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A Testing Framework for Identifying Susceptibility Genes in the Presence
of Epistasis
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An efficient testing strategy called the “focused interaction testing framework” (FITF) was developed to identify
susceptibility genes involved in epistatic interactions for case-control studies of candidate genes. In the FITF ap-
proach, likelihood-ratio tests are performed in stages that increase in the order of interaction considered. Joint tests
of main effects and interactions are performed conditional on significant lower-order effects. A reduction in the
number of tests performed is achieved by prescreening gene combinations with a goodness-of-fit x2 statistic that
depends on association among candidate genes in the pooled case-control group. Multiple testing is accounted for
by controlling false-discovery rates. Simulation analysis demonstrated that the FITF approach is more powerful
than marginal tests of candidate genes. FITF also outperformed multifactor dimensionality reduction when inter-
actions involved additive, dominant, or recessive genes. In an application to asthma case-control data from the
Children’s Health Study, FITF identified a significant multilocus effect between the nicotinamide adenine dinucleotide
(phosphate) reduced:quinone oxidoreductase gene (NQO1), myeloperoxidase gene (MPO), and catalase gene (CAT)
(unadjusted ), three genes that are involved in the oxidative stress pathway. In an independent data setP p .00026
consisting primarily of African American and Asian American children, these three genes also showed a significant
association with asthma status ( ).P p .0008
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The importance of accounting for gene-gene interactions
in the search for susceptibility genes for complex diseases
has been widely suggested to explain difficulties in rep-
licating significant findings. Recent human and animal
studies of complex diseases have identified susceptibility
genes that marginally contribute to a common trait, to
a minor extent only or not at all, but that interact sig-
nificantly in combined analyses (Kuida and Beier 2000;
Naber et al. 2000; Williams et al. 2000; Hsueh et al.
2001; Kim et al. 2001; Tripodis et al. 2001; Ukkola et
al. 2001; Barlassina et al. 2002; De Miglio et al. 2004;
Yanchina et al. 2004; Yang et al. 2004; Aston et al. 2005;
Dong et al. 2005; Roldan et al. 2005). Several investi-
gators have found alleles that have opposite effects de-
pending on the genetic background (Balmain and Harris
2000; Staessen et al. 2001), which further raises the like-
lihood of overlooking epistatic susceptibility genes in
single-gene analyses (Culverhouse 2002).

Accounting for interactions is not a trivial task, be-
cause of the serious multiple-testing problem created by
the large number of possible interactions for even a rel-
atively small set of candidate genes. For example, in the
Children’s Health Study (CHS), a prospective study of
children’s respiratory health, we are studying ∼20 can-
didate genes related to oxidative stress and inflammatory
pathways (Gilliland et al. 1999). These 20 genes yield
190 possible two-gene interactions and 1,140 possible

three-gene interactions. If the multiple testing problem
is ignored, type I error rates will be greatly inflated,
leading to false conclusions and to studies that are dif-
ficult to replicate.

Foulkes et al. (2005) applied a combined dimension-
reduction and mixed-modeling approach to four SNPs
in three lipase genes to assess risk of cardiovascular
disease. Although their approach accounts for possi-
ble interactions and allows controlling for possible con-
founders, it is unclear what the performance or proper
implementation would be for a larger set of candidates.
Devlin et al. (2003) showed that type I error rates were
extremely inflated for model-selection methods such as
the Lasso (Tibshirani 1996). Another multilocus ap-
proach is the set-association approach (Hoh et al. 2001),
which uses sums of statistics based on locus-specific as-
sociation and Hardy-Weinberg disequilibrium to test a
global null hypothesis. This approach may be powerful
for finding many small effects that combine to have an
important effect on the phenotype but does not explicitly
account for possible epistatic interactions.

Several data-mining approaches have been developed
to address the problem of identifying susceptibility genes
involved in epistatic interactions (Ritchie et al. 2001,
2003b; Moore and Hahn 2002; Bastone et al. 2004;
Cook et al. 2004; Culverhouse et al. 2004; Foulkes et
al. 2004); however, their performance may be limited
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in the presence of main effects or genetic heterogeneity.
Also, properties related to type I error rates and power
have not been thoroughly compared with more tradi-
tional approaches. A data-mining approach that has gen-
erated some recent interest is multifactor dimensionality
reduction (MDR) (Ritchie et al. 2001, 2003a; Hahn et
al. 2003; Bastone et al. 2004; Cho et al. 2004; Coffey
et al. 2004; Hahn and Moore 2004; Moore 2004; Tsai
et al. 2004; Williams et al. 2004; Qin et al. 2005; Soares
et al. 2005). MDR is a nonparametric method designed
to detect genes involved in high-order interactions in
case-control studies (Ritchie et al. 2001). To implement
this method, the investigator must first specify the num-
ber of interacting genes, k, to consider (throughout this
article, we will consider three genes). The data are di-
vided into 10 equal parts, and the phenotypes of subjects
in each 1/10 of the data are predicted by the MDR model
derived from the remaining 9/10 of the data. For each
9/10 of the data, several steps are performed. For every
set of k genes, MDR classifies each multilocus genotype
as “high risk” or “low risk,” depending on the ratio of
cases to controls. The subjects in the “high risk” groups
are then pooled. The k-gene set that maximizes the cases:
controls ratio in the pooled “high risk” group is selected
as the “best” gene set. Disease status for subjects in the
remaining 1/10 of the data is then predicted on the basis
of genotype risk for the “best” gene set. The overall
“best” gene set is determined by the data split with the
lowest prediction error. Prediction error is averaged over
the 10 data splits and is used as a measure of predictive
power. Another useful measure, termed “consistency,”
is the number of data splits with the same “best” set of
factors.

