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agency thereof. 
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•• Biomass GasifiersBiomass Gasifiers

•• Combined Heat and PowerCombined Heat and Power

•• Transportation FuelsTransportation Fuels
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There are a number of reasons for considering 
gasification based processes

• Gasification can handle a wide range of biomass feedstocks, ranging from 
woody residues to agricultural residues to dedicated crops without major 
changes in the basic process.  A system can be designed  to handle a 
variety of feeds

• Gasification is applicable across a wide-range of sizes, e.g., farm, village, 
small industry or town, to large-scale industrial 

• The thermal efficiency of gasification based processes can be high

• CHP – up to 90%

• 1st generation fuels processes – up to 60%

• Fuels and chemicals synthesis processes from syngas are already 
commercial

• Gasification-based CHP can maximize the renewable character of existing 
and proposed ethanol projects.
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Thermal
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Combustion Gasification Pyrolysis
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The primary conversion routes give different types of products



9/1/2006 6

Gasification Cleanup Synthesis

Conversion
or Collection Purification

Separation Purification

Pyrolysis

Other
Conversion *

Biomass

* Examples: Hydrothermal Processing, Liquefaction, Wet Gasification

• Hydrogen
• Alcohols
• FT Gasoline
• FT Diesel
• Olefins
• Oxochemicals
• Ammonia
• SNG

• Hydrogen
• Olefins
• Oils
• Specialty Chem

• Hydrogen
• Methane
• Oils
• Other

Fungible fuels & chemicals are major products.  New classes
of products (e.g., oxygenated oils) require market development
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Pyrolysis is defined as
• Thermal conversion (destruction) of organics in the absence of oxygen 
• In the biomass community, this commonly refers to lower temperature thermal  

processes producing liquids as the primary product
• Possibility of chemical and food byproducts

Gasification is defined as
• Thermal conversion of organic materials at elevated temperature and 

reducing conditions to produce primarily permanent gases, with char, water, 
and condensibles as minor products

• Primary categories are partial oxidation and indirect heating (steam 
gasification)

Combustion is defined as
• Thermal conversion of organic matter with an oxidant (normally oxygen) 

to produce primarily carbon dioxide and water
• The oxidant is in stoichiometric excess, i.e., complete oxidation

Combustion, pyrolysis, and gasification are the 
primary types of thermochemical conversion processes
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Primary Processes Secondary Processes Tertiary Processes
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P
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P
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Condensed Oils
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CO, H2,
CO2, H2O
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H2, CO2,
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Olefins, Aromatics
CO, H2, CO2, H2O

CO, CO2,
H2O

Gasification involves primary, secondary, and tertiary reactions
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To understand thermochemical conversion we need 
to know the physical and thermal properties that 
influence thermal behavior
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Poplar Corn Stover Chicken Litter Black Liquor
Proximate (wt% as received)

Ash 1.16 4.75 18.65 52.01
Volatile Matter 81.99 75.96 58.21 35.26
Fixed Carbon 13.05 13.23 11.53 6.11
Moisture 4.80 6.06 11.61 9.61

HHV, Dry (Btu/lb) 8382 7782 6310 4971

Ultimate, wt% as received

Carbon 47.05 43.98 32.00 32.12
Hydrogen 5.71 5.39 5.48 2.85
Nitrogen 0.22 0.62 6.64 0.24
Sulfur 0.05 0.10 0.96 4.79
Oxygen (by diff) 41.01 39.10 34.45 0.71
Chlorine <0.01 0.25 1.14 0.07
Ash 1.16 4.75 19.33 51.91

Elemental Ash Analysis, wt% of fuel as received

  Si 0.05 1.20 0.82 <0.01
  Fe --- --- 0.25 0.05
  Al 0.02 0.05 0.14 <0.01
  Na 0.02 0.01 0.77 8.65
  K 0.04 1.08 2.72 0.82
  Ca 0.39 0.29 2.79 0.05
  Mg 0.08 0.18 0.87 <0.01
  P 0.08 0.18 1.59 <0.01
  As (ppm) 14

