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ABSTRACT

In order to interpret climate statistics correctly, the definitions of climate change, signal-to-noise ratio

and statistical significance are clarified.

It is proposed to test the significance of climate statistics by the use of confidence intervals, since they
are more informative than merely testing the null hypothesis that the true response is zero. The confidence
intervals of the mean difference, variance ratio and signal-to-noise ratio are formulated and applied to a

climate sensitivity study.

It is also proposed to make a multivariate test of a response péttem by the use of joint confidence intervals,
since they are more informative than merely testing the null hypothesis that the true response is everywhere
zero. These intervals can also be applied to test the joint significance of the amplitude and phase of the

seasonal cycles of a response.

1. Introduction

In order to estimate the standard error of time-
average estimates of climatic means, Leith (1973)
proposed to estimate the standard deviation (o) of
the finite-time mean. When many independent sam-
ple means are not available, ¢; can be estimated
indirectly through the autocorrelation (Leith, 1973)
or power spectra (Munk, 1960; Jones, 1975, 1976)
of dependent daily data. In an effort to test the sta-
tistical significance of numerical experiments of cli-
mates, Shukla (1975) and Manabe and Hahn (1977)
estimated the ratio of the time-mean difference be-
tween two experiments to the standard deviation of
the time mean. However, it was not clear how large
this estimated signal-to-noise ratio must be for the
difference to be significant. Moreover, these two pa-
pers confused their estimated signal-to-noise ratio
with the rrue signal-to-noise ratio defined by Leith
(1973). The definitions of signal-to-noise ratio and
statistical significance will be clarified in Section 2,
extending Leith’s (1973) discussion.

Subsequently, Chervin and Schneider (1976)
showed that the criterion of the estimated signal-to-
noise ratio for the statistical significance of mean
difference is given by the ¢ test (see Panofsky and
Brier, 1968, p. 63; Mitchell, 1971, p. 63). Since then,
the ¢ test has been applied to climatic studies by
Chervin et al. (1976), Laurmann and Gates (1977),
Washington et al. (1977), van Loon and Rogers
(1978), Julian and Chervin (1978), Holton and Tan
(1980), Chervin (1980, 1981) and Keshavamurty
(1982), while Warshaw and Rapp (1973) applied the
analysis of “variance test” (see Panofsky and Brier,

1968, p. 66) which can test the equality of two or
more variables.

Student’s ¢ is the ratio of sample mean difference
to its sample standard deviation which is estimated
directly from independent data without autocorre-
lation. The true standard deviation need not be
known, since the distribution of ¢ is known. This 7
is subject to a conventional null hypothesis test (see
Fig. 1). If ¢ exceeds its critical value of the ¢ distri-
bution, the null hypothesis of zero true difference is
rejected at the specified probability level. In this case,
the true difference is unlikely to be zero with a certain
risk of false rejection (i.e., Type I error). However,
even if the null hypothesis is not rejected, it is dan-
gerous to conclude that the unknown true difference
may be close to zero, since the probability of false
acceptance (i.e., Type II error) can be larger than
that of false rejection. Thus, this null hypothesis test
alone is not satisfactory to claim that the unknown
true difference between simulations and observations
is likely to be small. The probability of false rejection
can be evaluated by the *“power of the test” (see
Bendat and Piersol, 1971, p. 117). However, it is
simpler and more informative to determine the range
of hypothesized true values accepted by a null hy-
pothesis test. For this purpose, the present paper pro- .
poses to determine confidence intervals.'

