shallower water depth increases the maximum force

values. They also show that the finest of the three ships, the SL-7, induces the
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smallest force coefficients and the bluffest, the Panamax, usually induces the
largest. The actual force values induced in actuality may well not follow these
trends, however, as they depend on the square of the ship speed and in general

finer ships are designed for higher speeds than bluff ships.

The summary plots, Figures 35 through 40, show how the maximum ‘values of the
forces depend on the separation of the ship and whale for each of the three ships.
These plots are dimensional so that the different ships may be directly compared.
The plots are of the maximum force value obtained as the simulation of each ship
passing a fixed whale (at the indicated lateral offset) is computed. Note that the
dimensionalization of the computed coefficients is carried out with the same speed
for all ships: 15 knots. As might be expected, when the lateral offset of the whale
from the ship is small, the bluffest ship, the Panamax, produces the largest forces

on the whale.
The Simulation of a Ship Passing a Whale

The expression for the forces on the whale when the whale is allowed to move
which is derived in the Appendix 2 is incorporated into the ship interaction code
so that simulations are run with the whale position changing due to the
hydrodynamic force. In addition, as outlined in Appendix 3, the flow due to a
simple propeller model is included. The motion of the ship is prescribed to be a
constant forward speed. The whale is free to move horizontally under the action
of the forces (vertical forces were not computed in this model) and there are no
other forces applied to the whale. The latter makes reference to the fact that there

is no attempt to model supposed whale behavior. It is important to note that since
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there is no whale behavior modeled in these cases, the relative motions of the two
bodies are speed independent. Only if forces on the whale which do not scale with
the ship speed were included would ship speed become an issue. This is obviously
the case if some type of whale behavior is modeled, as the force that the whale
could generate to escape the ship (supposing that that is what whales attempt to do)

is not dependent on the ship speed.

Several simulations are shown in Figures 41 through 52. In all cases, the ship used
in the simulations is the Mariner hull and the water depth is 12.9 meters. For each
simulation, the forces on the whale are reported, followed by the relative positions
of the ship and whale as the ship passes the initial position of the whale, and

finally a close-up of the whale position is shown.

The first three simulations are of a ship over taking a whale which is aligned
parallel to the ship track, initially at varicus lateral offsets from the ship. These
lateral offsets are measurements from the side of the whale to the side of the ship,
so they are the clearance which would be between the ship and the whale if the
whale were held fixed as in the above section. The cases simulated were for lateral
offsets of -0.5, 1.0, 7.0 whale beams (Figures 41 through 49). Note that in the first

case, if the whale were held fixed the ship would necessarily hit the whale.

It is very interesting to note that in none of these cases, including the case of the
initial lateral offset of -0.5 did the ship hit the whale. In all cases, the initial sway
force, which tends to push the whale away from the ship, is sufficient to accelerate
the whale so that when the effect of the much greater suction force due to the ship

and propeller is felt, the inertia of the whale is great enough that the whale does
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not cross the ship track until after the ship has passed. In the case of the initial
lateral offset of -0.5, the whale passes close enough to the ship it is likely that the
ship will hit the whale for any offset which initially positions the whale closer to

the ship centerline.

A final simulation shown in Figures 50 through 52 is an attempt to model the case
of a whale approaching the free surface in the presence of a moving ship. This is
carried out by bringing the whale into existence in the proximity of the ship. Such
an event might occur, for example, if a whale is surfacing from depth. In this case
the simulation is started with the ship at the longitudinal -0.2 offset position, with
the lateral offset at 1.0 whale beam. In this case, the ship hits the whale.

RELATIONSHIP BETWEEN PROPELLER CONTACT MARKS ON
WHALE AND PROPELLER DIAMETER

Necropsy reports of marine mammals struck by propellers ideally report the
dimensions of the lacerations. The necropsy report on the right whale struck by the
Coast Guard Cutter Point Francis reports the distance between the parallel
lacerations or contact marks, their length and their depth (USFWS 1993).

We would like to be able to deduce as much information as possible about the ship
which has caused the lacerations from the laceration measurements. Two
approaches are possible. One is to deduce the propeller diameter from the length
and depth of the lacerations, the other is to deduce the combination of ship speed.
propeller diameter, propeller RPMs, and number of propeller blades which

correspond to the distance between the lacerations. Note that in either case there
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is no way to absolutely identify a particular ship from the data in a necropsy report.

For the first method, we label the length of the laceration /, and the depth of the
laceration d. We make the assumption that these dimensions describe the arc of
a circle with diameter equal to that of the propeller in that / is the chord which
subtends the arc of height d. Then the diameter of the circle, and therefore of the

propeller is

D= (& + F4)/d

The problem with this method is that the assumpticn is not well supported. There
is no way to know what the shape of the whale body surface is as it interacts with
the propeller blade. It probably deflects and distorts, and probably does so
differently for different styles and sizes of propellers. Application of this formula
to the data in the necropsy report cited above suggests that the lacerations were
made with a propeller with a diameter of 2.3 ft. while the correct result is 3.5t
To obtain the 2.3 ft. result we averaged the computed results for the reported
lacerations, not including the shallowest three of them. This method appears to be

unreliable.

