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ABSTRACT

Space-time spectral formulas are generalized to partition the time power spectrum of transient dis-
turbances consisting of multiple wavenumbers into standing and traveling parts by assuming that these

parts are incoherent with each other.

This technique is useful in interpreting the spatial variation of wave amplitude in terms of standing and
traveling waves. An example of its application to the analysis of transient planetary waves is given.

i. Introduction

In previous papers (Hayashi, 1971, 1973, 1977a,b,
1979) spectral formulas have been developed to com-
pute space-time (wavenumber-frequency) spectra de-
fined by Kao (1968) by use of time spectral techniques
such as the lag correlation method, direct Fourier trans-
form method and maximum entropy method. These
formulas are generalizations of the formula given by
Deland (1964) who found that the time quadrature
spectrum between the zonal cosine and sine coefficients!
gives the power spectrum of traveling waves. These
formulas are also analogous to those of the rotary spec-
tra of vector time series (see Hayashi, 1979).

The above space-time spectral formulas have been
extensively applied to wave analysis of a GFDL
general circulation model (Hayashi, 1974; Hayashi and
Golder, 1977, 1978) and observational analysis (Gruber,
1974; Zangvil, 1975a,b; Hartmann, 1976; Sato, 1977;
Fraedrich and Bottger, 1978; Depradine, 1978;
Krishnamurti, 1978). However, these space-time spec-
tral analyses do not properly isolate traveling waves
from standing wave oscillations which consist of both
progressive and retrogressive components interfering
with each other to form nodes and antinodes. If stand-
ing and traveling waves are generated by different
mechanisms, it is important to separate these waves.
For this purpose, Hayashi (1977a) derived spectral
formulas to partition a space-time power spectrum into
“standing” and ‘“‘traveling’” parts which depend on the

1 These coefficients are 90° out of phase in time, if disturbances
are either progressive or retrogressive waves. However, the re-
verse is not always true. In the presence of both traveling and
standing waves, the phase difference can be 90° out of phase de-
pending on the choice of the origin of the zonal coordinate. The
quadrature spectrum, however, is invariant with a zonal transla-
tion (see Hayashi, 1979).

coherence (a measure of interference) between pro-
gressive and retrogressive components,? by assuming
that these parts are incoherent with each other. These
formulas give the zonal mean power spectra of a single
wavenumber component.

In practice, Hayashi (1974) and Hayashi and Golder
(1977) analyzed the spatial variation of the time ampli-
tude of simulated transient disturbances by computing
the time-power spectrum of a space-time series which is
filtered in space by a zonal Fourier decomposition. Sub-
sequently, a similar analysis of observed transient dis-
turbances was made by Blackmon (1976), who com-
puted a time variation of space-time series which are
filtered both in space and time by spherical harmonics
and time filtering. In both these analyses the zonal
variation of the time-power spectrum is to some extent
due to the nodes and antinodes of standing waves as
well as the wave-wave interference of traveling waves
consisting of multiple wavenumbers. In order to sepa-
rate these two effects, we shall generalize the space-time
spectral formulas of Hayashi (1977a) to partition the
local (rather than zonal mean) power spectrum of
transient waves consisting of multiple wavenumbers
into “standing” and ‘“‘traveling” parts.

In Section 2 standing and traveling waves are defined.
In Section 3 formulas are derived to partition time
power spectra into progressive and retrogressive parts
or alternatively standing and traveling parts. In Section
4 formulas are given to compute time cross spectra

2 Pratt (1976) found that the coherence between the zonal cosine
and sine components gives a measure of the interference between
the progressive and retrogressive component. However, this co-
herence is not a proper measure, since it generally depends on the
origin of the zonal coordinate unlike the coherence between the
progressive and retrogressive components formulated by Hayashi
(1977a).
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between progressive and retrogressive components. In
Section 5 an example of its application is given. Ap-
pendix A derives spectral formulas given in Section 4.
Appendix B describes a partition of power spectra into
“wave” and “noise’” parts.

