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Abstract: This paper illustrates the ease with which Bayesian nonlinear state–space models can now be used for
practical fisheries stock assessment. Sampling from the joint posterior density is accomplished using Gibbs sampling
via BUGS, a freely available software package. By taking advantage of the model representation as a directed acyclic
graph, BUGS automates the hitherto tedious calculation of the full conditional posterior distributions. Moreover, the
output from BUGS can be read directly into the software CODA for convergence diagnostics and statistical summary.
We illustrate the BUGS implementation of a nonlinear nonnormal state–space model using a Schaefer surplus
production model as a basic example. This approach extends to other assessment methodologies, including delay
difference and age-structured models.

Résumé: Le présent article montre la facilité avec laquelle des modèles d’espace d’états Bayesiens non linéaires
peuvent maintenant être utilisés dans l’évaluation des stocks de pêche. On échantillonne des unités dans la fonction de
densité a posteriori conjointe en utilisant la méthode d’échantillonnage de Gibbs avec BUGS, un logiciel facilement
disponible. En tirant avantage de la représentation du modèle sous la forme d’un graphe acyclique orienté, BUGS
automatise le calcul jusqu’ici fastidieux des distributions conditionnelles a posteriori complètes. De plus, le produit de
BUGS peut être lu directement dans le logiciel CODA pour établir un diagnostic de convergence et un sommaire
statistique. Nous illustrons l’application d’un modèle d’espace d’états non linéaire et non normal en utilisant, à titre
d’exemple, un modèle de production excédentaire de Schaefer. Cette approche peut être étendue à d’autres méthodes
d’évaluation, notamment aux modèles à différences retardées et aux modèles structurés selon l’âge.

[Traduit par la Rédaction] Meyer and Millar 1086

Introduction

State–space models are among the most powerful tools for
dynamic modeling and forecasting (Fahrmeir and Tutz
1994). They have started to enjoy an increasing popularity in
fisheries stock assessment (Sullivan 1992; Pella 1993;
Gudmundsson 1994; Schnute 1994; Freeman and Kirkwood
1995; Kinas 1996; Reed and Simons 1996; Meyer and
Millar 1999; Millar and Meyer 1999a) because they can re-
alistically account for both measurement and process error.
However, unrealistic assumptions such as linearity of state
transitions and Gaussian error distributions are imperative
for maximum likelihood estimation via Kalman filtering and
have limited the number of fisheries models that can be fit
within the classical/frequentist paradigm.

Meyer and Millar (1999) explained how delay difference
and surplus production models can be cast into the frame-
work of state–space modeling. They demonstrated a fully
Bayesian approach using Gibbs sampling for posterior com-
putation following Carlin et al. (1992). In contrast with the
classical approach, the Bayesian approach can easily handle
realistic distributional assumptions as well as nonlinearities
in state and observation equations. The papers by Millar and
Meyer (1999a) and Meyer and Millar (1999) provide the un-

derlying theory of fitting Bayesian state–space surplus pro-
duction and delay difference models, respectively.

Here, we report on significant progress made in facilitat-
ing the routine implementation that may have a revolution-
ary effect on Bayesian stock assessment in everyday
practice. This is achieved through BUGS (Bayesian infer-
ence using Gibbs sampling), a recently developed software
package (Spiegelhalter et al. 1996) by the Medical Research
Council Biostatistics Unit, Institute of Public Health, Cam-
bridge, England. BUGS samples from the joint posterior dis-
tribution by using the Gibbs sampler (Gilks et al. 1996), i.e.,
by cyclically sampling from each of the full conditionals.
For reviews on BUGS the reader is referred to Thomas et al.
(1992), Gilks et al. (1994), and Gentleman (1997). BUGS is
available free of charge from http://www.mrc-bsu.cam.ac.uk/
bugs/Welcome.html for the operating systems UNIX, LINUX,
and Windows, among others. It comes with complete docu-
mentation and two example volumes. These examples dem-
onstrate the variety of complex models (random effects,
generalized linear, proportional hazards, latent variable, and
frailty models) amenable to a Bayesian analysis via BUGS.
We will show that nonlinear non-Gaussian state–space mod-
els can be added to this list.

In nonlinear non-Gaussian state–space models the full
conditional distributions required for Gibbs sampling are
typically not log-concave. Both Meyer and Millar (1999)
and Millar and Meyer (1999a) implemented the Gibbs sam-
pler in C code, using the C subroutines ARS (Gilks and
Wild 1992) and ARMS (Gilks et al. 1995) to sample from
univariate log-concave and non-log-concave full conditional
distributions, respectively. This, however, required the ex-
plicit derivation “by hand” of the full conditional distribu-
tion of each parameter in the model, a nontrivial, substantial,
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and tedious task that may deter the practical stock assess-
ment scientist from fitting these models. We explain how
BUGS alleviates this chore by making use of conditional in-
dependence assumptions in the model that are graphically
represented by a directed acyclic graph (DAG). Moreover,
the new version 0.6 of BUGS contains a method to sample
from any not necessarily log-concave full conditional den-
sity. This makes it now possible to fit nonlinear non-
Gaussian state–space models.