Propeller diameters range between 3 to 5% of the total length of the vessel.
depending on the vessel type. Propeller sizes on large tankers and containerships
range from 3 to 3.5 % of the vessel length, or 6 to 8 meters in diameter. On large
oceanographic ships and large fishing vessels, propeller sizes are about 5% of the
length, or 3 to 4 meters in diameter. On high speed vessels such as Coast Guard

cutters or mega yachts, the propellers are approximately 4.5% of the length, or 1
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to 2 meters in diameter. Slower speed, small fishing vessels also have propellers

of this diameter.

For the second method, we label this distance between the laceration scars A. If we
assume that a whale is struck by the tips of a relatively large propeller, the contact
with the whale will be in the direction of the relative motion between the blade tp
and the whale. The pitch of the propeller will not be relevant. Assume, for the
moment, that the whale speed is negligible compared with the tip speed of the
propeller. Take a local coordinate system with the x axis in the direction of motion
of the ship, and the y axis to starboard. Then, the path of the tip is

x(t) = Vi

y(t) = nnDt (1)

where V, is the ship speed in feet per second, ¢ is time in seconds, 7 is the propeller
speed in revolutions per second and D is the propeller diameter in feet. The

absolute path of the blade tip makes an angle

B, =tan" _V, (2)
nnD

The next blade lags the first one by a time

T,=_1 (3)

where Z is the number of blades. The spacing between contact lines, measured in

the direction of motion of the ship, will therefore be
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VsTb = -‘ir

Zn (4)

and the spacing normal to the lines of contact will be

h=_V, cosp,=__nVD (5)
Zn ZWZ(nnD )’

This can be put in terms of ship speed in knots, V, and propellecr RPM,

N as follows,

h = Vv, .D (6)
ZW,7+0.00096N°D*

Use of this equation can be illustrated by the example of the 82 foot Coast Guard
Cutter Point Francis although there is some discrepency between the speed and
RPMs reported in the ships log (provided by the U.S. Coast Guard) and the
information collected directly from the commanding officer. The commanding
officer stated the speed of the cutter at the time of the collision was approximately
10 knots, and the propeller RPM was 320 (personal communication, Lt. Burke, US
Coast Guard). The propeller diameter is 3.5 feet, and the propeller has 5 blades.
Equation 6 yields a vélue of h of 0.63 ft (19.2 cm). This agrees very closely with
the results of the necropsy examination report of 10 January 1993, where the
average value of 4 is 19 cm. The ships’ log reports that the cutter was making turns
for 15 knots at 600 RPMs. This results in an A value of 0.50 ft (15.5 cm), which
does not correspond very closely with the necropsy report. At this time we are not

certain which source is more accurate.



CONCLUSIONS

Hydrodynamic effects

This project has resulted in a significant advancement in the modeling of the
hydrodynamic interaction of ships and nearby bodies. While the forces imposed on
two ships passing in proximity are determinable in a fully three-dimensional
approach (Korsmeyer et al. 1993), the resulting movements of the ships has not
heretofore been simulated. In using this theory to try to understand how large ships
affect whales, it is important that the resulting movements of the whale imposed
by a passing ship be known. With the support of NMFS, this method has been
developed and has provided some preliminary results regarding the ship/whale

interaction question.

In the hydrodynamic analyses, the results of the simulations of one vessel type
passing a passive whale, held fixed 5.5 meters below the surface at various lateral
offsets from the side of the vessel, show that the whale is not drawn in to the
vessel. The initial sway effect as the bow of the ship passes the whale pushes the
whale away from the ship. The momentum caused by this initial force counteracts
the subsequent suction forces so that, although the whale is drawn back towards the
ship, it does not reach the ship’s path until the ship has passed by. Even at a lateral
offset of -0.5 whale beams from the side of the ship, i.e. the whale is just inside
the swath of the ships path, the initial sway effect prevents the whale from being
hit. In this simulation, however, the whale comes very close to being hit. Although
simulations with lateral offsets inside of -0.5 whale beams from the side of the ship
were not conducted, we assume that inside of the -0.5 offset, the whale would be
struck. The beam of the ship used in the simulation, the Mariner class container
ship, is 20.76 meters. Therefore, the width within which the whale would probably
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be in danger is just over 19 meters.

In the second simulation, where the whale "appears” within one whale beam of the
ship, the whale is drawn in even though it is outside of the beam of the ship.
Therefore, in situations where a whale is not exposed to the initial sway effect from
the passing bow, the extent of influence from the ship is expanded beyond the
ship’s dimensions. However, simulations were not done in this study to determine

the distance away from the ship from which the whale could be drawn in.

An important aspect to remember is that these simulations are speed independent.
While an increase in speed increases the resulting forces on the whale (the force
on the whale is proportional to speed squared), the entire simulation is
non-dimensionalized by the square of the speed. Therefore, if the speed of the
vessel is increased, the whale will be drawn in more quickly. However the vessel
is moving by the whale more quickly, thus the whale is again drawn in the ship’s
path when the ship has gone by, or in the case of the second simulation, the whale

will be drawn in no matter what the ship speed.

