
 

47th SAW Assessment Report 107 Appendixes 

SAW 47 Working Paper 8 (TOR 3) – Natural Mortality 
A Review of Natural Mortality of Summer Flounder 

Rich Wong 
 

This report is a short review of the common models used to estimate natural mortality 
rates M for use in population dynamics modeling.  The natural mortality models were 
categorized as either longevity- or life-history based estimators of M.  Sex and age-specific 
estimates of M are given in Tables 1-3, calculated from model inputs from current summer 
flounder age and growth data (1976-2007) from the NMFS trawl survey.   
 

Longevity-Based Estimators of Natural Mortality 

Longevity-based estimators of natural mortality are derived from the underlying mathematical 

function describing population decline, Ztt e
N
N −=

0
.  For unexploited stocks, 1) Z = M, and 2) 

0N
Nt approaches zero as t approaches a stock’s maximum longevity.  This is the basis for the rule 

of thumb (ROT) equation, 
max

)ln(
t

PM −
= .  Only two variables, therefore, affect M given this ROT 

expression, 1) P, which represents some small proportion of the population that survives to a 

given maximum age, and 2) tmax, which should represent the maximum longevity of the stock 

(Hewitt and Hoenig 2005).  The value of P is often set equal to 5% for population modeling 

purposes (e.g. blue crabs, summer flounder, tautog, bluefish, etc.) resulting in a more simplified 

expression, 
maxmax

3)05.0ln(
tt

M ≈= .  However, aside from its common use in assessments, the value 

of P = 5% is not well supported by data (Hewitt and Hoenig 2005).  Recently, Hewitt and 

Hoenig (2005) recommended a more empirically supported value of P = 1.5% based on a 

regression of Z and maximum observed age from 134 unexploited fish, mollusk, and cetacean 

stocks in earlier work by Hoenig (1983).  Hoenig’s (1983) regression, )ln(982.044.1)ln( maxtZ −= , 
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can be rearranged as 
max

982.0
max

44.1 22.4
tt

eZ ≈= .  Ergo, P roughly equals 1.5% from the equation, ln(P) = 

-4.22.  Estimates of M using the 5% ROT are 29% lower than the estimates from P = 1.5% 

(Figure 1).  Predictably, outputs from population models are highly sensitive to estimates of M.  

Lower M inputs typically result in lower abundance estimates from population modeling and 

lower benchmarks from YPR analysis.   

 

 

 

 

 

Figure 1. Underestimation of M relative to P = 1.5%. 

 

In addition to the critical importance of P, using a maximum observed age collected from 

a highly exploited stock produces a biased underestimate of longevity and is in direct violation of 

the longevity-based M paradigm.  As an example of how the maximum observed age can change 

over a short time period, the maximum observed age of Atlantic croaker increased from 6 to 12 

since the early 1990s from age and growth studies in North Carolina, mirroring an increase in 

stock abundance over this period (pers. comm. R. Gregory, age/growth biologist NC Division of 

Marine Fisheries).  If tmax were solely based on these age samples, the resulting estimates of M 

(using the 1.5% ROT) would have declined from 0.70 to 0.35 in less than 20 years.  Despite the 

recent occurrence of older age classes, no specimen has yet been observed at the maximum age 

of 15 y recorded from scattered otoliths found in archaeological shell middens from a period of 

minimal exploitation (Hales and Reitz 1992). 
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The underestimation of longevity is a legitimate concern for stocks whose tmax is 

observed during a period of heavy exploitation.  For example, for summer flounder at the current 

tmax = 15, the effect of potentially underestimating longevity by 1 to 5 years results in an 

overestimation of M by 6 to 32% (Figure 2).  On the other hand, the consequence of using a P 

value up to 5% is the 29% reduction in M from the 1.5% ROT supported by Hoenig (1983) 

(Figure 1).  The widespread use of P = 5% for stock assessment purposes, whether intentional or 

not, automatically accounts for an assumed ~4 year underestimation of longevity (assuming that 

P = 1.5% is the proper P value for the longevity-based ROT).   

 

 

 

 

 

 

Figure 2.  Effect of underestimating longevity by up to 5 years for summer flounder. 