We developed a new search strategy designed to iden-
tify susceptibility genes among a group of candidate
genes in the presence of gene-gene interactions. The can-
didate genes may be selected for their role in a specific
biochemical pathway or from a prior genome scan for
linkage. A powerful testing framework based on likeli-
hood-ratio tests (LRTs) is presented here that simulta-
neously tests multilocus effects across various orders of
interaction. Our search strategy also employs a screening
statistic to reduce the total number of gene sets that are
tested for multilocus effects. We present an assessment
of power and type I error from simulation analysis and
compare the method’s performance with that of MDR.
We then apply both our method and MDR to a case-
control data set from the CHS that includes 12 candidate
loci measured in asthmatic and nonasthmatic subjects.

Methods

Consider a disease phenotype, D, and a sample of cases
( ) and controls ( ) selected from some population.D p 1 D p 0
We assume that genotypes are obtained for each subject for a

set of diallelic, autosomal candidate loci. For each candidate
locus, indexed by i, j, k,…, we define a covariate, G, with
possible values 0, 1, or 2, corresponding to genotypes aa, Aa,
and AA, respectively. This defines a log-additive coding
scheme, a robust approach when the specific genetic model is
unknown (Schaid 1996). We note, however, that the methods
presented here are readily adaptable to alternative risk models
(e.g., dominant, recessive, or codominant). We adopt a logistic
model to relate genes to D. For example, the fully saturated
model for a set of three candidate genes has the form

logit[P(D p 1)] p b � bG � bG � b G0 i i j j k k

�b G G � b G G � b GGij i j ik i k jk j k

�b G GG . (1)ijk i j k

The model contains three main effects, three two-way inter-
actions, and one three-way interaction. An analogous satu-
rated model for two genes would be

logit[P(D p 1)] p b � bG � bG � b G G , (2)0 i i j j ij i j

whereas a model for a single gene would be

logit[P(D p 1)] p b � bG . (3)0 i i

LRTs can be used to identify susceptibility genes by testing the
parameters in the above models. An LRT statistic is computed
as , where is the log-likelihood of the2x p 2(L � L ) Lfull reduced full

data computed under a fully specified model and is theLreduced

log-likelihood computed under the constraint that one or more
parameters equal zero. Under the null hypothesis, this statistic
has a x2 distribution with df equal to the difference in the
number of unconstrained parameters between the full and re-
duced models. Three LRT testing strategies for identification
of genes will be considered.

Marginal Effects

The simple model in equation (3) is used to test the null
hypothesis for each candidate gene. We refer to this testb p 0i

as the marginal test of Gi, since the estimated effect from this
model, bi, represents an average of the main effect of Gi and
any interactive effects with other loci. With a total of K can-
didate genes, there are K marginal tests. The threshold for
significance is adjusted for multiple testing by controlling false-
discovery rates (FDRs) (Benjamini and Hochberg 1995), al-
though other approaches (e.g., Bonferroni adjustment) could
be adopted. In brief, Benjamini and Hochberg (1995) defined
FDR as the ratio of the number of falsely rejected null hy-
potheses to the total number of rejected null hypotheses. They
showed that the expected FDR can be controlled by a pro-
cedure that applies a cutoff to the unadjusted ordered P values,
P(1), P(2),…,P(i),…,P(m). All null hypotheses with P values at or
below cutoff t are rejected; specifically,

ia
t p max P :P � .i i( ) ( ){ }m
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Interaction Testing Framework (ITF)

In this strategy, tests are performed in a series of stages, with
an incremental increase in the highest-order interaction pa-
rameter considered at each subsequent stage. The first stage
tests the main effect of each gene, the second stage tests all
possible two-way interactions, the third stage tests all three-
way interactions, and so forth. To avoid retesting the same
effects, a test in a higher stage (e.g., test of a specific two-way
interaction in stage 2) is conditioned on any component factors
(e.g., either of the two genes involved in that two-way inter-
action) that were already declared significant in a lower stage
(e.g., stage 1). Gene sets are tested for multilocus effects,
whether or not marginal effects were found. Type I error is
controlled by dividing the overall a level by the number of
stages and allocating this adjusted a level, , to each stage.∗a

Within each stage, the threshold for significance is adjusted by
controlling FDR. The specific stages are as follows.

1. First stage. Perform marginal LRTs of bi for each of the
K candidate genes. Declare a test significant if ,∗P ! ai 1

where is the P value that corresponds to the ith LRTPi

and denotes the significance threshold for first-stage∗a1

tests corrected to control FDR. A total of K tests are
conducted in this stage.

2. Second stage. For all possible two-gene sets ( ),K(K � 1)/2
the full model (eq. [2]) is tested against the reduced model,

logit[P(D p 1)] p b � bG I() � bG I() ,0 i i j j

where is an indicator function that assumes the valueI()
1 if the corresponding term was statistically significant
in a first-stage test and 0 otherwise. Thus, if both bi and
bj were statistically significant in the first stage, the re-
duced model would be , and the interac-b � bG � bG0 i i j j

tion between Gi and Gj would be tested in a 1-df test in
this second stage. On the other hand, if neither bi nor bj

was statistically significant in the first stage, then a 3-df
test of bi, bj, and bij would be conducted in the second
stage. This selective conditioning is done to avoid retest-
ing effects that have already been declared significant.
Significance is declared if , where Pij is the P value∗P ! aij 2

that corresponds to the ijth LRT and denotes the sig-∗a2

nificance threshold for second-stage tests corrected to
control FDR.

3. Third stage. All three-gene sets are tested (the number of
tests is ) in a fashion similar to theK(K � 1)(K � 2)/6
method in stage 2. The saturated model (eq. [1]) is tested
against the reduced model,

logit[P(D p 1)] p b � bG I() � bG I()0 i i j j

�b G I() � b G G I()k k ij i j

�b G G I() � b GG I() ,ik i k jk j k

where, again, the indicator function assumes the valueI()
1 if the term was in a model that achieved statistical
significance in a previous stage and 0 otherwise. It should
be stated explicitly that a model that includes higher-order

terms would always include the component lower-order
terms.

