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ABSTRACT
We present a new method for paternity analysis in natural populations that is based on genotypic data that

can take the sampling fraction of putative parents into account. The method allows paternity assignment to
be performed in a decision theoretic framework. Simulations are performed to evaluate the utility and
robustness of the method and to assess how many loci are necessary for reliable paternity inference. In
addition we present a method for testing hypotheses regarding relative reproductive success of different
ecologically or behaviorally defined groups as well as a new method for estimating the current population
size of males from genotypic data. This method is an extension of the fractional paternity method to the
case where only a proportion of all putative fathers have been sampled. It can also be applied to provide
abundance estimates of the number of breeding males from genetic data. Throughout, the methods were
applied to genotypic data collected from North Atlantic humpback whales (Megaptera novaeangliae) to test
if the males that appear dominant during the mating season have a higher reproductive success than the
subdominant males.

THE use of genetic markers to identify parent-off- values of the two potential fathers with the highest likeli-
hood values are compared and the logarithm of thespring relationships is becoming an important tool

in molecular ecology. In some studies the issue of pater- ratio of these two likelihood values is treated as a test
statistic (D). The significance of the difference in likeli-nity is of interest in itself (e.g., Foltz and Hogland

1981; Clapham and Palsbøll 1997). In other cases hood estimates is assessed by estimating the null-distri-
bution of D from simulations. If the observed value of Dpaternity analysis is used in the estimation or detection
is sufficiently large, the potential father with the highestof gene flow between populations (e.g., Amos et al. 1993)
likelihood is accepted as the father. This approach wasor the analysis of reproductive success of different eco-
developed as a method for assigning paternity whenlogical or behavioral groups (e.g., Smouse and Meagher
more than one male cannot be excluded by the data.1994).

The likelihood approach by Marshall et al. (1998)The basic statistical methodology is based on the calcu-
may be improved upon for several reasons. First, D maylation of likelihoods in genealogies (Thompson 1975,
not be the best statistic for assigning paternity, since it1976). The probability of an observed offspring geno-
ignores information regarding all potential fathers aparttype can be calculated knowing the parental genotypes,
from the two with the highest likelihood values. Also,usually assuming Mendelian segregation of alleles. Cal-
in many cases, it may not be of interest to make a binaryculation of this probability for multiple potential fathers
decision regarding parentage. Often the relevant bio-provides the likelihood function for a single offspring,
logical question is to assess the relative reproductiveand paternity can be assigned by choosing the most
success of different geographically, ecologically, or be-likely father among the potential fathers. This type of
haviorally defined groups. For this purpose, methodsapproach has been developed and applied by Meagher
known as fractional assignment methods have been de-(1986) and Meagher and Thompson (1986, 1987).
veloped (Devlin et al. 1988; Roeder et al. 1989; SmouseOne of the key questions relating to these methods is
and Meagher 1994). In these approaches, reproductivehow to assess the confidence of a particular paternity
success is estimated by weighting the reproductive con-assignment. In the (now) commonly applied approach
tribution of a potential parent with the likelihood ofdeveloped by Marshall et al. (1998) the likelihood
paternity of the parent. As mentioned by Roeder et al.
(1989), this approach can be considered a Bayesian
procedure in which all parents are given equal prior
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function for a specific parameter relating to the repro- a potential father being the father. In the absence of
other information, we assume that the prior probabilityductive success or dispersal of different groups can be

calculated directly from the data. that a particular male is the father is 1/N, where N is
the number of potentially breeding males in the breed-In this article we present an approach for estimating

parentage probabilities, which can be considered a ing area. We note that in some circumstances this may
not be the best prior to use. In some cases there mightBayesian alternative to the method developed by Mar-

shall et al. (1998). The method proceeds by making be other information available, for example, regarding
population subdivision or age structure, which mightinferences directly on the basis of the calculated parent-

age probabilities. We here use the term “parentage suggest that not all males in the population have the
same probability of siring an offspring. The method weprobability” to describe the posterior probability that a

particular putative father is the actual father. Subse- describe can easily be adjusted in such situations to take
this information into account.quently, we develop a method for testing hypotheses

regarding reproductive success and for estimating popu- Let Ij(i) indicate the event that the jth potential father
is the father of the ith offspring. Also, let the ith mater-lation sizes on the basis of parent-offspring genotypic

data. This method can be viewed as an extension of the nal genotype be Mi, the associated genotype of the off-
spring be Oi, the genotype of jth potential father be Fj,aforementioned fractional paternity approach to the

case where only a proportion of all potential males have and A be the matrix of allelic frequencies for all loci.
If we have sampled n of N males on the breeding groundbeen sampled. Previous approaches implicitly assume

that all individuals in the population have been sam- (N is assumed to be large), the posterior probability of
paternity can be calculated aspled. We show that inferences regarding paternity are

highly sensitive to the sampling fraction but may be
Pr(Ik(i) | Mi, F, A, N) 5

Pr(Oi | Mi, Fk)

on
j51Pr(Oi | Mi, Fj) 1 (N 2 n)Pr(Oi | Mi, A)