 

Life-History Based Estimators of Natural Mortality 

Other methods of estimating M are based on specific life history characteristics from the species 

in question (Table 1; Figure 3).  Pauly (1980) described M using von Bertalanffy growth 

parameters (Linf, K) and water temperature based on data of 175 fish stocks.  Jensen (1996) 

provides a modification of Pauly’s (1980) model based solely on the correlation between M and 

K, providing the basis for the simplified equation, M = gK.  The coefficient g was estimated as 

1.598 (r2 = 0.72) based on Pauly’s (1980) data (Jensen 1996).  Gunderson (1997) showed that M 
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could be predicted from reproductive effort from data of 28 fish stocks by the linear regression, 

M = 1.79*GSI (r2 = 0.75).  Variance of these life-history based estimates of M can be calculated 

given the known variances of model inputs (Gunderson et al. 2002).   

 

 

 

 

 

 

Figure 3. Survival curves from constant M estimates. 

 

Other life-history based estimators of M provide for size-specific or age-based natural 

mortality rates (Tables 2, 3; Figures 4, 5, 6).  Peterson and Wroblewski (1984) describe an 

inverse relationship between M and dry weight for juvenile and adult fishes.  McGurk (1986) 

complemented this model by describing a steeper inverse M-dry weight relationship specific to 

fish eggs and larvae based on the linear regression of ln(M) and ln(dry weight) (r = 0.58, P < 

0.001).  Lorenzen (1996) describes a similar allometric relationship between body weight and 

natural mortality in juvenile and adult fish across different ecosystems.  All of these size-

dependent M rates can also be expressed as age-dependent M rates with necessary age and 

growth data.  Chen and Watanabe (1989) estimate age-specific M rates based on known LVB 

growth parameters, accounting for higher natural mortality rates at early and senescent life 

history stages.  Use of Lorenzen’s (2000) approach, which is based on an allometric relationship 

between body length and M, combined with an assumption of longevity (ala the aforementioned 
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longevity-based ROTs) can provide for somewhat of a hybrid age-dependent-longevity-based 

natural mortality model (pers. comm. L. Brooks, NMFS). 

 

 

 

 

 

 

Figure 4. Survival curves from age-specific M estimates. 

 

 

 

 

 

 

 

 

Figure 5. Age-specific M rates.  Lorenzen 2000 is based on the 1.5% ROT, Lorenzen 2000 b 
is based on the 5% ROT. 



 

47th SAW Assessment Report 112 Appendixes 

0 .0

1 .0

2 .0

3 .0

4 .0

5 .0

P
eterson &

 W
roblew

ski 1986

G
underson &

 D
ygert 1988

G
underson 1997

Lorenzen 1996

P
auly 1980 a

P
auly 1980 b

Jensen 1996

H
oenig1983 a

C
hen &

 W
atanabe 1989

H
oenig1983 b

Lorenzen 2000

Longevity-B
ased R

O
T a

Longevity-B
ased R

O
T b

Lorenzen 2000 b

%
 S

ur
vi

va
l a

t A
ge

 1
5

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Percent survival at age = 15y. 

 

Male-to-female demographics are very important considerations when combined-sex M 

rates are calculated.  For example, size-at-age inputs for M models will likely differ from a 

combined-sex LVB growth trajectory versus the sex-weighted mean size-at-age observed in the 

population (Figure 6), resulting in potentially different M rates.  Also, the time step chosen for 

calculating age-based M estimates can be influential particularly when estimates of natural 

mortality are much higher at early life stages.  For example, survival after one year is 46% using 

a 1 year time step versus 44% using a 1/4 year step from size-based M rates calculated from the 

Lorenzen (1996) model (using the size at the mid-point of each time step). 
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Figure 7.  Observed mean weight-at-age from the NMFS trawl survey versus weight-at-age 
based on LVB length-at-age and L:W relationship. 
 

Inputs Combined-
sex Females Males 

Maximum Observed Age 15 15 13 
Average Water Temp C 13.96 13.96 13.96 
K 0.207 0.259 0.268 
L_inf 76.95 73.97 61.15 
T0 -1.24 -0.92 -1.32 
Proxy GSI (P. 
lethostigma) (Monaghan 
and Armstrong, unpubl.) 
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Table 1.  Estimates of constant natural mortality rates for summer flounder. 
 

Model Formula 
M 

(combined-
sex) 

M 
(females) M (males) 

Z = exp(1.44-0.982*ln(tmax)); 134 mixed stocks 0.295 0.295 0.340 
Hoenig (1983) 

Z = exp(1.46-1.01*ln(tmax)); 84 fish stocks 0.279 0.279 0.323 
Z = ln(1.5%)/tmax or 4.22/tmax 0.280 0.280 0.323 

Longevity-Based ROTs 
Z = ln(5%)/tmax or 3/tmax 0.200 0.200 0.230 

ln(M) = -0.0066-
0.279*ln(Linf)+0.6543*ln(K)+0.4634*ln(T) 0.358 0.419 0.452 

Pauly (1980) ln(M) = -0.0152-
0.279*ln(Linf)+0.6543*ln(K)+0.4634*ln(T) 0.355 0.416 0.448 

Jensen (1996) M = gK; g = 1.598 0.331 0.414 0.428 
Gunderson & Dygert 

(1988) M = 0.03 + 1.68*GSI  0.368  

Gunderson (1997) M = 1.79*GSI  0.360  
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Table 2.  Age or size-based estimates of M. 

