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PREFACE

The use of oxygenated gasoline was mandated under the Clean Air Act Amendments of

1990 in areas that did not meet the Federal ambient air standard for carbon monoxide (CO).

Motor vehicle emissions are the primary source of ambient CO levels in most areas and CO

is generally seen at its highest levels during the cold weather months.  Oxygenated gasoline

is designed to increase the combustion efficiency of gasoline, thereby reducing CO

emissions.  

The Clean Air Act requires at least a 2.7% oxygen content for gasoline sold in CO

nonattainment areas, and this level of oxygen is typically achieved by the addition of about

15% methyl tertiary butyl ether (MTBE) or about 7.5% ethanol (by volume).  Other fuel

oxygenates that are in use to a lesser extent, or that may potentially be used, include ethyl

tertiary-butyl ether (ETBE), tertiary-amyl methyl ether (TAME), diisopropyl ether (DIPE),

and tertiary-butyl alcohol (TBA).  Fuel oxygenates, especially MTBE and ethanol, also are

used to enhance the octane of conventional gasoline�a practice that started in the late

1970�s and continues today. 

As a result of the amended Clean Air Act, several new areas were required to begin

oxygenated gasoline programs during the winter of 1992-93.  Soon after these programs

were initiated, anecdotal reports of acute health symptoms were received by health

authorities in various areas of the country.  Such health concerns were not anticipated but

have subsequently focused attention on possible health risks associated with using

oxygenated gasoline.  These health concerns have been joined by complaints of reduced

fuel economy and engine performance, as well as the detection of low levels of MTBE in

some samples of ground water. 

In order to address public concerns and to take full advantage of the extensive expertise

across the Federal Government, as well as outside experts where appropriate, the U.S.

Environmental Protection Agency requested the assistance of the Office of Science and

Technology Policy (OSTP), through the Committee on Environment and Natural Resources

(CENR) of the President's National Science and Technology Council (NSTC), to coordinate

a comprehensive assessment of these issues.  Working groups that prepared this evaluation

were comprised of technical and scientific experts from across several Federal agencies, as

well as representatives from State government, industry, and environmental groups.

This assessment is a scientific state-of-understanding report of the fundamental basis and

efficacy of the EPA's winter oxygenated gasoline program.  The assessment considers air

quality, ground water and drinking water quality, fuel economy and engine performance,

and the potential health effects of oxygenated gasoline.  Each of these subjects is addressed

in a separate chapter.  Chapter 4 on �Potential Health Effects of Oxygenated Gasoline� is

based on two recent reports on health effects�one report was prepared by an Interagency

group of health scientists and the second by the Health Effects Institute (HEI) and a panel

of experts.  Complete citations for these reports are listed in the references for Chapter 4.
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Each chapter in this report underwent extensive external peer-review before submission of

the entire report for review by the National Research Council (NRC) of the National

Academy of Sciences.  Findings and comments from the NRC review have been addressed

in this assessment.  The entire assessment was reviewed by the National Science and

Technology Council.
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EXECUTIVE SUMMARY

Purpose and Background

Oxygenates have been used as octane enhancers in gasoline since the late 1970s, due to the

phaseout of lead.  During the 1980s, oxygenates came in to wider use as some States

implemented oxygenated gasoline programs for the control of carbon monoxide (CO)

pollution in cold weather.  People with coronary artery disease are particularly sensitive

to the adverse effects of this air pollutant.  The first winter oxygenated gasoline program

in the United States was implemented in Denver, Colorado in 1988.  The 1990 Clean Air

Act Amendments required the use of oxygenated gasoline in several areas of the country

that failed to attain the National Ambient Air Quality Standard (NAAQS) for CO.  During

the winter months of 1992-1993, many new oxygenated gasoline programs were

implemented to increase combustion efficiency in cold weather and thereby reduce CO

emissions.  

Methyl tertiary-butyl ether (MTBE) has become the most widely used motor vehicle

oxygenate in the U.S., though in some areas, ethanol is the dominant oxygenate used in

motor vehicle fuels.  Other fuel oxygenates that are in use or may potentially be used

include ethyl tertiary-butyl ether (ETBE), tertiary-amyl methyl ether (TAME), diisopropyl

ether (DIPE), tertiary-butyl alcohol (TBA), and methanol.  Because of limitations in

available data, there is less emphasis in this report on these other oxygenates.  The Clean

Air Act requires at least 2.7% by weight oxygen content for gasoline sold in CO

nonattainment areas, and about 15% by volume MTBE or about 7.5% by volume ethanol

to achieve this requirement.

The purpose of this report is to provide a review of the scientific literature on oxygenated

fuels and to assess effects of the winter oxygenated fuels program on air quality, water

quality, fuel economy and engine performance, and public health.  The request from EPA

for this assessment was prompted by public complaints of headaches, nausea, and other

acute symptoms attributed to wintertime use of oxygenated fuels, as well as complaints of

reductions in fuel economy and engine performance.

This report does not specifically examine the reformulated gasoline program, which is

intended to reduce motor vehicle emissions that lead to higher ozone levels during the

summer months and air toxics year round, and which also makes use of fuel oxygenates.

