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ABSTRACT

Space-time spectral formulas are modified to estimate wavenumber-frequency spectra correctly from
space-time series data sampled at the same local time but at different hours of a day by a polar-orbiting

satellite.

It is shown that a significant error occurs in the wavenumber-frequency spectra of the space-time
series for wave periods less than 10 days. This error can be eliminated without time interpolation by
taking a space-Fourier transform with respect to the frequency-shifted wavenumbers measured at the

same local time.

1. Introduction

Hartmann (1976) discussed possible errors in
wavenumber-frequency spectra estimated from
space-time series data sampled at the same local
time but at different hours of a day by a polar-
orbiting satellite (see Figs. 1 and 2 for its orbits).!
As illustrated by Fig. 3a, the sampling along the
latitude circle is made at the same local time. He
pointed out that there is a shift in the zonal wave-
number measured at the same local time as illus-
trated by Fig. 3b. This shift is given by the wave
frequency and is less than 0.1 for periods greater
than 10 days and can be considered negligible.

- However, for an eastward moving planetary wave

of wavenumber 1 and a period of 4 days, as ob-
served in the polar stratosphere (Venne and Stan-
ford, 1979), the wavenumber shift is 0.25 and is not
negligible. For possible 2-day period oscillations,
as observed in the tropical stratosphere (Cadet and
Teitelbaum, 1979; Coy, 1979), the wavenumber shift
is as large as 0.5.

It is expected that this shift in wavenumber causes
a significant error in the wavenumber-frequency
spectra. It will be demonstrated that this error can
be eliminated by taking a space-Fourier transform
with respect to the frequency-shifted wavenumbers.

In Section 2 the frequency-shifted wavenumber
is introduced. In Section 3 space-time spectral
formulas (Hayashi, 1971, 1973, 1977a,b, 1979a,b)
are modified to estimate wavenumber-frequency
spectra correctly. In Section 4 a test of the modified
method is made based on an artificial sinusoidal

! Fig. 2 is reproduced from Nimbus III Catalog, 1969, Vol. 1,
Part 1 [available from Goddard Space Flight Center, Greenbelt,
MD 20771].

wave. In Section 5 a summary and remarks are
given. Appendix A gives a list of symbols. Ap-
pendix B gives formulas for the frequency-shifted
Fourier transform and space-time cross spectra.
Appendix C gives formulas to calculate the orbital
tilt and appendix D reviews the relativistic Doppler
effects.

2. Frequency-shifted wavenumber

The standard time ¢ and local time ¢; of a satellite
at longitude A are related by

t=1— NQ, 2.1

where () is the rotation of the earth relative to the
sun-synchronous satellite (27 radian per solar day)
and —7r < A < 7.

The space-time Fourier representation of a space-
time series is given by

w(\,t) = Re 3 Wp. expli(m\ + wt)],

m,w

2.2)

where m is the zonal wavenumber measured at
standard time and the angular frequency w takes
both positive (westward) and negative (eastward)
values.

The above representation is rewritten in terms
of local time (#;) by inserting (2.1) into (2.2) as

w(\t) = Re Y Wy, expli(m,\ + ot))], (2.3)
m,w
where

m, = m — w/l. 2.4

Hereafter, m, will be called the frequency-shifted
wavenumber.
Thus at the same local time the wavenumber is
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F1G. 1. The orbit of a polar-orbiting sun-synchronous satellite.
Twice daily observations are available on the day and night sides.
Relative to the rotating earth, the orbits drift westward 360° per
solar day. The longitude (M) and latitude (6) of the satellite are
. determined by the angles I and J (see Appendix C).

shifted by —«/Q and hence a phase discontinuity of
27w/ occurs at 180° longitude (see Fig. 3b) as
pointed out by Hartmann (1976).

This shift in wavenumber is somewhat analogous
to the Doppler-shifted frequency? measured by a
satellite moving westward relative to the earth with
the angular velocity £}, as given by

o =w—mi, 2.5)
by use of a Galilean transformation
A=) — e 2.6)

Chapman et al. (1974) and Rodgers (1976) estimated
wavenumber-frequency spectra through the fre-
quency spectra of time series data sampled by a
polar-orbiting satellite at different points along the
slanted lines in Fig. 3a. With a reasonable guess
of a wavenumber, the positive Doppler-shifted
frequencies observed by the satellite are converted
to positive (westward) or negative (eastward) fre-
quencies observed on the earth. Subsequently,
Hirota (1976, 1979) estimated wavenumbers as well
as Doppler-shifted frequencies by use of wave-
number-filtered local time-space series. Hirota’s
method, however, is not free from the wave-
number error and phase discontinuity mentioned

2 In meteorology the Doppler-shifted frequency often refers to
the frequency measured by an observer moving with the basic
flow.
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above. Moreover, his method cannot make use of
twice daily data to resolve waves with periods
shorter than 2 days.

