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ABSTRACT

A response of large-scale equatorial waves to a thermal or a lateral forcing confined in the troposphere is
examined analytically by imposing the radiation condition based on an equatorial beta-plane model without
wind shear. .

A resonant response with large finite amplitude occurs under the radiation condition, when the vertical
scale of the wave coincides with that of the forcing. This “non-singular resonance” is associated with a sharp
spectral peak for equatorial waves which are characterized by a small variation of the frequency with the
vertical wavenumber. However, such resonant equatorial waves are not realistic, since their vertical velocity
is not in phase with the imposed convective heating and their pressure is not in geostrophic balance with the
meridional wind of the imposed mid-latitude disturbances.

This study suggests that the forcing cannot be imposed arbitrarily regardless of its feedback. It assures on
the other hand that the equatorial waves simulated by a general circulation model are not spurious resonant
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waves resulting from an artificial reflection at the top of a finite-difference model.

1. Introduction

Tt is well known that some tropical disturbances
are characterized by distinct scale and periodicities.
Among them are westward-moving mixed Rossby-
gravity waves (Yanai and Maruyama, 1966) of wave-
numbers 34 and periods of 4-5 days and eastward-
moving Kelvin waves (Wallace and Kousky, 1968) of
wavenumbers 1-2 and periods 10-20 days.

It was pointed out by Maruyama (1967), Lindzen
and Matsuno (1968) and Holton and Lindzen (1968)
that these waves are consistent with the dispersion
relation and structure of equatorial normal modes
studied by Rosenthal (1965), Matsuno (1966) and
Longuet-Higgins (1968). However, in their studies no
explanation was given as to how these waves are
generated and selected among the many possible
equatorial normal modes.

There have been several theoretical studies to ex-
plain the selection of planetary-scale equatorial waves.
The first approach was a theory of resonance to mid-
latitude forcing (Mak, 1969). Aecording to this study,
the tropical atmosphere has a resonant period of 5 days
and the equatorial waves derive their energy from
mid-latitude disturbances. His result was also con-
sistent with theories of wave propagation (Charney,
1969; Bennett and Young, 1971) that waves with
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phase speeds more westward than the mean flow may
propagate into the tropics. However, Manabe e! al.
(1970) demonstrated by their GFDL general circula-
tion model that latent heat release within the tropics
is more important than the energy flux from mid-
latitudes to maintain tropical disturbances.

The second approach was an instability (CISK)
theory of large-scale waves coupled with cumulus
convection. It was assumed that the cumulus heating
is proportional to the low-level convergence. Yamasaki
(1969) found, based on two-dimensional quasi-geo-
strophic equations, that instability occurs for large-
scale waves which resemble the observed Yanai-
Maruyama waves in their vertical structure. Hayashi
(1970, 1971a,b) re-examined this unstable mode by
using a three-dimensional primitive equation model on
an equatorial beta-plane so that equatorial waves may
be treated. He found that mixed Rossby-gravity waves
with wavenumber 4 and period of 4 days become
unstable. However, the unstable mixed Rossby-gravity
waves do not attain their maximum growth rate at
the observed scale, and high-frequency gravity waves
are the most unstable. One way to overcome this
difficulty is to assume that the cumulus heating be-
comes inefficient for high-frequency waves (Hayashi,
1971c). Recently Kuo (1975) has made a detailed study
of this possibility.

The third explanation was the filtering effect of
the atmosphere on the vertical propagation of waves.
Holton (1972, 1973) showed that among various wave
modes excited by localized thermal forcing, Kelvin
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waves with wavenumbers 1-2 and periods of 10-20
days are selected in the stratosphere with a certain
vertical shear. However, this theory did not account
for the preferred period of 4 days for mixed Rossby-
gravity waves.

The fourth approach was a space-time spectral
analysis of a general circulation model. Hayashi (1973,
1974) found that both mixed Rossby-gravity waves
and Kelvin waves were present in a GFDL general
circulation model with moist convective adjustment.
These waves agree with observed waves in their
period, scale, and three-dimensional structure. The
convective heating localized in the western Pacific is
associated with more westward phase velocity than
eastward phase velocity in agreement with the space-
time spectral analysis of cloud brightness data (Gruber,
1974) and the CISK theory (Hayashi, 1970). However,
the spectral peak of the heating is not sharp enough
to directly account for the distinct periodicity of mixed
Rossby-gravity waves in the stratosphere by the CISK
theory alone. One might argue that these waves are
spurious resonant waves resulting from an artifical
reflection at the top of a finite-difference model as
had been warned by Lindzen ef al. (1968).

The same criticism may also apply to the two-layer
finite-difference model used by Mak (1969) for studying
the resonance associated with lateral forcing. A reso-
nance also occurs in barotropic models of Matsuno
(1966) and Bennett and Young (1971) since there is
no vertical propagation of energy. Recently, Lamb
(1973) re-examined the response of equatorial waves
to mid-latitude forcing by a model in which the wave
energy is allowed to leak from the troposphere. She
found that a quasi-resonance is still possible in her
model and further showed that the upward flux of
energy due to the resonant wave can be enhanced
by the convective heating associated with the wave.
Instead of imposing a radiation condition rigorously
on her analytical model, she assumed without justifica-
tion that the vertical structure of the forced wave is
everywhere the same as that of the tropospheric

“forcing characterized by a complex vertical wave-
number which gives a net upward flux of energy.
However, it is not clear whether the wave energy
leaking from the troposphere into the stratosphere is
further reflected from above, since her analytical
solution, which amplifies indefinitely with height, is
not valid above the troposphere.

In studying the resonance of equatorial waves one
must be very careful of a spurious reflection from the
top, since equatorial waves are not reflected by the
stratification or zonal flow, if their vertical scale is
small (Lindzen, 1967). In comparing resonant waves
with observed waves one must examine not only
the wavenumber-frequency response but also the struc-
ture peculiar to resonant waves.

In the present paper we shall re-examine the reso-
nance of equatorial waves by imposing the radiation
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condition that no wave energy may be reflected from
infinite height. We shall first study the case of thermal
forcing in Section 3 and then mid-latitude forcing in
Section 4.