2. Definitions of standing and traveling waves

a. Standing waves

Standing waves w* are defined as transient waves
with their nodes and antinodes fixed in space. If they
are associated with time-modulation in amplitude and
phase, they take the form :

w(x,t)=A:(t) coé[kx+¢k] cos[wt+yi(8)],
=2 Z A cos(kx+¢k) COS(wt-*-llrk_m),
Aw

(2.1a)
(2.1b)

where the space phase ¢, is constant with time and fre-
quency, while the amplitude 4:(¢) and time phase ¢4 (¢)
vary slowly with time. The summation is taken over a
narrow frequency band width Aw (Aw<w).

These waves can be decomposed into progressive and
retrogressive components with the same amplitude and
the same frequency as

w(x,t) =2 Ao cos(kxtwi+drtve.o)
Aw

+2 Ao cos(—kxtwt—drtdi.). (2.2)
Aw

TheT time-coherence squared between the progressive
and retrogressive components (Hayashi, 1977a) over
this frequency band is reduced to '

[:Z. Afo cos(2¢0) I+ [}‘. Afosin(2¢)

coh2(w®) =
(& 4l
B (2.3)
This coherence is actually 1.0 since the space phase ¢
does not depend on frequencies.

On the other hand, if there is no physical cause for
fixing nodes and antinodes in space, the space phase ¢;
varies randomly with time in (2.1a) and with frequency
in (2.1b). In this case the above coherence is close to
zero if the length of time series is sufficiently large.

More generally, standing waves consist of multiple
wavenumbers as well as multiple frequencies.

b. Traveling waves

Traveling waves w* are defined as either progressive
or retrogressive waves which are incoberent with each
other. For example, if one wave travels back and forth
or if one wayve travels eastward in the Eastern Hemi-
sphere and another wave travels westward in the
Western Hemisphere at the same time, the coherence
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between progressive and retrogressive components will
approach zero.

If the wave energy is dissipated away from its source
or the basic state is not spatially uniform, traveling
waves have nonuniform amplitude and are associated
with multiple wavenumbers for the same frequency.

For a simple example, let us assume that traveling
waves in a spatially nonuniform medium consist of two
wavenumbers k—Ak/2 and k+Ak/2 as

W (x,0) = cos[(k -—é‘;)x-i-wt]

+cos[(k+ﬁ2}i)x+wt], (2.4a)

Ak
=2 cos—2—x cos (kx+wt). (2.4b)
The time power spectrum varies in space as
Ak
P, (whe)=2 cos’(——?—x). (2.5)

More generally, even in a uniform and stationary
medium, traveling waves take the form of moving
wave packets consisting of wavenumber-frequency
pairs (kyw;) and (ks.w:) which fall on a dispersion
curve. If the energy source or medium is not spatially
uniform, each pair is further associated with a broaden-

_ing (Ak) in wavenumber independent of frequency, as

illustrated by Fig. 1a for a simple example (A% should
not be confused with 21— £Z,). .
The traveling waves take the form

: Ak
wlh.m (x,t) + 'wiz.wz (x,t) =4 COS(——Z—'x)

ki—ky  w1—w; kitks  witwe
Xcos( > x+ :) cos( x4 t).

2 2 2
(2.6)

The envelope function of these wave packets is given by

Ak kl—kz wW1— w2
E(xt)=4 cos(—,—x) cos( 2+ t). 2.7
2 2
The group velocity is given by
Com 29
" bk '

. 7 . -
The time power spectrum varies in space as

Ak
Po(Wiy, o1+ Whs,w2) =4 cosz(?), for C,#£0. (2.9)
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F16. la. Schematic diagram of wavenumber-frequency pairs
(dots) in a spatially non-uniform medium. Straight line represents

a dispersion curve in a uniform medium. On a spatially nonuniform
medium, a broadening (Ak) occurs only in wavenumber.

Thus, the time-power spectrum can also be interpreted
as the “envelope” of the envelope given by (2.7) as
illustrated by Fig. 1b, for a fixed time, provided that

AL | by — ko | <L | ytEa ). (2.10)

This condition, however, is not very well satisfied by
planetary waves with small discrete wavenumbers such
as Ak=1, k=1, ky=3. In this case, the time-power
spectrum is interpreted as merely the time-amplitude
squared of the oscillation caused by traveling waves.
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¢. Partition into standing and iraveling waves

In order to partition waves into standing and travel-
ing waves uniquely some assumptions are necessary
as discussed by Deland (1972) and Tsay (1974).

