

Hydrothermal Gasification of Biomass

Doug Elliott

USDA ARS Thermochemical Workshop Richland, Washington

September 6, 2006

Battelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Outline

Hydrothermal Processes

- Catalytic Hydrothermal Gasification
- Super-Critical Water Gasification
- Low-Temperature Catalytic Gasification
- Thermal Conversion

Catalytic Hydrothermal Gasification

- Technology Description
- Status of Development
- Gas Synthesis Integration
- Current Barriers

Catalytic Hydrothermal Gasification

- ▶ 350°C, 3000 psig
- ruthenium (or nickel) catalyst
- methane/carbon dioxide product gas
- has been tested with real biomass slurries
- very high conversion of carbon
- currently in demonstration with biosludge at 7 liters/hr of 5% dry solids slurry

Battelle

Super-Critical Water Gasification

- ▶ 450 to 600°C, 4000 to 6000 psig
- no (carbon?) catalyst
- hydrogen/carbon monoxide synthesis gas product
- moderately high conversion of carbon
- biomass work is limited to small bench-scale semicontinuous tests
- scaled-up plants for development in Germany and Japan
- capital costs are projected as very high

Low-Temperature Catalytic Gasification

- ► 225 to 265°C, 27-54 bar (400-800 psig)
- platinum-based bimetallic or nickel/tin catalyst
- hydrogen/carbon dioxide product gas
- glycerol, ethylene glycol, methanol
- less successful on glucose and sorbitol
- not tested with biomass

Virent Energy Systems, Inc.

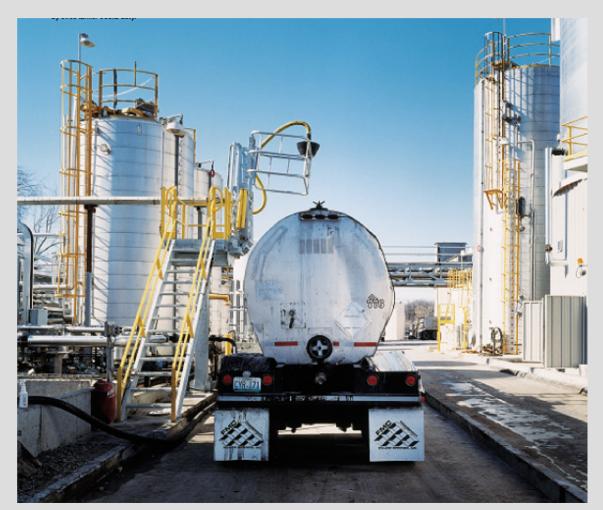
small-scale application for conversion of glycerol to hydrogen for power production (ICE genset) is being tested

▶ 3kg/h = 10 kW

http://www.virent.com/apps-genset.htm

Battelle

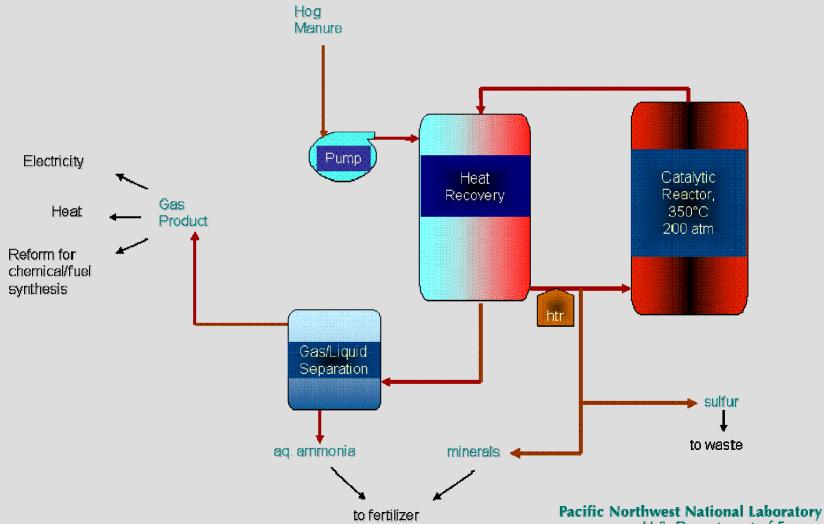
Pacific Northwest National Laboratory U.S. Department of Energy 6


Changing World Technologies

two stage

- low-temperature hydrolysis
- higher temperature thermal treatment of organics
- ► 260°C, 600 psig, 20 minutes
- distillate fuel oil product
- ▶ liquid fertilizer (NH₄ aq) and solid fertilizer (Ca)

Changing World Technologies


- turkey offal and pig fat
- 270 ton and 20 ton yields 500 bbl of #2 fuel oil
- \$42 million capital
 \$80/bbl cost
 (\$42/bbl subsidy)