Whale behavior is not factored into any of these simulations but is integral in the
discussion of ship speed. Clearly, the results of the second simulation whereby the
whale "appears” within one whale beam of the ship indicate that this situation poses
a serious threat to a right whale. If a whale is surfacing from depth and is not
aware of the passing ship, such a situation could occur. If the whale, once it detects
the ship, tries to escape its ability to do so will depend on the level of the forces

imposed on the whale which are dependent on ship speed and water depth.

In a situation where the whale is within the danger zone of an approaching ship,

i.e. well inside the beam of the ship, the whale has three possible directions of
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escape, left, right or straight down. If the ship is travelling in deep water, any one
of these options is a viable option which might allow the whale to get outside of
the danger zone. However, if the ship is travelling in shallow water and does not
have much clearance below the hull, the option of diving and going straight down
may be extremely dangerous for the whale. Although vertical forces have not been
integrated into this model, if a whale were placed under an approaching ship, the
character of the heave force on the whale as a function of time would be similar
to the sway force in the case with the whale next to the ship. Therefore, if the
whale dives and clears the hull of the ship, the initial repulsive heave force would
assist in increasing the depth of the whale. However if the water depth were not
significantly greater than the ship depth, then the whale would be closer to the ship,
with lesser velocity directed away from the ship when the attractive force began to
have an effect, than is the case in the horizontal force simulations. In this case, the

attractive force might be sufficient to draw the whale into the ship’s propeller.

One major question that cannot be answered without including whale behavior in
the hydrodynamic model is whether reducing ship speeds would reduce ship strikes
with whales from a hydrodynamic perspective. A reasonable conjecture is that
whales might attempt in some way to avoid a ship collision. If that were the case,
then reducing ship speeds might benefit whales by reducing the hydrodynamic
forces and by providing a longer reaction time to escape the danger zone. Other
ways that speed reduction could provide a benefit, irrespective of hydrodynamucs,
are providing greater reaction time for ship operators to avoid a sighted whale and

reducing the impact force if there were a collision.
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Propeller Analyses

The propeller analyses described in this report may be useful in future strandings
of any marine mammal species to determine the size of the vessel involved. Each
analysis, however, has its limitations. The first analysis which determines propeller
diameter from length and depth of the cuts was found to be inaccurate in the case
of the Pt. Francis incident. Yet, if future ship/whale collisions occur with any
marine mammal species where the vessel involved is known, use of this technique

might allow us to determine whether the inaccuracy is consistently low.

The second analysis would require a bit more effort to determine what ship might
have been involved. The Pt. Francis incident allowed us to confirm the accuracy
of the equations when all factors, i.e. ship speed, propeller diameter, RPMs, and
number of propeller blades, were included. Yet, as the discrepency between
information sources shows in this case, accuracy of this information is important.
In the event of a strike where the vessel is not known but a time and location, and
~ measurements from the whale are known, one might be able to determine what type
~ of ships were passing the known area at the known time. By using the
characteristics for each of the ships, many ships might be ruled out. Certainly. a

- combination of the two techniques would be the most useful.
RECOMMENDATIONS

Any future modeling efforts should address the following factors:

1) Each vessel type is unique as to how much force it imposes on a whale. The
- force simulations determined for this report show that force coefficients are most
affected by the ships’ slenderness. It would be useful to simulate a few more

- ship/whale interactions using ships with larger force coefficients to determine it the
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results are generally the same;

2) The modeling of the propeller forces could be more extensive as these forces
do not scale with the square of the ship speed unless we assume an equilibrium
propulsion point. For instance if a ship were traveling at a slow speed and the
propeller RPMs were increased in order to increase the ship speed, the resulting
propeller forces would be increased;

3) Modeling of vertical forces and their potential impact on a whale diving in
shallow waters would be important to investigate whether a ship is more dangerous
to a whale in shallow waters;

4) Additional computations to determine at what distance a whale that
"appears” near a passing ship can be drawn in, and how this changes at varying
water depths;

5) An integration of whale behavior into the model, with different scenarios of
assumed whale behavior based on anecdotal information would allow the
investigation of the effects of ship speed on the outcome of ship and whale

interaction simulations.

Until whale behavior is better understood, vessel speed reductions should not
be considered a definitive action that will benefit the whales based on this
hydrodynamic analysis. Yet, if the evidence suggests that right whales will acuvely

avoid approaching vessels, then vessel speed reductions should be recommended.

Efforts to mitigate ship/whale collisions should be broadened beyond just computer
modeling research. While the results of this study have answered some of the
questions regarding hydrodynamic effects of large ships on right whales, efforts on
several other fronts should be considered and are outlined below:

1) It would be valuable to gather anecdotal information about ship strikes trom

ship operators. These people spend a great deal of time at sea and some have
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certainly experienced the unfortunate event of swiking a whale. Information
regarding location of the strike and depth of the water may indicate areas where
incidents are more likely to occur. Such a survey could be conducted via articles
in appropriate magazines, or phone or mail interviews.

2) In a corollary to 1) ship operators could provide on the spot information on
whale strikes as well as sightings. The technology exists on most ships for faxing
and telephoning. An educational program to encourage ship operators to participate
would be necessary and should cover the eastern seaboard. The combined results
of these two efforts might reveal whether ship/whale collisions occur more
frequently in shallow water versus deep, or in certain geographic regions. Sightings
data could provide information about right whale wintering grounds or other
seasonal habitats.