In the case of relativistic Doppler shifts, both
frequency and wavenumber are shifted (see Ap-
pendix D).

3. Modified spectral formulas
a. Space-Fourier transform

Wavenumber-frequency power spectra are de-
fined by .
Poo(w) = 2(|Waul|?), 3.1

where the angle braces denote ensemble average
which can be replaced by a narrow frequency band
average, if the time series is ergodic and of
sufficient length. i

Here, the complex space-time amplitude W, , is
given by the space-time Fourier transform by virtue
of the orthogonality of exp(im\ + iwt) as

2
Wy, = o J [
aTl 0

X exp[—i(mA + wt)]a‘t}d)\, (3.2a)

1 2T
=

X exp[—i(m, + wt,)]dtz]d)\, (3.2b)

T
J w(A,t)

0

T
J W(X,Q)

0

where (3.2b) has been transformed from (3.2a) by
use of (2.1) and (2.4).
Eq. (3.2b) is rewritten as
' T
Wy = T j Foa(t) exp(—iot)dsy, (3.3)
o
where F,, .., is the ‘‘frequency-shifted space-Fourier
transform’’ defined (see Appendix B for its real
representation) by

27

Fpo(t) =ma""! J w(A,t;) exp(—im,A)dh. (3.4)

0

Eq. (3.3) indicates that the correct space-time
Fourier transform is given by taking a time-Fourier
transform of F,, ,. This relation is the basis of the
present method. In practice, #; can be replaced by
discrete values in the absence of unresolvable high-
frequency oscillations.

It should be noted that the frequency-shifted
Fourier transform F,, ., does not reproduce the orig-
inal space series as

w()‘ytl) # Re E Fm,w(tl) CXP(imwh)v (35)
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DAILY SENSOR ON STATUS NIMBUS 111
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Fic. 2. The orbits of Nimbus 3 (after Nimbus 3 Data Catalog) on 31 GMT May 1969. The day side orbits (upper) at
equator is on 31 May in local time, while the night side orbits (lower) are on 31 May in the Western Hemisphere and on 1

June in the Eastern Hemisphere. The longitude is extended to 2.5 cycles.

since exp(im,\) with non-integer wavenumbers is
not orthogonal over A (see Schickedanz and Bowen,
1977). However, it can be proven that exp(im, i
+ iwt;) is orthogonal in the (A,#;) domain and that
(3.2b) also follows dxrectly from (2.3) by virtue of this
orthogonality.

b. Space-time spectral formulas

For convenience in computation the above F,,,
and W,, , are decomposed into the real and imaginary
parts as

Here (Cpse»Sm.se) is the time Fourier transform
of (Cu xw:Sm.+w) With respect to exp(—iwt;) [not
exp(Fiwt,;)] defined by

(Crewr Smixa)

T
o
0

Inserting (3.7a) and (3.7b) into (3.1) gives formulas
for computing wavenumber-frequency power spectra

(CnxwrSmzo) €Xp(—iwt)dt).  (3.8)

4Pm,zw(w) = th(cm,:w - ism,:m)) (393)
Frzo(t) = Cpso(t) = iSmzu(tl), (3.6) = Po(Crxs) + Po(Smsa)
2Winto = Cmo =~ BSmas (3.72) % 20(CrrrSmza). (3.9b)
2Wi-o = Chm — iSh ) (3.7b)

where the asterisk denotes the complex conjugate.

where P, and Q,, are the time power and quadrature
spectra respectively.
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FiG. 3a. Longitude-time section of the position of a satellite
with 2.3 orbits per day at midnight (full circle) and noon (open
circle) at the equator. Solid lines connect the night side points
while dashed lines connect day side points. The numerals indicate
local time at 180°W (left) and 180°E (right).

These formulas are the same as those derived
by Hayashi (1971, 1977b) except for the use of the
frequency-shifted space-Fourier transform. Egq.
(3.9b) in real representation is convenient for using
the lag correlation method (see Jenkins and Watts,
1968) or the direct Fourier transform method (see
Bendat and Piersol, 1971) in estimating the time
cross spectra, while (3.9a) in complex representa-
tion is suitable for using the maximum entropy
method which can be applied to a short time
record [see Hayashi (1977) for its application to
wavenumber-frequency spectra].