Battelle http://www.changingworldtech.com

Pacific Northwest National Laboratory U.S. Department of Energy 8

Low-Temperature Catalytic Gasification in Pressurized Water

Battelle

U.S. Department of Energy 9

Gasification of Wet Biomass

- Low-temperature (~350 °C) gasification of wet biomass
 - Pressurized liquid water environment
 - Metal catalyst
 - High-pressure steam reforming & methanation
- Intended for biomass feedstocks not suitable for conventional gasification
 - Examples include fermentation wastes, biosludge, dairy manure and others
 - An alternative to anaerobic digestion or combustion of wet wastes

Status of Technical Feasibility

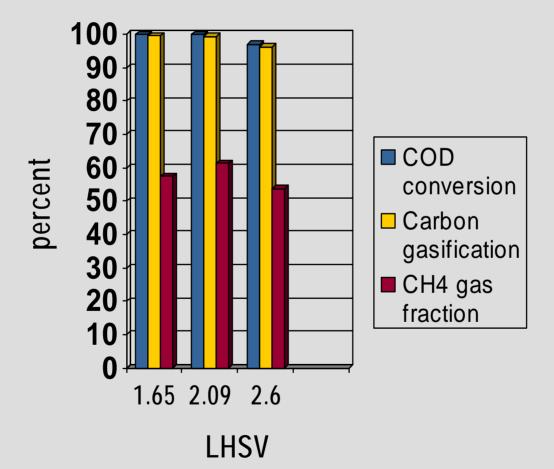
- Concept was invented during fundamental gasification studies for Gas Research Institute
- Initial process tests for DOE Fuels from Biomass
 - The concept showed promise as a method to gasify wet biomass feedstocks
 - The catalysts available at the time were not sufficiently durable for aqueous phase processing
 - Effect of feedstock contaminants on long-term catalyst activity was identified

PNNL has since developed robust catalysts and supports for use in aqueous solution as part of DOE-OIT sponsored Chemical IOF research

Wide Range of Feedstocks Evaluated

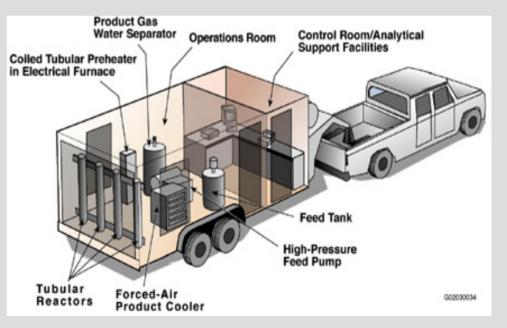
Byproducts from biobased product conversions

- EtOH stillage from lignocellulosic feeds
- extracted product from destarched corn fiber and wheat millfeed


Animal wastes

- dairy cattle manure solids
- Chemical manufacturing wastes
 - chemical models of many chemical functional groups
 - listed wastes

Rattelle


on-site demonstrations

Manure Conversion Results bench-scale continuous flow reactor @350°C and 200 atm

Current CRADA Project

- Eastman Chemical wastewater biosludge
- Extended analytical effort
- Bench-scale process development
- Scaled-up reactor modifications and on-site operations

Scope of the Project

Phased research to evaluate concept

> 2005:

- Biosludge analysis and batch reactor testing
- Modification and operation of bench-scale continuous-flow reactor

> 2006:

Modification and operation of 20 kg/hr continuous-flow facility

2007:

- Completion of R&D and detailed process design and analysis
- Scale-up design with Eastman

> 2007-8?:

Battelle

 Pilot plant construction with Eastman

Economics for Catalytic Gasification of Biosludge -- 350 wet ton/day

Capital Costs (TCI)

- Equipment, Installation, Site
- Working Capital, Contingency, Contractor

Operating Costs

- Utilities, Labor, Net Catalyst Charges
- Capital Depreciation, 20 yr straight-line
- Other Overheads & Directs

Annual Operating Costs

- Product gas value (\$7/MMBtu)
- Product gas amount

Battelle

Potential H₂ production

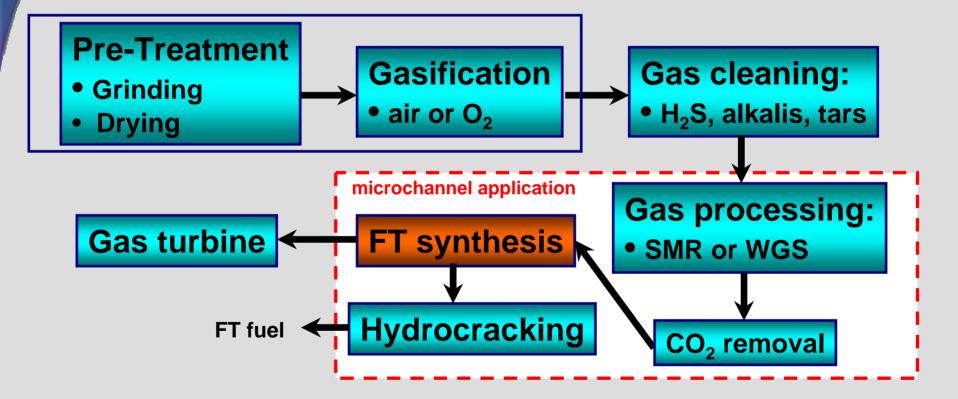
\$1.3M/yr \$1.8M/yr 1.3M SCF/day 2.0M SCF/day