The ITF approach described thus far can be directly generalized
to multilocus effects involving four or more genes.

Focused ITF (FITF)

It is clear that the number of tests conducted in the ITF
method can be quite large when K is large. Adjusting the type
I error for so many tests may cause an unacceptable loss in
power. We developed a method for prescreening all possible
gene sets, to focus attention on those that are most likely to
be informative in the ITF.

Let Gijk denote a multilocus genotype over a set of three
candidate genes i, j, and k. Then, by the Bayes theorem, the
probability that a case possesses the particular genotype Gijk

is

P(D p 1 dG )P(G )ijk ijkP(G dD p 1) p .ijk P(D p 1)

The factor P(Gijk) describes the population distribution of Gijk,
which, under our assumption of locus independence, is simply
a product of the corresponding genotype frequencies. If the
three loci combine to affect disease risk, willP(G FD p 1)ijk

differ from P(Gijk) by an amount that depends on the mag-
nitude of risk that Gijk confers. One might compute a measure
of difference between the observed distribution of Gijk in cases
and that expected on the basis of the product of genotype
frequencies and then focus the third stage of the ITF on only
those sets with a difference that exceeds some threshold. How-
ever, the use of only cases in this screening step will induce a
bias into the ITF because of the explicit use of disease status.
Rather, we propose to compute this difference measured with
the pooled sample of cases and controls, to avoid this bias. A
deviation from the expected prevalence of Gijk in the entire
case-control sample could be the result of a deviation from the
expected prevalence of Gijk in cases and could thus indicate
association with disease.

The measure of difference we propose to use is a x2 good-
ness-of-fit statistic that compares the observed with the ex-
pected distribution of Gijk in the combined case-control sample.
The x2 statistic is then used as the criterion by which to choose
gene combinations for inclusion in ITF—that is, only gene sets
with a calculated x2 statistic above a selected cutoff value are
analyzed. The form of the x2 statistic should match the un-
derlying assumptions of risk—in other words, for the risk
model in equation (1), the genotype groups would be chosen
to match risk levels associated with each interaction term. For
instance, there would be four genotype groups for two-gene
sets, corresponding to , 1, 2, or 4, and five ge-G # G p 0i j

notype groups for three-gene sets, corresponding to G #i

, 1, 2, 4, or 8. The x2 statistic, henceforth referredG # G p 0j k

to as the “CSS” (chi-squared subset) statistic, would then take
the form

r [n � E(n )]i iCSS p .�
E(n )ip1 i
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Table 1

Sample Size and Relative Efficiency of LRTs for Two Genes Involved
in a Gene-Gene Interaction

TEST

logit[P(D p 1)]

df Na REbSaturated Null

1 b � b G0 1 1 b0 1 130 1
2 b � b G � b G0 1 1 2 2 b0 2 90 1.44
3 b � b G � b G � b G G0 1 1 2 2 12 1 2 b0 3 73 1.78
4 b � b G � b G � b G G0 1 1 2 2 12 1 2 b � b G � b G0 1 1 2 2 1 192 .68

NOTE.—The prevalence of D was set to 0.1, and both allele frequencies were
set to 0.3. Genes G1 and G2 were assumed to be log-additive with no main
effects ( ; ) but with an interaction OR of 2 ( ). The dfb p 0 b p 0 b p log (2)1 2 12

value for a test is the difference in the number of parameters between the null
and saturated models.

a N denotes the number of case-control pairs required to achieve 80% power
with an a level of 0.05 for an LRT comparing the saturated model with the null
model.

b RE p relative efficiency p .N(test 1) /N(test i)

Here, ni is the observed number of subjects, irrespective of case
status, in the ith genotype group, and r is the total number of
genotype groups. The expected ni, E(ni), is estimated on the
basis of the sample marginal genotype frequencies of each gene.
For example, let n4 equal the observed number of subjects with

—in other words, genotype AA at locus i and BBG # G p 4i j

at locus j—then, for two-gene sets, , where2E(n ) p (n n )/N4 AA BB

N denotes the total sample size.
We emphasize the point that use of the CSS statistic to limit

the number of gene sets considered does not bias subsequent
tests. Under the global null hypothesis of independence be-
tween genotype G and phenotype D, any variable that is
strictly a function of G will also be independent of D. Specif-
ically, the reduced set of gene combinations ( ) that results∗G
from screening with the CSS statistic is strictly a function of
G, since case-control status is not used in computing CSS.
Therefore, the reduced set is also statistically independent of
D under the global null.

Simulations and Results

Proof of Concept

As an initial proof of concept, we first provide evi-
dence to show that accounting for interactions leads to
increased efficiency in tests of candidate genes. We as-
sume a model with no main effects and a two-gene in-
teraction with an odds ratio (OR) of 2.0—that is, under
equation (2), bij is set to log(2), and bi and bj are set to
zero. Phenotype prevalence was set to 10%, allele fre-
quencies were set to 0.3, power was set to 80%, and
the significance level was assumed to be 0.05 with a two-
sided alternative hypothesis. Conditional on all of these
parameter settings, the method of Longmate (2001) was
used to estimate required sample sizes for a variety of
LRTs derived from equation (2). Test 1 (see table 1)
shows the sample size required ( ) to detect G1N p 130
(or G2) by use of a standard marginal test. A 2-df test

of b1 and b2 (test 2) requires only , a 44% in-N p 90
crease in efficiency. A 3-df test of the saturated model
with both main effects and their interaction (test 3) fur-
ther increases power, providing a 78% improvement
over test 1. Interestingly, test 4, a 1-df test of the inter-
action parameter b12 alone, is less powerful than any of
the other tests. In general, this example demonstrates the
potential power of multi-df tests that include both main
and interaction effects, and these findings are the impetus
for our investigations of the ITF strategy.