Recently, Hasselmann (1979a) and Storch
(1982a,b) argued that a univariate significance test

! Chervin (1981) proposed the use of confidence intervals for
testing the climatic mean itself but not the mean difference. He
did not discuss the advantage of this test over a null hypothesis
test.
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FIG. 1. Probability density of & around the true value ®,. When an estimate
of ® exceeds its critical value ®,,, the null hypothesis that the true value is
&, is rejected at the level of 100« percent (after Bendat and Piersol, 1971).

can be misleading when it is applied to a response
pattern. When the true response is everywhere close
to zero, a univariate null hypothesis will be falsely
rejected at the 5% significance level for 5% of in-
dependent spatial data. In this case, the multivariate
null hypothesis that the true response is zero every-
where will be correctly accepted at the same level
on the basis of the joint probability distribution.
Hasselmann showed that this null hypothesis tends
to be more difficult to reject as spatial data increase,
unless noise is somehow filtered out.

However, it can be argued that a multivariate test
can also be misleading when the true response is
somewhere non-zero (i.e., not extremely small). In
this case the multivariate null hypothesis can be
falsely accepted, whereas the univariate null hy-
pothesis will be correctly rejected somewhere. Thus,
when the multivariate null hypothesis is accepted,
a further test must be made as to whether the re-
sponse is significantly small everywhere. When this
null hypothesis is rejected (i.e., the true response will
be non-zero somewhere), it is more informative to
further test as to whether the response is significantly

positive in some regions and negative in other regions. -

For these reasons, the present paper introduces joint

confidence intervals which approximate the multi-

variate confidence region. In Section 2, a signal-to-
noise problem in climate studies is discussed. In Sec-
tions 3 and 4, individual and joint confidence inter-
vals are formulated and applied to a climate sensi-
tivity study. Summary and remarks are given in Sec-
tion 5. The Appendix gives an interpretation of
confidence intervals.

2. Signal-to-noise problem .

In this section, the definitions of climatic change,
signal-to-noise ratio and statistical significance are
- clarified.

a. Definitions of climatic change

The climatic variable X is defined as the mean x
- or moment x'y’ averaged over some time interval T

of interest. X can be partitioned as
={(X)+ X*, (2

where (X ) is the ensemble (true) mean and X* the
deviation.

The difference (A) between two climatic states X
and X, responding to different external conditions is
partitioned as

A= X2 ._ Xl N (22a)
= ACX) + AX*. (2.2b)

On the other hand, the ensemble mean of the time
variance of the climatic variable X is partitioned as

<V(X)> = V({X)) + (V(X*)), 2.3)
where V(Z) is the time variance of Z defined by

WZ)=(Z - 2Z). (2.4)

In (2.2b) and (2.3) A(X) and V({X)) are exter-
nally caused and are called a “signal” (Lelth 1973)
and “forced variation” (Lorenz, 1979), respectively.
On the other hand AX* and (V(X*)) are mainly
caused internally and are called “noise” (Leith,
1973) and “free variation”? (Lorenz, 1979), respec-
tively. The changes in (X *?) or {(V(X*)) are, how-
ever, caused externally.

It should be remarked that Leith (1973) referred
to X * (rather than AX*) as ““noise.” This is because

‘his definition of A is given by

A=X, - (XD,
= AX) + X% .

(2.5'a)
(2.5b)

This definition, however, is not practical when the
ensemble mean (X;) is not known.

The forced variation is simulated by a statistical
climate model (Budyko, 1969; Sellers, 1969) with a
parameterized eddy flux, while the free variation due

?Even if X itself is thermally or orographically forced, the
change in X can be due to a free variation of the basic state.
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to a random eddy flux resulting from weather fluc-
tuations is also simulated by a stochastic-dynamical
climate model (Hasselmann, 1976). Both these vari-
ations are intrinsically deterministic® and are simu-
lated by a general circulation model (Manabe and
Stouffer, 1980; Manabe and Hahn, 1981). However,
when the governing physical equations of free vari-
ations are now known, the free variations can be re-
garded as a stochastic process for convenience.

b. Definitions of true signal-to-noise ratio

The true signal-to-noise ratio was defined by Leith
(1973) as

() = AX Y/ o(Xs). (2.6)
This definition follows from his definition of climatic
change (2.5a).