Pacific Northwest National Laboratory U.S. Department of Energy 16

\$5.3M

Wet Gasification of Hog Manure

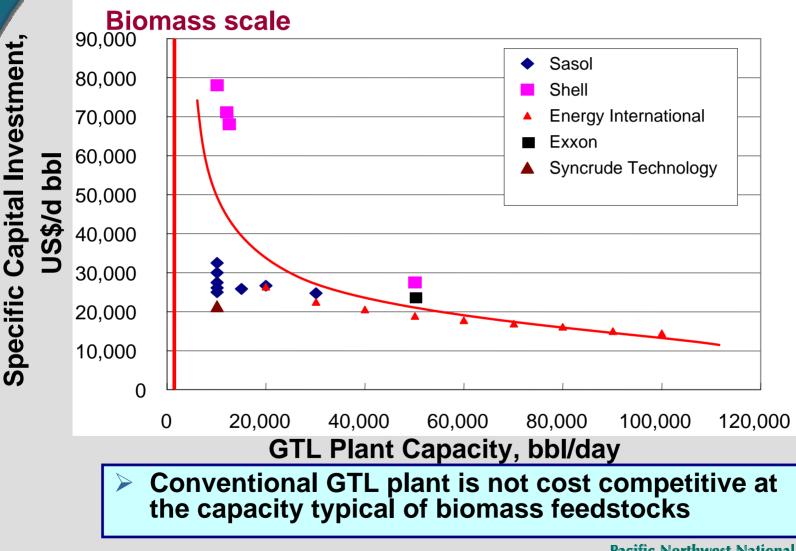
- Evaluate the use of hydrothermal gasification for hog manure treatment with the ARS Coastal Plains Research Center, Florence, SC staff
- PNNL effort funded by USDA Interlaboratory Agreement
- Tasks
 - Develop biomass resource information
 - Develop plant cost data
 - Identify technology barriers



Utilization of Product Gas for Fuel

- Clean, water-washed, product gas
- Methane requires reforming to synthesis gas
- Membrane separation development may be required for CO₂ recovery and efficient methane utilization
- Small-scale operation will require innovative reforming and synthesis methods in order to be cost competitive for liquid fuels production

Fischer-Tropsch Fuels From Biomass


Battelle

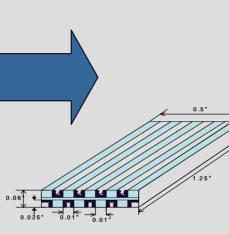
Challenges of Biomass Syngas to Fuels

- Stranded feedstock
 - No existing pipelines to move syngas to large central facilities
- Conversion facilities are small in scale: <1000 tons biomass/day</p>
 - Equivalent to <~1100BPD liquid FT fuels
 - Not economic to convert to fuels using conventional technologies
- Costly CO₂ clean up
- Low Pressure, ~14bar

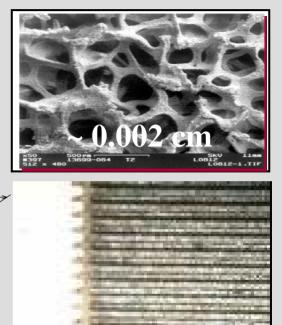
Microchannel reaction technology provides the potential to cost effectively convert syngas to fuels

Conventional GTL Plant Capital Investment

Battelle


Pacific Northwest National Laboratory U.S. Department of Energy 21

Engineered Catalysts


Catalyst tailored for microchannel reactor

Conventional

Microchannel

Support	Porous Ceramic	Porous Metal and Metallic Structured Monolith
Heat Transport Efficiency	Low	High
Mass Transport	Low	High
Efficiency		
Activity	Limited	High

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 22

Accomplishments to Date

- High throughput: 60 × greater than conventional (GHSV = 60,000hr⁻¹ at 15 atm, H₂/CO = 1-2.5)
- Demonstrated tailored product distribution in gasoline and diesel slates -- potentially eliminate hydrocracker
- Preliminary results indicate the potential of no costly CO₂ separation
- Promising economics low capital cost