2. Basic equations?

The basic state is taken as a hydrostatic, isothermal
atmosphere without basic flow as given by

. o
- = —pof, (2.1)
dz

Po=peRT=pogH, (2.2)
po(2) =po(0)e—=/H . (2.3)

The perturbation equations on an equatorial beta
plane (f=py) consist of the equations of motions, and
the hydrostatic, continuity and thermodynamic equa-
tions as

o 1 9y’
——fl=———, (4
at Po ax
av’ 1 ap’
—t+=——— (2.5)
ot po Oy
ap'
—=—g, 26)
9z
o’ 9
—+V - poV +—pw’ =0, 2.7)
ot 9z
as’ dsy C,
—aw—=—(y—1)J, (2.8)
at dz Po .
where
s=Cpln8=C,Inp—C,lnp, (2.9)
dSo ch
—_—— (2.10)
ds H . ’
pl pl
s'=Cy——Cp—. (2.11)
Do Po
Transforming the dependent variables as
(uyv,0,J) = pot (' 0" ', J")
’ (2.12)

(P,P) = pﬂ_% (Plyp,)

and assuming the time and longitude dependence of
the form eilwt+*=)  the perturbation equations are re-
written as

wou— fo=—ikp, (2.13)

# Symbols are defined in an appendix.
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ap
vt fu=——,  (2.14)
ay
<a 1) (2.15)
————— ='—p s .
dz 2H ? £
. v J 1
'icqp+1:ku+—+(—__)'w=0; (2.16)
dy \dz 2H
1 & K
iw(____j,_p)jL_.w:_J. @2.17)
vgl Hd gH ‘

3. Thermal forcing
a. Gravity wave model

In order to simplify our discussion, we shall begin
with internal gravity waves without a Coriolis force,
since the presence of the Coriolis force does not alter
our conclusions except for the dispersion relation. This
problem will later be re-examined by an equatorial
beta plane model.

Letting f=0 and neglecting the y dependence, Egs.
(2.13)-(2.17) are reduced to

dw /c(a 1

1 ,
—tmiy=— ——+————)J, (3.1)
922 gH\oz h 2H

g 1 1 g7 1
(a2
dz h 2H iw\dz 2H
where % is the so-called equivalent depth. The dis-
persion relation is given by

3.2)

w
(ghYi=-, (3.3)
k
when £ is related to m as
K 1
mi=—— 34)
Hh 4H?

We shall be interested in internal gravity waves
with small vertical scale such that

1 a9 1
— L, (3.5)
H 3z h
Then (3.1) and (3.2) are approximated as
w «
—tmPwm=——o=I7, (3.6)
9z% gHh
gh 0w
e e, 3.7
iw dz

The heating is assumed to attain its maximum at
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Fic. 1. Vertical profile of heating function in analytical
two-layer model.

g=2/2 and to vanish above the cloud top z=2
=10 km, as

Ty sin(Mz)eiwtk= - for 0K 2K 2,
J= (3.8)
0, for 2>21

where
M=x/z. (3.9)

The vertical profile of this heating function (Fig. 1)
is similar to that of the diabatic heating in the GFDL
general circulation model (see Fig. 11). This problem
will later be re-examined numerically using a realistic
vertical profile. It is also assumed that the heating is
white noise, i.e., Jy does not depend on w and k.

1) SOLUTION BY VERTICAL MATCHING

We shall solve (3.6) by matching the solution in
the adiabatic upper layer with that in the lower layer
associated with a thermal forcing as illustrated in
Fig. 1. This method is suited for imposing the radia-
tion condition (Wilkes, 1949; Sommerfeld, 1949) ex-
plicitly as an upper boundary condition.

In the upper adiabatic layer, the solution consists
of homogeneous solutions with upward and downward
propagation of energy as

P aneim(z—zl)_R{me—im(z—n)
w(z)=

. (3.10)

gHh m2—M?

where the complex coefficients RZ and R?, are to be
determined by the boundary conditions.
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In the lower layer, the solution consists of both the
homogeneous and the inhomogeneous solutions as

K Runsinmz—Jy sinMz
gHR m2—M?

This lower layer solution satisfies the bottom boundary
condition

w'(z) = (3.11)

w(0)=0. (3.12)
The interfacial condition is
wl(z1) =% (z1)
(3.13)

PE)=p) )
The upper boundary condition is either the lid con-
dition as

w(z)=0 at z=2z, (3.14)

or the radiation condition which excludes the wave
component with downward propagation of energy as

R =0, (3.15)

where the sign of m is determined in (3.4) in such
a way that wm>0, so that R%, always represents
downward group velocity which will be given by (3.45).

The above boundary conditions give linear algebraic
equations for determining R, as

AmRm= AMJM, (316)
where
. R\ . 0
ng( ) JME< ) (3.17)
Rn Ju

In case of the radiation condition, the above ma-
trices are

1, —sinmz,;
A,,.=(_ ) (3.18)
mwm, — M COSM2,.
A=A Tn-n. 3.19)

1t should be noted that the denominators of the
solutions (3.10) and (3.11) vanish as m=+M. How-
ever, in case of the radiation condition no singularity
occurs, since the numerator also goes to zero. In the
following we shall prove this for m=+4M. It may
similarly be proven for m= —M.

In case of the radiation condition the determinant
does not vanish.
(3.20)

This assures that (3.16) has a solution of the form

[A,| = —meima13£0,

Rm= Am_lAMjM. (321)
The explicit form of Rn, is
M cosMz,—im sinMz
Ru=Ju -
me—‘tmzl
(3.22)

. M cosMz, sinmz,—m cosmszy sinMz;
Rm=JM

me——imzx
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Fic. 2. Amplitude of w at z=7.5 km as a function of m under
the radiation condition.