,surprisingly robust to violations of the underlying as-
sumptions regarding family structure. (1)

The method developed here is applied to genotypic
where Pr(Oi | Mi, Fj) is the shorthand notation for Prdata obtained from North Atlantic humpback whales,
(Oi | Mi, Fj, Ij(i)). Assuming Mendelian segregation andMegaptera novaeangliae. In the case of cetaceans (whales,
independence among loci we can easily calculate thedolphins, and porpoises) maternity is readily inferred
probability of an observed offspring genotype given thefrom the close association between the mother and her
maternal genotype and the genotype of a particularcalf before the calf is weaned, whereas paternity is almost
potential father Pr(Oi | Mi, Fj), using standard methodsimpossible to infer from observation alone. Thus for
(e.g., Thompson 1975, 1976). Likewise, Pr(Oi | Mi, A)paternity assessment, genetic analyses appear to be the
can easily be calculated assuming Hardy-Weinberg equi-only viable method to evaluate reproductive success, but
librium and independence among loci (linkage equilib-only a handful of studies have employed genotypic data
rium). To perform this calculation, the population al-toward this objective in cetaceans so far (Amos et al.
lele frequencies (A) must be known. Although these1991, 1993; Clapham and Palsbøll 1997). The issue
frequencies will rarely or never be known in naturalof mating behavior and male reproductive success is
populations, estimates of the observed allelic frequen-particularly difficult to assess in the baleen whales, which
cies can be used in place of the population frequenciesdo not exhibit the tight and well-defined pod structure
for large samples. This method also requires informa-often observed among toothed whales. In addition, only
tion regarding the number of breeding males in thea few behaviors among baleen whales can be directly
population. In some cases such information is availableor indirectly related to mating (and these only in a few
through direct estimates of population census size.species).
Cases where such information is not available are also
treated.

POSTERIOR PROBABILITIES OF PATERNITY

Our objective is to estimate the posterior probability
PATERNITY INFERENCE WHEN THEthat a particular individual might be the father of a
POPULATION SIZE IS UNKNOWN

known offspring. We use the posterior probability of
paternity directly to measure our belief in the paternity In many cases, the problem of identifying parent-

offspring relationships has been presented as a problemassessment. In this sense, the method can be viewed as
a Bayesian method for paternity inference. of classifying parent-offspring relations as either a match

or not a match. A given offspring can either be assignedWe assume multiple mother-offspring pairs as well as
multiple potential fathers and we allow for the possibility to a sampled potential father or classified as having no

father among the sampled males. Some authors havethat not all potential fathers in the breeding population
have been sampled. To estimate the probability that a chosen to phrase the problem of confidence in a pater-

nity assignment in terms of hypothesis testing (e.g., Mar-potential father is the father of an offspring we need
to make assumptions regarding the prior probability of shall et al. 1998). We instead suggest the use of an
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explicit decision-theoretic approach to the problem of
paternity assignment, i.e., we define a specific loss func-
tion, which provides the “loss” incurred if a wrong classi-
fication is made. By minimizing the expectation of the
loss (the risk), we can establish an appropriate decision
rule that determines the classification of parent-off-
spring relationships. Using a 0–1 loss function, i.e., a
loss of 1 if an incorrect classification is made, the risk is
simply the probability of misclassification. The posterior
risk is minimized by accepting a match only if it has the
largest posterior probability of any match and if the
posterior probability of the match is larger than the
posterior probability that the father was not sampled.
This is the decision rule we use in the following. We
could have chosen another loss function; for example,
it might be reasonable to assign a larger loss to a misclas-

Figure 1.—Proportion of correct paternity decisions. Pa-
sification in which a match between two unrelated indi- rameter values: (A) 4 alleles with equal frequencies, c 5 50
viduals is accepted than to a misclassification in which and n 5 50; (B) 10 alleles with uniform frequencies, c 5 50
we fail to identify a parent-offspring relationship. For and n 5 50; (C) 4 alleles with equal frequencies, c 5 200 and

n 5 200; (D) 10 alleles with equal frequencies, c 5 200 andexample, such a loss function could lead to a decision
n 5 200. In all cases N 5 500 and 1000 simulations wererule in which a match is accepted if the posterior proba-
performed.

bility of paternity is .95% or 99% analogous to the
criteria usually used in hypothesis testing. However, in
the absence of other information regarding the applica-

described above. A total of 1000 simulations were per-
tion of the method, we assign the same loss function to

formed for each parameter value and the proportion
all misclassifications.

of offspring that were correctly classified was scored as
We also note that in many biological studies it is more

a measure of the performance of the method. It was
relevant to use the probabilities of paternity directly

assumed that N 5 500 and n, k, and c were varied to
instead of making binary decisions regarding paternity.

examine the performance of the method under multi-
ple parameter settings.