Alternatively, it is proposed to define the true sig-

nal-to-noise ratio which is consistent with the defin-
ition (2.2b) of climatic change as

{r) = AX)/o(AX),
~ (r)/V2. (2.7b)

In deriving (2.7b) from (2.7a), X, and X, are as-
sumed to be uncorrelated and have equal variances
as

(2.7a)

(X, ~ X,)
= Uz(Xz) + 0'2(X1) -2 COV(Xz, Xl)’ (2.83,)
= 20%(X,). (2.8b)

On the other hand, Madden and Ramanathan
(1980) have defined the true signal-to-noise ratio of
an N-year average as

A

<r3> = 20’({X}) ’

_ <)
2/VN’

Leith (1973) showed that with the increase of the
true signal-to-noise ratio () from 0 to +1, the prob-
ability increases from 33 to 72% for the finite-time
mean climate to be regarded as above normal (above
0.43 7). If (r) or {r;) = 1.0, the forced climatic
change significantly contributes to the change A of
the finite-time mean climate defined by (2.5) or (2.2).
If the signal and noise happen to cancel each other,
the signal itself may not be detectable during this
period. Nevertheless, the signal has contributed to
reducing the change of finite-time mean' climate. In
order for the signal to always be detectable, the true

(2.93)

(2.9b)

3 If a numerical experiment is repeated with exactly the same
initial condition, the same X* is reproduced, provided that the
external condition is the same.
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signal-to-noise ratio must be much larger than 1.
Even if the true signal-to-noise ratio is small for a
monthly mean climate, it may be large for a seasonal
mean climate. This ratio will be larger, if a climatic
mean is defined as a several years’ monthly or sea-
sonal average as in (2.9). In the following sections
(r;) defined by (2.7a) will be referred to as the true
signal-to-noise ratio.

¢. Definitions of statistical significance

The ensemble mean of the climatic variable is hy-
pothetical, since identical earths do not exist. How-
ever, the ensemble mean (X ) of January mean X,
for example, can be estimated by taking a composite
means {X } of many January means, if X is stationary
and ergodic with respect to year-to-year variation.

The statistical significance of the sample mean
difference A{X} can be defined in the followmg four
different ways:

1) A{X} is large enough to reject the null hy-
pothesis that A(X) is zero.

2) A{X} is likely to be close to its true value.

3) The estimated signal-to-noise ratio is large
enough for the unknown true signal-to-noise ratio to
be likely to exceed 1.

4) A{X} at different places are jointly significant.

The second definition is more informative than the
first definition, as will be discussed in Section 3. The
third definition is more stringent than the first. The
fourth definition is more stringent than individual
significance, as will be discussed in Section 4. These
definitions should not be confused with each other.

3. Individual confidence intervals

It is assumed that X, and X; are two independent
Gaussian* processes with unknown true variances
o*(X,) and o*(X,). If X represents one January mean
for example, {X} represents a composite of N Jan-
uary means.

a. Definition of t
Student’s ¢ for the difference (A) of two N-sam-
ple means (X, X,) is defined by
_ ALY} - A
S H
where {Z} is an estimator of the true mean (Z)
defined by

(3.1)

(z} = § Z,/N. (3.2)

4 Even if x itself is not Gaussian, the time mean X can be ap-
proximately Gaussian due to the Central Limit Theorem (see Jen-
kins and Watts, 1968, p. 64).
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The denominator S of (3.1) is an estimator of the
standard deviation of the sample mean difference
A{X} (see Panofsky and Brier, 1968, p. 63) and is
given by
. S2 = Sz(Xl - Xz)/N, (3.33)

~ {s%(X)) + s*(X,)}/N, (3.3b)
where s is an estxmator of the standard devnanon

defined by

H2)= 2 (2~ (Z)/N-1.  (34)

The degree of freedom of 7 is given (see Wads-
worth and Bryan, 1960, p. 259) by
n=2N -2 for o(X)) = a(X,),

=N-1 a(X,) # o(X)).