Type I Error

To evaluate type I error, populations were simulated
as having 20 independent diallelic candidate genes,
G1,…,G20, with allele frequencies between 0.1 and 0.33.
A binary disease phenotype with a population preva-
lence of 10% was randomly assigned to individual sub-
jects, independent of genotype. A case-control data set
with 200 cases and 200 controls was then sampled from
the simulated population for analysis. This process was
repeated 1,000 times, and the number of replicates with
one or more false-positive tests was recorded. For the
ITF and FITF strategies, the experimentwise significance
level was set to 0.05. For these and most subsequent
analyses in this study, the CSS cutoff values for the FITF
method were set to 3 for the second stage and 6 for the
third stage. The MDR method was also used to analyze
all 1,000 null data sets. For each data set, MDR was
run on the entire group of 20 candidate genes, with the
instruction to consider sets of 3 candidate genes only.
Although it is possible to instruct MDR to consider gene
sets of sizes other than three, we chose this size in an
effort to optimize the potential power of MDR in our
comparisons, since it corresponded to the number of
genes we simulated to affect disease risk. The 5th and
95th percentiles of prediction error and consistency were



Figure 1 Histograms for scenarios 1–4. The rank of the observed CSS statistic for the true set of susceptibility genes, gene set {G1,G2,G3},
was recorded for each of the 200 simulations per risk scenario. With 20 candidate genes, there are 1,140 three-gene combinations; thus, there
were 1,140 possible ranks. Histograms were constructed for each set of the 200 ranks of gene set {G1,G2,G3} for each risk scenario. The four
risk scenarios (following the form of eq. [1]) were as follows: scenario 1, ; scenario 2, and ; scenariob p log (3) b p log (1.5) b p log (3)123 1 123

3, , , and ; and scenario 4, , , and . All other noninterceptb p log (1.5) b p log (.67) b p log (3) b p log (1.5) b p log (1.5) b p log (1.5)1 2 123 1 2 3

parameters were set to zero.
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Table 2

Frequencies of Susceptibility Genes Identified from Simulated Data Sets by Use
of Five Testing Strategies

RISK SCENARIO (ORSa)
AND TESTING STRATEGY

NO. OF SUSCEPTIBILITY GENES IDENTIFIED

Marginal 2nd Stageb 3rd Stageb Total (%)

Scenario 1 (3, 1, 1, 1):
Marginal 148 … … 148 (24.7)
ITF 97 79 43 219 (36.5)
FITF 97 90 85 272 (45.3)
MDR(e) … … … 41 (6.8)
MDR(c) … … … 20 (3.3)

Scenario 2 (3, 1.5, 1, 1):
Marginal 294 … … 294 (49.0)
ITF 242 40 16 298 (49.7)
FITF 242 62 34 338 (56.3)
MDR(e) … … … 131 (21.2)
MDR(c) … … … 31 (5.2)

Scenario 3 (3, 1.5, .67, 1):
Marginal 198 … … 198 (33.0)
ITF 160 49 19 228 (38.0)
FITF 160 60 73 293 (48.8)
MDR(e) … … … 102 (17.0)
MDR(c) … … … 38 (6.3)

Scenario 4 (1, 1.5, 1.5, 1.5):
Marginal 174 … … 174 (29.0)
ITF 109 17 6 132 (22.0)
FITF 109 17 16 142 (23.7)
MDR(e) … … … 53 (8.8)
MDR(c) … … … 30 (5.0)

NOTE.—Tests were performed on 1,000 simulated case-control data sets with 20
diallelic candidate genes and a binary phenotype. Each data set consisted of 200
cases and 200 controls. Allele frequencies were set between 0.1 and 0.33, and disease
prevalence was set to 0.1. For FITF, CSS cutoffs were set to 3 for second-stage tests
and 6 for third-stage tests. MDR(e) denotes a test using the average prediction error
for the evaluating data sets obtained from MDR software with a cutoff of 42.185%.
MDR(c) denotes a test using “consistency” of MDR results with a cutoff of 8—that
is, a consistency of 9 or 10 results in a rejected test. OR1, OR2, and OR3 denote the
ORs for the main effects of the three susceptibility genes—for example, OR p1

. OR123 denotes the OR for the interaction parameter—that is,exp (b ) OR p1 123

. The number of susceptibility genes identified was based on the analysisexp (b )123

of 200 simulated data sets for each risk scenario, each with three susceptibility genes
(genes simulated to confer risk in accordance with one of four risk scenarios) out
of a total of 20 candidate genes—that is, the total number of susceptibility genes
was (the total number of candidate genes was ).200 # 3 p 600 200 # 20 p 4,000

a (OR123, OR1, OR2, OR3).
b Susceptibility genes identified by LRTs that were not identified in previous stages.

used as significance thresholds for the tests denoted by
MDR(e) and MDR(c), respectively. These two tests, by
construction, have approximately correct type I error
rates under these conditions. Significance thresholds for
MDR computed under the null hypothesis will be fixed
in subsequent simulations, to evaluate power under var-
ious alternative hypotheses.

Estimates of type I error rates for the marginal, ITF,
and FITF strategies were close to the nominal 5% level
(6.4, 3.5, and 4.7, respectively). For MDR, the 5th per-
centile of prediction error was equal to 42.19, and de-
claring the MDR(e) test significant when prediction error
was equal to or below this value resulted in false-positive

tests in exactly 5.0% of the replicates. Consistency is an
integer that ranges from 0 to 10. Setting the significance
level of the MDR(c) test such that significance was de-
clared when consistency was equal to 9 or 10 produced
false-positive tests in 4.7% of the replicates.