Inputs Combined-
sex Females Males Model Formula 

Maximum Observed 
Age 15 15 13 Peterson & 

Wroblewski 1984 M-d = 5.26 *(10^ -3) * W^-0.25 

K 0.207 0.259 0.268 M1 = K/(1-EXP(-K*(t-t0))); early life 
stages 

L_inf 76.95 73.97 61.15 

Chen & Watanabe 
1989 M2 = K /(a0+a_1*(t-tm)+a_2*(t-tm)^2); 

senescence 
T0 -1.24 -0.92 -1.32 Lorenzen 1996 M = 3.00*W^(-2.88) 

L:W Parameter a 4.08E-06 3.68E-06 4.51E-06 Lorenzen 2000 M = Mr * (Lr/Lt), assuming 1.5% survival 
ROT 

L:W Parameter b 3.241 3.266 3.218   

a0 0.773 0.787 0.702   

a1 0.047 0.055 0.080   

a2 -4.87E-03 -7.13E-03 -1.07E-02   

Lr 33.35 34.48 32.43   

Mr 0.443 0.434 0.456   
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Table 3. Age-variable M rates for fluke.   

  Lorenzen 2000 Lorenzen 1996 Chen & Watanabe 1989 Peterson & Wroblewski 1986 
Age Combined-

sex 
Females Males Combined-

sex 
Females Males Combined-

sex 
Females Males Combined-

sex 
Females Males 

0 0.634 0.656 0.627 0.775 0.796 0.759 0.685 0.840 0.694 0.886 0.908 0.871 
1 0.443 0.434 0.456 0.554 0.540 0.566 0.441 0.516 0.500 0.663 0.648 0.675 
2 0.356 0.344 0.378 0.452 0.434 0.475 0.373 0.432 0.418 0.555 0.536 0.580 
3 0.307 0.297 0.334 0.393 0.377 0.423 0.329 0.378 0.369 0.492 0.475 0.525 
4 0.276 0.268 0.306 0.356 0.343 0.391 0.298 0.343 0.340 0.452 0.437 0.490 
5 0.255 0.250 0.288 0.331 0.321 0.370 0.275 0.320 0.323 0.424 0.412 0.466 
6 0.240 0.237 0.276 0.313 0.305 0.355 0.260 0.304 0.316 0.404 0.395 0.450 
7 0.229 0.228 0.267 0.300 0.295 0.344 0.248 0.295 0.316 0.389 0.383 0.439 
8 0.221 0.222 0.261 0.290 0.287 0.337 0.241 0.290 0.325 0.378 0.374 0.430 
9 0.215 0.217 0.256 0.283 0.281 0.331 0.236 0.291 0.343 0.369 0.368 0.424 
10 0.210 0.213 0.253 0.277 0.277 0.327 0.234 0.296 0.375 0.363 0.363 0.419 
11 0.207 0.211 0.250 0.272 0.274 0.324 0.235 0.306 0.427 0.357 0.359 0.416 
12 0.204 0.209 0.248 0.269 0.271 0.322 0.238 0.323 0.516 0.353 0.356 0.413 
13 0.202 0.207 0.247 0.266 0.269 0.320 0.244 0.348 0.688 0.350 0.354 0.411 
14 0.200 0.206 0.246 0.263 0.268 0.319 0.254 0.386 1.124 0.347 0.353 0.410 
15 0.198 0.205 0.245 0.262 0.267 0.318 0.267 0.443 4.066 0.345 0.351 0.409 
16 0.197 0.205 0.244 0.260 0.266 0.317 0.286 0.536   0.344 0.350 0.408 
17 0.196 0.204 0.244 0.259 0.265 0.316 0.312 0.703   0.342 0.350 0.407 
18 0.195 0.204 0.243 0.258 0.265 0.316 0.350 1.085   0.341 0.349 0.407 
19 0.195 0.203 0.243 0.257 0.264 0.315 0.404 2.727   0.340 0.349 0.406 
20 0.194 0.203 0.243 0.257 0.264 0.315 0.491    0.340 0.348 0.406 
21         0.643         
22         0.974         
23             2.222           

 