In the present paper we make the assumptions (i)
and the definitions (ii) and (iii) :

(i) It is assumed that the space-time series w over
some wavenumber and frequency range can be parti-
tioned into standing w* and traveling w* components as

w(x,t) =w*(x,0)+w!(x,). (2.11)

It is further assumed that these components are inco-
herent with each other as

coh s(w,w?) =0. (2.12)

This is true if these components are generated by differ-
ent causes. For example, standing planetary waves are
forced waves, while traveling planetary waves may be
free or unstable waves. This assumption may not be
true if traveling waves appear as a result of different
vertical propagation of the progressive and retrogressive
components of standing waves forced from below as
discussed theoretically by Hirota (1971). In this case
it may not be meaningful to isolate traveling waves from
standing waves, since they are a single phenomenon.
However, it is still meaningful to partition these waves
into progressive and retrogressive components, since
they are associated with different vertical propagation
characteristics.

(it) The standing component we is defined as con-
sisting of progressive and retrogressive components as

we(x,t) =w' (x,0)+w (%,0), (2.13)

where these components are of the same magnitude and

F1c. 1b. Wave packet (solid curve) at ¢=0 of the form w(x,0) =cos(x) cos(4x) cos(16x). The
dashed curve is the envelope, while the dotted curve is the “envelope” of the envelope.
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Fic. 2. Schematic diagram of standing (w%:) and traveling (w'.)
components. See text for explanation.
coherent with each other as
Py(wi)=Ps(wl),
cohy(wh,w')=1.

(2.14)
(2.15)

(iii) The traveling components w* is defined as con-
sisting of progressive and retrogressive components as

wiln) = @) +ut (s,  (216)

where these components are incoherent with each other
as

coh (w',. ,w' ) =0. 217

It should be remembered that the traveling com-
ponents may in part be due to random noise which
contributes to both the progressive and retrogressive
“components equally as shown schematically by Fig. 2.

3. Partition of time power spectrum

In this section, spectral formulas are derived to
partition the time-power spectrum of transient dis-
turbances into “‘progressive,” ‘retrogressive” and
“interference” parts or alternatively, ‘“‘standing” and
“traveling” parts.

a. Progressive and retrogressive parts

It is assumed that w(x,?) is a stationary random space-
time series which is cyclic in longitude x and extends
infinitely in time ¢. ,

In principle, this space-time series can be resolved into
the progressive (w_), retrogressive (w,) and zonal
mean (wo) components as follows, although this de-
composition is not necessary for actual computation of
their power spectra:

w(ox,t) =w, (x,)+w-_(x,0)+wo(8), (3.1)
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where

w0

wy(x,0)=2Re 2,

k=1

eiER=2R gL L (). (3.2)

Here, W, (1) is the space-Fourier transform of w(x,?),
while W..(f) denotes the Fourier-Stieltjes transform
of Wix(t) (see Yaglom, 1962, Lumley and Panofsky,
1964). The increment dW,,(f) is interpreted as the
complex space-time amplitude associated with an in-
finitesimal frequency increment df. In practice, the
summation is taken over a wavenumber range of
interest.

The time-power spectrum at longitude « of transient
waves consisting of both progressive and retrogressive
components can be partitioned into three parts by the
identity

Pylwitw_)=Ps(w;)+ P (w_)+2K ,(wy,w-), (3.3)

where P, and K, are the power spectrum and co-
spectrum, respectively.

Hereafter the above three parts are called the
retrogressive, progressive and interference parts,
respectively.

If a zonal mean of (3.3) is taken, the interference
part vanishes as

Piwrtw) = g P,.k<w)+§11>,._k<w), 3.4)

where Py 4. are the space-time power spectrum of
individual 'wavenumber components.

Similarly, the time-power spectrum of multiple wave-
numbers can be partitioned into single wave and wave- -
wave interference parts. These wave-wave.interference
parts vanish if they are zonally averaged.