¢. Computational scheme

The computational scheme of the modified
method is given as follows:

1) Select a wavenumber-frequency range of inter-
est. Sample discrete values of tuning frequencies
+f for the frequency-shifted Fourier transform with
a certain frequency interval Af which can be wider
than that of time spectra but should be sufficiently
narrow. If Af = 0.1 day™!, for example, the error
in power spectra is ~10% (see Section 4).

2) Compute the frequency-shifted Fourier trans-
form by use of the formulas (B1) in Appendix B.

3) Compute space-time spectra by use of the
formulas (B3)—(B10). These spectra give the correct
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estimates over the frequency range *f — Af2
~ =f + Af to a good approximation.

In computing the frequency-shifted Fourier trans-
form, it is important to use day and night data on
the same equatorial local date (see Fig. 3b) rather
than on the same date in the same standard time
(see Fig. 2).

4. Test of the modified method

In this section a test of the modified method
described in Section 3 is made based on artificial
twice-daily local-time series data. The space-time
power spectra are computed by using (3.9b) by the
lag correlation method. As an example of waves,
a sinusoidal standing wave oscillation is given which
consists of both eastward and westward moving
components with wavenumber 1 and multiple pe-
riods of 10, 4, 2, 1 days.

Fig. 4 shows the ratio of the space-time power
spectra (wavenumber 1) estimated from the local
time series (2.3) to the peak value of those estimated
from a standard time series (2.2). The line spectra
have been broadened due to a lag window which
has an effect of smoothing the spectral curve by a

. 1-2-1 running mean. Without any correction (top)

the eastward moving components are significantly
underestimated. In particular, the power at the east-
ward 4-day period is underestimated by 40%. The

180°W 0°
-0.5

4.0

d4.5

w
o
+— LOCAL TIME (day) AT 180°E

5.0

4.0

45k—" 5.5
180°W 0° 180°E
LONGITUDE
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4
F1G. 3b. Longitude-time section of an eastward moving wave
(indicated by shading) with wavenumber 1 and a period of 4 days.
The wavenumber 1 is measured as 1.25 along the slanted lines
connecting the same local time.
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power spectra at the 1-day period leak entirely to
their frequency-shifted wavenumbers which are 0
and 2 for the westward and eastward components,
respectively. The asymmetry between the eastward
and westward components is due to the leakage
and interference between these components with
non-integer frequency-shifted wavenumbers. These
errors also depend on the wavenumber spectral
distributions of data (not illustrated). The spectral
estimates (middle) are not improved by linearly
interpolating the data to the same standard time.
This is because a linear interpolation causes a
serious distortion in the amplitude and phase of
high-frequency oscillations (Shapiro, 1972). By use
of the frequency-shifted Fourier transform tuned
to the eastward 4-day period, it is shown (bottom)
that the power spectrum at this period is per-.
fectly corrected. The other spectral peaks can also
be perfectly corrected by tuning the frequency
shift to these periods (not illustrated).

5. Summary and remarks

Space-time spectral formulas are modified to
estimate wavenumber-frequency spectra correctly
from space-time series data sampled at different
hours of a day by a polar-orbiting satellite.

It is shown that a significant error occurs in the
wavenumber-frequency spectra of the space-time
series for wave periods =< 10 days. This error is not
corrected by linearly interpolating the data to the
same standard time nor after the space-time spectra
have been computed, since this error depends on
the wavenumber spectral distribution.

It is demonstrated that the above error can be
eliminated simply by taking a space-Fourier trans-
form with respect to the frequency-shifted wave-
numbers. In principle, this method gives the same
correction as given by a time-Fourier interpolation
which is an ideal interpolation in the absence of
unresolvable high-frequency oscillations.

In addition to the above errors, there are the
following problems in the use of polar-orbiting
satellite data.

(i) The orbits of a sun-synchronous satellite tilt
with latitude (see Fig. 1). In the case of Nimbus 3
(Fig. 2), there is a difference of about 22° longitude
along the orbit from the equator to 60° latitude (see
Appendix C for the calculation of the orbital tilt).

(ii) Orbital points shift (see Fig. 3a) in longitude
from day to day (or night) due to a non-integer
number of orbits per day.® In the case of the

3 This shift should not be confused with the eastward drift
(360° per year) of the orbit of a sun-synchronous satellite
which faces the sun all the year round. This drift is due to the
intrinsic tilt of the orbit around an ellipsoidal earth.
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FiG. 4. The ratio of the space-time power spectra (wavenumber
1) estimated from local-time series to the peak value of those
estimated from standard time series. A standing wave oscillation
is given which consists of both eastward and westward moving
components with wavenumber 1 and multiple periods of 10, 4,2, 1
days. Top: without correction. Middle: with linear interpolation
of data between two focal noons (or nights). Bottom: with a
wavenumber correction tuned to the eastward 4-day period
(shaded).