The results of the simulations are presented in FigurePERFORMANCE ASSESSMENT—HOW MANY
LOCI ARE NECESSARY? 1. Our results differed considerably between the two

levels of variation. In the case of 10 alleles as few as six
We employed computer simulations to evaluate our

loci are sufficient for reliable paternity inference given
approach. In these simulations, we focused on the meth-

the sample and population size employed in our simula-
ods’ ability to make binary decisions regarding paternity

tions. In contrast, in the case of 4 alleles, as many as
as described above. Multiple data sets were generated

10–14 loci are necessary for reliable paternity inference.
and for each data set the proportion of correctly classi-

Clearly, the variability of the locus is a major determin-
fied offspring-parent relationships was scored. In the

ing factor of the performance of the method.
simulation of a data set, the population frequencies of

The allelic frequencies used in the simulations are
alleles were first determined for each of k loci. Two

idealized. The equal distribution of allele frequencies
different sets of population frequencies were used for

would, for example, be expected under a k-allele model
the simulations: 10 alleles each of frequency 0.1 and 4

with symmetric mutation and very high mutation rates.
alleles each of frequency 0.25. Subsequently, a set of c

However, in real data (e.g., microsatellite data) the allele
maternal genotypes was generated and a set of n male

frequencies are unlikely to follow such a distribution
genotypes was generated independently. Offspring ge-

and thus considerably more alleles are required at eachnotypes were generated by randomly choosing one al-
locus to yield an equal performance.lele for each locus from the mother and with probability

n/N choosing paternal alleles from a father among the
n male genotypes, and with probability (N 2 n)/N

ROBUSTNESS
choosing the paternal alleles by sampling from the pop-

The method described above is an improvement ofulation frequencies. Throughout the simulations we
previous methods in that it takes incomplete samplingassumed Mendelian segregation and independence
of putative fathers into account. However, it shares someamong loci.
of the problems of previous methods in making veryFor each generated data set, the population allele
simple assumptions regarding family structure. Most im-frequencies were estimated from the observed allele

frequencies. Paternity analysis was then performed as portantly, it ignores the possibility that some of the
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Figure 2.—Proportion of correct paternity decisions. The
proportion of all paternity decisions (offspring assigned to a
putative male or assigned to nonsampled males) that are cor- Figure 3.—Incorrect paternity assignments in the presence
rect is shown. The data were simulated assuming c 5 50, n 5 of family structure. The average number of incorrect paternity
50, and N 5 500. In A and B none of the putative fathers are assignments in the presence of family structure using a 0–1
half-sibs to individuals in the offspring generation. In C 20% loss function is shown. The data were simulated under the
of all putative fathers are paternal half-sibs of individuals in same conditions as in Figure 2.
the offspring generation and 25% of all males have all the
offspring (75% of all males have fertility 0). In B it was incor-
rectly assumed that N 5 n, i.e., unobserved males are not taken

potential fathers is f 5 cf/n, 0 # f # 1. In this mannerinto account. In all cases N 5 500 and 1000 replicate data
it is possible to examine the effect of family structuresets were simulated.
in terms of half sibs among the potential fathers and
the effect of unequal reproductive success in addition
to the effect of population size.potential fathers may actually be siblings or other rela-