Representative Biomass & Black Liquor Compositions

The basic properties for the comparison of thermal behavior
are proximate and ultimate analyses
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The heating value is important in estimating process efficiency

Biomass Higher Heating Value
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HHV = 0.349C + 1.178H + 0.1005S - 0.1034O - 0.015N - 0.211A

Channiwala, S.A. and P.P. Parikh (2002), Fuel, 81, 1051-1063
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HHV (MJ/kg) = 0.364C + 0.319H - 0.00381O
r2 = 0.764, n = 179



9/1/2006 12

Potassium Content of Biomass
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Wood - land clearing
Almond wood

Wood - yard waste
Danish wheat straw

Rice husks
Switchgrass,  OH

Oregon wheat straw
Alfalfa stems

California wheat straw
Imperial wheat straw

Rice straw

Potassium Content (lb/MBtu)

Bain, R. L.; Amos, W. P.; Downing, M.; Perlack, R. L. (2003). Biopower Technical Assessment: State of the 
Industry and the Technology. 277 pp.; NREL Report No. TP-510-33123

Potassium content influences slagging, fouling,
and pyrolysis oil properties
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Nitrogen Content of Biomass
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Forest residuals
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Rice straw

Alfalfa stems

Nitrogen (lb/MBtu)

Bain, R. L.; Amos, W. P.; Downing, M.; Perlack, R. L. (2003). Biopower Technical Assessment: State of the 
Industry and the Technology. 277 pp.; NREL Report No. TP-510-33123

Nitrogen is important in determining the need
for NOx emission mitigation strategies
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Gasification has a long history of 
development and use
Murdoch (1792) coal distillation

London gas lights 1802

Blau gas – Fontana 1780

1900s Colonial power

MeOH 1913 BASF

Fischer Tropsch 1920s

Vehicle Gazogens WWII

SASOL 1955 - Present

GTL 1995 – Present

Hydrogen – Future?

Circa 1898



9/1/2006 15

4%
8%

11%

23%

53%

ammonia

refineries (H2)

methanol

electricity

gas-to-liquids

other

A. van der Drift, R. van Ree, H. Boerrigter and K. Hemmes: Bio-syngas: key intermediate for large scale 
production of green fuels and chemicals. In: The 2nd World Conference on Biomass for Energy, Industry, and 
Climate Protection, 10-14 May 2004, Rome, Italy, pp. 2155-2157 (2004).

The world syngas market is approximately 6 EJ/yr
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There are a number
of gasification pathways

Source: ECN (2006), ECN-C-06-001
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N2 or Steam

Furnace

Char

Recycle Gas

Product
Gas

Flue Gas

Entrained Flow Gasifier

Air
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There are a number of types of biomass gasifiers –
e.g., fixed bed, fluid bed, and entrained flow
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Each gasifier has advantages and disadvantages
 

Gasifier Advantages Disadvantages 
Updraft Mature for heat  

Small scale applications 
Can handle high moisture 
No carbon in ash 

Feed size limits 
High tar yields 
Scale limitations 
Producer gas 
Slagging potential 
 

Downdraft Small scale applications 
Low particulates 
Low tar 
 

Feed size limits 
Scale limitations 
Producer gas 
Moisture sensitive 
 

Fluid Bed Large scale applications 
Feed characteristics 
Direct/indirect heating 
Can produce syngas 
 

Medium tar yield 
Higher particle loading 
 

Circulating Fluid Bed Large scale applications 
Feed characteristics 
Can produce syngas 
 

Medium tar yield 
Higher particle loading 
 

Entrained Flow Can be scaled 
Potential for low tar 
Potential for low CH4 
Can produce syngas 
 

Large amount of carrier gas 
Higher particle loading 
Potentially high S/C 
Particle size limits 
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Efficient biomass gasifiers exploit the unique 
characteristics of biomass