Nimbus 3, which makes 13.4 orbits per day, the
relative orbit shifts about 11° eastward per 13 orbits.

The problems (i) and (ii) must be avoided by
interpolating data to regular longitude-latitude grid
points. In the case of planetary-scale waves, a
linear interpolation in space does not cause a
serious distortion.

In addition, there are the following minor
problems:

(iii) Local time changes along the orbit due to its
tilt with latitude as discussed in Appendix C. In
the case of Nimbus 3 there is a local time
difference of ~70 min from the equator to 60° latitude.

(iv) At higher latitudes daytime and nighttime
data are not strictly 12 h apart from each other.
In the case of Nimbus 3, they are taken about 0100
and 1100 at 60° latitude.

Problems (iii) and (iv) can be ignored or avoided
by averaging day and night data.

The present method can be extended to partition
the time power spectra of transient waves con-
sisting of multiple wavenumbers into standing and
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traveling parts correctly by modifying the general-
ized spectral formulas (Hayashi, 1979b). Also, the
time modulation of the space amplitude of travel-
ing waves can be estimated correctly by applying
a complex demodulation (see Chapman and Mc-
Gregor, 1978; Julian, 1971) to the frequency-
shifted space-Fourier transform.
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APPENDIX A

List of Symbols
0 latitude
A(6) longitude of orbits at 6
t(0) Greenwich standard time of a satellite at 6
1(8) -local time of a satellite at 6
T length of time record
) angular frequency

Q rotation of the earth relative to a sun-
synchronous satellite (27 per solar day)

m zonal wavenumber
m, frequency-shifted wavenumber
F,. frequency-shifted space-Fourier transform

APPENDIX B
Space-Time Spectral Formulas

The frequency-shifted space-Fourier transform
(3.4) is rewritten in real representation as

Cnzolty) = 71 rﬂ [w cos(fA)] cos(mA)dA

0

+ gt r” [w sin(f\)] sin(mA)d\, (Bla)

Smzolll) = :"—1‘J' " [w sin(f\)] cos(mA)d\

0

27

+ w“J [w cos(fA)] sin(mA)d\, (Blb)
0

where

f=alfd (B2)

It should be noted that the above transform can -

be regarded as the space-Fourier transform of w
weighted by cos(fA) and sin(fA). In practice, the

integral should be replaced by a summation over

discrete values of A.
The modified formulas for space-time cross
spectra between two variablesw and w' are given by

4Pnso(W) = Po(Cmzo) + Po(Sm,20)

* 20,(Cm,z0:Smx0), (B3)
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4K cu(w,w') '
- = Ku(Cnzas Cirr) + Kol Sizas Sizo)
* 0u(CrnzosSmze) F QulSmizas Cmiza)s
40 x0W,w")
= £Qu(Crnzws Czw) = Qu(SmxwsSm,xw)
— KCewStue) + Kol SmizasCinza)s  (BS)
Ph,, «o(w,w') = tan Q. +o(W,w")/
K zalw,w)l,

(B4

(B6)
Coh2, - (w,w")
K2 eow,w)) + Q% ea(w W)
T Prea(WP (W)

where P, K, Q, Ph, Coh are the power, co and
quadrature spectra, phase difference and coherence,
respectively.

The coherence between the eastward and west-
ward component of (Hayashi, 1977a, 1979b) is
given by '

R2PIE(W)PiE-o(w) Cohyo(w)]?
= [Ku(CmwrCm—0) = K SmarSm~0)
~ 0u(CnwsSm—0) = Qo SmwrCm,—0))?
+ [Qul(Cmor Cm—0) = Qo Smw>Sm,~0)
+ Ko(CnorSmima) + Kuo(SmwsCm—a)®.  (B8)

The power spectra of standing (w*®) and traveling
(w?) wave components are given by

P o(w®) = 2P32,(W)PR2 o(w) Cohpo(w), (B9)
PonsoW) = P so(W) = V2P o(W?). (B10)

, (B7)

APPENDIX C
Orbital Tilt

The tilt of ‘‘relative’” orbits as seen from the ro-
tating earth can be determined as

MO — MO) = ANO) — QAHO), (&)

where AN(0) is the intrinsic tilt of the ‘‘absolute’’
orbit as seen from a non-rotating earth from latitude
0 to 8 as given by (C.3), while A#(#) is the standard
time interval of the orbit from latitude 0 to 6 as given
by (C.4). QA1(0) is the longitudinal drift of the orbit
relative to the rotating earth.