The paper is organized as follows. In the first section, we
briefly describe a biomass dynamics model, the Schaefer
surplus production model, that is the most commonly used
non-age-structured model in practical stock assessments.
This simple, parsimonious model was chosen for illustrative
purposes. We use the same catch–effort data set on South
Atlantic albacore (Thunnus alalunga) as in Millar and
Meyer (1999a) and in Polacheck et al. (1993). In the second
section, we put this surplus production model into the con-
text of nonlinear, non-Gaussian state–space methodology.
This model is then represented as a DAG in the third sec-
tion. In the subsequent sections, we explain how this DAG
assists the model’s implementation in BUGS and how to
perform convergence diagnostics using CODA (Best et al.
1995).

The problem

The data available for stock assessment purposes quite of-
ten consist of a time series of annual catchesCt, t = 1,...,N,
and relative abundance indicesIt, t = 1,..., N, such as re-
search survey catch rates or catch-per-unit-effort (CPUE) in-

dices from commercial fisheries. For example, Table 1 gives
a historical data set of catch–effort data of South Atlantic al-
bacore from 1967 to 1989. Age composition data are not
available for this stock. This data set has previously been
analysed by Polacheck et al. (1993) and Yeh et al. (1991).
Objectives include the estimation of the size of the stock at
the end of 1989 and management parameters such as the
maximum surplus production (MSP), the biomass at which
MSP occurs (BMSP), and the optimal effort (EMSP), the level
of commercial fishing effort required to harvest MSP when
the stock is atBMSP.

When only catch–effort data are available, biomass dy-
namics models are the primary assessment tools for many
fisheries (Hilborn and Walters 1992). They relate the current
biomass to previous biomass plus terms for growth and re-
cruitment minus terms for natural mortality and catch. Sur-
plus production models aggregate terms for recruitment,
growth, and natural mortality into one term for “surplus pro-
duction” so that the biomass dynamics equations can be
written in the form (Polacheck et al. 1993)

(1) B B g B Ct t t t= + −− − −1 1 1( )

whereBt, Ct, andg(Bt) denote biomass at the start of yeart,
catch during yeart, and the surplus production function, re-
spectively. The surplus production function is usually as-
sumed to be nonnegative withg(0) = g(K) = 0, whereK is
the carrying capacity (corresponding to the level of the stock
biomass at equilibrium prior to commencement of the fish-
ery). The Schaefer (1954) form of the surplus production
function is

(2) g B rB
B
K

t t
t( )− −
−= −


 


1 1

11 .

Substituting eq. 2 into eq. 1 gives a parsimonious model de-
scribing the annual biomass dynamics transitions with just
the two parametersr, the intrinsic growth rate, andK:

(3) B B rB
B
K

Ct t t
t

t= + −

 


 −− −

−
−1 1

1
11 .

Note that the annual catch is treated as a fixed constant. A
common, although simplifying assumption is that the rela-
tive abundance index is directly proportional to the biomass,
i.e.:

(4) I qBt t=

with catchability parameterq.
For the Schaefer surplus production model, the maximum

surplus production MSP =rK/4 occurs atBMSP = K/2. When
the biomass indices are CPUE’s from commercial fishing,
then eq. 4 gives MSP/EMSP = qK/2 and thereby the optimal
effort is EMSP = r/2q.

For a more detailed discussion on surplus production
models, the interested reader is referred to Hilborn and
Walters (1992, chap. 8), Polacheck et al. (1993), Millar and
Meyer (1999a), and references therein.

Bayesian nonlinear state–space model

Polacheck et al. (1993) compared three commonly used
statistical techniques for fitting the model defined by eqs. 3
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Year Catch CPUE

1967 15.9 61.89
1968 25.7 78.98
1969 28.5 55.59
1970 23.7 44.61
1971 25.0 56.89
1972 33.3 38.27
1973 28.2 33.84
1974 19.7 36.13
1975 17.5 41.95
1976 19.3 36.63
1977 21.6 36.33
1978 23.1 38.82
1979 22.5 34.32
1980 22.5 37.64
1981 23.6 34.01
1982 29.1 32.16
1983 14.4 26.88
1984 13.2 36.61
1985 28.4 30.07
1986 34.6 30.75
1987 37.5 23.36
1988 25.9 22.36
1989 25.3 21.91