Power

To compare the power of the five testing strategies,
populations were simulated with 20 independent di-
allelic candidate genes, G1,…,G20, each with allele fre-
quencies randomly sampled between 0.1 and 0.33. A
binary disease phenotype, with overall population prev-
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Figure 2 Genes identified using CSS cutoffs. Bar height represents the total number of true susceptibility genes identified by the FITF
method with the use of a range of CSS cutoff values: CSS2 for the second stage and CSS3 for the third stage.

alence 10%, was assigned in accordance with one of
four risk scenarios. The four scenarios, each of which
involved the three genes G1, G2, and G3, were as follows:
scenario 1, ; scenario 2, andb p log (3) b p log (1.5)123 1

; scenario 3, , ,b p log (3) b p log (1.5) b p log (.67)123 1 2

and ; and scenario 4, ,b p log (3) b p log (1.5) b p123 1 2

, and . The remaining parameterslog (1.5) b p log (1.5)3

in equation (1) (excluding the intercept) were set to zero
in each scenario, and none of the genes G4,…,G20 were
simulated to influence disease risk. A case-control data
set with 200 cases and 200 controls was sampled from
each simulated population for analysis. This process was
repeated 200 times for each of the four risk scenarios.

The distribution of the 200 ranks of the CSS statistics
for the true set of susceptibility genes, {G1,G2,G3}, was
examined for each scenario (fig. 1). The rank of this
statistic should be uniformly distributed across replicates
if it is not capturing interaction information and should
be centered over the higher ranks if it is. In the absence
of interaction (scenario 4), the ranks were uniformly
distributed over the entire range, as expected. In con-
trast, in the presence of interaction ( underb p log (3)123

scenarios 1–3), the CSS statistic for gene set {G1,G2,G3}

was among the highest ranked sets in most replicates.
These results imply that, under these conditions, one can
ignore low-ranking gene sets in the search for gene-gene
interactions without an appreciable probability of ig-
noring gene sets with true interaction effects.

Table 2 presents the number of susceptibility genes
found by each of the five testing strategies applied to the
200 simulated case-control data sets for each of the four
risk scenarios. For each data set, MDR was run on the
entire group of 20 candidate genes, with the instruction
to consider sets of 3 candidate genes only. A suscepti-
bility gene was considered identified by MDR when the
gene was in the final set of the three “best” genes and
the prediction error was below the significance thresh-
old. Prediction error and consistency were considered
separately. With a log-additive interaction between genes

, , and but no main effects (scenario 1), FITFG G G1 2 3

was clearly the most powerful method, identifying al-
most 24% more susceptibility genes than the ITF meth-
od did and almost 84% more than the marginal meth-
od did. FITF also performed much better than MDR,
detecting 16 times the number of susceptibility genes
found by MDR(e) and 113 times the number found by
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Table 3

Frequencies of Susceptibility Genes Identified from Data Simulated
in Accordance with Logical Epistasis Rules

RISK

SCENARIO

AND TESTING

STRATEGY

NO. OF SUSCEPTIBILITY GENES IDENTIFIED

Marginal 2nd Stagea 3rd Stagea Total (%)

Scenario 5b:
Marginal 457 … … 457 (76.2)
ITF 429 167 4 600 (100.0)
FITF 429 170 1 600 (100.0)
MDR(e) … … … 600 (100.0)
MDR(c) … … … 600 (100.0)

Scenario 6c:
Marginal 16 … … 16 (2.7)
ITF 11 133 267 411 (68.5)
FITF 11 181 182 374 (62.3)
MDR(e) … … … 600 (100.0)
MDR(c) … … … 600 (100.0)

NOTE.—Tests were performed on 1,000 simulated case-control data
sets with 20 diallelic candidate genes and a binary phenotype. Each
data set consisted of 200 cases and 200 controls. Allele frequencies
were set between 0.1 and 0.33, and disease prevalence was set to 0.1.
For FITF, CSS cutoffs were set to 3 for second-stage tests and 6 for
third-stage tests. MDR(e) denotes a test that uses the average predic-
tion error for the evaluated data sets obtained from MDR software
with a cutoff of 42.185%. MDR(c) denotes a test that uses “consis-
tency” of MDR results with a cutoff of 8—that is, a consistency of 9
or 10 results in a rejected test. For risk scenario 6, the susceptibility
genes are also genes 1, 2, and 3, and the susceptible homozygous
genotypes may be wild type or variant. The number of susceptibility
genes identified was based on the analysis of 200 simulated data sets
for each risk scenario, each with 3 susceptibility genes out of a to-
tal of 20 candidate genes—that is, the total number of susceptibility
genes was (the total number of candidate genes was200 # 3 p 600

).200 # 20 p 4,000
a Susceptibility genes identified by LRTs that were not identified in

previous stages.
b Epistasis rules: If , then penetrance p 0.2; oth-G � G � G p 21 2 3

erwise, penetrance p 0.
c Epistatis rules: If any two genes are homozygous and the third is

heterozygous, then penetrance p 0.1; otherwise, penetrance p 0.

Table 4

Asthma-Related Genes Included in Case-Control
Analysis of CHS Data

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

MDR(c). In the presence of main effects and interac-
tions (scenarios 2 and 3), FITF again outperformed the
other methods in identifying susceptibility genes. With
main effects but no interaction (scenario 4), FITF de-
tected 18% fewer susceptibility genes than the marginal
method did, whereas the ITF, MDR(e), and MDR(c) de-
tected 24%, 70%, and 83% fewer genes, respectively,
than the marginal method did. For all four risk scenarios,
the marginal, ITF, and FITF methods clearly outper-
formed MDR. For ITF and FITF, most of the identified
susceptibility genes were detected in the first stage, with
diminishing but nontrivial numbers first identified in the
second and third stages.

Our choice of the CSS cutoff values in the FITF
method (3 for stage 2 and 6 for stage 3) may seem
somewhat arbitrary. To address the sensitivity of results

to this choice, we reanalyzed the simulated data in sce-
nario 1, using a range of alternative CSS values. The
results, shown in figure 2, demonstrate that nearly equal
power was obtained across a range of stage 2 and stage
3 CSS cutoff values. This indicates that the FITF method
is reasonably insensitive to the specific cutoff values
used.