The cospectrum K; and quadrature spectrum Q; are
interpreted as '

K/ (wyw_)=Pp(w,)P s (w_) cohy(w,,w_) )
Xcos[Ph,;{wy,w.)], (3.5)

and

Qs (wyw )= P (w,)PA(w_) coh;(w,,w_)
. Xsin[Phy(wy,w-)], (3.6)

where the coherence coh; and phase difference Ph, are
defined by

P (wy) Pyt (w-) cohy(wy,w.-)
= [K/2 (w+ :w—) +Qf2 (w-i"‘w—):pf

tan[Ph/ (w+,w_):] = Q! (w—Hw—)/K/ (w-Hw—)-

Thus, the interference part 2K ;(w,,w_) in (3.3) repre-
sents an interference between w; and w_ and vanishes
when the coherence is zero or the phase difference is
90°. It takes positive (negative) values at the anti-
nodes (nodes). . v

(3.7
(3.8)
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b. Standing and traveling parts

In the above partition, the progressive and retro-
gressive parts involve contributions from standing
waves and the interference part takes negative values
at nodes. Alternatively, the power spectrum of tran-
sient disturbances can be partitioned into standing and
traveling parts by assuming that these parts are inco-
herent with each other as

Plwtwt)=P (w)+P(w)+2K, (w0,
=P,(we)+P,(w?).

These parts are further partitioned into progressive
and retrogressive parts as

Ps(w?)=P(w% )+ P (w')+2K ;(w' ,wb ),
Py(w')=Ps(w' )+ Ps(wh).

By use of the definitions and assumptions of standing
and traveling components discussed in Section 2c, the
matrix of cross spectra between progressive and retro-
gressive components can be partitioned into standing
and traveling parts, respectively as

ST e P-—O*RQ_’m

(3.932)
(3.9b)

(3.10)
(3.11)

where the asterisk denotes the complex conjugate.
Here the diagonal elements P, represent power spectra
as

Py=Ps(wy), (3.13)

while the off-diagonal elements R and R* represent
complex cross spectrum as

R= K/ (w+!w—)+ 1Qf (w+’w—)'

Since the coherence between the progressive and retro-
gressive components of standing waves is equal to 1.0,
the determinant the matrix of standing waves vanishes
as

Pty )P ()~ [K ()
Q2w 0 ) P=0. (3.15)

Since the coherence between the progressive and retro-
gressive components of traveling waves is zero, the off-
diagonal elements of the traveling part vanish as

K A(uy w )+ 07 (w4 wl ) =0.

The standing and traveling parts are analogous to the
rectilinear and non-rectilinear parts of rotary spectra
(see Appendix D of Hayashi, 1979). These partitions
are somewhat similar to the empirical orthogonal de-
composition of space-time cross spectrum proposed by
Pratt and Wallace (1976).

The matrix representation (3.12) with (3.15) and

(3.14)

(3.16)
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(3.16) gives
Py(uty) = [K Py, )+ Q) T, (3.17a)
=P (w. )P4 (w.) coh,(wy,w_), (3.17b)
Py(wl)=Ps(ws)— Pr(wl), (3.18)
| =P;(wy)— PHw, )P (w-) cohs(wy,w-).
(3.18b)

' Thus, formulas for computing traveling and standing

parts are given by use of (3.18b) as

Py(w')=Ps(wh )+ Py(w' ), (3.19a)
=[P (wy)— Pri(w- )]
+2P A (wy )P (w )[1—coh,(wy,w_)], (3.19b)
Py(we)=P(wi+w_)— P,(w"), (3.20a)
=2P 4 (w,) P (w-) coh,(wy,w-)
X {1+ cos[Ph (w,,w_)]}, (3.20b)

where (3.3), (3.5) and (3.19b) have been used to derive
(3.20Db). It should be noted that w need not be explicitly
partitioned into w* and w* or w; and w_ in order to
compute the power spectra of these components. For a
single wavenumber, formulas (3.17b) and (3.18b) are
reduced to those derived by Hayashi (1977a).