Table 1. Catch (1000’s t) and CPUE (kg/100
hooks) data for South Atlantic albacore from
Polacheck et al. (1993).
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and 4: process error models, observation error models, and
equilibrium models. None of these is capable of incorporat-
ing uncertainty present in both equations: natural variability
underlying the annual biomass dynamics transitions (process
error) and uncertainty in the observed abundance indices due
to measurement and sampling error (observation error). This
is possible, however, using a state–space model, as shown in
Meyer and Millar (1999) and Millar and Meyer (1999a).
State–space models (see Meyer and Millar 1999 and refer-
ences therein) relate time series observations {It} to unob-
served “states” {Bt} through a stochastic observation model
for It given Bt. The states are assumed to follow a stochastic
transition model. Equations 3 and 4 are the deterministic
versions of the stochastic state and observation equations.
We assumed lognormal error structures and used a repara-
metrization (Pt = Bt/K) by expressing the annual biomass as
a proportion of carrying capacity as in Millar and Meyer
(1999a) to speed mixing (i.e., sampling over the support of
the posterior distribution) of the Gibbs sampler. The state
equations are rewritten as

(5) P u
1

2 1|σ = e

P P K r P rP Pt t t t t| , , , ( ( )− − − −= + −1
2

1 1 11σ
− =−C K t Nt

ut
1 2y ) , , ...,e

and the observation equations are

(6) I P q qKP t Nt t t
vt| , , , , ...,τ2 1= =e

whereut are iid normal with mean 0 and varianceσ2 andvt
are iid normal with mean 0 and varianceτ2. Here,X|Y de-
notes the conditional distribution ofX given Y.

A fully Bayesian model consists of the joint prior distribu-
tion of all unobservables, here the five parametersK, r, q,
σ2, and τ2 and the unknown statesP1,..., PN, and the joint
distribution of the observables, here the relative abundance
indicesI1,..., IN. Bayesian inference is then based on the pos-
terior distribution of the unobservables given the data. In the
sequel, we will denote the probability density function of a
parameterθ by p(θ). We assume that the parametersK, r, q,
σ2, andτ2 are independent a priori. By a successive applica-
tion of Bayes’ theorem and conditional independence of sub-
sequent states, the joint prior density is given by

(7) p K r q P PN( , , , , , , ..., )σ τ2 2
1

= p K p r p q p p p P( ) ( ) ( ) ( ) ( ) ( | )σ τ σ2 2
1

2

×
=

−∏ p P P K r
i

N

t t
2

1
2( | , , , )σ .

A noninformative prior is chosen forq. Prior distributions
for K, r, σ2, andτ2 are specified using biological knowledge
and inferences from related species and stocks as discussed
in Millar and Meyer (1999a):

K - lognormal(µK = 5.04, σK = 0.5162)

r - lognormal(µr = –1.38,σr = 0.51)

p(q) ∝ 1/q

σ2
- inverse-gamma(3.79, 0.0102)

τ2
- inverse-gamma(1.71, 0.0086).

For general guidelines on the choice of prior distributions
for parameters in stock assessment models, the reader is re-
ferred to Punt and Hilborn (1997).

Because of the conditional independence assumption of
the relative abundance indices given the unobserved states,
the sampling distribution is

(8) p I I K r q P PN N( , ..., | , , , , , , ..., )1
2 2

1σ τ

=
=
∏ p I P q
t

N

t t
1

2( | , , )τ .

Then, by Bayes’ theorem, the joint posterior distribution of
the unobservables given the data,p(K, r, q, σ2, τ2, P1,...,
PN|I1,..., IN), is proportional to the joint posterior distribution
of all unobservables and observables:

(9) p K r q P P I IN N( , , , , , , ..., , , ..., )σ τ2 2
1 1

= p K p r p q p p p P( ) ( ) ( ) ( ) ( ) ( | )σ τ σ2 2
1

2

×
=

−
=

∏ ∏p P P K r p I P q
i

N

t t
t

N

t t
2

1
2

1

2( | , , , ) ( | , , )σ τ

i.e., the product of eqs. 7 and 8, the product of prior and
sampling distribution. Thus, the joint distribution (eq. 9) is
the crucial one for subsequent Bayesian inference.

Model representation as DAG

Now let us step back and look at a graphical representa-
tion of the fully Bayesian model. This abstraction has the
advantage that we can concentrate on the essential model
structure without getting bogged down by all the details
about densities. For any yeart, let us represent all un-
observables (K, r, q, σ2, τ2, Pt) and observables (It) as ellip-
ses and constants (Ct) as rectangles. A way to express the
conditional independence assumptions is by drawing solid
arrows between nodes (see Fig. 1). (By analogy, a graphical
representation can be drawn for the nodeP1 whose state
equation is different from that of the nodesPt, t = 2,..., N;
see eq. 5.) Hollow arrows go to deterministic nodes, which
are logical functions of other nodes. The logarithm of the
conditional median ofPt, Pmed[t], is an example of a deter-
ministic node, as it is a function of the nodes K, r,Ct–1, and
Pt–1.