As m approaches M, we have

hm Rm = JM.
m—-M

(3.23)

Thus the solutions (3.10) and (3.11) become indeter-
minate as :

'LIE}” w(z)=6. (3.24)
Differentiating the numerator and the denominator of
(3.10) and (3.11) by m and putting m=M=1x/2
(L’Hopital’s rule), the resonant solution* is given
explicitly by

K (—i4+1/7)z1 sinMz—z cosMz

lim 2'(z)=—Jy

m>M gHh 21/ 2
K ZleiM(z—n)

lim w(z)=—-Jpy———

m-eM gHh 2w/,

(3.25)

This resonant solution attains its maximum a little
above the level of maximum heating (z=2,/2). Fig. 2
shows the amplitude of w as a function of m, illus-
trating that the amplitude attains its maximum near
m= M under the radiation condition. In other words
a resonant response with a large finite amplitude
occurs under the radiation condition when the vertical
scale (m/m) of the wave in a free isothermal atmo-
sphere coincides with the vertical scale (r/M) of the
forcing.

Let us next examine the case of a lid condition.
The matrices and the determinant of (3.16) are

—sinm(z.—21), ~—sinmzy
Am=( >, (3.26)
m cosm (z,—21), —m COSMZ
Au=[A,Jn-n, (3.27)
|A,.| =m sinmz,. (3.28)

4 Alternatively, this resonant solution may be obtained directly
from (3.1) with m=M by assuming the solution of the form
(43+B)etiMz,
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This determinant vanishes if

qm
m=M=—
Zt

g=123.... (3.29)

The explicit form of R! under the lid condition is
given by

X M sinm (g, —z1)cosMzy+m cosm (z,—2;)sinM 21
Rm = JM ; .
m Sinmsz,

(3.30)

If m=M,, the denominator of (3.30) vanishes and
R}, becomes infinite provided that M =M. If m=M,
=M, both the denominator and the numerator of
(3.30) vanish, Applying L’Hdpital’s rule we have

0. /sin2Mz; '
lim R,ln=—=< +zt—zl>JM;éJM. (3.31)
m-M 0 2M
Therefore from (3.11), we find
' 0/0)—1
Iirr}l w(g)=———=0w. (3.32)

Thus we confirm that resonance associated with
infinite amplitude .occurs under a lid, when a multiple
of the vertical scale (r/m) of the wave coincides with
the height (z,) of the lid.

If this problem is solved as an initial value problem,
the amplitude increascs indefinitely with time® under
the lid condition in the absence of dissipation, while
the amplitude will increase toward some large finite
value under the radiation condition. Hereafter the
resonance associated with infinitly large amplitude will
be called ‘‘singular resonance,” while the resonance
associated with large finite amplitude under the radia-
tion condition will be called “‘non-singular resonance.”

It is well known that in the presence of dissipation
the radiation condition is simulated by raising the lid
to infinite height, since the wave decays with height
before being reflected by the lid. This fact is proven
as follows.

Putting w=0 at 2=32, in (3.10), we have

R%,/Rp=eiman, (3.33)

Now in the presence of Newtonian cooling or Rdyleigh
friction, m becomes complex (m=m,+im;) and the
reflection coefficient is given by

RGfE lRam/R?nl = e-—2m,'(zt~—21) < 1. (3‘34)

Therefore the amplitude of the reflected wave (RZ,,)
becomes much smaller than that of the incident wave
(R2), if the lid (2.) is raised sufficiently high.

It will be of interest to examine how the resonance
under a lid condition in the presence of dissipation

8 The time dependence is of the form f¢*«¢. For a general reso-
nant solution in a closed domain, see Orlanski (1972).
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approaches the non-singular resonance under the
radiation condition as the lid is raised higher. For
this purpose it is simpler to solve the same problem
by a method of vertical normal mode expansion as
will be shown below. This method is also convenient
in solving the problem of resonance of equatorial
waves to lateral forcing under the radiation condition
in Section 4.

2) SOLUTION BY VERTICAL EXPANSION

We shall solve the same equation [(3.6)] by ex-
panding the following vertical profile of the heating,
JosinMyz, for 0<z<z
J= , (3.35)
0, for 2>2;

in terms of the vertical normal modes under a lid as

J=3 JosinM zz, (3.36)
q=1
where
M0= TqO/Z]_, (337)
M,=mnq/2, ¢=1,2,3 .. .. (3.38)
The projection coefficient is given by
28q0 sinm(6g—qo)
=Jo . (3.39)
8g+qo m(3¢—qo)
where
d=2,/2. (3.40)

In determining J, the following integrals have been

HEIGHT s

[)]¥
-1 -05 0 05 1
HEATING ()}

Fi1c. 3. Projection of vertical profile of heating (3) into vertical
normal modes (M) under a lid (z=2,).
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used :

21 2z 2z
/ sirg(qmr—)sin(q'r——)dz =
o’ %1 3

2t z 2 2, sinw(g—q’)
/ sin(qw—)sin(g'r—)dz =
. 7 o 2 wg—q)

8go  sinw(go—dq’)
2¢
go+8¢ w(g0—3q")
(3.41)
(3.42)
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Fig. 3 illustrates how the heating confined in the
lower layer is projected into various vertical normal
modes. '

The solution of (3.6) is readily given as

k o JgsinM gz

gHh o=1 m?—M 2 ’

w(z) =

(3.43)

This solution shows explicitly that singular resonance
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occurs under the lid condition, if m coincides with
M, of the vertical normal modes. In order to remove
the singularity at m=M, in (3.43), we shall add
to m a small imaginary part which may physically
be interpreted as the effect of Newtonian cooling or
Rayleigh friction. It is noted that (3.43) has a vertical
variation of phase, since m is complex, although a
single vertical mode with real M, does not tilt.

Fig. 4 shows that resonant peaks occur at m=M,
and that a maximum response occurs for the vertical
normal mode which is associated with the vertical
scale of the forcing (M,=M) and hence the largest
projection coefficient (/). The higher the lid is raised,
the more vertical modes and hence more resonant
peaks emerge, until the envelope curve of the nu-
merous resonant peaks coincides with the response
curve (Fig. 2) given by the explicit radiation condition.

Fig. 4 may give the impression that the resonant
peak occurs at m/m= 10 km at whatever level the lid
is placed. This is merely becausc the lid is placed at
a multiple of the vertical scale (z;) of the forcing,
For example, as the lid is raised from 20 to 30 km,
the resonant peak for z,=20 km continuously shifts
(illustrated by the arrows in Fig. 4) toward large
vertical wavelength until it is replaced by another
peak for z=230 km emerging from small vertical
wavelength. The major peak for z,=20 km is asso-
ciated with the second vertical normal mode (M,),
while the major peak for 2,=30 km is associated with
the third vertical normal mode (M3). These normal
modes have a different humber {(¢) of nodes but have
the same value of vertical scale (z:;/¢).