3) A review of existing literature regarding whale reactions to ships and noise,
as well as anecdotes of vessel/whale interactions may help determine how right
whales are likely to behave.

4) An assessment of ship traffic along the eastern seaboard overlaid with right
whale sightings and known mortalities may highlight potential problem areas.

5) Development of seasonal exclusion and/or slowdown zones in probiem areas
as the results of above analyses and additional computer modeling indicate'\with
minimum economic impact to the shipping industry. >

6) Field studies of the ability of acoustic devices to ’alert’ right whales to an

approaching ship or pilot vessel.

Efforts to address the shipping/right whale issue are underway in the southeast U.S.
as well as in the Canadian habitats. In Canada, educational efforts resulted in a
company doing oil drilling offshore of Nova Scotia to divert their vessels around
a primary summer right whale habitat. And in the Bay of Fundy, the New England

Aquarium began a pilot project in the summer of 1994 to radio contact any large
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vessels transiting the Bay and request them to keep a sharp lookout for right
whales. While this is just a start, it highlights the fact that education of ship
personnel should be the starting point in any effort to deal with shipping in right
whale habitats.

In the southeast U.S., these educational efforts are more formalized. Harbor pilots
are aware of the issue and transfer this information to all ships using the three
channels located in the right whale calving ground. In addition, daily aerial surveys
coordinated by the New England Aquarium monitor the presence of right whales
in the region and notify port personnel, military bases, z;s well as ships in the
vicinity of any right whales (Slay et al. 1994). There is akot of support for this

effort and awareness amongst all shipping interests has increased substantially.
Ship collisions in all areas of the right whales range could possibly be reduced with

a concerted effort to educate mariners and create special zones. Computer modeling

is a tool which may help us to better define these zones.
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Figure 1: Mariner hull used in simulations—scaled To vessel Mercandian Continent
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Figure 2 Panamax hull used in simulations—scaled To vessel Chevron Arizona
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Figure 4: Two-dimensional view of the whale used in simulations (196 panels)




Frgure 3: Front view of the whale used in simulations (196 panels)



Figure 6: Side view of the whale used in simulations (196 panels)




Figure 7: Top view of the whale used in simulations (196 panels)




Figure 8: Direction of hydrodynamic forces imposed on a right whale
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Figure 9: Ovoid used in convergence studies (400 panels)
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Figure 11: Surge coefficient for the whale for surface panel number convergence at 1 whale
beam apart (3 meters) (N=number of panels ship, whale)
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Figure 12: Sway coefficient for the whale for surface panel number convergence at 1 whale
beam apart (3 meters) (N=number of panels ship, whale)
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Figure 13: Yaw coefficient for the whale for surface panel number convergence at 1 whale
beam apart (3 meters) (N=number of panels ship, whale)
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Figure 14: Surge coefficient for the whale for channel width convergence test for “infinite”
-width (SB=ship beam)



0.0002

0.0001 +

Coefficlent

<0.0001 =

-0.0002

‘]

*

REZaeose

AN ~eay,

-2

Figure 15: Sway coefficient for the whale for channel width convergence test for “infinite”
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Figure 16: Yaw coefficient for the whale for channel width convergence test for “infinite”

width (SB=ship beam)
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Figure 17: Surge coefficient for the whale for the Mariner and whale simulations at infinite
channel width and 42ft channel depth for varying distances between the whale and the ship