(3.5a)

for (3.5b)

b. Confidence interval of mean difference

The critical value ¢,,,, which is the upper 100
a/2 percentage point of the ¢ distribution is defined
by !

Prob{lt| < 2,2} =1 — a. (3.6)

The 100(1 — a)% confidence interval is defined as
the range of different hypothesized values (Ap) of
the true value A(X ) accepted by the null hypothesis
ACX) = Au at the 1 — a confidence level for the
given estimates A{X} and §.

Such Ap must satisfy

IA{X} — Aul/S <ty - (3.7)
Thus the range of Au is given explicitly by
Aps A{X} *d, (3.8)
‘where +d is the confidence interval defined by
d= Sty - (3.9)

If the true standard deviation is known or N > 30,
Eq. (3.9) can be replaced by

d = U(AX)too,a/Z/‘/I_vy

where ¢, ,,, is equivalent to the percentage point of
the Gaussian distribution.

According to a popular interpretation, the confi-
dence interval is the range of unknown true values
which are distributed® around a particular estimate
with the probability of 1 — «. This interpretation is
justified in the Appendix.

(3.10)

¢. Reliability ratio

D1v1dmg (3.1) for ACX ) 0 by t,./> and inserting
(3.9) gives

> The known true value is not distributed by definition.
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=1/tnap = A{X}/d,

where £ = A{X}/S.
The “reliability ratio” R defined by (3.11) is in-
terpreted (see Fig. 2) as follows:

(a) When |R| » 1, A(X) is close to its estimate.

(b) When [R| > 1, A(X) is significantly different
from zero.

(c) When |R| = 1, the confidence interval is equal
to A{X}.

(d) When |R| < 1 and d is small A(X) is also
small.

(e) When |R| < 1 and 4 is large, A(X) is not
necessarily small.

(3._11)

As an example of applications, the proposed sig-
nificance tests were applied to a climatic sensitivity
study (Manabe et al. 1981; Wetherald and Manabe,
1981) based on a sector general circulation model
with an idealized geography.

Fig. 3a shows the latitude-month distribution of
the change of the 8 year average of the monthly-
zonal mean soil moisture with the increase of carbon
dioxide (CO,) by a factor of 4. In middle latitudes,
a positive response occurs in the winter half-year,
while a negative response occurs in the summer half-
year. However, even an 8 year average may not com-
pletely exclude internally caused climatic change
which can occur even without the CO, increase.

Fig. 3b shows the 90% reliability ratio R defined
by (3.11). During winter in high latitudes where R
is large (~3), the estimated positive response is fairly
reliable (close to many years’ average). During the
midlatitude summer season, the estimated value of
the negative response is not reliable, but significantly
different from zero (R ~ —1.5). This summer dry-

ness is one of the highlights of this sensitivity study.
A (i() R=5 ) R
6 d R= t = A X}
t d
5 -
-d
4
3r =15 Rl R=0.25
2r d . R=05 d
1 -d d
-d :
id
’ y

1
2L

@) (b)) () (A (e)

F1G. 2. Confidence intervals (+d) around the estimated mean
difference. R = /tpa;n = A{X}/d If |R| > 1, the null hypothesis

that the true difference is zero is rejected. If [R| > 1, the true
value is close to its estimate (see text for details).



SEPTEMBER 1982

LATITUDE

1981).

Where |R] < 1, the true response is not significantly
different from zero.

In order to examine whether or not the true re-
sponse with |R| < 1 is small, Fig. 4 shows the latitude
distribution of the July mean soil moisture difference
with its 90% individual confidence limits given by
(3.9). It is seen that the true response is significantly
smaller than 1 cm around 40°.