This renders a model representation as a DAG, as all
edges in the graph are directed and there are no cycles be-
cause of the conditional independence assumptions. LetV
denote the set of all nodes in the graph. Direct predecessors
of a nodev ∈ V are called “parents” and direct offspring the
“children”. The solid arrows indicate thatgiven its parent
nodes, each nodev is independent of all other nodes except
descendants ofv. For instance, if we are in yeart and know
the biomass in yeart – 1 and the values of the parametersr,
K, and σ2, then our belief inPt is independent of the bio-
mass in previous years 1 tot – 2 and the data of all other
years except the current relative abundance indexIt.

It is then easy to construct the joint probability distribu-
tion of all stochastic nodes using the graphical description of
the conditional independence assumptions:
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(10) p V p v v
v V

( ) ( | ( ))= ∏
∈

parents .

For our specific surplus production model, eq. 10 is the
graph-theoretical version of eq. 9. In this way, the DAG
(Fig. 1) assists in constructing the full Bayesian model. For
further reading on conditional independence graphs and
graphical chain models, the interested reader is referred to
Wermuth and Lauritzen (1990).

Bayesian inference using BUGS
Let Vu denote the subset of unobservable nodes andVo the

subset of observable nodes. Oncep(V) has been obtained
from eq. 10, a general technical difficulty encountered in
any application of Bayesian inference is calculating the
high-dimensional integral necessary to find the normaliza-
tion constant in the posterior distribution of the
unobservables given the data:

(11) p V V
p V V

p V
p V

p V V V
( | )

( , )
( )

( )

( , )
u o

u o

o u o ud
=

∫
.

In our specific example, this would require an (N + 5)-
dimensional integration, as we have to integrate over the
unobservablesK, r, q, σ2, τ2, P1,..., PN. Calculating the mar-
ginal posterior distribution of any variable would require a
subsequent (N + 4)-dimensional integration. High-dimensional
integration problems can be solved via Markov chain Monte
Carlo (MCMC) as reviewed in Gilks et al. (1996). The Gibbs
sampler, a special MCMC algorithm, generates a sample
from the posterior eq. 11 by iteratively sampling from each
of the univariate full conditional posterior distributions as
explained in Meyer and Millar (1999). These univariate full
conditional posterior distributionsp(v|V \v), for v ∈ Vu, can
be easily constructed from the joint posterior distribution
p(V) in eq. 10 by picking out those terms that depend onv:

(12) p v V v p v v( | \ ) ( | ( ))∝ parents
× ∏

v w

p w w
∈ parents

parents
( )

( | ( )).

This is facilitated by the graphical representation (Fig. 1), as
the full conditional posterior distribution of any nodev de-
pends only on its parents, children, and coparents. For in-
stance, if v = Pt, then the full conditional posterior
distribution of Pt, p(Pt|K, r, q, σ2, τ2, P1,..., Pt–1, Pt+1, PN,
I1,..., IN), is proportional to

p P P K r p P P K r p I P qt t t t t t( | , , , ) ( | , , , ) ( | , , )− +× ×1
2

1
2 2σ σ τ .

Here, the dependence of the deterministic nodes Pmed[t] and
Imed[t] as logical functions ofPt, r, K, and q has been re-
solved. In this way, BUGS exploits the representation of the
model as a DAG for constructing these full conditional pos-
terior distributions for all unobservable nodes. Once this is
accomplished, it uses certain sophisticated sampling meth-
ods to sample from these univariate densities. BUGS con-
tains a small expert system for choosing the best sampling
method. The first choice is to identify conjugacy, where the
full conditional reduces analytically to a well-known distri-
bution, and to sample accordingly. If the density is not con-
jugate but turns out to be log-concave, it employs the
adaptive rejection sampling (ARS) algorithm (Gilks and
Wild 1992). If the density is not log-concave, BUGS uses a
Metropolis–Hastings (MH) step. The MH algorithms differ
across the various BUGS versions and platforms. The cur-
rent UNIX version 0.6 uses the Griddy–Gibbs sampler as
developed by Ritter and Tanner (1992). More efficient MH
implementations currently under development include slice
sampling (Neal 1997) for variables with a restricted range
and adaptive techniques (Gilks et al. 1998) for variables
with unrestricted range. A first version has been released un-
der WinBUGS, the BUGS version for the Windows 95 oper-
ating system.

Model implementation in BUGS

For a typical BUGS run using the UNIX version 0.6, four
different files have to be specified: (i) the data are entered in
a file with extension .dat, here called tuna.dat, (ii ) initial val-
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Fig. 1. Representation of the surplus production model as a DAG.
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ues for all unobservables needed to start the Gibbs sampler
are in a .in file, here surplus.in, (iii ) the file that contains the
model descriptions has the .bug extension, here surplus.bug,
and (iv) the commands for running BUGS that control the
number of sampled values, which parameters to monitor,
and so on go into the surplus.cmd file; in WinBUGS, these
commands are options in various menus. These four files are
listed in the Appendix.