The standing part as expressed by (3.20b) is similar
to the interference part given by (3.5) except that the
former becomes zero at the nodes, while the latter takes
a negative value. The traveling part as expressed by
(3.19b) vanishes when the progressive and retrogressive
components are of the same magnitude and coherent
with each other. Both these parts are non-negative.
However, the progressive and retrogressive components
of traveling parts (3.18b) are not always non-negative
as will be discussed below.

In a special case where the traveling component
consists of only a retrogressive (or progressive) com-
ponent as

Py(w')=0, (3.21)

we have from (3.18a) and (2.14)
Pywt,) = Py(w') =P, (w.), (3.22)
coh/(wyw_)=PA(w.)/Pr(wy). (3.23)

Then the formulas (3.18a) and (3.20b) are reduced to
Py(wh)="Ps(wy)—Ps(w-), (3.24)
P(we)=2P(w_){14 cos[Ph;(w,,w_)]}. (3.25)
These formulas coincide with their conventional defini-

tions of traveling and standing parts.?

3Tn order that the conventional definitions hold, it is not neces-
sary that the coherence between the progressive and retrogressive
component (3.23) be 1.0, since standing and traveling waves are
not necessarily coherent with each other.
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On the other hand, it follows from (3.18b) that if

coh 2wy, w_)> P (wy)/Py(ws), then Py(wly) <0. (3.26)

. This negative value of power spectrum occurs when the

assumptions (i) do not hold. In this case additional
terms appear in (3.17) and (3.18) due to the inter-
ference between standing and traveling components.
For example, a negative value occurs when the traveling
component consists of only one component which is not
completely incoherent with the standing component.
Also it occurs for a short record, if the frequency band
is taken to be too narrow, resulting in overestimation
of the true coherence [See Foster and Guinzy (1967)
and Julian (1975) for the statistical significance of
coherence]. However, if this negative value is small
compared to the other parts it can be regarded as zero.
If it is not negligible, the present partition is not
physically meaningful.

4. Cross spectrum between progressive and
retrogressive components

a. Formulas for the cross spectrum

The time cross spectra between progressive and retro-
gressive components with multiple wavenumbers which
are used in the previous sections can be computed by
use of the following formulas without explicitly decom-
posing w into w, and w_. These formulas are generali-
zations of those given by Hayashi (1971) for a single
wavenumber and are analogous to those of rotary
spectra (see Appendix A of Hayashi, 1979). The
derivation is given in Appendix A.

Ps(wit+w_)="P(c), 4.1)
Py(wy) =1[Ps(c)+Ps(5)£2Q5(c,5)], 4.2)
Ky(wyw ) =3[Ps(c)—Ps(s)], 4.3)
Qf (w+7w—) = %K}(C,S), (44)

K 1'2 (w+’w—) +Ql 2 (w+7w—)
h 2 sW—) = > ' 4.5
R P ) )
th ('w-Hw—) = tan—ll:Qf(w+)w—)/K! (w+)w—)]) (4'6)

: where
w(x,t)= i Ci(?) coskx+Si(f) sinkx,  (4.7a)
=§;A*G)am[—kr+¢dﬂj, (4.7b)
() =3 Cull) coskr+S(l) sinkx,  (4.82)
k=1

=3 Au(t) cos[—ks+()],  (48b)

k=1
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s(x)=2 —Ci(1) sinkx+Si(t) coskx, (4.9a)
k=1 .

=Zi Ae(0) sin{—kx+,()}.  (4.9b)

b. Computational procedure

The computational procedure for the partition of the
time power spectrum is as follows: '

1) Compute the zonal cosine and sine coefficients Cy
and S as defined by (4.7a).

2) Compute c{x,t) and s(x,!) by use of (4.8a) and
(4.9a) over wavenumber range of interest.

3) Compute the time cross spectra between ¢(x,f) and
s(x,t) by the lag correlation method or the direct Fourier
transform method (see Bendat and Piersol, 1971).
These cross spectra should be integrated over a

~sufficiently wide frequency band in order to avoid

overestimation of coherence.

4) Compute the cross spectra between progressive
and retrogressive components by use of formulas
(4.1)-(4.6).