YOSHIKAZU HAYASHI 1899
— 1XCO,)
MONTHS

F1G. 3a. Latitude-month distribution of the difference (4 X CO, — 1

X CO,) of the 8 year average of the monthly-zonal mean soil moisture

(cm). Light shading denotes values < 0O (after Wetherald and Manabe,
<r2>§ fzidr, (3.13)

where
A =1/VN, (3.14)
d, = ty./VN. (3.15)
It follows from (3.13) that

iflr)l2 1£d,, then [{r)l= 1. (3.16)

d. Signal-to-noise ratio

As discussed in Section 2, the true signal-to-noise
ratio (r,) is defined as

{r) = MX )/ o(X), (3.122)
= AXO[e(X)) + c*(X;)]V2 (3.12b)

An estimated signal-to-noise ratio (#,) and its ap-
proximate confidence interval (#,) are given by di-
viding (3.8) by SVN and approximating (r;) by
Ap/(SVYN) as

This criterion (3.16) is convenient in judging
whether the true signal-to-noise ratio is significantly
larger or smaller than 1. If the true standard devia-
tion is known, t,,/, in (3.15) should be replaced
b too,a 2:

yFig. /5 shows the estimated signal-to-noise ratio 7,
defined by (3.14) of the July mean soil moisture and
its approximate 90% individual confidence intervals
(3.15). According to this figure, it is not conclusive
whether the true signal-to-noise ratio of the negative
response in the midlatitude in July is larger or

R=1-=4 (0% RELIABILITY RATIO)

LATITUDE

MONTHS

F1G. 3b. As in Fig. 3a, except for the 90% individual reliability
ratio R. Dark shading >1, light shading <—1.
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LATITUDE
FIG. 4. Latitude distribution (solid line) of the difference (4 X CO, — 1 X CO;)

of July mean soil moisture (cm). The 90% individual confidence limits are indicated

by dashed lines.

smaller than 1.0, although the signal itself is signif-
icantly different from zero. However, the signal-to-
noise ratio in the subtropics is significantly smaller
than 1 and there is little chance of floods or droughts

e. Variance ratio

The 100(1 — a)% confidence limits of the ratio F
= §(X,)/§*(X,) between two estimated variances is

as a result of the CO, increase. given by the F distribution (see Spiegel, 1975, p. 197)

ESTIMATED SIGNAL-TO-NOISE RATIO OF JULY MEAN
rp 062 & {1, 4082

2 (90% CONFIDENCE LIMITS)

l -

%0 ' 50 ' 30 0
’ LATITUDE
FIG. 5. Latitude distribution (solid line) of the estimated signal-to-noise ratio of

July mean soil moisture. The 90% individual confidence limits are indicated by
dashed lines. . i
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VARIANCE RATIO (4<C0, /1xC0,) OF JULY MEAN

F/3.79 K Fx3.79"
{90% CONFIDENCE LIMiTS}

01

90

LATITUDE

FI1G. 6. Latitude distribution (solid line) of the ratio (4 X CO, — 1 X CO,) of
the variances of July mean soil moisture. The 90% individual confidence limits are

indicated by dashed lines.’

as

FlFopa <(FY<EX Frpopp-  (3.17)

where (F ) = ¢%(X,)/0o*(X,) is the true variance ratio
and n = N — 1. F,,.,, and its reciprocal are the
upper and lower 100a/2 percentage points, respec-
tively.

It follows from (3.17) that

if F>F,uap, then (F)>1

e L am
if F<1/Fypapn, then (F)<1

This criterion (3.18) is convenient in judging whether
the true variance ratio is significantly larger or
smaller than 1. ‘

Fig. 6 shows the latitude distribution of the esti-
mated variances ratio F of the July mean soil mois-
ture to measure the possible change (F) of the true
variance with the CO, increase. The 90% individual
confidence limits (3.17) indicate that the variance
is not significantly altered, except for some latitudes
(15, 45 and 90°). Thus, there is not a strong reason
for adopting (3.5b) as the degree of freedom instead
of (3.5a).