The data file can be either in rectangular format like
tuna.dat or in SPLUS format as in tuna_S.dat.

The format of the initial value file follows that of the data
file, here, for instance, surplus.in in SPLUS format. If initial
values for parameters are not given in the initial value file,
then values will be generated by forward sampling from the
prior distributions specified in the model.

The DAG representation of our model not only serves
BUGS-internal purposes but can assist us in specifying our
model in the BUGS language. The file containing the model
specification, surplus.bug, consists of two sections: the dec-
larations and the model description. The declaration part
specifies the name of the model, which nodes are constants
(rectangles), and which nodes are stochastic (ellipses) and
gives the names of the files containing the data and initial
values. The model description forms a declarative represen-
tation of the fully Bayesian model. It is enclosed in curly
brackets {...}. This is a translation of the graphical model
into BUGS syntax. Each statement consists of a relationship
of two kinds:-, which means “is distributed as” and substi-
tutes the solid arrows, and <-, which means “is to be re-
placed by” and substitutes the hollow arrows. Quantities on
the left of a- are stochastic; those on the left of <- are de-
terministic. In general, each quantity should appear once and
only once on the left-hand side of a statement. The order of
the expressions within a pair of braces is irrelevant.

WinBUGS even has an option Doodle that allows the user
to specify the model graphically by drawing a DAG. It uses
a hyperdiagram approach to add extra information to the
graph to give a complete model specification. DoodleBUGS
then writes the corresponding model in BUGS syntax to a file.

Note that BUGS uses a nonstandard parametrization of
distributions in terms of the precision (1/variance) instead of
the variance. For example, a lognormal distribution denoted
by dlnorm(ν, ϕ2) has density function

( | , )
(log )

x
x

x

∫ =
− −

ν ϕ τ
π

ν ϕ
2

1

2

2
1 2 2

e .

Thus, we need the nodes isigma2 and itau2. BUGS does not
permit an expression to be used as a parameter of a distribu-
tion, and hence, we need the deterministic nodes Pmed[t]
and Imed[t]. BUGS only allows use of proper prior distribu-
tions. The noninformative distribution forq is improper,
however. Therefore, we use a gamma(0.001, 0.001) prior for
the inverse ofq, which is practically equivalent top(q) ∝
1/q. Furthermore, we have to restrict the ranges of those
nodes with non-log-concave full conditional distributions by
specifying lower and upper bounds using the I(lower, upper)
function. This is not necessary in the WinBUGS version be-
cause of the adaptive MH algorithm.

It is very easy to obtain posterior samples of the manage-

ment parameters MSP andEMSP, which are functions of the
parametersK, r, andq, simply by adding these deterministic
nodes MSP and EMSP to the BUGS code (see file surplus.
bug in the Appendix). The same holds for predictions like
the depletionP1990 and total biomassB1990 in the year 1990.

Finally, the file surplus.cmd compiles the BUGS com-
mands in surplus.bug, generates an initial 25 000 iterations
(the so-called “burn-in” period), monitors every specified
parameter for the next 225 000 iterations, stores every 25th
value, and calculates summary statistics of the sampled val-
ues for each specified parameter. Our preference is to submit
these commands as a batch job by using the command
backbugs “surplus.cmd” with session output automatically
directed to the bugs.log file. Alternatively, BUGS can be run
interactively by using the command bugs. This run took
90 min on a 233-MHz laptop.

BUGS generates five files after completion as follows.

(i) The file bugs.log contains the BUGS code (surplus.bug)
that was used, any error messages, the running time, and
the requested summary statistics of the marginal poste-
rior distribution of each parameter. The posterior sum-
maries from this file are listed in the Appendix. Note
that the results from fitting this surplus production
model are presented and discussed in detail in Millar
and Meyer (1999a).

(ii ) The file bugs.out contains two columns. The first col-
umn gives the iteration number and the second column
gives the corresponding sampled value.

(iii ) The file bugs.ind tells you which line of the bugs.out
file corresponds to which monitored variable. Here, lines
1–9000 of bugs.out are samples from variableK, lines
9001 – 18 000 are samples from variabler, and so on.

(iv) The file bugs1.out contains the results of the stats com-
mand in a rectangular format suitable for reading into
statistical packages for producing graphs, tables, etc.
The 10 columns contain the summary statistics mean,
SD, observed lower percentile being reported (default
2.5%), observed lower percentile, observed upper per-
centile being reported, observed upper percentile (de-
fault 97.5%), median, number of iterations, start iteration,
and finish iteration.