It is also mentioned that if the forcing has more
nodes (go>1) the envelope curve becomes sharper
(not illustrated), since the projection coefficients be-
come particularly large in the neighborhood of M ;= M.

In Fig. 4 the response curve was plotted as a func-
tion of the vertical wavenumber m which in turn
varies with the frequency. If the response curve is
plotted directly as a function of the frequency, the
peak would look sharper when the frequency varies
slowly with the vertical wavenumber than when the
frequency varies rapidly, although the peak value
does not change. The variation of the frequency with
the vertical wavenumber is given by the dispersion
relation (3.3) of gravity waves with (3.4) as

YOSHIKAZU HAYASHI

189

According to this relation dw/dm at m=M is pro-
portional to & or w. This means that in the neighbor-
hood of the resonant peak at m= M, the frequency
changes slowly if £ or w is small. Thus in the case
of gravity waves the peak would look sharper for
small £ or w.

Hereafter we shall refer to —dw/dm as vertical
group velocity, although it is not physically the speed
of energy propagation that makes a frequency spectral
peak sharp.

Our conclusion so far may be summarized as follows.
A “non-singular resonance” associated with large
finite amplitude occurs under the radiation condition,
when the vertical scale of the wave coincides with
that of the forcing confined in a lower layer. The
frequency-spectral peak becomes sharp for waves asso-
ciated with a small variation of frequency with vertical
wavenumber. On the other hand, a singular resonance
associated with infinitely large amplitude occurs under
a lid condition, when a multiple of the vertical scale
of the wave coincides with the height of the lid, a
maximum response occurring for the vertical scale
close to that of the forcing in the presence of dissipa-
tion. Although these conclusions are based on a gravity
wave model in the absence of the Coriolis force, they
are also valid in the presence of the Coriolis force
except that the dispersion relation is different.

Our “non-singular resonance” is different from the
frequency condensation point in wavenumber space
discussed by Blandford (1966) and Munk and Phillips
(1968) for ocean waves. In the case of the condensa-
tion point, the energy source has no distinct scale
and the energy is concentrated at a frequency at
which the group velocity becomes zero. In the case
of our non-singular resonance under the radiation
condition, the forcing has its own distinct vertical
scale and the energy is concentrated at a frequency
corresponding to the vertical scale of the forcing, as
long as the change of frequency with vertical wave-
number is sufficiently small.

b. Equatorial wave model

Next we shall examine the resonance of equatorial
waves on an equatorial beta plane.

1) ISOTHERMAL ATMOSPHERE

g\t k If we assume the heating of the form
wz:i:(—) -, (3.44) . )
H/ |m) J=24iT 3P () sin(Mz)ei(wtths)
; dw g\t k w - Ju=0 for z>z, (3.46)
_._zi(u) _ELe (3.45) , )
dm H/ mim| m the solutions to (2.13)—(2.17) are given by
' 1 m 1 M
% Uy) [(zm ————)R},;Ze"""] —[(zM ——)] e 2]
2H _m 2H M
v|=—{ V() , (3.47)
¢ Py —iw (m2— M?)

K
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1 1 m 1 1 M
, [(im———._*__)R’l'LZeimz] _I:(iM_____*__)JMeiMz]
2H h m 2H & M
w=—P(y) , (3.48)
gH
—(m2—M?)

K

where % is related to m of the homogeneous solu-
tion as

(5 (50)

H 1 1
o)
K vyH 2H (3.49)

or equivalently
K 1

mi=———

" Hh 4H?

The horizontal structure functions satisfy the equa-
torial beta plane equations

1wl (y) ~ByV (y)+ikP (y) =0)

~ dP(y)
ByU(y)+in(y)+7y—=O

y . (3.50) |

; dviy) iw
ikU (y)+——+—P(y)=0

dy gh J

The eigensolutions of (3.50) with the

condition .
U(y), V), P(y)—0 as y—+o . (3.51)

are given by Matsuno (1966) and Lindzen and Mat-
suno (1968) as

V. (y) =Ha(eby) exp[ —(¢/2)y"],

boundary

(3.52)

Unly)= i(ghe)? { nH ,1(ely) | 2Hny1(ely) }
o 11— (k/w)(gh)? 1+ (k/w)(gh)}
Xexp[ —(¢/2)y], (3.53)
ighet( nHoa(ety)  3Hap(ely)
Pu) =] - |
w 1= (k/w)(gh)?t 14 (k/w)(gh)!
Xexp[—(e/2)y%], (3.54)
where H n(yS are Hermite’s polynomial and
e=8/(gh)}. (3.55)

The realistic heating function can be expanded
horizontally by these eigenfunctions. Here we shall
only examine a resonant response to a normal com-
ponent of the heating. These eigenfunctions will be
normalized by the latitudinal maximum value of P(y)

so that the latitudinal maximum of the heating (3.46)
is given the same value for different #, , & and 4.
The eigenvalue % is given by

B(2n+1)

il e
262 (8/kw)—1]
20\%/ k \%/ B i
<[ +-(5) G ()]
B 2n+1/ \kw
forn=1,2,3,.... (3.56)
For mixed Rossby-gravity waves (#=0) and Kelvin
wave (n= —1), k is given by
2
(gho)t= (3.57)
. B—kw
. w
(gh—l)f=‘—;- - (3.58)

In order to include the effect of Newtonian cooling
and Rayleigh friction, w will be replaced by w—ia
(1/a=15 days) except for e*!. The vertical group
velocities for #=0 and n= —1 are given by

dw' fH\? m w® '
___=(_) - , for =0 (3.59)
dm \gk/ (mP+1H):28—kw

dw (gx)% m k
dm  \H/] (miH-2) (m2+3H2

for (3.60)

The frequency and the vertical group velocity of
the equatorial normal modes are shown in Fig. 5 as
a function of wavenumber for the observed vertical
wavelength (2r/m=10 km). The vertical group ve-
locity is small for low-frequency Rossby, mixed
Rossby-gravity, and Kelvin waves, while it is large
for high-frequency gravity waves.