4. Joint confidence intervals

Even if the responses at different places are indi-
vidually significant with some probability, the joint
probability for the estimated response pattern to re-
semble the true response pattern decreases as inde-
pendent spatial data increase. In order to test the
joint significance of a response pattern, confidence

intervals must be replaced by the confidence region
(see Fig. 7) of multivariate space.

The 100(1 — a)% confidence region (see Anderson,
1958 p. 108; Timm, 1975, p. 166; Kendall, 1975, p.
76) is defined as the range of the hypothesized true
mean difference vector A(X) around its estimate
A,;X} accepted by a null hypothesis test based on the
T* joint probability distribution. This region is rep-
resented by a multidimensional ellipsoid given by
T? = (A(X) — A{X})§™

X (AX) — AX}) < T}.., (41)

where $ is the estimated covariance matrix of AX
divided by the number of time data N and the prime
denotes the transposed matrix.

CONFIDENCE REGION
A X
“ o,
DZ
AN
_|)2
0 A )

]
A

af{x}

F1G. 7. Confidence region (ellipse) around the estimated mean

difference vector. The confidence interval vector (D,, D,) consists
of the widths of a box enclosing the confidence region.
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TABLE 1. The 90% joint confidence limits of averaged latitu-
dinal-seasonal distribution of the difference (4 X CO; — 1 X CO,
of 8-year mean soil moisture (cm).

Latitude October-March April-September

60-90° 33+22 0311
30-60° -0.2 £ 1.1 —0.7 £ 0.8
0-30° -0.1 + 1.4 -0.7 £ 1.6

The critical value T, is given by the T? dlstrl-
bution as
np

— 2
n—p+1 (4.2)

le,',,_a = n—p+l a3
where F,,_,1 . is the upper 100a/2 percentage pomt
of the F distribution; n is the degrees of freedom in
time, and n = 2N — 2 for equal true covariance
matrices of two means and n = N — 1 for non-equal
covariances (see Anderson, 1958 p. 119); p is the
effective number of spatlally mdependent data, and
P < Pmax Where p,, is the number of statial data and
should not exceed n. The values of Tp,,a are tabu-
lated in Timm (1975, p. 604). T, . increases w1th
p and decreases with n.

For two variables AX = (AX,, AX,) the confidence
region takes the form of an ellipse (see Fig. 6) given

O (g

- 20, (20 8LR))

MECOREE)) B

If the origin of the coordinates (A(X,), A(X>)) is
outside the confidence region, the null hypothesis
that the true difference is zero everywhere is rejected.
As spatial data increase, this null hypothesis becomes
more difficult to reject, since the confidence region
expands. Even if this null hypothesis is accepted, it
does not follow that the true difference is likely to
be zero everywhere, unless the confidence region is
small.

a. Joint confidence intervals of mean difference

~ Since it is not possible to illustrate this region for

many variables, it is proposed to replace this region
by the “joint confidence intervals” D which are de-
fined as the widths of multidimensional box enclosing
this region. D is simply glven by '

D =8T,,,. (4.4)

Although the probability level is a little larger than
1 — a, it is considered as 1 — « for convenience. The
joint confidence intervals derived here turn out to be
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a special case of “simultaneous confidence intervals™
described in Timm (1975, p. 165).

In principle, the effective number p of spatially
independent data can be determined as the degree
of freedom of p? as

2< p2>2

~ Var(p?)’

where p? is distributed as x? and defined (see Has-
selmann 1979a,b; Lemke er al. 1980) as

o = (AX — ACX)YC(8X ~ AX)) ,

where C is the true covariance of AX.

In practlcc, A(X), C, {p*) and Var(p?) in the above
expressions must be replaced by their estimates. If
pis rcplaced by the number of all the spatial data
for convenience, the joint confidence intervals are
interpreted as the upper limit (p = ppax) of the true
joint confidence intervals, while the individual con-
fidence intervals are interpreted as the lower limit
(p=1).