5) The time power spectrum is partitioned into
‘“‘progressive,” “retrogressive” and “interference” parts
by use of (3.3), or alternatively into ‘“standing” and
“traveling” parts by use of (3.20b) and (3.19b). The
traveling part is further partitioned into progressive
and retrogressive parts by use of (3.18b).

5. Example of application

As an example, the present method is applied to an
analysis of transient planetary waves appearing in a
GFDL general circulation model (Manabe and Mahl-
man, 1976). The three-dimensional structure of these
simulated waves has been analyzed in detail by Hayashi |
and Golder (1977). The output data analyzed in the
present paper are the geopotential height at 38 mb
level during the period October~March.

Fig. 3 shows a wavenumber-frequency diagram of the
space-time power spectrum. It is seen that transient
planetary waves consist typically of wavenumbers 1-3
and periods of 10-60 days. The eastward moving com-
ponent has a larger amplitude than the westward mov-
ing component and is associated with a spectral peak
at wavenumber 1 and 30 days. In the following, wave-
numbers 1-3 and periods 20-30 days were chosen. It
was confirmed that a choice of wider period range does
not significantly alter the ratio between the standing
and traveling parts.

Fig. 4 compares the stationary (6-month mean)
planetary waves with the power spectrum of transient
planetary waves consisting of both eastward and west-
ward moving components. It is seen that the power
spectrum attains its major and minor maxima where
the high and low of the stationary pattern are situated,
respectively. This comparison suggests the possibility
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F16. 3. Wavenumber-frequency diagram of space-time power spectrum density (10° m? day) of geopotential height at 38 mb at 60°N
of a GFDL general circulation model during the period October-March.

that the geographical distribution of the power spec- tion is due to traveling waves consisting of multiple
trum of the transient planetary waves are caused by wavenumbers. In order to clarify these two possibilities,
the pulsation of quasi-stationary planetary waves. the above power spectrum is first partitioned into east-
However, there is another possibility that this distribu- ward, westward and interference parts.
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F16. 4. Longitude-latitude section of time mean (upper) 102 m and time power spectrum (10* m?) with periods
20-30 days (lower) of geopotential height consisting of wavenumbers ~1-3.
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" F1c. 5. Longitude-latitude section of time power spectrum (10¢ m?) with periods 20-30 days of eastward
(upper) and westward (lower) moving components.

a. Progressive and retrogressive parts

Fig. 5. compares the power spectra of the eastward
and westward moving components. Both these power
spectra attain only one major maximum near 180°
longitude which is about 30° to the west of the major
maximum in Fig. 4. The eastward moving component
is larger than the westward moving component. It
should be remembered that these components are not
isolated from those of standing wave oscillations.

Fig. 6 shows the interference part (cospectrumX2)
and the coherence between eastward and westward
moving components. It is seen that the negative (nodes)
and positive (antinodes) values of the interference part
occur approximately where the minima and maxima of
the power spectrum of transient planetary waves in
Fig. 4 are situated. The coherence exceeds 0.5 poleward
of 45°N. ’

b. Standing and traveling paris

In order to isolate traveling waves from standing
waves, the power spectrum is repartitioned into stand-
ing and traveling parts. '

" Fig. 7 shows that the standing part is associated with
one major and one minor maximum and is larger than
the traveling part with only one maximum. Thus, the
major maximum and minor maximum of the power

spectrum of transient planetary waves in Fig. 4 is due
more to the standing waves than the traveling waves.

The traveling part is further partitioned into east-
ward and westward moving parts. Fig. 8 shows that
the positive and negative values of the westward mov-
ing part are negligible compared to the eastward mov-
ing part which is positive everywhere. This result does
not reject the basic assumption that standing and
traveling waves are incoherent. This small negative
value occurs due to an overestimation of coherence [see
Eq. (3.26)], since it is further reduced by taking a
wider frequency range (not illustrated). Thus in the
present example, the traveling and standing parts de-
fined by (3.18) and (3.17) coincide with the conven-
tional interpretations (3.24) and (3.25), respectively.