We first consider the case of equal reproductive suc-tives of the sampled offspring. Also, it relies on the
cess and no half sibs among the n male genotypes ( f 5assumption of equal fertilities (potential for reproduc-
0). Figure 2A shows the proportion of correct paternitytive success). Here we are interested in assessing how
decisions when c 5 50, n 5 50, N 5 500 and there areimportant the problem of ignoring family structure and
four alleles in each locus. Note the similarity to Figurevariation in fertility is vs. the importance of ignoring
1A. Next (Figure 2B), we assigned paternities by wronglyincomplete sampling. We do this by performing com-
assuming that the sample size equals the number ofputer simulations that include incomplete sampling and
breeding males (n 5 N). As expected, the probabilityfamily structure and determine how well the method
of a correct decision is dramatically decreased. We canfor parentage assignment performs. We model the prob-
also examine the number of matches incorrectly in-lem of family structure by including a proportion of
ferred (Figure 3, A and B). As expected, we see thatpaternal sibs as putative fathers. In humpback whales
ignoring the presence of unobserved males gives too(in which we apply our methods later) matings have
many false matches. The effect can be very drastic evenbeen shown to be promiscuous and full sibs are probably
for moderate amounts of genetic data. For example,rare (Clapham and Palsbøll 1997). Hence, varying
for 6 loci the average number of incorrectly inferredthe proportion of paternal half sibs in the offspring data
matches is increased .100-fold. Even for 10 loci theseems to be an appropriate way to examine the effect
number of incorrectly inferred matches is almost dou-of family structure. The simulations were performed by
bled. In other words, ignoring unobserved males, as hasfirst generating a set of c 1 cf maternal genotypes and
been common in some previous methods, has a verya set N paternal genotypes. Offspring genotypes were
strong effect on the number of incorrect assignments,then generated by choosing a random mate among the
even with moderate amounts of genetic data.N males for each of the first c maternal genotypes. The

Next, we examine the effect of ignoring the possibilityprobability that each particular male fathered an off-
of unequal fertilities (wrong prior) and of family struc-spring was given by the relative fertility of the male. For
ture. We do this by letting 20% of the sampled potentialexample, in the case of equal fertility, each of the males
fathers be paternal sibs to individuals in the offspringhad probability 1/N of fathering a particular offspring.
generation and by letting one-quarter of males sire allThe first c generated maternal genotypes and offspring
the offspring, i.e., three-quarters of all males in the popu-genotypes were included as maternal and offspring data.
lation sire none at all (Figures 2C and 3C). These viola-A set of cf offspring was similarly generated and included
tions of the assumptions of the method lead to a veryin the sample among the n potential fathers. The frac-

tion of half sibs generated in this way among the n small decrease in the number of correctly matched indi-



1677Paternity Analysis in Natural Populations

ecologically or behaviorally defined groups. For exam-
ple, let us assume that there are two groups, group 1
and group 2, and that we are interested in testing if the
reproductive success of the two groups differs. Assume
that the ratio of the reproductive success of groups 2
and 1 is a. If both groups have the same reproductive
success a will equal 1 whereas, for instance, a 5 3 implies
that the reproductive success of group 2 is three times
larger than that of group 1. Our aim is then to obtain
an estimate of a and to test the null hypothesis of a 5 1.
We use a likelihood approach similar to that presented
by Smouse and Meagher (1994); however, the method
is modified to account for the fact that not all the poten-
tial fathers have been sampled. It is a natural extension
of the Bayesian approach for classifying parent-offspring
relationships described above. Assuming that the proba-
bilities of an individual male siring two offspring are
independent, the likelihood function for a is given byFigure 4.—Incorrect assignments with a 95% decision rule.

The average number of incorrect paternity assignments when
L(a) ~ p

k

i51

Pr(Oi | Mi, F(1), F(2), a) (2)a match is assigned if the posterior probability of paternity is
.95% is shown. The data were simulated under the same
conditions as in Figures 2 and 3. in a sample containing k offspring. F(s) is the vector of

genotypes of potential fathers belonging to group s, s 5
1, 2. Let us denote the event that the father of the ithviduals and an increase in the number of incorrectly
offspring is sampled and belongs to group i in the sam-matched individuals. However, since there are fewer
ple by Is(i), s 5 1, 2, and the event that the father istotal father-offspring pairs, the probability of a correct
not in the sample by I0(i). Thendecision is increased.

The effect of ignoring unobserved males on the num- Pr(Oi | Mi, F(1), F(2), a) 5 Pr[Oi | Mi, F(1), I1(i)]Pr[I1(i) | a]
ber of incorrect matches is orders of magnitude larger
than the effect of family structure. The most critical 1 Pr[Oi | Mi, F(2), I2(i)]Pr[I2(i) | a]
model assumptions are obviously the assumptions re-

1 Pr[Oi | Mi, A]Pr[I0(i)]. (3)garding complete sampling and the number of breeding
males. Assuming that the probability of obtaining the father

To show that this conclusion is not just a result of the in the sample equals the sampling fraction, we have
chosen decision rule, we also performed simulations

Pr(I0(i)) 5 (N 2 n1 2 n2)/Nusing another decision rule. In these simulations a
match was assigned if the posterior probability of pater- Pr(I1(i) | a) 5 an1(1 2 Pr(I0(i)))/(an1 1 n2)
nity was .95%. The number of incorrectly inferred