The frequency and the vertical group velocity for
wavenumber 4 as a function of vertical wavenumber
is given in Fig. 6. It is seen that the frequency and
the vertical group velocity decrease as vertical wave-
number increases.

From our previous discussion, small vertical scale
equatorial waves with small vertical group velocity
are expected to exhibit a sharp resonant peak even
under the radiation condition, since the variation of
their frequency with vertical wavenumber is small.

n=—1.
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Fic. 5. Period and vertical group velocity of equatorial normal modes as a function of wavenumber
for observed vertical wavelength (2z/m=10 km).

¥ig. 7 shows the frequency response curve and the
reflection coefficient of mixed Rossby-gravity wave
(r=0) with wavenumber 4 for various heights of
the lid. Two resonant peaks are seen. The major
peak at a period of 3.3 days corresponds to the internal
vertical mode with the vertical scale of the heating.
The minor peak with a period of 2.3 days corresponds
to external free oscillations, explained as follows.

The determinant of the algebraic equation for R, is

1 1
(im—-——f-f-;)e“f’"“, for R2Z,=0 (3.61)

[An} =
1 1
(zm——-{-—)smmz,, for w=0 at z=32,
H }
(3.62)
For both the upper boundary conditions, this de-
terminant vanishes when
) 1 1
im———t—=0. (3.63)
2 &
Such % is given by (3.63) and (3.49) as
h=~vH. (3.64)

This corresponds to the eigenvalue of an external
free oscillation in an isothermal atmosphere. If 2=yH
the algebraic equation has a solution which involves
1/[im— 2H)"'4+ k] in RY3,. As h—yH, R%% becomes
infinite and #, », » become infinite. However, w does
not become infinite, since RYZ, is multiplied by
[im— (2H)"'+h~] in (3.48). It is mentioned that
associated with the external free oscillation is iden-
tically zero. In Section 3a resonance for external
waves has been ruled out by the approximation (3.5).

Fig. 7 also shows that the resonant peak of mixed
Rossby-gravity waves under a lid placed at the 30 km
level does not significantly change even if the lid is
raised higher. Also the reflection coefficient (Fig. 7
right) is small. This assures that mixed Rossby-
gravity waves simulated by a general circulation model
are not spurious resonant waves resulting from an
artificial reflection at the top of a finite-difference
model.

Fig. 8 shows the resonant frequency and the reso-
nant amplitude (kinetic energy at 15 km over the
equator) of equatorial normal modes under the radia-
tion condition as a function of wavenumber. In gen-
eral, the lower the frequency, the larger the resonant
response. This is because # and v» (but not w) at
m= M increase with descreasing frequency as inferred
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F1c. 6. Frequency and vertical group velocity of equatorial normal modes as a function of
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from (3.47). Also, the lower the frequency, the sharper
the frequency-spectral peak (not illustrated), since the
vertical group velocity is smaller (see Fig. 5). It should
be noted that Rossby wave (n=1) and Kelvin wave
‘(= —1) attain their maximum response at wave-
number 1. This feature agrees with the spectral anal-
ysis of the GFDL general circulation model (Hayashi,
1974). On the other hand, mixed Rossby-gravity waves
(n=0) attain their maximum response at wave-
number 6 ‘which is a little higher than the observed
wavenumber 4. However, this preferred wavenumber
and period decrease at higher levels (not illustrated).
This feature is explained as follows. The amplitude
decays with height above the level of the forcing due
to the dissipation. Mixed Rossby-gravity waves with
higher wavenumbers are associated with smaller ver-
tical group velocity (see Fig. 5) and hence are at-
tenuated more rapidly with height although their
spectral peak is sharper. It is mentioned that in the
absence of dissipation the resonant amplitude of mixed
Rossby-gravity waves increases monotonically with
wavenumber, since the frequency decreases.

2) REALISTIC VERTICAL DISTRIBUTION OF STATIC
STABILITY AND HEATING

It is of interest to compare the resonant mixed
Rossby-gravity waves with the observed VYanai-

Maruyama waves or mixed Rossby-gravity waves
simulated by a general circulation model. For this
purpose we should use realistic vertical profiles of
static stability and heating which affect the vertical
wavenumber which in turn determines the resonant

frequency.
The vertical structure equation in p-coordinates
d*w (P ) Sp ﬂ
F—w(p)=— J(p) (3.65)
ap*  gh ghCypp

[where w(p) is the vertical p-velocity], is solved nu-
merically with a vertical resolution of 1 km up to
60 km level, using realistic stability (S,) based on
Hayashi (1970) and the U. S. Standard Atmosphere
(1966) up to 60 km. The boundary condition is

w(p)=0 at p=0 and 1000 mb. (3.66)

This upper boundary condition is equivalent to a free
surface condition (dp/di=0) and reflects energy at
2=0 for a finite-depth fluid or a finite-difference
model in the absence of dissipation. The vertical profile
of heating is based on the GFDL general circulation
model (see Hayashi, 1974).

Fig. 9 shows that the resonant period of mixed
Rossby-gravity waves for wavenumber 4 is 3.3 days
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MIXED ROSSBY-GRAVITY WAVE (S=4)
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Fic. 7. Kinetic energy (left) of mixed Rossby-gravity waves (n=0, s=4) at
z=10 km over the equator and reflection coefficient (right) as a function of period
for various heights of lid, Reflection coefficient of external wave is defined as 1.0.

which is somewhat shorter than the observed 4-5 days

or the eigenvalue (4 days) of a CISK model (Hayashi,

1970). The resonant peak for the external mode does
not ‘appear at a 2.3-day period because the lower
boundary condition (3.66) is not valid for external
waves.