As illustrated by Fig. 5 for Nimbus 3, the tilt of
the relative orbit is mainly due to the intrinsic tilt
and partially due to the earth’s rotation. Both Ar(6)
and A#(8) reverse their sign from day to night.

On the other hand, the change of local time along
the orbit is given by (2.1) and (C1) as

1(60) — 1(0) = [M6) — MO)/2 + AL(6),
= AN(O)/C).

(C2a)
(C2b)



JUNE 1980

Thus, in the absence of the intrinsic tilt AA(6), the
local time does not change along the orbit. This
tilt vanishes if day and night orbits (see Fig. 2) are
averaged.

The explicit expressions of AN(f) and Az(6) over a
sphere are given essentially based on Kodaira (1972,
pp. 161-162)* as

cos[AN6)] = cosJ/cosh, (C3)
At(6) = [JIQm)IT,, (C4)

where
cosJ = (cos?0 — cos?)*¥sinl. (C5)

Here, I is the inclination angle of the absolute orbit,
J the angular distance along the orbit from 0 to 6
(see Fig. 1) and T, the orbital period. I, T,, 6 are
specified.

APPENDIX D
The Doppler Effects

This appendix reviews relativistic and non-rela-
tivistic Doppler effects essentially based on Gill
(1965) and Born (1965).

The space-time coordinates (x’,t') whose origin
moves with a velocity U are related to the space-
time coordinates (x,z) at rest by Lorentz transfor-
mations as

t = + Ux'/cd)a, (D1)

x =G+ Ut')a, (D2)
where

a = (1 — Ucd)re, (D3)

Inserting (D1) and (D2) into a traveling wave of the
form

cos(wt + kx) = cos(w't’ + k'x'), (D4)

the wavenumber (k) and angular frequency (w) are
transformed similar to ¢’ and x’, respectively, as

k' = (k + UwlcHla, (D5S)
o' = (0 + Uk)lo. (D6)

The wavenumber shift Uw/c? in (D5) occurs be-
cause the wavelength of a traveling wave is meas-
ured at different points in space at the same time in
the moving system but not at the same time in the
system at rest. This time difference is due to
Einstein’s relativity principle of simultaneity.

In special cases, (D5) is reduced to

1k’ = alk, for w =0, D7
1k = ofk’, for U= -wk, (DB
k' = Uwl/(c®a), for k =0. (D9)

Eq. (D7) states that the wavelength ofa stationary

4 Kodaira, N., 1972: The general properties of meteorological
satellites. Kishokenkyu Note (in Japanese), No. 111, 159-210.
[available from Meteor. Soc. Japan, 1-3-4 Otemachi, Chiyodaku,
Tokyol.
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FiG. 5. Latitudinal tilt of relative (solid) orbit as seen from the
rotating earth and absolute (dashed) orbit as seen from a non-
rotating earth (solid) for the Nimbus 3 with orbital inclination
(see Fig. 1) of 99.92° and orbital period of 107 min as calculated
by Eq. (C1) with (C3)—(C5).

wave appears shorter to a moving observer than it
appears to an observer at rest, whereas (D8) states
that the wavelength of a propagating wave appears
shorter to an observer at rest than it appears to an
observer moving with the wave. Both statements
are consistent with the principle of length contrac-
tion. Eq. (D9) means that if an observer at rest sees
light propagating perpendicular (k = 0) to the direc-
tion of a moving observer, the moving observer
feels that the light comes from a different direc-
tion (k' # 0). Thisis called ‘‘aberration’’ in astronomy.

On the other hand, the frequency shift Uk in (D6)
corresponds to the classical Doppler shift by a
Galilean transformation. It should be noted that this
Doppler-shifted frequency (w + Uk) is increased by
a factor of 1/a. This may appear contrary to the
principle that a clock at rest appears slow to a mov-
ing observer. However, this is a Lagrangian point
of view. From an Eulerian point of view, clocks
at rest appear fast to a moving observer who sees
different clocks at rest which happen to be at the
same place in the moving system.

If k in (D6) is substituted from (D5), we have

"= wa + Uk'. (D10)

w =

Thus, when an observer is moving and sees a wave
propagating perpendicular (k' = 0) to his direction,
he feels that the frequency is smaller than when he
is at rest. This is called a ‘‘transversal Doppler
effect.” )

In the case of a Galilean transformation (U/c
= (), (D5) and (D6) are simplified as

k' =k,
w + Uk.

(D11)
(D12)

o =
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Here a shift occurs not in wavenumber but in
frequency.
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