Pr(I2(i) | a) 5 n2(1 2 Pr(I0(i)))/(an1 1 n2). (4)paternities is shown in Figure 4. Note again that there
is a drastic reduction in the performance of the method Pr[Oi | Mi, F(1), I1(i)] and Pr[Oi | Mi, F(2), I2(i)] can easily
when the presence of unobserved males is ignored. In be calculated as
contrast, the effect of family structure and variance in
the fertility among males is negligible. These conclu- Pr[Oi | Mi, F(s), Is(i)] 5

1
ns

o
ns

j51

Pr[Oi | Mi, F(s)
j ], s 5 1, 2,

sions cannot be guaranteed to hold for all types of pater- (5)
nity inference. For example, in some applications in

where F(s)
j is the genotype of the jth potential father inforensic science, the presence of family structure may

group s. Pr[Oi | Mi, F(s)
j ], s 5 1, 2, and Pr[Oi | A] canbe of strong importance. However, for the purpose of

be estimated as before. Using this method, we can esti-paternity inference and assessment of fertilities in the
mate a and perform hypothesis tests using a standardpresent framework, it seems safe to conclude that family
likelihood-ratio test. Numerical optimization of the like-structure and variance in the fertility among males is a
lihood function is easily done using standard methods,very minor problem compared to the problem regard-
in this case a quasi-Newton method (Press et al. 1988,ing unobserved males.
pp. 425ff).

In most cases, special interest focuses on testing the
TESTING HYPOTHESES REGARDING hypothesis of equal fertilities (a 5 1). To perform this

REPRODUCTIVE SUCCESS likelihood-ratio test, some care must be taken. We note
that as the number of loci grows large the likelihoodIn many cases, it is of interest to test hypotheses re-

garding the relative reproductive success of different function will converge to a multinomial distribution
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20% of the sampled potential fathers are paternal sibs to
individuals in the offspring generation. Again it appears
that the x2 distribution provides a close approximation
to the distribution of the likelihood-ratio test statistic,
especially in the tail of the distribution. At the 5% sig-
nificance level, the x2 approximation provides a critical
value of 3.84 and the true value is z3.98.

APPLICATION TO THE NORTH ATLANTIC
HUMPBACK WHALE

North Atlantic humpback whales congregate mainly
on shallow breeding grounds in the West Indies during
the winter, which constitutes the breeding season
(Whitehead and Moore 1982). Observational and popu-
lation genetic data strongly suggest that humpback
whales observed in the West Indies constitute a single
panmictic population (Mattila et al. 1989; Clapham
et al. 1993; Palsbøll et al. 1997a, 1998). Females give
birth to a single calf on average every second year, al-
though longer and shorter birth intervals have been
recorded (Clapham and Mayo 1987, 1990; Barlow
and Clapham 1997). The gestation period has been

Figure 5.—Fit of the x2
1 approximation. The empirical cu- estimated at z12 months and the calf is weaned toward

mulative distribution function (CDF) of the likelihood-ratio the end of its first year.test statistic under the null-hypothesis from simulated data
Clapham (1996) described the humpback whale mat-and the CDF of a x2

1 distribution, when (A) no family structure
ing system as polygamous, with many attributes of a lek,is assumed and (B) it is assumed that 20% of all putative fathers

are half-sibs to the offspring generation. The hypothesis being where males signal by “singing” and compete for access
tested is a 5 1.0. A total of 1000 simulations were used to to estrous females. As many as 25 males have been ob-
generate each of the empirical CDFs. served to compete for access to a single, presumably

estrous, female during the breeding season (Mattila
et al. 1989; Clapham et al. 1992). Males in these competi-

with parameters Pr(I0(i)), Pr(I1(i)|a), and Pr(I2(i)|a). tive groups can be divided into several roles, as described
The standard limiting results for the likelihood function by Clapham et al. (1992): the principal escort, which is
should therefore hold as the number of loci and the the primary escort of the female (termed the nuclear
number of sampled individuals become large. The use animal); the challenger, the male whale that actively
of the standard x2 approximation (i.e., comparing two challenges the principal escort for his position; and the
times the log-likelihood ratio to a x2