The above spectral results are visualized by longi-
tude-time sections (Fig. 9) at 60°N consisting of wave-
numbers 1-3. The stationary ridge and trough are seen
in Fig. 9a, while standing wave oscillations and east-
ward moving waves are more clearly seen in Fig. 9b,
without time mean. '

In concluding this section, it is found that the model’s
stratospheric transient planetary waves with periods
around 30 days consist of standing and eastward mov-
ing waves. The major and minor maxima of the time
power spectrum of the transient planetary waves are
due mainly to standing waves and coincide with the
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high and low of stationary (6-month mean) waves. Thus
it is likely that these standing waves and stationary
waves are interpreted as mainly due to quasi-stationary
waves which pulsate with periods around 30 days as
well as an annual period. However, it is unlikely that
eastward moving waves and standing waves are of the
same origin.

6. Remarks

Space-time spectral formulas are generalized to parti-
tion the time-power spectrum of transient disturbances
consisting of multiple wavenumbers into standing and
traveling parts by assuming that these parts are inco-
herent with each other. If the present method resuits
in a large negative value of the power spectrum (3.26),
this assumption must be rejected and the present parti-
tion is not physically meaningful. It should also ‘be
noted that the present method does not explicitly
partition transient waves themselves, although it
partitions their power spectra.

The advantage of the generalized method is that it
gives the local amplitudes of standing and traveling
waves which vary zonally due to interference between
multiple wavenumbers. If the local amplitude of an
individual wavenumber component is. computed, the
antinodes of standing waves have equal amplitudes
and there is no zonal variation in the amplitude of

traveling waves. Unlike the zonal mean (space-time)
power spectrum, the local (time) power spectra of the
individual wavenumber components do not sum up to
the power spectrum of multi-wavenumbers due to the
wave-wave interference terms.

The present method was derived without assuming
that the power spectrum of traveling waves is given
by the difference between the power spectrum of pro-
gressive and retrogressive components. It was not

.assumed that the position of antinodes of standing

waves coincides with that of quasi-stationary (time-
mean) waves as was assumed by Iwashima and Yama-
moto (1971). Although these assumptions are shown
by the present example to hold in the model strato-
sphere, this is not so in the model troposphere (see
Hayashi and Golder, 1977 ; Hayashi, 1977a).

The traveling part defined in the present paper con-
tains, in part, random noise. However, this random
noise does not exceed the smaller value of either pro-
gressive or retrogressive components of traveling waves,
since random noise should appear in both progressive
and retrogressive componentsequally as shown schemat-
ically by Fig. 2. If the traveling part consists of pro-
gressive and retrogressive components which -are of
equal amplitudes and are not characterized by a statis-
tically significant spectral peak, this part should be
interpreted as a random noise. On the other hand, if
the progressive and retrogressive components of waves
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are assumed to be coherent in contrast to the present
basic assumption, it is possible to exclude noise from
waves by the method given in Appendix B, although it
is not possible to isolate traveling waves from standing
waves without additional assumptions. However, if this
method results in a statistically significant spectral
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peak in the “noise” part, the basic assumption must be
rejected and this partition is not physically meaningful.

APPENDIX A

Derivation of Space-Time Spectral
Formulas (4.1)-(4.4)

The Fourier-Stieltjes representation of the time series
w, is given by

1, =2 Re / e gy (f), (A1)
[\

where @, (f) denotes the Fourier-Stieltjes transform of
Wy

The time power spectrum and cross spectrum of w,
are defined as

Py(wytw )df=2(|dib, (f)+dd_(/)[?),  (A2)
Py(wa)df=2(|dw.(/)]?), (A3)

Ky (wyw)df=2Re(dw, (Ndi_(f),  (A4)
0wy )df =2 Im(das, (f)di_(f)).  (AS)

Here the asterisk denotes the complex conjugate. The
angle braces denote an ensemble average which can be
replaced by a frequency average over an infinitesimal
frequency band for an ergodic time series of infinite
length (see Beran and Parrent, 1964, p. 23). In some
papers, the sign of quadrature spectrum is reversed.