Characteristic

Fibrous material

High reactivity
High volatiles content
High char reactivity

Raw syngas composition
Tars
Sulfur
Alkali, ammonia, others

Scale of Operation

Implications

Feeding systems:

Particle size limitations, pressurized operation 
more difficult

Gasifier design

Allows gasification without pure oxygen

Gas cleanup

More tar, water soluble
Low sulfur (except BL)
Must be considered

Limits economies of scale
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Low
(300-600°C)

Medium
(700-850°C)

High
(900-1200°C)

Low
Pressure

0.2 MPa

High
Pressure

ENSYN
Dynamotive
BTG
Fortum

Bio-Oil
Changing World

Technologies
Chemrec (O2)
Future Energy (Siemens)

GTI (O2)
Carbona (O2)
HTW O2)
Foster Wheeler (O2)

FERCO (Indirect)
MTCI (Indirect)
Pearson (Indirect)
TUV (Indirect)

For CHP:TPS (Air)
Carbona (Air)
Lurgi (Air)
Foster Wheeler (Air)
EPI (Air)
Primenergy (Air)
Community Power
Frontline

Chemrec (Air)

Feed: Biomass Feed: Black Liquor
Feed: Biomass

MTCI-also Black
Liquor

Gas Product: PNNL Wet 
Gasification (CH4/H2)

10-25 MPa 1- 3 MPa 2 – 3 MPa

SyngasProduct
Dry Ash Slag

Choren – 2 stage

A large number of companies are involved in
biomass thermal conversion
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Gasifier FERCO Carbona Princeton IGT
Model

Type Indirect CFB Air FB Indirect FB PFB
Agent steam air steam O2/steam
Bed Material olivine sand none alumina
Feed wood chips wood pellets black liquor wood chips

Gas Composition
   H2 26.2 21.7                   29.4 19.1
   CO 38.2 23.8 39.2 11.1
   CO2 15.1 9.4 13.1 28.9
   N2 2 41.6 0.2 27.8
   CH4 14.9 0.08 13.0 11.2
   C2+ 4 0.6 4.4 2.0
GCV, MJ/Nm3 16.3 5.4 17.2 9.2

Gas compositions vary according to gasifier type
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Gasifier Inlet Gas Product Gas Product Gas
Type HHV

MJ/Nm3

Partial Oxidation Air Producer Gas 5-7
Partial Oxidation Oxygen Synthesis Gas 10
Indirect Steam Synthesis Gas 15

Natural Gas 38
Methane 41

Typical gas heating values vary from 15% to 40% of 
natural gas heating value
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Small and medium size combined heat and power is a good 
opportunity for biomass
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DOE and the USDA Forest Service have supported development
Community Power Corporation’s BioMax Modular Biopower System

5, 15, 50 kW systems
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CPC’s direct air gasification produces no waste water

70% of Biomass Energy = Chemical Fuel
15% of Biomass Energy = Recoverable Heat, Gas Cooling

Pyrolysis Air
(Primary)

Dry Biomass 
Feed

Coarse Filter

Gas 
Application

Fine Filter
< 0.7 µmCooling Air

750°C

80°C

Feedstock Dryer
Or Heat Application

Char Air

Pyrolysis 
(900°C)

Tar Cracking
(900 to 1000°C)

22% CO
16% H2
10% H2O
9% CO2
3% CH4
40% N2
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DOE, the European Union, the Danish government, Skive 
Fjernvarme, and Carbona are cooperating in the 5MWe Carbona 
Project in Skive, Denmark

BIOMASSBIOMASS

ASHASH

AIRAIR

ASHASH

POWERPOWER

HEATHEAT

FUELFUEL
FEEDINGFEEDING

GASIFIERGASIFIER
TAR CRACKERTAR CRACKER

GAS COOLERGAS COOLER GAS COOLERGAS COOLER
STACKSTACK

HEAT RECOVERYHEAT RECOVERY

GAS TANKGAS TANK

GAS ENGINE(S)GAS ENGINE(S)