Next we shall show that the vertical structure of
the resonant mixed Rossby-gravity waves does not
agree with observations. First it should be noted that
the vertical structure of non-resonant mixed Rossby-
gravity waves with the observed period of 4.6 days
(Fig. 10a) looks similar to that of mixed Rossby-
gravity waves (wavenumber 4, period 4.6 days) simu-
lated by a GFDL general circulation model shown in
Fig. 11. It is also similar to that of the observed
Yanai-Maruyama waves (see Nitta, 1972) and the

CISK waves (see Yamasaki, 1969; Hayashi, 1970).
On the other hand, the vertical tilt of the resonant
mixed Rossby-gravity waves with a period of 3.3 days
(Fig. 10b) is smaller than that of the waves with
the observed period. It is important to note that the
heating and the vertical velocity in the troposphere
are in quadrature for the resonant wave (Fig. 10b),
while they are nearly in phase for the waves with the
observed period (Fig. 10a).

The fact that the vertical velocity of internal waves
and the heating are nearly in quadrature at resonance
can be confirmed by the resonant solution in an iso-
thermal atmosphere (3.25) since

K 212
—J y sinM z,
gHh 2w

w!(z) = —1 for 0<z<z. 3.67)
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modes at z=15 km under the radiation condition as a function of zonal wavenumber (x/m=10 km,

1/a=15 days).

It is also inferred from (3.43), since

lim (m,+im)i— M2~ 2iMms,

me—~M

(3.68)

and it is consistent with the balance of the available
potential energy equation of the present model as

- .
MIXED ROSSBY-GRAVITY WAVE (S=4)
KINETIC ENERGY
(15km, EQUATOR)
] —
olL | 1 )
60 10 5 4 33 25 2

PERIOD (day)

Fic. 9. Kinetic energy of mixed Rossby-gravity waves (z=0,
s=4) at z=15 km over the equator for realistic vertical profile
of static stability and heating.
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given by
R
—w'd = J'a (3.69)
SPCPP

At resonance «’ becomes large for internal waves,
while J’ is fixed. In order for the left-hand and right-
hand terms to balance, J’ and o' should be nearly
in phase with each other, while ' and o' should be
nearly in quadrature. If follows that J’ and &’ are in
quadrature with «'. It should be remembered that
this phase relationship holds only for an equatorial
normal mode component and not for an arbitrary
meridional profile of heating which consists of several
normal modes associated with different resonant fre-
quencies. It does not hold for resonant external waves
[Eq. (3.64)], since their vertical velocity does not
become large even at resonance:

One may wonder whether such a phase relationship
is consistent with the thermodynamic equation

o’ R
, —_SP“"l—__ ]I7
at Cpp

(3.70)

even if 9a//3¢ and -’ are both in quadrature with J'.
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NON-RESONANT WAVE (S=4, PERIOD=4.6 DAY)
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However, at resonance do’/df and &’ cancel each other
to be in phase with J'. For the waves with the ob-
served period, da’/at is small and S’ almost balances
with J’. In the lower troposphere (see Fig. 10a) J” and
—w’ are in phase, and J' and &' are in quadrature,
while in the upper troposphere J' and —«’ are not
perfectly in phase and J’ and o’ become in phase.

In conclusion, this section has proven that although
the resonance of equatorial waves to tropospheric
thermal forcing is not suppressed by the radiation
condition, the vertical structure does not agree with
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Fic. 10a. Vertical profile of amplitude and phase angle of non-resonant mixed
Rossby-gravity waves (wavenumber 4, period 4.6 days). J=heating, w=vertical,
p-velocity, ¢=gcopotential, T =temperature, 1/a =15 days.

observations. The implications of this conclusion will
be discussed in Section 5.

4. Lateral forcing

In this section we shall examine the resonance asso-
ciated with mid-latitude forcing by imposing the ra-
diation condition.

a. Gravity wave model

For the sake of simplicity we shall neglect the
Coriolis parameter and prove that the resonance to

RESONANT WAVE (S=4, PERIOD=3.3 DAY)
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Fi16. 10b. As in Fig. 10a except for resonant waves (period 3.3 days).
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F16. 11. Vertical profile of amplitude and phase difference of mixed Rossby-
gravity waves (wavenumber 4, period 4.6 days, westward moving) at 14.4°N
simulated by GFDL general circulation model during the period April through
September. J=diabatic heating (convective heating and sensible heat from the

' . surface).

the lateral forcing is associated with finite amplitude

“under the radiation condition.

The lateral forcing at y=dy, is assumed to be
symmetric with respect to the equator and propa-

gating vertically as
9= Re*Mztkztowt)
The lower boundary condition is

w=0 at z=0.

(4.1)

(4.2)

The complete solutions of (2.13)-(2.17) for J=0, f=0
satisfying the radiation condition are given by

p=— ( > vn—vo>/cos£oya,

n=1

w=— ( > wn—wo)/cosloyb,

n=1

where

Vp= Rn cos (lny) ei(mnz+kz+ut)’

(4.3)
(4.4)

4.5)

| (4.6)

(4.7)

w™H  sinl,y
W= — Rn (im"_f_u)ei(mn#krfut)’
£x In
for n=0,1,2...,
1 1
yH 2H

In (4.6) the following relation given by (3.49) has

been used:

’

K 1 1 1\
H 2H h, /i 2H

In the above solutions, v, matches with the lateral
forcing at y= %y, as

) Ro= R, Mmo= M (49)
The dispersion relation gives Iy as
H 1
l02=—w2<M2+—) —k2 (4.10)
g 4H*

On the other hand, », (#2>1) are normal mode solu-
tions in the horizontal as

" 9,=0 at y=Zys. (4.11)

The lower boundary condition is satisfied by we
together with w, (n2>1) as

©

Z wn—‘ZU():O

n=1

at z=0. (4.12)

It is mentioned that these normal mode solutions
(n21) do not appear in the analytical solution of
Lamb (1973) who did not impose the radiation con-
dition rigorously. From (4.11) we have

r2n—1
ly=— . (4.13)
2 Vb
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The dispersion relation gives m, as

e L2+ 1
M ——— = . (4.14)
H o 42
¥rom (4.12) we have
o 51 nl,y i
(imptu)= Ro (Mno-l-,u). (4.15)
nsl n 0

Tnverting (4.15), R, is given explicitly as
imetu 2, sin(l.—lo)ys _
Ru= Ry~ - (4.16)
zmn_ll"ﬂ ln’i’“lﬂ (lﬂ _lﬂ)yb

Rewriting (4.10) by combining with (4.14), we have

It

H
l2—l2= ——wt(m,2— Mz) .
8K

(4.17)

From (4.17) we see that

If m.(kw)=M, then ly=1I, and coslgy,=0. (4.18)

This means that if 2 and w of the forcing are such
that the vertical wavenumber (m,) of one of the
normal mode solutions (v,) matches the vertical wave-
number (M) of the forcing, the denominator of v
vanishes.