Competitive Advantages

Efficient use of wet biomass without drying

- Effective conversion of biomass components to high yields of fuel gas with minimal residuals, typically >98% conversion
- Intensified process for smaller footprint, 300 times rate of anaerobic digestion
- No added reagents or nutrients (catalyst required)
- Medium-Btu gas product, ~600 Btu/SCF
- Potentially cost competitive conversion technology

Technical Barriers to Utilization

High-Pressure Aqueous Processing System

- Feeding systems for wet biomass
- Scale-up of effective heat exchange systems
- Gasification Catalysts
 - Methods for protecting catalysts from impurities
- Impact of Process Integration
 - Utilization of gas product for synthesis
 - Scale of operation

Technology Focus

Near-Term --

- Biosludge is Eastman-Kingsport target
- Gas product could be used for synthesis
- Disposal of sludge is constrained

Long-Term --

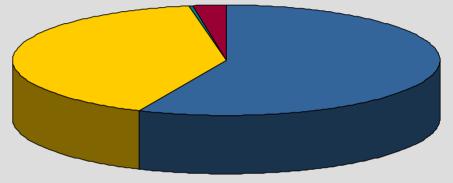
- Wet residues will be widely available
- Effluent elimination will be important
- Energy requirements for operations

Legal/Regulatory

Right to practice

- 2 relevant process patents
- 2 additional catalyst formulation patents

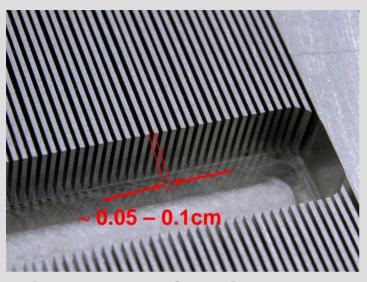
Process effluents

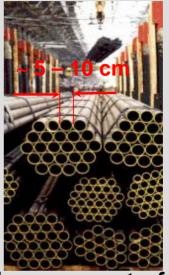

- Wet gasification cleans waste streams
- Does not generate residual organic byproducts
- Byproduct inorganic materials need outlet

Representative Processing Results:

7.8% DDG&S @ 350°C, 200 atm

 COD reduced from 126,000 ppm by 99.9% (125 ppm effluent)




 0.74 L / g DDG&S solids of a medium-Btu gas
 (590 Btu/SCF)

Product Gas Composition
CH4 CO2 HC H2

Characteristics of Microchannel Reactor

Heat and mass transfer advantages -- Intensifies syngas-to-fuel process

- Enhances productivity
- Improves product selectivity
- Minimizes catalyst deactivation

Provides a potential cost-competitive solution at the scale relevant to biomass

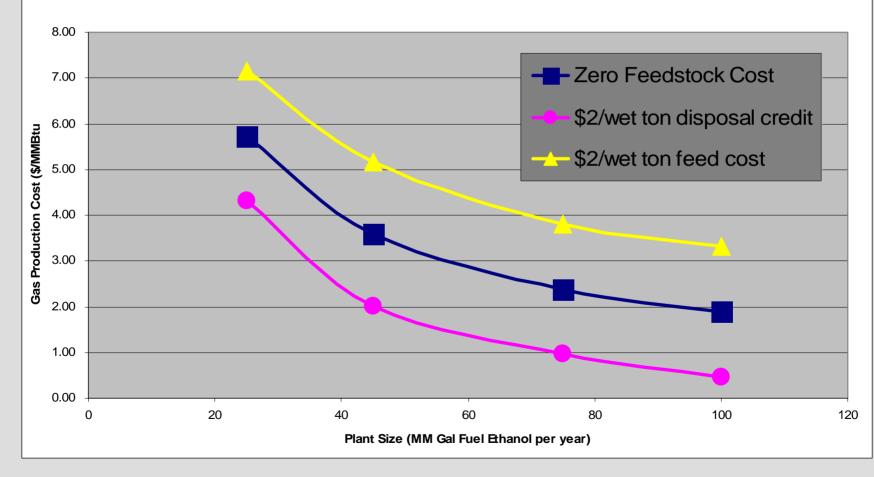
Allows potential integration of unit operations (simplification of reforming with synthesis step

Achieves advanced performance through

Microchannel reactor

•Engineered catalyst Battelle

Economics for Wet Gasification of DDG&S 45 million gal/yr EtOH


 Capital Costs (TCI) Equipment, Installation, Site Working Capital, Contingency, Contractor 	\$35.0M
Operating Costs	
 Raw Materials Utilities, Labor, Net Catalyst Charges Other Overheads & Directs 	\$ O
Annual Operating Costs (AOC)	\$6.3M
Break-Even gas cost (AOC/Btu/yr)	\$3.58/MBtu
10% ROI gas cost	\$5.58/MBtu

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 30

Cost Sensitivities

Gas Production Cost vs Plant Size

Pacific Northwest National Laboratory U.S. Department of Energy 31

Battelle