Two additional risk scenarios (scenarios 5 and 6) were
simulated to assess the comparison of the marginal, ITF,
FITF, and MDR methods. These scenarios were equiv-
alent to two special types of interactions that were pre-
viously used to test the performance of MDR (Ritchie
et al. 2001, 2003a; Moore 2004). In scenario 5, disease
risk was set to 0.2 if and to 0.0 oth-G � G � G p 21 2 3

erwise. Under this scenario, for example, the multilocus
genotypes {AA,aa,aa} and {aa,aA,aA} each produce risk
of 0.2. In scenario 6, when any two of the three sus-
ceptibility genes (G1, G2, and G3) were homozygous and
the third was heterozygous, disease risk was set to 0.1;
otherwise, risk was set to 0.0. For example, the multi-
locus genotypes {aa,aa,aA} and {AA,aA,aa} would each
produce risk of 0.1. As in the work by Ritchie et al.
(2001, 2003a, 2003b), our simulations demonstrated
that MDR was able to identify 100% of the suscepti-
bility genes in both scenarios 5 and 6 (table 3). In sce-
nario 5, ITF and FITF also detected 100% of the true
genes, whereas the marginal method only detected 76%.
In scenario 6, ITF identified almost 68% of the suscep-
tibility genes, whereas FITF identified 62%, and the mar-
ginal method found only 2.7%. In retrospect, these re-
sults are not too surprising, given that scenarios 5 and
6 demonstrate interactions that deviate strongly from
our underlying logistic model of additivity of effects (eq.
[1]).

Another type of nonadditive interaction to consider
is the joint effect of genes that act in a dominant or
recessive pattern. Four scenarios (scenarios 7–10) were
simulated for interactions of this type. Again, suscepti-
bility at genes G1, G2, and G3 was simulated to increase
disease risk ( ), where now each gene wasb p log (8.0)123

coded as either dominant ( if or Aa;G p 1 g p AA
otherwise) or recessive ( if ;G p 0 G p 1 g p aa G p

otherwise). Note that the susceptible genotype for the0
recessive pattern was defined to be the common ho-
mozygous type, which was required to have adequate
numbers of susceptible individuals in the data. For this
set of simulations, minor-allele frequencies were based



www.ajhg.org Millstein et al.: Gene-Gene Interaction Testing Framework 23

Table 5

Frequencies of Susceptibility Genes Identified from Simulated Data Sets
in Accordance with Dominant and Recessive Epistatic Risk Patterns

RISK SCENARIO

(GENE PATTERNa)
AND TESTING STRATEGY

NO. OF SUSCEPTIBILITY GENES IDENTIFIED

Marginal 2nd Stageb 3rd Stageb Total (%)

Scenario 7 (dom, dom, dom):
Marginal 337 … … 337 (56.2)
ITF 292 45 26 363 (60.5)
FITF 292 46 47 385 (64.2)
MDR(e) … … … 311 (51.8)
MDR(c) … … … 186 (31.0)

Scenario 8 (dom, dom, rec):
Marginal 334 … … 334 (55.2)
ITF 287 43 25 355 (59.2)
FITF 287 55 55 397 (66.2)
MDR(e) … … … 310 (51.7)
MDR(c) … … … 161 (26.8)

Scenario 9 (dom, rec, rec):
Marginal 329 … … 329 (54.8)
ITF 287 48 22 357 (59.5)
FITF 287 48 64 399 (66.5)
MDR(e) … … … 296 (49.3)
MDR(c) … … … 135 (22.5)

Scenario 10 (rec, rec, rec):
Marginal 298 … … 298 (49.7)
ITF 269 44 20 333 (55.5)
FITF 269 45 26 340 (56.7)
MDR(e) … … … 264 (44.0)
MDR(c) … … … 123 (20.5)

NOTE.—Tests were performed on 1,000 simulated case-control data sets with 20
diallelic candidate genes and a binary phenotype. Each data set consisted of 200 cases
and 200 controls. Minor-allele frequencies were based on the minor-allele frequencies
of 12 genes given in table 4 for whites and Hispanics from the CHS data. Disease
prevalence was set to 0.1. For FITF, CSS cutoffs were set to 3 for second-stage tests
and 6 for third-stage tests. MDR(e) denotes a test that uses the average prediction
error for the evaluated data sets obtained from MDR software with a cutoff of
41.33%. MDR(c) denotes a test that uses “consistency” of MDR results with a cutoff
of 8—that is, a consistency of 9 or 10 results in a rejected test. Subjects with susceptible
genotypes at all three loci had a relative risk of 8. The number of susceptibility genes
identified was based on the analysis of 200 simulated data sets for each risk scenario,
each with 3 susceptibility genes out of a total of 20 candidate genes—that is, the total
number of susceptibility genes was (the total number of candidate200 # 3 p 600
genes was ).200 # 20 p 4,000

a Gene pattern for G1, G2, G3 ( ). dom p dominant; rec p recessive.OR p 8i
b Susceptibility genes identified by LRTs that were not identified in previous stages.

on the minor-allele frequencies of 12 genes in whites and
Hispanics from the CHS cohort (table 4). Cutoff values
for the MDR(e) and MDR(c) tests were reassessed under
these allele frequencies, which resulted in a cutoff of
41.33 for MDR(e) and no change for MDR(c). Allowing
the significance level of the MDR(c) test to remain, such
that significance was affirmed when consistency was
equal to 9 or 10, produced false-positive tests in 5.0%
of 1,000 simulated replicate data sets under the null
hypothesis.

In all four of the risk scenarios, FITF identified the
most susceptibility genes (table 5). The remaining meth-
ods, in decreasing order of effectiveness, were the ITF,

marginal method, MDR(e), and MDR(c). The increase
in power of the FITF over the ITF is evident at both the
second and third stages.