(v) The file bugs1.ind contains the node names for the vari-
ables listed and the corresponding row number in the
bugs1.out file.

Whenever one employs MCMC methods to sample from
the posterior distribution, a question of extreme importance
is “has the chain converged to its target distribution?” Con-
vergence diagnostics is still an area of active research. A re-
cent review on methods used for establishing whether an
MCMC algorithm has converged, i.e., whether its output can
be regarded as samples from the target distribution of the
Markov chain, has been done by Cowles and Carlin (1996).
Some of these methods are implemented in the software
CODA (Best et al. 1995), a menu-driven collection of
SPLUS functions for analysing the output obtained by
BUGS. Besides trace plots and the usual tests for conver-
gence, CODA calculates statistical summaries of the poste-
rior distributions and kernel density estimates. CODA is
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being maintained and distributed by the same research group
responsible for BUGS.

CODA can be used to automatically generate trace plots
and kernel density plots of model parameters based on the
samples stored in the file bugs.out and the information pro-
vided in bugs.ind. Kernel estimates of the posterior densities
of the parametersK, r, q, B1990, P1990, MSP, EMSP, σ2, and
τ2 are shown in Fig. 2, together with their respective prior
densities. From the kernel density estimates, one can see that
the posterior modes ofK, r, and q are similar to the maxi-
mum likelihood estimates obtained by Polacheck et al.
(1993) under the observation error model. This may hold in
general when priors are diffuse and the observation error
variance (τ2 has posterior mean of 0.012) is substantially
larger than the process error variance (σ2 has posterior mean
of 0.0031). Table 2 compares the posterior means of the pa-
rametersK, r, q, B1990, P1990, MSP, andEMSP with the obser-
vation error and process error estimates of Polacheck et al.
(1993).

Extensive convergence diagnostics for this chain were cal-
culated using the CODA software of Best et al. (1995). All

parameters passed the Heidelberger and Welch stationarity
and halfwidth tests. Geweke’sZ scores do not fall within the
extreme tails of a standard normal distribution, suggesting
that the chain fully converged. The Raftery and Lewis con-
vergence diagnostics (estimating the 2.5th percentile up to
an accuracy of 0.02 with probability 0.9) confirmed that the
thinning, burn-in period, and sample size were sufficient.

We noted a strong dependency of the mixing behaviour of
the chains on the specification of bounds for each parameter
with non-log-concave full conditional posterior. The tighter
those bounds, the faster the convergence due to the Griddy–
Gibbs sampler used in the implementation of the MH step
that is necessary to sample from non-log-concave full condi-
tional posteriors. We therefore conclude that slow conver-
gence of the MCMC chains generated by BUGS is an initial
impediment that will be overcome with more efficient MH
implementations like those based on slice sampling and
adaptive techniques that are currently being developed and
implemented.

As to the practical limitations in the number of parame-
ters, an age-structured sequential population analysis applied
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Fig. 2. Kernel density estimates (solid lines) of the posterior distribution of various model and management parameters. Proper prior
densities are given by the broken lines.
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to northern Atlantic cod (Gadus morhua) data that included
about 200 unknowns is the most sophisticated model that we
have yet fitted using BUGS (Millar and Meyer 1999b). This
is basically at the current limit of computational practicabil-
ity. Runs were prohibitively slow, taking 3 h on a233-MHz
laptop to compute 15 000 iterations of the Gibbs sampler.
This, however, should only be a transient curb, as continu-
ous algorithmic improvements in the BUGS software are en-
hancing its performance and capabilities.

Discussion

BUGS provides a means for a Bayesian analysis of the
most complex fisheries models such as fully age-structured
models (Millar and Meyer 1999b) and fully Bayesian hierar-
chical random effects models for stock–recruitment data
(Liermann and Hilborn 1997) and for tackling the important
Bayesian hierarchic metaanalysis problems identified in the
“future directions” of Hilborn and Liermann (1998). BUGS
will have considerable implications for the day-to-day prac-
tice of the fisheries stock assessment scientist. He/she can
concentrate on the essential realistic modeling of data and of
prior knowledge, handing over the mathematical intricacies
of model fitting to a software package. Because prior and
sampling distributions can be easily modified without hav-
ing to recalculate full conditional distributions, the scien-
tist’s time is freed up to experiment with different scenarios
— a hitherto far too time-consuming procedure.

The recent evolution in Bayesian computation and soft-
ware within the last few years parallels and outperforms in
some ways the development seen over the last decades of
frequentistsoftware packages based on maximizing the like-
lihood function. Once stable numerical routines for nonlin-
ear optimization (like the Newton–Raphson algorithm) had
been developed, these were implemented as modules in soft-
ware packages (like SAS, GLIM, or SPLUS) for maximizing
the likelihood function. Fitting a complicated model became
possible for the statistical layperson just by running a certain
DATA and PROC step in SAS, for instance. Knowledge
about mathematical differentiation and optimization was no
longer required.