Coefficient

2x10°

1x10°

-1x10°

2x10°

5 o

5 o

s-

] =-wsax

a3x10°

-2

0 2

Offset

—o—-WBA=7

—-— WBA=15
—=—WBA=35
——WBA=70

Figure 18: Sway coefficient for the whale for the Mariner and whale simulations at infinite
channel width and 42ft channel depth for varying distances between the whale and the ship
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Figure 19: Yaw coefficient on the whale for the Mariner and whale simulations at infinite
channel width and 42ft channel depth for varying distances between the whale and the ship
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Figure 20: Surge coefficient on the whale for the Panamax and whale simulations at infinite
channel width and 42ft channel depth for varying distances between the whale and the ship
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Figure 21: Sway coefficient on the whale for the Panamax and whale simulations at infinite
channel width and 42ft channel depth for varying distances between the whale and the ship
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Figure 22: Yaw coefficient on the whale for the Panamax and whale simulations at infinite
channel width and 42ft channel depth for varying distances between the whale and the ship
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Figure 23: Surge coefficient on the whale for the SL-7 and whale simulations at infinite
channel width and 42ft channel depth for varying distances between the whale and the ship
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Figure 24: Sway coefficient on the whale for the SL-7 and whale simulations at infinite
channel width and 42ft channel depth for varying distances between the whale and the ship
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Figure 25: Yaw coefficient on the whale for the SL-7 and whale simulations at infinite channel
width and 42ft channel depth for varying distances between the whale and the ship
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Figure 26: surge coefficient on the whale for the Mariner and whale simulations at infinite
channel width and 50ft channel depth for varying distances between the whale and the ship
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Figure 27: Sway coefficient on the whale for the Mariner and whale simulations at infinite
channel width and 50ft channel depth for varying distances between the whale and the ship
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Figure 28: Yaw coefficient on the whale for the Mariner and whale simulations at infinite
channel width and 50ft channel depth for varying distances between the whale and the ship
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Figure 29: Surge coefficient on the whale for the Panamax and whale simulations at infinite
channel width and 50ft channel depth for varying distances between the whale and the ship
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Figure 30: Sway coefficient on the whale for the Panamax and whale simulations at infinite
channel width and 50ft channel depth for varying distances between the whale and the ship
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Figure 31: yaw coefficient on the whale for the Panamax and whale simulations at infinite
channel width and 50ft channel depth for varying distances between the whale and the ship
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Figure 32: Surge coefficient on the whale for the SL-7 and whale simulations at infinite
channel width and 50ft channel depth for varying distances between the whale and the ship
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Figure 33: Sway coefficient on the whale for the SL-7 and whale simulations at infinite
channel width and 50ft channel depth for varying distances between the whale and the ship
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Figure 34: Yaw coefficient on the whale for the SL-7 and whale simulations at infinite channel
width and 50ft channel depth for varying distances between the whale and the ship
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Figure 36: Maximum surge force for the whale in a channel of infinite width
and 50ft depth (M=Matiner; P=Panamax; S=SL-7)
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Figure 37: Maximum sway force for the whale in a channel of infinite width
and 42ft depth (M=Mariner; P=Panamax; S=SL-7)
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Figure 38: Maximum sway force for the whale in a channel of infinite width
and 50ft depth (M=Mariner; P=Panamax; S=SL-T7)
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Figure 40: Maximum yaw moment for the whale in a channel of infinite width
and 50ft depth (M=Mariner; P=Panamax; S=SL-7)
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Figure 41: Force coefficients for the whale, for the Mariner and whale simulation at 42ft
channel depth, whale initially at -0.5 whale beams from the side of the ship.
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. Figure 42: Positions of the whale and ship, for the Mariner and whale simulation at 42ft
channel depth, whale initially at -0.5 whale beams from the side of the ship.
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Figure 43: Positions of the whale, for the Mariner and whale simulation at 42ft channel
depth, whale initially at-0.5 whale beams from the side of the ship.
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Figure 44: Force coefficients for the whale, for the Mariner and whale simulation at 42ft
channel depth, whale initially at 1.0 whale beams from the side of the ship.
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Figure 45: Positions of the.whale and ship, for the Mariner and whale simulation at 42ft
channel depth, whale initially at 1.0 whale beams from the side of the ship.
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Figure 46: Positions of the whale, for the Mariner and whale simulation at 42ft channel
depth, whale initially at 1.0 whale beams from the side of the ship.
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Figure 47: Force coefficients for the whale, for the Mariner and whale simulation at 42ft
channel depth, whale initially at 7.0 whale beams from the side of the ship.
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Figure 48: Positions of the whale and ship, for the Mariner and whale simulation at 42ft
channel depth, whale initially at 7.0 whale beams from the side of the ship.
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Figure 49: Positions of the whale, for the Mariner and whale simulation at 42ft channel
depth, whale initially at 7.0 whale beams from the side of the ship.
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Figure 50: Force coefficients for the whale, for the Mariner and whale simulation at 42ft
channel depth, whale “appears” at 1.0 whale beams from the side ofthe ship.



1
_
2
=
3
S
f
4
<
‘|
|
s |
<5
i
6 |
|
“t << = i
— — |

Figure 51: Positions of the whale and ship, for the Mariner and whale simulation at 42ft
channel depth, whale “appears” at 1.0 whale beams from the side of the ship.
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Figure 52: Positions of the whale, for the Mariner and whale simulation at 42ft channel
depth, whale “appears” at 1.0 whale beams from the side of the ship.



Appendix 1: Normalization of Whale Measurements
to Create The Average Right Whale

Method

In order to perform simulations involving a right whale, an accurate geometric repre-
sentation of the whale is developed. The data used to describe a typical right whale
(Eubalaena Glacialis) are obtained from Omura et al. 1969. The following data are
normalized with respect to the total length of the whale.

o Tail flukes, total spread.
o Flipper, greatest width.
e Circumferences at: front of flipper, umbilicus, anus, and caudal terminus.

e Depths of body: middle insertion of flipper, anterior insertion of flipper and um-
bilicus.

A linear least-squares approximation is fit to the data providing equations for each
of the geometric parameters as a function of the whale length. The raw data are also
averaged to find the geometric description of the average whale.

Equations: linear least-squares fits

Figures 53 through 60 show the whale geometric data with the linear least-squares fits.
The equations for the linear approximations to the data are as follows. Let x be the total
length of the whale and let y be any desired dependent variable (e.g. circumference,
depth of body, etc.) Then the equations, with units in centimeters are: for circumference
at front of flipper

y = 1.46z — 1200., (1)
for circumference at umbilicus

y = 1.62z — 1400., (2)
for circumference at Anus

y = 0.634z — 246., (3)
for circumference at caumtal terminus

y = 0.194z — 71.0, (4)
for depth of body at umbilicus

y = 0.070z + 206., (5)
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for depth of body at anterior insertion of flipper

y = 0.367c — 276., (6)
and for depth of body at middle insertion of flipper

y = 0.120z + 92.3. (7)

Ocean engineers characterize the shapes of ships and bodies by various coefficients.
The “block coefficient” is a measure of the fullness of a body. It is the ratio of the actual
body volume to that of a parallelopiped with the same overall length, width, and depth.
The block coefficient for the average whale is approximately .4 which means that it is
a considerably less full shape than the typical ship. What we refer to as the “cross-
sectional coefficient” is a variation on the ship-oriented “midship section coefficient.” It
is the ratio of the greatest cross-sectional area to that of a rectangle of the same overall
width and depth. The cross-sectional coefficient for the average whale is approximately
.84 which is a typical value for a submarine and is approximately the value for a circle
inscribed in a square (7/4).