In each of the above simulations, genes G4,…,G20 rep-
resented non–disease-related loci that potentially could
have been identified (falsely) as susceptibility genes.
When a multilocus test was declared significant but in-
cluded non–disease-related loci, these loci were consid-
ered to be falsely identified as susceptibility genes. The
percentage of these genes in statistically significant tests
(the “null percentage”) was substantially lower for the
marginal, ITF, and FITF approaches than for MDR (ta-
ble 6).
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Table 6

Average Percentage of Non–Disease-Related Genes
Found in Significant Tests

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

Application to Asthma Case-Control Data Set

Oxidative stress, resulting from increased amounts of
reactive oxygen species (ROS), such as superoxide rad-
icals and hydrogen peroxide (H2O2), has been implicated
in the pathogenesis of asthma, a chronic inflammatory
airway disease (MacNee 2001; Mak et al. 2004). The
marginal, ITF, FITF, and MDR methods were applied to
a case-control data set from the CHS with candidate
genes that have common functional polymorphisms and
that are related to the oxidative stress and inflammatory
pathways (table 4). Informed consent was obtained from
CHS subjects or their parents. For each locus, G was
coded as 0, 1, or 2 by the number of variant alleles
present, with the exception of the glutathione S-trans-
ferase M1 gene (GSTM1 [MIM 138350]) and gluta-
thione S-transferase T1 gene (GSTT1 [MIM 600436]),
which were coded present (0) or null (1).

The analysis was restricted to 2,089 non-Hispanic and
Hispanic white children with nonmissing genetic data
from CHS cohorts. This group included 321 children
with physician-diagnosed asthma at study entry. The
sample was further restricted to create a balanced case-
control data set by random selection of 321 children
without physician-diagnosed asthma at study entry to
be used as controls, creating a total sample size of 642
subjects. For the MDR analysis, an additional case-
control pair was randomly excluded to produce a data
set of 640 subjects, since MDR version 1.4.1 required
a sample size divisible by 10 for the purpose of 10-fold
cross-validation (in the most recent version, this is no
longer a requirement).

Analysis of these data resulted in statistically signifi-
cant effects, after adjustment for multiple comparisons,
detected by both the marginal and the FITF methods.
The marginal method identified a protective effect for
the nicotinamide adenine dinucleotide (phosphate)
reduced:quinone oxidoreductase gene (NQO1 [MIM
125860]) ( ; adjusted ). The FITFOR p 0.67 P p .035
method identified a three-gene effect involving NQO1,
the myeloperoxidase gene (MPO [MIM 606989]), and
the catalase gene (CAT [MIM 115500]) (unadjusted

; significance threshold 0.00052). In sensi-P p .00026
tivity analyses, this set of three genes maintained the
same level of significance after adjustment for sex, study
community, study cohort, maternal tobacco-smoke ex-
posure during pregnancy, and parental physician-diag-
nosed asthma (data not shown). The MDR method also

identified NQO1, MPO, and CAT as the overall “best”
three-gene set. However, the average prediction error
was high (53.54%) and did not meet the threshold for
statistical significance (43.14% for 12 genes). Also, con-
sistency was low (2 of 10) and did not meet the threshold
for statistical significance (18). The ITF method alone
also did not find any statistically significant effects.

Additional information can be gained by examining
the effect estimates for the significant model involving
NQO1, MPO, and CAT (table 7). In general, the esti-
mates imply protective effects for the variant alleles at
these loci. However, the degree of protection depends
on the combination of loci with variant alleles—for ex-
ample, possessing variant alleles at MPO and CAT but
not NQO1 is more protective than possessing variant
alleles at NQO1 and either MPO or CAT.

Replicate Sample

Independent data for 445 CHS subjects from black,
Asian, Indian, and other racial/ethnic groups were then
analyzed in an attempt to replicate the significant find-
ings from the FITF method. This sample included 72
children with physician-diagnosed asthma (i.e., 72 cases)
and 373 unaffected controls. The fully saturated model
in equation (1), with genes NQO1, MPO, and CAT,
was applied to this sample and yielded a highly signif-
icant multi-df test ( ; 7 df). This three-geneP p .0008
combination remained statistically significant in this
sample after conditioning on the effect of racial/ethnic
background ( ). The effect estimates from thisP p .0033
seven-parameter model were generally similar to the es-
timates for the Hispanic and non-Hispanic white group
(table 8).

Discussion

It is clear from the simulation results that accounting
for interactions, when they exist, by use of the ITF or
FITF methods significantly increases the number of sus-
ceptibility genes that are above the detection limit, com-
pared with results of testing genes by their marginal
effects. It was also demonstrated that the cost of using
this approach in the presence of main effects but no
interactions is small. The CSS screening process in-
creased the power of the method by integrating infor-
mation that would otherwise have been discarded by the
ITF approach, which uses equally weighted tests of all
gene combinations. The distributions of ranks of the CSS
statistic for the susceptibility gene set imply that this
statistic could also be helpful in screening combinations
of genes for formal interactions. There are factors other
than gene-gene interactions that could cause association
among candidate genes not in close proximity on a chro-
mosome—for example, population stratification and dif-
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Table 7

Asthma Risk Estimates from Significant
FITF Model for Whites and Hispanics

Effect OR (95% CI)

NQO1 .49 (.32–.72)
MPO .75 (.49–1.13)
CAT .88 (.56–1.40)
NQO1 # MPO 1.48 (.88–2.49)
NQO1 # CAT 1.39 (.77–2.50)
MPO # CAT .51 (.25–.99)
NQO1 # MPO # CAT 1.14 (.51–2.51)

NOTE.—Effects were simultaneously esti-
mated using logistic regression (eq. [1]). ORs
for NQO1, MPO, and CAT indicate risk for
a single-variant allele, with allelic risk as-
sumed to be log-additive.