The report identifies areas where the data are too limited to make definitive conclusions

about the costs, benefits, and risks of using oxygenated gasoline in place of conventional

gasoline.  Several research needs on oxygenated gasoline were identified that would reduce

uncertainties and allow a more thorough assessment of human exposure, health risks and

benefits, and environmental effects.

Assessment Findings

Air Quality

�  A general decline in urban concentrations of CO over the past twenty years is attributed

largely to stringent EPA mandated vehicle emission standards and improved vehicle

emission control technology.  This decline and the effects of meteorology must be

accounted for in assessments of air quality benefits of oxygenated gasoline.
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�  Analyses of ambient CO measurements in some cities with winter oxygenated gasoline

programs find a reduction in ambient CO concentrations of about 10%. 

 

�  Studies of the effects of fuel oxygenates on vehicle emissions show a consistent

reduction of CO emissions at ambient temperatures above about 50 F.  At temperatureso

below 50 F, the magnitude of the reduction is decreased and very uncertain. o

�  The EPA MOBILE 5a Model appears to overestimate the benefits of oxygenated

gasoline on fleet-wide CO emissions by about a factor of two.  However, the MOBILE

Model is designed for use by the states in preparing highway mobile source emission

inventories and estimating the benefits of other air quality programs.  This assessment does

not address its usefulness for such purposes.

   

�  Oxygenates also reduce total hydrocarbon exhaust emissions.  Fuel oxygenates decrease

vehicle emissions of the air toxicities, benzene and 1,3-butadiene, but increase the

emissions of aldehydes (acetaldehyde from use of ethanol or ETBE and formaldehyde from

use of MTBE).

�  Older technology vehicles (carbureted and oxidation catalysts) benefit more from the use

of oxygenated fuel.  The amount of pollutant emissions is smaller in newer technology

vehicles (fuel injected and adaptive learning, closed loop three-way catalyst systems).

Also, the percentage reductions in CO and hydrocarbon emissions from use of fuel

oxygenates are found to be smaller in the newer technology vehicles compared to older

technology and higher emitting vehicles.

�  Emissions of nitrogen oxides are not changed significantly by low concentrations of fuel

oxygenates but some studies indicate increased nitrogen oxide emissions with oxygenate

concentrations greater than about 2 % by weight oxygen. The EPA Complex Model

developed for the Reformulated Gasoline Program predicts that fuel oxygenate does not

increase nitrogen oxide emissions.

�  During the winter season, the oxygenates are not removed rapidly from the urban

atmosphere, although some scavenging by precipitation is expected.  Consequently, the

oxygenates are likely to be dispersed and diluted throughout the troposphere, where they

ultimately would be removed by slow photooxidation.  

Water Quality

�  Releases of gasoline containing oxygenates to the subsurface from storage tanks,

pipelines, and refueling facilities provide point sources for entry of high concentrations of

fuel oxygenates into ground water.  In a few instances (such as in Santa Monica, CA) high

concentrations of MTBE have caused the shutdown of a drinking-water production well

or well field, and the source of contamination was identified as a release from an

underground gasoline storage tank.  Underground storage tank improvement programs 

underway by the states and EPA should result in a reduction in the release of gasoline and

fuel oxygenates to ground water from these potential point sources.
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�  Exhaust emissions from vehicles and evaporative losses from gasoline stations and

vehicles are sources of oxygenate release to the atmosphere.  Because of their ability to

persist in the atmosphere for days to weeks and because they will, in part, partition into

water, fuel oxygenates are expected to occur in precipitation in direct proportion to their

concentration in air.  Hence, fuel oxygenates in the atmosphere provide a non-point, low

concentration source to the hydrologic cycle as a result of the dispersive effect of weather

patterns and occurrence in precipitation.  

�  Volatilization of the alkyl ether oxygenates will occur slowly from ponds and lakes, and

from slow-moving and deep streams and rivers; volatilization can be rapid from shallow

and fast-moving streams and rivers.  Alkyl ether oxygenates are much less biodegradable

than ethanol or the aromatic hydrocarbon constituents of gasoline and, therefore, will

persist longer in ground water.  They also adsorb only weakly to soil and aquifer material.

Consequently, dissolved alkyl ether oxygenates will move with the ground-water flow and

migrate further from a point source of contamination. 

�  The current USEPA draft drinking-water lifetime health advisory for MTBE ranges from

20 to 200 µg/L; a revised health advisory is expected.  Health advisories have not been

developed for other fuel oxygenates.

�  MTBE was detected in 7% of 592 storm-water samples in 16 cities surveyed between

1991-1995.  When detected, concentrations ranged from 0.2 to 8.7 µg/L, with a median of

1.5 µg/L.  A seasonal pattern of detections was evident, as most of the detectable

concentrations occurred during the winter season.  MTBE was detected both in cities using

oxygenated gasoline to abate CO nonattainment and in cities using MTBE-oxygenated

gasoline for octane enhancement.