On the other hand, (4.16) gives

If m,(w,k)=M, then

Ry, for n=r
R,= (4.19)
0, for wnsr
Therefore

©

3 v,—w=0 for m,(wk)=M.

n=i

(4.20)

This proves that the resonance® to the lateral forcing
propagating vertically is associated with finite am-
plitude under the radiation condition. The sharpness
of the frequency—spectral peak depends on dw/dm.
For a forcing confined in a lower layer, the solution
in the lower layer consists of both upward and down-
ward -propagating waves and is matched with an
upward propagating wave in the upper layer. It may
similarly be proven that a non-singular resonance
occurs when the vertical scale of the wave in the
upper layer coincides with that of the lateral forcing
in the lower layer.

6 This resonant solution may be obtained either by L’Hopital’s
rule or directly from™ (2.13)-(2.17) by assuming the solution of
the form

v=A (y sinlgy)e"¥=-+B cosley(ze™=) Z Cr cosl,,ve*M nZ,

a~l
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b. Equatorial wave model

Now we shall examine the resonance of tropical
waves to mid-latitude forcing under the radiation
condition on an equatorial beta-plane. It is easier to
use the vertical expansion method to solve this prob-
lem than the vertical matching method.

The middle latitude forcing at y= Xy, is assumed
to be

R cos(Mz)ei®=tet) for 0<z< 3
o= ., (4.21)
0, for 2:<2z< 3,
where
Mo= TqO/Zl. (422)

This forcing is expanded in terms of the vertical normal
modes. The complete solutions of (2.13)-(2.17) under
a lid condition for /=0 are given by

u R Uq(y)
vl =3 V() | cos(M jz)eihrtet) (4.23)
g=1 Vq(yb)
Py(y)
1wH «
0=— Pq(y)qu1n(qu)e"’”+‘”) (4.24)
gr o=t q(}’b
where
qmr
My=—, (4.25)
2
28q sinm(8g—qo)
R,= , (4.26)
q+q0/8 w(8¢—qo)
8=21/z.. @.27)

In (4.24) the following relation for a homogeneous
solution has been used:

11 1
(one543)/ (=3z)
20 2H

H 11 H
= ———(iMq-l———————) ~—iM,  (4.28)
K ~vH 2H K

The approximation in (4.28) does not hold for small
M, but the projection coefficient R, is small when

M, is small. In the above, the horizontal structure
functions are as follows (see Koss, 1967):

Vo(y)=exp[ —(e/2)y* 1M Y, (4.29)
(ghq)‘}
Pyyy=—-"  Byexp[— (e,/2)y"
y ik[w/k—{-(ghq)%jﬂye pl— (ea/2)y*]
4a,(w/k
X[M __a(_[_)_le], (4.30)
w/k—(gkq)"’
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(y) [ ( /2) 2] 2 T T T T T T T T 05
Ug(p)=—————"—ByexpL—(e/2)y
- ik[w/k+ (ghe)t]
4a,(w/k)
X[Ml—i————q———M?:I, (4.31)

w/k—(ghe)?

where

Mi=M (a0 h,600") } .

M2=M(all+1’ %) 6«)’2)
which are the confluent hypergeometric functions and

K

R ——— (4.33)
H (M 1)
B
€g=—— (4.34)
(ghq)“
k 2\ (ghy)}
4aq=1—(6———k2+ﬁ—)(g o . 4.35)
w ghe/ B

If —2a,=# (integer) the above horizontal structure
functions coincide with (3.52)-(3.54) as discussed by
Rosenthal (1965). A singular resonance occurs when
aq{w,k) is such that V,(ys) vanishes. In order to
avoid this singularity, we shall add small dissipation
and replace w by w—ia except for ¢*t. Then a, and
Vo(y) become complex. Since V,(y) is complex, v in
(4.23) changes its phase with height, although the
single vertical normal mode component of » does not
change its phase since M is real.

Let us compare our model with the analytical model
of Lamb (1973). Instead of imposing an upper bound-
ary condition, Lamb (1973) assumed that the vertical
structure of the forced wave is everywhere the same
as that of the forcing characterized by a complex
vertical wavenumber (M) which gives a net upward
flux of energy as follows.

. The vertical structure of her solution is given by
a single vertical wavenumber as

w=2{ sinMz

= ¢MregmiMiz —giMrzgMiz for 02 2. (4.36)
If M,;<0, the first term dominates the second, giving
net upward flux of energy. However, there is no
guarantee that the energy leaking from z=z, will not
further be reflected from above, since the solution
(4.36) which amplifies indefinitely -with height is not
valid above z=z;.

In our problem we shall place the lid as high as
100 km to simulate the radiation condition. The
forcing is assumed to be white noise and has the ver-
tical wavelength (2r/M) of 10 km, vanishing above
10 km. The lateral boundary is placed at 24° latitude.
This model is similar to the finite-difference model of
Lamb (1973). ’
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Fic. 12a. Amplitude square of meridional component of wind
at z=5 km over the equator as a function of wavenumber and
period (westward moving).

Fig. 12a shows that a maximum response of the
v component at the equator occurs at wavenumber 4
and a period of 4 days. This result is not altered
even if the lid is raised higher (not illustrated). This
confirms that even under the radiation condition, the
resonant peak found by Mak (1969) and Lamb (1973)
still remain as a significant spectral peak.

However, Fig. 12b shows that a resonant peak occurs
even at the lateral boundary for p as a feedback to
the imposed meridional component which is assumed
to have no spectral peak. The zonal component shows
a response curve similar to Fig. 12b (not illustrated).