In order to prove that the true response pattem
of the soil moisture looks like the estimated pattern
(Fig. 3a), the joint confidence intervals must be
small. In order to reduce the effective number of
spatial data and the joint confidence intervals, the
responses (differences) of the model soil- moisture
have been averaged over three latitudinal bands as
well as the winter (October-March) and summer .
(April-September) seasons and the standard devia-
tion for each averaged value is estimated.

Table 1 shows the 90% joint confidence limits
given by using (4.4) with n = 14 and p = 6, where
the true covariances of the 1 X CO, and 4 X CO,
experiments are assumed to be equal and p has been
replaced by the number of the averaging segments.
If p is overestimated, the joint confidence intervals
are also overestimated. Based on Table 1, the joint
null hypotheses listed in Table 2 are-accepted. This
means that it is jointly likely that the response is
positive in the high-latitude winter and negative in
the midlatitude summer and very small in the rest
of the regions.

(4.5)

(4.6)

b. Joint confidence intervals of amplitude and phase

Since the conventional chi-square test for the
power spectra is not applicable to deterministic. os-
cillations, it is proposed to define the joint confidence
intervals of the amplitude and phase of non-random
Fourier components in the presence of random noise.

TABLE 2. Joint null hypotheses accepte& by Table 1.

April—Scptembef

Latitude October-March
60-90° + 0
30-60° 0 -
0-30° . 0 0
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CONFIDENCE. REGION

1)

<€)

F1G. 8. Confidence region (circle) around the estimated mean
vector ({¢}, {§}) of the cosine and sine coefficients. The confidence
intervals of the amplitude and phase are given by *a and =6,
respectively.

If the cosine and sine Fourier coefficients (c, s) are
uncorrelated and have the same variance, their con-
fidence region of these coefficients takes the form of
a circle with the radius a given by

a = (8.5)  Toue, @

where S, and S, are the estimates of the standard
deviation of the cosine and sine coefficients divided
by N'/2,

As illustrated by Fig. 8, the confidence intervals
of the amplitude (+a) is given by the radius (a) and
the phase (+8) is given by

sind = a({C} + {S})7, (4.8)

where {C} and {S} are the sample mean of the cosmc
and sine coefficients.

3.0
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Fig. 9 shows the 90° confidence intervals of the
amplitude (4.7) and phase (4.8) of seasonal cycles
{1-5) of the soil moisture difference (4 X CO, — 1
X CQO,) at 72°N. The 8-year monthly mean data are
subdivided into 8 sets and the 8-year mean and stan-
dard deviation of the cosine and sine coefficients of
each year’s data are estimated. It is seen that the
annual cycle predominates and is significantly dif-
ferent from zero. The confidence limits of the am-
plitude and phase angle of the annual cycle are given
by 4.1 + 1.2 cm and 14 + 17°, respectively. The joint
confidence intervals of amplitude and phase are more
appropriate than the standard deviations of ampli-
tude and phase estimated by Angell and Korshover
(1970).

5. Summary and remarks

The present study has clarified the definitions of
climatic change, signal-to-noise ratio and statistical
significance in order to interpret climatic statistics
correctly.

It is proposed to test the significance of climatic
statistics by use of the confidence intervals and re-
liability ratio. Confidence intervals are more infor-
mative than a single null hypothesis test, since they
are defined as the range of hypothesized true values
accepted by infinitely many null hypothesis tests. The
confidence interval is commonly interpreted as the
range of the unknown true values “distributed”
around a particular estimate. The reliability ratio is
defined as the ratio of an estimated mean difference
to its confidence interval. When the reliability ratio
is > 1, the estimate is close to its true value. When
this ratio is < 1, the null hypothesis of the zero true
value is not rejected. In this case the confidence in-