BIOMASSBIOMASS

ASHASH

AIRAIR

ASHASH

POWERPOWER

HEATHEAT

FUELFUEL
FEEDINGFEEDING

GASIFIERGASIFIER
TAR CRACKERTAR CRACKER

GAS COOLERGAS COOLER GAS COOLERGAS COOLER
STACKSTACK

HEAT RECOVERYHEAT RECOVERY

GAS TANKGAS TANK

GAS ENGINE(S)GAS ENGINE(S)

• 110 tpd wood pellets
• 5.4 MW electric power
• 11.5 MW thermal
• 30, elec LHV eff, 90% overall
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http://www.primenergy.com/Projects_detail_LittleFalls.htm 8/28/06

Producers are starting to use biomass gasifiers
for CHP in corn ethanol facilities 

•Central Minnesota Ethanol Cooperative (CMEC)
•15million gpy ethanol plant in Little Falls, MN
•Funding – USDA, XCEL Energy, Private
•E&C – Sebesta Blomberg
•Gasifier – Primenergy
•280 tpd wood
•50 k-lb/hr high pressure steam for electricity
•35 MMBtu/hr thermal energy
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Chippewa Valley Ethanol Company has entered 
into an agreement with Frontline Bioenergy to 
support the installation of a prototype gasifier at 
the CVEC Benson, MN ethanol plant.

• The objective is to replace all of the plant’s 
natural gas usage 

• 45 mil gal/yr plant with $20 million in 
annual natural gas costs 

• $3.4 million in research services
• $12.4 million in equipment and materials

Source:  frontlinebioenergy.com 8/29/06
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Transportation fuels production will probably be at larger scale
because of process complexity and capital intensive nature.  
There may be opportunities for smaller modular “skid mount”
systems.
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Hydrocarbon fungibility will be a key to success
Primary Energy 

Source Syngas Step Conversion Technology Products

Syngas
(CO + H2)

Fischer 
Tropsch 

(FT)
Upgrading

Lubes

Naphtha

DieselSyngas to Liquids (GTL) Process

Mixed Alcohols (e.g. ethanol, propanol)

Syngas to Chemicals Technologies

Methanol

Acetic Acid

Others (e.g. Triptane, DME, etc)

Coal

Natural 
Gas

Biomass

Hydrogen

Extra 
Heavy 

Oil

Source: BP
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Integrated biorefineries involve both biochemical and 
thermochemical processes
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A 30x30 advanced integrated biorefinery scenario, i.e., the E85 
Refinery, includes both thermochemical and biochemical 
processing

Ethanol yield = 94 gal/dry ton stover
Gasoline yield = 90 gal/dry ton of lignin (13 gal/ton of stover)

(Plant total Ethanol equivalent yield = 118 gal/dry ton stover)

Ethanol via 
bioconversionCorn Stover 

10,000 dMT/day

Ethanol
1,035,000 gpd
36.2 MM gal/yr

Lignin-rich Residue   
1,500 dMT/day

Steam &
Power

Selective 
thermal 
processing

Gasoline
148,011 gpd

(Diesel is recycled to produce a lignin slurry feed)

Lignin-rich Residue   
1,432 dMT/day

Lignin
CHP Plant

Diesel
5,911 gpd

Minimum gasoline selling price = $0.51/gal gasoline
(Minimum Ethanol equivalent selling price = $0.35/galEtOH)

Plant Minimum Ethanol equivalent selling price = $0.57/gal EtOH
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Methanol from Biomass
Comparison of Capital Investment

(2002$)
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Atmospheric O2 slagging
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fluid bed
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Pressurized O2
fluid bed

Pressurized O2 slagging
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Indirect steam

Indirect steam
Indirect steam

Indirect steam with
catalytic reforming

Indirect Steam with
hot particulate removal

Wyman, et al., 1993
2000 tpd biomass

Hamelinck & Faaij, 2001
2000 tpd biomass

Katofsky, 1993
1815 tpd biomass

rlb, 08/25/06

Although ethanol and Fischer-Tropsch liquids are presently preferred
products, previous work on methanol can help guide analysis
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Analysis of ethanol from TC mixed alcohols shows the potential to 
reach the DOE goal of $1.07/gal in 2012
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Questions and Answers
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What is the scale of proposed processes?

