Agricultural Systems Research Unit Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Enhanced System Models and Decision Support Tools to Optimize Water Limited Agriculture

Location: Agricultural Systems Research Unit

Title: Evaluating GPFARM Crop Growth, Soil Water, and Soil Nitrogen Components for Colorado Dryland Locations

Author

Submitted to: Natural Resources Research Update (NRRU)
Publication Type: Research Technical Update
Publication Acceptance Date: March 30, 2009
Publication Date: March 30, 2009
Reprint URL: http://ars.usda.gov/Research/docs.htm?docid=15371
Citation: Ascough II, J.C. 2009. Evaluating GPFARM Crop Growth, Soil Water, and Soil Nitrogen Components for Colorado Dryland Locations. Natural Resources Research Update (NRRU). Update #238985.

Technical Abstract: GPFARM is a farm/ranch decision support system (DSS) designed to assist in strategic management planning for land units from the field to the whole-farm level. This study evaluated the regional applicability and efficacy of GPFARM based on simulation model performance for dry mass grain yield, total soil profile water content, crop residue, and total soil profile residual NO3-N across a range of dryland no-till experimental sites in eastern Colorado. Field data were collected from 1987 through 1999 from an on-going, long-term experiment at three locations in eastern Colorado along a gradient of low (Sterling), medium (Stratton), and high (Walsh) potential evapotranspiration. Simulated crop alternatives were winter wheat (Triticum aestivum L.), corn (Zea mays L.), sorghum (Sorghum bicolor L.), proso millet (Panicum miliaceum L.), and fallow. Relative error (RE) of simulated mean, root mean square error (RMSE), and index of agreement (d) model evaluation statistics were calculated to compare modeled results to measured data. A one-way, fixed-effect ANOVA was also performed to determine differences among experimental locations. GPFARM simulated versus observed REs ranged from -3% to 35% for crop yield, 6% to 8% for total soil profile water content, -4% to 32% for crop residue, and -7% to -25% for total soil profile residual NO3-N. For trend analysis (magnitudes and location differences), GPFARM simulations generally agreed with observed trends and showed that the model was able to simulate location differences for the majority of model output responses. GPFARM appears to be adequate for use in strategic planning of alternative cropping systems across eastern Colorado dryland locations; however, further improvements in the crop growth and environmental components of the simulation model (including improved parameterization) would improve its applicability for short-term (tactical) planning scenarios. Publications contributing to the NRRU Release as shown above: Ascough II, J. C., G. S. McMaster, A. A. Andales, N. C. Hansen, and L. A. Sherrod. 2007. Evaluating GPFARM crop growth, soil water, and nitrogen component for Colorado dryland locations. Transactions of the ASABE 50(5): 1565-1578. Ascough II, J. C., M. J. Shaffer, D. L. Hoag, G. S. McMaster, G. H. Dunn, L. R. Ahuja, and M. A. Weltz. 2002. GPFARM: An integrated decision support system for sustainable Great Plains agriculture. In Sustaining the Global Farm - Local Action for Land Leadership: Selected Papers from the 10th Intl. Soil Conservation Organization (ISCO) Conference, 951-960. D. E. Stott, R. H. Mohtar, and G. C. Steinhardt, eds. West Lafayette, Ind.: Purdue University, USDA-ARS and the International Soil Conservation Organization. McMaster, G. S., J. C. Ascough II, G. H. Dunn, M. A. Weltz, M. J. Shaffer, D. Palic, B. C. Vandenberg, P. N. S. Bartling, D. Edmunds, D. L. Hoag, and L. R. Ahuja. 2002. Application and testing of GPFARM: A farm and ranch decision support system for evaluating economic and environmental sustainability of agricultural enterprises. Acta Horticulturae 593: 171-177. McMaster, G. S., J. C. Ascough II, M. J. Shaffer, L. A. Deer-Ascough, P. F. Byrne, D. C. Nielsen, S. D. Haley, A. A. Andales, and G. H. Dunn. 2003. GPFARM plant model parameters: Complications of varieties and the genotype x environment interaction in wheat. Trans. ASAE 46(5): 1337-1346. Peterson, G. A., D. G. Westfall, and C. V. Cole. 1993. Agroecosystem approach to soil and crop management research. SSSA J. 57(5): 1354-1360. Peterson, G. A., D. G. Westfall, F. B. Peairs, L. Sherrod, D. Poss, W. Gangloff, K. Larson, D. L. Thompson, L. R. Ahuja, M. D. Koch, and C. B. Walker. 2000. Sustainable dryland agroecosystem management. Tech. Bulletin No. TB00-3. Fort Collins, Colo.: Colorado State University Agricultural Experiment Station. Shaffer, M. J., P. N. S. Bartling, and J. C. Ascough II. 2000. Object-oriented simulation of integrated whole farms: GPFARM framework. Comp. Elect. Agric. 28(1): 29-49. Shaffer, M. J., P. N. S. Bartling, and G. S. McMaster. 2004. GPFARM modeling of corn yield and residual soil nitrate-N. Comp. Elect. Agric. 43(2): 87-107. Sherrod, L. A., G. A. Peterson, D. G. Westfall, and L. R. Ahuja. 2005. Soil organic pools after 12 years in no-till dryland agroecosystems. SSSA J. 69(5): 1600-1608.

   

 
Project Team
Ma, Liwang
Ahuja, Lajpat - Laj
Dunn, Gale
Ascough, James
McMaster, Gregory - Greg
Green, Timothy
 
Publications
   Publications
 
Related National Programs
  Water Availability and Water Management (211)
  Agricultural System Competitiveness and Sustainability (216)
 
Related Projects
   Field Evaluation and Improvement of a Range-Livestock Decision Support Model
   Simple Forage Prediction Tools for Drought Mgmt. in Livestock Production Derived from a Database of Historical & Simulated Forage Production
   Extension of Gpfarm-Irrigation to the Colorado Corn Growers Association / Farm Profit
   Application of System Models to Evaluate and Extend Cropping Systems Studies at Different Great Plains/northwest Locations
   Develop Knowledge Base and Quantitative Tools for Optimal Crops and Mgmt Practices for Variable Ltd Water Conditions in the Great Plains
   Enhancing Applications of the Object Modeling System (Oms): Applications of Gpfarm-Rangeland Model Built from Oms Components
 
 
Last Modified: 05/09/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House