Appendix 2: The Hydrodynamic Forces on Inter-
acting Bodies, When Both Bodies Are Allowed to
Move

Introduction

Modeling of hydrodynamic interactions in the presence of a free surface requires some
simplifications in order to make the computations tractable. The primary simplification
for this study is that the effect of free-surface waves created by the ship is not included.
This is appropriate for ship speeds which are small compared to the maximum theoretical
speed for the hull or where the body on which the forces are to be computed is submerged
some distance below the free surface. The waves will have a small effect compared to
the added-mass effect if their amplitude is small (due to low ship speed) or their effect
is mitigated by depth (the affected body is submerged). Another simplification is that
bodies or appendages will not create lift. This is appropriate as we do not expect to
generate cross flow on the ship hull and we do not attempt to maneuver the whale by
the thrust of the whale’s flukes or fins. The fluid flow, then, may be modeled as the
irrotational flow of an ideal fluid, with a scalar velocity potential which is a function of
space and time.

The boundary value problem for this potential is solved numerically at each time
step, the forces on the whale are computed, and the whale is accelerated subject to these
forces. The details of these computations are provided in the following sections.
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Derivation of the force expression

Regardless of how the potential flow problem is solved, the hydrodynamic force and
moment acting on a body are evaluated as the integrals of the product of the pressure
and the generalized normal vector over the body surface. After substituting for the
pressure from Bernoulli’s equation, we obtain

_ 8¢ 1
Fi==o[ /. ] (E +5V9- v¢) n.dS, (8)

where Sp denotes the union of the bodies’ wetted surface, since n; is nonzero only on
the body for which the mode : is defined. Direct evaluation of (8) requires the partial
derivative with respect to time of the velocity potential, which is awkward to evaluate
numerically if the body is moving. Therefore, to evaluate d¢/0t, an approach which
follows from the substantial derivative yields:

F = _p%//sa én.dS + p//s (W Fo)mi- %w . Vni) dS, (9)

where the vector U denotes the bodies’ velocities. For the special case of one body
moving and one body fixed, we can use the transport theorem, with the result:

F = -p%//& qbn,dS+p//SB (%gv,- _ %w-wn.-) ds, (10)

where V; is defined respectively as the i:-th component of the fluid velocity vector V¢ or
the cross-product r x V¢, evaluated on the body corresponding to mode ¢ and elsewhere
on Sg V; = 0. The direct evaluation of the first term of (9) and (10) may only be done
numerically by one-sided finite difference, because the positions of the bodies at the next
time-step are not known before the forces are computed. A complementary expression
for the force and moment may be derived from the Lagrangian analysis (Milne-Thomson,
1955). If the fluid boundaries, including the free surface, are rigid, the force components
are given by

(11)

g 10m;
F,‘ = —m,-jdj — U U (am - —am]k) s

axk 2 6:,-

where m i is the added-mass tensor,

mj, = p/ -/:95 $xn;dS (12)

in which ¢; represents the velocity potential due to a body motion with unit velocity
in the :-th mode. Thus the total potential can be expressed as the sum ¢ = u;¢;.
The attractive aspect of the Lagrangian formulation is that the force and moment are
expressed strictly in terms of the added-mass coefficients, and evaluation the velocity
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vector on the body surface is not necessary. In (11), the derivatives of the added-
mass coefficients with respect to the position arise from the concept of virtual work.
Numerically, the derivatives are taken by separately moving the bodies in every single
mode of motion and calculating the differences of the added-mass coefficients. In our
present case, this greatly increases the computational burden because both bodies are
moved by the hydrodynamic forces in surge, sway and yaw.

However we can arrive at an alternative approach which takes advantage of both the
Bernoulli equation and Lagrangian analysis. The derivation begins by expressing the
first term in (9) in terms of the added-mass coefficients:

pdt// ¢nd5—p// — (u;6;) nidS

o] [ oo ] ] () mis
—puJ// ¢Jnd5+pujd // ¢;n;dS

dm;
=u,~m,'j+u,~—-(-1—t——. (13)
Furthermore, we can express (13) as

d . dm,~
o ] [, emdS = toms + 0,7

) om,; dzy

= wymi; Ui oz dt

dm.-j

= u;m;; + Ujug

dzs (11)

From (14), it is clear that first term in (9) is equal to the sum of the first terms in (11).
Substituting (13) in (9) yields:

dm;;

1
= —mit 7. _ 4. . N
F; mit; — u;j y7 + // (L Voéln, 2V¢ V¢n.) dS. {15

The advantage of (15) is that we can use central finite differencing to evaluate the
time derivative in the second term hardly increasing the computational work. The
interpretation of the second term in (15) is made via the concept of virtual movement.
in which the generalized coordinates of the system are considered to be incremented
by an infinitesimal amount from the values they have at an arbitrary instant with
time held constant. In (15), the infinitesimal incremental amount, which is the virtual
displacement, is computed by adopting the velocity at that arbitrary instant. By moving
the bodies with the positive and negative orientations of the velocity at each time-step.
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there are two virtual positions which are not on the exact paths which the bodies may
have. The time-derivative term in (15) is computed by performing the central finite
difference of the added-mass coefficients at the two virtual positions.