1 distribution) is secondary escorts, which denote any other whale in the
appropriate for large samples. However, for small sam- group. Principal escorts and challengers are considered
ples, especially when the number of loci is small, the key male roles and are assumed to be more dominant
x2 approximation may not necessarily provide a good animals than secondary escorts. The secondary escorts
approximation to the distribution of the likelihood-ratio are only rarely observed challenging the principal es-
test statistic. We therefore performed simulations to in- cort. Such competitive groups of males may last many
vestigate the applicability of the large sample approxi- hours and supposedly require a substantial investment
mations for moderate sample sizes. Data sets were simu- by the dominant males (Mattila et al. 1989; Clapham
lated assuming samples sizes of n1 5 226, n2 5 122, c 5 et al. 1992) of which the return presumably is a relatively
146, and N 5 5100. This corresponds to the sample higher proportion of successful paternities.
size in the observed data, which are analyzed in the Our objective here is to estimate and assess the rela-
subsequent section. The number of loci (n 5 6) and tive difference in reproductive success of the dominant
the allele frequencies were also chosen to match the males (principal escorts and challengers, designated
values observed in the humpback whale data. The results group 1) and the subdominant males (the secondary
of the simulations can be found in Figure 5. Note the escorts, designated group 2) from genotypic data.
very close fit between the simulated distribution of likeli- Our analysis focuses on individual humpback whales
hood-ratio statistics and the x2 distribution. It appears sampled in the West Indies during the breeding seasons
that the x2 approximation works well even for these of 1992 and 1993. These samples constitute a subset of
limited sample sizes. the 3060 tissue samples collected either as skin biopsies

(Palsbøll et al. 1991) or sloughed skin (Clapham et al.An additional set of simulations was made assuming
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pected number of offspring in the sample from each
group (Os, s 5 1, 2), conditional on the data, assuming
a 5 1:

E(Os) 5 o
i

Pr[Oi | Mi, F(s), Is(i)]Pr[Is(i)]
Pr(Oi | Mi, F(1), F(2))

. (6)

On the basis of the data discussed above, the expected
numbers of offspring from males observed from the two
groups are 6.26 and 1.93, respectively. In conclusion, the
number of expected matches contained in the current
sample appears to be too small to provide narrow confi-
dence intervals for a.

ESTIMATION OF EFFECTIVE POPULATION SIZE

In the derivation of the method for paternity assign-
ment described above, it is evident that the likelihood
is a function of the number of breeding males. Hence,

Figure 6.—The likelihood surface for a calculated for the it is possible to estimate the number of breeding malesBaleen data described in the text. In A it is assumed that N 5
from the genotypic data. Note that such an estimate5000. In B a uniform prior is assumed for N and the integrated
of population size is much different from traditionallikelihood function for a is plotted. In C a normal prior is

assumed for N with mean 5000 and standard deviation 1000. estimates of population sizes based on inbreeding coef-
ficients or similar measures (e.g., Kuhner et al. 1995).
First, the method provides an estimate of the actual

1993) from humpback whales across the North Atlantic number of potentially breeding males. Population ge-
Ocean between 1988 and 1995. The genotype at six netic estimates, in contrast, are usually scaled with the
microsatellite loci and sex were determined for each mutation rate, which is often an unknown quantity. Sec-
sample (see Palsbøll et al. 1997a,b and Smith et al. ond, population genetic estimates are evolutionary esti-
1999 for details). The microsatellite analyses yielded mates, which reflect past events, such as fluctuations
2368 unique genotypes among the 3060 samples, each in effective population size. The estimate based upon
of which was inferred to represent a single individual. parent offspring genotypes is an estimate of the current
The average number of alleles per locus was estimated male population size, i.e., at the time of sampling.
at 14.5 (Palsbøll et al. 1999). A total of 146 complete Assuming independence among offspring, the likeli-
mother-calf pairs, as well as 226 males from group 1 hood function for N can be calculated as
and 122 males from group 2, were sampled in 1992 or

L(N) ~ p
i

Pr(Oi | Mi, A, F, N)1993 on the breeding range among the sample of 2368
unique genotypes. The remaining samples were either
collected in different years, on the feeding grounds, or 5 p

i
1(N 2 n)

N
Pr(Oi | Mi, A) 1

1
N o

n

j51

Pr(Oi | Mi, Fj)2,from behavioral classes not relevant to this study, such
as pairs and single individuals.

N $ n. (7)
The likelihood function of a is shown in Figure 6A,

assuming a population size of 5000 (5 N) males, which The likelihood function for N for North Atlantic hump-
back whales, based on the previously discussed data, isis the most current direct estimate and based on data

from 1992 and 1993, the years in which the samples shown in Figure 7. The maximum-likelihood estimate
of N is 6540 breeding males (l 5 22128.3571) and anfor this study were collected (Smith et al. 1999). The

maximum-likelihood value of a is a strictly decreasing z95% confidence interval is given by {N: 3700 # N ,
17,000} using parametric bootstrapping. The confi-function (â 5 0). This result suggests that group 1

(principal escorts and challengers) may have a larger dence interval provided by large sample theory is almost
identical {N: 3800 # N , 16,760}.reproductive success than group 2 (the secondary es-

corts). However, the difference is not statistically sig- A more direct estimate of the number of male hump-
back whales on the North Atlantic breeding groundnificant. A 5% confidence region for a is given by {a :