Table 8

Asthma Risk Estimates for Non-Hispanic,
Nonwhite Subjects

Effect OR (95% CI)

NQO1 .42 (.21–.77)
MPO 1.60 (.93–2.75)
CAT .71 (.21–1.86)
NQO1 # MPO 1.29 (.62–2.57)
NQO1 # CAT .76 (.096–3.90)
MPO # CAT .28 (.035–1.45)
NQO1 # MPO # CAT 2.12 (.26–14.06)

NOTE.—Effects were simultaneously esti-
mated using logistic regression (eq. [1]). ORs
for NQO1, MPO, and CAT indicate risk for
a single-variant allele, with allelic risk assumed
to be log-additive. Of the 445 subjects, 72 re-
ported doctor-diagnosed asthma.

ferential survival between genotype groups for reasons
other than the phenotype under investigation. Although
these factors could decrease power by adding noise to
the CSS statistic, they will not bias the LRTs if they are
not associated with the phenotype under investigation.
In this study, the overall a level was divided equally
between the three stages, and the CSS cutoff values were
set to 3 and 6; however, in practice, the investigator may
choose different weights and CSS cutoff values to suit
the focus of the study. For instance, if the focus is on
marginal effects and there are a large number of can-
didate genes in the study, then the investigator may de-
cide to allocate a larger proportion of the a level to the
first stage and to increase the CSS cutoff values to control
the number of gene sets that require testing in the second
and third stages.

In the current state of technology, in which large
amounts of data per study unit are easily available to
geneticists, it seems increasingly important to create
ways of reducing the total number of tests without in-
flating the number that are falsely rejected. Regardless
of the initial number of gene sets that potentially have
multilocus effects, a set that is manageable in size can
always be determined using the FITF strategy by setting
the CSS cutoffs suitably high.

The marginal, ITF, and FITF methods were substan-
tially more powerful than both MDR(e) and MDR(c)
when the interactions involved additive, dominant, or
recessive genes. Most of these simulated scenarios in-
volved genes with no main effects but some weak mar-
ginal effects. If lower- and higher-order effects and allele
frequencies had been adjusted such that risk exactly can-
celed out to result in no marginal effects, it is unclear
whether the performance of FITF, relative to that of
MDR, would be changed. This comparison is warranted
for future research. MDR(e) and MDR(c) performed
better when the interactions did not involve additive,
dominant, or recessive genes but rather conformed to

certain logical rules that result in a set of high-risk mul-
tilocus genotypes for genes with little or no marginal
effects. The differences between ITF and MDR are par-
tially attributable to modeling assumptions and, in this
way, reflect general differences between parametric and
nonparametric methods. However, the basic ideas de-
veloped in the ITF and FITF methods do not depend on
a particular susceptibility pattern.

As is often the case, it is difficult to directly compare
two different methods. For example, a fundamental dif-
ference between MDR and FITF is the number of pos-
sible “significant” gene sets. A single MDR analysis pro-
duces exactly one “best” set of genes, with its associated
consistency and prediction error. In contrast, in FITF
analysis, the number of significant gene sets is a function
of the data. Additionally, the significance threshold for
MDR must be determined by simulation, whereas the
threshold for FITF can be determined using a standard
multiple-testing approach, such as FDR or Bonferroni
adjustment. It is not clear how these operational issues
contributed to our reported differences in power be-
tween the two approaches. However, we did demon-
strate that both approaches controlled the experiment-
wise type I error rate under the null distribution.

In an application to real case-control data of asthmatic
and nonasthmatic white and Hispanic children from the
CHS, the marginal method identified a statistically sig-
nificant protective effect of NQO1, and the FITF method
identified a statistically significant three-gene model for
NQO1, MPO, and CAT. These results were replicated
in an independent data set that included children with
other racial/ethnic backgrounds from the CHS. The en-
zymes encoded by these genes play an important role in
the physiological response to oxidative stress. High levels
of ROSs such as superoxide have been found in the
airways of asthmatics and correlate with the severity of
reactivity of the airways (Andreadis et al. 2003). NQO1
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has the ability to scavenge superoxide, resulting in the
production of hydrogen peroxide (Siegel et al. 2004).
Hydrogen peroxide is an ROS and, as such, can con-
tribute to inflammatory changes in the asthmatic airway.
Our results for NQO1 are consistent with previous find-
ings of a protective effect in childhood asthma for the
NQO1 Ser allele (David et al. 2003). The peroxidase
MPO can cause amplification of the oxidizing potential
of hydrogen peroxide, leading to increased oxidative in-
jury (Andreadis et al. 2003). Myeloperoxidase converts
hydrogen peroxide to highly reactive hypochlorous acid
(Ambrosone et al. 2005), which has been found to cause
tissue damage and vascular dysfunction in the lungs
of sheep (Turan et al. 2000). Thus, the product of an
NQO1 reaction, hydrogen peroxide, is a substrate for
MPO. The variant MPO allele confers lower transcrip-
tional activation and is presumed to be associated with
lower ROS levels (Ambrosone et al. 2005). Catalase
plays an important role in the antioxidant defense system
by catalyzing hydrogen peroxide into water (Sindhu et
al. 2005). In a study of Swedish adults, Forsberg et al.
(2001) found catalase levels to be higher in carriers of
the variant allele. Thus, the three genes compose a broad
and interconnected part of the oxidative stress pathway,
and it is conceivable that functional polymorphisms at
these loci could influence asthma susceptibility.

In summary, we have presented a testing framework
that accounts for possible interactions while preserving
power and is parsimonious in the interpretation of ef-
fects. For commonly considered types of interactions,
this method was more powerful than MDR or marginal
tests of candidate genes. When applied to real data, the
FITF method was able to detect effects that were un-
detectable marginally, even after controlling for multiple
tests (software used to produce the results in this article
is provided free by the authors at the FITF Software
Web site). The argument has been presented here that
it is both feasible and desirable to account for possible
interactions in case-control studies of candidate genes.
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