�  At least one detection of MTBE has occurred in ground water in 14 of 33 states

surveyed.  MTBE was detected in 5% of approximately 1,500 wells sampled, with most

detections occurring at low (µg/L-level) concentrations in shallow ground water in urban

areas.  

�  Drinking water supplied from ground water has been shown via limited monitoring to

be a potential route of human exposure to MTBE.  MTBE has been detected in 51 public

drinking water systems to date based on limited monitoring in 5 states, however, when

detected the concentrations of MTBE were for the most part below the lower limit of the

current USEPA health advisory.  This indicates that the consumption of drinking water was

not a major route of exposure for these few systems.  Because of the very limited data set

for fuel oxygenates in drinking water, it is not possible to describe for the Nation MTBE's

occurrence in drinking water nor to characterize human exposure from consumption of

contaminated drinking water.

�  There is not sufficient data on fuel oxygenates to establish water quality criteria for the

protection of aquatic life.
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�  The presence of MTBE and other alkyl ether oxygenates in ground water does not

prevent the application of conventional (active) methods to clean up gasoline releases;

however, the cost of remediation involving MTBE will be higher.  Also, the use of intrinsic

(passive) bioremediation to clean up gasoline releases containing MTBE may be limited

because of the difficulty with which MTBE is biodegraded.

Fuel Economy and Engine Performance

�  Theoretical predictions based on energy content indicate that reductions in fuel economy

resulting from the addition of allowable levels of oxygenates to gasoline should be in the

range of only 2-3%.  On-road measurements agree with these estimates.

�  Automobile engine performance problems due solely to the presence of allowable levels

of oxygenates in gasoline are not expected because oxygenated gasolines and

nonoxygenated gasolines are manufactured to the same specifications of the American

Society for Testing and Materials.

Health Effects

�  Complaints of acute health symptoms, such as headaches, nausea, dizziness, and

breathing difficulties, were reported in various areas of the country after the introduction

of oxygenated gasoline containing MTBE.  The limited field investigations conducted to

date suggest that greater attention should be given to the potential for increased symptom

reporting among workers exposed to high concentrations of oxygenated gasoline

containing MTBE.  With regard to exposures to lower concentrations as experienced by

the general population and motorists, the limited epidemiological studies and controlled

exposure studies conducted to date do not support the contention that MTBE as used in the

winter oxygenated fuels program is causing significant increases over background in acute

symptoms or illnesses.  The anecdotal reports of acute health symptoms among some

individuals cannot yet be explained or dismissed.

�  Human exposure data to MTBE are too limited for a quantitative estimate of the full

range and distribution of exposures to MTBE among the general population.  Less

information is available on exposures to oxygenates other than MTBE.

�  The assessment found that chronic non-cancer health effects (neurologic, developmental,

or reproductive) would not likely occur at environmental or occupational exposures to

MTBE.  The observation of acute and reversible neurobehavioral changes in rats exposed

to relatively high levels of MTBE is indicative of a neuroactive effect that could hinder

performance during periods of high exposure.

�  Current data are too limited to quantify health benefits of reduced ambient CO from

wintertime use of oxygenated fuels. 

�  While there are no studies on the carcinogenicity of MTBE in humans, experimental

studies indicate that MTBE is carcinogenic in rats and mice at multiple organ sites after

inhalation or oral-gavage exposure.  The mechanisms by which MTBE causes cancer in

animals are not well understood, but are under study.  Genotoxicity tests on MTBE and 
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one of its  metabolites, tertiary-butyl alcohol (TBA), are for the most part negative,

whereas the MTBE metabolite formaldehyde is genotoxic in a variety of experimental

systems.  Formaldehyde is viewed as a �probable� human carcinogen and TBA shows

some evidence of carcinogenicity in male rats and female mice.  There is sufficient

evidence to indicate that MTBE is an animal carcinogen and to regard MTBE as having

a human hazard potential.  Estimates of cancer potency derived from MTBE animal studies

as well as estimates of human exposure to MTBE have large uncertainties and caution is

required in their use.

�  The estimated upper-bound cancer unit risks for MTBE are similar to or slightly less

than those for fully vaporized conventional gasoline; substantially less than that for

benzene, a minor constituent of gasoline that is classified as a known human carcinogen;

and more than 100 times less than that for 1,3-butadiene, a carcinogenic emission product

of incomplete fuel combustion.  The interpretation of any health risks associated with the

addition of MTBE to gasoline requires a comparison to the health risks associated with the

use of conventional gasoline.  Meaningful predictions of human cancer risk from the

wintertime use of oxygenated gasoline versus nonoxygenated gasoline require much more

knowledge of the relative ambient air concentrations and personal exposures to the toxic

compounds that are present in both the evaporative and exhaust emissions from both types

of fuels. 

 

�  It is not likely that the health effects associated with ingestion of moderate to large

quantities of ethanol would occur from inhalation of ethanol at ambient levels to which

most people may be exposed from use of ethanol as a fuel oxygenate.  Potential health

effects from exposure to other oxygenates are not known and require investigation if their

use in fuels is to become widespread.
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