120

6.0

F1G. 9. The 90% confidence regions (circles) around the estimated (8-year mean)
cosine (¢) and sine (s) coefficients of seasonal cycles (1-5) of soil moisture difference
(4 X CO, — 1 X CO,) at 72°N. The length and direction of the vector (¢, s)
represent the amplitude and phase angle, respectively.
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terval or the power of the test for a Type II error
should be indicated to show whether or not the true
value is significantly close to zero. Even if the signal
is significantly different from zero, it may not be of
climatic importance if the true signal-to-noise ratio
is < 1. Unless the estimated signal-to-noise ratio is
> 1, its confidence interval should be indicated to
show whether or not the true ratio is > 1.

It is also proposed to make a multivariate test of -

a response pattern by the use of joint confidence in-
tervals. When the null hypothesis of zero true re-
sponse everywhere is rejected, the joint confidence
intervals should be indicated to judge whether the
response is sxgmﬁcantly positive in some regions and
negatlve in other regions. When this null hypothesis
is -accepted, the joint confidence intervals should be
indicated to judge whether the response is signifi-
cantly small everywhere. When dependent spatial
data are regarded as independent, these intervals are
overestimated.

Joint confidence intervals can also be applied to
test the significance of the coefficients of a response
pattern which is expanded with respect to such basis
vectors (Hasselmann, 1979a) as to maximize the esti-
:mated. multivariate signal-to-noise ratio. The joint
confidence intervals of the amplitude and phase of
seasonal cycles formulated in the present paper can
be applied to test the significance of the response of
atmospheric tides to a change in the excitation mech-
anism in the presence of noise. They can also be
applied to the zonal Fourier coefficients of stationary
planetary waves.

Finally, it should be stressed that the rehabxhty
of an estimated response pattern should be judged
not only by the individual and joint significance tests,
but also by its systematic and reasonable distribution
and physical consistency.

Acknowledgments. The author is grateful to S.
Manabe, R. T. Wetherald, P. Lemke, N. C. Lau and
I. Held for valuable discussions and comments on
the original manuscript. Prof. P. Bloomfield at the
Department of Statistics of Princeton University
kindly reviewed this paper. Thanks are extended to
J. Kennedy for typing, P. Tunison for drafting and
J. Connor for photographing.

- APPENDIX
Interpretation of Confidence Intervals

Student’s ¢ for sample mean {x} of an independent
Gaussian variable x is defined as .

_{x=-
s(x)/VN '

(A1)

where s(x) is an estimator of the standard devnatxon

of x.
When the estimators {x} and s(x) are replaced by
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their known estimates® {¥} and §(x), the unknown
true values (x) and ¢(x) can be interpreted as “dis-
tributed” around their known estimates, although
this interpretation is not found in standard text
books.

In this case, ¢ is also distributed as ¢ as proven
below. Eq. (A1) is rewritten (see Bendat and Piersol,
1971, p. 112) as

B J
Ax)/VN "’ (A2a)

(£ = (D)) e(x)

XYW D} (a20)

where
x?= sz(x)/o 2(x) (A3a)
= é( —{(x))/a¥(x)

=X} - (x})z/az(x) (A3b)

Thc unknown true values of [{£} -V a(x) and
x? are distributed as unit-Gaussian and chi-square,
although the unknown true values of {x) and ¢(x)
themselves are not distributed as Gaussian and chi-
square, respectively. It follows that the above ¢ is
distributed as ¢, even if {x} and s(x) are replaced
by their estimates.

This ¢ distribution is given by

Prob{¢| < (A4)

The confidence interval can be redefined as the
range in which the unknown true value will fall w1th
the probability of 1 — a.

This interval is determined from (A2a) and (A4)
as

t,,,a/z} =1-a.

d = §(x)/ VNt » (AS)

which coincides with the confidence interval defined
as the range of different hypothesized true values
accepted by a null hypothesis test.
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