The inevitable difficulty in calculating the high-
dimensional integrals necessary for the determination of
posterior probability distributions has hindered routine
Bayesiandata analysis. For scientists applying Bayesian in-
ference, a good grasp of numerical and Monte Carlo integra-
tion techniques has been essential. Until recently, all

applications have involved writing one-off computer code in
low- or intermediate-level languages such as C or Fortran.
Even with reliable MCMC subroutines like the MH algo-
rithm and the Gibbs sampler to overcome the multidimen-
sional integrations, writing and debugging a specific
program would have taken anything from a few days to sev-
eral weeks. A subsequent modification of the program, per-
haps an extension of the model or an application to a
different data set, might well have taken several hours. So
Bayesian computations were previously impractical when
compared with model fitting in SAS or SPLUS for which
model specification may take just a few minutes and modifi-
cations may take just a few seconds. Therefore, the Bayesian
software package BUGS has been developed with the Gibbs
sampler and MH algorithms as building blocks. Instead of
having to choose the right PROC in SAS for the problem at
hand, with different commands and options for each proce-
dure, the user of BUGS only has to specify prior and sam-
pling distributions for his/her model. In this respect, the
Bayesian software package BUGS is considerably more
flexible, general, and user friendly. Moreover, as demon-
strated in the context of state–space models, the Bayesian
approach in conjunction with the Gibbs sampler is capable
of handling far more complex models than the classical ap-
proach.

The progress made in Bayesian computation via MCMC
methods has already revolutionized many scientific disci-
plines and provided solutions to problems that were hitherto
considered computationally intractable. The routine imple-
mentation of Bayesian inference that is now possible will
“almost surely” have an impact on fisheries stock assess-
ment.

Despite the immense promise of this new Bayesian ap-
proach via Gibbs sampling, the reader should also be aware
of potential pitfalls with the Bayesian paradigm and the use
of MCMC techniques for posterior computation. Playing
devil’s advocates, we will point some of them out. One of
the most controversial issues in Bayesian inference is the
specification of prior distributions. An overview of selection
of prior distributions by formal rules is given in Kass and
Wasserman (1996) and guidelines on prior specification in
fisheries stock assessment models are given in Punt and
Hilborn (1997). A sensitivity analysis that explores how
much the posterior inferences change when other prior dis-
tributions are assumed should always accompany a Bayesian
data analysis. Basic techniques for model checking by com-
paring data with posterior predictive distributions and using
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Parameter Observation error model Process error model State–space model

K (1000’s t) 239.6 153.4 279.8
r 0.328 0.620 0.293
q × 104 26.71 43.72 23.89
B1990 75.51 50.04 83.97
P1990 0.315 0.326 0.297
MSP (1000’s t) 19.65 23.78 19.26
EMSP 61.4 70.9 60.86

Table 2. Comparison of estimates of a number of management parameters: maximum likelihood
estimates obtained by Polacheck et al. (1993) using observation error and process error models,
respectively, and posterior means obtained by applying a Bayesian state–space model.
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Bayes factors are given in Gelman et al. (1996). Despite the
ease with which MCMC techniques can be employed using
BUGS, a number of subtleties remain, such as assessing
convergence, using parameter transformations to reduce pos-
terior correlations and thereby enhance the mixing of the
chains, the choice of starting values, and computing simula-
tion standard errors. These are topics of active current re-
search. An article giving advice and guidance to novice
users of MCMC that addresses these topics is Kass et al.
(1998). We caution against the noninformed use of BUGS,
as against any other statistical software package, whether
Bayesian or frequentist, and end with the warning issued on
the title page of the BUGS manual, “Beware — Gibbs sam-
pling can be dangerous!”.
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Appendix

tuna.dat

15.9 61.89
25.7 78.98
28.5 55.59
23.7 44.61
25.0 56.89
33.3 38.27
28.2 33.84
19.7 36.13
17.5 41.95
19.3 36.63
21.6 36.33
23.1 38.82
22.5 34.32
22.5 37.64
23.6 34.01
29.1 32.16
14.4 26.88
13.2 36.61
28.4 30.07
34.6 30.75
37.5 23.36
25.9 22.36
25.3 21.91

tuna_S.dat

list(C=c(15.9,25,7,...,25.3), I=c(61.89,78.98,...,21.91))

surplus.in

list(P=c(0.99,0.98,0.96,0.94,0.92,0.90,0.88,0.86,0.84,0.82,
0.80,0.78,0.76,0.74,0.72,0.70,0.68,0.66,0.64,0.62,0.60,0.5
8,0.56),
r=0.8, K=200, iq=5, isigma2=100, itau2=100)

surplus.bug

model surplusproduction;
const N=23;
var C[N], I[N], Imed[N], P[N], Pmed[N],
r, K, q, iq, sigma2, isigma2, tau2, itau2, MSP, EMSP,
P1990, B1990;
data C, I in “tuna.dat”;
inits in “surplus.in”;
{