The scale can range from 15 kg/hr for home-based systems
to 400 tons/hr for large nth plant central facilities.
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What feedstocks care appropriate for gasification?

Almost any biomass feed is suitable.  Certain high moisture feeds 
like wet manure may be uneconomic because of high drying costs. 
Feeds high in potassium, e.g., alfalfa, may require special 
processing.
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What feed preparation, storage, and handling is required?

Feed preparation is specific to the gasifier being used.

• Certain gasifiers require defined particle sizes, e.g., downdraft – no 
fines, or entrained flow - very small particles.  Almost all gasifiers 
require particle size less than 1.5 inches.

• Others require low moisture content, e.g. downdraft

Typically screening of oversize materialand metal removal is 
required

Storage requirements are standard.  On site typically 3 – 7 days.

Handling requirements are a function of the form of biomass at the 
plant gate.
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What are the estimated efficiency of gasification processes?

Gasification efficiency is a function of the feed, gasification process 
and final product. Typical values from operating experience and 
technoeconomic analyses are.
• Combined heat and power, 90%
• Electricity only, 25 – 35%
•Methanol, 60%
•DME, 54%
•FTL, 45%
•Mixed alcohols, 40-45% 
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What co-products could be marketed, and what further 
processing would they require?

This is process specific.  An example would be a mixed alcohols 
process where higher alcohols could be produced along with 
ethanol.  Generally, separation and purification to meet commercial 
specifications is required.  Specifications are generally defined by 
ASTM standards.
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How would product quality be assured?

through standard business practices defined by contracts and 
standards
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What equipment maintenance would be required, and how 
would maintenance be handled?

This is project specific.

It will be a function of project size.
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What are the emissions and waste disposal issues or 
uncertainties?

All processes have to be permitted and limits are set by the permitting 
agencies. Emissions estimates based on existing processes can be
used, e.g., EPA AP-42 for CHP, or can be estimated by E&C contractors.

Probably the biggest unkown is ash disposal.
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There are technical barriers needing addressing in 
the major processing steps in thermochemical 
conversion

Feed 
Processing 

and Handling

Gasification

Pyrolysis

Gas Cleanup

High T 
Separation

Gas Conditioning

Collection/Fractionation

Fuel Synthesis

Upgrading

Heat
&

Power

• Size Reduction
• Storage and Handling
• De-watering
• Drying

• Partial Oxidation
• Air blown
• Oxygen blown
• Indirect

• Flash pyrolysis
• Steam pyrolysis
• Vacuum pyrolysis

• Particulate removal
• Tar reforming
• Benzene removal
• S, N, Cl mitigation

• High T Filtration
• Alkali removal

• Methane reforming
• CO2 removal
• H2/CO adjustment
• Sulfur polishing

• Aerosol collection
• Microfiltration
• Chemical Stabilization
• Hydrotreating
• Dehydration

• C1 chemistry
– FT liquids
– MTG
– Mixed OH

• Upgrading
• Production Separation
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Barriers and R&D needs were identified by a panel of expert 
stakeholders at the DOE 30 x 30 Workshop in August 

• Technology issues with scale and syngas quality, and process integration
• Feeder systems
• Gas cleanup: tars, sulfur, particulates, etc.
• Matching scale to economy
• Lack of demonstration plants

• Other
• Business links: fuel resources > conversion > product distribution
• Competition between biomass, coal, natural gas, and tar sands for 
talent, construction materials, capital
• Competing markets for resources
• Permitting issues
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The 30 x 30 panel also developed a set of R&D needs

• Feeders (solid biomass)
• High temperature materials, esp. for black liquor gasification
• Syngas conversion to match scale – better processes/catalysts
• Gas cleanup
• Gasifier type
• Blended fuels
• Technology demonstrations