On the other hand, the space-time series w can be
represented by a space-Fourier series as

w(a ) =, () +B_ (o) +w(),  (A6)
where
By(mf) =3 Wan(B)eie, A7)
k=1

Here the complex space series @ corresponds to the
““analytic signal” in optics (see Born and Wolf, 1975,
p. 494). It can also be interpreted as the ‘“‘space-rotary
component” of rotary vector series (see Hayashi, 1979).
Fourier-Stieltjes transform of (A7) gives
@ (f) =§Z’1 War(f)exite, (A8)
The space-time series wy defined by (3.2) can be re-
written by inserting (A8) into (3.2) as

wy=2Re / e tdi (). (A9)
0

It should be remarked that this integral is #of equivalent
to the Fourier-Stieltjes representation of the complex
time series @, given by

By= j/ e (), (A10)
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where the negative frequency ddes not denote the com-
plex conjugate of diw(f) for >0, since @, is not real.
Comparing (A1) with (A9), we have

Wy (f)=ds(f) for >0 (A11)

For convenience in computation, the complex series
W4 is rewritten as

Wy (2,8) =3Lc(x,)Fis(x,1) ). (A12)

The explicit expressions of ¢(x,!) and s(x,f) are given by
(4.8) and (4.9). The space series s(x,f) can be inter-
preted as the Hilbert transform of ¢(x,t) (see Born and
Wolf, 1975, p. 495).

Inserting (A12) into (A11) gives

we(f)=3[e()FiS(f)] for f>0. (A13)

Inserting (A13) into (A3) gives the formula (4.2) as
follows:

2(|dws(f)|*)
=5(1de(f) [+ ds(N D EIm(de*(/)ds(f))
= 1P/ ()df+}Pr(s)df 301 (c,5)df. (A14)

Inserting (A13) into (A4) and (AS) gives the formulas
(4.3) and (4.4), respectively as follows:

2(dw’ (f)dw_(f))
=5(1de(N))—5{1ds(N) )1 Relde*()ds(f)),

=[P, (c)—P;(s)1df+i3K ;(c,5)df. (A15)

APPENDIX B

Partition of Power Spectra into
Wave and Noise Parts

The time-power spectra of transient waves consisting
of multiple wavenumbers can be partitioned into the
wave (W) and noise (N) parts by assuming that these
parts are incoherent with each other as

PrwW+wN) =P (wV)+Ps(wN),
Py(w¥+wl) =P (wd)+ Psy(w]).

These parts can be determined by further assuming that
1) the progressive and retrogressive components of the
wave part are coherent with each other and 2) the
" progressive and retrogressive components of the noise
part are incoherent and have equal amplitudes.
These parts can be computed by the following
formulas:

_P,(w’“‘)=P,(w+)+P,(w_)—.{[Pf(w+)+Pf(w_)]2

(B2)

—4P(w)Ps(w_)[1—coh*(ws,w_) ]}}, (B3)
Py(w%)=P(w,+w_)— P, (wV), (B4)
Ps(w}) =P (wy)— 5P, (w"). (BS)

The wave and noise parts are analogous to the polar-
ized and unpolarized parts (see Appendix C of Hayashi,
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1979). For a single wavenumber (BS) is equivalent to
a formula derived by Schifer (1979).

DEer1vaTION OF (B3)-(BS5)

The cross-spectrum- matrix of progressive and retro-
gressive components is partitioned into wave and noise
parts as ’

P. R\ /P.—N R N, 0\ .
GO A
R p./ \ R P -NJ \0o N_

where
Pi=Pf(ﬁfi), (B7)
R=Kf(w+1w—)+1:Qf(w+’w-), (BS) ’
Ny=P;(w}). (BY)
The assumptions 1) and 2) give
(Py—N)(P——N)— |R|=0, (B10)
where
Ni=N_=N. (B11)

Thus N is given by the smaller root of (B10), since the
larger root results in a negative value of P,.
The noise and wave parts are given by

° P, (wN)=2N, (B12)
P,(wWV)=P(wW+wN)—2N, (B13)
P;(wY)=Ps(wy)—N. (B14)

It can be also proven that both the noise and wave
parts are non-negative. '
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