Moreover, Fig. 13 shows that % and p of the most
resonant wave increases toward the lateral boundary,
while v decays away from the equator. Also the phase
line of p tilts in such a way as to be in phase or 180°
out of phase with » at the boundary. This phase
relation occurs along the maximum response line in
Fig. 12b. Thus the large meridional flux of energy

05
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Fi1c. 12b. As in Fig. 12a except for pressure at 24° latitude.
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¥i16. 13. Latitudinal profiles of amplitude and phase angle of resonant equatorial wave with
wavenumber 4 and period of 4.3 days at 5 km level.
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Fic. 14. Latitudinal profiles of amplitude and phase difference
between ¢ and v of disturbances (wavenumber 4; period 4.6 days,
westward moving) at 190 mb simulated by GFDL general
circulation model during the period April through September.

associated with the resonant wave is due to this phase
relation as well as the large amplitude of p. It is
mentioned that the pressure is not in geostrophic bal-
ance with the meridional component of the mid-latitude
forcing.

This resonant wave corresponds to the =0 “invalid”
normal mode on an equatorial beta plane with west-
ward phase velocity [w/k= (gh)¥] rather than to
the »=0 mixed Rossby-gravity waves. This mode is
not accepted as a normal mode over a sphere, since
# and p do not decay with latitude as pointed out
by Matsuno (1966). However, it is a legitimate normal
mode? of a tropical channel model and appears in the
dispersion relation curve of Mak (1969).

It will be of interest to see whether these charac-
teristics of the resonant equatorial waves are seen
in a general circulation model. Fig. 14 shows the
horizontal structure of disturbances with wave-
number 4 and period of 4.6 days moving westward
at 190 mb in the GFDL general circulation model.
At higher levels than 190 mb these disturbances take
the form of normal mode mixed Rossby-gravity waves
(see Hayashi, 1974). In contrast to the resonant
equatorial waves, the # component in Fig. 14 does
not increase with latitude, although it increases with

7 This mode may be interpreted as a westward-moving anti-
symmetric Kelvin wave coasting along the boundaries away from
the equator (see Lindzen, 1970).
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latitude for long-period oscillations (not illustrated).
The reason why Mak (1969) found agreement with
observation may be that he compared the variance
of the # component which is dominated by long-period
oscillations. Fig. 14 also shows that the geopotential
height is nearly in quadrature with the » component
throughout the latitudes. Furthermore, the geopoten-
tial height and the meridional flux of energy do not
exhibit such sharp spectra with westward phase ve-
locity in the middle latitudes (not illustrated) as
expected from the resonant theory.

5. Conclusions and remarks

Based on an equatorial beta-plane model without
wind shear, the following conclusions have been made
concerning the response of equatorial internal waves
to a thermal or a lateral forcing confined in the
troposphere:

1) A “non-singular resonance” associated with large
finite amplitude occurs under the radiation condition,
when the vertical scale of the wave in a free isothermal
~ atmosphere coincides with that of the forcing. On the
other hand, a “singular resonance” associated with in-
finite amplitude occurs under. a lid condition, when
a multiple of the vertical scale of the wave coincides
with the height of the lid, a maximum response oc-
curring in the presence of dissipation for the vertical
scale-of the wave close to that of the forcing.

2) A frequency spectral peak due to a non-singular
resonance is sharp for waves associated with a small
change of frequency-with vertical wavenumber such
as equatorial waves with small vertical scale.

3) The resonant period of thermally forced mixed
Rossby-gravity waves for wavenumber 4 is 3.3 days
and the vertical wavelength in the stratosphere is
about 15 km whereas the observed period and vertical
wavelength are ~4-5 days and ~5-10 km, respectively.

4) The heating and the temperature are nearly in
quadrature with the vertical velocity associated with
the resonant internal equatorial-normal mode contrary
to observations, while they are in phase with the
vertical velocity of non-resonant mixed Rossby-gravity
waves with period of 4.6 days.

5) A maximum resonant response to symmetric
lateral forcing occurs at wavenumber 4 and 4-day
period, if the vertical wavelength of the forcing is
10 km. :

6) This resonant wave is characterized by the in-
crease of pressure and zonal component with latitude.
At the lateral boundary the pressure exhibits a sharp
resonant peak for westward phase velocity and is in
phase or 180° out of phase with the meridional com-
ponent contrary to the general circulation model.

7) The equatorial waves simulated by a general
circulation model are not spurious’ resonant waves
artificially reflected by the top of the finite-difference
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model and will not disappear even if the radiation
condition is imposed. ’

Based upon the present results it is difficult to
interpret the observed Yanai-Maruyama waves as
resonant waves. The reason why such a resonance
does not occur in the tropical atmosphere may be
that the resonant waves do not conform to some
constraint between the forcing and its feedback. In the
case of the CISK theory, for example, the heating is
parameterized in such a way that the convective
heating is in phase with the vertical velocity at the
top of the boundary layer. This is why the eigen-
frequency of a CISK model does not coincide with
the resonant frequency of a dry atmosphere. In the
case of a general circulation model with the moist
convective adjustment, the convective heating is also
implicitly related to the vertical velocity through the
horizontal convergence of moisture. In the case of
mid-latitude forcing, it is required dynamically that
the pressure of equatorial waves be continuous with
that of mid-latitude disturbances across the latitude
where the meridional component of the mid-latitude
disturbances is imposed. It is likely that the forcing
is not associated with a component having such fre-
quency, vertical and horizontal scale as to cause
resonance.

In this model the meridional structure of the heating
was assumed to take the form of an equatorial normal
mode. Therefore the meridional structure of the ver-
tical velocity necessarily takes the same form as that
of the heating for all wavenumbers and frequencies.
Furthermore the meridional expanse of the equatorial
normal mode also varies slowly with the equivalent
depth which in turn varies with wavenumber and
frequency. It is of importance to re-examine the reso-
nant response and the relations between the imposed
heating and the vertical velocity by a model with
realistic horizontal distribution of heating and wind
shear.
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APPENDIX
List of Symbols

x,y,% zonal, meridional and vertical coordinates
uv,w eastward, northward and vertical velocity
P pressure
P density
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external heat excitation per unit mass per unit
time

acceleration by gravity

gas constant

specific heat at constant pressure

specific heat at constant volume

Cp/ C, (=14)

y—10/y

Coriolis parameter

scale height

Ry 2 00 s
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