0 # a , 3.1}. This large confidence interval is a conse- has been obtained by mark-recapture methods using
genetic tagging (Palsbøll et al. 1997a). This studyquence of the flat likelihood surface. The amount of

information in the data regarding a is very limited be- yielded a point estimate of males Nmales 5 4894 and
a 95% confidence interval of {3374 # Nmales , 7123}cause the number of sampled males and mother-calf

pairs is small relative to the overall population size. (Palsbøll et al. 1997a). The two estimates are quite
compatible, but the confidence interval provided by theTo illustrate this problem, we can estimate the ex-
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a lognormal distribution, and the posterior probability
of paternity can be calculated as

Pr(Ik(i) | Mi, F, A) 5 #
∞

n
Pr(Ik(i) | Mi, F, A, N)f(N)dN.

(8)

This one-dimensional integral can be evaluated quite
easily by standard numerical integration algorithms
(e.g., Press et al. 1988, pp. 129ff). The density f(N)
approximates the true discrete distribution of N. Since
the integral in Equation 8 and the subsequent equations
are evaluated by numerical integration on a grid, there
is no practical difference between assuming a discrete
and a continuous distribution.

The distribution can be updated using the data of
Figure 7.—The likelihood surface for N. The likelihood parent and offspring genotypessurface is calculated for the Baleen data described in the text.

Pr(Ik( j) | Mj, F, A)

mark-recapture method is, not surprisingly, consider-
5

#
∞

n
Pr(Ik( j) | Mj, F, A, N)pi:i?j Pr(Oi | Mi, A, F, N)f(N)dN

#
∞

n pi:i?j Pr(Oi | Mi, A, F, N)f(N)dN
.ably narrower than the confidence interval based on the

parent-offspring data. Since the assumptions underlying (9)
the two estimates are quite different, it is somewhat

In this way, the probability of paternity can be calculatedcomforting that the estimates are so similar.
using the information regarding population size avail-One caveat is that the method assumes that the prior
able in the genetic data from the entire sample. Thisprobability of paternity equals 1/N. If males with a rela-
approach can also be used even if no prior informationtively high reproductive success are preferentially sam-
is available regarding population size. In such cases, itpled, our method will tend to underestimate the male
may be reasonable to use a uniform prior for N, i.e., topopulation size. For example, in this study, sampling
assign equal weight to all possible values of N. For mostwithin the competitive groups was directed toward the
data, it may be necessary to specify a maximum maledominant males at the expense of the subdominant
population size to ensure that the resulting posteriormales. This inherent feature of the sampling design
distribution is proper, i.e., f(N) 5 1/(Nmax 2 n), n #might bias our estimate of N toward smaller values.
N , Nmax.

As a practical approach, it may be computationally
PATERNITY INFERENCE WHEN THE simpler to use
POPULATION SIZE IS UNKNOWN

Pr(Ik( j) | Mj, F, A) ≈ #
∞

n
Pr(Ik( j) | Mj, F, A, N)wndN,In the paternity analysis discussed above, it was as-

sumed that the population size was known. This was a
wn 5 piPr(Oi | Mi, A, Fj, N)f(N)

#
∞

n piPr(Oi | Mi, A, Fj, N)f(N)dN
.reasonable assumption because of the availability of

good census estimates based on mark-recapture meth-
ods for the North Atlantic humpback whale population (10)
(Smith et al. 1999). Unfortunately, the male breeding

For large samples, Equation 10 should provide a verypopulation size N may not be known with great confi-
good approximation. Similarly, inference regarding re-dence in many cases. In such cases, simulation ap-
productive success can be performed using the inte-proaches may be useful when making binary decisions
grated likelihood for a:regarding paternity. However, probabilities of paternity

may still be desirable, for example, for examining
Lm(a) 5 #

∞

n p
k

i51

Pr(Oi | Mi, F(1), F(2), N, a)f(N)dN. (11)hypotheses regarding the reproductive success of differ-
ent biologically defined groups. In the following we
discuss some methods for calculating these probabili- In this way, it is possible to examine hypotheses regard-

ing reproductive success, while incorporating the rele-ties.
When some (limited) information is available regard- vant information from the genetic data regarding the

male population size. An example is shown in Figureing the population size, it may be desirable to take the
uncertainty regarding this parameter into account by 6. A uniform prior f(N) 5 1/(20,000 2 n), n # N ,

20,000 (Figure 6B) or a normal with m 5 5000 and s 5assuming a prior distribution of the male population
size, [f(N)]. For example, if a point estimate of N with 1000 (Figure 6C) was used and the likelihood surface

was evaluated by numerically integrating Equation 11large confidence intervals is available, N can be appro-
priately modeled, for example, as having a normal or on a grid containing 200 grid points. As expected, the
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the West Indies during 1992 and 1993 was 4.65 (n 5
289 groups, 95% confidence interval of 60.23; J. Robbins,
unpublished results). This implies that the population
frequency of subdominant males is only z30% more
than that of the dominant males and thus the dominant
males are likely to sire approximately three times more
of the calves than the subdominant males. This conclu-
sion is highly tentative, though, as our sample sizes were
too small to yield any significant difference in reproduc-
tive success between the two groups of males, despite the
apparently large difference in the estimate of relative
reproductive success.