If we use R; to denote the integral term, we can rewrite (15) as

\ dm;;
Fi= —m.‘juj—uj—dt-i+R; (16)

If we assume the center of added-mass and the center of gravity to be coincident, the
equation of motion is

Fi + Foi = mu; (17)

where m denotes the mass of the body and F.; denotes the given external forces other
than the hydrodynamic force in the i-th mode. Combining (16) and (17) in order to
eliminate F;, we get twelve simultaneous equations which are
L dm;;
mu; + Ujmi; = —uj ==+ R; + F.. (18)
After using usual matrix operations to solve the twelve simultaneous equations, the
unknowns, 4;, in (18) are found and the hydrodynamic forces are computed by (16).

Solutions of the flow problems

In the previous section it is seen that we must solve a series of flow problems in order
to compute the forces and moments on each body. The flow problems are solved under
several assumptions outlined by Korsmeyer et al. (1993). The major assumptions are
that the fluid is ideal and free-surface waves are neglected. Assume that at each time-
step the entire flow can be described by a velocity potential ¢(z) where z is a position
vector in a fixed Cartesian coordinate system which has the z = 0 plane coincident with
the fluid surface and the positive sense of the z-axis directed out of the fluid.
In the fluid domain, the velocity potential ¢(z) satisfies Laplace’s equation .

Vi =0. (19

Boundary conditions must be provided on the surface Sg U Sc U Sp, with generalized
unit normal vector n, which encloses the computational domain. On the free surface
the velocity potential ¢(z) satisfies the “rigid lid” boundary condition

i)

—?- =0 on S, (20)

0z
on any boundary surface Sc which encloses the fluid, the velocity potential ¢(z) satisfies
the condition

9¢

%=0 on S¢ (21)
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and on any moving-body surface Sp the velocity potential ¢(z) satisfies the condition

¢
don
Applying Green’s theorem gives the equation for the potential ¢(z)

wms(a)+ [ [ dO5GCmioiise = [ [ Glamoz-sedse (2

and the equation for the source strength o(r)

2no(z) + //.;BUSC o

from which the the fluid velocity is given by

=U-n on Sg. (22)

9 G(z;€)dSe = U - n(z), (24)

Vé(z) = 2nn(z)o(z) + [ / _o(O)V:G(z: )dS. (25)

In these equations r € SgU Sc. If S¢ describes an enclosing surface with a rectangular
cross-section then a particular Green function which satisfies (21) may be used to greatly
reduce the computational effort (Newman, 1992).

Computational method

A panel method method is used to solve the potential problem at each time-step. In
this method, the boundary surfaces are divided into N plane quadrilateral or triangular
panels over which the strengths of the singularities are assumed to be unknown con-
stants. After discretization, the integral equation becomes a linear system which may
be solved by a direct or an iterative method.

Because the bodies are not fixed, we need to update the positions of the bodies at
each time-step, with the acceleration of the bodies caused by the hydrodynamic forces
calculated by (18) after solving the potential problems.

There are two different kinds of time-steps for the calculation of the hydrodynamic
forces and motions. The primary kind of time-step we simply call the “time-step” and it
controls the accuracy of motion. The other kind of time-step we call the “sub-time-step”
and it controls the accuracy of the hydrodynamic force computation.

So using the sub-time-step, the discretized form of the time derivative term in (18)
is given by

dm,, _ pu; Zk 1(¢t+Ae At Ae)nikAk

YT d 2A¢ ’

where k, N, A,A¢ denote the k-th panel, the number of panels, the area of the panel,
and the magnitude of the sub-time-step, and t = M At where M and At denote the
M-th time-step and the magnitude of the time-step. Because (18) is solved in the body

(26)
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coordinate system and rigid-body motions are assumed, the generalized normal vectors
and the surface areas of the panels will not change with respect to time.