# prior distribution of K: lognormal with 10% and 90%
quantile at 80 and 300
K ~ dlnorm(5.042905,3.7603664)I(10,1000);

# prior distribution of r: lognormal with 10% and 90%
quantile at 0.13 and 0.48
r ~ dlnorm(–1.38,3.845)I(0.01,1.2);

# prior distribution of q: instead of improper (prop. to 1/q)
use just proper IG
iq ~ dgamma(0.001,0.001)I(0.5,100);
q <- 1/iq;

# prior distribution of sigma2: inv. gamma with 10% and
90% qu. at 0.04 and 0.08
isigma2 ~ dgamma(3.785518,0.010223);
sigma2 <- 1/isigma2;

# prior distribution of tau2: inv. gamma with 10% and
90% qu. at 0.05 and 0.15
itau2 ~ dgamma(1.708603,0.008613854);
tau2 <- 1/itau2;

# (conditional) prior distribution of Ps (from state equa-
tions):
Pmed[1] <- 0;
P[1] ~ dlnorm(Pmed[1],isigma2) I(0.001,2.0)
for (t in 2:N) { Pmed[t] <- log(P[t–1] + r*P[t–1]*(1-P[t–1])
- C[t–1]/K);
P[t] ~ dlnorm(Pmed[t],isigma2)I(0.001,2.0) }

# sampling distribution:
for (t in 1:N) { Imed[t] <- log(q*K*P[t]);
I[t] ~ dlnorm(Imed[t],itau2);
}

# further management parameters and predictions:
MSP <- r*K/4;
EMSP <- r/(2*q);
P1990 <- P[N]+r*P[N]*(1-P[N]) -C[N]/K;
B1990 <- P1990*K;
}

surplus.cmd

compile(“surplus.bug”)
update(25000)
monitor(K,25)
monitor(r,25)
monitor(q,25)
monitor(sigma2,25)
monitor(tau2,25)
monitor(P[],25)
monitor(P1990,25)
monitor(B1990,25)
monitor(MSP,25)
monitor(EMSP,25)
update(225000)
stats(K)
stats(r)
stats(q)
stats(sigma2)
stats(tau2)
stats(P[])
stats(P1990)
stats(B1990)
stats(MSP)
stats(EMSP)
q()
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bugs.log

Bugs > stats(K)

mean sd 2.5% :97.5% CI median sample
2.798E+2 6.307E+1 1.826E+2 4.251E+2 2.709E+2 9000

Bugs > stats(r)
mean sd 2.5% : 97.5% CI median sample
2.928E–1 8.663E–2 1.436E–1 4.793E–1 2.869E–1 9000

Bugs > stats(q)
mean sd 2.5% : 97.5% CI median sample
2.389E–1 5.694E–2 1.434E–1 3.627E–1 2.344E–1 9000

Bugs > stats(sigma2)
mean sd 2.5% : 97.5% CI median sample
3.100E–3 1.894E–3 1.133E–3 7.826E–3 2.601E–3 9000

Bugs > stats(tau2)
mean sd 2.5% : 97.5% CI median sample
1.215E–2 4.422E–3 5.731E–3 2.270E–2 1.137E–2 9000

Bugs > stats(P[])
mean sd 2.5% : 97.5% CI median sample

[1] 1.018E+0 5.432E–2 9.165E–1 1.133E+0 1.015E+0 9000
[2] 9.959E–1 7.436E–2 8.741E–1 1.171E+0 9.874E–1 9000
[3] 8.807E–1 6.579E–2 7.646E–1 1.025E+0 8.755E–1 9000
.

.

.

[22] 3.543E–1 3.603E–2 2.910E–1 4.324E–1 3.519E–1 9000

[23] 3.282E–1 4.014E–2 2.557E–1 4.136E–1 3.255E–1 9000

Bugs > stats(P1990)

mean sd 2.5% : 97.5% CI median sample

2.973E–1 4.654E–2 2.123E–1 3.955E–1 2.946E–1 9000

Bugs > stats(B1990)

mean sd 2.5% : 97.5% CI median sample

8.397E+1 2.579E+1 4.457E+1 1.441E+2 8.017E+1 9000

Bugs > stats(MSP)

mean sd 2.5% : 97.5% CI median sample

1.926E+1 2.412E+0 1.401E+1 2.354E+1 1.944E+1 9000

Bugs > stats(EMSP)

mean sd 2.5% : 97.5% CI median sample

6.086E–1 8.770E–2 4.382E–1 7.903E–1 6.079E–1 9000
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