The average number of alleles per locus (estimated
at 14.5, see above) was within the range sufficient for
successful parentage assignment, as suggested by our
simulation experiments. However, the allele frequen-
cies were far from equal, with an average of 30 and 20%
of the alleles at frequencies ,0.01 or .0.1, respectively.

Figure 8.—The likelihood surface for a using the fractional Maybe more important is the overall proportion of the
paternity method. The likelihood surface is calculated for the

population that was sampled in this study. The mostBaleen data described in the text.
current abundance estimate for humpback whales in
the North Atlantic is 10,600 (Smith et al. 1999). Even

likelihood surface is more flat when uncertainty regard- though the overall sample of analyzed North Atlantic
ing N is incorporated into the method because added humpback whales is relatively large (2368), it comprises
uncertainty regarding N leads to a loss of statistical only 22% of the overall population, of which only a
power. However, the major features of the likelihood fraction of this sample was for the estimations presented
function are retained and the maximum-likelihood esti- in this study. Given the rather low proportion sampled
mate of a is zero in all cases. from the population, the expected number of calves

To illustrate why it is not recommendable to use the contained in our sample is low, explaining the lack of
fractional-likelihood method when there are unob- statistical power in the analysis.
served males, we also calculated the likelihood function It would be possible to improve the power without
for a using this method (Figure 8). Note that an estimate increasing the number of sampled individuals. If suffi-
of a close to 1 is obtained. Also note that the likelihood ciently many loci have been sampled, it may be possible
function is very peaked, implying that we would have to estimate pedigrees and thereby identify all parent-
had very strong (false) confidence in this conclusion. offspring relations among all individuals in the total
Quite intuitively, many males of both group 1 and group sample (in this example the 2368 individual humpback
2 would be falsely assigned as parents. Consequently, it whales sampled). Such an approach would greatly in-
would appear as if both groups have similar reproduc- crease the number of available parent-offspring pairs
tive success. without increasing the sample size and may therefore

present a practical approach for elucidating the impor-
tant biological problems investigated in this study.

DISCUSSION
Abundance estimation of reproductive males from

parent-offspring genotypes: The method presented inEstimation of reproductive success in male North At-
lantic humpback whales: Using the methods developed this study was also used to obtain an abundance estimate

of reproductive males. The maximum-likelihood valuein this article, we attempted to test the hypothesis of
differential male reproductive success as well as the for the number of breeding males on the North Atlantic

breeding range was estimated at 6540, with a 95% con-number of breeding males among North Atlantic hump-
back whales. fidence interval of 3800–16,760. Our estimate was com-

parable to the estimate obtained by mark-recaptureWe estimated the relative reproductive success of pre-
sumed dominant males and subdominant males sam- methods based upon genetic tagging of males (Pals-

bøll et al. 1997a), which yielded a point estimate ofpled on the breeding range in 1992 and 1993. While
our sample contained only a small fraction of the total 4890 males and a 95% confidence interval of 3370–7120.

While it is not surprising that the confidence intervalpopulation and thus yielded estimates with wide confi-
dence intervals, our results are in accordance with the is much narrower for the latter estimate, it is reassuring

that the two estimates are in overall agreement. Interest-hypothesis that dominant males indeed have a relatively
higher reproductive success than subdominant whales. ingly, the lower bound of the 95% confidence interval

of 3800 breeding males obtained in this study indicatesThe average group size of male competitive groups in
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Devlin, B., K. Roeder and N. C. Ellstrand, 1988 Fractional pater-a relatively large effective population size of breeding
nity assignment—theoretical development and comparison to

males, which further corroborates the notion that it is other methods. Theor. Appl. Genet. 76: 369–380.
Foltz, D. W., and D. W. Hogland, 1981 Analysis of the matingunlikely that a few dominant males sire the majority of
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likelihood of paternity. J. Mamm. 62: 706–712.
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Mattila, D. K., P. J. Clapham, S. K. Katona and G. S. Stone,large numbers of females as observed in other marine
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