After solving (18), the forces may be obtained by (16). The evaluated forces and
added-mass coefficients are non-dimensionalized by the appropriate combinations of
water density p, body velocity U, and body length L. The non-dimensionalization is as
follows:

The added-mass:

mg;

™ = I (27)
The forces (and moments) whether the quadratic force or the total force:
.
Foo=—t4
J % pUL™ (28)

In these expressions, the tilde denotes dimensional quantities, and ¢, j are mode indices.
In(27)and(28) =3and m = 2 for 2,5 = 1,2,3,7,8,9, k = 5 and m = 4 for
i,j =4,5,6,10,11,12, and k = 4 and m = 3 for the other combmatlons
After solving (18) the displacement is given by

D! = ulAt + 2u,(Az) (29)

As mentioned above, the bodies are moved to two virtual positions at each time-
step. If we use subscripts, o, +, —,to denote the exact position and two virtual positions
moved from the exact position by positive and negative velocity respectively, those
displacements are given by

Pt — P! = u'Ae, (30)

and
P! — P! = —u'Ae, (31)

where P and u denote the position vector and the velocity vector, respectively. If the
body is moved from P! to Pi+2!, we can take advantage of (29), (30), and (31)

pLrat _ Py = (LYt PLtSY) 4 (PEFS_ PY) 4 (P~ P)
—u'tAtAe + Ut AL+ %ftt(At)z — u'Ae. (32)
Between u!t4t and u!, the relation is given by
u' A = o + WAL (33)
Combining (32) and (33) in order to eliminate u', we can get
PHHAt _ Pt = _yitBAe 4 uttAAL — iH(AL) — utA A + a'AtAe
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= utAH(AL — 2A¢) — %(At ~ 2A¢). (34)

Observing (34), the two positions, P. and P**4! are identical and the computation is
reduced if we choose the magnitude of the sub-time-step to be equal to one half of the
magnitude of the time-step.

Appendix 3: Inclusion of Propeller Forces

The inclusion of a propeller behind the ship hull modifies the velocity potential so that
the forces experienced by the whale are slightly different from the case with no propeller.
The complete model of the flow due to the presence of a propeller is too complex for
this analysis so we choose to model the propeller in the simple form of an actuator
disk (Hough and Ordway, 1964). In this case, the fluid velocity due the the propeller is
modeled in a way which is valid except very near to the propeller and in the propeller
wake. The change in the added-mass terms for the ship and whale due to the presence
of the propeller is expected to be negligible and is not included. From any point of view,
the effect on the flow due to the presence of a propeller is small because the propeller
acts like a disk of normal dipoles and the magnitude of the velocity due to a disk of
normal dipoles decreases with the square of the distance from the disk.

This simple representation of the propeller is as a disk of zero thickness with a
diameter equal to that of the propeller. Through the disk, the flow passes continuously
while subjected to a constant pressure jump across the disk. The effects of a finite
number of blades and the production of fluid rotation are ignored.

Under such an idealization, expressions have been developed for the velocity in-
duced at radius r. and axial position z. by an infinite set of helical vortices uniformly
distributed around the circumference of a circle of radius r,. Replacing the Z concen-
trated vortices of unit strength (one for each blade) with a continuous distribution with
total circulation Z is a simplification which allows a closed form to be found in terms
of elliptic integrals. For a propeller with Z blades, pitch angle 3, and thrust coefficient
Cr, the axial velocity @, and tangential velocity @, which are the velocities normalized
by the circulation ' may be computed from:

forr. <,
_ VA 1
ua(xcarm Tu) = Er. (m@)
VA 1
ﬂt(rc, T'C,T‘U) = 4_7; (Wrcc2) ’ (35)
forr. > r,

_ Z 1
ua(Ic,Tc, Tu) = Z;r- (m@)

izerrs) = = (==Ci) (36)

47 \7r,
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where :c .
Ci=7+ ﬂ\/—c—-‘r-vQ—%(q) + 'Q'Ao(s,t)
T, T
C’Z = ﬁQ_%(q) —_ EAO(S, t); (37)

and

' = 4r.ry . 18
VR4 (re ) (38)

Here, Q_% is the Lengendre function of the second kind and half integer order, and Ao
is the Heumann’s Lambda function.

Each velocity component induced by the propeller is the product of 4, or u, with
the circulation computed from

Ty CT
I =2r—1t —_— . R
T anﬁ(l+ T T) (39)
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Figure 53: Linear least square fit plot of circumference at front of flipper
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Figure 54: Linear least square fit plot of circumference at umbilicus
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Figure 55: Linear least square fit plot of circumference at anus
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Figure 56: Linear least square fit plot of circumference at caudal terminus
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Figure 57: Linear least square fit plot of depth of body at umbilicus
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Figure 58: Linear least square fit plot of depth of body at anterior insertion of ﬂipper
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Figure 59: Linear least square fit plot of depth of body at middle insertion of flipper

Averages of Whale Measurements (cm)

Total Length. ... iiieteieeeeeeees ceseeccsscss sonaocsccocsces 1543.6
Tail Flukes, Total Spread.....ccceet ceeeeeennese soneanssansns 543.5
F., Greatest Width..... e eecececens sesesesasess seceseees .« 152.1
Circumference in Front of Flipper.. ............ ceeeae cecaan 1053.3
Circumference at UmbilicCuS....cceeee teveeeecccce aos cecesanee 1099.3
Circumference at Anus......... Ceeee secsessecsse sssecesenenn 732.7
Cc. at caudal Terminus or “"small".. ..... Ceecece seecesannses 227.8
Depth of Body at UmbilicuS....ccceee covevecacase coceccnsccss 314.4
D.o.B. at Middle Insertion of FlippD ccceeeeeneee teveescnanns 290.4
D.o.B. at Anterior Insertion of Flij.......... ce eececsans .os 277.2

Figure 60: Table of averaged whale dimensions pertineat to hydrodynamics and whale design



